当前位置: 仪器信息网 > 行业主题 > >

质谱热分析

仪器信息网质谱热分析专题为您提供2024年最新质谱热分析价格报价、厂家品牌的相关信息, 包括质谱热分析参数、型号等,不管是国产,还是进口品牌的质谱热分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱热分析相关的耗材配件、试剂标物,还有质谱热分析相关的最新资讯、资料,以及质谱热分析相关的解决方案。

质谱热分析相关的资讯

  • 109万!耐驰中标桂林理工大学化生学院热分析-质谱联用仪设备采购项目
    一、项目编号:GXZC2022-J1-003194-JDZB(招标文件编号:GXZC2022-J1-003194-JDZB)二、项目名称:化生学院热分析-质谱联用仪设备采购三、中标(成交)信息供应商名称:广东省中科进出口有限公司供应商地址:广东省广州市越秀区先烈中路100号大院9号102房自编A一楼中标(成交)金额:109.5000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 广东省中科进出口有限公司 热分析-质谱联用仪 耐驰 STA 449 F5 Jupiter®- QMS 403 Aeolos Quadro 1 1095000
  • 2008梅特勒托利多热分析用户会暨热分析技术研讨会
    尊敬的用户/客户:很荣幸能邀请您参加2008梅特勒托利多热分析用户会暨热分析技术研讨会。我们今年将在上海举办2008年梅特勒托利多热分析用户会暨热分析技术研讨会。届时,梅特勒托利多完整的热分析实验室将会给您带来全新体验。我们诚邀所有对热分析感兴趣的用户与客户参加,希望能与您共同探讨热分析技术。【时间】:2008年7月15~18日 【会议地点】:上海 【主要内容】: &bull 用DSC进行成核剂对聚丙烯结晶性能的研究 &mdash &mdash 武培怡 教授/博士 复旦大学高分子科学系主任 &bull 热分析质谱联用技术在材料研究中的应用 &mdash &mdash 陆昌伟 教授 热分析质谱法作者 &bull 热分析技术在支化聚乙烯研究中的应用 &mdash &mdash 冯嘉春 副教授/博士 复旦大学高分子系 &bull 《热分析应用手册》介绍 &mdash &mdash 陆立明 经理 梅特勒托利多热分析仪器部经理 &bull 热分析在高分子与电子行业的应用 &mdash &mdash 仲伟霞 博士 梅特勒托利多热分析技术应用顾问 &bull 热分析新技术研讨:温度调制DSC技术、热分析动力学、动态热机械分析 &bull 热分析软件的功能和应用 &bull 热分析仪器的维护、保养与校准【费用】: 用户:1000元/人(含会务、资料、正餐) 非用户:1500元/人(含会务、资料、正餐) 反馈截止日期至6月30日下载:2008梅特勒托利多热分析用户会暨热分析技术研讨会 邀请函
  • 【精】“热分析老人”钱义祥汇总50年来热分析主要书籍著作
    p style="text-align: center"img style="width: 284px height: 400px " src="http://img1.17img.cn/17img/images/201804/insimg/1381b543-5c59-4406-8bcd-a35cc15e379c.jpg" title="00.jpg" height="400" hspace="0" border="0" vspace="0" width="284"//pp  strong前言/strong/pp  《热分析著作汇编》由热分析“老人”钱义祥钱老师罗列总结了从70年代开始至今,共计39本关于热分析行业的主要系列书籍,并对其进行了摘要与归纳,以供热分析同仁参考使用。尽管很多书籍已是年代久远,也或许和现在的发展形势已有脱离,但是作为热分析的历史、热分析的历程、热分析的基础,编者相信,这些书籍绝不会也不该被热分析同仁所遗忘,毕竟这为我们呈现的是一代代热分析人的心血与热情!/pp  热献网在此再次感谢钱老师为我们做的总结与归纳,也希望钱老师的热情能给到大家以帮助,从而引发一代代新热分析人的新热分析情怀。/pp  热献网编/pp  2018年4月/pp style="text-align: center " span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) " strong“一、刘振海热分析书籍”/strong/span/pp style="text-align: center "strong  书名:《聚合物量热测定》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/0ece1de4-a90b-41ce-b54f-2ccd158cc9ff.jpg" title="02.jpg"//pp  strong摘要:/strong/pp  本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章 第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 4-9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。本书料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。/pp style="text-align: center "  strong书名:《热分析仪器》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/687a8166-2155-43d1-988b-9c0cda537704.jpg" title="03.jpg"//pp  strong摘要:/strong/pp  本书是《分析仪器使用与维护丛书》的一个分册。/pp  书中系统介绍了各类热分析与量热仪的原理、基本结构、元件和单元 各类热分析与量热仪及标志仪器性能的各项指标,表征实验数据质量的各项参数 影响实验结果的各种因素和各项标准实验方法 并以药物、矿物和含能材料为例,列举了热分析的典型应用、量热技术在生物化学等方面的应用 仪器常见的故障处理等内容。/pp  本书可供热分析与量热学科研与技术人员阅读,也可供大专院校、科研单位、工厂等有关人员参考。/pp style="text-align: center "  strong书名:《分析化学手册第六分册-热分析 第一版》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/f8d528b4-0e13-4e14-85ce-1aa08b5a69da.jpg" title="04.jpg"//pp strong 摘要:/strong/pp  本书系《分析化学手册的第六分册》,是继“基础只是与安全知识”“化学分析”“光学分析与电化学分析”“色谱分析”“核磁共振波普分析”之后,为读者提供的热分析方法与数据集。本书由中日热分析专家合作编著而成,全书由3部分构成:热分析方法、热分析曲线及曲线及数据集。汇集了高分子材料,矿物、建材、药物、含能材料、催化剂、稀土配合物等方面的千余热分析曲线。在热分析常用数据表部分,列出了标定物质的比热容、熔点与融化热、基本物理常数、热分析术语对照等。/pp  本手册可供各行业中从事热分析工作的技术人员和热分析为测试手段的广大科技人员,大专院校有关专业师生查阅与参考。/pp style="text-align: center "  strong书名:《分析化学手册第八分册-热分析 第二版》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/e94953af-3bdd-4b9d-a516-b82f1612345f.jpg" title="05.jpg"//ppstrong  摘要:/strong/pp  第二版《分析化学手册》在第一版的基础上做了较大幅度的调整、增删和补充。全套书由10个分册构成:基础知识与安全知识、化学分析、光谱分析、电分析化学、气相色谱分析、液相色谱分析、核磁共振波谱分析、热分析、质谱分析和化学计量学。第二版《分析化学手册》中注意贯彻了国家标准GB《量和单位》的基本原则,注重所用单位与有关国标规定的一致性。在取材上突出实用性,注重基础知识、基础数据与分析技术的最新进展并容。在内容上注重科学性与准确性。在编排上强调系统性与查阅方便。本分册囊括了热分析的基本原理和各类应用,基本由三部分内容构成:第一部分包括热分析的基本定义、术语以及有关物质的转变、反应和特性参数等约100项应用的原理、实验及数据处理 第二部分是约1000条各类物质(如:聚合物、食品、药物、矿物、含能材料等)的有代表性的热分析曲线及其简明的解释 第三部分是热分析常用数据表。本次修订更加突出反映了中日科学工作者近年在该领域取得的成果。/pp style="text-align: center "  strong书名:《分析化学手册 热分析与量热学 第三版》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/0fbad100-bb0f-4bb3-b19e-afa4b00485ee.jpg" title="06.jpg"//ppstrong  摘要/strong:/pp  《分析化学手册》第三版在第二版的基础上作了较大幅度的增补和删减,保持原手册10个分册的基础上,将其中3个分册进行拆分,扩充为6册,最终形成13册。/pp  本分册为《热分析与量热学》,在上一版《热分析》的基础上新增补了量热学的内容。全书由两篇组成,第一篇为热分析与量热分析基础,全面阐述了热分析和量热学方法,包括发展历史、基本定义、术语以及有关物质的转变、反应和特性参数,热分析仪器及方法应用的原理、实验与数据处理,量热分析仪器、测量方式、对各类物理化学性质及化学反应热的测定 第二篇为热分析、量热分析曲线与数据集,汇总了聚合物、食品、药物、矿物、含能材料等物质的具有代表性的热分析曲线和数据,以及量热分析在各种领域的应用实例。/pp style="text-align: center "  strong书名:《热分析与量热仪及其应用》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/5424fd56-d61b-43d1-b799-01978b109741.jpg" title="07.jpg"//ppstrong  摘要:/strong/pp  本书系统地介绍了各类热分析与量热仪的原理、基本结构、元件和单元 各类热分析与量热仪及标志仪器性能的各项指标,表征实验数据质量的各项参数 影响实验结果的各种因素和各项标准实验方法 数据库的建立、维护与查询,以及计算机病毒的一般性常识 并以聚合物、药物和矿物为例,列举了典型应用,以及微量量热技术在诸多方面的应用 仪器的常见故障处理等。/pp  本书可供热分析与量热学科研与技术人员阅读,也可供大专院校、科研单位、工厂等有关人员参考。/pp style="text-align: center " strong 书名:《热分析简明教程》 /strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/ca1b7245-d263-4519-994b-6e5f201077df.jpg" title="08.jpg"//ppstrong  摘要:/strong/pp  《中国科学院大学研究生教材系列:热分析简明教程》是中国科学院大学遴选的研究生教材。首先扼要介绍热分析的发展历程和热分析实施方案的制订。然后系统地介绍了热分析术语,并给出了新的理解和诠释 主要热分析仪器的原理与结构及其最新发展 影响热分析实验结果的各种因素和相关的标准与规范,这是从事热分析工作的基本依据。最后按观测物质的各种转变、反应和特性参数,介绍典型的应用实例。/pp style="text-align: center "  span style="color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "strong“二、Mettler热分析系列书籍”/strong/span/pp style="text-align: center "  strong书名:《热分析应用基础》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/69102ee7-5467-4e2e-8e4e-0d2101e721b6.jpg" title="09.jpg"//pp  strong摘要:/strong/pp  《热分析应用基础》是为适应广大热分析工作者及相关专业的科技人员对热分析基础和应用方面知识的需求,由陆立明编著的图书,本书是《热分析应用手册系列丛书》的一个重要分册,系统全面介绍了各种热分析方法的基本原理和测量方法,诸如DSC、TGA、TMA、DMA、热光分析、TGA/MS和TGA/FTIR联用技术的定义、原理和应用,以及样品制备、数据处理与表达,并着重阐述了玻璃化、二元相图、纯度测定、多晶型、吸附分析 还从热分析实验方法、条件(参数)选择到评价体系、实施方案制订了若干步骤。最后附有ISO、ICTAC等国际组织制订的各项热分析标准。/pp style="text-align: center "  strong书名:《热塑性聚合物》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/ee366efc-9a67-42e9-a353-a5a60a89db9a.jpg" title="010.jpg"//ppstrong  摘要:/strong/pp  热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。/pp style="text-align: center " strong 书名:《热固性树脂》 /strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/ef3cc6bf-662d-4fec-afc9-fb94d3afb745.jpg" title="011.jpg"//ppstrong  摘要:/strong/pp  本书是《热分析应用手册系列丛书》之《热固性树脂》分册。全书共分四个部分:第一部分为全面的评述和对常用于热固性树脂表征的分析技术的扼要说明 第二部分论述各个热固性树脂的化学性能和讨论这些材料的用途。这部分是供热固性聚合物领域的新人和期望学习更多热固性树脂性能和应用的人们使用的 第三部分讨论可用不同热分析技术研究的性能和效应 第四至第九部分集中于实际例子。按照树脂体系类型被细分。应用实例描述了在热固性树脂的生命周期中可被研究、测试或只是检查的不同性能。与其他分册一样,本书以中英文对照方式出版,读者可以阅读中文,同时可对照原著。无论对热分析工作者,还是热分析学习者,应该都有帮助和裨益。/pp style="text-align: center "  strong书名:《弹性体》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/b160e2aa-eedb-4b61-b684-ba68829c9be1.jpg" title="012.jpg"//ppstrong  摘要:/strong/pp  热分析应用手册系列丛书' 之' 弹性体' 分册通过大量实例全面深入地介绍和讨论了热分析在聚合物弹性体方面的应用 **至D13章热分析方法简介 弹性体的结构、性能和应用 弹性体的基本热效应 D14至D15章介绍了大量的应用实例 包括对结果的详细解释和导出的结论。/pp style="text-align: center "  strong书名:《逸出气体分析》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/e275f200-1181-40fa-94c4-f65bbe90afe8.jpg" title="013.jpg"//ppstrong  摘要:/strong/pp  《热分析应用手册系列丛书》之《逸出气体分析(汉英对照)》分册着重阐述TGA-FTIR和TGA-MS两种联用技术。手册的**部分讲述这两种技术的基本原理,也包括一些实际内容和图谱解析的介绍。第二部分讨论在我们实验室用TGA-FTIR和TGA-MS做的15项不同的应用,以及两个相对较少使用的TMA和MS联用技术的应用/pp style="text-align: center "  strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "“三、70年代至今热分析系列书籍”/span/strong/pp style="text-align: center " strong 书名:《热分析法与药物分析》 王玉/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c2338f45-bda0-4c7e-b9d3-3afa8ebd1051.jpg" title="014.jpg"//ppstrong  摘要:/strong/pp  王玉主编的《热分析法与药物分析(精)/中国药 品检验系列丛书》主要内容涉及热分析基本概念和常 用术语,着重介绍在药物研究中应用很为广泛的三种 热分析技术:热重法、差热分析法、差示扫描量热法 及其基本原理、常用分析方法和常用仪器,讨论了热 分析曲线及反应终点的判断,以及热分析动力学及计 算,结合药物分析的特点,介绍了热分析在药物熔点 测定、鉴别、定性以及纯度测定、药物晶型研究等多 方面的应用实例,很后讨论了热分析技术的进展。/pp  本书适合广大药学工作者,特别是药物分析、药 品检验人员使用。/pp style="text-align: center "  strong书名《热分析及其应用》 陈镜泓 李传儒/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d2932479-309a-40e5-a41f-db90faa8e6bc.jpg" title="015.jpg"//pp strong 摘要:/strong/pp  热分析是测量物质受热或冷却时物理性质与温度关系的一类技术。热分析仪器操作渐变,灵敏,速度快,所需试样量少(以毫克计),得到的科学信息广泛。/pp  本书公分三篇十四章。在介绍热分析概念,历史,现状和发展趋势的基础上,系统的评述了热衷发(TG),微商热重法(DTG),差热分析发(DTA),差示扫描量热法(DSC),逸出气体和检测法(EGA和EGD)及热分析与其他分析技术的联用。除介绍仪器的原理,类型,构造,操作技术及特点外,还论及热谱图的解释和数据处理及影响实验结果的因素。尤其着力与理论和使用两方面阐述热分析技术在物理,化学,化工,石油,能源,地址,仿制,塑料,橡胶,纤维,医药,食品,生物,陶瓷,玻璃,火药,土壤,冶金,建筑,煤炭,电子及空间技术等领域中的应用。为方便读者,本书还在附录中收入了“国际热分析协会”对于热分析命名法和有关规定,以及各种商品热分析仪器的型号和性能。/pp  本书可供可言,生产部门的科技人员,从事热分析的专业人员及大专院校有关师生参考。/pp style="text-align: center " strong 书名:《热分析动力学》 胡荣祖/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6f4f19e2-efcf-48dd-9198-9bc1e2ef5338.jpg" title="016.jpg"//ppstrong  摘要:/strong/pp  本书以热分析动力学方程为主线,汇集了近60年来国内外热分析动力学研究的学术成果。全书内容共13章。首先,回顾了热分析动力学理论、方法和技术 两类动力学方程和三类温度积分式的数学推导。其次,系统地总结了近60年发展起来的用微、积分法处理热分析曲线的成果。第三,涉及最概然机理函数的推断 动力学补偿效应 非线性等转化率的微、积分法。第四,阐述了一级及经验级数自催化分解反应动力学参数的数值模拟 诱导温度与诱导时间的关系 等温热分析曲线分析法 等温和非等温结晶过程DSC曲线分析法。第五,扼要地论述了非等温条件下热爆炸临界温度和临界温升速率的估算方法。书中还编入143道源自最新文献的习题,书末附有简明答案。/pp  本书可作为高等学校物理化学、分析化学、物理无机化学、物理有机化学、高分子物理化学、材料学专业的硕士、博士研究生的教材,也可供科研院所、生产部门的科技工作者及热分析专业技术人员参考。/pp style="text-align: center "  strong书名:《聚合物结构分析》 朱诚身/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/b1b56792-698c-4d7f-9927-d7f09e64d328.jpg" title="017.jpg"//ppstrong  摘要:/strong/pp  本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角x射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。/pp  本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。/pp style="text-align: center "  strong书名:《含能材料热分析》 刘子如/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/bb0198c6-da7a-495e-b271-e09436b856d0.jpg" title="018.jpg"//pp  strong摘要:/strong/pp  书比较全面地解读热分析曲线和特征量,并以此研究含能材料的热性能、热分解和相互作用。主要内容包括热安定性和相容性的评价 热物理常数测试方法的建立 热分解的动力学和机理 炸药结晶体的" 局部化学" 行为 液体发药的过冷性质 熔体的非等温动力学。具有创新性的内容,提出了由DSC获得的熔融熔(H)与组成(X)关系建立二元和三元相图的方法 高压DSC特征量与固体推进剂燃速的相关性 用动态力学性能预估复合或交联推进剂的物理老化寿命 极限力学性能与动态力学性能的相关性等。本书涉及的热分析仪器种类较多,有通用的差示扫描量热(DSC)、差热分析(DTA)和热重-微商热重(TG-DTG)技术,还有高压差示扫描量热(PDSC),动态热机械分析(DMA)以及热分析与其他方法如与红外和质谱联用技术:TG-DSC-FTIR、TG-DSC-MS和热裂解红外原位池等先进技术。/pp style="text-align: center "  strong书名:《热分析实验》 徐 颖/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/214aa864-8ff1-445c-97bb-f759e955aa92.jpg" title="019.jpg"//ppstrong  摘要:/strong/pp  热分析是研究程序控制温度下物质性质与温度间关系的一个分析测试技术,它涉及的专业知识和所能应用的领域极广,包括无机、有机、高分子、冶金、陶瓷、玻璃、医药、食品、地质、电子、能源、建筑、生物等各个领域。/pp  由于热分析仪器种类较多,并且在高校科研、教学中应用日益广泛,仪器开放共享已成为必然领域,因而对热分析仪器的实验教学提出新的要求。笔者在培训教学的过程中发现,虽然热分析专著繁多,但是适合实验教学的却很少,因此根据多位专家学者的经典著作,以及平时积累的零星资料,并结合实际工作中的经验摸索,编写了这本《热分析实验》,力图向初学者简明扼要地介绍热分析原理、种类、结构的基本知识,使其系统规范地掌握实验操作、数据处理,深刻理解图谱特征、含义,了解实验影响因素和技巧,进一步提高综合表征能力。/pp  本书一共七章,第一章介绍了热分析基本的定义、术语、概念和标准,仪器分类、现状和发展,以及常用参考书 第二章介绍了热分析仪器的结构和组成、常用附件、检验和校正的方法 第三、四、五章分别介绍了常用热分析仪器的基本原理、影响因素、实验方法和图谱解读 第六章介绍了热分析仪器的综合表征和联用技术 第七章介绍了常见的热分析实验、仪器操作、注意事项。/pp  strong书名:《高聚物与复合材料动态力学的分析》 过梅丽/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/755b513b-9823-4c9c-86b1-a95e08fb0dd8.jpg" title="020.jpg"//ppstrong  摘要/strong/pp  本书分三部分,介绍了动态力学热分析的基本原理,试验方法极其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在试验方法中结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与实验模式的选择原则、可能获得的信息及影响实验结果的因素。在应用部分,列举了打两个研究实例,说明动态力学热分析在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。/pp style="text-align: center "  strong书名:《热分析质谱法》 陆昌伟 奚同庚/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/2d5d3df2-b019-49a7-be6e-3424373c2f31.jpg" title="021.jpg"//ppstrong  摘要:/strong/pp  本书系统地介绍热分析和质谱分析联用技术的原理、分析方法、仪器结构和参数选择,以及在材料科学、物理化学、热化学和热物理等领域中的应用。热分析质谱法是热分析和质谱分析两个分支学科交叉形成的一种新的分析方法,体现了热分析和质谱分析两种技术耦合或联用而形成的优势互补,是对传统热分析技术的突破,也是质谱分析的新发展,已成为研究材料热分解过程,反应动力学、热化学反应机制等问题的重要研究手段,发展前景良好。/pp style="text-align: center "  strong书名:《药物分析图谱》 魏觉珍 陈国玺/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/a9fb3501-6817-47ab-8551-914e45c584f9.jpg" title="022.jpg"//ppstrong  摘要:/strong/pp  全书内容包括三部分:一是差热、热重分析的基本概念,影响差热、热重分析的因素,药物的差热分析表征及其解析 二是191种药物标准品(含对照品)的差热、热重分析图谱 三是药物的中文名称索引和英文名称索引。本书是药物热分析人员的一部工具书,对药物分析、药物检测和药物工业生产、开发有很大的实用价值。本书还可供医药科研、大专院校有关专业人员参考。/pp style="text-align: center " strong 书名:《ANSYS热分析教程与实例解析》 /strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/0a2a7790-6934-4bc3-965a-8f7e081e5d6a.jpg" title="023.jpg"//ppstrong  摘要:/strong/pp  《ANSYS热分析教程与实例解析》按照深入浅出的原则,通过图形用户界面和命令流方式对不同的工程应用问题进行了详细讲解,本书的主要特色是通过" 提示" 的形式为读者提供了大量的分析方法和技巧。/pp  本书适合理工院校相关专业的硕士研究生、博士研究生及教师使用,可以作为ANSYS学习教材供高等院校学生及科研院所研究人员使用,也可以作为从事热分析领域科学技术研究的工程技术人员的参考用书。/pp  strong书名:《矿物热分析粉晶分析相变图谱手册》 陈国玺 张月明/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/310c475d-e01d-4951-bb99-b64c31594412.jpg" title="024.jpg"//ppstrong  摘要:/strong/pp  本书是矿物热分析,X光粉晶分析及岩矿鉴定人员的一部工具书,也是矿物,矿物物理,矿物材料,地球化学等有关方面工作者的基本研究资料和实用的参考书,亦可供高等院校有关专业的教学和研究工作参考。/pp style="text-align: center " strong 书名:《热分析法及其在陶瓷领域中的应用》 陈建邦/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6d8f0ba9-9a37-4108-9978-8084df62e683.jpg" title="025.jpg"//ppstrong  摘要:/strong/pp  本书介绍了热茶分析、失重分析和线收缩率测定等发方法的基础只是和作者在热谱曲线判读等方面所积累的经验,并着重介绍利用这些方法来掌握陶瓷原料的相组成和构造特点,以及估计坯料加工工艺的确定提供材料。同事对能使陶瓷制品导致废次的一些烧成缺陷,从坯料的热变化特性和制品装烧制度方面加以剖析,进而提出了解决的措施。书中手机了一些典型陶瓷矿物原料的差热曲线以及作者测绘的国产陶瓷原料、坯釉料200余宗的差热曲线,有助于生产部门参考。/pp  本书可供从事陶瓷生产和科研的科研人员、大专院校陶瓷专业师生以及从事其他硅酸盐原材料研究的有关人员参考。/pp style="text-align: center "  strong书名:《热分析技术及其应用基础》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6f0872b1-5433-42cd-ba98-24cd677d02da.jpg" title="026.jpg"//ppstrong  摘要:/strong/pp  近一个实际来由于电子技术的迅速发展,热分析仪器日新月异的改变使热分析方法得到了进展,目前热分析技术是具有国际性的,我国的热分析工作者日益增多,并正在各个学科领域中趋向纵深。/pp  根据广大分析工作者的要求,为更多地了解和推广热分析仪器和方法,本会首次尝试举办一次“热分析技术及其应用基础”的讲座,并撰写了本讲义,其中有国际热分析学者的重要研究,也有我国热分析工作者的本身工作,由于时间匆促,作者水平有限,缺点和错误一定不少,聆请各位专家、学者、热分析工作者以及读者们批评赐教!/pp style="text-align: center "  strong书名:《铀矿物和含铀矿物的热分析》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/8472b983-97ff-4cf7-a1cf-1e8d122184c9.jpg" title="027.jpg"//pp style="text-align: center "  出版社 中国工业出版社/pp style="text-align: center "  作 者 ц.л.安巴尔楚缅/pp style="text-align: center "  г.и.巴萨洛娃 C.A.戈尔热夫斯卡娅/pp style="text-align: center "  H.г.纳扎连科 P.п.霍扎耶/pp style="text-align: center " strong 书名:《矿物差热分析》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/8b80b73a-e0d2-4d31-93c0-b70d4e76c047.jpg" title="028.jpg"//pp style="text-align: center "  出版社 中国工业出版社/pp style="text-align: center "  作 者 辽宁省地质局中心实验室年份/pp style="text-align: center "  年 份 1975年/pp style="text-align: center "  strong书名:《实用热分析》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/0093c268-61ac-4b99-ac18-3203f67475e1.jpg" title="029.jpg"/  br//pp style="text-align: center "  出版社 纺织工业出版社/pp style="text-align: center "  作 者 于伯龄 姜胶东/pp style="text-align: center "  年 份 1990年/pp style="text-align: center "  strong书名:《差热分析:DTA技术及其应用指导》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/a9218225-119e-4d49-8cf4-5faa777a974f.jpg" title="030.jpg"/  br//pp style="text-align: center "  出版社 北京师范大学出版社/pp style="text-align: center "  作 者 波普,尤德 著 杨红征 译/pp style="text-align: center "  年 份 2010年/pp style="text-align: center " strong 书名:《常用热分析仪器》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/68845226-527f-40cb-8870-838efa78a969.jpg" title="031.jpg"//pp style="text-align: center "  出版社 上海科学技术出版社/pp style="text-align: center "  作 者 徐国华 袁靖/pp style="text-align: center "  年 份 1990年/pp style="text-align: center "  strong书名:《高分子材料热分析曲线集》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/038d8cb4-cf34-4336-9300-71d178ad1c99.jpg" title="032.jpg"/  br//pp style="text-align: center "  出版社 科学出版社/pp style="text-align: center "  作 者 高家武等/pp style="text-align: center "  年 份 1990年/pp style="text-align: center "  strong书名:《矿物差热分析鉴定手册》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/a00f845f-91a6-4225-bcd3-dd36a6e06fb6.jpg" title="033.jpg"/  br//pp style="text-align: center "  出版社 科学出版社/pp style="text-align: center "  作 者 黄伯龄/pp style="text-align: center "  年 份 1987年/pp style="text-align: center " strong 书名:《热分析》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/fd904fc6-dc60-4e36-afdf-3a2d69ba39db.jpg" title="034.jpg"/  br//pp style="text-align: center "  出版社 清华大学出版社/pp style="text-align: center "  作 者 李余增/pp style="text-align: center "  年 份 1987年/pp style="text-align: center "  strong书名:《热分析》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/5a8f613e-a7b0-4209-8b89-366754c3a610.jpg" title="035.jpg"//pp style="text-align: center "  出版社 科学出版社/pp style="text-align: center "  作 者 神户博太郎 著 刘振海等 译/pp style="text-align: center "  年 份 1982年/pp style="text-align: center " strong 书名:《热分析》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/c9e456a6-5472-4bbe-ad10-d10455cbe7dd.jpg" title="036.jpg"/ br//pp style="text-align: center "  出版社 高等教育出版社/pp style="text-align: center "  作 者 蔡正千/pp style="text-align: center "  年 份 1993年/pp style="text-align: center "  strong书名:《热学式分析仪器》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/63ebca67-6713-4ba8-bc51-b9c0fe545b6c.jpg" title="037.jpg"/  br//pp style="text-align: center "  出版社 中国建筑工业出版社/pp style="text-align: center "  作 者 张仲礼 黄兆铭 李选培/pp style="text-align: center "  年 份 1984年/pp style="text-align: center "  strong书名:《差热、热重分析与非等温固相反应动力学》/strong/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/26c65bfa-3529-4cd5-856d-ab77d6db7369.jpg" title="038.jpg"/  br//pp style="text-align: center "  出版社 冶金工业出版社/pp style="text-align: center "  作 者 沈兴/pp style="text-align: center "  年 份 1995年/pp style="text-align: center "  strong书名:《炸药热分析》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/5d6906b9-347c-4d79-b94c-049762e7df57.jpg" title="039.jpg"//pp style="text-align: center "  出版社 科学出版社/pp style="text-align: center "  作 者 楚士晋/pp style="text-align: center "  年 份 1994年/pp style="text-align: center "  strong书名:《热天平》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d469a613-c4e8-4db8-9939-a47efe9ebc40.jpg" title="040.jpg"//pp style="text-align: center "  出版社 北京中国计量出版社/pp style="text-align: center "  作 者 宋鸿恩/pp style="text-align: center "  年 份 1985年/p
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p span style="color: rgb(112, 48, 160) "(本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)  /span/pp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title="" style="width: 450px height: 503px " height="503" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong钱义祥老先生某次出差夜晚其学生拍摄/strong/pp  strong1.1 " 选择" 的哲理/strong/pp  人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。/pp  从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。/pp  1.1.1研究方法是一个不断发展的动态过程。/pp  科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。/pp  前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。/pp  1.1.2热分析方法选择的主体是人/pp  选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。/pp  热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。/pp  在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。/pp  热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。/pp  选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。/pp  选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。/pp  1.1.3高分子物理近代研究方法/pp  选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。/pp  “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。/pp  strong1.2热分析方法选择/strong/pp  “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。/pp  “热分析方法选择”有二层意思:/pp  第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。/pp  第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。/pp  1.2.1科学研究与方法的关系:/pp  每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。/pp  科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。/pp  方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。/pp  方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。/pp  1.2.2热分析仪器(方法)选择/pp  热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。/pp  在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。/pp  热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title="1.png"//pp  上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类/pp  方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一/pp  步细分,并选择相应的热分析方法。/pp  物理转变:/pp  涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。/pp  化学反应:/pp  涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。/pp  物质特性参数:/pp  比定压热容、纯度、膨胀系数、热导率等。/pp  热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。/pp  列举几个实例:/pp  1. 玻璃化转变测量方法的选择/pp  高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。/pp  DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表:/pp  DSC:检测的物理量是比热容 Cp 比热容变化约30%/pp  TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300%/pp  DMA:检测的物理量是模量 E 模量变化高达3个数量级/pp  由上表可知:仪器灵敏度DSC TMA DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。/pp  2. 高聚物次级转变的热分析方法选择/pp  为什么要选择DMA方法来研究次级转变呢?/pp  从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。/pp  用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。/pp  DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。/pp  高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。/pp  高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。/pp  DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的/pp  DMA曲线如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title="2.jpg"//pp style="text-align: center "strong均相非晶态高聚物的DMA曲线/strong/pp  3. 物理老化和化学老化研究的热分析方法选择/pp  高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。/pp  化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。/pp  物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。/pp  膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title="3.jpg"//pp style="text-align: center "strong分子链残留内应力和热焓松弛的MDSC曲线/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title="4.jpg"//pp style="text-align: center "strong  膜的物理老化涂层的应力-温度曲线/strong/pp style="text-align: center "strong  未物理老化涂层A/strong/pp style="text-align: center "strong  物理老化涂层B/strong/pp  涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。/pp  光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title="5 (2).jpg"//pp style="text-align: center "  strongPDC的结构示意图 光化学反应量热仪PDC/strong/pp  光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。/pp  4. 选用多种热分析方法,全面表征高聚物的热性能。/pp  为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。/pp  成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。/pp  5. 绝热材料的热分析方法选择/pp  温石棉是导热性极差的绝热材料。/pp  温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下:/pp style="text-align: center "  Mg(OH)2 → MgO + H2O↑-△H/pp  由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。/pp  由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH)sub2/sub的含量,数据准确,重复性好。/pp  6. 标准试验方法/pp  鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流/pp  和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。/pp  研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。/pp  借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。