当前位置: 仪器信息网 > 行业主题 > >

质谱显微镜

仪器信息网质谱显微镜专题为您提供2024年最新质谱显微镜价格报价、厂家品牌的相关信息, 包括质谱显微镜参数、型号等,不管是国产,还是进口品牌的质谱显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱显微镜相关的耗材配件、试剂标物,还有质谱显微镜相关的最新资讯、资料,以及质谱显微镜相关的解决方案。

质谱显微镜相关的资讯

  • 岛津发布成像质谱显微镜新品
    iMScope QT保留岛津质谱成像的高空间分辨率和光学显微镜融合特点的同时,连接 LCMS-9030,以MALDI-Q-TOF提高成像速度和灵敏度。iMScope QT还可以把显微镜-MALDI单元简单地分离和组装,实现了一台仪器多用途使用,从而完成定性,定量,定位的整体流程。iMScope QT 主要特点:显微镜观察和质谱成像分析的融合。高分辨率光学显微镜完美地融合在成像质谱仪,可对微小区域进行观察和分析,通过叠加光学显微镜图和质谱成像图,更准确地进行定位。高空间分辨率,高速,高精度,高效率的成像分析。使用5 μm空间分辨率,20,000 Hz的激光频率,结合LCMS-9030的快速检测系统,成像分析速度可达到50像素/秒,分析100 x 100像素的图像仅需数分钟即可完成。LCMS-9030高性能的MS/MS分析,可快速提供目标分子的结构信息和高特异性成像数据。一台质谱即可获得LC-MS的定性、定量信息和质谱成像的位置信息。iMScope QT成像单元和LCMS-9030质谱单元可以组装和分离,轻松实现质谱成像分析和LC-Q TOF定性定量分析的切换,同时满足定量成像分析的需求。?创新点:1.光学显微镜和质谱仪精准融合,可分析亚细胞水平的5um高空间分辨率图像2.激光频率为20kHz,质谱仪的MS、MS/MS扫描速度均为100Hz,整体的成像速度可达50像素/秒以上3.成像单元可简单移动分开和组装使用,可实现质谱成像分析和LC-QTOF定性定量分析的兼用系统4.后端质谱仪为 Q TOF型LCMS-9030,提高了质谱检测灵敏度成像质谱显微镜
  • 岛津成像质谱显微镜应用专题丨药物类
    药物分子定位递送多模式成像精准示踪研究 癌症是威胁人类生命与健康的重大疾病,药物治疗(化疗)是治疗癌症的有效手段之一。为进一步提高疗效、降低毒副作用,抗癌药物的定位递送和精确释放成为抗癌药物研发的重要内容。然而,如何实时在线精准示踪抗癌药物的递送过程、靶向释药过程以及生物分布与代谢是迫切需要分析科学解决的难点和核心问题。质谱成像技术是基于质谱发展起来的用于样本定性和定量检测的新型分子成像技术,其通过扫描样本,可高灵敏、高分辨地获得待测样本中目标分子的精准时空分布,为药物的递送过程、靶向释药过程以及生物分布提供重要信息。本研究工作利用荧光成像和质谱成像相结合的多模式成像分析技术成功实现了实时精准示踪靶向结直肠的新型前药定位递送、释放、分布与代谢的全过程,见图1。 图1 利用多模式成像技术实现靶向结直肠的新型前药实时精准示踪 1.新型的偶氮基前药AP-N=N-Cy的构建本研究工作设计合成了一种新型的偶氮基前药AP-N=N-Cy,该偶氮基前药由前体药物分子(AP)通过多功能的偶氮苯基团与近红外荧光团(Cy)相连接而成。研究结果表明:该偶氮基前药不仅可作为对偶氮还原酶响应的近红外探针以实时示踪药物递送过程,而且还可作为抗癌药物分子(AdP)的递送平台。在偶氮还原酶存在的情况下,AP-N=N-Cy中的多功能偶氮苯基会发生断裂进而释放AdP和Cy,其偶氮苯基团充当了开启Cy荧光的开关,它的引入使得该偶氮基前药具有了独特的荧光开-关特性(图2)。 基于偶氮还原酶会特异性地在结肠中分泌,该偶氮基前药实现了在结肠中特异性的定位递送与靶向释放。该偶氮基前药可以口服,并且在到达结肠前具有高稳定性和低毒性。鉴于抗癌药物分子释放与荧光开启过程的同步性,可利用荧光成像和质谱成像相结合的多模式成像技术对抗癌药物分子在体外、离体和体内的递送进行精确示踪。 图2 偶氮基前药AP-N=N-Cy的构建和释药机理 2. iMScope TRIO 成像质谱显微镜测试条件取健康昆明雄性小鼠,随机分为两组并禁食12小时,分别用前药AP-N=N-Cy(0.1 mL,2 mg / kg)和PBS(0.1 mL)进行灌胃,在灌胃12小时后处死、解剖,取胃、小肠、盲肠、结直肠、肾脏、心脏、肺、肝和脾脏组织并进行冷冻切片,切片厚度为15 μm。将所得组织切片放置在ITO导电载玻片上(100Ω/ m2,日本大阪松浪玻璃)。使用基质喷涂仪iMLayer(Shimadzu,Kyoto,日本)将基质α-氰基-4-羟基肉桂酸升华于组织切片表面后,使用成像质谱显微镜iMScope TRIO(Shimadzu,Kyoto,日本)对上述组织切片进行成像分析。质谱条件如下:正离子模式,采集范围m/z 150-500;激光直径10 μm;步长40μm;激光强度35。 3. 基于iMScope TRIO 成像质谱显微镜的组织成像研究利用iMScope TRIO成像质谱显微镜在分子水平上对AdP和Cy在不同组织中的生物分布进行精确分析。如图3所示,仅在前药AP-N=N-Cy灌胃的小鼠盲、结肠部位检测到AdP(MS / MS片段,m/z 476.16)和Cy(MS / MS片段,m/z 369.17)的特征信号,而给药组小鼠其余器官,包括胃、小肠、肾脏、心脏、肺、肝和脾脏等中并未能检测出药物分子AdP的分布,表明前药AP-N=N-Cy仅在小鼠结直肠中释放活性药物AdP和探针分子,且Cy和AdP在分子水平上显示出优异的同步性,使得探针分子Cy的信号可以有效地代表药物分子AdP的组织分布。图3 前药AP-N=N-Cy灌胃12 h后在小鼠组织中的质谱成像分析图 a)盲肠 b) 结肠 c) 其余器官(叠加图) 本文相关内容由中国科学院兰州化学物理研究所赵晓博博士生提供,详细研究内容已正式发表于Analytical Chemistry, 2020, 92: 9039-9047。 文献题目《Precisely Traceable Drug Delivery of Azoreductase-Responsive Prodrug for Colon Targeting via Multimodal Imaging》 使用仪器岛津iMScope TRIO 作者Xiao-bo Zhao,1,2 Wei Ha,1 Kun Gao,3 Yan-ping Shi1* 1、CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People’s Republic of China, Email: shiyp@licp.cas.cn2、University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China3、College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
  • 岛津成功举办成像质谱显微镜技术交流会
    自岛津成像质谱显微镜iMScope TRIO面世以来,各应用领域行业对它给予了高度期待,目前针对于医药研发、食品分析、生命科学等应用研究,利用岛津iMScope TRIO带来那些收获和成果呢?7月16日在岛津北京分公司成功举办了成像质谱显微镜技术交流会。专程邀请了大阪大学工学院研究课副教授新间秀一博士、北京大学分析测试中心聂洪港博士、岛津日本公司iMScope TRIO产品经理Koretsugu Ogata博士来到会议现场为用户分享研发尖端内容,现场交流气氛十分热烈。会议首先由岛津公司分析测试仪器市场部胡家祥部长发表致辞,胡部长首先欢迎各位的到来,他讲到iMScope TRIO成像质谱显微镜iMScope的最新一代产品。“TRIO”进一步发扬光大iMScope独有的质谱分析成像、光学图像、定性分析3大特长。岛津公司始终期望提供科技便利,搭建沟通桥梁,为科技研发共同进步。会议现场 岛津公司分析测试仪器市场部胡家祥部长发表致辞 大阪大学大学院工学研究科新间秀一(Shuichi Shimma) 副教授发表了题为《Seeing is believing - Development of iMScope TRIO and applications》的报告。他根据多年的成像质谱工作经验,介绍了iMScope TRIO在医学,药学,食品科学,农药残留以及毛发类的研究成果。分析样品的种类可涉及到动物组织,植物组织,毛发样品,分享给国内的客户很多宝贵的经验和建议。 大阪大学大学院工学研究科新间秀一副教授发表北京大学分析测试中心聂洪港博士发表内容为《成像质谱显微镜应用介绍》。北京大学分析测试中心购买了国内第一台iMScope TRIO,装机不到半年的时间,以聂洪港博士为中心,进行了很多样品的分析。聂博士分享了一些使用iMScope TRIO分析的结果,使参会的客户对岛津的成像质谱更具有信心。北京大学分析测试中心聂洪港博士发表来自岛津公司日本本部iMScope TRIO产品经理Koretsugu Ogata博士发表内容为《成像质谱显微镜以及最新分析软件的介绍》。他介绍了成像质谱显微镜的硬件和最新分析软件。新软件的功能弥补了现有软件的很多缺陷,使iMScope TRIO的数据采集到分析更加流畅,分析结果更加满足了很多研究者的需求。岛津日本本部iMScope TRIO产品经理Koretsugu Ogata博士发表岛津公司市场部生命科学产品经理韩美英博士,她简单介绍了2018 ASMS新推出的四极杆飞行时间质谱仪LCMS-9030的高置信度定性和定量的性能,以及获得CFDA认证的临床质谱仪。岛津公司市场部生命科学产品经理韩美英博士发表 交流现场随后由岛津中国质谱中心iMScope TRIO负责人董静博士,带领用户参观了质谱中心并介绍了组织切片的方法以及涂敷基质方法等前处理的技巧,给参会人员演示了简单的仪器操作流程,让客户实际体验iMScope TRIO。 仪器讲解演示关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津于ASMS 2022介绍其最新成像质谱显微镜产品
    第70届美国质谱年会(70th ASMS Conference on Mass Spectrometry and Allied Topics)于明尼苏达州(Minnesota)当地时间2022年6月5-9日(北京时间 2022年6月6-10日)在美国明尼阿波里斯市会议中心召开(Minneapolis Convention Center)。岛津在本次会议期间特别介绍了其于20年推出的质谱成像产品,iMScope QT。iMScope QT在保留高空间分辨率,显微镜等原有仪器特点的基础上,改善了检测灵敏度和速度,实现了速度、特异性、空间分辨率、灵敏度为一体的质谱成像分析。 iMScope QT是由显微镜-MALDI单元与LCMS-9030组合而成,显微镜-MALDI单元可移动分开使用,是成像质谱与LC-QTOF的兼用系统,用一台仪器可实现定性、定量、以及定位分析。不仅如此,与产品同步提供的基质涂敷自动喷雾系统,结合原有的iMLayer升华涂敷系统,提高成像灵敏度和空间分辨率。此外,岛津可提供从前处理到数据采集,软件分析的质谱成像的整体解决方案。使用一台质谱仪就能完成所有分析,通过叠加不同检测原理的图像以及不同离子化方法的数据进行分析,为成像分析提供全新的工具。仪器信息网将持续带来ASMS2022期间的最新质谱产品技术报道,敬请关注本话题。
  • 549万!岛津中标成像质谱显微镜项目
    一、项目编号:[350200]HC[GK]2022004二、项目名称:成像质谱显微镜三、采购结果 [350200]HC[GK]2022004-1 包1供应商名称供应商地址中标(成交)金额(单位:元)北京华尔达科贸有限责任公司北京市东城区东中街58号美惠大厦C6025490000.0000元四、主要标的信息 合同包[350200]HC[GK]2022004-1 包1北京华尔达科贸有限责任公司:货物类品目号品目编号及品目名称采购标的品牌规格型号数量单位单价(元)金额(元)1-1A02100407质谱仪质谱仪SHIMADZUiMScope QT1套54900005490000.0000
  • 岛津成像质谱显微镜应用专题丨食品类
    大米中磷脂类化合物的空间分布质谱成像分析 “五谷者,万民之命,国之重宝”,粮食生产是安天下、保供给、促发展、稳民心的战略产业。大米是地球上主要的粮食作物之一,里面含有90%以上人体所需的营养物质,是全世界一半人口的主要食粮。磷脂是大米中重要的脂类化合物,占谷物总脂质含量的10%,具有重要的营养价值。然而,大米在储藏过程中,磷脂会发生水解产生醛、酮、酚等挥发性有机化合物,导致大米产生腐败气味,降低其食用和利用价值。因此,系统性研究大米中磷脂类化合物的空间分布分析,对改善大米存储条件、减缓大米陈化、保障食品安全、提高大米的食用品质等具有十分重要的意义。 基质辅助激光解吸电离-飞行时间质谱成像(MALDI-TOF-MSI)是近年发展起来的新型分子成像技术,可直接分析样品组织,同时获得多种生物分子,如蛋白、多肽、脂质、糖类等内源性代谢物的空间分布信息。本研究工作利用具有高空间分辨率、高灵敏度的MALDI-TOF-MSI质谱成像技术成功实现了大米中磷脂类化合物的空间分布分析(Fig.1)。 Fig. 1. 基于MALDI-TOF-MSI技术的大米中磷脂类化合物空间分布分析示意图 1. iMScope TRIO 成像质谱显微镜测试条件 10% 明胶水溶液包埋大米,-80°C 冷冻8小时, 采用CM1950 切片机 (Leica, Wetzlar, 德国) 进行冷冻切片,切片厚度为16 μm。所得组织切片放置在ITO导电载玻片上 (100Ω/ m2,日本大阪松浪玻璃),用基质升华仪iMLayer (Shimadzu,Kyoto,日本) 在大米组织切片上均匀沉积 2,5-二羟基苯甲酸(DHB)基质。采用成像质谱显微镜iMScope TRIO (Shimadzu,Kyoto,日本) 对大米组织切片进行MALDI 质谱成像,使用Imaging MS solution Ver.1.30 (Shimadzu) 软件分析质谱数据,根据二级质谱图与文献、脂质数据库联用进行分析物鉴定。质谱条件如下:正离子模式,质量扫描范围为m/z 500-1000;激光强度25,激光斑点大小设置为1(大约为10 μm,an arbitrary unit of iMScope),激光频率为1000 Hz;检测电压1.85 kV;步长35μm。 iMScope TRIO 2. 基于 iMScope TRIO 成像质谱显微镜进行大米中磷脂类化合物的空间分布分析 采用iMScope TRIO成像质谱显微镜在分子水平上对大米中磷脂类化合物的空间分布进行精准分析。如图Fig.2,正离子模式下,m/z 500-1000 范围内共获得12个代表性磷脂分子的空间分布图像,显然,磷脂分子的分布模式与糙米植物学结构密切相关,在糙米组织切片中显示出不同的空间分布模式。溶血卵磷脂类化合物(LPC)分布于整个糙米籽粒中,内胚乳中的含量相对较高。卵磷脂类化合物(PC)主要位于胚芽和种皮中,胚芽中含量相对较高,内胚乳中含量极少。本研究实现了大米中磷脂化合物的可视化,为大米营养价值的评价提供了理论依据。 3. 基于iMScope TRIO 成像质谱显微镜进行大米加工过程中磷脂类化合物变化规律探究 粮食安全是事关国家和社会稳定的重大问题,个别商贩通过低价收购陈化大米,经二次加工添加矿物油、石蜡、色素等物质改变陈米外观形态,将其推向市场牟取利益。因此,为保证粮食安全,采用MALDI-TOF-MSI质谱成像技术,对大米加工过程中磷脂类化合物变化规律进行探究,结果表明(图Fig.3),糙米经过研磨、抛光,美白等系列加工过程,去除了米糠层和胚芽成为精白米,这一加工过程中随着研磨、抛光程度的增加,大米表层卵磷脂的含量逐渐减少直至消失,由此说明大米表面的卵磷脂可以作为重要指标用以大米加工程度的鉴定。 Fig. 2. 糙米组织切片中12个磷脂化合物MALDI-TOF-MS质谱图像Fig. 3. 精白米和糙米中磷脂类化合物的MALDI-TOF-MS质谱图像 本文相关内容由中国科学院兰州化学物理研究所张燕霞博士生提供,详细研究内容已正式发表于Journal of Chromatography A 1651 (2021) 462302。 文献题目《Spatial distribution analysis of phospholipids in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Yan-Xia Zhang a, b, Xiao-Bo Zhao a, Wei Ha a, Yi-Da Zhang a,*, Yan-Ping Shi a,*a Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Chinab University of Chinese Academy of Sciences, Beijing 100049, China
  • 岛津成像质谱显微镜应用专题丨米曲可视化
    镜质合璧 还原真实成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析 引言米曲是清酒酿造中的关键元素。它在清酒酿造中的主要作用被认为是提供分解淀粉和蛋白质的消化酶。众所周知,米曲成品的成分对清酒的品质(味道和香气)有很大的影响。然而,目前为止对米曲质量的评估经常依赖于首席酿酒师的经验。这意味着此领域相关科学知识的不足,且仍有发展空间。当首席酿酒师评估米曲质量时,米曲的物理结构,即外观和质地似乎是质量指标之一。在过去的研究中利用扫描电子显微镜来研究米曲的内部结构,但直到近几年,评估米曲结构和成分关系的研究仍然进展甚微。由于岛津iMScope成像质谱显微镜可同时观察样品结构和成分分布,在本应用报告中,我们将iMScope应用于发酵领域,并尝试可视化分析米曲结构和成分分布。 如图1所示,质谱成像(MSI)是非常适合观察米曲结构以及决定其有效成分分布的技术。MSI应用于食品的论文,已有芦笋中天冬酰胺和姜黄根中姜黄素分布可视化的应用报告⑴,⑵。本文针对食品科学研究中的“发酵”新应用领域,尝试着将米曲内的结构和成分分布可视化。由于米曲非常易碎,在进行MSI分析时,未经前处理制作米曲切片几乎是不可能的。因此,我们研究了各种切片制备方法,并成功实现从生米到蒸米和米曲过程中的代谢物可视化分析。图1 质谱成像(MSI)工作流程 实验 2-1试剂使用羧甲基纤维素(CMC)(FUJIFILM Wako)为包埋剂,配制浓度为4%的CMC水溶液,并将溶液放入70℃的恒温箱过夜来确保完全溶解。本实验中使用的基质是α-氰基-4-羟基肉桂酸(CHCA)和N-(1-萘基)聚乙烯二胺二盐酸盐(NEDC)(Merck),溶剂为乙腈、异丙醇和甲醇(FUJIFILM Wako)、超纯水。 2-2切片制备使用清酒酿造用的抛光率为70%的山田锦大米(白鹤酒造株式会社)制成的蒸米和米曲。生米可视化研究中使用市售大米。如前所述,这些样品材料极其脆弱。因此,采用冷冻切片机制备切片并使用粘性冷冻膜(cryo-lab)回收获得的切片。将米粒包埋在上文所述的4%羧甲基纤维素溶液中,在-80℃冷冻。切片厚度为20 μm,获得的薄膜利用导电双面胶带(3M公司)固定在ITO涂层玻璃载玻片上(无MAS涂层,表面电阻:100 Ω/m2)(松浪玻璃工业株式会社)(图2)。图2 米曲切片制备 2-3基质涂敷在检测米粒切片和米曲切片中的磷脂时,使用岛津iMLayer基质升华系统将CHCA沉积在样品表面(图3),接着喷涂CHCA溶液(3)。基质升华的膜厚度为0.5 μm。利用由乙腈、异丙醇、超纯水(3: 1: 6)构成的含0.1 %甲酸的混合溶剂溶解CHCA,调节其浓度为10 mg/mL。已知可以有效电离葡萄糖的基质NEDC,利用iMLayer进行升华,升华时设置温度为220℃、时间为10分钟。NEDC基质升华后,利用5%甲醇溶液进一步进行重结晶。图3 iMLayer基质升华系统 2-4质谱成像MSI检测使用岛津iMScope成像质谱显微镜进行。激光照射次数为100次/点。正离子模式检测磷脂,空间分辨率为25 μm,负离子模式检测葡萄糖,空间分辨率为50 μm。检测范围:正离子模式m/z 400-800,负离子模式m/z 180-230。在所有检测中,激光强度均设置为45,检测器电压为2.1 kV。 2-5构建MS图数据分析和MS图像构建采用岛津MSI分析软件Imaging MS Solution和IMAGEREVEAL MS进行。IMAGEREVEAL MS是通过统计学功能实现非靶向分析的软件。它拥有卓越的校正函数(图像过滤、像素插值),并含有“相似图片提取”功能。本文后半部分所示的葡萄糖可视化数据是利用IMAGEREVEAL MS软件进行分析。 结果 3-1生米、蒸米和米曲中磷脂的分布图4显示了生米、蒸米和米曲切片中胆碱的分布。胆碱是一种在米曲制作过程中分布和数量会发生巨大变化的典型成分。生米的结果在碾米之前测得,且结果表明胆碱累积在大米胚芽中。在碾碎后的蒸米中,来自胆碱的峰急剧下降,但在米曲的内部则观察到极强的峰。这表明胆碱在米曲发酵过程(即米曲制作过程)形成。因此,使用MSI 可以观察到米曲制作过程中胆碱数量和空间分布发生急剧变化的现象。图4 生米、蒸米和米曲中胆碱的分布 在米曲的内部还观察到各种磷脂(包括溶血磷脂)的累积(图5)。尤其是溶血磷脂酰胆碱LPC(16:0),m/z 496.34和LPC(18:2),m/z 520.34显示这一趋势(4)。而磷脂m/z 748.35和786.30的MS图像显示出其在米曲中的不均匀分布。这种异质性被认为由曲霉(米曲霉,Aspergillus oryzae)侵入蒸米中生长出雾状菌丝导致,这个过程就被称为“hazekomi”。下一部分我们将介绍一种将hazekomi过程可视化的方法开发以及将这种方法与MSI结合使用的结果。图5 米曲(山田锦,稻米抛光率:70 %)中溶血磷脂和磷脂的分布 3-2hazekomi可视化及其与MSI的配合使用⑸,⑹haze指的是米曲霉菌丝在蒸米表面扩散时呈现的白点,在首席酿酒师进行米曲目检时被作为一个结果指标。在早期的hazekomi可视化研究中,Yoshii等人发表了一篇基于扫描电子显微镜(SEM)观察的报告,他们通过将米曲霉传播过程直接可视化的方式成功观察到了米曲中米曲霉的生长,该结果有助于改善制曲过程(7)。 利用SEM将hazekomi过程可视化时,观察微观区域的能力是一个重要特征。不过,我们认为将整个米曲hazekomi过程可视化的方法以及可获取成分分布信息的技术也是有用的。为了解决这一问题,我们引入了采用β-葡萄糖醛酸酶(GUS)作为标志基因的GUS报告系统用于hazekomi可视化。具体来说,通过构建米曲霉GUS表达株以及生产使用该菌株的米曲(以下称为GUS米曲)来实现对制曲过程中米曲霉生长的清晰观察。GUS米曲的使用实现了通过颜色反应来可视化米曲霉位置,而当这种技术和MSI配合使用时,可获取关于成分分布的信息。这两种技术的结合同时实现了整个米曲的hazekomi可视化以及成分分布的可视化研究。 在此我们将对这种旨在把GUS报告基因系统应用于米曲的创新研究进行阐述。GUS报告基因系统最初是为了将植物组织中菌丝体的可视化而开发的。在植物组织中,常见做法是将样品浸泡在5-溴-4-氯-3-吲哚-β-D-葡萄糖苷(X-Gluc)溶液中,这是一种用于着色的显色底物。拥有极硬细胞壁的植物组织即便是长期浸泡在X-Gluc溶液中,也能够毫无问题地维持样品观察所需的形态。 不过,如前所述,米曲非常脆弱,且其性状和植物组织完全不同。这意味着采用现有的着色方案将极为困难。事实上,我们证实了在米曲浸泡在X-Gluc溶液中固定着色所需时间内,样品的形态由于吸水而发生了很大的改变。为了避免这一问题,必须改变添加X-Gluc的方式。因此,我们构思了一种通过将X-Gluc溶液喷洒在GUS米曲切片上的方法来可视化分析hazekomi过程。 图6显示了采用这种方法得到的结果。这里制曲使用的是抛光率为70%的抛光白鹤锦稻米(白鹤酒造株式会社的酒米),并在制曲开始24h、31h以及43h后取样。随着制曲的进行,可以观察到靛蓝色从曲的表面渗透到内部。尤其是在43小时之后、制曲完成时,不仅在曲的表面,在内部也能检测到浓烈的靛蓝色,表明米曲霉已经到达了稻米内部。 曲的一个主要作用是在酿造(发酵)阶段提供各种酶,以便形成酵母菌所需的营养。观察到的主要酶为α-淀粉酶或葡萄糖淀粉酶,这两者会形成作为酵母生长所需的葡萄糖。此外,也有报道表示α-淀粉酶可能是影响曲霉菌丝体侵入性生长的非常重要的酶。图6 GUS米曲中hazekomi过程的可视化分析(比例尺:1 mm(插入图片:200 μm)) 尽管既往研究中报道了制曲后葡萄糖的增加,但hazekomi和葡萄糖分布之间的关系尚未明确。在制曲过程每个阶段的米曲质谱图中,确实观察到了葡萄糖峰强度的升高(图7)。已有报道表明NEDC可以增加癌组织中葡萄糖检测的灵敏度(8)。因此,当使用NEDC作为葡萄糖MSI的基质时,[M+Cl]-= m/z 215.02在负离子模式下被检测到。 为了研究GUS米曲的hazekomi过程和葡萄糖分布之间的关系,使用GUS染色切片相邻的切片进行了MSI,比较获得的葡萄糖离子强度和GUS染色图像的分布,图8显示其结果。 观察葡萄糖分布及与GUS染色图像的叠加可以了解到从制曲初始阶段到后期阶段,葡萄糖从外到内增加。这一结果表明hazekomi和葡萄糖分布之间存在相关性。 另外,有些区域由于X-Gluc为深色且葡萄糖强度很高而成像为蓝色(黑色箭头显示),同时在本实验中也能看到有些部分虽然也观察到了hazekomi,但葡萄糖强度低,例如以黑色圆圈表示的区域。这些结果表明位置不同,hazekomi产生的葡萄糖量存在差异性。今后,可以通过包含各种代谢物(例如氨基酸、糖类、糖醇)分析的探讨来实现从化学角度更好地了解hazekomi现象。 虽然目前的考察着重于葡萄糖并解释了伴随hazekomi过程葡萄糖分布的变化,但可以想象,形成的酶的扩散范围和活性也会受到诸如米粒特征等其他因素的影响。这种新的可视化技术(GUS米曲和MSI的融合)预期可以改进米曲和其他曲衍生产品的制曲流程。图7 利用NEDC基质获得的葡萄糖峰的时间依赖性变化图8 GUS米曲中葡萄糖([M + Cl]–)的可视化(比例尺:1 mm) 结论 在本研究中,分析了磷脂在山田锦大米(清酒酿造米)中的空间分布,并利用白鹤锦米(白鹤酒造株式会社的专有清酒米)可视化分析hazekomi过程和葡萄糖分布之间的关系。同时还利用白鹤锦米制备了一种表达GUS的米曲品系,并用于揭示hazekomi过程和葡萄糖分布之间的关系。这种新的可视化技术利用了GUS米曲和MSI相结合,可有助于更好地了解米曲和其他曲衍生产品的制曲流程并改进制曲方法。由于本实验中采用的岛津iMScope成像质谱显微镜能同时实现微观区域的光学显微镜观察以及显微镜下的质谱分析,将iMScope应用于各种酒曲和其他麦芽的分析,可以获得发酵领域相关新科学知识。 iMScope QT(图9)是iMScope的新一代产品,于2020年6月发布。在延续iMScope TRIO卓越的显微镜观察功能和空间分辨率的同时,新的iMScope QT提供了更高的质量分辨率、检测灵敏度和分析速度,让分析变得更轻松。同时,由于能够分析更宽的质量范围,期待MSI技术可以进一步扩展在不同研究领域应用的可能性。图 9 iMScope QT 参考文献(1) K. Miyoshi, Y. Enomoto, E. Fukusaki, and S. Shimma, Shimadzu Application Note (No. 57).(2) S. Shimma and T. Sagawa, Shimadzu Application Note (No. 63).(3) S. Shimma, Y. Takashima, J. Hashimoto, K. Yonemori, K. Tamura, and A. Hamada, J. Mass Spectrom., 2013, 48, 1285(4) N. Zaima, N. Goto-Inoue, T. Hayasaka, and M. Setou, Rapid Commun.Mass Spectrom., 2010, 24, 2723.(5) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, S. Shimma, J. Biosci.Bioeng., 2020, 129, 296(6) A.P.Wisman, Y. Tamada, S. Hirohata, K. Gomi, E. Fukusaki, and S. Shimma, J. of Brew.Soc.Japan (in press).(7) M. Yoshii and I. Aramaki, J. of Brew.Soc.Japan, 2001, 96, 806.(8) J. Wang et al., Anal.Chem., 2015, 87, 422. 文献题目《成像质谱显微镜用于米曲中磷脂和葡萄糖的可视化分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma *1, 2, Yoshihiro Tamada *3, Adinda Putri Wisman *1, Shuji Hirohata *3, Katsuya Gomi *4 Eiichiro Fukusaki *1,2*1 大阪大学工程研究生院生物技术系*2 大阪大学岛津组学创新研究室*3 白鹤酒造株式会社*4 日本东北大学农学研究生院未来生物产业的生物科学与生物技术系
  • 120万!西南交通大学质谱仪、显微镜等采购项目
    项目编号:YQCG-2022-053项目名称:西南交通大学质谱仪、显微镜等设备购置预算金额:120.0000000 万元(人民币)最高限价(如有):120.0000000 万元(人民币)采购需求:质谱仪、显微镜等设备购置合同履行期限:签定合同后120日内到用户现场,到货后10日内完成安装调试并具备验收条件。本项目( 不接受 )联合体投标。采购需求.pdf
  • “慧眼”观微—成像质谱显微镜iMScope QT开箱测评
    成像质谱显微镜iMScope QT作为岛津近年来高端质谱领域发布的重磅新产品,融合光学显微镜、MALDI和Q-TOF的显微质谱成像技术很让人期待!成像质谱显微技术研究物质的空间分布具有显著优势,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息,在医学、药学、农业食品、公共安全、资源环境、工业等领域有着广泛的应用前景。 下面小编就给大家带来一份iMScope QT的详细图文测评报告,相信大家看过之后,对这款产品一定有了更深入的了解。 开箱初见 坐着飞机悄然落地实验室的大家伙终于迎来了开箱时刻,百闻不如一见,一起来体验一下吧!iMScope QT和MS-9030合体过程 岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope QT),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置四极杆飞行时间质谱仪(Q-TOF)。 将光学显微镜和质谱仪整合成一体,既可观察得到高分辨率的形态图像,又可以对特定分子进行鉴定和可视化分布分析,可将两种不同检测原理的图像进行重叠分析,为成像分析提供了全新的工具。 镜质合璧,还原真实 作为一台搭载了光学显微镜的质谱成像仪,两种不同检测原理的图像如何进行采集,图像重叠分析时又会碰撞出怎样的火花呢? 在下图中是从光学图像中选择肝门静脉进行质谱成像分析,可以清晰观察到肝门静脉周边的血脂和脂质的分布。 多角度测评环节正式开始 下面请随着小编从分辨率、扫描速度、灵敏度等几个角度进行测评。 空间分辨率“高清镜头”下的微观世界 作为一款搭载了光学成像镜头和质谱成像功能的仪器,iMScope QT的光学显微镜物镜最大可达到40倍率又结合质谱成像显微镜5μm空间分辨率,究竟能够将研究视野深入到什么样的微观水平呢?小编拿来了大家关注的亚细胞水平的组织器官,看看iMScope QT能观察到微观世界哪些变化。 以槲皮素为例,iMScope QT成功观察到其在肝脏部位的细胞水平分布,分析结果表明药物主要分布在细胞间质,充分显示了成像质谱显微镜分析亚细胞水平的可靠性。高空间分辨率对于药物动态分析、安全性评估和毒性机制的阐明,以及视网膜和皮肤等特殊组织的分析中都具有重要意义。 扫描速度快速制图“小能手” iMScope QT这款产品拥有超高质谱空间分辨率给细胞水平上的研究带来便利,但是小编担心如果没有快速的扫描速度作保障,在大面积样本成像时会消耗很长的时间才能完成分析。带着疑虑,小编准备了小鼠全脑切片(14ⅹ7mm),空间分辨率采用20 μm,扫描区域245000pix,2.6小时后我们获得一张高清晰度小鼠脑成像图。与同类质谱成像产品比,iMScope QT能够高速、高效地采集到高清晰度的质谱成像图。 小鼠脑成像质谱图 灵敏度“火眼金睛”看切片 质谱成像中高灵敏度分析也是至关重要的,尤其在药物代谢研究中对低浓度代谢物分布的研究。iMScope QT在硬件性能上较之前作了较大提升,后端Q-TOF型LCMS-9030的接入提高了质谱检测的灵敏度。在本次开机测评中,小编分析了给药后的大鼠肺中抗心律失常药物胺碘酮及其代谢物的分析,明确了药理学研究中的发现是胺碘酮副作用引起。给药后的大鼠肺部病理切片分析发现坏死区域质谱成像发现抗心律失常药物胺碘酮及其代谢物在坏死区域的分布,明确了药理学研究中的发现是胺碘酮副作用引起。 系统扩展性成像定位分析与液质分析的完美兼容 cope QT不仅局限在成像分析,成像单元支持移动分开和组装使用,小编实验室就是将已有LCMS-9030的Q-TOF单元与成像单元连接后使用,确实可以实现质谱成像分析和LCMS-9030的兼用系统,既可以用于准确定性定量分析,也可以完成可靠的定位分析。 结语 整体而言,成像质谱显微镜iMScope QT将光学显微镜和质谱仪整合成一体既可观察到高分辨率的形态图像,为成像分析提供了全新的工具。在拥有高空间分辨率同时,还能高速扫描,高效获得高质量成像数据。同时还能保持系统的拓展性,通过一台仪器即可获得LC-MS的定性、定量信息和质谱成像的位置信息。期待iMScope QT能够为国内相关科研工作者们的研究带来帮助,落地开花结出硕果。 撰稿人:宋玉玲
  • 650万!同济大学成像质谱显微镜采购项目
    项目编号:0811-234DSITC0392项目名称:成像质谱显微镜预算金额:650.0000000 万元(人民币)最高限价(如有):650.0000000 万元(人民币)采购需求:成像质谱显微镜/壹套(项目预算:人民币650万元,可以采购进口产品)合同履行期限:合同签订之日起至合同内容履行完毕止本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月27日 至 2023年03月06日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:微信公众号“东松投标”方式:关注微信公众号“东松投标”,完成信息注册,即可购买招标文件。售价:¥700.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:上海市四平路1239号联系方式:杨老师 021-65982684-80042.采购代理机构信息名称:上海东松医疗科技股份有限公司地址:上海市宁波路1号申华金融大厦11楼联系方式:刘韵、王悦 0086-21-63230480转8606、86273.项目联系方式项目联系人:刘韵、王悦电话:0086-21-63230480转8606、8627
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 岛津成像质谱显微镜应用专题丨板蓝根可视化