/pp  开发新的热分析方法和实验方法,适应研究的需要。/pp  7. 改造已有的方法以适应解决实际问题的需要/pp  外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。/pp  外加电场的DMA实验/pp  外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title="6.jpg"//pp style="text-align: center "strong拱形铜片的应变—应力曲线测试/strong/pp  选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。/pp  采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title="7.jpg"//pp style="text-align: center "strong夹具组合 —“蹦床夹具”实验/strong/pp  标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。/pp  用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。/pp  循环加载/下载应力,进行应力—应变循环实验。/pp  测定试样蹦床落点的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title="8.jpg"//pp style="text-align: center "strongDMA模拟蹦床实验示图/strong/pp  8. 移植方法/pp  移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方/pp  法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。/pp  固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。/pp  1.2.3选择实验条件,建立实验方法/pp  热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。strong见下图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title="9.jpg"//pp  列举几个实例:/pp  1. 含能材料的热分析方法和试验方法的选择/pp  热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。/pp  含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title="10.jpg"//pp style="text-align: center "  strong含能材料的TG/DTA曲线 含能材料的DSC曲线/strong/pp  含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。/pp  2. 聚丙烯玻璃化温度测定/pp  选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显strong,/strong如图所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title="11.png"//pp  3. 选择真空或加压条件解决热分析峰的分离问题/pp  热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。/pp  如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。/pp  4. 选择“强化影响因素”的实验条件/pp  有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。/pp  1.2.4热分析方法的取代和重新选择/pp  热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。/pp  批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。/pp  “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。/pp  实例1:选择热分析方法测定药物熔点/pp  热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。/pp  在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。/pp  选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。/pp  实例2:热分析方法自身在发展,方法选择也在演变。/pp  热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。/pp  TG方法的演变,促使高聚物热分解的研究不断深化,如下表:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title="12.jpg"//pp  表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分/pp  析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同/pp  步进行解析,追溯热变化的物理-化学过程。/pp  1.2.5方法选择中的创造性思维和批判性思维/pp  创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。/pp  热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思/pp  维和批判性思维将推动热分析方法和仪器的发展。/pp  实例1:骤冷PET初始结晶度测定/pp  选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。/pp  温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例/pp  创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title="13.jpg"//pp  温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。/pp  实例2:油品氧化诱导期测定/pp  常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。/pp  strong1.3“热分析方法选择”的编辑/strong/pp  全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。/pp  “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。/pp  1.3.1实验室编辑“热分析方法选用”/pp  热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。/pp  “热分析方法选用实例”示意如表1:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title="14.jpg"//pp  每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。/pp  某实验室绘制的“热分析方法选用”实例的表格,如表2示例。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title="15.jpg"//pp  “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。/pp style="text-align: center "  strong表三 热分析应用的文本格式/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title="16.jpg"//pp  每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。/pp  1.3.2“热分析方法选择”的检索系统建立/pp  热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。/pp  以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。/pp  文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。/pp style="text-align: center "  strong表四 研究报告的文本转换/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title="17.jpg"//pp  “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。/pp  “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。/pp  1.3.3选择云端中“热分析”那朵云/pp  在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。/pp  耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美!/p
  • 热分析技术之热讨——2017年度北京热分析学术研讨会召开
    p  strong仪器信息网讯/strong 2018年1月16日,首届“2017年度北京热分析学术研讨会”在北京天文馆4D科普剧场召开。120余位热分析领域技术/应用专家、分析工作者、厂商代表等参加了本次年末热分析学术交流会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/f0004ae2-65e6-4a73-92de-7ce67186f5ed.jpg" style="" title="IMG_4049.jpg"//pp style="text-align: center "strong大会现场/strong/pp  年会由北京理化分析测试技术学会热分析专业委员会主办,旨在加强学术交流,促进合作,了解热分析技术和交叉学科的最新进展,推进热分析技术在分析科学中的发展与应用。/pp  作为首届举办,研讨会邀请多位热分析领域专家做了热分析技术的最新进展、最新相关应用动态等报告,同时也请部分知名热分析仪器生产商代表,分别介绍了最新的热分析仪器设备及相关热门仪器技术。/pp  作为北京理化分析测试技术学会热分析专业委员会理事长,潘伟首先向与会人员表示了感谢及2018的新年祝福。接着,为大家分享了本次研讨会的首个报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/bfaa87f0-e656-43a4-815d-cff0b188d673.jpg" title="IMG_3993.jpg"//pp style="text-align: center "strong报告人:清华大学 潘伟 教授/strong/pp style="text-align: center "strong报告题目:激光共聚焦拉曼光谱仪测量固体电解质中氧扩散系数/strong/pp  目前,测量材料中离子扩散的方法主要为同位素法和电导率测试法。而同位素法测试不方便,电导率测试法由于受其他载流电子及电场驱动力的影响,难以精确测量氧等其他离子的扩散系数。潘伟团队近几年研究了一种采用激光共聚焦拉曼光谱显微技术测量固体电解质中氧等其他离子扩散系数的方法。报告中,潘伟详细介绍了该方法的理论基础、测量操作步骤等,结果表明该方法测量氧离子的扩散系数是有效的,并认为,此法或能拓展到材料中离子迁移的原位研究中。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/5ce0274a-82d5-49d8-985e-12dac1e329cf.jpg" title="IMG_4020.jpg"//pp style="text-align: center "strong报告人:中国科学院化学研究所 张建玲 研究员/strong/pp style="text-align: center "strong报告题目:绿色溶剂体系热力学性质及其应用研究/strong/pp  与传统先污染后治理的理念不同,绿色化学是从源头上消除污染的化学,其中一项内容就是使用无毒、无害的绿色溶剂。张建玲的研究领域正是绿色溶剂体系性质及其应用研究,在报告中,简要介绍了其团队设计的一系列绿色溶剂体系,并详细列举了相关的应用研究,包括:超临界CO2/水/MOF乳液体系提供MOF高级组装新途径、超临界CO2/水/金属配合物胶束体系提供CO2光催化转化新途径、离子液体促进MOF室温合成等。最后,对于热分析,张建玲认为原位动态跟踪、表征不同性质的仪器的联用、极限条件环境研究等技术将是时下技术的热点或趋势。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c6614413-c9f3-42ae-a33a-6b6ad52008e7.jpg" title="IMG_4062.jpg"//pp style="text-align: center "strong报告人:中国科学院物理研究所 吴光恒 研究员/strong/pp style="text-align: center "strong报告题目:DSC测量和歼-15/strong/pp  吴光恒在报告中,以富有风趣的形式介绍了新型磁性功能材料的概念及对于国家发展的重要性。接着讲解了材料的制备及测量方法,测量手段包括量热、磁测量、X射线结构分析、显微观察等。其中DSC设备就可以用来测量居里温度,接着分享了一个相关的测试实例:作为辽宁舰的舰载机,J-15的磁性材料肩负动力控制系统中迅速切断动力等重要功能,该磁性材料曾出现故障报警相关问题,之后吴光恒团队通过DSC测量居里温度的方法使问题成功解决。这也表明了,理化测试可以对国家重大需求做出直接的贡献。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/d839eddd-98a9-4c96-aff9-fc2ad8cc5cfa.jpg" title="IMG_4079.jpg"//pp style="text-align: center "strong报告人:北京大学 分析测试中心 章斐/strong/pp style="text-align: center "strong报告题目:TG/FTIR /MS检测中逸出气二次反应问题探讨/strong/pp  热重分析是一种唯象形的表观技术,可获知质量变化的温度区间和变化量,却不能获知失去的是什么物质。报告中研究的则是根据样品结构,结合失重率推算,对分解剩余物进行红外检测或元素分析。章斐首先介绍了逸出气二次反应定义及分类,接着讲解了该反应研究的意义:合理解析热重曲线(如通过铌酸铵草酸盐的TG/FTIR测试发现了其分解过程存在逸出气二次反应,部分CO发生了气化反应)、避免残氧影响、机理研究等。最后对热分析方法小结时,概括到:所见即所得,所得何所源(是否有逸出气二次反应衍生气体?是否与残氧二次反应?是否有仪器污染带来的干扰峰?),测样如勘案,探索无止境。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/0f20c10d-e411-4e6a-b47e-3363478e02d9.jpg" title="IMG_4129.jpg"//pp style="text-align: center "strong报告人:PerkinElmer公司 杨富/strong/pp style="text-align: center "strong报告题目:PerkinElmer公司热分析多联机技术及应用/strong/pp  仪器检测的未来特点,杨富认为是大通量、更全面数据,实时过程监测,无需极强的专业知识。在这种趋势下,PerkinElmer公司可提供综合型检测解决方案,与热分析相关的多机联用平台就包括盯控/热脱附模块、气质联用模块、显微/成像模块、红外光谱模块、热重/同步模块等。多机联用平台可以克服诸多弊端,如TGA/FTIR灵敏度较低、多组分检测时较困难,TGA/MS成本较高、谱图库有限、TGA/GCMS没有实时分析等。而多联机技术则可实现成分分析、质量监控、过程控制、异物分析等多领域应用的应用环。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/28549224-2cac-4503-a7d4-2cc789b4874b.jpg" title="IMG_4182.jpg"//pp style="text-align: center "strong报告人:中国科学院化学研究所 张武寿 研究员/strong/pp style="text-align: center "strong报告题目:等温量热计新进展/strong/pp  张武寿在报告中分三部分介绍了其团队关于等温量热计研究的最新进展,首先介绍了大体积、高功率量热计,其应用包括电池充放电研究、大体积样品热容量测量、反应热测量等。接着介绍了高温、高压量热计,该设备设计背景主要是用于油砂氧化过程的研究。最后介绍了等温滴定微量热-光谱联用仪,接着以视频的形式向大家展示了该设备的原理及实际应用情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/ad0aa6b0-cca4-4772-a27d-82b8f4f7ad1e.jpg" title="IMG_4210.jpg"//pp style="text-align: center "strong报告人:中国人民大学 牟天成 教授/strong/pp style="text-align: center "strong报告题目:低共熔溶剂的热稳定性研究/strong/pp  在报告中,牟天成首先讲到,热稳定性和分解温度是相对的概念,接着提出了长期稳定性的概念和计算方法,以及定量离子液体分解和蒸发的方法。通过热稳定性的研究表明,低共熔溶剂和离子液体不同,前者先分解成两个独立的组分,然后一组分分解或蒸发,后者的阴离子或阳离子先分解,然后另一个离子分解。另外,热重分析还可以用于其它方面,如应用其“重”(如作为碳化炉使用制备碳材料等)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/7091c7d7-f4b8-47fd-aa34-0908e0caf1a3.jpg" title="IMG_4284.jpg"//pp style="text-align: center "strong报告人:北京工业大学 吴玉庭 研究员/strong/pp style="text-align: center "strong报告题目:低熔点混合熔盐的配制与性能提升/strong/pp  目前,储热已成为第二大储能技术,由于熔盐具有传热无相变、传热均匀稳定、传热性能好、安全可靠等优点,熔盐储热成为前景广阔的大规模储能技术。吴玉庭介绍了一系列低熔点混合熔盐的制备,检测方法包括DSC检测、XRD等,同时,还讲解了为提高储热性能,制备过程中采取的一些措施,如亚硝酸钠代硝酸锂、某种添加剂替代硝酸钠等,最终使得三元碳酸盐的熔点显著降低77摄氏度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/e55463cb-58d0-4c66-8605-3a4763641999.jpg" title="IMG_4300.jpg"//pp style="text-align: center "strong报告人:中国计量科学研究院 王海峰 副研究员/strong/pp style="text-align: center "strong报告题目:热分析仪器校准的研究进展/strong/pp  王海峰首先以熔点的测量为例,讲解了计量的作用。其作用即检定和校准,检定是为评定计量器具的计量性能,确定其是否合格所进行的全部工作 校准时在规定条件下,为确定计量器具示值误差的一组操作。DSC的校准包括温度、热流等,DSC的性能评价包括分辨率、时间常数、信噪比、基线噪音、漂移、升温速率、炉温误差等。热重分析仪的校准包括质量校准、温度校准等。热重分析仪的性能评价包括温度重复性、温度示察误差、升温速率等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/7c322e43-9cf6-4ce2-a91c-bd7cb0dfc7a3.jpg" title="IMG_4335.jpg"//pp style="text-align: center "strong报告人:梅特勒-托利多国际贸易(上海)有限公司 陆立明/strong/pp style="text-align: center "strong报告题目:升降温最快的商品化DSC梅特勒-托利多Flash DSC/strong/pp  陆立明首先通过PET的DSC曲线实例对比了常规DSC技术和超快速DSC技术测试结果的不同:超快速DSC由于速度足够快使得PET测试过程没有明显机构重组发生。接着介绍了最新产品Flash DSC 2+,其超快升温速度可达3000000K/min。Flash DSC的应用包括等温实验、iPP升温速率变化测试、PET微晶结构变化与升温速率的关系、糖精的熔融和分解、工艺模拟测试(如添加剂的作用)等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/e919626f-1ccc-447b-a300-e6ca1b364156.jpg" title="IMG_4376.jpg"//pp style="text-align: center "strong报告人:德国耐驰仪器制造有限公司 曾智强/strong/pp style="text-align: center "strong报告题目:热分析谱图识别与检索-Identity方法与案例/strong/pp  曾智强认为,热分析谱图的鉴别不同于一些分析仪器图谱的“指纹图谱”性质,由于诸多变量因素影响,“相似谱图”往往对其更实用。耐驰Identity数据库就是在此基础上建立的,将测量曲线与数据库中的参考曲线逐一比较,得到相似度列表,考虑到材料的背景信息,可以对材料进行判别。目前,Identity数据库将包括DSC、TGA、DIL/TMA等图谱,涵盖聚合物、有机物、食品、药品、元素单质等领域材料,目前约含有谱图1100个,且可由使用者自行扩展,多个用户可通过网络共享数据库。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/640a92a7-12b9-4401-ac20-63e491e345d2.jpg" title="IMG_4399.jpg"//pp style="text-align: center "strong报告人:中国科学院工程热物理所 夏红德/strong/pp style="text-align: center "strong报告题目:反应过程逸出气体的质谱定量分析方法及应用/strong/pp  反应过程逸出气体的质谱定量传统分析方法包括两种:一是PTA法,该方法在线标定,精度可保证,可解决温度依赖效应,但气体成分需已知,仅适合单一气体逸出 二是归一化法,该方法可以离线标定,精确无法保证,气体成分需已知,无法解决温度依赖效应。夏红德提出了新的定量方法:ECSA等效特征图谱法,该方法避免了温度依赖效应,保证了时间连续性,原则上可测任何气体,机理上适合任何反应。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/409bc387-f2cf-4289-a674-1ead7fa50ab4.jpg" title="IMG_4414.jpg"//pp style="text-align: center "strong报告人:北京橡胶工业研究设计院 苍飞飞 高级工程师/strong/pp style="text-align: center "strong报告题目:热分析技术在轮胎剖析工作中的应用/strong/pp  苍飞飞首先介绍了轮胎剖析的流程,包括物理性能检测、胶料组分分析、成品性能检测等。接着介绍了热分析技术在轮胎剖析工作中的应用情况,相关标准方法包括橡胶和橡胶制品热重分析法成硫化胶和未硫化胶的成分、橡胶总烃含量的测定热解发等。具体案例及问题中表示橡胶烃含量测试过程中干扰因素有很多,如:胶料中结合硫或酚醛树脂类等不被溶剂抽出的有机物,对定量检测都有不同程度影响。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/dcb5ab46-4f77-43d4-9785-8152a11a4840.jpg" title="IMG_4428.jpg"//pp style="text-align: center "strong报告人:北京市理化分析测试中心 李琴梅/strong/pp style="text-align: center "strong报告题目:热联用技术在材料分析测试中的应用/strong/pp  李琴梅主要介绍了四种热联用技术在材料分析测试中的应用:热裂解/气相色谱-质谱联用技术主要用于定性分析、组分分析、结构分析、降解分析等 高压DSC及联用技术常见应用领域包括催化剂研究、化学反应的微尺度模拟等 热分析-红外/质谱联用技术可用于同步热分析特殊测量、聚乳酸高分子材料热降解过程等 热分析-X射线衍射联用技术可应用于苯乙烯晶型转变研究等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/bf548082-274f-4d4e-b04b-8e559b477e64.jpg" title="IMG_3965.jpg"//pp style="text-align: center "strong德国耐驰仪器制造有限公司/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/fc0b4ad7-1df5-4490-8d8c-578f9de9725e.jpg" title="IMG_3966.jpg"//pp style="text-align: center "strong梅特勒-托利多国际贸易(上海)有限公司/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/7bca51ed-d2c2-4a57-ac0e-ba6b8fa563d4.jpg" title="IMG_3961.jpg"//pp style="text-align: center "strong珀金埃尔默仪器有限公司/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/d397e322-832a-4744-a114-346fe05f5f58.jpg" title="IMG_4117.jpg"//pp style="text-align: center "strong日立高新技术公司/strongbr//p
  • 浅谈热分析技术与同步热分析仪的应用
    pspan style="color: rgb(0, 176, 240) font-size: 20px "strong浅谈热分析技术/strong/span/pp  热分析(Thermal Analysis),顾名思义,可以解释为以热进行分析的一种方法。/pp  在目前热分析可以达到的温度范围内,从-150℃至1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。/pp  通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。/pp  1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理性质与温度的关系的技术。/pp style="text-align: center "数学表达式为:P=f(T)/pp  其中:P代表物质的一种物理量 T为物质温度。/pp  所谓程序控制温度一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。也就是把温度看作是时间的函数:T=Φ(t),其中t是时间,则P=f(T或t)。/ppspan style="color: rgb(0, 176, 240) font-size: 20px "strong热分析的起源和发展/strong/span/pp  1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。/pp  1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC),美国PE公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。/pp  1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。/ppspan style="font-size: 20px "strongspan style="color: rgb(0, 176, 240) "热分析研究内容、方法及应用/span/strong/span/ppstrong热分析方法/strong/pp style="text-align: left "  通过对物质加热、冷却等反应实验,热分析可得到如下研究内容:br/img src="https://img1.17img.cn/17img/images/201809/uepic/90b4db0f-6c3a-4927-94b6-92d8ef1f996e.jpg" title="热分析研究内容.png" alt="热分析研究内容.png"//pp  应用最广泛的方法是span style="color: rgb(255, 0, 0) "热重法(TGA)/span和span style="color: rgb(255, 0, 0) "差热分析法(DTA)/span,其次是span style="color: rgb(255, 0, 0) "差示扫描量热法(DSC)/span,这三者构成了热分析的三大支柱,占到热分析总应用的span style="color: rgb(255, 0, 0) "75%/span以上。/pp  热分析只能给出试样的重量变化及吸热或放热情况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。目前,解释曲线最现实的办法就是把热分析与其它仪器串联或间歇联用,常用气相色谱仪、质谱仪、红外光谱仪、X射线衍射仪等对逸出气体和固体残留物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。/ppstrong热分析仪的应用/strong/ptable border="1" cellspacing="0" cellpadding="0" width="568"tbodytr class="firstRow"td width="568" colspan="5" valign="top" style="border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px "p style="line-height: 125% text-indent: 0em "span style="font-family:宋体"TGA/spanspan style="font-family:宋体"(热重分析仪)span DTA/span(差热分析仪)span DSC/span(示差扫描量热仪)/span/pp style="line-height: 125% text-indent: 0em "span style="font-family:宋体" TMA/DMA/spanspan style="font-family:宋体"(热机械分析仪)span EGA/span(复合分析联用)/span/p/td/trtrtd width="114" valign="top" style="border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"橡胶、高分子/span/pp style="line-height:125%"span style="font-family:宋体"塑料、油墨/span/pp style="line-height:125%"span style="font-family:宋体"纤维、涂料/span/pp style="line-height:125%"span style="font-family:宋体"染料、粘着剂/span/p/tdtd width="114" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"食品/span/pp style="line-height:125%"span style="font-family:宋体"生物体、液晶/span/pp style="line-height:125%"span style="font-family:宋体"油脂、肥皂/span/pp style="line-height:125%"span style="font-family:宋体"洗涤剂/span/p/tdtd width="119" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"医药、香料/span/pp style="line-height:125%"span style="font-family:宋体"化妆品/span/pp style="line-height:125%"span style="font-family:宋体"有机span//span无机药品/span/pp style="line-height:125%"span style="font-family:宋体"病理检测/span/p/tdtd width="108" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"电子材料/span/pp style="line-height:125%"span style="font-family:宋体"木材、造纸/span/pp style="line-height:125%"span style="font-family:宋体"建筑材料/span/pp style="line-height:125%"span style="font-family:宋体"工业废弃物/span/p/tdtd width="114" valign="top" style="border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px "p style="line-height:125%"span style="font-family:宋体"冶金、矿物/span/pp style="line-height:125%"span style="font-family:宋体"玻璃、电池/span/pp style="line-height:125%"span style="font-family:宋体"陶瓷、黏土/span/pp style="line-height:125%"span style="font-family:宋体"纺织、石油/span/p/td/tr/tbody/tablep  热分析具有试样需求量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。/pp  热分析仪已成为我国现阶段部分行业重要的质控分析方法:/pp  ①金行业里铁合金、保护渣检验等生产前期原料控制过程中,热分析已列为控制最终产品质量的重要分析方法之一 /pp  ②在我国申报新药中,热分析已列为控制药品质量的重要分析方法之一 /pp  ③在煤炭/焦碳行业,热分析已成为测定产品品级的重要分析手段 /pp  ④陶瓷行业的主要原料检测仪器。/ppspan style="color: rgb(0, 176, 240) font-size: 20px "strong恒久高温综合热分析仪器简介/strong/span/pp  HCT-4综合热分析仪是北京恒久实验设备有限公司根据国际热分析协会制定的热重分析法与差热分析法为理论标准,结合国际技术发展情况实现全部自主研发、生产,拥有自主知识产权的国内先进的热重法与差热法综合热分析仪器。该仪器具有温度高,恒温时间长,重复性高等特点。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/8fb6f84f-33a3-4142-8486-70c3f1e68ab6.jpg" title="HCT-4综合热分析仪.jpg" alt="HCT-4综合热分析仪.jpg" width="400" height="316" border="0" vspace="0" style="width: 400px height: 316px "/br/strongspan恒久HCT-4综合热分析仪/span/strong/pp  strong差热测量系统:/strong采用哑铃型平板式差热电偶,它检测到的微伏级差热信号送入差热放大器进行放大。差热放大器为直流放大器,它将微伏级的差热信号放大到0-5伏,送入计算机进行测量采样。/pp  strong热重测量系统:采/strong用上皿、不等臂、吊带式天平、光电传感器,带有微分、积分校正的测量放大器,电磁式平衡线圈以及电调零线圈等。当天平因试样质量变化而出现微小倾斜时,光电传感器就产生一个相应极性的信号,送到测重放大器,测重放大器输出0-5伏信号,经过A/D转换,送入计算机进行绘图处理。/pp  strong温度测量系统:/strong测温热电偶输出的热电势,先经过热电偶冷端补偿器,补偿器的热敏电阻装在天平主机内。经过冷端补偿的测温电偶热电势由温度放大器进行放大,送入计算机,计算机将自动计算出此热电势的毫伏值。/pp  HJ热分析工具软件使用微量样品一次采集即可同步得到温度、热重和差热分析曲线,使采集曲线对应性更好,有助于分析辨别物质热效应机理。对TG曲线进行一次微分计算可得到热重微分曲线(DTG曲线),能更清楚地区分相继发生的热重变化反应,精确提供起始反应温度、最大反应速率温度和反应终止温度,方便地为反应动力学计算提供反应速率数据,精确地进行定量分析。/pp  HCT系列热分析仪器应用范围涉及无机物、有机物、高分子化合物、冶金、地质、电器及电子用品、陶瓷、生物及医学、石油化工、轻工、纺织、农林等领域应用于物质的鉴定、热力学研究、动力学研究,结构理化性能关系的研究。广泛应用于科研所、设计院、高等院校等专业实验室、及应用在化工/安全/矿业等生产检测部门。/pp style="text-align: right "strong(供稿:北京恒久)/strong/p
  • 什么是热分析(TA)及热分析实验技巧
    热分析(thermal analysis,TA)是在程序控温和一定气氛下,测量试样的某种物理性质与温度或时间关系的一类技术。常用的热分析术语1)热重thermogravimetry, TG;热重分析 thermogravimetric analysis, TGA在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。2)差热分析differential thermal analysis,DTA在程序控温和一定气氛下,测量试样和参比物温度差与温度(扫描型)或时间(恒温型)关系的技术。3)差示扫描量热法differential scanning calorimetry,DSC在程序控温和一定气氛下,测量输给试样和参比物能量(差)[热流量(差)、热流速率(差)或功率(差)] 与温度或时间关系的技术。a. 热流型(heat-flux) DSC按程序控温改变试样和参比物温度时,测量与试样和参比物温差相关的热流量与温度或时间的关系。热流量与试样和参比物的温差成比例。b. 功率补偿型(power-compensation) DSC在程序控温并保持试样和参比物温度相等时,测量输给试样和参比物热流速率差与温度或时间的关系。4)温度调制式差示扫描量热法modulated temperature differential scanningcalorimetry, MTDSC 或 MDSCMDSC 是由 DSC 演变的一种方法,该法是对温度程序施加正弦扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统线性变温基础上叠加一个正弦振荡温度程序,最后效果是可随热容变化同时测量热流量。利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。5)联用技术multiple techniques在程序控温和一定气氛下,对一个试样采用两种或多种分析技术。6)热重曲线thermogravimetric curve, TG curve由热重法测得的数据以质量(或质量分数)随温度或时间变化的形式表示的曲线。曲线的纵坐标为质量 m (或质量百分数),向上表示质量增加,向下表示质量减小;横坐标为温度 T 或时间 t ,自左向右表示温度升高或时间增长。7)微商热重曲线derivative thermogravimetric curve, DTG curve以质量变化速率与温度(扫描型)或时间(恒温型)的关系图示由热天平测得的数据。当试样质量增加时,DTG 曲线峰朝上;质量减小时,峰应朝下。8)差热分析曲线differential thermal analysis curve, DTA curve由差热分析测得的记录是差热分析曲线(DTA 曲线)。曲线的纵坐标是试样和参比物的温度差(Δ T ),按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(exothermic effect)。9)差示扫描量热曲线differential scanning calorimetry curve, DSC curve图示由差示扫描量热仪测得的输给试样和参比物的能量(差)与温度(扫描型)或时间(恒温型)的关系曲线。曲线的纵坐标为热流量(heat flow)或热流速率(heat flow rate),单位为 mW(mJ/s);横坐标为温度或时间。按热力学惯例,曲线向上为正,表示吸热效应;向下为负,表示放热效应。热重分析、差热分析和差示扫描量热分析是在催化研究领域应用较多的热分析技术。热分析技术1、 热重法原理:热重法(TG)是测量试样的质量随温度或时间变化的一种技术。如分解、升华、氧化还原、吸附、解吸附、蒸发等伴有质量改变的热变化可用 TG 来测量。TG 测量使用的气体有:Ar、Cl2 、CO2 、H2 、N2 、O2 、空气等气体。热重曲线:热重分析得到的是程序控制温度下物质质量与温度关系的曲线,即热重曲线(TG 曲线)。图1:TG与DTG曲线2、 差热分析原理:差热分析仪一般由加热炉、试样容器、热电偶、温度控制系统及放大、记录系统等部份组成,其基本原理见图 2。将样品和参比放在相同的加热或冷却条件下,同时测温热电偶的一个端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,因此试样和参比物在同时升温或降温时,测温热电偶可测定升温或降温过程中二者随温度变化所产生的温差(ΔT),并将温差信号输出,就构成了差热分析的基本原理。由于记录的是温差随温度的变化,故称差热分析。按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(endothermic effect)。图2:热电偶和温差热电偶差热曲线DTA 曲线的记录曲线如图 3。图3:典型DTA曲线3、差示扫描量热法原理:差示扫描量热法(DSC)就是为克服差热分析在定量测定上存在的这些不足而发展起来的一种新的热分析技术。它测量与试样热容成比例的单位时间功率输出与程序温度或时间的关系,通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大。图4:功率补偿DSC示意图差示扫描量热曲线差示扫描量热曲线(DSC 曲线)与 DTA 曲线十分相似,这里不再重复。固体催化剂表面酸碱性表征对于许多化学反应,催化剂的选择和它的转化率与其固体表面酸性活性中心的数量、强度密切相关。因此,对催化剂酸/碱性的评价是非常重要的。固体催化剂表面酸碱性的测量目前主要是利用碱性气体吸附-色谱程序升温热脱附技术,但是在吸附质有分解的情况下,此法准确性差。然而,若利用碱性气体吸附-热重程序升温热脱附技术则可以弥补这一缺陷。同样,采用酸性气体吸附-热重或差热程序升温热脱附技术可以实现对固体催化剂表面碱性的表征。热分析实验技巧1 、升温速率的影响快速升温易产生反应滞后,样品内温度梯度增大,峰(平台)分离能力下降;DSC 基线漂移较大,但能提高灵敏度、峰形较大;而慢速升温有利于DTA、DSC、DTG相邻峰的分离;TG相邻失重平台的分离;DSC 基线漂移较小,但峰形也较小。对于 TG 测试,过快的升温速率有时会导致丢失某些中间产物的信息。一般以较慢的升温速率为宜。对于 DSC 测试,在传感器灵敏度足够、且不影响测样效率的情况下,一般也以较慢的升温速率为佳。2 、样品用量的控制样品量小可减小样品内的温度梯度,测得特征温度较低些也更“真实”一些;有利于气体产物扩散,使得化学平衡向正向发展;相邻峰(平台)分离能力增强,但 DSC 峰形也较小。而样品量大能提高 DSC 灵敏度,有利于检测微小的热量变化,但峰形加宽,峰值温度向高温漂移,相邻峰(平台)趋向于合并在一起,峰分离能力下降;且样品内温度梯度较大,气体产物扩散亦稍差。一般在 DSC与热天平的灵敏度足够的情况下,亦以较小的样品量为宜。3、 气氛的选择3.1 动态气氛、静态气氛与真空根据实际的反应模拟需要,结合考虑动力学因素,选择动态气氛、静态气氛或真空气氛。静态、动态与真空气氛的比较:静态下气体产物扩散不易,分压升高,反应移向高温;且易污染传感器。真空下加热源(炉体)与样品之间只通过辐射进行传热,温度差较大。且在两者情况下天平室都缺乏干燥而持续的惰性气氛的保护。一般非特殊需要,推荐使用动态吹扫气氛。若需使用真空或静态气氛,须保证反应过程中释出的气体无危害性。3.2 气氛的类别对于动态气氛,根据实际反应需要选择惰性(N2 、Ar、He)、氧化性(O2 、air)、还原性与其他特殊气氛等,并作好气体之间的混合与切换。为防止不期望的氧化反应,对某些测试必须使用惰性的动态吹扫气氛,且在通入惰性气氛前往往须作抽真空-惰性气氛置换操作,以确保气氛的纯净性。常用惰性气氛如N 2 ,在高温下亦可能与某些样品(特别是一些金属材料)发生反应,此时应考虑使用“纯惰性”气氛(Ar、He)气体密度的不同影响到热重测试的基线漂移程度(浮力效应大小)。为确保基线扣除效果,使用不同的气氛须单独作热重基线测试。3.3 气体的导热性常用气氛的导热性顺序为:He N2 ≈ air O2 Ar选择导热性较好的气氛,有利于向反应体系提供更充分的热量,降低样品内部的温度梯度,降低反应温度,提高反应速率;能使峰形变尖变窄,提高峰分离能力,使峰温向低温方向漂移;在相同的冷却介质流量下能加快冷却速率;缺点是会降低DSC灵敏度。若采用不同导热性能的气氛,需要作单独的温度与灵敏度标定。3.4 气体的流量提高惰性吹扫气体的流量,有利于气体产物的扩散,有利化学反应向正反应方向发展,减少逆反应;但带走较多的热量,降低灵敏度。对于需要气体切换的反应(如反应中从惰性气氛切换为氧化性气氛),提高气体流量能缩短炉体内气体置换的过程。不同的气体流量,影响到热重测试的基线漂移程度(浮力效应)。因此对TG测试必须确保气体流量的稳定性,不同的气体流量须作单独的基线测试(浮力效应修正)。4 、坩埚加盖与否的选择坩埚加盖的优点:a. 改善坩埚内的温度分布,有利于反应体系内部温度均匀。b. 有效减少辐射效应与样品颜色的影响。c. 防止极轻的微细样品粉末的飞扬,避免其随动态气氛飘散,或在抽取真空过程中被带走。d. 在反应过程中有效防止传感器受到污染(如样品的喷溅或泡沫的溢出)。坩埚盖扎孔的目的:a. 使样品与气氛保持一定接触,允许一定程度的气固反应,允许气体产物随动态气氛带走。b. 使坩埚内外保持压力平衡。坩埚加盖的缺点:a. 减少了反应气氛与样品的接触,对气固反应(氧化、还原、吸附)有较大碍。b. 对于有气相产物生成的化学反应,由于产物气体带走较慢,导致其在反应物周围分压较高,可能影响反应速率与化学平衡(DTG峰向高温漂移),或对于某些竞争反应机理可能影响产物的组成(改变TG失重台阶的失重率)。了解了加盖的目的、优缺点,那么具体做实验时,应如何决定呢?下面简单介绍几种情况:1. 对于物理效应(熔融、结晶、相变等)的测试或偏重于DSC的测试,通常选择加盖。2. 对于未知样品,出于安全性考虑,通常选择加盖。3. 对于气固反应(如氧化诱导期测试或吸附反应),使用敞口坩埚(不加盖)。4. 对于有气体产物生成的反应(包括多数分解反应 )或偏重于TG的测试,在不污染损害样品支架的前提下,根据反应情况与实际的反应器模拟,进行加盖与否的选择。5. 对于液相反应或在挥发性溶剂中进行的反应,若反应物或溶剂在反应温度下易于挥发,则应使用压制的Al坩埚(温度与压力较低)或中压、高压坩埚(温度与压力较高)。对于需要维持产物气体分压的封闭反应系统中的反应同样如此。5 、DSC 基线DSC基线漂移程度的主要影响因素是参比端与样品端的热容差异(坩埚质量差、样品量大小)、升温速率、样品颜色及热辐射因素(使用Al 2 O 3 坩埚时)等。在实验中,参比坩埚一般为空坩埚。若样品量较大,也可考虑在参比坩埚中加适量的惰性参比物质(如蓝宝石比热标样)以进行热容补偿。在比热测试时,对基线重复性的要求非常严格。一般使用Pt/Rh坩埚,参比坩埚与样品坩埚质量要求相近,基线测试、标样测试与样品测试尽量使用同一坩埚,坩埚的位置尽量保持前后一致。TG 热重法TG/FTIR热重法/傅立叶变换红外光谱法TG/GC热重法/气相色谱法TG/MS热重法/质谱分析TG-DSC热重法-差示扫描量热法TG-DTA热重法-差热分析参考文献[1] 刘振海,白山 立子,分析化学手册(第二版),第八分册,化学工业出版社,北京,2000.[2] 辛勤,固体催化剂研究方法,科学出版社,北京,2004.[3] 辛勤,罗孟飞,现代催化研究方法,科学出版社,北京,2009.