    质谱成像技术揭示板蓝根中化学成分的空间分布 板蓝根(Isatidis Radix)为十字花科菘蓝属植物菘蓝(Isatis indigotica Fortune)的干燥根,具有清热、解毒、凉血、利咽等功效。作为清热解毒类的代表药物,板蓝根与广泛用于各类感冒的预防和治疗,在严重急性呼吸综合征(SARS)、甲型H1N1流感等疾病的防治中发挥了积极作用。新型冠状病毒肺炎(COVID-19)爆发以来,各版《诊疗方案》和“三药三方”中也不乏板蓝根的身影。板蓝根的抗病毒抗炎药效显著,但化学成分复杂,质量评价难度较高,因而一直是国内外研究的热点。 目前研究学者已经从板蓝根中分离得到近400个化合物,综合文献报道主要可归纳为生物碱、含硫化合物、苯丙素、核苷、氨基酸、有机酸、酚、黄酮、蒽醌、萜、醇、醛、酮、腈、酯、糖、甾醇、肽、鞘脂等19大类。研究药用植物化学成分的空间分布,有助于了解其形态学结构和功能。尽管板蓝根的化学成分研究已经十分深入,但其分子空间分布鲜见报道。质谱成像(mass spectrometry imaging,MSI)技术是近年新兴的分子成像技术,通过直接测定样品表面的离子信号获得其空间分布信息,具有非靶向、无需标记和多成分同时检测的优势。与光学图像采集技术结合后,既可观察到高分辨率的形态图像,又可对特定的分子进行鉴定和可视化分布分析,在生命科学领域显示出巨大的应用前景。本文首次采用高分辨质谱成像技术对板蓝根化学成分的空间分布进行分析。利用大气压基质辅助激光解吸电离-离子阱-飞行时间质谱(atmospheric pressure matrix assisted laser desorption combined with ion trap-time-of-flight mass spectrometry,AP-MALDI-IT-TOF/MS)扫描不同产地药材横切面,鉴定所含化合物,并观察化合物空间分布模式和富集位置,结合偏最小二乘回归(partial least squares regression,PLSR)算法,对不同样品进行分类。研究思路见图1。 图1 AP-MALDI-IT-TOF/MS成像技术揭示板蓝根中化学成分的空间分布 1. iMScope TRIO 成像质谱显微镜测试条件质谱成像技术在植物、动物、人体组织中的内源性成分和药物代谢组分的可视化检测方面发展迅猛,但在中药分析领域的应用才刚开始起步,且多用于新鲜采集的原植物或中药材。而真正用于市场流通和临床应用的中药材为干品,制备满足MSI测试需要的切片比较困难,故相关研究鲜见报道。在制备板蓝根干品冰冻切片时,其干燥、坚硬、易碎的结构带来了极大的挑战,故对冷冻切片的厚度、温度,切片固定方式,基质种类和添加方式等进行了详细的优化。板蓝根药材经明胶包裹冷冻后,先用双面碳导电胶贴牢后,再用冰冻切片机切制40 μm的组织切片,分别喷涂2, 5-DHAP溶液和1, 5-DAN溶液作为正、负离子的基质。主要质谱条件如下:激光照射直径:40 μm,像素间隔80 μm,扫描范围:m/z 100-500,m/z 500-1000。 2. 板蓝根中化合物的AP-MALDI-IT-TOF MSI可视化分布根据离子的准确质荷比、同位素丰度比,与对照品和液质一、二级数据比对,并结合文献检索和数据库搜查,初步鉴定了多个化合物类别118个质谱峰(见图2)。成像质谱显微镜将光学显微镜和质谱仪的优势整合,既可观察到形态图像,又可对分子进行鉴定和可视化分布分析,在软件上可简便且高精度地重叠观察光学显微镜图像与质谱分析图像,详细解析感兴趣区域。本文采用AP-MALDI-IT-TOF MSI技术首次揭示了板蓝根中化合物的空间分布, 图3和 图4展示了板蓝根横切面的木栓层、皮层、韧皮部、形成层、木质部及部分化合物在特定空间区域的分布。综合分析,板蓝根中化合物大多富集于营养储存的组织韧皮部,与之相比,水分输送组织木质部中集中分布的成分较少。 图2 板蓝根MALDI-IT-TOF MS成像化合物鉴别结果图3 板蓝根横切面光学图 (a) 和oxindole (b)、3-[2' -(5' -hydroxymethyl) furyl]-1(2H)-isoquinolinone-7-O-β-D-glucoside (c)、coniferin (d)、guanine (e)、histidine (f)、 proline (g)、arginine (h)、cyclo(L-Phe-L-Tyr) (i)等成分正离子质谱成像图 图4 板蓝根横切面光学图 (a) 和 isatindigoside F (b)、clemastanin B (c)、maleic acid (d)、malic acid (e)、citric acid (f)、sucrose (g)、isovitexin (h)、vanillin (i) 等成分负离子质谱成像图 3. PLSR法区分不同产地板蓝根药材将4个产地的各3批板蓝根药材分别划分到4个组。以样品横切面的AP-MALIDI-IT-TOF MSI数据为Y值,组别为X值,在正、负离子模式和m/z 100-500、m/z 500-1000两个扫描范围内,分别建立PLSR回归模型。由图5可见,在4个模型中,样品规格的预测值和实际值均呈现良好的相关关系,说明采用PLSR法可对不同产地的板蓝根进行准确的区分。 图5 MALDI-IT-TOF MS成像结合PLSR回归区分不同产地板蓝根样品 正离子m/z 100-500范围 (A)、负离子m/z 100-500范围 (B)、正离子m/z 500-1000范围(C)、负离子m/z 500-1000范围 (D) 本文相关内容由中国食品药品检定研究院的聂黎行研究员提供,详细研究内容已正式发表于Frontiers in Pharmacology - Ethnopharmacology, 2021, https://doi.org/10.3389/fphar.2021.685575。 文献题目《Microscopic Mass Spectrometry Imaging Reveals the Distributions of Phytochemicals in the Dried Root of Isatis indigotica》 使用仪器岛津iMScope TRIO 作者Li-Xing Nie1,2, Jing Dong3, Lie-Yan Huang2, Xiu-Yu Qian2, Shuai Kang2,4*, Zhong Dai2 and Shuang-Cheng Ma1,2*1 Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China2 National Institutes for Food and Drug Control, National Medical Products Administration, Beijing, China3 Shimadzu China Innovation Center, Beijing, China4 College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
  • 岛津成像质谱显微镜应用专题丨黄皮代谢物研究
    黄皮不同部位中代谢物分子空间分布的质谱成像分析 黄皮(Cluasena lansium(Lour.)Skeels)属于芸香科(Rutaceae)黄皮属(Clausena)中的一种特殊果树,分布在中国南方地区。黄皮以其果实闻名于世,是非常受欢迎的热带保健水果,其根、茎、叶和种子也被广泛应用于民间医药或中药中。 以往对该植物的化学研究主要集中在寻找具有药用价值的生物活性成分,到目前为止,已经分离和鉴定一系列天然产物,这些物质具有明显的抗肿瘤、抗炎、抗氧化及降血糖等作用,主要包括咔唑类生物喊、香豆素类化合物、酰胺类生物碱、萜类和黄酮等。其中咔唑类生物碱和单萜基香豆素为其特征性成分。有关黄皮中活性成分的分离和测定方法已得到广泛报道,然而,人们对黄皮特征代谢物在组织内的分布却知之甚少。对黄皮果中的化学成分进行研究,探究其中具有药用价值的生物活性成分空间分布信息,有助于理解植物代谢物合成的调控机制和功能基础,对黄皮保健食品的开发具有重要意义。 质谱成像技术是近年来受到关注的一种新型的分子成像技术。基于高灵敏、高分辨、高通量特性的质谱结合先进的显微成像技术,样品制备过程不需要组织粉碎,无需标记即可实现多种物质在组织中的原位分布,为多种代谢物的研究提供了更多的信息维度。 本研究通过优化样品前处理方法,采用基质辅助激光解吸/电离质谱成像技术(MALDI-MSI)对黄皮(Clausena lansium, Lour)的组织分布特征进行研究,为更好地开发、利用黄皮这一药食两用的水果资源提供理论基础。本研究是首次利用质谱成像技术实现对黄皮小分子代谢物的系统研究(见图1)。 图1 利用质谱成像技术可视化黄皮不同组织中内源性分子分布 1. iMScope TRIO 成像质谱显微镜测试条件将不同部位的组织块包埋在2%羧甲基纤维素(CMC)中进行冷冻切片,切片厚度为 25μm,将所得组织切片放置在 ITO 导电载玻片上(100 Ω/m2,日本大阪松浪玻璃),将载玻片在真空干燥箱中干燥20分钟。使用带有0.22 mm喷嘴的喷枪(PS-270,GSI Creos,日本东京)和基质升华设备iMLayer(Shimadzu,Kyoto,日本)进行基质涂敷。在喷枪法中,使用1mL 40mg/mL DHB溶液(0.1%TFA,70%甲醇水配置)作为基质,喷枪与载玻片保持250px的距离, 每喷雾10s后干燥5s,循环喷雾-干燥过程,直到将1 mL DHB溶液喷涂于切片并干燥完全。对于升华法,使用iMLayer设备将基质升华于组织切片表面,厚度为0.7μm DHB。所有数据都是在装有MALDI离子源的iMScope TRIO(Shimadzu,Kyoto,日本)上采集,质谱条件如下:正离子模式采集, 采集质量范围 m/z 100-1000, 激光强度50。 2. 基于 iMScope TRIO 成像质谱显微镜的组织成像研究采集黄皮植物不同部位作为研究样品,分别对应果实、小茎、叶片。采用iMScope TRIO 成像质谱显微镜对三个不同部位的横切面进行了生物碱、香豆素、糖及小分子酸等内源性分子的空间分布分析。 如图2所示,3-甲基咔唑和Murrastinin在果实全果均有分布,尤其在果核含量特别丰富。在黄皮小茎中,这两个物质主要存在于木质部和髓质部,表皮含量较低。此外,在叶片的上下表皮含量丰富。Murrayanine和heptaphylline这两种咔唑碱仅分布于果肉组织中,茎中含有少量,果皮、果核和叶片中几乎不存在。而Girinimbine只存在于黄皮果核外皮以及茎的外表皮。黄皮属植物咔唑类化合物通过直接细胞毒性、诱导肿瘤细胞凋亡和/或免疫增强作用抑制肿瘤生长,他们的抗癌潜力引起了越来越多研究的兴趣。通过定位该类物质的组织分布,可以有效提高活性成分的提取效率。图2 不同生物碱在黄皮果实、茎、叶片中空间分布的质谱成像图 此外,如图3所示,香豆素类化合物在黄皮中的分布是相似的,主要存在于果皮中。有报道称,香豆素类化合物的抗氧化、抗癌及抗炎症方面发挥重要作用。糖类广泛存在于植物中,是植物快速储能物质。 图3 不同香豆素在黄皮果实、茎、叶片中的空间分布的质谱成像图 如图4所示,己糖(葡萄糖和果糖)主要分布在黄皮果实的果肉当中,蔗糖分布在果皮、果肉以及果肉中纤维上。水果中产生的蔗糖由蔗糖转化酶水解成葡萄糖和果糖,黄皮切片中蔗糖的检测强度约为己糖的4.7±1.4倍,说明黄皮中糖类主要以蔗糖的形式存在。据文献报道,葡萄糖和果糖的甜度分别是蔗糖的0.75倍和1.7倍。因此,这很好地解释为什么黄皮果品尝比其他水果酸。图4 糖、有机酸及其他小分子在黄皮果实中空间分布的质谱成像图 本研究结果有助于更好的了解黄皮内源性生物活性物质在不同组织部位的分布,为黄皮成分识别、质量评价、高值化利用等提供参考。 本文相关内容由广东省农业科学院农业质量标准与监测技术研究所唐雪妹博士提供,详细研究内容已正式发表于Phytochemistry, 2021, 192:112930. 文献题目《Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Xuemei Tang a,b, Meiyan Zhao a, Zhiting Chen a, Jianxiang Huang a,b, Yan Chen a,Fuhua Wang a,b, Kai Wan a,b,* a Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Chinab Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China* Corresponding author. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. 声 明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 基于成像质谱显微镜对人参皂苷类物质的空间分布评价
    p style="text-align: justify text-indent: 2em line-height: 1.75em "1. 摘 要/pp style="text-align: justify text-indent: 2em line-height: 1.75em "参类目前是世界上被广泛应用的天然药物,特别是人参,西洋参和三七。其中人参皂苷(Ginsenoside)被认为是其中的主要活性成分,主要包括人参皂苷Ginsenoside Rb1, Rb2 和Rg1。人参中皂苷的种类,表达水平以及局部分布模式的差别不仅可以鉴别人参品种和产地,同时帮助探索有效成分的代谢通路。采用iMScope iTRIO/i质谱成像的方法对人参品种和年限进行鉴定,不仅前处理简单,不需要染色或者标记,同时还能原位观察到人参皂苷在植物组织中的空间分布信息。本研究建立了成像质谱显微镜技术对人参皂苷类物质在组织中的空间分span style="text-indent: 2em "布的直接分析(不需要染色和标记)及其结构确证的方法,对于植物类样品中有效成分或者毒物毒素的原位分析来说具有借鉴意义。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. 前 言/pp style="line-height: 1.75em text-indent: 2em "人参皂苷(Capsaicinoids)属于固醇类化合物,三萜皂苷,被认为是参类物质的主要活性成分,研究发现人参皂苷具有缓解疲劳,延缓衰老,抑制癌细胞增殖等作用。目前对于人参皂苷类物质的研究主要集中在分离提取纯化工艺改进及其生物活性的相关研究。常规的方法是把样品均质化,过柱子分离提取纯化,最后通过质谱检测器进行检测。但是这种方法样品前处理复杂,且其在组织中的原位空间分布信息不得而知。目前常用的成像方法,需要对目标物进行标记,但是标记物容易解离,且未知物无法测定。针对这些局限性,岛津开发了质谱显微镜,把显微镜和质谱仪精准的融合在一起。借助iMScopei TRIO/i 前端搭载的高分辨光学微镜,可以清晰的观察并定位到人参的细微组织上,从而进行多点的质谱成像分析。后端配置离子阱和飞行时间串联质谱仪(ITTOF),具有高质量分辨率的多级质谱分析功能,提供丰富的碎片信息,进一步验证人参皂苷的结构。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 实 验/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 材料和仪器/pp style="text-align: justify text-indent: 2em line-height: 1.75em "三年生长白山产人参购自中国中医科学院中药研究所。MALDI级别的a-Cyano-4hydroxycinnamic acid (CHCA),购自西格玛公司。人参皂苷Ginsenoside Rb1,Rb2和Rg1购自ChromaDex公司,Rb1, Rb2和Rg1的化学结构式见下图1。HPLC级别的乙腈和甲醇购自默克公司。25 mm X 75 mm导电载玻片购自德尔塔科技公司。明胶购自西格玛公司。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 切片的制作以及基质涂敷/pp style="text-align: justify text-indent: 2em line-height: 1.75em "干燥人参取根须部位,用100 mg/ml明胶进行包埋。使用Leica CM1950在-20℃的环境下制作15μm厚切片。采用升华+喷涂的two-step基质涂敷方法,其中基质升华通过SVC-700TMSG iMLayer自动升华仪完成。基质喷涂使用GSI Creos Airbrush完成。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.3 基于iMScope iTRIO/i 的质谱成像分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "分析条件/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a89b5578-4bc2-4bff-99f7-11fad88f2941.jpg" title="微信截图_20200619174751.png" alt="微信截图_20200619174751.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "4. 结果与讨论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4.1 人参皂苷Ginsenoside标准品的化学结构及其相应的质谱图/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/06529eee-65af-4b74-a856-2e5ef1e54bfd.jpg" title="1.png" alt="1.png"//pp style="text-align: center "图 1. 人参皂苷化学结构式及其单同位素质量(A) Ginsenoside Rb1(B)Ginsenoside Rb2(C)Ginsenoside Rg1/pp style="text-align: center"img style="width: 600px height: 520px " src="https://img1.17img.cn/17img/images/202006/uepic/00d99d47-ee07-4161-a799-833f1bf69896.jpg" title="2.png" width="600" height="520" border="0" vspace="0" alt="2.png"//pp style="text-align: center"img style="width: 600px height: 264px " src="https://img1.17img.cn/17img/images/202006/uepic/f880816d-99a9-4a55-b585-1c0d964da052.jpg" title="3.png" width="600" height="264" border="0" vspace="0" alt="3.