  • 热分析联用技术潜力无限,发展之路漫漫且宽——第五届全国热分析和联用技术交流会群访
    仪器信息网讯 初夏时节,第五届珀金埃尔默全国热分析和联用技术交流会在吉林省延吉白山大厦成功举办,会议由安徽省高校分析测试研究会、江苏省分析测试协会热分析专业委员会、河北省化学会热力学与热分析专业委员会、珀金埃尔默企业管理(上海)有限公司联合主办。一百余位来自全国各地的热分析技术学者及应用专家代表齐聚延吉,围绕热分析和联用技术、最新的应用成果、创新技术和仪器的维护使用等展开交流。会议现场会议期间,仪器信息网就会议背景、热分析联用技术发展情况、应用现状等问题,现场采访了珀金埃尔默副总裁、大中国区销售与服务总经理朱兵,中国科学技术大学教授级高级工程师丁延伟,珀金埃尔默中国区材料产品线应用支持郭然。珀金埃尔默副总裁、大中国区销售与服务总经理朱兵(左)、中国科学技术大学教授级高级工程师丁延伟(中)、珀金埃尔默中国区材料产品线应用支持郭然(右)关于会议:带动中国热分析市场客户交流,携手协会学会扩大影响力朱兵老师:自上世纪90年代起,珀金埃尔默就已开始举办用户交流会,虽然初期规模较小,但随着时间的推移,交流活动规模日益壮大,也实现了热分析技术与联用技术的融合展示。彼时,珀金埃尔默便开始对热分析技术进行积极推广,收集并整理中国客户反馈的信息,为美国总部的产品更新换代提供了重要依据。这一系列的努力,促使公司在中国市场启动了客户交流活动。希望未来能与各协会、学会携手并进,借助业界知名专家学者的影响力,广邀各行业的用户参加。搭建一个高效的信息交流平台,促进用户与供应商之间的合作,加强用户间的经验分享,共同推动热分析及联用技术蓬勃发展。丁延伟老师:2016年,我们在合肥举办了第一届“热分析与联用技术研讨会”,今年为第五届。每届研讨会都取得了不错的效果,每年都有更多新从事热分析和联用技术的专家老师、仪器企业等加入。在同类型的研讨会中也形成了一定的影响力,是一个比较有效的热分析技术交流平台。这个会议之前一直是由高校与美国珀金埃尔默公司联合举办,为了更好地定期举办研讨会,今年开始尝试由安徽、江苏和河北三个地方学术组织与珀金埃尔默公司联合举办,这种形式有利于吸引更多的同行参加研讨会,使受众群体进一步扩大。为了更好地开展这种类型的交流活动,推动热分析与联用技术的发展,未来可能会在珀金埃尔默公司的支持下成立用户专业委员会或学术委员会。这样的形式可以更好地推动同行之间的交流,提升热分析技术的发展水平。今年的研讨会相较于前几届,展现出了几个显著的变化:一是参会人数有了明显的提升,参会老师主要来自高校、中科院、石油、化工、能源、医药等企业;二是报告数量和覆盖领域有了大幅增加;三是参会老师关注度高,不少老师在今年年初就开始关注本次研讨会的时间,以便准备投稿和报告并提前留出参会时间,也反映出不少老师对过去几届会议的认可度;四是投稿论文数量和质量有了明显提高。经过专家评审,本次会议共评出一等奖优秀论文3篇,二等奖优秀论文6篇。关于热分析技术:多方合作填补检测方法、标准空白,共促联用技术快速发展丁延伟老师:热分析联用技术还是一个“年轻”的技术。热分析联用技术最初出现于上世纪五十年代初,已有了七十多年的历史。由于技术本身和应用领域的不断发展,近二十年来热分析联用技术得到了快速发展。由于热分析本身包含的种类较多(国际热分析与量热协会把热分析分为九大类十七小类),不仅不同热分析技术之间可以实现联用,热分析技术还可以与常见的分析技术如红外光谱、质谱等技术之间实现联用。不同类型的联用技术之间具有很大的差别,这些联用技术也在不断发展。可以与热分析技术联用的分析技术种类也在不断拓展,在不远的将来,商品化的热分析与等离子体光谱、透射电镜、扫描电镜之间的联用将变为现实。另外,由于近年来热分析联用技术发展迅速,成熟的检测标准和相应的标准物质、仪器检定/校准规程或规范还没有及时跟上,导致较多的联用技术在实际应用中还存在不少问题。近几年来,热分析联用技术得到了快速发展,其应用领域也在快速拓展,从传统的材料领域到现在广受关注的新能源和双碳领域,热分析联用技术均发挥着越来越重要的作用。由于联用技术的种类和应用领域发展迅速,相应的检测方法和标准还是空白,在实际应用中存在着较多的未知和不确定性,还需要用户和仪器厂商多交流合作,共同促进热分析联用技术的发展。随着生产制造技术的精进与需求的日益增长,热分析联用技术未来必将得到快速发展。针对其发展趋势,我认为主要表现在以下几个方面:一、仪器自动化程度进一步提升,需要人为干预的环节越来越少,可以进一步提高实验效率;二、人工智能技术在联用实验方案设计和曲线解析中得到广泛应用,对于初接触的用户可以减少适应时间,提升实验的成功率;三、仪器的性能和指标得到进一步提升,工作更加稳定,更好地满足各种需求;四、仪器的集成度更高,价格优势更加明显;五、应用领域进一步拓展。朱兵老师:除了常用的将热分析仪器和其他分析仪器互联外,还可引入AI技术深入数据分析领域,实现复杂数据集的全面综合解析。通过AI技术进行合理的技术设计,这样能够给广大用户带来更加有帮助性的数据,那么整个联用技术也会上一个台阶。热分析联用技术目前正处于摸索阶段,尚属一个市场的培育方面,有很多东西需要我们去突破,预示着这个技术还有很长的路要走。关于行业:科研工作者关注度飙升,设备采购量大幅增长朱兵老师:目前,热分析仪器不仅可以与红外光谱、GC-MS(气相色谱-质谱联用)等传统设备相连,还能创新性地与ICP-OES(电感耦合等离子体质谱)等高端分析仪器集成,广泛应用于多个行业领域。丁延伟老师:我国越来越多的科研工作者对热分析联用技术的关注度与日俱增,每年我国采购的热分析联用仪器设备在两位数以上的增幅。郭然老师:热分析相关仪器的用户较多的集中在高校和各类科研院所,如这些单位的公共测试平台或是具体的高校的下级学院里。但目前热分析联用使用水平差异很大。通过热分析联用得到良好的测试数据以及准确可靠的数据分析,对使用者要求较高,通常情况下,如果负责这套设备的老师本身有一定主机使用经验,又能相对较长期地专注于一类仪器,能达到比较好的使用效果;如果负责设备的人员变换太频繁,很难将这套设备使用得非常好。总的来说,热分析联用设备在我国的使用呈现比较明显的上升趋势,使用者的水平整体上相较于前几年有明显提高,可以预期的是,热分析联用技术在国内有很好的发展前途。
  • 热分析联用仪市场调研报告(2020版)重磅发布
    1977年,国际热分析协会(ICTA, International Conference on Thermal Analysis)第七次会议在日本京都召开,并对热分析进行了如下定义:热分析是在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术。热分析技术分为九类十七种,在化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等多个领域得到广泛应用,可以应用在成分分析、材料研制和应用开发、化学反应的研究、环境监测、稳定性的测定、微量物证检验等方面。  热分析仪器由程序温度控制器、炉体、物理量检测放大单元、微分器、气氛控制器、显示和打印以及计算机数据处理系统7部分组成。其核心部件主要有电子天平、热电偶传感器、位移传感器等。在中国热分析仪器市场,活跃着TA、耐驰、梅特勒、珀金埃尔默等近30家仪器企业。据统计,中国热分析仪器市场年产值应为近10亿元人民币。  随着新的学科和材料工业的不断发展,热分析所研究的物质由无机物(金属、矿物、陶瓷材料等)逐步扩展到有机物、高聚物、药物、络合物、液晶和生物高分子、空间技术等领域,对于表征分析技术也提出了更高的要求。基于热分析技术,联用技术应运而生,通过热分析仪与其他仪器的联用,可以获得更多的结构与性能信息。热分析联用技术是在程序控温和一定气氛下,对一个试样采用两种或多种热分析技术,分为同时联用、串接联用、间歇联用等,常见于热分析仪与红外光谱、气相色谱、质谱等仪器的联用。  仪器信息网于2020年年末之际重磅发布了《热分析联用仪市场调研报告(2020版)》,以内参报告的形式梳理了当前的市场状况。由于热分析联用仪涉及多类仪器的联用等因素,本报告以热分析仪市场为主线,分析热分析联用仪的市场情况。  亮点1:本报告盘点了国内外主要的热分析仪器厂商,对于其厂商规模与产值、产品线进行了横向分析。  亮点2:本报告中首次披露了热分析联用仪、热重分析仪/热天平(TGA)、同步热分析仪(STA)、差示扫描量热仪(DSC/DTA)四个专场的用户关注热度,从中窥见哪些品牌最受用户关注。  亮点3:通过用户调研分析哪些品牌在用户中的知名度较高,用户在采购时最倾向于采购何种品牌的产品,对于影响用户采购的多种因素进行了全面解析。  亮点4:进行了仪器的应用分析,可以了解哪些应用领域的用户分布较多。  亮点5:调研了耗材配件的更新周期,了解用户更换坩埚等的周期。  亮点6:收集了普通仪器用户和专业仪器用户对于仪器改进的建议与意见。  目录  第一章 热分析联用仪概述................................................................................................ 1  1.1 热分析技术......................................................................................................... 1  1.2 常用热分析仪简介............................................................................................. 11  1.3 热分析联用仪简介及分类.................................................................................. 16  第二章 国家与行业标准................................................................................................. 21  第三章 热分析联用仪市场分析....................................................................................... 34  3.1 主要热分析仪厂商............................................................................................. 34  3.2 厂商规模及产值................................................................................................ 57  3.3 厂商产品线分析................................................................................................ 59  3.4 中标情况分析.................................................................................................... 62  3.5 仪器信息网专场热度分析.................................................................................. 75  3.5.1 热分析联用仪专场................................................................................... 75  3.5.2 热重分析仪/热天平(TGA)专场............................................................. 76  3.5.3 同步热分析仪(STA)专场...................................................................... 77  3.5.4 差示扫描量热仪(DSC/DTA)专场.............................................................. 78  第四章 热分析联用仪用户调研....................................................................................... 79  4.1 调研用户属性分析............................................................................................. 79  4.1.1 调研用户行业分析................................................................................... 79  4.1.2 调研用户单位类型分析............................................................................ 80  4.1.3 主题网络会议参与倾向性分析.................................................................. 82  4.2 联用技术及联用仪器品牌认可度分析................................................................. 83  4.2.1 联用技术分析.......................................................................................... 83  4.2.2 红外光谱品牌认可度分析......................................................................... 83  4.2.3 气质联用品牌认可度分析......................................................................... 83  4.2.4 质谱品牌认可度分析................................................................................ 83  4.2.5 紫外光谱品牌认可度分析......................................................................... 84  4.3 热分析仪使用与配置分析.................................................................................. 85  4.3.1 常用热分析仪类型分析............................................................................ 85  4.3.2 应用分析................................................................................................. 85  4.3.3 检测途径分析.......................................................................................... 86  4.3.4 配备数量分析.......................................................................................... 87  4.3.5 使用年限分析.......................................................................................... 87  4.3.6 价格区间分析.......................................................................................... 88  4.4 用户采购分析.................................................................................................... 89  4.4.1 采购渠道分析.......................................................................................... 89  4.4.2 采购调研方式分析................................................................................... 89  4.4.3 采购调研时间分析................................................................................... 90  4.4.4 国产/进口倾向性分析............................................................................... 90  4.4.5 采购影响因素分析................................................................................... 92  4.4.6 品牌知名度分析....................................................................................... 96  4.4.7 品牌倾向性分析....................................................................................... 96  4.4.8 品牌复购分析.......................................................................................... 97  4.4.9 采购周期分析.......................................................................................... 97  4.4.10 三年内采购意向分析.............................................................................. 98  4.5 耗材配件分析.................................................................................................... 99  4.5.1 常用耗材配件.......................................................................................... 99  4.5.2 耗材寿命分析.......................................................................................... 99  4.6 售后服务分析.................................................................................................. 100  4.6.1 产品故障率分析..................................................................................... 100  4.6.2 售后服务响应速度分析.......................................................................... 100  4.6.3 用户培训分析........................................................................................ 101  4.6.4 回访紧密度分析..................................................................................... 102  4.6.5 软件升级分析........................................................................................ 103  4.6.6 解决问题能力分析................................................................................. 103  4.6.7 售后服务意见与建议.............................................................................. 104  4.7 用户意见与建议............................................................................................... 105  4.7.1 普通用户意见........................................................................................ 105  4.7.2 专业用户意见........................................................................................ 105  第六章 总结................................................................................................................. 117  参考资料...................................................................................................................... 122  如对本报告感兴趣,可通过以下邮箱guancg@instrument.com.cn联系我司相关人员,咨询购买报告相关细节!
  • 恭贺《热分析简明教程》新书上架
    随着材料科学等的迅猛发展和热分析技术本身的快速进步,热分析仪器已获得越来越广泛的应用,当今几乎已成为常规分析仪器。许多高等院校的相关专业开设了热分析课程,很多热分析技术的应用人员也需要系统的基础知识。正是为了满足这方面的需求,梅特勒托利多的技术应用人员与中科院著名学者刘振海研究员一起,合作编写了《热分析简明教程》一书。 书 名:热分析简明教程 作 者:刘振海、陆立明、唐远旺 出 版 社:科学出版社出版 出 版 时 间: 2012年8月 订 购 渠 道:各大书店、网店 定 价:50.00元 热分析是仪器分析的重要分支,涵盖差示扫描量热法(DSC),动态热机械分析法(DMA),热重分析法(TGA),热机械分析法(TMA)以及热重法与质谱(MS)、傅里叶变换红外光谱(FTIR)法的联用等多种技术,在聚合物材料、药物、食品、含能材料、矿物、金属、陶瓷等众多领域有极其广泛的应用,是分析和表征各类物质基本特性(包括物理转变、化学反应)的极其有用的手段。 本书系统介绍了热分析术语,并给出了新的理解和诠释;主要热分析仪器的原理与结构及其最新发展;影响热分析实验结果的各种因素和相关的标准与规范,这是从事热分析工作的基本依据。最后按观测物质的各种转变、反应和特性参数,介绍典型的应用实例。 本书可作为热分析及相关专业师生(研究生、大学生)的教学用书,也可作为热分析工作者和以热分析为测试手段的科技人员的参考书。希望此书能给大家的工作带来一丝惊喜和帮助!
  • 材料物相及热分析技术研究与应用
    为帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议。本届会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,依托成熟的网络讲堂,为相关工作者提供一个突破时间和地域限制、高效的交流平台。其中,在物相及热性能分析专场,中铝材料应用研究院试验中心主任助理/高级工程师董学光、日立分析仪器(上海)有限公司应用工程师方裕诚、昆明冶金研究院主任工程师/高级工程师赵晖、江苏科技大学系主任/副教授李照磊、上海交通大学分析测试中心助理研究员张杰等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):中铝材料应用研究院试验中心主任助理/高级工程师 董学光《X射线衍射法晶格常数的精确测定及其在铝合金研发中的应用》点击报名听会董学光,2014年6月博士毕业后就职于中铝材料应用研究院有限公司试验检验中心,现担任实验室技术负责人主任助理和微束室主任职务。在微束分析领域致力于金属材料微观组织、位错、滑移、相变等研究,X射线原位测试技术研究、晶体学取向分析、第二相物相分析、材料塑性变形机理研究、晶体动力学研究。参与科研项目30余项,发表学术论文30余篇,授权专利30余项,参与行业标准起草8项。报告摘要:本报告主要介绍X射线衍射法测试晶格常数的原理和方法,特别是涉及物相测试时衍射峰的误差问题,如何减少衍射峰飘逸、展宽等误差问题从而获得精确的衍射峰位置。利用原位拉伸装置对铝合金材料进行拉伸研究,通过晶格常数的变化研究弹性和塑性区域。日立分析仪器(上海)有限公司应用工程师 方裕诚《实时观察系统在热分析中的应用》点击报名听会方裕诚,日立热分析应用工程师,毕业于东华大学材料科学与工程专业,2021年8月加入日立分析仪器,主要负责热分析仪器应用,STA、DSC、TMA和DMA。报告摘要:试样观察热分析可以对试样进行观察和记录,此外,还可以根据图像对形状和颜色的变化进行定量分析。这提供了仅从测量图中无法获得的新信息。日立新一代热分析系统具备优秀的性能,以及日立引以为傲的Real View试样观察系统,将为行业带来更多可能性。本期将介绍使用Real view 试样观察热分析系统进行测量和分析的示例。昆明冶金研究院主任工程师/高级工程师 赵晖《热分析技术在冶金及材料领域中的应用》点击报名听会赵晖,昆明冶金研究院有限公司 主任工程师、高级工程师。多年来一直从事工艺矿物学、赋存状态、物质组成研究及固体物质的物理化学性能检测工作,针对固体矿产、冶炼产品(冶炼渣、烟尘、铝灰等)、固体废料(电子垃圾等)完成了数十项工艺矿物学及赋存状态研究工作,研究成果应用于各矿山生产企业,积累了扎实的工作经验,取得了良好的经济效益和社会效益。参加工作至今,在国内核心期刊上公开发表专业技术论文19篇。先后获得昆明冶金研究院科学技术进步二等奖、中国有色金属工业科学技术奖一等奖等奖项。报告摘要:无。江苏科技大学系主任/副教授 李照磊《聚乳酸立构复合晶与同质晶竞争生长机制的热分析探讨》点击报名听会李照磊,江苏科技大学副教授,高分子材料系主任。南京大学博士、博士后,法国格勒诺布尔阿尔卑斯大学访问学者。中国化学会会员,江苏省热分析专业委员会副主任委员。主要从事高分子凝聚态结构转变的热分析研究,尤其是生物可降解高分子结构与性能、新能源固态聚合物电解质结构与性能研究。主持或重点参与国家自然科学基金委、工业和信息化部、江苏省科技厅、江苏省教育厅、镇江市计划项目,同时主持多项校企合作横向课题项目。在ACS Macro Letters、ACS Applied Polymer Materials、 Journal of Polymer Science, Part B: Polymer Physics、Polymer、Thermochimica Acta、Polymer Testing、Journal of Thermal Analysis and Calorimetry等刊物上发表学术论文40余篇,获授权专利10项。研究成果获中国产学研促进会创新成果一等奖、江苏省教育厅科技进步三等奖,镇江市科技进步二等奖等科技奖励。入选江苏省“科技副总”、镇江市第二批“金山青年创新英才”。报告摘要:无。上海交通大学分析测试中心助理研究员 张杰《基于热重-红外/质谱联用技术的定量检测方法开发》点击报名听会张杰,中国科学技术大学博士,现就职于上海交通大学分析测试中心。主要从事聚合物热解性能表征、高分子催化热解及多孔材料气体吸附技术应用研究。报告摘要:热分析联用技术通过热分析仪与质谱仪或红外光谱仪等联用,可同步鉴定热分析过程中挥发物或气态分解产物的具体成分,是研究材料热行为和分解机理的有效方法。相较于单一的热分析技术,联用技术可以更加充分、高效和全面地评价材料热行为,揭示热分解机制。尽管热分析联用设备在定性分析方面应用广泛,但在定量研究方面仍存在不足。此次报告从联用设备原理出发,介绍了热重-红外及热重-质谱在定量分析方法开发方面的典型应用案例,同时系统地分析了热分析联用设备在定量检测上面临的挑战。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • "2013最受关注仪器”实验室设备、颗粒分析、热分析入围名单
    仪器信息网讯 &ldquo 2013最受关注仪器&rdquo -实验室设备、颗粒分析、热分析类入围名单揭晓。  年度最受关注仪器奖,用于表彰本年度受用户关注最高,最畅销的仪器。为用户选购该类别仪器是提供有用的参考。  评选依托仪器信息网庞大的访问数据和用户基础,以仪器在用户中受关注程度的高低作为主要评选标准。将仪器信息网展示的10万余台仪器,按照色谱、光谱、质谱、X射线、电化学、环境监测、实验室常用设备、颗粒分析、热分析、试验机、生命科学、光学12个类别进行分类,通过各台仪器在仪器信息网当年独立访问人数及用户留言数进行综合计算,评选出&ldquo 最受关注仪器&rdquo 入围名单,国、内外各3台仪器,共计72台仪器。  最终获得各类别下&ldquo 最受关注仪器&rdquo 称号的国、内外各1台产品。将在&ldquo 中国科学仪器发展年会&rdquo 上进行揭晓,并举行隆重的颁奖仪式。  2013年仪器领域事件频频,PM2.5,塑化剂,镉大米,食品重金属事件频频曝光,百姓也对食品安全,环境保护方面越来越重视,大家从身边的事情也对分析仪器有了逐渐的了解,甚至一些便携的检测仪器已逐渐开始走向你我的家中。科学分析仪器也慢慢的揭开其神秘的面纱。  通过今年入围的仪器,可以看出国内产品越来越受到用户的亲睐,最受用户关注仪器从评奖以来,国外产品的关注度一直是远远超过同类的国内产品。但近几年的关注数据表明,随着国内生产工艺水平不断改进,厂商对产品的宣传力度不断加大加上国家对科学分析仪器的重视程度越来越高。国内产品的受关注程度已经越来越逼近国外仪器。虽还存在差距,但相信在不久的将来,国产仪器将会走出自己的一篇蓝天,扩展更广阔的市场领域。  敬请期待2014年4月18日举办的&ldquo 2014中国科学仪器发展年会&rdquo ,届时将揭晓国、内外共12个大类的最受用户关注仪器。  &ldquo 2013最受关注仪器&rdquo -实验室设备、颗粒分析、热分析类入围名单(按公司名称拼音首字母排序) 实验室设备类:国内仪器ULUP优普超纯水机成都超纯科技有限公司YXQ-LS-50SII 高压灭菌器上海博迅实业有限公司MASTER-70超高通量微波消解仪上海新仪微波化学科技有限公司进口仪器CPA卓越型电子天平德国赛多利斯集团MARS 6 高通量密闭微波消解系统美国培安公司Milli-Q Integral实验室纯水一体化系统默克化工技术(上海)有限公司 颗粒分析类:国内仪器Bettersize2000智能激光粒度仪丹东市百特仪器有限公司JS94H型 微电泳仪上海中晨数字技术设备有限公司TopSizer激光粒度分析仪珠海欧美克仪器有限公司进口仪器SurPASS 固体表面Zeta电位测量仪奥地利安东帕(中国)有限公司DT-300高浓度Zeta电位分析仪美国康塔仪器公司Mastersizer 2000 激光粒度仪英国马尔文仪器有限公司 热分析类:国内仪器HTG-3 热重分析仪北京恒久科学仪器厂MP470 全自动熔点仪海能仪器DSC-100 差示扫描量热仪南京大展机电技术研究所进口仪器DSC200F3 差示量热扫描仪德国耐驰热分析Q2000型 差示扫描量热仪美国TA仪器Pyris 1 TGA热重分析仪珀金埃尔默仪器(上海)有限公司
  • 第九届热分析及联用技术网络会议第一轮通知