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图 2. 人参皂苷Ginsenoside标准品的质谱图。(A) Rb1[M+K]+一级平均质谱图及其(B) 二级平均质谱图。(C) Rb2[M+K] + 一级平均质谱图及span style="text-indent: 2em "其(D) 二级平均质谱图。(E) Rg1[M+K] + 一级平均质谱图及其(F) 二级平均质谱图。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4.2 人参切片上人参皂苷类物质的质谱图/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b21f3f6a-6be7-4fde-9a8d-45f23c1b94d7.jpg" title="4.png" alt="4.png"//pp style="text-align: center "图 3. 人参切片多点成像质谱分析. (A) m/z 800-1250全扫描平均质谱图。(B) 人参皂苷Rb1[M+K] +的扩大质谱图。(C) 人参皂苷Rb2[M+K] +的扩大质谱图。(D) 人参皂苷Rg1[M+K] +的扩大质谱图。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee5cb9f3-82b0-4eb5-a439-df0bc03d04ba.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-align: center "图 4. 人参中人参皂苷(Ginsenoside)类物质的多点成像质谱分析(放大倍数为1.25X)。(A) 人参根茎切片的光学图像。(B).人参皂苷Rb1([M+K]+:1147.52)的一级离子密度图。(C).人参皂苷Rb2([M+K] +:1117.50)的一级离子密度图。(D).人参皂苷Rg1([M+K] +:839.41的一级离子密度图. Scale bar: 500 μm。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-align: center "/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5. 结 论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "通过iMScope iTRIO/i前端搭载的高分辨光学显微镜拍摄的光学图像和相应的多点质谱图像的重叠,我们可以直观span style="text-indent: 2em "地观察到人参皂苷Rb1,Rb2和Rg1都主要分布在人参的韧皮层及其表皮,且Rb1和Rb2的丰度相比Rg1高。其中,/spanspan style="text-indent: 2em "加钾峰丰度比较高,推测可能人参中钾离子的含量比较大。通过IT-TOF串联质谱提供丰富的碎片信息,进一步/spanspan style="text-indent: 2em "确认人参皂苷类物质的结构。本研究成功建立了不需要染色和标记,直接评价人参皂苷类物质在人参组织上原/spanspan style="text-indent: 2em "位空间分布的研究方法。为植物类样品中有效成分的原位分布研究开辟了新的途径。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "6. 文 献/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[1] Taira Shu et al Mass spectrometric imaging of ginsenosides localization in Panax ginseng root. Am J Chin Med. 2010/p
  • 珠联璧合震撼来袭:岛津成像质谱显微镜新品线上首发
    p style="text-align: justify text-indent: 2em line-height: 1.75em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 2020年7月9日,岛津企业管理(中国)有限公司(以下简称:岛津)“镜质合璧,还原真实”成像质谱显微镜新品线上发布会在仪器信息网新品首发栏目成功举办。在发布会上,岛津向中国市场推出全新的成像质谱显微镜iMScope系列新品,为医学、生物学以及药物等研究领域高水平科研实验室再添利器。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 335px " src="https://img1.17img.cn/17img/images/202007/uepic/9246f59f-3653-4936-a6a0-fa8c8bdc2b45.jpg" title="胡部长.png" alt="胡部长.png" width="600" height="335" border="0" vspace="0"//pp style="text-align: center "span style="text-align: justify text-indent: 2em "岛津分析计测事业部市场部部长 胡家祥/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "岛津分析计测事业部市场部部长胡家祥为本次发布会致辞。胡家祥首先对参与岛津iMScope QT线上新品发布会的专家老师表示欢迎与感谢。并表示,岛津自1875年创业以来,始终坚持“以科学技术向社会做贡献”的创业宗旨,秉承“为了人类和地球的健康”这一经营理念,不断开拓创新,推出符合市场需求的高科技产品。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "自1997年范德堡大学(Vanderbilt University)的Richard Caprioli等提出用质谱实现分子成像的概念以来,质谱成像技术飞速发展,广泛应用于医学研究、生物学研究、药物研究等诸多领域。为了满足质谱成像市场的需求,岛津全新推出了成像质谱显微镜iMScope QT,以更快的速度和更高的灵敏度完成定性、定量、定位整套分析流程。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "iMScope QT是显微镜和质谱仪完整融合的独特产品,也是质谱成像和LC-QTOF兼容的复合系统,非常期待这款产品可以成为各位专家高水平研究工作中的好帮手。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 325px " src="https://img1.17img.cn/17img/images/202007/uepic/dec2f987-eee4-44b7-a23f-03c7386acc18.jpg" title="刘虎威.png" alt="刘虎威.png" width="600" height="325" border="0" vspace="0"//pp style="text-align: center "span style="text-align: justify text-indent: 2em "北京大学化学与分子工程学院刘虎威教授/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em " span style="text-indent: 2em "北京大学化学与分子工程学院刘虎威教授为本次发布会致辞。刘虎威表示,岛津的仪器技术在不断的发展,北京大学分析测试中心在2017年采购了岛津上一代的成像质谱显微镜产品,2020年岛津乘胜追击推出了新一代的成像质谱显微镜产品,新产品在原来的功能上做出了很大的改进,使其功能更加全面。既可以荧光成像,也可以质谱成像,还可以做多级质谱分析。此外,全新的iMScope QT产品还可以与LC-MS/MS联用,是一款为科研人员量身打造的功能强大的仪器。最后,刘虎威表示希望岛津能够为中国的科研人员带来更好的产品和更加全面的服务。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/1837fae9-6e9c-4897-b1ea-8d45de64ab2d.jpg" title="iMScope QT.png" alt="iMScope QT.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "iMScope QT新产品揭幕/span/pp style="text-indent: 2em line-height: 1.75em text-align: justify "span style="text-align: justify text-indent: 2em " /spanspan style="text-align: justify text-indent: 2em "岛津分析计测事业部市场部生命科学产品负责人韩美英博士带来新产品的技术介绍报告,岛津上一代成像质谱显微镜 iMScope TRIO 是光学显微镜与质谱仪完整融合的成像系统,既可以对样品进行形态学上的细微观察,又可以对特定的分子进行鉴定和可视化分布分析。iMScope TRIO 广泛应用于各种研究领域,包括医学研究,药学领域,农业和环境领域等。/span/pp style="text-indent: 2em line-height: 1.75em "span style="text-align: justify text-indent: 2em "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 327px " src="https://img1.17img.cn/17img/images/202007/uepic/1522efcc-ab59-4929-81ec-b10fe523335f.jpg" title="韩美英.jpg" alt="韩美英.jpg" width="300" height="327" border="0" vspace="0"//pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 600px height: 436px " src="https://img1.17img.cn/17img/images/202007/uepic/e5e72f8e-edcb-48b3-b245-3397ca1164f6.jpg" title="韩美英.png" alt="韩美英.png" width="600" height="436" border="0" vspace="0"//span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "新产品iMScope QT在保留高空间分辨率,显微镜等原有仪器特点的基础上,改善了检测灵敏度和速度,实现了速度、特异性、空间分辨率、灵敏度为一体的质谱成像分析。 iMScope QT是由显微镜-MALDI单元与LCMS-9030组合而成,显微镜-MALDI单元可移动分开使用,是成像质谱与LC-QTOF的兼用系统,用一台仪器可实现定性、定量、以及定位分析。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "不仅如此,同时发售基质涂敷自动喷雾系统,结合原有的iMLayer升华涂敷系统,提高成像灵敏度和空间分辨率。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "此外,岛津可提供从前处理到数据采集,软件分析的质谱成像的整体解决方案。使用一台质谱仪就能完成所有分析,通过叠加不同检测原理的图像以及不同离子化方法的数据进行分析,为成像分析提供全新的工具。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 300px " src="https://img1.17img.cn/17img/images/202007/uepic/fadfeb03-b334-4987-9224-cc56ebd9c938.jpg" title="500-500北大讲师图片.png" alt="500-500北大讲师图片.png" width="300" height="300" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 334px " src="https://img1.17img.cn/17img/images/202007/uepic/130f779f-d33c-4ef0-8dfc-a767c0a57ffa.jpg" title="聂洪.png" alt="聂洪.png" width="600" height="334" border="0" vspace="0"//pp style="text-indent: 2em text-align: justify line-height: 1.75em "span style="text-align: justify text-indent: 2em "随后,北京大学分析测试中心的聂洪港博士带来了题为《成像质谱显微镜应用进展》的报告,北京大学分析测试中心是国内第一台iMScope TRIO用户,聂洪港博士根据他在脂质组学、质谱成像、敞开式质谱分析领域中的经验,已开展了多种样品的分析。本次报告中聂博士介绍了岛津成像质谱显微镜相关技术在植物、动物和临床样品的分析和检测应用的部分工作进展。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 454px " src="https://img1.17img.cn/17img/images/202007/uepic/8cf23e96-81f1-45b4-8e04-991ba16dbb29.jpg" title="新间秀一.png" alt="新间秀一.png" width="600" height="454" border="0" vspace="0"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/91274e39-6264-4128-ad28-1b87eb402470.jpg" title="300-300大阪大学教授图片.png" alt="300-300大阪大学教授图片.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "发布会最后的专家报告由大阪大学工学研究科的新间秀一副教授带来精彩的分享,新间教授根据多年的成像质谱工作经验,在报告中介绍了iMScope TRIO在新领域中的应用成果。通过改善样品制备方法,提高目标化合物在组织切片上的离子化效率,实现更多成分的成像分析,应用领域也不再限于医学和药学研究。本次报告中,新间教授还回顾了其团队的最新成像数据,包括类固醇类激素成像,基于果蝇神经递质分析的神经科学研究,以及毛发分析等,分享给了国内研究学者更多宝贵的经验和建议。/ppbr//p
  • 岛津新一代成像质谱显微镜iMScope TRIO上市
    岛津公司面向生命科学相关研究机构、制药企业等广泛领域隆重推出成像质谱显微镜iMScope的最新一代产品「iMScope TRIO」。“TRIO”进一步发扬光大iMScope独有的质谱分析成像、光学图像、定性分析3大特长。 iMScope是科学技术振兴机构(JST)的尖端计测分析技术/仪器开发项目成果之一经产品化后于去年4月上市的产品,是世界首台可重叠光学显微镜图像与大气压下质谱分析所得5μm以下高分辨率分子分布图像进行观察的产品,现在正应用在最尖端的研究开发项目中。 作为在研究机构中根据正常组织与病患组织中分子分布状况的差异发现疾病相关生物标志物的工具,以及在制药领域作为可在观察药物或其代谢物分布的药代动力学分析、观察药物聚集组织周围代谢物变化的毒性评价、检测已知及未知物质增减的药效评价等用途上发挥威力的独有装置为人瞩目。在岛津与国立肿瘤研究中心实施的共同研究中,确立了直接测定以往无法测定的生物体组织内药物分布的技术等,获得了与疾病超早期诊断以及新药开发密切相关的先进研究成果。 在世界各地有众多世界大制药公司以及进行尖端质谱分析成像的大学与研究院所,此次「iMScope TRIO」的上市将强有力地支持上述机构的研究工作。 本公司将进一步推进与研究机构等的共同研究,开发肿瘤研究、脳功能解析等基础研究、DDS(Drug Delivery System:药物输送系统)、代谢组学、法医学、脂质解析等方面的应用。「iMScope TRIO」作为临床诊断领域的有效工具需求将日益高涨。 成像质谱显微镜iMScope TRIO 【本产品的特长】1.领先世界水平的高空间分辨率质谱分析成像配备的紫外光激光可聚光至5μm,实现了5μm以下领先世界水平的质谱分析成像空间分辨率。即便是视网膜(10μm)等薄组织,也可观察到其中所含脂质的层次结构。2.光学图像与质谱分析成像的融合在软件上可简便且高精度地重叠观察高分辨率光学显微镜光学图像与质谱分析成像。能够详细解析病患、抗癌剂的分布等感兴趣区域。3.基于IT-TOF功能实现高度定性分析具有离子阱(IT)质谱分析的n次方解析与飞行时间型质谱(TOF)相结合的IT-TOF功能,可实施高精度的精密质量分析。不仅可以从成像用样品解析分析,还可以通过与LC(液相色谱仪)联用,对于从组织中提取、分离的样品进行分析。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 温州某大学上千万采购质谱、双光子显微镜等多套仪器
    p  双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子显微镜比单光子显微镜更适合用来观察厚标本、更适合用来观察a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "活细胞/span/a、或用来进行定点光漂白实验,可以说是专为活体标本及电生理而设。/pp style="text-align: center "strong温州a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "医科大学/span/a关于双光子激光共聚焦显微镜等5项设备的公开招标公告/strong/pp  温州医科大学采购五套设备,包括三套质谱:三重四级杆气质联用仪,三重串联四级杆液质联用仪,液相色谱单四级杠质谱联用仪,a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "流式细胞分选仪/span/a,双光子激光共聚焦显微镜,共计预算1037.325万元人民币,其中双光子激光共聚焦显微镜预算458.325万元。  /pp  strong一、招标项目编号: WMU-2015037/strong/pp style="text-align: center "img width="600" height="209" title="QQ图片20151217094218.jpg" style="width: 600px height: 209px " src="http://img1.17img.cn/17img/images/201512/insimg/837362ad-62e9-4fe0-b683-f82003021c52.jpg" border="0" vspace="0" hspace="0"//pp  strong二、采购组织类型:分散采购自行组织/strong/pp  strong三、联系方式:/strong/pp  采购人名称:温州医科大学/pp  联系人:刘老师/pp  联系电话:0577-86689891/pp  传真:0577-86689891/pp  地点:温州医科大学茶山校区同心楼401室/p
  • 650万!华南理工大学成像质谱显微镜采购项目
    项目编号:CLF0123GZ00ZC60项目名称:华南理工大学成像质谱显微镜预算金额:650.0000000 万元(人民币)最高限价(如有):650.0000000 万元(人民币)采购需求:标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)成像质谱显微镜1套质谱成像单元离子源类型:AP-MALDI源(大气压下MALDI源)新鲜样品无需干燥脱水即可直接进入质谱,与ESI源可切换,结合LCMS软件实现全部操作。离子化方式:AP-MALDI。650经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):办理免税证明审批通过后(180)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师 020-871129622.采购代理机构信息名称:采联国际招标采购集团有限公司地址:广州市环市东路472号粤海大厦7、23楼联系方式:李女士/陈女士 020-87651688转分机705或1503.项目联系方式项目联系人:李女士/陈女士电话:020-87651688转分机705或150
  • 预算1452万!榆林中科洁净能源创新院采购质谱、显微镜、试验机等仪器
    近日,榆林中科洁净能源创新研究院连发两条招标公告,预算相加1452万元,采购质谱、色谱、显微镜、试验机等16台/套仪器。榆林中科洁净能源创新研究院二次采购项目科研设备采购(第五批)1、项目编号:SXXS2022-32、预算金额:662万元3、采购需求:品目号采购标的数量预算1-1液质联用仪1(个)290万元1-2IGA重量法吸附+质谱分析仪1(个)135万元1-3在线质谱1(个)20万元1-4同步热分析+质谱仪1(个)132万元1-5共聚焦显微镜1(个)85万元4、获取招标文件时间:2022年4月6日至2022年4月14日,每天上8:00:00至11:30:00,下午14:00:00至17:30:00(法定节假日除外)地点:全国公共资源交易中心平台方式:在线获取售价: 免费获取5、提交投标文件截止时间、开标时间和地点2022年4月27日 9:30:00地点:全国公共资源交易中心平台CA锁在线上传递交榆林中科洁净能源创新研究院二次采购项目科研平台设备(第六批)1、项目编号:SXXSJ2022-42、预算金额:790万元3、采购需求:品目号采购标的数量预算1-1X射线光电子能谱仪1(台)405万元1-2气相色谱仪2(个)50万元1-3凝胶渗透色谱与三重四级杆气质联用仪1(个)154万元1-4紫外-可见光分光光度计4(台)64万元1-5万能试验机1(台)21万元1-6液相色谱2(个)96万元4、获取招标文件时间: 2022年4月6日至2022年4月14日,每天上午8:00:00 至11:30:00,下午14:30:00至17:30:00(法定节假日除外)地点:全国公共资源交易中心平台方式:在线获取售价: 免费获取5、提交投标文件截止时间、开标时间和地点2022年4月27日 13:30:00地点:全国公共资源交易中心平台CA锁在线上传递交联系方式1. 釆购人信息名称:榆林中科洁净能源创新研究院地址:陕西省榆林市科创新城科创四路联系方式:188092361552. 釆购代理机构信息名称:陕西新世纪工程管理咨询有限公司地址:陕西省榆林市榆阳区航宇路沙河口综合市场五楼联系方式:0912-22560483. 项目联系方式项目联系人:陈晰电话:18220280010
  • 【圩载历鉴• 谱耀质尊】珠联璧合震撼来袭:岛津成像质谱显微镜新品线上首发
    2020年7月9日,岛津企业管理(中国)有限公司(以下简称:岛津)“镜质合璧,还原真实”成像质谱显微镜新品线上发布会成功举办。在发布会上,岛津向中国市场推出全新的成像质谱显微镜iMScope系列新品,为医学、生物学以及药物等研究领域高水平科研实验室再添利器。 岛津分析计测事业部市场部部长 胡家祥 岛津分析计测事业部市场部部长胡家祥为本次发布会致辞。胡家祥首先对参与岛津iMScope QT线上新品发布会的专家老师表示欢迎与感谢。并表示,岛津自1875年创业以来,始终坚持“以科学技术向社会做贡献”的创业宗旨,秉承“为了人类和地球的健康”这一经营理念,不断开拓创新,推出符合市场需求的高科技产品。 自1997年范德堡大学(Vanderbilt University)的Richard Caprioli等提出用质谱实现分子成像的概念以来,质谱成像技术飞速发展,广泛应用于医学研究、生物学研究、药物研究等诸多领域。为了满足质谱成像市场的需求,岛津全新推出了成像质谱显微镜iMScope QT,以更快的速度和更高的灵敏度完成定性、定量、定位整套分析流程。 iMScope QT是显微镜和质谱仪完整融合的独特产品,也是质谱成像和LC-QTOF兼容的复合系统,非常期待这款产品可以成为各位专家高水平研究工作中的好帮手。 北京大学化学与分子工程学院刘虎威教授 北京大学化学与分子工程学院刘虎威教授为本次发布会致辞。刘虎威表示,岛津的仪器技术在不断的发展,北京大学分析测试中心在2017年采购了岛津上一代的成像质谱显微镜产品,2020年岛津乘胜追击推出了新一代的成像质谱显微镜产品,新产品在原来的功能上做出了很大的改进,使其功能更加全面。既可以荧光成像,也可以质谱成像,还可以做多级质谱分析。 此外,全新的iMScope QT产品还可以与LC-MS/MS联用,是一款为科研人员量身打造的功能强大的仪器。最后,刘虎威表示希望岛津能够为中国的科研人员带来更好的产品和更加全面的服务。 iMScope QT新产品揭幕 岛津分析计测事业部市场部生命科学产品负责人韩美英博士带来新产品的技术介绍报告,岛津上一代成像质谱显微镜 iMScope TRIO 是光学显微镜与质谱仪完整融合的成像系统,既可以对样品进行形态学上的细微观察,又可以对特定的分子进行鉴定和可视化分布分析。iMScope TRIO 广泛应用于各种研究领域,包括医学研究,药学领域,农业和环境领域等。 新产品iMScope QT在保留高空间分辨率,显微镜等原有仪器特点的基础上,改善了检测灵敏度和速度,实现了速度、特异性、空间分辨率、灵敏度为一体的质谱成像分析。iMScope QT是由显微镜-MALDI单元与LCMS-9030组合而成,显微镜-MALDI单元可移动分开使用,是成像质谱与LC-QTOF的兼用系统,用一台仪器可实现定性、定量、以及定位分析。 不仅如此,同时发售基质涂敷自动喷雾系统,结合原有的iMLayer升华涂敷系统,提高成像灵敏度和空间分辨率。 此外,岛津可提供从前处理到数据采集,软件分析的质谱成像的整体解决方案。使用一台质谱仪就能完成所有分析,通过叠加不同检测原理的图像以及不同离子化方法的数据进行分析,为成像分析提供全新的工具。 随后,北京大学分析测试中心的聂洪港博士带来了题为《成像质谱显微镜应用进展》的报告,北京大学分析测试中心是国内第一台iMScope TRIO用户,聂洪港博士根据他在脂质组学、质谱成像、敞开式质谱分析领域中的经验,已开展了多种样品的分析。本次报告中聂博士介绍了岛津成像质谱显微镜相关技术在植物、动物和临床样品的分析和检测应用的部分工作进展。 发布会最后的专家报告由大阪大学工学研究科的新间秀一副教授带来精彩的分享,新间教授根据多年的成像质谱工作经验,在报告中介绍了iMScope TRIO在新领域中的应用成果。通过改善样品制备方法,提高目标化合物在组织切片上的离子化效率,实现更多成分的成像分析,应用领域也不再限于医学和药学研究。本次报告中,新间教授还回顾了其团队的最新成像数据,包括类固醇类激素成像,基于果蝇神经递质分析的神经科学研究,以及毛发分析等,分享给了国内研究学者更多宝贵的经验和建议。 目前,岛津iMScope QT询价咨询通道已经开放,扫描下方二维码参与岛津“询价有礼”活动,岛津工作人员会第一时间与您联系。
  • 基于成像质谱显微镜对新鲜辣椒中辣椒素类物质的空间分布评价
    p style="text-align: justify text-indent: 2em line-height: 1.75em "1. 摘 要/pp style="text-align: justify text-indent: 2em line-height: 1.75em "辣椒中提取的天然成分辣椒素类物质(Capsaicinoids)因其具有降低胆固醇水平且预防心血管疾病等功效而受广大科研工作者的关注。目前对于辣椒素的研究主要集中在其分离提取工艺的优化,以及定量方法的开发上,对于其在新鲜组织中的空间分布的研究还尚属空白。本文基于成像质谱显微镜(Imaging Mass Microscope,iMScope iTRIO/i) 技术,建立了辣椒素类物质在其新鲜组织上的原位空间分布的研究方法。借助iMScope iTRIO/i前端搭载的高分辨光学显微镜,可以清晰的观察并定位到新鲜辣椒中的细微组织上,从而进行多点的质谱成像分析。后端配置离子阱和飞行时间串联质谱仪(IT-TOF),具有高质量分辨率的多级质谱分析功能,提供丰富的碎片信息,进一步验证辣椒素的结构。通过质谱成像技术,我们发现辣椒素类物质主要分布在包裹着辣椒籽的白色纤维上,其次才是辣椒籽本身,最后是辣椒的果肉部分。有效成分在新鲜植物中的空间定位分析,对于其不同种属的植物鉴定,品种改良,以及其食品安全方面具有广泛的应用前景。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. 前 言/pp style="text-align: justify text-indent: 2em line-height: 1.75em "辣椒素类物质(Capsaicinoids)属于生物碱类,被认为是辣椒中的主要活性成分,研究发现辣椒素能够通过减少脂肪堆积,通过加快其分解代谢的方式而降低胆固醇水平,且在很大程度上预防心血管疾病。目前对于辣椒素类物质的研究主要集中在分离提取纯化工艺改进及其生物活性的相关研究,对于其在新鲜组织中的原位空间分布的研究尚属空白。辣椒素(Capsaicin)是辣椒中含量非常丰富的成分,其次是二氢辣椒素(Dihydrocapsaicin)span style="text-indent: 2em "以及诺香草胺(Nonivamide)/spansup style="text-indent: 2em "[1]/supspan style="text-indent: 2em "。其化学结构式见图1。本文基于成像质谱显微镜( iMScope /spani style="text-indent: 2em "TRIO/ispan style="text-indent: 2em ") 技术,通过高分辨显微镜对新鲜的辣椒切片进行细致的形态学上的观察,精准的定位到微小组织上。领先世界水平的5微米空间分辨率保证了微小组织上的高分辨成像。离子阱和飞行时间串联质谱仪(IT-TOF)对于确认目标物的结构提供了丰富的碎片信息。本研究建立了成像质谱显微镜技术对辣椒素类物质在组织中的空间分布的直接分析(不需要染色和标记)及其结构确证的方法,对于植物类样品中有效成分或者毒物毒素的原位分析来说具有重要意/spanspan style="text-indent: 2em "义。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 实 验/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 材料仪器/pp style="text-align: justify text-indent: 2em line-height: 1.75em "新鲜辣椒购自北京朝阳门华普超市。MALDI级别的a-Cyano-4-hydroxycinnamic acid (CHCA), 购自西格玛公司。辣椒素(Capsaicin)和诺香草胺(Nonivamide)购自北京盛世康普化工技术研究院。HPLC级别的乙腈和甲醇购自默克公司。25 mm X 75 mm导电载玻片购自德尔塔科技公司。明胶购自西格玛公司。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 切片的制作以及基质涂敷/pp style="text-align: justify text-indent: 2em line-height: 1.75em "新鲜辣椒清洗后晾干,用100 mg/ml明胶进行包埋。使用Leica CM1950在-20℃的环境下制作15μm厚新鲜辣椒纵截面切片。采用升华+喷涂的two-step基质涂敷方法,其中基质升华通过iMLayer自动升华仪完成。基质喷涂使用GSI Creos Airbrush完成。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.3 基于iMScope iTRIO/i 的质谱成像分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "分析条件/pp style="text-align: justify text-indent: 2em line-height: 1.75em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/af3885aa-0340-47c6-ad0e-35a4821fc90a.jpg" title="12121.png" alt="12121.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "4. 结果与讨论/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/202ac525-3404-44bb-ab24-13c36fb05da3.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图 1. (A) 辣椒素(Capsaicin)和(B)诺香草胺(Nonivamide) 的化学结构及其单同位素质量br//pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "4.1 新鲜辣椒包埋并制作冷冻切片/span/pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/cef4cd9b-78bb-4d02-9fa2-b05b5af1e252.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em line-height: 1.75em text-align: justify "图 2. 新鲜辣椒包埋并制作冷冻切片。(A).明胶包埋后的新鲜辣椒。(B). 15μm切片转移到ITO涂层玻璃上(标红的位置是选定的测定区域)/pp style="text-indent: 2em line-height: 1.75em text-align: justify "4.2 标准品在新鲜辣椒切片上的成像质谱分析/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7eef5f60-cfba-4542-8fe1-082d45993f47.jpg" title="4.png" alt="4.png"//pp style="text-indent: 2em line-height: 1.75em "br//pp style="text-align: justify text-indent: 2em "图 3. 标品诺香草胺(0.1 mg/ml)在新鲜辣椒切片上的多点质谱分析。(A). 滴定标品区域的光学图像 (B). 对应离子密度图([M+H] +: m/zspan style="text-indent: 2em "294.201) (C). 诺香草胺的一级平均质谱图 (D). 前体离子([M+H]+: m/z 294.201)二级平均质谱图。