    热分析技术当前广泛应用于材料、化工、生命科学与制药、食品、烟草等多个领域,是应用极为广泛的表征技术之一。仪器信息网将于2022年8月29日举办第九届热分析及联用技术主题网络研讨会暨热分析技术发展现状与未来方向研讨会,本届会议将聚焦于热分析领域的最新技术及前沿应用,并邀请专家针对当下热分析技术的发展瓶颈与未来方向进行探讨,利用互联网技术为国内的广大科研及相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到材料研究及热分析技术专家的精彩报告,节省时间和资金成本。欢迎国内外仪器厂商参与会议,通过网络会议的形式介绍新产品新技术,开展品牌宣传和数字营销,进一步与用户互动交流。主办单位:仪器信息网支持单位:北京化工大学新材料校友会& 河北省化学会热力学与热分析专业委员会会议日程:第九届热分析及联用技术(2023年8月29日)报告时间报告内容报告人09:30--16:00主持人中国科学院工程热物理研究所研究员 夏红德09:31--10:00热分析联用技术的规范表示及常见问题分析中国科学技术大学教授级高级工程师/博士生导师 丁延伟10:00--10:30稀土功能配合物的热分解反应动力学及热力学河北师范大学研究员 张建军10:30--11:00待定梅特勒托利多11:00--11:30单一热分析和联用技术在材料中的应用研究华东理工大学副研究员 于惠梅11:30--12:00绝热加速量热原理、仪器化及应用中国计量大学副教授 丁炯14:00--14:30量热与热分析技术在能源材料研究中的应用中国科学院大连化学物理研究所研究组长/研究员 史全14:30--15:00两种磷腈基金属有机框架材料对环氧树脂阻燃及热性能的影响河北大学主任/教授 屈红强15:00--15:30热分析联用技术在含能材料研究中的应用进展西北大学副院长/教授 徐抗震15:30--16:00Flash DSC表征微尺度材料热导率南京大学(胡文兵教授团队)博士研究生 任晓宁扫码报名嘉宾介绍:中国科学院工程热物理研究所研究员 夏红德夏红德,博士,现工作于中国科学院工程热物理研究所。目前,主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。建立了基于反应过程特征参数的临界时刻及其状态的检测分析方法体系,形成了十多项发明专利,并开发了相关的智能解析算法。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA®),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。中国科学技术大学教授级高级工程师/博士生导师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师,博士生导师。精通多家主流热分析生产厂商多种热分析仪器的工作原理、结构及应用,开发多种基于商品化仪器的附件和实验装置。自2002年开始从事热分析与吸附技术的分析测试、仪器应用和实验方法研究等工作。现任中国化学会化学热力学与热分析专业委员会委员、中国仪器仪表学会分析仪器分会热分析专业委员会委员、中国分析测试协会青年委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020), 以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。河北师范大学研究员 张建军张建军,河北深泽县人,研究员,三级教授岗,河北省中青年骨干教师,河北省化学会理事,河北省化学会热力学与热分析专业委员会主任,河北省“三三三人才工程”人选,河北省杂环化合物重点实验室学术委员会委员,河北省氮化物工程陶瓷技术创新中心技术委员会委员,河北省自然科学研究系列高级职称评审委员会专家,国家自然科学基金委员会函审专家。河北师范大学学报(自然科学版)编委,曾担任多届光谱实验室杂志副主编。2021年入选全球顶尖前10万科学家榜单。2008年、2011年2013年获河北省优秀硕士论文指导教师,2018年获学校研究生优秀指导教师。为Journal of Hazardous Materials Journal of Chemical Thermodynamics、中国科学、科学通报、化学学报、高等学校化学学报等国内外五十多种学术杂志的审稿人,两次被《物理化学学报》聘为客座编辑,组织《热分析动力学与热动力学》专刊的出版,主要研究方向为热化学、热力学、热分析动力学及稀土配位化学。作为课题负责人主持国家自然科学基金4项、主持河北省自然科学基金和河北省教育厅自然科学基金项目8项, 2002年、2006年、2010年和2015年获河北省自然科学三等奖四项 (均第一完成人),1995年获河北省科技进步三等奖一项(第一完成人)。已在DaltonTransactions,Journal of Chemical Thermodynamics,Physico-ChimicaSinica等国内外学术刊物上共计发表论文270多篇,其中被SCI收录190余篇,EI收录90余篇。合作主编《热分析动力学》第二版,参编《量热学基础与应用》,参编《分析化学手册第8分册热分析与量热学》第三版。华东理工大学副研究员 于惠梅于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事。报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美Pennsylvania State University,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。中国计量大学副教授 丁炯丁炯,男,现为中国计量大学副教授,硕士生导师,中国计量测试学会热物性专业委员会委员,中国仪器仪表学会朱良漪分析仪器青年创新奖获得者,《计量学报》青年编委,先后在浙江大学生物医学工程专业获得学士与博士学位,曾在中国科学技术大学从事博士后研究工作,长期致力于热学传感与测量、量热技术与仪器、细胞量热学方面的研究,近5年主要学术成绩有:主持国家自然科学基金重大科研仪器研制项目课题1项;主持国家自然科学基金青年项目1项;主持浙江省基础公益研究计划项目2项(已结题,其中基金项目为优秀);以分项目负责人承担国防科工局某工程专项1项(已结题,技术验收优秀);主持企业合作项目多项;以唯一第一/通讯作者在传感器领域权威期刊IEEE Sensors Journal,Sensors and Actuators A: Physical,科学仪器领域期刊Review of Scientific Instruments,热分析与量热仪器领域权威期刊Thermochimica Acta、Journal of Thermal Analysis and Calorimetry等发表高水平SCI期刊论文12篇,其它国内高质量论文6篇;以第一发明人申请国家发明专利14项,其中8项已获得授权,申请PCT国际专利1项;主持和参与制定国家计量技术规范、国防军工计量技术规范或团体标准4项。近年来,以高校青年博士教师下企业为载体,研制和产业化了多款热测量仪器,构建了标准化生产线,新增销售额过亿元,部分仪器市场占有率超四成,解决了我国面向本质安全的热测量仪器的“卡脖子”问题,并获2021年度公共安全科学技术学会科学技术一等奖1项。中国科学院大连化学物理研究所研究组长/研究员 史全史全,男,博士,中国科学院大连化学物理研究所研究员、博士生导师、热化学研究组长。现任中国化学会热力学与热分析专业委员会委员、中国计量测试学会热物性专业委员会委员、Chemical Thermodynamics and Thermal Analysis编委、辽宁省能源材料热化学重点实验室主任、大连市能源材料热力学技术创新中心主任。致力于热化学量热技术与能源材料热力学研究,研究方向包括:(1)热化学与量热技术:针对能源与材料研究领域的热化学问题,开展量热技术开发与仪器研制工作;(2)能源材料热力学性质:利用绝热量热、弛豫量热、差示扫描量热及落入式量热技术,准确测定与研究能源材料热力学性质,从热力学角度阐释材料结构状态与功能性质的关联;(3)相变材料:设计合成新型相变储能材料,构建相变储热/控温功能器件,探索相变材料应用新途径。建立了1.9-1700K温区热容准确测量装置与功能拓展技术,为能源材料研究提供了热力学基础数据与量热方法;开发了多功能-可穿戴-智能化相变材料体系与应用器件,实现了其在热量管理与温度控制方面的应用;在国内外学术期刊上发表论文160余篇,申请及授权专利100余项,主持多项国家及省部级科研项目。河北大学主任/教授 屈红强屈红强, 教授,博士研究生导师,河北省阻燃材料与加工技术创新中心主任,河北省化学会常务理事,《中国塑料》、《上海塑料》杂志编委。迄今为止,在Journal of Hazardous Materials、Composites Part B、IECR、Applied Surface Science及Polymer Degradation and Stability等国内外重要刊物发表学术论文100余篇,其中SCI收录论文60余篇;获授权中国发明专利 12项,先后主持了国家自然科学基金青年基金项目及面上项目、河北省应用基础研究计划重点基础研究项目、河北省创新能力提升计划项目“京津冀”协同创新共同体专项、河北省自然科学基金重点项目及各类横向项目等10余项课题。西北大学副院长/教授 徐抗震徐抗震,男,西北大学三级教授,博士生导师,副院长。中国化学会高级会员、中国化工学会专业会员、陕西省化工学会理事。航天165所兼职研究员。《含能材料》、《火炸药学报》、《兵器装备工程学报》等期刊编委。先后在香港科技大学和美国密苏里大学进行访学。主要从事新型含能材料、纳米复合材料、固体推进剂功能助剂以及热分析等研究工作,先后主持国家自然科学基金、国防科技基础计划、军委装发部项目等40余项,发表高水平论文140余篇,出版专著教材4部。授权中国发明专利13件,成果转化4项。获得陕西省科学技术奖二等奖、三等奖等省部级奖励6项。指导学生荣获第十三届“挑战杯”中国大学生创业计划竞赛全国金奖。南京大学(胡文兵教授团队)博士研究生 任晓宁任晓宁,博士研究生,南京大学胡文兵教授团队。热分析研究方向:(1)高分子材料结晶研究;(2)高速扫描量热技术研究;(3)含能材料热性能热分析研究。1999-2003年,就读于长安大学化学工程与工艺专业,分析化学方向;2016-2019年,就读于西北大学化学工程专业,热分析方向;2021年-至今,就读于南京大学高分子化学与物理专业,受导师胡文兵教授悉心指导,深入钻研高分子材料结晶相关研究和量热技术原理、应用与开发等科研训练。主持在研(完成)10余项国家级科研项目,作为主要人员参与完成多项国家级科研项目。在含能材料热分析行业领先开展高速量热系列研究、热分解气体产物的热质联用定量表征与应用研究、组分反应边界特性及相互作用的热分析研究等,作为技术负责人修订热分析相关国军标1项、制定企业标准12项,以第1作者/通讯作者发表SCI/EI/核心期刊等论文30余篇、授权专利5项,获省部级奖5项。报名方式:扫码报名
  • 耐驰热分析仪器高级操作与应用技巧培训通知
    耐驰公司将于2006年开始,定期举办热分析仪器高级操作与应用技巧培训。培训由上海应用实验室负责, 内容包括最常用的热分析技术和仪器: DSC、TG、STA、DIL、LFA、DMA、热分析-质谱联用等内容详情请登录我们的网站www.ngb-netzsch.com.cn
  • 热分析/红外光谱联用的数据分析方法 第6部分 在Origin软件中GS曲线、FGP曲线以及实时红外光谱图(EGS图)的作图法
    p  本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。/ppstrong  /strong在《热分析/红外光谱联用的数据分析方法第4部分 仪器分析软件中热重部分的数据处理与作图》和《热分析/红外光谱联用的数据分析方法第5部分 仪器分析软件中红外光谱部分的数据处理与作图》中以实验室在用的美国PerkinElmer公司的热重/红外光谱/气相色谱质谱联用仪为例简要介绍了在仪器的数据分析软件中与热重部分和红外光谱部分相关的数据处理与作图相关的内容,在本部分内容中将简要介绍在Origin软件中GS曲线、FGP曲线以及实时红外光谱图的数据处理与作图相关的内容。由于在Origin软件中不同时刻/温度下的三维红外光谱作图十分繁琐,将在本系列内容第7部分中进行介绍。/pp  为了保持本系列内容的完整性,以下介绍的大部分内容主要来自本公众号2019年10月6日发布的《在Origin软件中热分析/红外光谱联用的数据作图方法》一文,其中做了相应的修改并增加了实时红外光谱图(EGS图)的内容。/pp  1. GS曲线的作图法/pp  一般来说,在由红外光谱分析软件Timebase得到的Excel格式的文件中主要有EGP曲线(即通常所说的GS曲线)文件和不同时刻温度下的逸出气体红外光谱图(即EGS)文件,一共两个文件。/pp  GS曲线可以直接由导出的Excel格式的GS曲线文件得到,通常说的官能团剖面图(即FGP曲线)可以由EGS文件中导出。/pp  在Origin软件中对GS曲线的作图十分简单,在Origin软件中导入曲线所对应的Excel文件(图1至图3)。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/1db6881e-d64f-41b6-8671-0ae37784c440.jpg" title="图1.jpg" alt="图1.jpg"//pp style="text-align: center "图1/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 308px " src="https://img1.17img.cn/17img/images/202001/uepic/62609940-652e-42c0-967b-5e4165a0c4eb.jpg" title="图2.jpg" alt="图2.jpg" width="500" height="308" border="0" vspace="0"//pp style="text-align: center "图2/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 543px height: 750px " src="https://img1.17img.cn/17img/images/202001/uepic/54de575b-3929-471b-ad4f-c5b07c3b38ce.jpg" title="图3.jpg" alt="图3.jpg" width="543" height="750" border="0" vspace="0"//pp style="text-align: center "图3/pp  选中A、B列,点击图4中plot选项,即可得到图5,即为EGP曲线。可以在图5中根据需要改变曲线的粗细、形状和颜色,在此不作详述。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/947a9618-194f-4302-aff3-fd6c2fa954a0.jpg" title="图4.jpg" alt="图4.jpg"//pp style="text-align: center "图4/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 557px height: 464px " src="https://img1.17img.cn/17img/images/202001/uepic/e4ce67e8-3c64-471d-8782-d1ece89f1798.jpg" title="图5.png" alt="图5.png" width="557" height="464" border="0" vspace="0"//pp style="text-align: center "图5/pp  2. 官能团剖面图(即FGP曲线)的作图法/pp  下面介绍由逸出气体红外光谱图(即EGS)文件得到FGP曲线的方法。通常在Timebase软件中,可以按照图6的方法,选中Save Time Resolved Data选项导出在实验过程中得到实验范围内不同时刻/温度的Excel格式的所有的红外光谱图。按照图1至图3的方法打开文件,得到如图7所示的界面。图7中,第1行“Long Name”中所对应的数值为温度值(即该行为温度行),1.98e+001即为19.8℃,其他以此类推。A列对应的为波数值(单位为cm-1),其他B、C、D...列所对应的为不同温度下的吸光值。也就是说,在图7中,由除A列以外的其他列作为纵坐标轴对A列按照图4的方法作图,可以得到在不同温度下的红外光谱图。另外,在图7中,如果选中温度行和特定的官能团(即特定的波数值)所对应的行进行作图,则可以得到FGP曲线。下面介绍FGP曲线的作图方法。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/f42afe19-16bd-432f-980f-506780617eab.jpg" title="图6.jpg" alt="图6.jpg"//pp style="text-align: center "图6/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/16d2682f-cb11-4132-8b1b-3be6cd40f10c.jpg" title="图7.jpg" alt="图7.jpg"//pp style="text-align: center "图7/pp  按照图8的方法分别选中2358cm-1所对应的行和温度行,复制整行。br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/dcdf9257-47da-4d8b-ad2d-df3abf22d3cc.jpg" title="图8.jpg" alt="图8.jpg"//pp style="text-align: center "图8/pp  新建一个空白的Book文件,将温度行和对应波数(2358cm-1)的数值粘贴这两行,选中,点击Worksheet菜单下的Transpose选项(图9),将这两行转换为两列,转换后的表格如图10所示。删除图10中的第一行数据,按照图4的方法作图,即可得到CO2分子的特征官能团在2358cm-1处的FGP曲线(图11)。可以根据需要改变图中曲线的粗细、形状和颜色,在此不作详述。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/98c364bc-5af7-4f17-b010-d6c6e9ef31df.jpg" title="图9.jpg" alt="图9.jpg"//pp style="text-align: center "图9/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/3fe819c4-81c9-4309-8fa2-eebc7492a9da.jpg" title="图10.jpg" alt="图10.jpg"//pp style="text-align: center "图10/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/8c655662-483b-4efa-9b6e-86d7e8f314c3.jpg" title="图11.png" alt="图11.png"//pp style="text-align: center "图11/pp  3. 实时红外光谱图(EGS图)的作图法/pp  在本部分第2节中提到“在图7中,由除A列以外的其他列作为纵坐标轴对A列按照图4的方法作图,可以得到在不同温度下的红外光谱图。”也就是说,在导出的Excel格式的在实验温度/时间范围内的所有红外光谱文件中,选中A列和所对应的一列和/或多列时间/温度列即可得到不同温度/时刻下的实时红外光谱图。/pp  以下举例说明。图12是不同温度下的一水合草酸钙在加热过程中产生的气体产物的红外光谱图。图中第五行为不同的温度值,第A列为红外光谱的波数值。例如,需要比较第100℃、200℃、500℃和700℃下的红外光谱图的变化,则同时选中这些温度和波数(A列)所对应的列,复制并粘贴到新建的表格文件中,并定义相应列的名称(图13)。同时选中图13中A-E列,点击图4中plot选项,即可得到图14,即为不同温度下的红外光谱图。可以在图14中根据需要改变曲线的粗细、形状和颜色,在此不作详述。由图14可以看出,(1)样品在100℃时样品没有发生分解 (2)在200℃时产生了水,对应于结晶水的失去过程 (3)在400℃时产生了一氧化碳,少量一氧化碳被氧化为CO2 (4)700℃时的气体产物以CO2为主。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 220px " src="https://img1.17img.cn/17img/images/202001/uepic/a6b0f4c1-4385-4184-8530-572cc84c0cce.jpg" title="图12.jpg" alt="图12.jpg" width="600" height="220" border="0" vspace="0"//pp style="text-align: center "图12/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 557px height: 285px " src="https://img1.17img.cn/17img/images/202001/uepic/b989ef36-1508-4bde-b282-9029ef1766ff.jpg" title="图13.jpg" alt="图13.jpg" width="557" height="285" border="0" vspace="0"//pp style="text-align: center "图13/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202001/uepic/128d4fc6-623a-479c-9cdb-4f3865f22608.jpg" title="图14.png" alt="图14.png"//pp style="text-align: center "图14/ppbr//p
  • 需求导向 拓展革新 人机互融——13位专家寄语热分析仪器与技术
    为促进国内热分析领域研究人员间的互动交流,仪器信息网组织举办了第六届“热分析与联用技术”网络研讨会,聚集13位热分析领域的知名专家进行了为期1.5天的学术交流。会后,仪器信息网对参会专家进行了采访,各位专家就未来热分析技术发展趋势分别发表了各自的看法。中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师丁延伟  丁延伟,博士,中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,中国化学会化学热力学与热分析专业委员会委员、中国分析测试协会青年学术委员会委员、全国高校分析测试研究会青年部秘书长。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T0589.1~4-2019),以主要作者发表SCI论文30余篇,编著《热分析基础》(2020年3月,512千字,中国科学技术大学出版社)、《热分析实验方案设计与曲线解析概论》(2020年8月,387千字,化学工业出版社)。丁延伟:概括来说,在热分析仪器方面,未来热分析仪器的发展应在以下几个方面有所突破:1.提高仪器的准确度、灵敏度以及稳定性。提高仪器的灵敏度和稳定性是多年来热分析仪器研发人员的一直努力的目标,随着电子技术和自动化技术的发展,这些性能指标还有提升的空间。2.扩展仪器功能例如:(i)在不影响灵敏度的前提下拓宽温度范围;(ii)可实现超快的加热/降温温度调制、热惯性能的快速等温实验;(iii)配置自动进样装置来提高仪器的利用率;(iv)开发适用于仪器的光照装置、温度控制装置、高压实验装置、真空实验装置、电磁物装置等可用于特殊用途的实验附件。在研发时,应注重加强热分析仪器标准化、全局化、微型化、智能化,实现高新技术的集成,加强仪器网络化和测控软件的研发。3.加强并推广与其他分析方法的联用目前热分析仪可以实现与红外光谱、质谱、气相色谱、气相色谱质谱联用仪、拉曼光谱、显微镜、X-射线衍射仪等技术的联用,由于联用时连接部件的不完善以及成本和应用领域等多方面的限制,联用技术自二十进纪五六十年代出现以来,直到近二十年才开始出现速建发展,这类方法,由于功能较常规仪器强大,有着十分远大的发展前景。4.拓展软件功能随着计算机的硬件和软件的飞速发展,实验数据的记录和分析显得越来越方便。随着热分析技术在不同领域的应用的不断深入,这些需求对热分年的数据处理的要求是动力学方需求越来越小。目前的动力学分析虽有商品软件,但由于动力学方法本身的复杂性和快速的发展,一款成型的商品软件很难满足大多数要求,这就要求商品化的动力学软件要能够功能强大并且可以及时反映出动力学最新发展。5.开发可以满足特殊领域需求的新型热分析仪为了满足一些特殊的测试需求,近年来新型的热分析仪不断出现,如MettlerToledo公司推出的一种可以实现每分钟几百万度加热速率的差示扫描量热仪,这些仪器有的已经实现商品化,有的仅限于实验室使用,使用这些新型仪器完成的科研论文在一些学术期刊中经常可以见到。6.在不影响仪器性能的前提下减小仪器的体积,节约成本、提升产品的竞争力。7.不断拓宽热分析技术的应用领域随着科技的进步,人们生活质量的不断提高,热分析仪器的应用范围得到了快速扩展,市场需求呈现出良好态势。随着科学研究的进一步发展,热分析技术有望在这些新的领域中发挥其独特的作用。我们有充分理由相信,在全球热分析工作者的共同努力下,热分析技术将继续保持现有的高速发展势头,其在各领域中将得到更加广泛和更加深入的应用。梅特勒-托利多中国区热分析仪器部技术经理韩婷  韩婷,梅特勒-托利多中国区热分析仪器部技术经理。华东理工大学材料化学工程博士,研究方向为各类添加剂对多种工程塑料理化性能的影响。从事热分析相关应用近十年,具有丰富的仪器使用和材料热物性分析经验,对于各新兴行业热分析的前沿应用有独到见解。致力于推动和完善特色的联用系统在各行业的解决方案,并取得一定的研究进展。韩婷:热分析技术起源于130年前,近60年商业化的热分析仪器问世并高速发展。1977年在国际热分析协会会议上才有了统一定义。现在,计算机技术和智能化数据处理快速发展,热分析测量技术也变得更加准确和便捷。当下,随着人们对物质表征的需求、对机理分析研究的深入,对分析仪器的依赖度和要求也越来越高,热分析仪器逐渐往高精度、高灵敏度、多功能化、小型化的方向发展。在仪器的软件操作性方面,逐渐在向全自动化、智能化和合规化发展。与此同时单一的技术已经不能满足当下的全部需求,发展与完善热分析技术与其他分析测试手段的多种联用技术必是大势所趋。热分析与红外、质谱、气质、湿度、紫外、显微镜等仪器的联用技术均已出现,未来诸如与拉曼、XRD等更多仪器的联用方案也将随着特定测试的需求陆续登场,同时多级联用的方案也会越来越完善,各类表征方式百家争鸣,相得益彰。中国科学院工程热物理研究所研究员夏红德  夏红德,博士,现工作于中国科学院工程热物理研究所,目前主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA?),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。相关测试分析技术已经广泛成熟的应用于能源、药物、环境、化工、材料、地质、半导体、文物等领域,推动国内诸多领域检测标准的技术创新并促进其在国际上形成技术领先地位。夏红德:热分析技术的目标在于发现热反应过程动态规律,而同步热分析技术虽然提供了检测手段,但是该技术仅给出反应过程在某一时刻的两个参数,质量与能量的标量数值信息,从理论上讲仅能分析两个同时发生的过程,但是实际的样品及其反应过程的复杂动态变化的,需要依靠气体组分的产率(非浓度参数)标量信息,才可解析反应过程特征。为了适应解析复杂反应过程特征的广泛需求,未来热分析技术的发展将侧重以下几点:1.完善热分析技术背后的基础理论体系。尽管热分析技术发展了几十年,各类操作标准与规范在形式上内容丰富,数据分析以花样翻新的数学手段为主,存在大量默认的逻辑误区及失真假设,失去了真正的物理意义。未来将发展基于热力学规律与质量守恒的科学基础理论体系。2.联用检测手段应建立反应过程的质量平衡体系。热分析联用技术形式较多,但GC、FTIR、GCMS等从原理上给出的是气相组分浓度,无法建立反应过程质量平衡体系。质谱定量分析应基于科学原理,构建主动面对复杂未知反应过程的同时多组分检测技术,避免传统“黑箱”逻辑与线性假设造成的不良影响,而ECSA® 定量分析方法将不仅改变热分析研究体系,还将深入各类反应过程的机理分析。3.能量(DSC、DTA)的热力学方程将引入物质变化项。反应过程的发生伴随物质种类变化,未来DSC、DTA分析理论中将考虑物质质量、种类的变化项,理论基础将更符合实际。4.应用层面将以质量能量耦合分析解析复杂反应过程。对于复杂反应过程将原位检测全组分质量变化,而非浓度、相对转化率等相对参数,结合能量标量信息变化特性,利用质量、能量守恒等解析基元反应,并促进反应动力学的全新认识。法国凯璞科技集团塞塔拉姆仪器技术总监曾洪宇  曾洪宇,博士,担任塞塔拉姆技仪器中国区技术和应用中心负责人,毕业于中科院硅酸盐研究所,主攻材料专业,师从施剑林院士。曾博士曾派驻法国里昂塞塔拉姆总部参与热分析和量热仪器的技术研发工作,从事热分析研究工作近15年,是最早一批将塞塔拉姆理论与操作融会贯通的实践者。作为塞塔拉姆中国区最资深的技术专家,曾博士对塞塔拉姆独有的EYRAUD天平和卡尔维三维量热技术具有独到见解。曾博士在热分析及量热方面的建树,已成为塞塔拉姆中国,以及亚太区域技术与应用的中流砥柱。曾洪宇:热分析及微量热是普适性的经典分析测试技术,是材料、化学、生物、安全等研究领域的有力工具。但广泛的应用不代表不存在局限性,当前制约热分析及微量热进一步提升应用价值的因素暨热分析及微量热仪器未来的发展方向有如下几点:1.应用的普适性。首先是对样品的普适性,即通过传感器,样品容器及仪器总体设计优化以适应各类型样品;然后是测试条件的普适性,即在单一主机基础适应各种气氛/真空、温度条件,摆脱束缚;最后是对对“操作者”普适性,即提升人机界面效能,简化操作流程,提升售后支持服务效能,降低对使用者专业技能要求的门槛。2.功能的拓展性。即走出传统热分析及微量热的思维定式,提升与其他分析测试手段、仪器装置等联用的能力,从而获得更加丰富的原位数据,更加全面解读材料及相关物理化学变化的本质。3.仪器的智能化。综合以上两点,仪器自动识别样品,自主选择条件,并进行初步数据分析及筛选,最终做到样品放进去-测试报告/文章送出来,实现家用电器级别的使用体验。这不单单是热分析仪器制造商的梦想,也应该是是所有仪器供应商对产品的终极目标。当然达成这一目标的路还很漫长,需要业内外有识之士的共同努力。苏州大学分析测试中心高级实验师徐颖  徐颖,苏州大学分析测试中心,负责热分析仪器。主要从事各种材料的热性能的研究,熟悉高分子、材料、药物、有机、无机等各类样品的热分析表征,论著1本(《热分析实验》,学苑出版社,2011年出版),发表论文20余篇。徐颖:1.仪器结构方面:操作更方便,如触屏式、远程监控这些新的技术将越来越多得到应用;配件使用趋向傻瓜式、用户亲和力更好(配件更换简单插拔、组合);观察更直观,通过光学镜头,数码记录或者石英窗口,直接观察到测试过程中样品外观的变化。2.仪器软件方面:使用更亲和,新手易操作(如内装推荐对应实验所用常用测试程序,自动校正模式等等)。热分析仪器种类多,均可通过同一软件多窗口控制,分析和测试整合于同一软件。3.数学方法的应用。例如HIGHWAY高分辨技术、TTS(时间温度等效推主曲线)技术均通过数学方法推演得到所期望的测试结果。如高分辨技术是指在常规升温速率下记录数据,然后通过数学方法(峰温/曲线分离和阿伦尼乌斯一级动力学)来模拟不同升温速率的测量结果,尤其适用于重合曲线(热重或热量信号)的分离,利用软件提高了分析的灵敏度和分辨率。TTS在DMA测试中用来推算样品在极端(高或低)频率下的力学性能。峰分离技术将部分重叠的两个峰分别计算峰面积。4.联用技术是指在程序控温和气氛下,对一个试样采用两种或多种热分析技术,大致分同步联用、串接联用和间歇联用。同步联用最常见的是和差热分析法联用,例如热重仪、静态力分析仪、动态力学分析仪在样品附近配备热电偶传感器,从而可以同时获得DSC或DTA信号。此外在各种热分析仪器中我们常常配备光学附件,例如DSC或流变仪和紫外、红外、热台、拉曼、显微镜、XRD粉末衍射等联用,观察反应或者变形过程的同时,样品特征光谱、外观、特征衍射峰是否发生变化。还有DTA、TMA、DMA和介电传感器DEA联用,以同步获得材料电学特性。另外还有一种湿度控制配件,也属于同步联用,将热分析仪器的测试环境加入湿度元素,来观察不同湿度对所检测物理量的影响。串接联用、间歇联用都属于对逸出气(反应气体产物)的分析鉴定。一般是热分析仪器和红外、质谱或者气相等方法联用。有助于对反应气体产物定性定量,并对反应机理加深理解。5.温度扫描方式的创新,例如调制技术MDSC、MTGA是在传统的线性控温基础上叠加一个正弦振荡,由此可以将可逆、不可逆热效应分离,提高了灵敏度、分辨率。再如快速DSC,每分钟几百万摄氏度的升温速度可以观察到常规测试下无法抓取的热现象。6.微量热仪的发展,样品用量小,可实现无破坏检测,可以多个样品进行平行或者不同条件的测试,主要应用于生化、食品和含能材料的研究。能进行热效应较弱的测试,灵敏度、精度远高于常规DSC,也适用于观察液体、气体参与的反应。华东理工大学副研究员于惠梅  于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事 报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美PennsylvaniaStateUniversity,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。于惠梅:热分析技术是在程序温控下,测量物质的物理性质与温度或时间关系的一类技术。它可以用于研究材料的各种转变,例如熔融、相变等过程,是一种十分重要的分析测试方法。随着材料科学的发展,在这些单一热分析的基础上,出现了联用技术。例如热分析跟质谱分析和红外光谱联用,可以实现对逸出气体产物的质荷比和有机物官能团的表征分析,同时热分析还实现了同色谱质谱联用。这些联用技术拓展了热分析的表征范围,成为热分析学科发展的重要方向。除了联用技术,动力学也是热分析学科的研究热点之一。单一热分析和联用技术,以及热分析动力学这三部分,未来将成为研究材料的热分解过程、热动力学、热化学反应机制的重要研究手段,发展前景良好。珀金埃尔默技术专家刘文广  刘文广,珀金埃尔默公司材料表征产品线技术支持,主要负责分子光谱,热分析仪器及联用分析设备的应用支持工作。刘文广:EGA联用技术涉及到热分析、光谱学、色谱学的内容,对检测分析人员的综合素质要求比较高,未来的仪器与软件发展应该会进一步提高仪器操作和数据分析的自动化,完善各模块的谱库等基础资料,减轻操作人员学习上手和日常使用的难度;另外使用GCMS对逸出气体混合组分进行分离与鉴别是非常重要的,但是受限于色谱分离的效率,目前Offline模式的质谱分析要花费很多时间,随着色谱技术的发展,比如珀金埃尔默公司的FastGC技术,会大幅缩短气相色谱分离分析的时间,显著提高EGA分析的效率。西安近代化学研究所副研究员王晓红  王晓红,女,1976年8月生,中共党员,1999年7月大学毕业入西安近代化学研究所工作至今,副研究员职称。从事含能材料热分析,动力学,构效关系及计量学研究,发表各类科技论文四十余篇,2014年~2015年在加州大学圣克鲁兹分校生物与化学系物理化学专业访学。王晓红:1.多机联用技术会进一步扩展和发展,原来的DSC-TG,发展到DSC-TG-MS,DSC-TG-FTIR,进一步发展到DSC-TG-MS-FTIR,DSC-TG-GC-MS,DSC-TG-TPR-GC等。以后会有更多的联用仪器加入其中。同时,联用方式也会变得多样化,有串接方式,并行方式,连续和间断方式等。2.仪器工作温度范围也会变得更加宽泛,选择余地更大。温度范围不仅有室温到600摄氏度低温段,还有室温到1650摄氏度高温段,-150摄氏度到1650摄氏度范围。3.未来的仪器一定需要自动测量技术成熟,减轻人力的压力。仪器自动化进样技术的发展和自动谱图分析技术结合联用新技术将是是未来的发展趋势。4.数据库的进一步完善和应用必将变得普遍,谱图分析技术会更加快捷便利。江苏省食品药品监督检验研究院检验技术研究中心副主任李忠红  李忠红,博士,江苏省食品药品监督检验研究院检验技术研究中心副主任,主任药师。江苏省分析测试协会热分析专业委员会委员。从事药品检验工作已有30年,一直未脱离实验工作,具有丰富的药品质量控制所用仪器的操作经验。近年来主要致力于药品质量标准提高以及新仪器、新方法在药品质量控制中的应用工作。李忠红:热分析技术发展到今天,已经有了很长足的进步。从网上可以看到国内各大分析测试平台以及各大高校的热分析仪器有很多种,例如闪速差示扫描量热仪(FlashDSC)、超高温同步热分析仪(带自动进样器)、热膨胀仪、热流法导热系数测量仪、激光闪射法导热系数测量仪、闪射法导热仪、动态热机械分析仪、反应量热仪、绝热加速量热仪等,以及热分析法与其他各种仪器的联用仪,例如热重分析与质谱联用(TG-MS)、热重分析与气相色谱联用(TG-GC)、热重分析与气相色谱-质谱联用(TG-GC-MS)、热重分析与红外光谱联用(TG-IR),等等。另外,一些原位X-射线衍射仪也有温度控制装置,可以被认为是热分析联用技术的一种。上面这些仪器,可以说完全能够满足新药研究的需求。当然,如果从药品质量控制的角度来看,热分析仪要成为药物分析实验室日常用的仪器,我个人认为还需要向小型化发展。虽然从广义来说,实验室常用的熔点仪和现在一些企业用作中间体水分控制的快速水分测定仪(水分天平)也属于热分析仪器,但是我们作药物研究的人提及的热分析仪,主要还是指的热重分析仪、差热分析仪与差示扫描量热仪。热分析仪在药物研发过程中的应用还是不少的,在药品质量标准中被使用的也越来越多,目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定(DSC仪)、化学对照品的纯度测定(DSC仪)、药物水分的测定(TG仪)等,然而具体应用的品种与项目还未被《中国药典》所收录。所以,一个分析方法要被国家药品标准——《中国药典》广泛采用的话,需要仪器的普及,要将热分析仪从大型仪器的角色转化为小型仪器的形象,这样才能被药企普遍接纳,大量采购。从另一方面来说,仪器的普及也可以促进药品质量控制水平的提升,促进国家药品标准的提升。还有,我一直想了解一点,在热分析领域国产仪器是否能达到与进口仪器同等的精度,是否可以在检测领域占领一定份额的中低端市场。实验室的能力验证是仪器比对的一种形式,很期待在药品检验这个领域也有热分析相关的能力验证,这样可以给国产仪器一个展示性能的机会。总结一下,我认为未来热分析技术的发展应该有两个方向:一是研究型,继续发展各种联用技术,尤其是原位联用技术,争取在更少的实验步骤中得到更多的信息;二是实用型,向仪器小型化、普及化方向发展。北京市理化分析测试中心副研究员李琴梅  李琴梅,北京市理化分析测试中心,博士,副研究员,2013年博士毕业于中国科学院化学研究所高分子化学与物理专业。主要从事新材料制备与性能研究以及测试方法开发等研究工作,包括生物医用材料的制备及其应用研究、高分子材料以及复合材料检测方法研究等。主持参与国家重点研发计划1项,国家自然基金4项,省市级科研项目及财政专项13项,横向课题近30项。科研成果发表学术论文32篇,其中SCI收录8篇。李琴梅:经过多年发展,热分析仪器在微型化、自动化、灵敏度方面得到了很大提高。近年来,随着计算机技术和智能化数据处理技术的快速发展,热分析仪器通过结合先进技术实现了快速、准确、便捷地测量,热分析技术的应用领域也更加广泛。随着热分析仪从单一功能、低精度、使用温度低逐渐发展到联用技术、高精度、高灵敏、使用温度达2800℃,热分析仪器的功能越来越强大。与此同时,科学技术的进步与应用领域的发展对热分析技术也提出了更高的要求。为了得到准确的分析结果,揭示热过程的本质,单靠一种或两种热分析技术已不能满足技术需求。热分析联用技术可以同时采用多种热分析技术或热分析与其它分析技术联用,测量物质物理和化学性质随温度变化的关系,能得到更为丰富的信息。作为现代高新技术的集成,联用技术的发展势在必行。德国耐驰仪器制造有限公司市场与应用总监曾智强  曾智强,博士毕业于清华大学材料科学与工程学院,获博士学位。此后赴新加坡南洋理工大学、英国Surry大学任研究员,从事陶瓷基复合薄膜方向的研发与应用研究,发表有二十多篇论文并获得3项发明专利。2003年曾智强博士加入德国耐驰,担任市场与应用总监,致力于拓展德国耐驰热分析、热物性测量系统的应用。曾智强:热分析是一种宏观的材料分析方法:通过施加“热扰动”,观测材料的“宏观”物化性能,从而分析材料的成分/结构变化或者反应。传统意义上的热分析往往用来发现变化,然后一般需要通过其它手段才能对变化本身进行研究。例如,DSC能够观测到相变反应并且测量到相变温度,但需要结合XRD等方法才能确认从某A物相转变到某B物相。个人浅见,热分析技术发展目标无外乎使得热分析方法在材料研究工作中更深入、更有效、更简便。在硬件方面,热分析技术的一个重要发展方向应该是“耦合”。也就是说将更多的方法结合在一起,同步测量,同时从多个角度观测同一个样品,将得到更综合的信息,对材料的研究将更加透彻。同步热分析(TG-DSC)、逸出气分析(TG-FTIR\MS\GCMS)就是耦合,由此得到的数据,无论是丰富程度还是深入程度,远优于单独的热分析数据。我期待将来会出现更丰富、更“奇葩”的耦合技术,例如将热、声、光、电技术的充分结合… … 必将打破传统热分析的壁垒,让热分析为更多人服务。在软件方面,发展的方向应该是如何更直接地解读热分析谱图,并将热分析图谱更直接地应用于实践。目前市场上已经出现了适用于热分析谱图的检索软件,这可以说是迈出了里程碑的一步。但是路还很长,因为热分析图谱有其特殊性,而且非常容易受到测量条件的影响,所以提高识别可靠性、普适性是不小的挑战。另外,尤其对于企业用户,如何通过适当的算法,把热分析谱图直接转化为工艺相关的数据,例如某成分的含量、用于QC的某个参数等等,这也是很有潜力以及挑战性的课题。江苏科技大学高分子材料系副系主任李照磊  李照磊,1984年1月生,理学博士,副教授。中国化学会会员,江苏省热分析专业委员会委员。2012年8月至2016年6月,南京大学化学化工学院攻读博士学位,导师为胡文兵教授。目前担任江苏科技大学高分子材料系副系主任,入选镇江市第二批“金山青年创新英才”。主要从事生物可降解高分子材料凝聚态结构转变的热分析研究。主持国家自然科学青年基金项目、江苏省高校自然科学基金面上项目,以及多项校企合作横向课题项目。在ACSMacroLetters、ElectrochimicaActa、JournalofPolymerScience,PartB:PolymerPhysics、Polymer、ThermochimicaActa、PolymerTesting、PolymerInternational、JournalofThermalAnalysisandCalorimetry等刊物上发表学术论文30余篇,获授权专利10项。李照磊:差式扫描量热技术是高分子物理尤其是高分子结晶学相关问题研究的重要实验手段。随着高分子结晶研究的进一步深入,差示扫描量热仪的扫描速率正面临越来越高的要求。首先,高分子熔体以不够快的冷却速率降温时,人们很难实现对高分子在较低温度区域成核行为的研究;其次,常规仪器所能提供的降温速率很难模拟高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中的结晶行为;第三,半结晶高分子折叠链片晶处于亚稳状态,常规升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而使研究人员难以获得最原始高分子样品的相关信息。经过近三十年的发展,超高速扫描量热技术逐渐成熟,并发展出了商业化的产品,已经能够很好地解决前述高分子结晶研究中面临的诸多问题。同时,超高速扫描量热技术不仅使得对一些非常重要但是热信号较为微弱的物理化学行为的研究变得可能,其微量样品的特点也使其在纳米材料领域具备了突出应用潜能。作为热分析技术发展的重要分支,高速扫描量热技术的发展与应用值得领域内研究人员重点关注。国家轮胎质量监督检验中心副总工程师苍飞飞  苍飞飞,副总工程师、技术负责人、高级工程师。目前就职于北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量监督检验中心)、北京橡胶工业研究设计院有限公司。  北京橡胶工业研究设计院试验检测中心从事橡胶检测工作20年,主持或参加纵向及横向项目30余项 完成学术论文30余篇,其中参加中国化工科学研究院第一届科技论坛论文“轮胎中各部位多环芳烃含量检测方法的研究”获得鼓励奖 参加国家制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖 参加国际标准修订比对工作3项 “自主研发改造仪器项目”获得中国化工集团,中国化工“五小”活动获得二等奖 发明专利2项 实用新型专利3项。苍飞飞:热分析技术与橡胶行业性能测试息息相关,目前橡胶行业包括6个子行业:轮胎、橡胶板/橡胶管/橡胶带、橡胶零件、再生橡胶、日常及医用橡胶制品以及其他橡胶制品制造。热分析技术在橡胶行业中应该广泛,如热重、差热、动态粘弹谱等等,让我们从数据上了解不同配方、不同橡胶性能的差异,但热分析技术还需要根据橡胶的特点,设计不同的模具及参数,让配方工程师更全面、更深入的了解橡胶的特性。联用技术也是热分析发展的一个方向,单纯的热分析只能从单一(如:数值变化)角度了解橡胶样品的变化,没有直观的表征变化的化合物类别或种类,联用技术让我们的想象有了理论依据,通过合理的利用联用技术,可以使微量的样品带给我们巨大的资料,让我们从中解读更多的信息。希望热分析技术能够有更多的联用技术诞生,为测试工程师提供更多的帮助。  综合以上观点,需求导向、拓展革新、人机结合是未来热分析仪器与技术的重要发展趋势,希望在热分析领域的工作者的共同努力下,能够更快地涌现满足日益增长的研究需求的新型热分析仪器与技术。