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6abef824-031a-439c-a01a-5a9f66ba32c4.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/spanbr//pp style="text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-indent: 2em "图 4. 标品辣椒素(0.1mg/ml)在新鲜辣椒切片上的多点质谱分析。(A). 滴定标品区域的光学图像 (B).对应离子密度图([M+H] + m/z 306.201)(C). 辣椒素的一级平均质谱图 (D). 前体离子([M+H] + m/z 306.201)二级平均质谱图。/pp style="text-indent: 2em line-height: 1.75em "4.3 新鲜辣椒切片上的成像质谱分析/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/30f47476-87e8-4a01-a129-5abfcec520c5.jpg" title="6.png" alt="6.png"//pp style="text-indent: 2em line-height: 1.75em "span style="text-align: justify "图 5. 新鲜辣椒切片上的辣椒素类物质的多点质谱分析(放大倍数为1.25x)。(A1). 二氢辣椒素([M+H] +:m/z 308.21)的一级离子密度图。(B1). 诺香草胺([M+H] +:294.201)的一级离子密度图。(C1). 辣椒素([M+H] +: m/z 306.201)的一级离子密度图 (D1). 新鲜辣椒切片光/spanspan style="text-align: justify "学图像和辣椒素质谱图像重叠 (A2)-(D1). 前体离子辣椒素([M+H] +: m/z 306.201)的二级特征产物离子质谱成像图。Scale bar: 500 μm。/span/pp style="text-indent: 2em line-height: 1.75em "span style="text-align: justify "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f65547b4-bd3e-48ab-915e-caa41a42fe37.jpg" title="7.png" alt="7.png"//pp style="text-indent: 2em line-height: 1.75em "span style="text-align: justify "/spanbr//pp style="text-indent: 2em line-height: 1.75em "span style="text-align: justify "/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "图 6. 辣椒籽及其附近区域辣椒素的多点质谱分析。(A) 辣椒切片整体光学图像(放大倍数为1.25x)(B) 辣椒籽附近的光学图像(放大倍数为5x)以及(C) 对应区域的辣椒素二维离子密度图 (D)-(G) 前体离子辣椒素([M+H] +: m/z 306.201)的二级特征产物离子质谱成像图.Scale bar: 500 μm。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5. 结 论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "通过iMScopei TRIO/i前端搭载的高分辨光学显微镜拍摄的光学图像和相应的多点质谱图像的重叠,我们可以清晰地观察到辣椒素类物质含量最多的部分是包裹辣椒籽的白色纤维,其次是辣椒籽,最后是辣椒果肉。通过IT-TOF串联质谱提供丰富的碎片信息,进一步确认辣椒素类物质的结构。本研究成功建立了不需要染色和标记,直接评价辣椒素类物质在辣椒组织上原位空间分布的研究方法。为植物类样品中有效成分的原位分布研究开辟了新的途径。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "6. 文 献/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[1] Christopher A. Reilly et al. Determination of capsaicin, nonivamide, and dihydrocapsaicin in blood and tissue by liquid span style="text-indent: 2em "chromatography-tandem mass spectrometer Journal of Analytical Toxicology 2002./span/p
  • 岛津成像质谱显微镜应用专题丨视网膜药物分析
    高分辨率成像质谱应用于大鼠视网膜中氯喹的分布分析 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。 因此,最近成像质谱分析法,即不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文为您介绍使用成像质谱显微镜iMScope TRIO对氯喹给药后大鼠视网膜进行检测的示例。 1.大鼠视网膜中氯喹的高空间分辨率成像在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。图1 氯喹的结构式 表1 分析条件 使用成像质谱显微镜iMScope TRIO进行高空间分辨率成像,发现在约10μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。 图2 组织切片上的MS/MS质谱图图3 光学图像和MS/MS质谱图像 在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope TRIO的MS/MS模式进行测定,提高灵敏度,能够获得10μm的高空间分辨率下的MS/MS图像。 2.大鼠眼球中氯喹的高速成像在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS模式测定在中等分辨率(50μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2所示。 表2 分析条件图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm 虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope TRIO依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集速度取决于目标检测区域中所包含的点数。iMScope TRIO能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 3.基质涂敷方式的比较在氯喹成像质谱分析中,比较了2种不同的MALDI基质涂敷方式。图5显示了有升华法获得的成像结果(基质升华方式的示意图如图6所示)。基质升华有iMLayer升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件同时基质涂敷的过程也很重要。图5 升华法获得的氯喹分布质谱图像图7 喷雾法获得的氯喹分布质谱图像图6 基质升华方式示意图 4.在相同切片上进行MS和MS/MS成像分析成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope TRIO可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 文献题目《High spatial Resolution Imaging by iMScope TRIO -Imaging of Chloroquine Distribution in Rat Retina-》使用仪器岛津iMScope TRIO 声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 临床前沿合作 |岛津成像质谱显微镜助力肺癌临床病理研究
    背景介绍肺癌是发病率和死亡率增长最快、对人群健康和生命威胁最大的恶性肿瘤之一。根据报道,近50年来许多国家肺癌的发病率和死亡率均明显增高,男性肺癌发病率和死亡率均占所有恶性肿瘤的第一位,女性发病率和死亡率占第二位。肺癌的病理类型主要包括非小细胞性肺癌和小细胞性肺癌两类。非小细胞性肺癌约占肺癌的80%-85%左右,包括腺癌、鳞癌等。而小细胞肺癌约占肺癌的15%-20%左右。对肺癌进行准确病理分型对有效治疗肺癌和研究肺癌发病发展的机制机理具有极其重要的作用和意义,近年来已经成为相关领域的研究热点和重点之一。 图1 肺组织示意图 目前临床领域对肺癌的良恶性判断和亚型分型主要依赖HE染色、免疫组化等形态学病理手段,结合NGS(下一代测序技术)分子病理指标进行,这些方法不仅需要涉及多种类型的仪器,耗时长,前处理复杂,且在诊断中十分依赖医生的个人经验和判断,缺乏指标化标准。 借助岛津公司成像质谱显微镜iMScope平台,岛津中国创新中心与北京某知名三甲医院病理科合作开发了多角度肺癌分型病理诊断的新方法。该方法一方面从统计学角度实现对腺癌和鳞状细胞癌两种非小细胞肺癌亚型进行非靶向分型,另一方面通过发现的多种小分子空间标志物实现对癌症中心和癌旁组织分区,小细胞癌和非小细胞癌分型,以及腺癌和鳞状细胞癌亚型分型的直接判断,从而开辟出一条单独依赖于质谱成像手段即可实现肺癌全流程分型的新路径。 腺癌和鳞状细胞癌非靶向统计学分型利用iMScope对人腺癌与鳞状细胞癌临床样本进行质谱成像数据采集后,使用岛津IMAGEREVEAL软件对数据进行处理。分别在已知腺癌与鳞状细胞癌癌症中心组织的质谱成像对应的显微图像中圈出5个ROI(感兴趣区域)区域(红圈和蓝圈对应区域),每个ROI区域包含大约300个采集点,然后使用IMAGEREVEAL软件中Differential Analysis模块进行PCA(主成分分析)运算,比较二者统计学差异和分类情况。图2 基于PCA的非小细胞肺癌临床统计学分型 由综合质谱对比结果可见,人非小细胞肺癌的腺癌与鳞癌两个亚型存在大量小分子特征物质和差异物质,直接对综合质谱图中的所有碎片进行非靶向的统计学分析,有助于减少分析工作量,同时可提高统计学分型的直观性和准确性。根据PCA分类图,通过对10个ROI区域(红色点代表腺癌ROI区域,蓝色点代表鳞癌ROI区域)直接进行PCA分析,可以获得两组直接对应腺癌和鳞癌的统计学分类(红色大圈代表腺癌分组,蓝色大圈代表鳞癌分组),该方法不需进行复杂的标志物分析即可直接获得不同类型分型的结果,简单快捷而准确。 肺癌全流程靶向分型利用iMScope对人肺癌临床样本进行质谱成像数据进行采集后,使用Imaging MS Solution Postrun Analysis软件同时对肺癌临床样本的质谱成像数据进行处理。分别定向提取m/z 775.55, m/z 885.55,m/z 861.55和m/z 673.48等4个碎片的图像,其中m/z 775.55作为癌症中心与癌旁的空间特征标志物,m/z 885.55和m/z 861.55组合作为小细胞癌(SCLC)和非小细胞癌(NSCLC)的空间特征标志物,m/z 673.48作为非小细胞癌亚型腺癌(AC)和鳞状细胞癌(SCC)的空间特征标志物。 图3 肺癌全流程靶向分型分析流程 通过提取m/z 775.55的质谱成像图,可以清晰观察到其在癌症中心和癌旁组织中呈现不同的分布:该碎片在癌症中心低表达,而在癌旁组织中高表达。通过m/z 775.55,可以实现直接对同一来源肺癌组织的癌症中心区域的精确划分和位置界定,并可以以此为依据,直接指导下一步具体分型研究的实施。 通过提取m/z 885.55和m/z 861.55两种碎片的质谱成像图,可以清晰观察到这两种碎片在癌症中心区域中的不同类型的分型中具有完全不同的分布:当二者均在癌症中心组织中高表达而在癌旁组织中低表达时,为非小细胞癌;当m/z 885.55在癌症组织高表达而m/z 861.55在癌旁组织高表达时,为小细胞癌。 通过提取m/z 673.48的质谱成像图,可以清晰观察到其在非小细胞癌的两种亚型中呈现完全不同的分布:该碎片在腺癌(AC)中呈现癌症中心和癌旁组织的均匀表达,而在鳞状细胞癌(SCC)中,仅在癌旁组织中呈现高表达,在癌症中心组织呈低表达。值得注意的是,整个分型判断流程是在同一个临床样本内进行比较,有效排除了不同来源样本的涉及不同年龄、性别、地域、职业等干扰因素造成的组间对比的干扰,避免出现假阳性和假阴性的问题。 小 结借助岛津成像质谱显微镜iMScope,岛津中国创新中心与北京某知名三甲医院病理科合作开发的多角度肺癌分型病理诊断的新方法,实现了在基于统计学的非靶向层面和基于多种空间标志物的靶向层面的肺癌多角度病理分型,在目前传统临床手段之外,开辟出一条操作简单且更易于指标化的新路径。成像质谱技术为肺癌等重大疾病在分子水平上进行病理分型研究提供了准确的物质定位定性和定量信息,未来有望为临床病理研究和应用等多个领域提供更多更可靠的实验数据和基础信息。
  • 岛津成像质谱显微镜应用专题丨斑马鱼体内富勒醇可视化
    质谱成像用于可视化斑马鱼体内富勒醇的组织分布 碳纳米材料和纳米技术设备的应用日益广泛,而纳米颗粒具有潜在生物活性,可能会干扰正常的生物系统,从而引起公众对纳米颗粒潜在风险的关注。碳纳米材料在水生生物体内的累积、食物链的营养传递和生物放大潜力是其生态风险评价的重要环节。富勒醇是一种碳纳米材料,可通过水相暴露和食物链在大蚤体内累积,表明其对生态系统有潜在的不利影响,引起人们对富勒醇环境毒理学研究的关注。 本研究选择斑马鱼作为实验对象,利用基质辅助激光解吸电离成像质谱(MALDI-TOF-IMS)研究富勒醇纳米颗粒通过水相暴露途径在斑马鱼不同组织内的空间分布。 1. 成像质谱显微镜测试条件将冷冻斑马鱼组织包埋在0.1g/L明胶中进行冷冻切片,厚度为20 μm,将组织切片放置在ITO导电载玻片上,干燥40 min后进行成像质谱分析。采集参数如下:采集模式,正离子模式 采集范围m/z 500-1000;检测器电压,1.80 kV。激光直径10 μm,频率1000 Hz,强度30。 2. 基于成像质谱显微镜的组织成像研究2.1富勒醇纳米颗粒的MALDI-TOF质谱分析对富勒醇纳米颗粒的离子化条件进行摸索,a-氰基-4-羟基肉桂酸(CHCA)和2,5-二羟基苯甲酸(DHB)是用于多肽、脂质、碳水化合物、蛋白质分析的常用基质。富勒醇纳米颗粒在使用CHCA与DHB作为基质检测时,未获得对应分子离子峰。富勒醇纳米颗粒对电离源中激光有较强的吸收,并促进电离,实验证明富勒醇纳米颗粒在正离子模式下产生C60+ 离子。因此,本研究中可采用激光解吸离子化方式(LDI)直接检测富勒醇纳米颗粒。图1显示了正、负离子模式下富勒醇纳米颗粒的质谱图,m/z 720.0和721.0离子分别对应C60+和[C60+H]+。其它离子可能与碳笼的光致电离片段对应,如C58+ (m/z 696.0)、C56+ (m/z 672.0)、C54+(m/z 648.0)、C52+ (m/z 24.0)、C50+ (m/z 600.0)、C48+ (m/z 576.0)、 C46+ (m/z 552.0)、C44+ (m/z 528.0)、C42+ (m/z 504.0)。C2基团丢失是C60分子离子的特征裂解方式。根据上述结果,选择m/z 720.00和721.00作为特征离子进行质谱成像分析。图1 富勒醇纳米颗粒的MALDI-TOF质谱图:a)负离子模式,b)正离子模式,c)b图的局部放大 2.2 斑马鱼组织中富勒醇纳米颗粒的质谱成像分析对富勒醇纳米颗粒暴露的斑马鱼组织切片进行MALDI-TOF-MSI分析,获得不同组织中的分布信息。研究显示富勒醇纳米颗粒在鱼鳃的分布最多,其次是肠、肌肉和脑。 富勒醇纳米颗粒在鱼鳃中主要分布在鳃丝部分。同时观察到富勒醇纳米颗粒存在于肠壁组织。肠腔内吸收细胞的游离端-细胞质内的胞饮囊泡为富勒醇纳米颗粒进入肠壁细胞提供可能,从而为富勒醇纳米颗粒进入循环系统和通过肠血途径进一步进入体内其他组织提供先决条件。 肌肉组织中富勒醇纳米颗粒的存在表明其可通过循环系统运输到肌肉组织。此外,在脑部也观察到富勒醇纳米颗粒信号,表明富勒醇纳米颗粒可最终通过循环系统并穿透血脑屏障到达脑部。 富勒醇纳米颗粒在斑马鱼组织中的分布差异可能与暴露途径有关。鳃是呼吸、渗透调节和排泄的场所,是直接接触和吸收周围水中污染物的器官。水相暴露导致鳃直接接触和吸收暴露溶液中的富勒醇纳米颗粒;此外生物组织的独特结构如血脑屏障等也可能影响富勒醇纳米颗粒的分布。因此,从毒性风险的角度分析,鳃是最危险的暴露组织。 图2 斑马鱼组织切片中富勒醇纳米颗粒的MALDI-TOF质谱成像图:分别显示在鳃、肠、脑和肌肉组织中的分布 本研究详细内容已正式发表于Analytical and Bioanalytical Chemistry, 2020, 412: 7649-7658. 文献题目《Visualization of the tissue distribution of fullerenols in zebrafish (Danio rerio) using imaging mass spectrometry》 使用仪器岛津iMScope TRIO 作者Qiuyue Shi1,2 , Cheng Fang3,4 , Zixing Zhang1 , Changzhou Yan1 , Xian Zhang1 1 Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China2 University of Chinese Academy of Sciences, Beijing 100049, China3 Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia4 Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
  • 岛津质谱显微镜iMScope获日十大新产品奖
    近日,日本日刊工业报社主办的2013年十大新产品奖(第56届)的评选结果公布,岛津公司的质谱显微镜「iMScope」获选。这是岛津公司连续2年、第16次荣获该奖。 颁奖仪式在HotelGrand Palace(东京/饭田桥)举办,技研担当铃木专务、开发担当原田高宏(分析计测技术/新事业开发推进G)、緒方是嗣(分析计测生命科学/MS-BU)、谷畑博史副部长(分析计测技术)等出席。铃木专务在日刊工业报记者的采访中谈到:“本产品的开发以推动医疗相关领域的发展为目的,应用了本公司的核心技术,可以在药品的开发、管理等方面做出贡献。已受到医疗领域用户的高度期待。成功完成这个产品,我感到十分喜悦。今后进一步努力扩大该领域产品的研发」。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。
  • 在线质谱仪 ProC-1:分析化学领域的“超级显微镜”
    在当今科技日新月异的时代,精密仪器作为科学探索与工业生产的基石,正以前所未有的速度推动着人类社会的进步。其中,质谱仪作为分析化学领域的“超级显微镜”,其重要性不言而喻。今天,我们将深入探索一款集科技与高效性能于一身的在线质谱仪——谱策ProC-1,它不仅重新定义了质谱分析的速度与精度,更为科研、环境监测、食品安全等多个领域带来了变革。  一、技术革新:精准分析的新纪元  谱策ProC-1在线质谱仪,作为该领域的佼佼者,其核心在于其采用了最新的离子源技术与高灵敏度检测器。其独特的离子化机制,能够在极短的时间内将样品分子转化为带电离子,并通过精密的质量分析器进行分离与检测。这一过程不仅大幅提升了分析速度,更确保了数据的极端准确性,即便是微量的痕量物质也能被精准捕捉,为科研工作者提供了前所未有的分析深度与广度。  二、高效应用:多领域的广泛覆盖  科研探索  在科研领域,谱策ProC-1在线质谱仪成为了科学家们探索未知世界的得力助手。无论是生命科学中的蛋白质组学研究,还是材料科学中的新型材料表征,亦或是环境科学中的污染物监测,ProC-1都能凭借其高效、精准的分析能力,为科研人员提供可靠的数据支持,加速科学发现的步伐。  环境监测  面对日益严峻的环境污染问题,谱策ProC-1在线质谱仪在环境监测领域展现出了非凡的潜力。它能够实时监测大气、水体中的有害物质,如挥发性有机物(VOCs)、重金属离子等,为环境保护部门提供及时、准确的污染数据,助力精准治污、科学治污。  食品安全  食品安全关乎国计民生,谱策ProC-1在线质谱仪在保障食品安全方面也发挥着重要作用。通过对食品中添加剂、农药残留、微生物毒素等有害物质的快速检测,ProC-1有效提升了食品安全检测的效率和准确性,为消费者筑起了一道坚实的防线。  三、智能化操作:简化流程,提升效率  谱策ProC-1在线质谱仪在追求技术卓越的同时,也注重用户体验的优化。其智能化的操作系统,使得即便是非专业用户也能轻松上手,完成复杂的分析任务。通过预设的分析方法和自动化操作流程,ProC-1大幅简化了分析流程,减少了人为误差,提高了工作效率。此外,其强大的数据处理能力,能够自动完成数据收集、处理、分析的全过程,并生成直观易懂的报告,为用户提供便捷的数据支持。  四、未来展望:持续创新,引领发展  随着科技的不断发展,质谱分析技术也在不断进步。谱策ProC-1在线质谱仪作为行业内的佼佼者,始终保持着对技术创新的追求。未来,ProC-1将继续在离子源技术、检测器灵敏度、数据分析算法等方面进行深入研发,不断突破技术瓶颈,提升分析性能。同时,随着物联网、大数据等技术的融合应用,ProC-1还将实现更加智能化的远程监控与数据分析功能,为用户提供更加便捷、高效的服务体验。  总之,谱策ProC-1在线质谱仪以其卓越的性能、广泛的应用领域以及智能化的操作体验,正引领着质谱分析技术的新一轮发展。在未来的日子里,我们有理由相信,ProC-1将继续在科研探索、环境监测、食品安全等多个领域发挥重要作用,为人类的进步与发展贡献更多的力量。
  • 1370万!场发射扫描电子显微镜、高效液相色谱质谱联用仪等采购项目
    一、上海交通大学超快光电子能量动量显微镜-高次谐波光束线采购项目项目编号:1639-234122240168项目名称:上海交通大学超快光电子能量动量显微镜-高次谐波光束线预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:序号/ No.货物名称/Name of the goods数量/Quantity简要技术规格或用途/Main Technical Data交货期/ Delivery schedule1超快光电子能量动量显微镜-高次谐波光束线1套平均功率:适用于平均功率为30W-90W驱动光源签订合同并收到信用证后12个月内。/CIP Shanghai Jiao Tong University within 12 months after signing the contract and receiving the L/C合同履行期限:签订合同并收到信用证后12个月内本项目( 不接受 )联合体投标。2、获取招标文件时间:2023年06月07日 至 2023年06月14日,每天上午8:00至14:00,下午12:00至21:00。(北京时间,法定节假日除外)地点:上海市长寿路285号恒达大厦16楼方式:提供开票信息(公司名称、税号、地址电话、开户行及账号)及项目联系人的联系方式(姓名、手机及邮箱),写明申请购买项目的名称发送至邮箱13795281643@163.com,完整填写《购标书登记表》;电汇缴纳标书款;邮件领取招标文件等资料。售价:¥500.0 元,本公告包含的招标文件售价总和3.对本次招标提出询问,请按以下方式联系。(1).采购人信息名 称:上海交通大学     地址:上海市闵行区东川路800号        联系方式:章老师 86-21-54744366      (2).采购代理机构信息名 称:上海市机械设备成套(集团)有限公司            地 址:上海市长寿路285号恒达广场16楼            联系方式:沈飏 、张洁玮 021-32557719;021-32557775            (3).项目联系方式项目联系人:章老师电 话:  86-21-54744366二、三明学院场发射扫描电子显微镜采购项目1.项目编号:[350401]TH[GK]2023001项目名称:场发射扫描电子显微镜采购方式:公开招标预算金额:3,200,000.00元采购包1(场发射扫描电子显微镜采购项目):采购包预算金额:3,200,000.00元采购包最高限价: 3,200,000.00元投标保证金: 32,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100305-电子光学及离子光学仪器场发射扫描电子显微镜1(套)是详见附件3,200,000.00工业本采购包不接受联合体投标合同履行期限:按合同约定2、获取招标文件时间: 2023-06-06 至 2023-06-13 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费3、对本次招标提出询问,请按以下方式联系。(1).采购人信息名称:三明学院地址:福建省三明市三元区荆东路25号联系方式:18005985351(2).采购代理机构信息(如有)名称:三明天和工程管理有限公司地址:福建省三明市梅列区乾龙新村16幢汇鑫大厦21层4号联系方式:0598-8228858(3).项目联系方式项目联系人:林纪宏电话:0598-8228858网址: zfcg.czt.fujian.gov.cn开户名:三明天和工程管理有限公司三、福建省兽药质量和兽药残留检测实验室采购项目1.项目编号:[350001]FJHJ[GK]2023003项目名称:福建省兽药质量和兽药残留检测实验室项目采购方式:公开招标预算金额:7,478,700.00元采购包1(福建省兽药质量和兽药残留检测实验室项目):采购包预算金额:4,343,700.00元采购包最高限价: 4,343,700.00元投标保证金: 43,437.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100407-质谱仪高效液相色谱质谱联用仪1(台)否详见招标文件3,500,000.00工业1-2A02100420-分析仪器辅助装置移液器(100μl)15(台)否详见招标文件30,000.00工业1-3A02100420-分析仪器辅助装置移液器(200μl)18(台)否详见招标文件36,000.00工业1-4A02100420-分析仪器辅助装置移液器(1000μl)33(台)否详见招标文件75,900.00工业1-5A02100420-分析仪器辅助装置移液器(5000μl)33(台)否详见招标文件75,900.00工业1-6A02100420-分析仪器辅助装置移液器(10ml)33(台)否详见招标文件75,900.00工业1-7A02100408-色谱仪高效液相色谱仪1(台)否详见招标文件550,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订之日起30日采购包2(福建省兽药质量和兽药残留检测实验室项目):采购包预算金额:915,600.00元采购包最高限价: 915,600.00元投标保证金: 9,156.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业2-1A02052501-离心机高速冷冻离心机1(台)否详见招标文件106,000.00工业2-2A02100601-分析天平及专用天平十万分之一天平1(台)否详见招标文件134,000.00工业2-3A02100420-分析仪器辅助装置纯水仪1(台)否详见招标文件170,000.00工业2-4A02100420-分析仪器辅助装置薄层色谱配套仪器1(台)否详见招标文件335,000.00工业2-5A02100420-分析仪器辅助装置氮吹仪3(台)否详见招标文件33,000.00工业2-6A02100499-其他分析仪器分液漏斗振荡器1(台)否详见招标文件48,000.00工业2-7A02100420-分析仪器辅助装置涡旋振荡器1(台)否详见招标文件8,000.00工业2-8A02100420-分析仪器辅助装置振荡器2(台)否详见招标文件11,600.00工业2-9A02100420-分析仪器辅助装置灭菌器1(台)否详见招标文件70,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订之日起30日采购包3(福建省兽药质量和兽药残留检测实验室项目):采购包预算金额:1,894,400.00元采购包最高限价: 1,894,400.00元投标保证金: 18,944.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业3-1A02100420-分析仪器辅助装置无菌检查隔离器1(台)否详见招标文件765,000.00工业3-2A02100411-蒸馏及分离式分析仪多样品平行蒸发系统1(台)否详见招标文件420,000.00工业3-3A02100420-分析仪器辅助装置全自动固相萃取仪1(台)否详见招标文件450,000.00工业3-4A02100420-分析仪器辅助装置全自动洗瓶机1(台)否详见招标文件140,000.00工业3-5A02100499-其他分析仪器微粒分析仪1(台)否详见招标文件45,800.00工业3-6A02100499-其他分析仪器片剂崩解仪1(台)否详见招标文件5,000.00工业3-7A02100499-其他分析仪器药物溶出仪1(台)否详见招标文件45,800.00工业3-8A02100499-其他分析仪器自动旋光仪1(台)否详见招标文件9,800.00工业3-9A02100499-其他分析仪器数字阿贝折射仪1(台)否详见招标文件13,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订之日起30日采购包4(福建省兽药质量和兽药残留检测实验室项目):采购包预算金额:325,000.00元采购包最高限价: 325,000.00元投标保证金: 3,250.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业4-1A02100404-光学式分析仪器原子荧光光度计1(台)否详见招标文件325,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订之日起30日2、获取招标文件时间: 2023-06-06 至 2023-06-14 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费3、对本次招标提出询问,请按以下方式联系。(1).采购人信息名称:福建省农产品质量安全检验检测中心地址:福建省福州市鼓屏路183号联系方式:13609593736(2).采购代理机构信息(如有)名称:福建虹旌工程项目管理有限公司地址:福州市金山金岩路56号A1栋4楼联系方式:18960991325(3).项目联系方式项目联系人:宋立虹、鄢炜电话:18960991325网址: zfcg.czt.fujian.gov.cn开户名:福建虹旌工程项目管理有限公司
  • 1080万!中国科学技术大学三重串联四级杆质谱仪、双光子显微镜系统采购项目
    一、项目基本情况1.项目编号:OITC-G230322034项目名称:中国科学技术大学双光子显微镜系统采购项目预算金额:580.000000 万元(人民币)最高限价(如有):580.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1双光子显微镜系统1是投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G230322035项目名称:中国科学技术大学三重串联四级杆质谱仪采购项目预算金额:500.000000 万元(人民币)最高限价(如有):500.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1三重串联四级杆质谱仪1是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月27日 至 2023年12月04日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:安徽省合肥市金寨路96号         联系方式:0551-63602706      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:(北京):北京市海淀区丹棱街1号互联网金融中心20层(合肥):合肥市高新区创新大道2809号置地创新中心28层2815室            联系方式:(北京):窦志超、曹山、王琪 010-68290502(合肥):李文海、郑文彬0551-66030322            3.项目联系方式项目联系人:窦志超、曹山、王琪、李文海、郑文彬电 话:  010-68290502/0551-66030322
  • 1210万!中国科学院金属研究所二次离子质谱仪和扫描隧道显微镜采购项目
    一、项目基本情况1.项目编号:OITC-G240611208项目名称:中国科学院金属研究所二次离子质谱仪招标项目预算金额:790.000000 万元(人民币)最高限价(如有):790.000000 万元(人民币)采购需求:包号货物名称数量(台/套)采购预算(人民币)最高限价(人民币)是否允许采购进口产品1二次离子质谱仪1套790790是合同履行期限:合同生效后14个月本项目( 不接受 )联合体投标。2.项目编号:OITC-G240661177项目名称:中国科学院金属研究所扫描隧道显微镜采购项目预算金额:420.000000 万元(人民币)最高限价(如有):420.000000 万元(人民币)采购需求:包号货物名称数量(套)采购预算(人民币)最高限价(人民币)是否允许采购进口产品1扫描隧道显微镜1420万元420万元否合同履行期限:合同签订后10个月。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年06月14日 至 2024年06月21日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com;北京市海淀区丹棱街1号互联网金融中心20层方式:登录www.oitccas.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院金属研究所     地址:沈阳市沈河区文化路72号        联系方式:佟老师;024-23971066      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯;王军;郭宇涵;余睿;010-68290530;010-68290508            3.项目联系方式项目联系人:李雯;王军;郭宇涵;余睿电 话:  010-68290530;010-68290508
  • 一招直接检测赛马毛发中的违禁药物——成像质谱显微镜技术应用大解析