  • 公安物证检验不容忽视的经典技术:热分析技术
    传统的热分析技术应用于刑事技术微量物证的理化检验领域:如GB/T 19267.12-2008《刑事技术微量物证的理化检验 第12部分:热分析法》所描述的检验方法。 近年来公安物证检验中新增加了食品安全,环境损害以及伪劣假冒商品的检验鉴定需求。除使用常规的色谱/质谱技术外,热分析技术也成为待测物理化性能差异对照检测的新方案,为公安理化检测工作提供新思路。 本文通过岛津热分析技术主力产品DSC-60 A Plus & DTG-60在公安物证鉴定领域的应用介绍,解决疑难案件中复杂物证材料的鉴定技术难点。 方案1:差示扫描量热分析技术与应用全自动差示扫描量热分析仪 岛津DSC-60 A PlusDSC-60 Plus广泛应用于公安司法鉴定工作中:高分子材料分类检测、医药及食品安全案件中微量残留物样品的热性能分析。 案例1:通过对样品比对鉴定化妆品来源的同一性3种不同品牌的彩妆样品(口红),测试后呈现出显著不同的量热曲线。案例2:可以通过量热曲线说明鱼肉的新鲜程度差异40℃附近的放热峰是来自鱼肉中残存的ATP(三磷酸腺苷)引起的肌球蛋白和肌动蛋白的收缩;残存ATP的量随鱼肉的放置时间而变化。案例3:鉴定不合格锂离子电池隔膜材料的热性能通过3种锂离子电池隔膜的熔点测定,量化正品与仿品间的差异。案例4:伪劣机油制品鉴定低温条件下测定S款机油和M款机油的DSC曲线,经检测M款机油的抗耐低温性能更好。 案例5:人造奶油鉴定从-70℃起加热人造黄油并测定DSC曲线。观察到因所含油脂的熔化产生了多个吸热峰。人造黄油的DSC曲线 产品优势: 1.连续分析能力:30 min/测量 x 24 次测量 = 12 小时2.灵敏度高痕量药物成分高灵敏度DSC测量 3.可使用液氮制冷4.量热范围宽粘合剂的固化反应 5.温度范围宽NBR橡胶的玻璃化转变温度 方案2:差热-热重同步分析技术与应用差热-热重同步分析仪 岛津DTG-60系列DTG-60广泛应用于公安司法鉴定工作中:鉴定微量证材料样品来源并实现物证材料间的同一性认定。 案例1:车辆轮胎橡胶检测通过炭黑含量的测定区别产品工艺及产品来源。案例2:微量物证材料的测定-高岭土的检测。案例3:聚合物材质认定热重曲线可以快速鉴定出材料的材质如:PET (polyethyleneterephthalate 聚对苯二甲酸乙二酯)PI(polyimide聚酰亚胺)PPO(polyphenyleneoxide聚苯醚) 产品优势:同步TGA与DTA系统,一次分析即可得TGA与DTA。
  • 三会场交相辉映,热分析大放异彩——2018年热分析技术及应用研讨会分会报告摘录
    p  strong仪器信息网讯/strong 由北京理化分析测试技术学会热分析专业委员会和江苏省分析测试协会热分析专业委员会主办,江苏省分析测试协会协办的strong2018年热分析技术及应用研讨会/strong于2018年10月13-14日在无锡举办。大会共设置span style="color: rgb(255, 0, 0) "strong材料、溶液、仪器/strong/span三个主题的分会场,分会报告围绕热分析方法在对应主题研究领域的应用展开了讨论。诸位专家各显神通,精彩内容层出叠现,请随仪器信息网编辑走进会场,一同领略报告学者的卓越风采吧!br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6639c63b-3ce4-4edb-989c-0da0f4b1402a.jpg" title="分会场.png" alt="分会场.png" width="500" height="686" border="0" vspace="0" style="width: 500px height: 686px "//pp style="text-align: center "strong分会现场/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/6d67c514-36ac-4e18-a73d-2792e19a1442.jpg" title="张建军.jpg" alt="张建军.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong河北师范大学教授 张建军br//strong/pp style="text-align: center "strong报告题目:《稀土功能配合物的晶体结构、荧光及热化学性质的研究》/strong/pp  材料的使用寿命和产品的保质稳定期,可以通过研究物质的热分解反应动力学,进而得到配合物反应进度与时间、温度间的关系来进行预测。摩尔热容的测量可用于研究物质的微观结构和机理,在合成工艺设计、热量计算和燃烧机理的研究中具有重要意义。课题组合成了两种稀土芳香羧酸配合物[Eu(3,4-DMBA)sub3/sub(3,4-DMHBA)(5,5’-DM-2,2’-bipy)]sub2/sub与[Tbsub2/sub(3,4-DMBA)sub6/sub(5,5’-DM-2,2’-bipy)sub2/sub(Hsub2/subO)],并采用荧光光谱、TG-DTG/DSC及其与红外联用的方法,对合成的19种配合物进行了分析表征,表明:其共显示出四种不同类型的晶体结构 配合物具有良好的热稳定性,在升温过程中,中性配体倾向于首先失去,配体分解为脂肪族有机物和COsub2/sub、Hsub2/subO等气态小分子,最终产物生成金属氧化物 摩尔热容测量结果显示配合物热力学性质稳定、没有相变或其它任何热异常现象发生,比较了两种配合物1[Pr(III)]和7[Dy(III)]的摩尔热容,发现结构相同的两种配合物的热容值相近,故具有相近的分子间振动能。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/436a5760-26c7-4559-bd65-f48e1dfc01d2.jpg" title="李晓萌.jpg" alt="李晓萌.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京理工大学教授 李晓萌/strong/pp style="text-align: center "strong报告题目:《非等温DSC法研究三唑交联体系固化动力学》/strong/pp  固体推进剂体系常见的为端羟基聚丁二烯(HTPB),其具有力学性能好、粘度低、固含高、成本低等优点。粘合剂采用羟基(-OH)与异氰酸酯基(-NCO)发生反应生成氨基甲酸酯键,-NCO反应活性高,对水敏感,与水反应会生成脲键,并放出COsub2/sub,易产生气泡,氨基甲酸酯键的耐水性也有限,且新型高能氧化剂二硝酰胺铵(ADN)、硝仿肼(HNF)与异氰酸酯基相容性差。叠氮(-Nsub3/sub)和炔基(-C≡CH)的反应在很多领域应用很广,在推进剂领域具有不受水分影响,可提高固化产物弹性体中的氮含量,并有望在室温下固化的优势。首先将HTPB进行修饰得到PTPB,再合成两种叠氮固化剂,Nsub3/sub-III(三官能度)和=Nsub3/sub-II(二官能度),通过一价铜的催化来实现固化反应。之后以力学性能为判据确定了一款合成配方,并使用非等温DSC法研究了该体系的固化动力学机理。由基辛格(Kissinger)方程结合阿仑尼乌斯(Arrenius)方程,求得表观活化能Ea和指前因子A 由DSC曲线峰形指数得到n,即可预测任意温度条件下的等温固化曲线。最后得到结论PTE-0.1体系在30℃条件下,30h内即可达到98%的固化度。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/77001e80-e236-43f5-9c96-0e13f8a2ca49.jpg" title="章斐.jpg" alt="章斐.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京大学高级工程师 章斐/strong/pp style="text-align: center "strong报告题目:《热分析测试结果(TG、DSC)的研究性分析方法—从测试人员角度》/strong/pp  热分析测试结果是否能反馈待测样品性质的真实信息?这是一个常被人忽略的问题。受到源自仪器、环境、样品、检测原理等因素的影响,常常出现测试数据不能反映真正实验结果的现象。如何获得准确、真实的测试结果?这需要在状态合格的仪器设备上,排除与样品及非样品相关因素的干扰。热重实验中样品质量W与仪器升温速率间不具有函数关系,升温程序的改变不会使热重曲线发生变动,这是由热重分析仪中热天平和升温炉体单独测量物理量的特性所决定。测试环境中的外力震动、气路波动、天平失稳等因素,以及测试样品发生晶粒跳溅、飞离坩埚、剧烈分解、试样熔融、露出坩埚、试样膨胀等行为对样品台压力产生的变化,均会导致测试结果的失真,实验者应当从热分析曲线中识别这种现象,并重新进行测试。DSC测试中随升降温速率的设置不同会对实验结果产生不同程度的影响,这其中可能存在电源干扰、静电释放以及其它高频干扰源的影响 试样在坩埚内的气泡产生、出离坩埚等情况也是影响因素之一,因此样品制备过程显得十分重要。这些都是实验中应该辨别和避免的现象。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/4b0e6935-0d3a-4375-a2c3-7dce7bc4f20d.jpg" title="邹涛.jpg" alt="邹涛.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京市理化分析测试中心副研究员 邹涛/strong/pp style="text-align: center "strong报告题目:《热分析检测中的质量控制》/strong/pp  检测机构实验室质量控制,涵盖人机料法环五大要素,设备状态在整个环节中起到十分关键的作用。对设备应怎样做好质量控制工作?仪器设备通过验收后,处于整个控制流程的起步阶段,仪器经过检定或自检,就可以进行日常的检测活动。一次检定显然不能终身能用,因此会通过仪器的期间核查,来不断考察仪器的工作状态。核查的方式有:实验室内部人员比对、不同仪器比对、标物核查以及留样再测,但最好的方式还是进行实验室间比对,例如组织数家实验室进行实验数据的考核,以及参加能力验证。仪器设备验收主要是对关键测试指进行考核,如对热膨胀仪进行验收,通过采用标样对相对伸长量,平均膨胀系数等关键指标的偏差,与文献值还有实验数据进行比对,以确保仪器的可用性。仪器设备优先进行检定,条件不足的须要溯源到标准物质,再次之则要求检验检测机构保留与原检测结果相关性或准确性的凭证,即参加验证。在仪器检定、自检程序完成之后,需要对仪器设备的性能指标、检定完毕的仪器状态,同国标、ASTM、IOS等标准对仪器设备的要求是否匹配进行确认,也是必须做的工作内容。所有确认工作完成之后,方可对外进行一般性的检测服务。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/25d0aa22-21bd-4e74-ab4f-331a8c6626fd.jpg" title="苍飞飞.jpg" alt="苍飞飞.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京橡胶工业研究设计院 国家橡胶轮胎质量监督检验中心 北京橡院橡胶轮胎检测技术服务有限公司高级工程师 苍飞飞/strong/pp style="text-align: center "strong报告题目:《热分析技术在橡胶测试中的应用研究》/strong/pp  天然橡胶是从三叶橡胶树中收集到白色胶体,再加入固化剂经过烘干所制成 合成橡胶是人工合成的橡胶,具有线性高分子、支链高分子、体型高分子几类分子结构。它们的分子量均较大,天然橡胶分子量可达到百万级,合成橡胶也在十几万量级以上。天然橡胶在其分子链段方向具有弹性,在链段垂直方向不具有弹性,因此不可直接使用 通过在其中混入硫磺,经过高温高压加工工艺可形成C-S-C键的网络结构,即可制备出像轮胎、橡胶圈、奶嘴、密封胶条等橡胶制品。天然橡胶制成硫化胶以后,想要再制成再生胶,需要将橡胶链段进行解段,形成一些小的自由基体,其中最难解段的是C-C链段,也是制备再生胶最为困难的部分。当前我国对资源再利用十分关切,并不断加大这一领域的利用度。我国废旧轮胎产量居世界首位,并以每年8%~10%的速度急剧增加,至2020年可达2000万吨,这为再生胶的生产提供了充足的原料。再生胶可用于汽车部件、飞机跑道、枕木、塑胶跑道等产品的制造。氟醚橡胶因其耐热、耐油、耐氧化、耐化学品等优异性能,被广泛应用汽车、电子、航天、船舶等领域高精度、耐高温、高耐磨、条件苛刻的工业环境中。醚键支链的存在进一步破坏了碳主链结构的规整度,降低了其结晶能力、增大了分子链链段活动能力,同时随着柔性支链取代基的增大,使分子堆更加松散,其链段活动能力进一步增强。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/de78ab66-4bce-490f-bab9-793815fd66a2.jpg" title="张武寿.jpg" alt="张武寿.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中国科学院化学研究所副研究员 张武寿br//strong/pp style="text-align: center "strong报告题目:《高灵敏大体积塞贝克型量热计的研制及其应用》/strong/pp  传统的Calvet型微量热仪的代表型号有TA仪器的TAM和塞塔拉姆(SETARAM)的C-80 大体积量热计目前在二次电池领域有一定需求,代表型号有热安(THT)的IAC与耐驰(NETZSCH)的IBC 284 SETARAM的LVC-1380-3W可应用于核废料的量热中 应用于化工中试的大体积量热计有SETARAM的DRC和梅特勒(METLLER)的RC1 此外大体积量热计还可应用于相变储能材料、大型样品的热容量,大型工件的热含量,冷聚变,以及人体新陈代谢热量的测定。报告中还介绍了课题组开发的Seebeck型大体积量热计的原理、结构、样机参数以及应用。大体积、高功率热量计可用于动力电池、相变建筑材料等任意大体积样品的热容量测量,有机反应热量测量,冷聚变能量测量等。大体积Seebeck型量热计仍存在热噪声、温度噪声、热分布误差(HDE)、测量时间长等问题,但已开发出了对应的降噪方法,与Calvet法相比在设计原理、降噪方法、参考池、浴槽温度、卷积核等方面具有一定特色。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/55ab44f5-d4ff-46d3-ba72-a648255a9ec0.jpg" title="解凤霞.jpg" alt="解凤霞.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong西安工程大学副教授 解凤霞/strong/pp style="text-align: center "strong报告题目:《原位微量热法研究[Cusub2/sub(Csub21/subHsub9/subOsub4/subN)sub2/subHsub2/subO]subn/sub单晶的生长过程》/strong/pp  报告从四个方面对[Cusub2/sub(Csub21/subHsub9/subOsub4/subN)sub2/subHsub2/subO]subn/subMOF单晶进行了研究:从MOF单晶生长过程的热谱图进行热动力学方法分析,计算出活化能与指前因子 通过MOF单晶的TG曲线及XRD衍射图谱,得出其具有三维孔洞网络结构 吸附试验结果表明MOF对Nsub2/sub、COsub2/sub、CHsub4/sub气体的吸附程度不同,具有选择性差异,且室温下表现的更为明显,并利用理想溶液吸附理论(IAST-Ideal Adsorbed Solution Theory)预测了多组分气体的吸附行为,较高的选择吸附比归因于MOF结构中出去配位水分子所生成的裸露金属位点,其与COsub2/sub具有强作用力 MOF对气体的吸附热力学分析利用virial II方程对等温吸附曲线的计算结果,表明MOF与COsub2/sub分子间也存在较强作用力。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/af09ec8f-aa5d-44a8-8401-fd9ce6b98fd0.jpg" title="张箭.jpg" alt="张箭.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong中国科学院大连化学物理研究所副研究员 张箭/strong/pp style="text-align: center "strong报告题目:《新型氧化剂二硝酰胺铵ADN的热行为研究》/strong/pp  固体推进剂作为战略、战术等固体发动机的动力源,一直以来都是航天航空技术的核心内容之一,我国主要采用肼催化分解技术来进行研究。复合固体推进剂由氧化剂(高氯酸铵)、粘合剂、金属燃料等组成,其中氧化剂约占推进剂总质量的60~85%。为了克服高氯酸铵(AP,NHsub4/subClOsub4/sub)能量低、特征信号强、污染环境等问题,固体推进剂的研究和开发方向正朝着高能、低特征信号、洁净、钝感而发展。而新型氧化剂二硝酰胺铵ADN被视作最有希望替代已广泛使用的AP氧化剂。国内外在ADN的研究进度有一定差距,我国的ADN仍未达到应用水准,还存在许多瓶颈问题。通过固体ADN球形化改性可改善其加工性能、降低表面缺陷。常见的几种稳定剂由于能量偏低,会降低推进剂的能量,因此通过氨基保护、硝化、脱保护三步骤合成二硝基苯二胺稳定剂,加入后使ADN的分解温度显著提高。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c1c0b095-3bb4-49f4-a757-dc534fcf9e58.jpg" title="史学星.jpg" alt="史学星.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong首钢集团有限公司技术研究院高级工程师 史学星/strong/pp style="text-align: center "strong报告题目:《热分析在钢铁材料研究中的应用》/strong/pp  同步热分析仪和热膨胀仪在钢铁材料的研究中应用广泛,可测定钢铁的多项物理性能指标。钢的固、液相线温度是连铸生产中确定浇注温度以及研究钢液凝固过程的重要的工艺参数。浇注温度过高会导致铸坯坯壳薄并进而引起开浇溢钢或冻结。因此,须根据各钢种的凝固特点,执行相应的浇注温度控制制度。准确获得钢的固、液相线温度可提供一种最佳的低过热度的浇注操作,从而保证得到细晶粒组织以及高质量连铸坯。测定钢的固、液相线温度方法较少,仅有的YS/T533-2006方法标准已不适用于其测定,传统的计算模型或公式也已不能满足Ni系低温钢、中高锰钢和电工钢等特殊新钢种的实际生产指导需要,开发快速准确测定钢固液相线温度测量方法迫在眉睫。氧化脱碳是钢铁材料在热加工过程中的常见问题,其控制对弹簧钢、钢帘线、冷镦钢等线棒材的生产十分重要。目前气氛加热炉模拟法操作复杂、效率低、成本高,也迫切需要开发一种快捷的模拟方法。通过对现有同步热分析仪设备的气路改造,以不同的实验气氛条件模拟不同工艺,并全程采集热分析曲线及测量铁皮厚度和脱碳层深度,成功开发出一种新的钢材氧化脱碳模拟方法,拓宽了同步热分析仪的应用范围。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/1c99acc0-962b-4bdc-9132-b3376798bb10.jpg" title="李照磊.jpg" alt="李照磊.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong江苏科技大学讲师 李照磊/strong/pp style="text-align: center "strong报告题目:《聚乳酸外消旋共混物结晶行为的热分析研究》/strong/pp  聚乳酸PLA具有左旋与右旋两种构象,聚乳酸外消旋共混物由二者混合所得。立构复合晶相比均质晶具有更高的熔点和更优异的力学性能,这吸引越来越多的学者对其进行研究。使用常规DSC手段分析平衡熔点在立构复合晶与均质晶熔点差异来源中的作用,表明平衡熔点的差异仅为导致二者熔点差异的部分原因。并使用Flash DSC结合显微红外技术,研究不同温度条件下PLA外消旋共混物中氢键的形成对SC/HC竞争生长行为的影响,PLA外消旋共混物中形成的氢键可能是立构复合晶的成因。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c6254e91-861b-4141-a812-9c69e19823fe.jpg" title="白云.jpg" alt="白云.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong北京市理化分析测试中心副研究员 白云/strong/pp style="text-align: center "strong报告题目:《热重-红外-质谱联用系统在气凝胶隔热板中的应用》/strong/pp  溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了作为分散介质的液体,这样一种特殊的分散体系称作凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,即分散介质为气体的凝胶材料成为气凝胶,这是由胶体粒子或高聚物分子相互聚集构成的一种具有网络结构的纳米多孔性固体材料,其固体相和孔隙结构均为纳米量级。SiOsub2/sub气凝胶具有极低的热导率、超轻质、高热稳定性等特性,使其在工业、民用、建筑、航天及军事等领域具有非常广泛的应用。对气凝胶隔热板的热重分析结果可用于判定产品质量 与质谱联用实验观测到明显的水分子离子峰,表明气凝胶中硅羟基缩合生成水 与红外光谱仪联用实验谱图中峰,表明有机化合物气体的逸出。该检测技术已被航天系统采用,并作为气凝胶隔热材料产品的质量控制方法。/ppbr//ppspan style="color: rgb(38, 38, 38) "a href="https://www.instrument.com.cn/news/20181014/472856.shtml" target="_blank" style="white-space: normal "相关资讯:《金秋十月,太湖之滨,群英荟萃,共襄盛举—2018年热分析技术及应用研讨会隆重召开》/a/span/ppa href="https://www.instrument.com.cn/news/20181016/473063.shtml" target="_blank" style="white-space: normal "相关资讯:《戊戌深秋意难忘 己亥季夏再相会——2018年热分析技术及应用研讨会圆满落幕》/a/ppa href="https://www.instrument.com.cn/news/20181019/473349.shtml" target="_blank"相关资讯:《热分析群雄聚首论道——仪器厂商助力热分析研究领域高质量发展》/abr/br//p
  • 热分析群雄聚首论道——仪器厂商助力热分析研究领域高质量发展
    p  strong仪器信息网讯/strong 在近日闭幕的2018年热分析技术及应用研讨会上,有这样一个群体,以他们专业的背景和优质的服务为中国的热学研究增砖添瓦,他们的出席为会议带来了别样的风采,科技事业的发展同样离不开他们的倾力相助,他们就是本届大会上一道亮丽的风景线——仪器厂商。br/ 于本次会议参展的仪器厂商有(以会议手册厂商名录排序)耐驰科学仪器商贸(上海)有限公司、梅特勒-托利多国际贸易(上海)有限公司、TA仪器、北京艾迪佳业技术开发有限公司、毕克气体仪器贸易(上海)有限公司、林赛斯(上海)科学仪器有限公司、热安(上海)仪器仪表有限公司、日立高新技术公司以及西安夏溪电子科技有限公司。其中本次会议的三家一级赞助商(以会议报告顺序排序),span style="color: rgb(38, 38, 38) "梅特勒-托利多国际贸易(上海)有限公司、耐驰科学仪器商贸(上海)有限公司、TA仪器公司/span,分别派出其在热分析领域的资深技术工程师,于三号仪器分会场上,为与会专家学者带来了各自精彩的前沿技术。br//pp style="text-align: center "span style="font-family: 隶书, SimLi font-size: 20px color: rgb(0, 176, 240) "strong华山论剑 谁与争锋 风云际会 翘首以盼/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/cb77a1ac-5a8c-4a23-93f0-8c2cc6e75ff7.jpg" title="范玲婷.jpg" alt="范玲婷.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong梅特勒-托利多国际贸易(上海)有限公司热分析仪器部技术应用主管 范玲婷br//strong/pp style="text-align: center "strong报告题目:《TGA-GC/MS联用技术》/strong/pp  热重分析仪(TGA)是检测样品升温过程中重量的变化,并同时研究其组分或分解温度的热分析仪器。通过热重分析可以对样品的组分、热稳定性、分解动力学进行研究和分析。/pp  实验中有时会需要鉴别一些未知的样品,或者对某种产品分解反应的机理进行研究,包括部分企业会经常碰到的产品实效分析等问题。处理这类问题时,仅依靠热重分析有时难以解决,这是由于热重分析仪是比较简单的对样品含量进行定量分析的仪器,无法提供对样品成分定性分析的信息,例如通过图线中某个失重台阶确定分解产物,或者通过分解产物倒推反应物质。此时可以通过热重与一些定性分析手段的结合,达到对分解产物进行研究的目的。/pp  定性分析的方法较多,例如红外分析仪、直谱仪、气相色谱-质谱联用(GC/MS)等分析手段都是十分常见的。直谱是将样品电离之后击碎成不同的质核子,达到分离和鉴别的作用,灵敏度非常高,但是无法对离子碎片进行分离。红外分析的特点是对测试样品的化学特异性很高,不过相比直谱灵敏度略低,由于分解产物是小分子,红外的检测效果具有一定的局限性,同样没有对分解产物进行分离,分解产物在进入红外分析仪后,同一阶段的分解产物可多达十余种,这对解谱造成一定困难。GC/MS是通过利用色谱柱对气体起到分离的作用,不同极性和分子量的样品在GC中保留时间不同,样品通过色谱柱出口从GC转入MS,再通过MS来进行对分离出的分子产物的鉴别。/pp  GC/MS存在一个问题是分离物在GC中分离和停留时间较长,但热重实验是一个连续分解的过程,即时将样品停留在特定温度同样会持续发生分解。通过直接联用TGA和GC/MS的方法去检测特定温度点的分解产物是不现实的。TGA实验中试样的连续分解和GC/MS较慢的分离速度之间存在矛盾,这也是TGA-GC/MS联用具有局限性的原因。梅特勒-托利多在2014年开发出一套TGA-GC/MS联用系统,其基本原理是:热重的分解产物随着载气从热重出气口转出,进入中间的接口装置(一种将TGA和GC/MS联用起来的设备,称为IST),通过该接口装置,不仅可以实现传输分解产物的目的,还能对分解产物进行储存。由于GC的分离速度非常慢,故可将热重分解的产物先储存在IST中,待所需分解产物储存好后,再将分解产物注入GC/MS中进行测试。这样的过程可实现将TGA不同温度下的分解产物分别用GC进行分离,从而达到鉴别和分析的目的。/pp  接口装置IST 16的贮箱结构中,包含两个六通阀和一个十六位的存储槽,在其上部分别设有两条加热传输管线,通过管线可从TGA的出气口,连接到IST,再从IST连接到GC的进样口。贮箱和管线的设定温度最高可达300℃,对于绝大多数气体分解产物,均可实现在测试过程中不出现冷凝的目的。测试有两种模式:一种是存储模式,将不同分解产物分别存储起来,待收集完成后再逐一注入到GC/MS中进行测试 另一种是连续进样模式,多重注射或连续进样模式,适用于小分子的检测,可设定每分钟向GC进一次样。/pp  TGA-GC/MS联用的基本测试流程是:首先进行单独的热重实验,以确定感兴趣的温度点及对应时间,并在IST软件中进行设置 之后再进行联用测试,首先TGA实验开始运行,并向IST接口传输信号同时IST开始计时,达到设定时间点后会打开存储槽收集阀门并开始储气,每个槽的储存容量为250μL,待五个存储槽全部收集满待测气体后,IST会由存储模式切换为注射模式,将样品按照设定程序依次注入GC/MS中进行测试。GC每个循环分离程序结束后,会向IST反馈实验完成的信号,IST再向GC注入下一帧样品。通过这样的模式,可在TGA实验结束后,通过IST对GC的间断性气体注入控制,进行无人状态下长时间的自动测试并获取数据。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/1f07a96a-1760-4396-92fd-1b2c3aa0d95e.jpg" title="王荣.jpg" alt="王荣.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strong耐驰科学仪器商贸(上海)有限公司应用实验室应用支持经理 王荣br//strong/pp style="text-align: center "strong报告题目:《模型动力学反应研究与工艺优化的有力工具》/strong/pp  科学的发展进程中,会从苹果坠落、闪电等常见的自然现象中,寻找一定的规律,再使用一定的方程来表征,通过现象发现规律,再整合规律改变生活。/pp  模型方法对化学反应的动力学研究具有积极的意义。使用方程推导实验数据的分析研究方式,会消耗研究者大量的时间与精力。而将数学方程导入计算机软件并建立模型,会使计算过程方便许多。/pp  进行反应动力学的研究,需要通过不同温度梯度、不同升温速率条件下得到的测试曲线,从中发现反应规律并对反应进行分析,再建立动力学模型方程并对反应进行预测,或结合模型对现有工艺作出改进。/pp  动力学研究的是反应速率与温度或反应转化率的关系,并使用阿仑尼乌斯方程[dα/dt=f(α)*k(T)=f(α)*A*e-Ea/RT]进行表征。dα/dt表示反应转化率,f(α)是与转化率相关的机理函数,以及与温度相关的速率常数k(T),A为指前因子,Ea为活化能。对于特定反应而言,A与Ea为定值,k仅与温度相关,仅需确定机理函数后即可表征反应的速率和进程。/pp  单步反应中,确定出该反应的动力学三因子(活化能、指前因子和机理函数),方程就可被表征出来。多步反应中,则需要单独确定每步反应的动力学三因子,表征出每一步反应随温度的转化关系,再整合所有步骤,即可得出整个反应的进程。/pp  动力学分析分为无模型动力学与模型动力学两大类。应用的领域包括:树脂固化、塑料结晶、陶瓷烧结、化学反应等过程的动力学研究。/pp  无模型动力学又可细分为单点法无模型动力学与等转化率法无模型动力学。单点法无模型动力学,主要依据转化率或反应速率随温度或时间的变化,来得到某单一反应的Ea、A数据 等转化率法无模型动力学,主要基于等转化率条件下的对应升温速率或对应温度图谱,得到Ea与A随转化率的变化关系信息,是研究中应用较多的方法。/pp  无模型动力学研究中,通常假定f(α)为简单的一级反应。模型动力学分析,则会关注Ea、A,以及f(α)三项因素,而无模型动力学目前不能全面考虑f(α)的影响。反应的f(α)须通过不同的反应类型确定,通常可分为化工、合成等方面的液相反应,固体反应,以及液固反应。不同类型反应的f(α)不同。分解反应通常包含多个步骤,两步反应是其中比较简单的情形,两步反应之间存在连串、平行、竞争三种关系。对于更多步的反应,也可将其分解为类似的关系,如连串与竞争、或者平行与竞争的组合。应针对独立的每一步反应找出动力学三因子,再分别表征每一步反应转化率与温度间的关系,最后通过整合各部分来表征整体反应。模型动力学分析很重要的一项功能是进行反应预测,依靠模型动力学分析的结果,可通过软件直接作出预测。/pp  对于一步反应可直接通过无模型动力学分析得出反应速率方程 对于比较简单的两步反应,如平行反应或连串反应,可利用等转化率法无模型动力学分析得出反应速率方程 对于比较复杂的反应,如吸热同放热重叠的反应、存在竞争路径的反应、增重与失重重叠的反应,无模型动力学无法做出比较准确的分析,应选用模型动力学方法。因此通常将无模型动力学的结果作为参考和基础参数,去进行模型动力学分析,可对反应进行更为准确的表征。模型的建立大大方便了之后的科研工作,减少了试探性实验的工作量,通过模型寻找感兴趣或比较好的实验条件,再有针对性的去进行实际验证。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/62afa6e6-87b3-48a2-b101-a035b207ef5a.jpg" title="林超颖.jpg" alt="林超颖.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//pp style="text-align: center "strongTA仪器公司热分析产品线应用支持工程师 林超颖br//strong/pp style="text-align: center "strong报告题目:《高级热分析技术及解决方案》/strong/pp  目前TA仪器旗下有热分析、流变、微量热和热物性产品线。近年来Rubotherm吸附产品的加入,使得TA仪器的吸附设备既能实现水蒸气或有机蒸汽的吸附,也可实现常压或高压的测试,大大丰富了TA仪器的热分析产品线。/pp  TA仪器在此次热分析会议上介绍了几项特色技术,可为科研工作提供更多帮助。第一项是调制技术,即在线性升温的基础上叠加了一个振荡升温的程序,此时温度程序以振荡上升的形式进行升温或降温。调制程序与不同的仪器搭配,形成了MDSC、MTMA、以及MTGA三项技术。调制DSC技术最为常用,该技术可将与比热容变化相关的可逆热流和与动力学因素相关的不可逆热流区分,探测可逆热流曲线中可能存在的转变。与MDSC类似,MTMA技术也能从复杂结果中有效分离玻璃化转变。MTGA技术,振荡升温程序赋予了分解过程中变化的升温速率,可获得分解反应的活化能曲线(活化能为化学反应所需的最低能量)。此外,基于活化能数据和特定的模型,还可获得热老化寿命。/pp  在TGA中,TA仪器还提供了三种高分辨技术,恒定反应速率法、动态速率法、自动步阶等温法。这三种方法均可根据实验中样品的分解速率来调控加热速率,实现几个重叠反应的分离,在共混或复合体系的成分解析中极其有用。/pp  热机械分析技术,是一项通过量测样品的膨胀性能、模量或损耗因子等的变化,进而得到转变温度的技术。与DSC相比,其分辨率和灵敏度相对更高。/pp  TA仪器的热机械分析仪产品,有1N的TMA Q400,18N的Discovery DMA 850,35N的RSA G2,22N~15kN的ELECTROFORCE® 系列,以及20kN的805系统。新推出的Discovery DMA 850,其力控制和位移控制较前一代的Q800而言更为优异,瞬态实验的响应时间也更为快速。此外,还引入了多项新功能,如Direct Strain直接应变、Auto-Ranging自动范围设定等。针对用户操作界面,TA仪器也进行了改进,新增了专为初学者的Express快捷模式,以及针对资深用户的Unlimited高级模式。高级模式的引入,可为用户提供不同模式的自由组合,如瞬态模式和振荡模式可在一个实验中同时实现。/pp style="text-align: center "br/span style="font-family: 隶书, SimLi font-size: 20px "strongspan style="font-family: 隶书, SimLi color: rgb(0, 176, 240) "厂商风采/span/strong/span/pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH100162/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/1dbc8e4d-ed8d-4fe2-b382-4f2a64a15457.jpg" title="耐驰.jpg" alt="耐驰.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong耐驰科学仪器商贸(上海)有限公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH100270/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/8f40c6e4-91b0-495b-9f7f-b9c5f5a66ede.jpg" title="梅特勒-托利多.jpg" alt="梅特勒-托利多.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong梅特勒-托利多国际贸易(上海)有限公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH100670/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/edd2cea8-9973-4923-9b64-55641826e000.jpg" title="TA仪器.jpg" alt="TA仪器.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strongTA仪器公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH102537/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/5fc07c1d-3a7a-4282-857c-87eb9ed3ac11.jpg" title="艾迪佳业.jpg" alt="艾迪佳业.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong北京艾迪佳业技术开发有限公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH102240/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/c75f0fe7-d187-4148-a4c6-6b40ceddb2ae.jpg" title="毕克.jpg" alt="毕克.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong毕克气体仪器贸易(上海)有限公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH100688/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/473f6dcf-b59a-44a1-beef-78ddb85b5aa8.jpg" title="林赛斯.jpg" alt="林赛斯.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong林赛斯(上海)科学仪器有限公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH103909/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/916cde69-723d-43a1-a7cd-4ef12e1ecca6.jpg" title="热安.jpg" alt="热安.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong热安(上海)仪器仪表有限公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH102446/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/7571137c-6930-498d-887c-b87058975670.jpg" title="日立高新.jpg" alt="日立高新.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong日立高新技术公司/strongbr//pp style="text-align:center"a href="https://www.instrument.com.cn/netshow/SH102932/" target="_blank"img src="https://img1.17img.cn/17img/images/201810/uepic/6cc70ce8-592a-4332-8678-c256249f9eb0.jpg" title="夏溪.jpg" alt="夏溪.jpg" width="400" height="267" border="0" vspace="0" style="width: 400px height: 267px "//a/pp style="text-align: center "strong西安夏溪电子科技有限公司/strongbr//pp  span style="font-family: 隶书, SimLi color: rgb(31, 73, 125) "热分析仪器厂商济济一堂,你来我往,不禁让人憧憬起来年会展将碰撞出怎样灿烂的火花?是否会有更多的优质企业磨砻淬砺、纷至沓来?还让我们拭目以待!/span/ppbr/a href="https://www.instrument.com.cn/news/20181014/472856.shtml" target="_blank"相关资讯:《金秋十月,太湖之滨,群英荟萃,共襄盛举—2018年热分析技术及应用研讨会隆重召开》/abr/a href="https://www.instrument.com.cn/news/20181016/473063.shtml" target="_blank"相关资讯:《戊戌深秋意难忘 己亥季夏再相会——2018年热分析技术及应用研讨会圆满落幕》/abr/a href="https://www.instrument.com.cn/news/20181018/473218.shtml" target="_blank"相关资讯:《三会场交相辉映,热分析大放异彩——2018年热分析技术及应用研讨会分会报告摘录》/abr/br//p
  • 梅特勒托利多2010热分析技术研讨会–上海站
    瑞士梅特勒托利多是世界上热分析仪器的主要制造商之一,她所制造的差示扫描量热仪DSC、同步热分析仪TGA/DSC、热机械分析仪TMA和动态热机械分析仪DMA,都是世界上灵敏度最高的热分析仪器。  -- 1964年发明和制造了世界上第一台商用TGA/SDTA联用仪  -- 1968年推出了世界上第一台热重-质谱联用仪  -- 2001年推出了具有行业新标准意义的动态热机械分析仪DMA/SDTA861e  -- 2005年上市的专利多频温度调制DSC(TOPEM TMDSC),创造性发展了DSC温度调制技术  -- 2006年DSC传感器HSS7获得了美国R&D100大奖,被确认为世界上灵敏度最高的DSC传感器  -- 2007年推出的热分析超越系列,是一次新的技术革新飞跃。特别是同步热分析仪TGA/DSC,选配6对热电偶的DSC传感器,信噪比无可匹敌  -- 2009年陆续推出了全新一代高压DSC、全自动同步视频可视熔点仪等产品  我们盛情邀请您光临即将举办的热分析技术研讨会。相信我们的热分析技术能为您提供完美的解决方案!点击此处报名参加   日程安排  2010年4月29日  8:30 &ndash 9:00 报到  9:00&ndash 16:30 技术交流  地点:上海市桂平路589号梅特勒托利多公司一楼会议室  上海市桂平路589号(宜山路桂平路路口),可乘坐地铁9号线(漕河泾开发区站)、公交152、804、809、927路等。  内容简介  1、梅特勒热分析技术的最新发展简介:  a. 最新推出的HPDSC、DSC-显微镜联用技术  b. 灵敏度空前的DSC:独一无二的DSC传感器技术  c. 同步热分析TGA/DSC技术:TGA/DSC1传感器的重要突破  2、无可匹敌的DMA技术介绍、DMA测试技巧与实验分析  3、热分析技术在聚合物研究中的应用  4、新产品介绍:自动测定与视频同步的毛细管熔点仪MP超越系列  5、参观实验室,问题解答和交流  免费提供讲义和午餐及礼品。名额有限,敬请提前预约。  本活动最终解释权归梅特勒托利多所有  报名参加  姓名:__________________________ 职务/职称:___________________________________  公司:__________________________ 部门:___________________________________  地址:__________________________ 邮编:___________________________________  电话:______________ 手机:__________________ E-mail:_________________________  如有任何问题或建议,请在下面留言:  ____________________________________________________________________________  ____________________________________________________________________________
  • 2022年热分析仪新品年中回顾:国产新品节节高
    据调研机构数据,2021年全球热分析仪器市场规模为4.8343亿美元,且市场规模在2021-2028年间以4.6%的年复合增长率增长,全球热分析仪器市场规模预计将于2028年达到约6.6434亿美元。近年来,各大热分析厂商纷纷在新品研发上加大了投入,仅2021年就上市了3台进口新品和11台国产新品,其中包括进口热分析仪厂商日本日立分析和法国凯璞科技-塞塔拉姆;国产厂商则包括天美、绵阳菲纳理、上海众路、南京汇诚、上海和晟、杭州仰仪、厦门海恩迈。纵观国内热分析新品上市情况,近两年,国产热分析仪新品上市数量出现明显多于进口产品的趋势。2022年全球热分析仪器市场规模约为5.0567亿美元,2022年上半年国内仅上市1款新品(据不完全统计),上市热分析新品为北京恒久的差示扫描量热仪HSC-4。2021年热分析上市新品回顾厂商名称2021年上市新品(点击查看详情)日立分析日立分析差示扫描量热仪DSC600&DSC200(上市时间:2021年1月)法国凯璞科技-塞塔拉姆法国塞塔拉姆 热重分析仪Setline TGA(上市时间:2021年10月)天美(原精科/上平)天美(原精科/上平)智能差示扫描量热仪 DSC30(上市时间:2021年7月)绵阳菲纳理绵阳菲纳理Calvet式3D微量热仪 UT310上海众路上海众路差示扫描量热仪(10.1寸工控机操作)DSC-500DS(上市时间:2021年6月)上海众路热重分析仪TGA1150A/1450A(上市时间:2021年5月)南京汇诚南京汇诚导热系数测试仪(高导专用)HCDR-SP(上市时间:2021年11月)上海和晟上海和晟热重分析仪HS-TGA-101(上市时间:2021年5月)上海和晟差示扫描量热仪HS-DSC-101(2021年4月)上海和晟差示扫描量热仪(半导体制冷)HS-DSC-101A(上市时间:2021年4月)杭州仰仪杭州仰仪电池等温量热BIC-400A(上市时间:2021年6月)厦门海恩迈厦门海恩迈芯片式热重分析仪以上热分析新品介绍可参见:《2021年热分析厂商仪器新品盘点:3台进口,11台国产》北京恒久2022年上市新品介绍: 北京恒久差示扫描量热仪HSC-4(上市时间:2022年1月)北京恒久实验设备有限公司始建于2000年,是一家以生产销售热分析仪器(差热分析仪、综合热分析仪、同步热分析仪、微机差热天平、微机差热仪、热重分析仪、微机热天平、差示扫描量热仪、氧化诱导期分析仪、微机卧式膨胀分析仪、高温高压热天平、大剂量热天平)(物化类仪器、催化剂评价装置、固定床评价装置)为主导,定制各种高压耐腐蚀类化工设备、流化床设备、实验室物化设备为一体的综合性高科技生产厂家。仪器新品创新点:外接光固化控制系统,可实现对单体、多体溶液在一定强度光线照射下快速完成固化的曲线测量。光源使用温度范围-100°C-200°C ,光源波长范围(315-500 nm),可以方便地通过控制软件进行设置触发。仪器新品介绍:1.热流式差示扫描量热仪重复性好、准确度高 ,特别适合于比热的精确测量。2.自主研发的气相色谱、质谱连接头、恒温带、恒温控制器,可充分保证焦油及各种反应气体的二次检测。3.完善的两路气氛控制系统,采用质量流量控制器;测量过程中,可以选择二路进气方式,软件设置自动切换。4.仪器配有标准物质,用户可自行进行各温度段的校正,减少仪器的误差。全程自动绘图,软件可实现各种数据处理,如热焓的计算、玻璃化转变温度、氧化诱导期、物质的熔点及结晶等等。5.大屏幕液晶显示,实时显示仪器的状态和数据,两套测温电偶,一套显示工作时样品温度,另一套电偶实时显示炉温。热分析仪器主要厂商简介:差示扫描量热仪(DSC/DTA):塞塔拉姆、北京恒久、众路、汇诚仪器、梅特勒托利多、大展、和晟、耐驰、TA 仪器、日立、林赛斯、珀金埃尔默、贝讴仪器、马尔文帕纳科、京仪高科、久滨仪器、理学、岛津、佳航仪器、依阳、柯锐欧、盈诺、天美、正瑞泰邦、德国林赛斯。热重分析仪/热天平(TGA):耐驰、塞塔拉姆、北京恒久、梅特勒托利多、德国林赛斯、众路、大展、京仪高科、汇诚仪器、TA 仪器、和晟、盈诺、珀金埃尔默、久滨仪器、力可、迈可威、佳航仪器、埃尔特、天美。同步热分析仪(STA):耐驰、日立分析仪器、塞塔拉姆、理学、众路、汇诚仪器、日立、京仪高科、和晟、珀金埃尔默、德国林赛斯、新科、久滨仪器、梅特勒托利多、TA 仪器、北京恒久、佳航仪器、盈诺、大展、贝讴仪器动态热机械分析仪(DMA/TMA/DMTA):耐驰、IMCE、日立、梅特勒托利多、麦特韦伯、TA 仪器、塞塔拉姆、珀金埃尔默、岛津、日立分析仪器、安东帕、林赛斯、德国林赛斯热膨胀仪:TA 仪器、德国林赛斯、柯锐欧、耐驰、依阳、京仪高科、Orton、北京恒久、林赛斯热分析联用仪:珀金埃尔默、耐驰、理学、北京恒久导热仪、热导仪:TA 仪器、耐驰、夏溪电子、林赛斯、Hot Disk、依阳、德国林赛斯、汇诚仪器、和晟、柯锐欧、大展、众路、京都电子、SEO、蓝姆达熔点仪:仪电物光、卓光、佳航仪器、海能、盈诺、本昂仪器、步琦、Standford、梅特勒托利多、天光、楚柏、SRS、Stuart、精拓仪器量热仪:菲纳理、赫伊尔、仰仪科技、三德、金铠仪器、马尔文帕纳科、耐驰、PARR、梅特勒托利多、民生星、DDS、塞塔拉姆
  • 起底各大进口厂商热分析仪产品家族:或出身“豪门”,或归属“新贵”(上篇)
    热分析是材料研究中最常用的表征手段之一,通常是指在程序控温和一定气氛下,测量物质物理性质随温度或时间变化关系的一类仪器。本文将介绍各大进口热分析仪厂商产品家族,带领大家了解知名进口热分析厂商产品家族及其代表产品。德国耐驰 NETZSCH 公司介绍:德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。 在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。 耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。 耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃-2000℃,导热率范围为0.005-1500W/(m*k)。 作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。 耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。 耐驰产品家族: 其它燃烧测定锥形量热仪氧指数测定仪火焰蔓延性能测定仪烟密度箱/烟密度测试箱阻燃性能测定仪燃烧试验箱流变仪其它热分析仪同步热分析仪(STA)热分析联用仪热膨胀仪动态热机械分析仪(DMA/TMA/DMTA)导热仪、热导仪差示扫描量热仪(DSC/DTA)热重分析仪/热天平(TGA)量热仪代表仪器:耐驰 STA449F3 同步热分析仪(第十四届中国科学仪器发展年会获年度最受用户青睐仪器奖)仪器介绍:STA449F3同步热分析仪系统将DSC和TGA结合,可以在完全相同的测试条件下,研究样品的热量变化和质量变化。由于配备多种不同温度范围的加热炉,耐驰同步热分析仪的应用领域涵盖绝大多数材料,包括塑料、橡胶、合成树脂、纤维、涂料、油脂、陶瓷、玻璃、水泥、耐火材料、金属及合金、燃料、炸药、医药、食品等。STA449F3包含了高性能的TG与DSC测试系统。其天平系统具有漂移小、范围广等特点。该系统可配备不同量程的天平,并可在全量程范围内实现高灵敏度;配备不同的炉体,STA449F3的温度范围可达-150°C … 2400°C;通过真空系统和流量控制系统,用户可以进行任意气氛控制下的测试;双炉体提升装置和自动进样器(ASC)对于高性能的热分析仪器是非常有利的,可以大大改善样品的处理量,从而提高测试的效率;在宽广温度范围内,各种TG-DSC传感器可以提供真正的DSC测试。TG、TG-DTA传感器则可满足特殊要求下的测试;坚固耐用的硬件、界面友好的软件、灵活多样的设计配以丰富的选项使得STA449F3成为您实验室中质量控制和材料研究的理想工具;STA449F3可以与QMS或者FTIR联用,亦可同时与二者联用。即使配以自动进样器,所有测试也可同步进行。美国TA仪器 TA Instruments公司介绍:TA仪器的历史见证了为满足客户对高技术产品、高质量的生产和强大售后服务能力需求的不断努力,也正是高品质的产品、高时效的交货、优异的客户培训和强大的售后服务支持,为TA赢得了全球热分析、流变和微量热技术的全球地位。领先意味着持续的创新。TA最近推出了一系列革新性产品,扩大了硬件设施和支持队伍。全新的公司标志强调了TA面向全球的战略,也将落实到公司的每一个角落和产品的每一个细节。公司在美国New Castle DE的总部扩大了40%,以迎接对新产品持续增长的需求。另外还扩大了在美国、欧洲、澳大利亚、中国、日本、印度、巴西和韩国的办事机构,并在其它国家组建了强大的分销网络。 创新深深根植于TA的设计人员心中,从而使其在热分析和流变仪拥有众多领先的技术。TA所有的产品都产自美国New Castle和英国Leatherhead的生产基地,并拥有ISO 9002质量体系认证证书。 TA仪器公司特别专注于客户的需要,其培训和应用支持队伍多年来被第三方评估机构评价为最好的售后服务。TA引以为荣并以此为激励,专注于客户的每一项需求,并以最节约和最有效的方式去满足。所以,TA作为全球热分析和流变仪的领先供应商,才能得到广大用户的真正认可。 TA仪器产品家族:硬度计密度计橡胶加工分析仪硫化分析仪、硫化仪其它表面测试高压吸附仪化学吸附仪、高压化学吸附仪蒸汽吸附仪/蒸气吸附仪流变仪同步热分析仪(STA)热分析联用仪热膨胀仪动态热机械分析仪(DMA/TMA/DMTA)导热仪、热导仪差示扫描量热仪(DSC/DTA)热重分析仪/热天平(TGA)代表产品:差示扫描量热仪Discovery X3 DSC产品简介:TA仪器Discovery X3采用多样品炉体,可以同时提供多达三个样品的高质量热流数据。Discovery X3 DSC将行业领先的性能与工具相结合,以提高材料研究各个层面的生产率。融合量热单元FusionCell™ 采用专利技术,在基线平直度、灵敏度、分辨率和重现性方面具备无与伦比的性能。其卓越的技术支持检测最微弱的热转换,提供最精确的热焓和比热容测量结果;X3 的增强型 Tzero 热流技术可同时保障三个样品的温度和热焓准确度不受影响;具有三个样品量热仪的高端性能提供了无与伦比的灵活性,从用于统计分析的重复测试到对照样品的验证/确认,均可确保最高确定性;Modulated DSC™ (MDSC™ )可实现复杂热现象的有效分离;One-Touch-Away™ 用户界面有效提升了易用性和对仪器数据的访问;稳定可靠的54位线性自动进样器,可通过编程设定托盘位置,实现全天候无忧运行,实验的编程控制具有极高的灵活性,提供自动化校准和验证例程;宽温度范围的机械制冷附件选项,消除了液氮的消耗,确保在扩展自动进样器实验过程中实现不间断的低温运行;Tzero 压样器和样品盘,实现快速、简单和可重复的样品制备;功能强大的软件,包含仪器控制、数据分析和生成报告的组合软件包提供卓越的用户体验。自动校准程序和实时测试方法编辑等功能提供了优异的灵活性,一键分析和自定义报告则将生产率提升到新的水平;量热单元和加热炉享有的五年质保,为产品保驾护航,恪守质量承诺。瑞士梅特勒-托利多 METTLER TOLEDO 公司简介:梅特勒-托利多是历史悠久的精密仪器及衡器制造商与服务提供商,产品应用于实验室、制造商和零售服务业。梅特勒-托利多提供贯穿客户价值链的称重、分析和产品检测解决方案,帮助客户简化流程、提高生产率、确保产品符合法律法规要求以及优化成本。梅特勒-托利多在全球范围内拥有40家分公司和销售机构,并在瑞士、德国、美国和中国等国家拥有生产基地。梅特勒-托利多在中国的上海、常州和成都都设有运营中心、制造基地及研发中心,并拥有遍布全国的销售及服务网络。梅特勒-托利多产品家族:实验室——天平实验室——pH/电导/溶氧/离子实验室——电位滴定仪实验室——密度计/折光仪/熔点仪实验室——自动化化学仪器实验室——快速水份测定仪实验室——卡尔费休水分仪实验室——紫外可见分光光度计实验室——热分析系列(TGA/DSC/DMA/TMA)实验室——移液器与吸头工业称重——汽车衡和灌装秤工业称重——台秤/平台秤/吊钩秤工业称重——仪表显示器工业称重——传感器与模块生产过程——产品检测设备生产过程——气体/液体在线检测食品零售——条码秤/收银秤/计价秤代表仪器:梅特勒-托利多 Flash DSC 2+产品介绍:Flash DSC 2+ 为快速扫描 DSC 带来了不小的变化, 该仪器可对以前无法测试的结构重组过程进行分析。 Flash DSC 2+ 是对传统 DSC 的完美补充。 现在,升温和降温速率范围已覆盖超过 7 个数量级。它是研究 –95 °C到 1000 °C 温度范围内快速结晶和重组过程的完美选择。 它的升温与降温速率高,为研究热致物理转变和化学过程(如聚合物、金属和其他材料的结晶与结构重组)提供全新的视角。美国珀金埃尔默 PerkinElmer公司介绍:PerkinElmer股份有限公司是一家全球性的业界著名技术领先公司,其业务集中在三个领域——生命科学、光电子学和分析仪器。PerkinElmer是分析仪器行业无可争议的技术领先和主导者之一。珀金理查德和埃尔默查理斯于1937年4月19日创立PerkinElmer公司,1944年,PerkinElmer公司进入分析仪器的全新领域,并成功推出世界上第一台商用红外分光光度计-12型。这项新技术就是现代化学分析手段的鼻祖。并使PerkinElmer公司占据了世界化学分析仪器供应商的领先地位。1955年5月,在英国人A.J.马丁研究开发的技术基础上,PerkinElmer公司推出世界上第一台商用气相色谱仪-154型。1957年匹兹堡会议上,公司又推出世界首台双光束红外光谱仪137型,新产品的推出标志着以低成本进行红外分析的开端,对当时分析仪器行业具有极为重大的意义。50年代后期和60年代,公司先后研究开发出先进的气相色谱技术和原子吸收分析技术。在这一时期,PerkinElmer公司以其创制出的第一台原子吸收分析仪-AA303型占据了世界分析仪器行业领先地位。1972年,公司进入液相色谱市场,成功推出最早的带梯度泵的液相色谱仪-1220型。1975年,公司将微机技术引入460型原子吸收光谱仪,使原子吸收分析的进行更轻松更有效。自80年代起,PerkinElmer公司开始涉足电感耦合等离子体光谱仪(ICP)和电感耦合等离子体质谱仪(ICP-MS)领域,发展至今已成功地在这一领域占据世界领先地位。领先的技术,精湛的工艺,全面的客户服务,让PerkinElmer成为分析仪器界新技术和完善产品的代名词,并赢得了分析仪器客户的衷心信赖和支持,成为在原子光谱(原子吸收、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪)、分子光谱(傅里叶变换红外/近红外、紫外/可见近红外光谱仪、荧光、旋光)、气相色谱和气相色谱-质谱联用仪、液相色谱仪以及热分析系统(差热分析、热重、动态/静态热机械分析仪、同步热分析仪)等化学分析仪器领域最著名的供应商之一。随着PerkinElmer在中国业务的迅速增长,PerkinElmer总部加大了对中国的投资力度。2006年2月PerkinElmer在上海张江高科技园区正式成立了中国技术中心。新的技术中心大楼集中了公司的销售、物流、维修、技术支持、客户服务等各个部门。同时还将进一步发展成为全球物流和研发的基地。在技术中心里建立了亚太区最大的示范实验室,并且专门投资装备了将服务于全球半导体行业分析应用的1000级超净实验室。在示范实验室里可以看到PerkinElmer公司生命科学与化学分析仪器几乎所有最新型号的仪器,每个月都会举办多期用户培训班,并为客户提供方法开发、优化等多项增值服务。中国技术中心的建成将成为珀金埃尔默公司提高对整个中国地区,乃至整个亚太区域的客户的服务水平打下坚实的基础。珀金埃尔默产品家族:核酸纯化系统/核酸提取仪微波消解热分析联用仪液质联用(LC-MS)气相色谱(GC)液相色谱(LC)顶空进样器热解析仪、热解吸仪红外光谱(IR、傅立叶)紫外、紫外分光光度计、紫外可见分光光度计、UV原子吸收光谱(AAS)ICP-AES/ICP-OES荧光分光光度计(分子荧光)气质联用(GC-MS)红外显微镜等离子体质谱(ICP-MS)热重分析仪/热天平(TGA)差示扫描量热仪(DSC/DTA)同步热分析仪动态热机械分析仪(DMA/TMA/DMTA)有机元素分析仪酶标仪实验室信息管理系统(LIMS)实验室搬迁活体成像系统液体闪烁谱仪(液闪仪)细胞分析(细胞成像、流式细胞、能量代谢)生化耗材高内涵细胞成像分析系统常用生化试剂消耗品/配件近红外光谱(NIR)代表仪器:热重红外气相色谱质谱联用TG-IR-GC/MS仪器简介: 实验室经常需要分析未知混合物确定其主要成分、鉴别其中的添加剂或污染物种类以及含量等信息。这些信息在某些应用场合是至关重要的,例如,剖析竞争对手产品配方或者评价产品的指标是否遵循行业规范等等。光谱分析技术在研究预分离纯组分的样品方面已经建立了大量较为成熟的方法,分离和离析过程可以借助热重分析仪、傅立叶变换红外光谱仪和气相色谱仪等完成。而对于复杂混合物样品体系,将这些常规技术进行联用则是更为有效的检测分析手段。珀金埃尔默公司可提供全套成熟的联用解决方案,在本案例中,通过使用TL-9000型传输管线有效的将热重-红外-气相色谱/质谱分析仪器进行联用,可用于分析复杂样品体系。在热重分析仪的热分离过程中,样品所释放的气体被实时输送到傅立叶变换红外光谱仪中进行红外数据采集。热重-红外数据包含了每间隔约8秒采集一次所得到的一系列的谱图。标准的红外数据显示格式为吸收率对波数曲线,样品逸出气体的红外光谱图采集密度大约为每升温2度采集一组谱图。热重-红外联用的Time-Base软件还可以辅助绘制三维坐标图谱,可同时显示叠加的红外曲线随时间或者温度以及波数的关系,用户可以非常直观的了解样品在整个温度平台中的热重-红外数据变化情况,这有助于阐述样品分解过程的动力学,确定选取哪个温度区间展开精细分析。此外,分析人员还可以查看任何特定波长对应的吸收与时间的谱图,以跟踪所关心的分解产物浓度对时间,乃至温度的关系。将多套分离分析仪器联机进行测试的“联用技术”,如热重-红外和热重-气相色谱-质谱联用技术,配合强大的搜索软件以及完善的谱图数据库,赋予分析人员能够对未知水性混合物进行有效全面的分析,其中添加的各种组分得以鉴别。日本日立分析仪器(上海)有限公司 HITACHI公司介绍:日立分析仪器专注于高科技分析解决方案,帮助数以千计的企业降低成本,降低风险,提高生产效率。日立分析仪器实验室级和强大高性能现场检测设备如光电直读光谱仪、X射线荧光光谱(XRF)、X荧光测厚仪(镀层测厚仪)、激光诱导击穿光谱仪(LIBS)、油品分析仪、土壤分析仪等为客户提供材料和涂镀层分析,在整个生产周期中增加价值,包括从原材料勘探到来料检验、生产和质量控制到再循环。日立分析产品家族:X射线荧光测厚仪X荧光光谱、XRF(波长色散型X荧光光谱仪)X荧光光谱、XRF(能量色散型X荧光光谱仪)同步热分析仪(STA)动态热机械分析仪(DMA/TMA/DMTA)差示扫描量热仪(DSC/DTA)气质联用(GC-MS)光电直读光谱仪激光诱导击穿光谱仪(LIBS)日立New STA系列TG-DSC热分析仪(上市时间:2020年3月)仪器介绍:New STA系列新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10µg以下。此外,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升。法国凯璞科技集团旗下塞塔拉姆仪器 KEP Technologies-SETARAM公司介绍:SETARAM公司全球顶级热分析及量热仪的制造商,公司位于热分析和量热仪技术的发源地-法国。在高温和超高温热分析领域以其独特的光电天平技术和模块化设计一直处于行业领先地位。以C80,SENSYS为代表的卡尔维微量热仪和高压DSC产品更是行业内的标准,特别是高压DSC技术稳定性和灵敏度无与伦比。2008年,新EVO 系列仪器诞生,其中LABSYS EVO综合热分析仪技术指标逼近SETSYS,性能及灵活性超过其他同类进口产品。同年收购美国HY能源技术公司,全面进军储氢领域。在四十多年的发展过程中,塞塔拉姆公司不断研发生产客户定制的分析仪器,保证客户应用的最大利益,其产品在高温,如航空航天、核工业、陶瓷、冶金、食品等领域,生命科学和制药研究方面,过程安全如预测逃生时间,能源开发利用如燃气水合物和钻井泥浆的应用上一直处于世界最领先的地位。除了品种齐全的标准仪器之外 (DTA, DSC, TGA, simultaneous TGA-DTA/DSC, TGA-EGA coupling, TMA, TSC, calorimeter),塞塔拉姆公司还不断推出为客户量身定制的分析仪器.法国塞塔拉姆仪器公司目前在中国有上海/北京/广州三个办事处,有专职的技术人员和售后工程师为广大客户服务。KEP Technologies产品家族:热重分析仪/热天平(TGA)同步热分析仪差示扫描量热仪(DSC/DTA)量热仪热分析联用仪物理/化学吸附仪动态热机械分析仪(DMA/TMA/DMTA)其它热分析仪代表仪器:C80 微量热仪仪器简介:C80微量热仪是法国塞塔拉姆(Setaram)公司研发,享誉业界的经典微量热仪。借助卡尔维(CALVET) 量热原理的三维传感器(3D-sensor),全方位探测样品热效应。全面突破普通平板DSC量热效率低、样品量小且形态单一、无法原位混合等技术瓶颈,完全真实反映样品的物理化学性质,并提供无与伦比的测试精度。C80集等温与扫描功能于一身,配备多种样品池,具有混合、搅拌、定量加样等功能。另外C80拥有超大样品量(可达12.5ml)的反应釜,并可实时监控压力最 大为 1000bar。特别适用于催化反应、水泥水化、润湿和吸附反应、CO2捕获与封存、储氢材料、过程安全的评价及火炸药、推进剂等含能材料的研究。基于卓越的性能和可靠的表现,C80以用户最多,应用面广和工作方式灵活等赢得全球广大用户的信任与依赖。德国林赛斯 LINSEIS公司介绍:自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。林赛斯公司以高标准、高精度和严要求来研发热分析仪器。针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。产品家族:热膨胀仪差示扫描量热仪差热分析仪热机械分析仪热重分析仪同步热分析仪热扩散/导热系数测定仪赛贝克系数/热电阻测定仪薄膜导热测试仪霍尔效应测量系统其他热分析仪代表仪器:德国LINSESI 差示扫描量热仪Chip-DSC-10仪器简介:全芯片DSC传感器将DSC、炉体、传感器和电子器件的所有基本部件集成在一个小型化的外壳中。芯片布置包括加热器和温度传感器,其在具有金属加热器和温度传感器的化学惰性陶瓷装置中;这种布置允许更高的再现性,并且由于低质量的出色的温度控制和加热速率高达300C/min。集成传感器易于用户可交换并且可用于低成本;芯片传感器的集成设计提供了优良的原始数据,这使得能够在没有热流数据的预处理或后处理的情况下进行直接分析;紧凑的结构,大大降低了生产成本。低能耗和优越的的动态响应导致了变革性的DSC概念的优越的性能。 更多进口热分析仪器厂商盘点,敬请期待。
  • 【报名倒计时】第六届热分析与联用技术网络会议 年度盛宴不容错过
    p  热分析技术是在程序温度控制下研究材料的各种转变和反应,广泛应用于能源、环境、药物、材料等多个热门领域的研究和应用。热分析技术对于诸多行业、各类物质的研究工作至关重要,仪器信息网特此邀请13位热分析领域的专家,于2020年9月15-16日举办第六届“热分析与联用技术”网络研讨会,为广大研究人员介绍热分析及联用技术最新应用和前沿动态。/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/thermalanalysis2020/" target="_self"img style="max-width: 100% max-height: 100% width: 600px height: 1834px " src="https://img1.17img.cn/17img/images/202009/uepic/46ca1291-3250-4c0d-ae0e-7a10a61e5b10.jpg" title="任务标题---第六届热分析与联用技术网络会议edm(1).png" alt="任务标题---第六届热分析与联用技术网络会议edm(1).png" width="600" height="1834" border="0" vspace="0"//a  /pp  strong报告专家阵容(排名不分先后):/strong/ppstrongbr//strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/6912977f-0586-42c2-b2a2-45c2d8ee63c7.jpg" title="dc64b974-3f8a-4762-8154-ecf147efea05.jpg" alt="dc64b974-3f8a-4762-8154-ecf147efea05.jpg"//pp style="text-align: center "strong中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师 丁延伟/strong/pp  丁延伟,博士、中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,中国化学会化学热力学与热分析专业委员会委员、中国分析测试协会青年学术委员会委员、全国高校分析测试研究会青年部秘书长。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2019),以主要作者发表SCI论文30余篇,编著《热分析基础》(2020年3月,512千字,中国科学技术大学出版社)、《热分析实验方案设计与曲线解析概论》(2020年8月,387千字,化学工业出版社)。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/318e036d-cb40-4028-a1c0-6ec346a7a79a.jpg" title="韩婷.jpg" alt="韩婷.jpg"//pp style="text-align: center "strong梅特勒-托利多中国区热分析仪器部技术经理 韩婷/strong/pp  韩婷,梅特勒-托利多中国区热分析仪器部技术经理。华东理工大学材料化学工程博士,研究方向为各类添加剂对多种工程塑料理化性能的影响。从事热分析相关应用近十年,具有丰富的仪器使用和材料热物性分析经验,对于各新兴行业热分析的前沿应用有独到见解。致力于推动和完善特色的联用系统在各行业的解决方案,并取得一定的研究进展。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/f14bb229-7728-4443-bbed-53bf9874fc69.jpg" title="夏红德.jpg" alt="夏红德.jpg"//pp style="text-align: center "strong中国科学院工程热物理研究所研究员 夏红德/strong/pp  夏红德,博士,现工作于中国科学院工程热物理研究所,目前主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA?),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。相关测试分析技术已经广泛成熟的应用于能源、药物、环境、化工、材料、地质、半导体、文物等领域,推动国内诸多领域检测标准的技术创新并促进其在国际上形成技术领先地位。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/547af3fa-c245-437c-af9c-2f542a43579d.jpg" title="曾洪宇.jpg" alt="曾洪宇.jpg"//pp style="text-align: center "strong法国凯璞科技集团塞塔拉姆仪器技术总监 曾洪宇/strong/pp  曾洪宇,博士,担任塞塔拉姆技仪器中国区技术和应用中心负责人,毕业于中科院硅酸盐研究所,主攻材料专业,师从施剑林院士。曾博士曾派驻法国里昂塞塔拉姆总部参与热分析和量热仪器的技术研发工作,从事热分析研究工作近15年,是最早一批将塞塔拉姆理论与操作融会贯通的实践者。作为塞塔拉姆中国区最资深的技术专家,曾博士对塞塔拉姆独有的EYRAUD天平和卡尔维三维量热技术具有独到见解。曾博士在热分析及量热方面的建树,已成为塞塔拉姆中国,以及亚太区域技术与应用的中流砥柱。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/d9ba1251-c72b-442d-88da-a65937fc4a77.jpg" title="徐颖.jpg" alt="徐颖.jpg"//pp style="text-align: center "strong苏州大学分析测试中心高级实验师 徐颖/strong/pp  徐颖,苏州大学分析测试中心,负责热分析仪器。主要从事各种材料的热性能的研究,熟悉高分子、材料、药物、有机、无机等各类样品的热分析表征,论著1本(《热分析实验》,学苑出版社,2011年出版),发表论文20余篇。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/5218b70a-4f9f-4828-86b5-b236fdfaa33d.jpg" title="于惠梅.jpg" alt="于惠梅.jpg"//pp style="text-align: center "strong华东理工大学副研究员 于惠梅/strong/pp  于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事 报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美Pennsylvania State University,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/4a59881b-99ab-4cc9-9037-8195c6b5f11c.jpg" title="刘文广.jpg" alt="刘文广.jpg"//pp style="text-align: center "strong珀金埃尔默技术专家 刘文广/strong/pp  刘文广,珀金埃尔默公司材料表征产品线技术支持,主要负责分子光谱,热分析仪器及联用分析设备的应用支持工作。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/ce07ce8e-c7a2-4f52-990b-c18a0b44e88c.jpg" title="王晓红.jpg" alt="王晓红.jpg"//pp style="text-align: center "strong西安近代化学研究所副研究员 王晓红/strong/pp  王晓红,女,1976年8月生,中共党员,1999年7月大学毕业入西安近代化学研究所工作至今,副研究员职称。从事含能材料热分析,动力学,构效关系及计量学研究,发表各类科技论文四十余篇,2014年~2015年在加州大学圣克鲁兹分校生物与化学系物理化学专业访学。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/d043531d-057b-4474-af80-9a9f358b1a10.jpg" title="李忠红.jpg" alt="李忠红.jpg"//pp style="text-align: center "strong江苏省食品药品监督检验研究院检验技术研究中心副主任 李忠红/strong/pp  李忠红,博士,江苏省食品药品监督检验研究院检验技术研究中心副主任,主任药师。江苏省分析测试协会热分析专业委员会委员。从事药品检验工作已有30年,一直未脱离实验工作,具有丰富的药品质量控制所用仪器的操作经验。近年来主要致力于药品质量标准提高以及新仪器、新方法在药品质量控制中的应用工作。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/70fbaa5f-ce82-44a4-871d-b5738210860e.jpg" title="李琴梅.jpg" alt="李琴梅.jpg"//pp style="text-align: center "strong北京市理化分析测试中心副研究员 李琴梅/strong/pp  李琴梅,北京市理化分析测试中心,博士,副研究员,2013年博士毕业于中国科学院化学研究所高分子化学与物理专业。主要从事新材料制备与性能研究以及测试方法开发等研究工作,包括生物医用材料的制备及其应用研究、高分子材料以及复合材料检测方法研究等。主持参与国家重点研发计划1项,国家自然基金4项,省市级科研项目及财政专项13项,横向课题近30项。科研成果发表学术论文32篇,其中SCI收录8篇。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/b4450d85-ff06-4526-affb-a4a9d083197a.jpg" title="曾智强.jpg" alt="曾智强.jpg"//pp style="text-align: center "strong德国耐驰仪器制造有限公司市场与应用总监 曾智强/strong/pp  曾智强,博士毕业于清华大学材料科学与工程学院,获博士学位。此后赴新加坡南洋理工大学、英国 Surry 大学任研究员,从事陶瓷基复合薄膜方向的研发与应用研究,发表有二十多篇论文并获得3项发明专利。2003年曾智强博士加入德国耐驰,担任市场与应用总监,致力于拓展德国耐驰热分析、热物性测量系统的应用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/29f8dd68-3b6d-4ee5-b432-e2283f1edfea.jpg" title="李照磊.jpg" alt="李照磊.jpg"//pp style="text-align: center "strong江苏科技大学高分子材料系副系主任 李照磊/strong/pp  李照磊,1984年1月生,理学博士,副教授。中国化学会会员,江苏省热分析专业委员会委员。2012年8月至2016年6月,南京大学化学化工学院攻读博士学位,导师为胡文兵教授。目前担任江苏科技大学高分子材料系副系主任,入选镇江市第二批“金山青年创新英才”。主要从事生物可降解高分子材料凝聚态结构转变的热分析研究。主持国家自然科学青年基金项目、江苏省高校自然科学基金面上项目,以及多项校企合作横向课题项目。在ACS Macro Letters、Electrochimica Acta、Journal of Polymer Science, Part B: Polymer Physics、Polymer、Thermochimica Acta、Polymer Testing、Polymer International、Journal of Thermal Analysis and Calorimetry等刊物上发表学术论文30余篇,获授权专利10项。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/226bccd1-5e75-41e6-baca-d402c6ec1d57.jpg" title="苍飞飞.jpg" alt="苍飞飞.jpg"//pp style="text-align: center "strong国家轮胎质量监督检验中心副总工程师 苍飞飞/strong/pp  苍飞飞,副总工程师、技术负责人、高级工程师。目前就职于北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量监督检验中心)、北京橡胶工业研究设计院有限公司。/pp  2000年8月-至今 北京橡胶工业研究设计院试验检测中心从事橡胶检测工作20年,工作主要分为几个部分:第一项日常检测工作,主要完成硫化橡胶、混炼胶及原材料的检测工作 其中包括标准、非标准方法。第二项认可实验室工作,从2005年物化室申请国家认可实验室开始就从事着相关的任务及工作,目前担当实验室化学部分技术负责人、内审员、化学组组长的工作。第三部分是项目工作,曾多次参加院/中心组织的项目。第四部分:负责第二实验区的管理工作及药品库的管理工作。/pp  主持或参加纵向及横向项目30余项 目前在研项目2020年主持典型轮胎厂家轮胎胎面特征技术研究工作,与中国刑事警察学院合作 2019年~2020年参予掘进机主轴承密封的国产化项目 2019年~2021年参予粘合树脂AN220应用评价项目 完成学术论文30余篇,其中参加中国化工科学研究院第一届科技论坛论文“轮胎中各部位多环芳烃含量检测方法的研究”获得鼓励奖,还有3篇论文轮胎参加2014年国际橡胶会议,2篇论文参加2018年Rubbercon会议 参加国家制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖 参加国际标准修订比对工作3项 “自主研发改造仪器项目”获得中国化工集团,中国化工“五小”活动获得二等奖 发明专利2项 实用新型专利3项。/ppbr//ppa href="https://www.instrument.com.cn/webinar/meetings/thermalanalysis2020/" target="_self"strong报名链接:/stronghttps://www.instrument.com.cn/webinar/meetings/thermalanalysis2020/  /a/ppbr//p
  • 中国科学技术大学理化科学实验中心热分析与吸附组在用设备简介
    p  strong本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。/strong/pp  目前热分析与吸附组在用的分析仪器主要包括热分析仪、吸附仪和粒度粒形分析仪,这些仪器与常规的结构和成分分析仪器不同,主要侧重于材料的性质表征。热分析仪是在程序控温和一定气氛下测量材料的物理性质(主要包括质量、热量、尺寸、电学性质、光学性质、磁学性质等)随温度或时间连续变化关系的一大类仪器,而吸附仪则通过测量材料在不同条件下(主要指压力、浓度、温度、时间等)对于某种或某几种气体的吸附能力来获得材料的结构、性质等方面的信息的一类仪器,主要分为物理吸附仪和化学吸附仪两大类,粒度粒形分析系统可以得到材料的粒径分布、粒形和Zeta电位等信息。和以下将分类进行介绍。br//pp style="text-align: center "  strongI热分析仪/strong/pp  a href="https://www.instrument.com.cn/zc/62.html" target="_self"strong1.热重仪/strong/a/pp  热重仪(Thermogravimeter),是一种利用热重法检测物质温度-质量变化关系的仪器。按其结构形式可以分为下皿式(即吊篮式)、上皿式和水平式三大类。目前的商品化仪器中,上皿式和水平式结构的热重仪通常与差热分析和差示扫描量热技术联用,通常称为同步热分析仪(SimultaneousThermal Analyzer)。下皿式结构的仪器通常为单一的热重仪。在用的热重仪主要有日本岛津公司TGA-50H热重仪(图1)、美国TA公司Q5000IRTGA热重仪(图2)、美国TA公司DiscoveryTGA热重仪(图3)和德国Netzsch公司TGA209F1四台仪器。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7cc54975-2e83-4193-afbe-9362093fddab.jpg" title="图1 Shimadzu TGA-50H热重仪.png" alt="图1 Shimadzu TGA-50H热重仪.png"//pp style="text-align: center "图1 Shimadzu TGA-50H热重仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/60fcd219-634a-4501-b236-0c8383beb3f5.jpg" title="图2 TA Q5000IR TGA热重仪.png" alt="图2 TA Q5000IR TGA热重仪.png" style="max-width: 100% max-height: 100% "//pp style="text-align: center "图2 TA Q5000IR TGA热重仪  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C259642.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3cc6fee1-5c9e-42d8-b072-1cf2aa19198b.jpg" title="图3 TA Discovery TGA热重仪.png" alt="图3 TA Discovery TGA热重仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C259642.htm" target="_self"图3 TA Discovery TGA热重仪/a  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C143328.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/62aaf285-e5ee-4ded-9d8f-68c63487286c.jpg" title="图4 德国Netzsch公司TGA209F1热重仪.png" alt="图4 德国Netzsch公司TGA209F1热重仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C143328.htm" target="_self"图4 德国Netzsch公司TGA209F1热重仪/a/pp  其中,TGA-50H热重仪购于1993年,经过多次的加热炉、热电偶、吊篮以及软件的升级改造,这台仪器至今各项指标都可以满足检测要求。目前该仪器主要用于完成一些特殊条件下(主要指耗时特别长、水蒸气、还原气氛等可能会对仪器带来潜在损害的实验)的热重实验。美国TA公司的Q5000IRTGA和DiscoveryTGA可以实现温度调制(MTTGA)和速率超解析(HRTGA)实验。德国Netzsch公司TGA209F1带有200位自动进样器,可以实现真空条件下的TG实验。Q5000IR TGA和DiscoveryTGA主要用于常规测试,这两台仪器均带有25位自动进样器,可以高效率地完成各种常规测试需求。另外,由于其红外加热的优势,可以实现快速的升降温和准确的等温,可以用来研究高加热速率和等温下的热解行为。/pp  a href="https://www.instrument.com.cn/zc/469.html" target="_self"strong2.同步热分析仪/strong/a/pp  同步热分析仪是在程序控温和一定气氛下,对一个试样同时采用两种或多种热分析技术,是一种常见的热分析技术。通常特指热重-差热分析仪或热重-差示扫描量热仪。在用的热重仪主要有日本岛津公司DTG-60H热重-差热分析仪(图5)、美国TA公司SDTQ600热重-差热分析仪(图6)、美国PE公司STA-6000同步热分析仪(图7)、美国PE公司STA-8000同步热分析仪(图8)和德国耐驰公司STA449F3同步热分析仪(图9)。这五台仪器中除STA-8000最高温度为1000℃外,其余四台仪器的最高温度均为1500℃。其中,STA-6000和STA449F3带有自动进样器,可以高效率地完成各种常规测试需求。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9bf825ec-6e41-4322-a420-e5f38d3601ee.jpg" title="图5 Shimadzu DTG-60H热重-差热分析仪.png" alt="图5 Shimadzu DTG-60H热重-差热分析仪.png"//pp style="text-align: center "图5 Shimadzu DTG-60H热重-差热分析仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/2892e4a4-5470-4edf-a2fe-9dd437fd5c40.jpg" title="图6 TA SDT Q600热重-差热分析仪.png" alt="图6 TA SDT Q600热重-差热分析仪.png" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "图6 TA SDT Q600热重-差热分析仪/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C32191.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/97dabaf9-0bbb-4f90-afb6-2f726f88a4c9.jpg" title="图7 PerkinElmer STA-6000同步热分析仪.png" alt="图7 PerkinElmer STA-6000同步热分析仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C32191.htm" target="_self"图7 PerkinElmer STA-6000同步热分析仪/a/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f7d5b2c6-6263-4064-a733-1ef18dbaa4d3.jpg" title="图8 PerkinElmer STA-8000同步热分析仪.png" alt="图8 PerkinElmer STA-8000同步热分析仪.png"//pp style="text-align: center "图8 PerkinElmer STA-8000同步热分析仪br//pp  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C53007.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9831667e-4650-43cb-97bf-36dc8d2341dd.jpg" title="图9 Netzsch STA 449F3同步热分析仪.png" alt="图9 Netzsch STA 449F3同步热分析仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C53007.htm" target="_self"图9 Netzsch STA 449F3同步热分析仪/a/pp  a href="https://www.instrument.com.cn/zc/68.html" target="_self"strong3.热重/红外光谱/(气相色谱/质谱联用)联用仪/strong/a/pp  在用的两台热重/红外光谱/(气相色谱/质谱联用)联用仪(图10)分别购于2012年(热重部分为Pyris1TGA、红外光谱部分为Frontier红外光谱仪、GC为Clarus680、MS为ClarusSQ 8T)和2018年(热重部分为TGA8000、红外光谱部分为Frontier红外光谱仪、GC为Clarus690、MS为ClarusSQ 8T),主要用来研究材料随着温度的变化材料由于分解等引起的质量减少产生的气体的种类和含量的信息,是一种常用的联用技术。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C166944.htm" target="_self"img src="https://img1.17img.cn/17img/images/202006/uepic/66e27249-e41c-489f-aff5-843ec2e531a7.jpg" title="图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" alt="图10 PerkinElmer TL-9000热重-红外光谱-(气相色谱-质谱联用)联用仪.png" style="max-width: 100% max-height: 100% "/br//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C166944.htm" target="_self"图10 PerkinElmer TL-9000热重/红外光谱/(气相色谱/质谱联用)联用仪/a/pp  该仪器可以实现热重/红外光谱联用、热重/红外光谱/质谱联用、热重/红外光谱/(气相色谱/质谱联用)联用等实验,是研究材料的热解机理的一种很强大的分析手段。另外,这两套联用系统分别配置了捕集阱顶空(型号为TurboMatrix40 Trap)和热脱附(型号为TurboMatrix300)附件,通过切换,可以实现室温~300℃下的逸出气体的组成分析。/pp  a href="https://www.instrument.com.cn/zc/63.html" target="_self"strong4.差示扫描量热仪/strong/a/pp  差示扫描量热仪(differential scanning calorimeter,简称DSC仪)是在程序控温和一定气氛下,测量输给试样和参比物的热流速率或加热功率(差)与温度或时间关系的仪器。DSC仪通过测量试样端和参比端的热流速率或加热功率(差)随温度或时间的变化过程来获取试样在一定程序控制温度下的热效应信息。与DTA仪相比,DSC仪具有较高的灵敏度和精确度。常用的DSC仪主要有热流式和功率补偿式两种类型。在用的差示扫描量热仪主要有日本岛津公司DSC-60差示扫描量热仪(图11)、美国TA公司Q2000差示扫描量热仪(图12)、美国PE公司DSC8500差示扫描量热仪(图13)、美国TA公司MC-DSC多池差示扫描量热仪(图14)和德国耐驰公司DSC204F1差示扫描量热仪(图15)。其中DSC-60、Q2000、DSC204F1和MC-DSC属于热流型DSC仪,DSC8500属于功率补偿型DSC仪。除MC-DSC外,仪器的工作温度范围为-180℃-725℃(DSC8500的最高温度为750℃)。Q2000带有紫外光源,可以用来研究光照条件下的热效应的变化。Q2000和DSC8500还可以分别实现MTDSC和DynamicDSC的功能。另外,Q2000和DSC8500带有自动进样器,可以高效率地完成各种常规测试需求。与常规DSC不同,MC-DSC可以用来测量大尺寸样品(通常可以用来测试的样品的体积在1mL以上)的热效应,该仪器可以同时测量三个样品。但工作温度范围比较有限,在-40-150℃范围内。该仪器还可以用来测量高压、混合等条件下的热效应变化。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/85f4eb27-c25a-4c14-9101-0d2911440760.jpg" title="图11 Shimadzu DTG-60H热重-差热分析仪.png" alt="图11 Shimadzu DTG-60H热重-差热分析仪.png"//pp style="text-align: center "图11 Shimadzu DTG-60H热重-差热分析仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/066e1243-684f-422e-b8fb-9ee60db94cfd.jpg" title="图12 TA Q2000 DSC 差示扫描量热仪.png" alt="图12 TA Q2000 DSC 差示扫描量热仪.png" style="max-width: 100% max-height: 100% "//pp style="text-align: center "图12 TA Q2000 DSC 差示扫描量热仪 a href="https://www.instrument.com.cn/netshow/C73752.htm" target="_self"img src="https://img1.17img.cn/17img/images/202006/uepic/2b5272a7-b5f4-448f-b74e-9cd33c5f9447.jpg" title="图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" alt="图13 Perkin Elmer DSC 8500 差示扫描量热仪.png" style="max-width: 100% max-height: 100% "//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C73752.htm" target="_self"图13 Perkin Elmer DSC 8500 差示扫描量热仪/abr//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/63c667fb-8897-4c0f-b75f-4b728311c955.jpg" title="图14 TA MC-DSC 差示扫描量热仪.png" alt="图14 TA MC-DSC 差示扫描量热仪.png" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "图14 TA MC-DSC 差示扫描量热仪/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C10143.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/30fa6369-9982-48be-bdb6-bf29b1f1f914.jpg" title="图15 Netzsch DSC 204F1差示扫描量热仪.png" alt="图15 Netzsch DSC 204F1差示扫描量热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C10143.htm" target="_self"图15 Netzsch DSC 204F1差示扫描量热仪/abr//pp  strong5.微量差示扫描量热仪/strong/pp  与常规的DSC仪相比,微量差示扫描量热仪(microDSC)具有更高的灵敏度。其工作原理属于功率补偿型。我组在用的microDSC主要有美国Microcal公司(现已并入美国马尔文公司)的VP-DSC微量差示扫描量热仪(图16)和美国TA公司的NanoDSC微量差示扫描量热仪(图17)。由于该仪器的研究对象主要为大分子溶液体系,其工作温度范围为-5℃-130℃。与常规DSC实验中样品加入可移动的坩埚中不同,microDSC的样品池为固定池。实验时溶液通过进样器加入具有一定体积的固定池中,实验结束后再将待测溶液移除,然后清洗样品池。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C216024.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4d2ed8ad-c2d8-470e-9794-3029a265cd3f.jpg" title="图16 Microcal VP-DSC微量差示扫描量热仪.png" alt="图16 Microcal VP-DSC微量差示扫描量热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C216024.htm" target="_self"图16 Microcal VP-DSC微量差示扫描量热仪 /a /pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/5d86b323-37aa-4a09-903b-0e4c5912c60f.jpg" title="图17 TA Nano DSC微量差示扫描量热仪.png" alt="图17 TA Nano DSC微量差示扫描量热仪.png"//pp style="text-align: center "图17 TA Nano DSC微量差示扫描量热仪/pp  strong6.闪速差示扫描量热仪/strong/pp  闪速差示扫描量热仪(FlashDSC 2+)(图18)可以用来研究许多亚稳态材料如半结晶聚合物、多晶型材料、复合材料以及合金等的结构变化过程,可以实现常规的DSC无法实现的超高加热/降温速率下的实验。借助其UFS1传感器可以实现最高加热速率为3000000K/min(300万度每分钟)和最快加热速率为2400000K/min(即240万度每分钟)的超高温度扫描速率下的实验,实验温度范围为-100-1000℃。仪器采用嵌于陶瓷基体之上的微型芯片式传感器。该传感器基于MEMS 技术并且像常规DSC 一样拥有两个独立的量热组件(样品池及参比池)。两个量热组件所在的传感器主体由两个相同的正方形氮化硅薄膜构成。薄膜边长为1.6mm、厚度为2μm,嵌于300μm厚的硅框架内。用于闪速DSC 的典型样品为薄膜、块状材料或者粉末。块状材料在制样时首先从基体材料上切下一些小圆片。然后在显微镜下用刀片在传感器的附件将小圆片切成更小的小片。利用尖端带有一根细毛的专用毛笔将制备成的样品直接放置于传感器上。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C207263.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/79f58b82-4ab2-44d7-9216-fb9b56bdde39.jpg" title="图18闪速差示扫描量热仪(FlashDSC 2+).png" alt="图18闪速差示扫描量热仪(FlashDSC 2+).png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C207263.htm" target="_self"图18 闪速差示扫描量热仪(FlashDSC 2+)/abr//pp  strong7.等温微量量热仪/strong/pp  在用的美国TA公司的TAMIV等温微量热仪(图19)是一种非常灵敏、稳定和灵活的微量热系统,能够直接测量所有的热信号、从而定量得到一个过程热力学和动力学信息。四个独立的量热通道可以在相同的实验条件下同时进行不同样品的实验,目前该仪器配置了等温滴定量热计、溶解热量热计、气体灌注量热计和六通道微瓦级量热计和纳瓦级量热计。可用于反应过程中向系统内添加反应试剂或是精确控制添加试剂的时间及用量。该系统可用来测量反应热,材料稳定性,材料寿命预测,工艺安全性评价,配方筛选等。通过等温滴定量热检测,可以对含有不同基团分子的两者液体材料在相互滴加时,根据产生测量产热情况,计算两种基团的结合情况,从而评估两者物质的相容情况 通过气体灌注/吸附热量检测,可以在一定温度下,得到材料对气体吸附过程的吸/放热测量 可以实现材料体与不同气氛(或湿度)作用下的吸/放热测量 通过溶解量热检测,可以在实际应用中,需要检测固体材料溶解到液体或者两者液体混合时所产生的溶解热。如含能材料溶解于水时的热量检测。通过纳瓦级量热计可以很容易实现此应用 通过多通道量热检测,可以在实际应用中用于同种样品材料的目标性筛选,极大地提高工作效率。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C243410.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c4f50435-e361-4d77-8f17-b10c95be8972.jpg" title="图19 美国TA公司TAMIV等温微量热仪.png" alt="图19 美国TA公司TAMIV等温微量热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C243410.htm" target="_self"图19 美国TA公司TAMIV等温微量热仪/abr//pp  strong8.等温滴定量热仪/strong/pp  等温滴定量热仪为生物分子结合的研究提供了最高的灵敏度和灵活性。仪器采用固态热电偶加热和冷却系统,实现了精确的温度控制,同时具有同样灵活性的注射器附件可确保准确有效地输送滴定剂。在用的美国TA公司的NanoITC等温滴定量热仪(图20)的工作温度范围为2℃~80℃,注射针筒体积为50µ L 和250µ L,检测热量范围是0.1µ J~5000µ J。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C33992.htm" target="_self"img src="https://img1.17img.cn/17img/images/202006/uepic/f44de75d-a260-4a1c-b0c1-3aff5dcf91a5.jpg" title="图20 美国TA公司的NanoITC等温滴定量热仪.png" alt="图20 美国TA公司的NanoITC等温滴定量热仪.png" style="max-width: 100% max-height: 100% "//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C33992.htm" target="_self"图20 美国TA公司的NanoITC等温滴定量热仪/a/pp  a href="https://www.instrument.com.cn/zc/66.html" target="_self"strong9.热膨胀仪/strong/a/pp  热膨胀仪是在程序控温和一定气氛下,负载力接近于零的条件下测量材料的尺寸(通常为长度)随温度和时间变化关系的一类技术。可测量固体、熔融金属、粉末、涂料等各类样品,广泛应用于无机陶瓷、金属材料、塑胶聚合物、建筑材料、涂层材料、耐火材料、复合材料等领域。通过材料的尺寸变化可以测量与研究材料的线膨胀与收缩、玻璃化温度、致密化和烧结过程、热处理工艺优化、软化点检测、相转变过程、添加剂和原材料影响、反应动力学研究等方面的信息。在用的热膨胀仪为德国耐驰公司的DIL-402C热膨胀仪(图21),该仪器可以用来测量材料在室温-1600℃范围内的尺寸变化信息。 /pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/35f4cc01-6a98-4340-a275-1bf96127b13b.jpg" title="图21 Netzsch DIL-402C热膨胀仪.png" alt="图21 Netzsch DIL-402C热膨胀仪.png"//pp style="text-align: center "图21 Netzsch DIL-402C热膨胀仪/pp strong a href="https://www.instrument.com.cn/zc/65.html" target="_self"10.静态热机械分析仪/a/strong/pp  静态热机械分析仪(ThermalMechanical Analyzer,简称TMA仪)是在程序温度控制下(等速升温、降温、恒温或循环温度),测量物质在受非振荡性的负荷(如恒定负荷)时所产生的形变随温度变化的一种技术。热机械分析虽然涉及的材料对象非常广泛,包括金属、陶瓷、无机、有机等材料,但用它来研究高分子材料的玻璃化温度Tg、流动温度Tf、相转变点、杨氏模量、应力松弛等更具有特殊的意义。在用的热机械分析仪为美国TA公司的Q400TMA 热机械分析仪(图22),该仪器可以用来测量材料在-150-1000℃范围内的尺寸变化信息。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d5b4ef1a-0f74-4262-909d-c4255d0aa8e7.jpg" title="图22 TA Q400 TMA热机械分析仪.png" alt="图22 TA Q400 TMA热机械分析仪.png"//pp style="text-align: center "图22 TA Q400 TMA热机械分析仪br//pp  a href="https://www.instrument.com.cn/zc/65.html" target="_self"strong11. 动态热机械分析仪/strong/a/pp  与TMA相比,动态热机械分析仪(DynamicMechanical Analyzer,简称DMA仪)是在程序温度控制下测量物质在承受振荡件负荷(如正弦负荷)时模量和力学阻尼随温度变化的一类仪器。它在测量分子结构单元的运动,特别在低温时比其他分析方法更为灵敏、更为有用。在用的DMA仪为美国TA公司DMAQ800动态热机械分析仪(图23)和DiscoveryDMA Q850动态热机械分析仪(图24)。该仪器可以用来研究材料在拉伸、压缩、单/双悬、三点弯曲、剪切条件下的动态受力下的形变,工作温度范围为-160~600℃。最大力为18N,频率范围0.001~200Hz。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/9d52c1f2-8b54-4933-bf5f-3a948bfe6abc.jpg" title="图23TA Q800 DMA热机械分析仪.png" alt="图23TA Q800 DMA热机械分析仪.png"//pp style="text-align: center "图23TA Q800 DMA热机械分析仪br//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C290026.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ca2ea5ba-9a29-4ff3-8766-fd29bb8c78d1.jpg" title="图24TA Discovery DMA 850热机械分析仪.png" alt="图24TA Discovery DMA 850热机械分析仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C290026.htm" target="_self"图24 TA Discovery DMA 850热机械分析仪/abr//pp  a href="https://www.instrument.com.cn/zc/84.html" target="_self"strong12.流变仪/strong/a/pp  流变仪(rheometer),即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。分为旋转流变仪、毛细管流变仪、转矩流变仪和界面流变仪。在用美国TA公司的DiscoveryDHR-2 流变仪(图25)属于旋转流变仪。通过改变不同的外界调节(如温度,压力,频率,应变,时间等)作用于材料,得到材料的回馈信号分析出其工艺过程和结构特性,研究材料或样品的性能(如零剪切粘度,凝胶点,固化点等等),计算材料的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪测量时将样品置于特定的上下测量夹具之间,夹具的一端对样品施加一个力或变形,相应的传感器测量样品回馈对所施加的力或变形的响应,通过对该响应分析就得到样品粘弹性的总和特性曲线(如零剪切黏度,凝胶点,固化点等),计算样品的物理化学参数(如分子量,分子量分布,粘弹松弛谱,非线性行为,分子结构等)。流变仪的测试模式包括:流动(稳态测量)、振荡(动态测试)、蠕变和应力松弛(瞬态测量)等模式。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C140433.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4d195ae8-9c9a-4152-af09-be48efbe3c42.jpg" title="图25 美国TA公司DiscoveryDHR-2 流变仪.png" alt="图25 美国TA公司DiscoveryDHR-2 流变仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C140433.htm" target="_self"图25 美国TA公司DiscoveryDHR-2 流变仪/abr//pp strong a href="https://www.instrument.com.cn/zc/530.html" target="_self"13.热流法导热仪/a/strong/pp  导热仪广泛应用于包括石墨、金属、陶瓷、聚合物、复合材料等领域,具有样品制备简易,测量速度快,测量精度高等众多优点。在用的热流法导热仪为德国耐驰公司的HFM446热流法导热仪(图26),平板温度范围:-20~90℃,可用于直接测量低导热与绝热材料的导热系数,如膨胀聚苯乙烯(EPS)、挤出聚苯乙烯(XPS)、PU坚硬泡沫、矿物棉、膨胀珍珠岩、泡沫玻璃、软木塞、羊毛、天然纤维材料,包含相变材料、气凝胶、混凝土、石膏或聚合物的建筑材料等。测试时将待测材料置于两块平板之间,平板间维持一定的温度梯度。通过平板上两个高精度的热流传感器,测量进入与穿出材料的热流。在系统达到平衡状态的情况下,热流功率为常数,在样品的测量面积与厚度已知的情况下,使用傅立叶传热方程可以计算导热系数。/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265677.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bb1690a8-cac7-4943-b3b8-a2c41658a514.jpg" title="图26 德国耐驰公司HFM446热流法导热仪.png" alt="图26 德国耐驰公司HFM446热流法导热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265677.htm" target="_self"图26 德国耐驰公司HFM446热流法导热仪/abr//pp  a href="https://www.instrument.com.cn/zc/530.html" target="_self"strong14.激光导热仪/strong/a/pp  激光热导法直接测量的是材料的热扩散系数,其基本原理为:在炉体控制的一定温度下,由激光源发射光脉冲均匀照射在样品下表面,使试样均匀加热,通过红外检测器连续测量样品上表面相应温升过程,得到温度(检测器信号)升高和时间的关系曲线。应用计算机软件的数学模型对理论曲线和试验温度上升曲线进行计算修正,从而测出样品的热扩散系数,再测出比热已知的标样的热扩散系数,利用数学模型计算出样品的比热,系统根据计算公式自动计算出样品的导热系数。在用的德国耐驰公司的LFA467 HyperFlash 闪射法激光导热仪(图27),工作温度范围:-100~500℃,可在整个温度范围内连续测量16 个样品 德国耐驰公司的LFA467 HT HyperFlash 闪射法激光导热仪(图28),工作温度范围:室温~1250℃,这两款仪器都拥有极高的采样频率2MHz,特别适合于薄膜样品和高导热材料。 /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C245188.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/5ef34d77-68dd-4c81-8f7f-00ebd4b8e95a.jpg" title="图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png" alt="图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C245188.htm" target="_self"图27 德国耐驰公司LFA467 HyperFlash 闪射法激光导热仪 /a /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265759.htm" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3e96ba5b-542f-4218-b48a-3e3625c3ed0f.jpg" title="图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png" alt="图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪.png"//a/pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C265759.htm" target="_self"图28 德国耐驰公司LFA467HT HyperFlash 闪射法激光导热仪/a/ppbr//pp style="text-align: center "  strongII 吸附仪/strong/pp  在用的吸附仪主要有以下几种:/pp  strong15.物理吸附仪(比表面积介孔分析仪)/strong/pp  在用的比表面积和介孔分析仪为美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪(图29)。该仪器可同时实现三个样品的测试,得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(BJH、DFT等模型)、孔容积等信息。采用脱气站与分析站分离的工作模式。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/614b0dc7-11e4-4252-9812-9630ab61d87b.jpg" title="图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png" alt="图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪.png"//ppbr//pp style="text-align: center "图29 美国MicromeriticsTristar II 3020全自动比表面积和孔径分析仪/pp  strong16. 物理吸附仪(比表面积和微孔、介孔分析仪)/strong/pp  在用的比表面积和微孔、介孔分析仪为美国QuantachromeAutisorb iQ3M全自动气体吸附仪(图30)和美国Micromeritics2460全自动物理吸附仪(图31)。/pp  该仪器可同时实现三个样品的测试(可以同时进行两个微孔或三个介孔的分析),得到的信息主要有吸脱附等温线、比表面积(包括BET比表面积、Langmuir比表面积等)、孔径分布(HK、BJH、DFT等模型)、孔容积等信息。仪器同时带有4个脱气站和3个分析站。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/fc642a87-dad4-4e50-9127-7f5177ae6865.jpg" title="图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png" alt="图30 Quantachrome Autisorb iQ3M全自动物理吸附仪.png"//pp style="text-align: center "图30 Quantachrome Autisorb iQ3M全自动物理吸附仪br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/202006/uepic/50880f2e-b073-4094-8018-74727f86a979.jpg" title="图31 美国Micromeritics2460全自动物理吸附仪.png" alt="图31 美国Micromeritics2460全自动物理吸附仪.png" style="max-width: 100% max-height: 100% "/br//pp style="text-align: center "图31 美国Micromeritics2460全自动物理吸附仪/pp  strong17.物理化学吸附仪(比表面积、微孔、介孔和静态化学吸附分析仪)/strong/pp  在用的比表面积和微孔、介孔分析仪为美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪(图32)。该仪器可以实现对材料的物理吸附(得到比表面积、孔径分布、孔容积等信息)和静态化学吸附实验。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/07938ed4-1570-479c-ad92-01e2921cd925.jpg" title="图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png" alt="图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪.png"//pp style="text-align: center "图32 美国MicromeriticsASAP 2020 M+C全自动微孔物理化学吸附仪br//pp  strong18.化学吸附仪(静态和动态化学吸附分析仪)/strong/pp  在用的美国QuantachromeAutosorb iQ3MVC全自动气体吸附仪(图33)除了可测比表面积、介孔、微孔等,还可以测量蒸汽吸附、静/动态化学吸附,全方位表征样品的催化特性。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4367c8af-bc74-4539-b2a7-1f2200dabd17.jpg" title="图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png" alt="图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪.png"//pp style="text-align: center "图33 美国QuantachromeAutosorb IQ3MVC全自动气体吸附仪/pp  strong19.压汞仪/strong/pp  在用的压汞仪为美国康塔公司的PoreMaster60GT全自动压汞仪(图34),可同时分析2个高压样品。可用于介孔和大孔的总孔体积、孔体积分布、孔表面积及其分布测定,也可用于测定空心玻璃微珠的压碎强度和防水材料的水侵入研究。该仪器利用汞对材料不浸润的特性,采用人工加压的方式使汞进入材料内部孔隙,通过高精度压力传感器和标准体积膨胀计测量样品的注汞和退汞曲线,结合相关模型计算样品的孔径结构、孔隙度及真密度等参数。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4e82d57e-86b9-49c2-a473-686d65fa88f7.jpg" title="图34 PoreMaster 60GT全自动压汞仪.png" alt="图34 PoreMaster 60GT全自动压汞仪.png"//pp style="text-align: center "图34 PoreMaster 60GT全自动压汞仪br//ppbr//pp style="text-align: center "strongIII 粒度粒形分析仪/strong/pp  目前,常用的颗粒粒度表征方法主要有筛分法、沉降法、电阻法、颗粒跟踪法、激光衍射法、动态光散射法、静态图像法、动态图像法等。其中,激光衍射法因为准确性高、重复性好、测试速度快、自动化程度高、大量成熟的测试方法标准,成为微米级颗粒粒度的主流方法。动态光散射法对于纳米级颗粒具有准确、快速、可重复性好等优点,还具有测量Zeta电位等能力,已经为纳米材料中非常常规的一种表征方法。动态图像法采样数据多、无取向误差、颗粒分散度高、无粘连重叠现象,在粒形分析方面得到了广泛应用,除了给出30多种颗粒的粒形参数,还能对测试颗粒的分散情况进行分析。在用的Microtrac粒度粒形测量系统可以实现颗粒以上的表征,该测量系统在催化剂、能源、环境、化工、金属粉体、工业矿物、陶瓷、玻璃珠、油气、涂料/颜料、制药、涂层、水泥、3D打印等领域中有着广泛的应用。颗粒的粒度和粒形与材料的性能密切相关,例如药品颗粒的粒度决定着人体的吸收程度,水泥颗粒的粒度决定了水泥的凝结时间,调色剂颗粒的球形度决定了其在打印材料上的粘附力等等。通过测量这些颗粒的粒度粒形参数(如粒径、球形度、长宽比、周长、面积等),可以优化材料的相关特性。该测量系统主要包括测量范围为0.01-4000µ m的Sync测量单元(图35)和测量范围为0.8nm-6.5µ m的NanoTrac测量单元(图36)。其中,Sync测量单元除可以实现粒度分布测量功能外,还可以得到粒形信息 NanoTrac测量单元除可以实现粒度分布测量功能外,还可以得到Zeta电位信息。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b4fe743a-36c8-4df3-9ef2-dea228d3cac9.jpg" title="图35 Sync测量单元.png" alt="图35 Sync测量单元.png"//pp style="text-align: center "图35 Sync测量单元br//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7b0f6ad0-04c2-428a-bba6-87bb587dd984.jpg" title="图36 NanoTrac测量单元.png" alt="图36 NanoTrac测量单元.png"//pp style="text-align: center "图36 NanoTrac测量单元/pp  Sync测量单元由2个镜头、2块检测系统(共151个检测单元)和三个激光系统组成,可以实现高效、准确的颗粒度表征。其采用静态激光衍射技术测量微米级粒度,采用动态图像分析技术测量粒形数据,可以使用多于30种大小和形态的参数。仪器可以实现湿法和干法测量模式,满足多种样品的各种测量要求。由Sync的动态图像分析功能可以得到的散点图,由此可以得到不同尺寸范围的不同形状的颗粒的分布信息。NanoTrac测量系统采用采用先进的动态光背散射技术,180° 检测异相多普勒频率的变化,稳定性好、重现性高。采用电泳法技术测量Zeta电位数据。通过温控装置可以实现0-80℃范围内的粒度和Zeta电位测量。br//ppbr//p
  • 梅特勒托利多2010热分析技术研讨会(石家庄站)
    热分析技术领航者-梅特勒托利多盛情邀请您光临--2010热分析技术研讨会 – 石家庄站 瑞士梅特勒托利多是世界上热分析仪器的主要制造商之一,她所制造的差示扫描量热仪DSC、同步热分析仪TGA/DSC、热机械分析仪TMA和动态热机械分析仪DMA,都是世界上灵敏度最高的热分析仪器。 -- 1964年发明和制造了世界上第一台商用TGA/SDTA联用仪 -- 1968年推出了世界上第一台热重-质谱联用仪 -- 2001年推出了具有行业新标准意义的动态热机械分析仪DMA/SDTA861e -- 2005年上市的专利多频温度调制DSC(TOPEM TMDSC),创造性发展了DSC温度调制技术 -- 2006年DSC传感器HSS7获得了美国R&D100大奖,被确认为世界上灵敏度最高的DSC传感器 -- 2007年推出的热分析超越系列,是一次新的技术革新飞跃。特别是同步热分析仪TGA/DSC,选配6对热电偶的DSC传感器,信噪比无可匹敌 -- 2009年陆续推出了全新一代高压DSC、全自动同步视频可视熔点仪等产品 我们盛情邀请您光临即将举办的热分析技术研讨会。相信我们的热分析技术能为您提供完美的解决方案! 点击到此页面注册并参与 日程安排 2010年6月2日 8:30 – 9:00 报到 9:00 - 16:30 技术交流 地点:石家庄建设南大街6号,石家庄西美商务酒店五层502会议厅 内容简介 1. 热分析在聚合物研究中的应用 2. 热分析技术的最新发展简介: a) 同步热分析TGA/DSC技术:TGA/DSC传感器的重大突破 b) 灵敏度空前的DSC:独一无二的DSC传感器技术使测量灵敏度接近微量热仪的水平 3. 最先进的调制技术:多频温度调制DSC——TOPEM的理论和应用 4. 药物的热分析表征 5. 无可匹敌的DMA技术 6. 新产品介绍:自动测定与视频同步的熔点仪MP超越系列 7. 热分析在药物、无机物、石油化工等各行业的应用 8. 问题解答和交流 免费提供讲义和午餐及礼品。名额有限,敬请提前预约。 本活动最终解释权归梅特勒托利多所有
  • 梅特勒托利多邀您光临2010热分析技术研讨会
    瑞士梅特勒托利多是世界上热分析仪器的主要制造商之一,她所制造的差示扫描量热仪DSC、同步热分析仪TGA/DSC、热机械分析仪TMA和动态热机械分析仪DMA,都是世界上灵敏度最高的热分析仪器。  -- 1964年发明和制造了世界上第一台商用TGA/SDTA联用仪  -- 1968年推出了世界上第一台热重-质谱联用仪  -- 2001年推出了具有行业新标准意义的动态热机械分析仪DMA/SDTA861e  -- 2005年上市的专利多频温度调制DSC(TOPEM TMDSC),创造性发展了DSC温度调制技术  -- 2006年DSC传感器HSS7获得了美国R&D100大奖,被确认为世界上灵敏度最高的DSC传感器  -- 2007年推出的热分析超越系列,是一次新的技术革新飞跃。特别是同步热分析仪TGA/DSC,选配6对热电偶的DSC传感器,信噪比无可匹敌  -- 2009年陆续推出了全新一代高压DSC、全自动同步视频可视熔点仪等产品  我们盛情邀请您光临即将举办的热分析技术研讨会。相信我们的热分析技术能为您提供完美的解决方案!  日程安排  2010年4月14日  8:30 – 9:00 报到  9:00 - 16:30 技术交流  地点:天津市和平区电台道19号天宇大酒店二层A03会议厅  内容简介  1. 热分析在聚合物研究中的应用  2. 热分析技术的最新发展简介:  a) 同步热分析TGA/DSC技术:TGA/DSC传感器的重大突破  b) 灵敏度空前的DSC:独一无二的DSC传感器技术使测量灵敏度接近微量热仪的水平  3. 最先进的调制技术:多频温度调制DSC——TOPEM的理论和应用  4. 热固性树脂固化反应的热分析表征  5. 无可匹敌的DMA技术  6. 新产品介绍:自动测定与视频同步的熔点仪MP超越系列  7. 热分析在药物、无机物、石油化工等各行业的应用  8. 问题解答和交流  届时我们将邀请中科院长春应用化学研究所刘振海教授作为演讲嘉宾,期待您的共同参与!  免费提供讲义和午餐及礼品。名额有限,敬请提前预约。 点击此处报名参加 本活动最终解释权归梅特勒托利多所有
  • 2011梅特勒托利多热分析技术交流会邀请
    尊敬的客户,您好!作为全球热分析技术领域的领导者,世界上最早的和最主要的热分析仪器制造商之一,梅特勒托利多公司一直致力于为您提供更完美的热分析技术解决方案。继多对热电偶、非模型动力学分析、多频调制DSC、TGA-DSC同步分析、高频DMA技术之后,去年又推出创新型的超快速扫描量热仪&mdash 闪速DSC(FLASH DSC)。Flash DSC是创新型的快速扫描量热仪,升温速率达到7个数量级。该技术能分析之前无法测量的结构重组过程,与常规DSC是理想的互补工具。Flash DSC的心脏是基于MEMS (Micro-Electro-Mechanical Systems微机电系统)技术的芯片传感器,可以实现超快速的升温和降温实验。Flash DSC是研究材料的结构和性能、结晶动力学等的理想工具。梅特勒托利多中国公司将举办&ldquo 2011年热分析技术交流会&rdquo ,与您一起交流和研讨热分析产品和技术的最新发展。希望我们的活动能为您的工作和研究提供支持和帮助,相信我们的热分析技术能为您提供完美的解决方案!梅特勒-托利多如同建立了世界级天平标准一样,树立着热分析仪器的权威性新标准。我们热忱期待您的光临! 在线报名参与 点击下载报名表报名 会议内容1、新产品推荐:创新型的超快速扫描量热仪&mdash &mdash 闪速DSC 1(FLASH DSC 1)2、无可匹敌的DMA技术3、高灵敏DSC与多对热电偶同步热分析简介4、聚合物(热塑性、热固体、弹性体)的热分析表征与图谱解析5、医药食品的热分析应用 会议地址 2011年11月15日 杭州场 9:00-15:00杭州香溢大酒店(杭州上城区解放路108号)2011年11月17日 宁波场 8:30-12:00宁波凯洲皇冠假日酒店(宁波海曙区药行街129号) 杭州会场特邀请到上海硅酸盐研究院教授,热分析质谱法作者陆昌伟教授作&ldquo 热分析联用技术&rdquo 报告,欢迎前往聆听,座位有限先订先得。 参会要求我们热情期待各大高校、科研院所、各行业公司的热分析专家、教授、科学家、科研工作者、研发技术经理的光临,同时因席位有限,各单位、部门仅限1-3位名额,敬请提前预约。 请将回执传真至:021-61917539 梅特勒托利多(中国) 热分析仪器部或发电子邮件至bena.wan@mt.com提前预约,由于场地限制,名额有限,报满即止。咨询电话021-64850435*1985 万春霞 或 13918419065 蔡艺
  • 热分析仪器---2020年新版药典中关于药品晶型研究
    热分析仪器2020年新版药典中关于药品晶形研究药典相关2020版《中国药典》已于7月2日正式颁布,并于今年12月30日起正式实施。2020版《中国药典》对结晶性检查法、药品晶型研究及晶型质量控制指导原则做进一步的修订,热分析法是研究药物晶型的主要手段,今天我们就来聊聊新修订的热分析法如何对药品的晶型进行研究和控制的!!!1CONCEPT药品晶型研究的重要性 大家都知道我们生活中的许多药物都不是单独存在的,或是于其它药物、赋形剂或溶剂结合都会以一种或多种晶型存在,固体药物晶型的改变能产生不同的物理性质,如熔点、溶解度、溶出度、化学稳定性的改变等,而性质的改变会影响药物的行为,如药品的有效性、安全性或质量,甚至会影响药物的生物利用度,最终影响药物的治疗效果。通常稳定晶型的熔点较高,化学稳定性较好,生物利用度较低,药学上十分重视亚稳定晶型转变到稳定晶型对生物利用的影响。 您知道为什么有些国产仿制药和国外原研药的药效差异如此巨大吗? 答案之一可能就是晶型不同!2CONCEPT常见研究药品晶型方法和仪器A  X-射线衍射法(XRD):用于区别晶态和非晶态;B 红外吸收光谱法 (FTIR):利用不同晶型药物分子中的某些化学键键长、键角会有所不同来区分晶型;C 熔点法和热台显微镜法:利用不同药物晶型不同,熔点可能会有差异来区分晶型;D 热分析法:利用不同晶型,升温或冷却过程中的吸、放热差异来区分晶型。 上述方法中,热分析法所需样品量少,方法简便,灵敏度高,重现性好,在药物多晶型分析中较为常用。热分析法主要包括差示扫描量热法、差热分析法和热重分析法。3CONCEPT热分析法研究药品晶型质量01 差示扫描量热仪DSC DSC既可以定性进行晶型种类鉴别,也可以定量进行晶型含量分析,单一晶型仅有一个熔融吸热峰,而多晶型药品有一个以上的熔融吸热峰。对于单一晶型和混晶原料建立标准曲线,就可以快速获得晶型含量的信息。当然DSC也可用于结晶性检查,晶态物质在升温过程中会有尖锐状吸热峰,而非晶态物质没有吸热峰。 下图中氯磺丙脲DSC升温测试曲线,根据文献氯磺丙脲存在5种不同的晶型,每一种晶型的溶解性不同,这导致在人体中的释放速率不同。通过DSC曲线的熔融温度可以帮助我们快速判断晶体的类型,其中熔点128 ℃和123℃分别是晶型Ⅱ和晶型Ⅲ,也能清晰地看到药物转晶的过程。02 热重分析仪TG 热重分析仪可用于假多晶型判定、吸附水和结晶水区别及定量、某些药物的干燥失重或水分测定,同时热重分析仪与质谱仪联用可用于样品中结晶溶剂(含水)或其他可挥发性成分的定性、定量分析等。 通过TGA或者TGA/DSC可以快速地测定药物中结晶水的含量和判定假多晶型。 下图是一个收录在化学药品对照品图谱集的药物结晶水测试的案例。吸附水的失去是一个渐进过程,而结晶水的失去则发生在特定的温度或温度范围(与升温速率有关),在此温度由于失重率发生了突跃而呈台阶状。结晶水的失去在热重曲线上有失重台阶,而晶型熔融则没有。结合热重和热流曲线,我们准确地判定热重曲线di一个失重台阶是结晶水,含量大概为4.9%,而热流曲线di一个吸热峰不是药品中的某个晶型的熔融,而是结晶水或者说是假多晶型。结语随着中国药典对药品晶型研究及晶型质量控制的标准日益提高,热分析技术在制药行业必将发挥越来越重要的作用。—END— 天美集团热分析产品线(原上海精科热分析产品线)是国内di一家热分析生产厂家,拥有悠久历史和技术底蕴,其生产的热分析产品主要包括差示扫描量热(DSC),热重分析(TG),差热分析,同步综合热分析以及静态热机械等。 如需了解更多详情可电话咨询:020-35610582。
  • PerkinElmer原子光谱和热分析及联用技术双产品线用户会走进西宁
    2017年8月,当盛夏的炎热渐渐退去,第十四届PerkinElmer公司原子光谱用户会暨第二届热分析及联用技术全国高级技术交流会走进青藏高原的东方门户——青海西宁成功举办。本次用户会涉及原子光谱和热分析及联用技术两个产品线的新技术新应用,其中热分析及联用技术分会还得到了中国科学技术大学理化实验中心的大力支持,会议邀请了来自五湖四海的研究学者和专业人士,内容之丰富可谓前所未有。自通知发布之日起便得到了广泛关注,最终来自食品、地矿、疾控、大学/研究所等多个行业的150余位用户参加了本次会议。会议现场 本次会议分为大会报告、原子光谱和热分析及联用技术两个分会报告进行。 大会报告由珀金埃尔默公司北中国区技术支持经理姚继军博士主持,首先由PerkinElmer亚太区市场部高级经理刘肖为大会致辞。刘肖经理在致辞中提到PerkinElmer公司80年一直致力于为用户服务,致力于与用户一起为创建更健康的世界而不懈努力。今年值80周年之际,PerkinElmer公司也推出了一系列的庆祝活动,值得一提的是我们的庆祝活动是以做公益,回馈客户为主题,包括我们的校园大使招募活动,为更多的在校生提供实习机会,我们植树公益活动,只要客户留下联系方式,我们就会以客户的名字捐一棵树,并亲手植在内蒙古的沙丘上。在北京我们做了一系列公益讲座,邀请所有感兴趣的行业人士,到我们的办公室,邀请行业专家进行技术讲座,让更多的人听到高水平和更实用的报告。 大会报告特别邀请了多位用户专家前来分享仪器使用经验,其中有中国地质大学郭伟教授带来的《原子光谱应用新进展及Atomic Apectroscopy杂志简介》、中国科学技术大学的丁延伟老师带来的《热分析及联用技术在材料性质研究中心的应用》以及上海交通大学朱邦尚老师带来的《TG-IR-GC/MS在艾草分析中的应用》。 之后来自PerkinElmer各个事业部技术支持分别在会上介绍了珀金埃尔默公司近一年来在AA、ICP-OES、ICP-MS以及热分析及联用技术等领域最新的产品和技术,最为热点的应用解决方案。其中有PerkinElmer北区技术经理姚继军博士带来的《PerkinElmer公司最新产品简介》、PerkinElmer东区产品经理华诚博士带来的《联用技术与日常生活的碰撞》以及PerkinElmer波通高级应用经理倪勇带来的《食品的快速分析》、PerkinElmer 生命科学资深产品经理杜建宇带来的《饮用水中氘氚含量测定方法探讨》。 大会报告结束后,两个分会报告继续如火如荼的进行。 原子光谱分会报告有10位来自PerkinElmer的技术支持带来的从应用到硬件解析再到维修技巧及耗材订购等丰富内容。报告题目有:AAS、ICP-OES 和ICP-MS 维护技巧和耗材订购、利用HPLC-ICP-MS 分析富硒大米中硒的形态、石墨炉在线富集法直接测定水中铊、Single Particle-ICP-MS 分析化妆品中的纳米颗粒添加剂、ICP-MS和ICP-OES的RF发生器技术详解、ICP-MS 测定血液和血清中微量元素、ICP-OES 测定铅中杂质、快速消解-ICP-MS 在测定土壤中元素含量的应用、LC-ICP-MS 联用在分析水中BrO3含量的应用、ICP-OES 测定锂电池材料的要点。 与此同时,热分析及联用技术分会场内容同样丰富,有特别邀请的南京师范大学王昉老师带来的《热分析联合光谱技术应用于材料微观结构与作用机理研究》以及北京大学章斐老师带来的《草酸钙分解逸出气二级反应的研究及对TG/FTIR/MS 测试的指导意义》,两位老师就日常实验过程中遇到的问题和总结的经验与大家分享,引起多位参会老师的共鸣。之后,PerkinElmer资深维修工程师梅智雄根据其多年的经验为大家带来了热分析日程维护技巧的报告,老师们纷纷表示该报告对今后仪器的使用和维护将起到非常大的帮助:最后,两位PerkinElmer材料线产品专家带来了高性能紫外/可见(/近红外)在材料分析中的应用、红外显微/成像系统在失效分析中的应用两个报告,为材料分析提供更全面的解决方案。用户会与会代表合影 用户会不仅报告内容丰富实用,还有一个亮点就是用户会的论文征集活动,活动内容与会议通知一同发布,同样受到用户们的热烈响应和积极参与,本次用户会选取了几十篇优秀的用户论文,内容多围绕在食品、药品、环境以及各类无机元素的测定等方面,论文已整理成册发放给与会人员,供大家交流和学习。如您有需要查阅论文集欢迎与我们联系。论文集 PerkinElmer用户会坚持服务于用户,提供丰富实用的内容及与大咖讲者的交流机会。原子光谱联合热分析及联用技术,更丰富的产品线,更前沿的应用技术,我们期待在不久的将来,您也加入到PerkinElmer的用户行列中来!
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制