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/1b29067b-1fd8-40e4-ad30-65ef06707ece.jpg" title="微信截图_20200619185620.png" alt="微信截图_20200619185620.png"//pp style="text-align: center "由 Equine Racing Co. Co.,Ltd. 的首席执行官 Masaru Sese 先生提供/pp style="text-align: justify line-height: 1.75em text-indent: 2em "1.简介/pp style="text-align: justify line-height: 1.75em text-indent: 2em "在法医学领域,除尿液作为药物测试样品外,毛发样品也在不断引起研究者注意。由于通常药物作为尿代谢产物接收检测时,如果没能在药物清除前采集到尿液样品,就无法检测出来。而毛发中的药物则不会代谢掉,并且停留时间很长。换言之,尿液中的药物可能会在最后一次摄入后几天内,由于代谢和排泄的关系排除体外,而毛发样品的特点在于只要不修剪,即可长期保留摄入历史。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,已将气相色谱质谱(GC-MS)和液相色谱质谱(LC-MS)等常规手段作为检测毛发样品的新方法,投入实际使用。采集的毛发经洗涤、干燥后,切割为约 5mm 至 1cm 长度,经提取、纯化后,进行分析。人类毛发平均每月增长 1cm,如果可以确定所测毛发的位置,即可确定“何时使用过药物”、“使用过何种药物”以及“用量多少”。请关注 Ono、Mizuno 等人的文献,该文献作为法医学领域的毛发分析提供参考,包括上述样品预处理方法sup(1) - (3)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前此类毛发分析方法不仅在人来源样品,同时在赛马药物检测领域引起了极大关注sup(4)(5)/sup。迄今报告用于马毛分析的测试样品均来自马鬃毛(以下简称“马毛”)。但是,马毛通常较长,需要充分洗涤和干燥来去除样品表面的污染物。另外,由于切割后所得样品数量很多,前处理过程也会十分麻烦。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  鉴于此,目前除 GC-MS 或 LC-MS 方法以外,已有报道使用质谱成像(MSI)技术进行毛发分析的新方法。利用 MSI,经预处理的毛发样品可被直接分析。近年来,Kamata 等发表使用 MSI 检测人类毛发中药物摄入史的开创性论文sup(6) (7)/sup。使用 MSI 检测毛发中的药物摄入史,则必须沿纵向去除毛发角质层,露出髓质。该过程十分困难, 因此如参考文献 6 所述,尽管制造专用装置进行该步骤,依然无法去除长度超过约 1-2cm 的角质层。与人的毛发不同,马的鬃毛很长,从而导致这一过程变得更加麻烦,因此目前尚未有在马毛中进行检测药物摄入的报道。本文将介绍使用MSI 技术检测马毛中甾体抗炎药磷酸地塞米松的应用实例,该马毛样品长 4cm,经手动方式去除角质层。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2. 质谱成像/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在质谱分析时,分子被离子化,根据其在电场和磁场中的位移差来测量其质量(实际为 m/z 值,将质量除以离子所带电荷数)。如前所述,MSI 与使用现有 GC-MS 和LC-MS 方法的不同之处在于,无需进行提取,可直接分析样品表面,获得待测药物空间分布信息。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常的实验步骤包括准备样品切片,并将其放置在ITO 导电玻璃上。随后样品被电离并进行质谱分析。在分析时,确定样品检测区域和测量点间的间隔, 获取每个测量点的质谱图及对应位置信息。获取所有测量点质谱图后,选择与目标分子对应的m/z, 并根据其强度分布获得目标分子的定位信息。与常规成像技术不同,IMS 不需要进行免疫化学染色或span style="text-indent: 0em "GFP 标记等。由于直接获得分子量信息,可区分目标化合物的原型及其代谢物 由于能够同时电离多种化合物并进行质谱检测,可在一次分析中获得多种不同物质的定位信息。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  3. iMScope iTRIO/i 的开发理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,可以在多种质谱仪上进行 MSI 实验,可选择的离子源以及质谱种类也是各种各样。自 2004 年以来,作者与岛津株式会社(8)合作开发iMScope TRIO™ 成像质谱显微镜,目前正在大阪大学岛津分析创新研究实验室(9)进行各种相关应用研究。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  iMScope TRIO 的开发理念如图 1 所示。尽管普通显微镜可以观察组织结构,但很难获取相关各种组分的信息。另一方面,iMScope TRIO 将对样品的显微观察和基质辅助激光解吸电离(MALDI)技术相结合从而进行成像质谱分析。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/2029d9c6-f5b4-43f7-b811-16f72c0baad9.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 1 iMScope iTRIO/i™ 成像质谱显微镜的理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用常规显微镜,可区分样品结构上的差异,但是难以获取相关化学成分的信息。相比之下,iMScope iTRIO/i™ 可同时进行光学显微观察和质谱检测,获得对应组分的强度分析信息。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a181f299-6dcb-4cff-a093-46608a9dd1f2.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 2 本研究中使用的分析设备/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A) iMLayer™ :基质升华仪,(B)iMScope iTRIO/i ™ :成像质谱检测,以及(C)iMScope iTRIO/i ™ 系统的示意图。该系统在大气压下进行样品的显微镜观察,并使用 MALDI 电离方式,生成的离子引入离子阱并由飞行时间质谱仪进行检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  4. 实验方法/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究使用 iMLayer™ 基质升华仪进行 MALDI 基质涂敷(图 2(A))。所用基质为 α-氰基-4-羟基肉桂酸(α-CHCA,Merck)和 9-氨基吖啶(9-AA, 东京化学工业有限公司),分别用于正离子模式分析和负离子模式分析,通过 iMLayer 涂敷在样品表面上厚度为 0.5 μm。正离子模式分析中,基质升华后,使用喷枪手动喷涂 α-CHCA 溶液(10 mg/ml, 使用 30%乙腈/0.1%甲酸溶液)sup(10)/sup。负离子模式分析中,9-AA 升华后,将 5%的甲醇蒸气喷覆于样品表面 3 秒钟,进行重结晶sup(11)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用iMScopei TRIO/i 进行检测(图 2(B),(C))。如上所述,iMScope TRIO 配有光学显微镜,可在大气压下获得样品表面图像,同时配置大气压MALDI 离子源。MALDI 所用激光器为 Nd:YAG 激光器,频率为 1 kHz。在大气压下产生的离子通过差级真空系统导入质量分析单元,并由离子阱飞行时间质谱仪检测。质量范围(m/z)在 50-3000 之间,本次目标药物磷酸地塞米松为小分子药物,质量范围设定至m/z1000。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图 3(A)显示该样品的的分析流程。基本过程:span style="text-indent: 0em "采集马毛、去除角质层、涂覆基质、使用 iMScope /spani style="text-indent: 0em "TRIO/ispan style="text-indent: 0em " 检测成像。用浸有蒸馏水的布擦拭所采集每一束马毛的表面。该方式仅针对 MSI 可行,因为MSI 无需提取即可直观分析样品。相反,在已有方法中,如清洗不充分,在提取过程中会发生污染问题。清洁马毛表面后,立即干燥马毛。将干燥后的马毛固定于黏贴导电双面胶带的 ITO 载玻片(Matsunami Glass Ind.,Ltd.)上,并使用切片刀在立体显微镜下从毛囊末端开始去除角质层,如图3(B)所示。由于马毛的直径约为人类毛发直径的两倍(约 200μm),因此即使通过手动操作,也可轻松去除表面。除去角质层后,将剩余附着于 ITO 玻璃载玻片上的毛发作为待测样品,涂覆基质并进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究所使用药物为地塞米松磷酸钠(DexaSP),为一类甾体类抗炎药。DexaSP 可使用 9-AA 基质直接以负离子模式进行检测。或者,通过用吉拉德T 试剂(GirT)对DexaSP 进行衍生化,提高正离子模式的离子化效率(图 4)sup(12)/sup。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6d74094f-3a75-4167-8954-e714ae6c80a0.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 3(A)分析流程和(B)马毛表皮去除方法/pp style="text-indent: 0em line-height: 1.75em text-align: center "在立体显微镜下使用冷冻切片机刀片去除角质层,暴露出髓质/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/60fdbd8b-a130-43a6-87b2-c4fd636464d0.jpg" title="4.png" alt="4.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 4 地塞米松磷酸钠(DexaSP)是靶向药物/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  如进行正离子模式检测,将以 Gir T 试剂作为衍生试剂生成的 DexaSP 衍生物作为检测目标。对于负离子模式检测,将无变化的 DexaSP 作为检测目标。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  5. 结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图5 显示使用标准品在正离子模式和负离子模式获得的检测结果。span style="text-indent: 0em "如前所述,在正离子模式检测中,将 GirT 衍生后的 DexaSP 衍生物作为检测目标,而在负离子模式检测中,将无变化 DexaSP 作为检测目标。正离子模式下, 使用α-CHCA 检测,DexaSP 衍生物的质荷比为 m/z 586.267,对应[GirT-DexaSP-2Na + 2H] +离子。另一方面,负离子模式中,使用 9-AA 检测, [DexaSP-H]- 的质荷比为 471.160。两种模式下均观察到 DexaSP 由来的峰,但鉴于前处理所需时间且负离子模式强度约高出正离子模 式 100 倍,决定使用 9-AA 在负离子模式下对马毛进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  分析可疑马毛样本时,需进行对照实验,检测未给予 DexaSP 的马毛样品,确认没有 m/z 471.160 离子的出现(图 6(A))。图 6(B)显示地塞米松磷酸酯给药后马毛的质谱成像结果。该测试样品于 2017 年 7 月 13 日采集的马毛,该马匹在 2017 年 6 月上旬,连续 3 天注射 15 至 20 mL 0.1%的地塞米松磷酸钠水溶液(Fujita Pharmaceutical Co)。iMScope TRIO 的测量间隔在 x 方向上为 80 μm,在y 方向上为 5 μm,激光斑点大小为 2(系统参数)。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在该实验中,测量总长为 4cm 的马毛,将其划分为1cm 的区间分别进行检测。在图 6(B)中,所得数据虽然分为 4 个部分,但马毛样本并未被分割: 4cm 长的马毛被固定在 ITO 载玻片上。从毛囊向尖端进行扫描,并在距毛囊约 16.48 mm 处,检测到较高强度地塞米松磷酸酯信号。该结果是首次从毛发中直接检测到原本会于体内迅速代 谢的磷酸酯,具有重要意义。此处质谱成像结果使用绝对强度来表示峰强度,并在 300-1500 强度范围内以多色带显示。在这一结果中暖色表示较高的峰强度。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d2a0f5a7-7467-4895-8488-c1387c81251f.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 5 标准品的检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  正离子模式和负离子模式均可获得信号,但考虑前处理的简便性和离子强度的差异,选择负离子模式进行检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f4d9af67-3298-4f85-9e23-22c90acd07f8.jpg" title="6.png" alt="6.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 6 马毛中 DexaSP 分布检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)是未给药马匹的马毛检测结果,作为阴性对照 (B)给药后马匹的马毛中检测结果(注射 15-20 mL 由 Fujita Pharmaceutical Co.提供的 0.1%地塞米松磷酸钠水溶液,浓度 1.315 mg/mL, 连续注射 3 天。)用 iMScope TRIO™ 扫描从毛囊开始 4 cm 长度的马毛样本。记录每 1 cm 马毛的检测结果。在距毛囊 16.48 mm 处观察到目标药物最大强度。由于马毛平均每月以 2.0 cm 的速度生长,可判断在采样日期前 25 天给药。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  6. 讨论/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本实验中,根据目标化合物离子化效果选择负离子模式进行分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊 16.48 mm 位置处观察到药物的强大信号。马毛的平均生长速度为每月2cm,是人类的两倍。 基于该生长速率以及最大强度信号距离毛囊的位置估算给药时间,大约在24-25 天前。根据给药记录,该药物在采集毛发前约一个月给药,通过对比该信息,认为药物定位正确。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  另一方面,尽管离子强度较低,但是在毛囊附近依然检测到一些信号。经确认质谱图,发现该信号源自噪声,由此认为进一步提高离子化效率和信噪比对分析实际样品十分重要。为达到这一目标,可能需要进一步改进基质涂覆方法或选择其他基质。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  7. 总结与展望/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  地塞米松磷酸钠是一种经获准使用的抗炎药,但禁止在比赛前使用sup(13)/sup。最近一次在 2016 年 12 月东京大奖赛上,冠军赛马阿波罗肯塔基在赛后发现使用过这一药物的事件依然记忆犹新。本次结果是将iMLayer 基质升华与iMScopei TRIO /i成像质谱分析相结合,应用于违禁药物检测领域的首个示例。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  此外,由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。另一方面,由于在成像结果中存在大量噪声,有必要对毛发预处理流程进行进一步优化,提高离子强度。从该检测结果来看,探索对可检测药物(包括合成类固醇类)定量分析方法的建立也是必不可少的。尽管该应用仍存在许多问题以待解决,但我们依然认为iMScope iTRIO/i 的潜力十分值得期待。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  8. 马毛分析的可能性/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前,世界范围内关于赛马违禁药物控制的讨论很多, 讨论赛马违禁药物检测和赛马伤害保护(ICRAV:国际赛马分析专家和兽医会议)的国际会议每两年召开一次。2018 年,在阿拉伯联合酋长国的迪拜举行该会议,作者首次参加并介绍了这项研究结果。图 7 显示了会场和 Meydan 赛马场的景色。能够在世界顶级赛马场之一的 Meydan 赛马场旁会议厅中展示这项研究,是迄今为止作者一生中最难忘的事件之一。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常,来自日本的参会者均为 JRA 相关人员或赛马化学实验室的研究人员,而作者则是大学中唯一的参会者。不仅如此,来自香港赛马会、澳大利亚赛马会和其他地方的研究人员对使用 IMS 进行药物检测产生了浓厚兴趣并寄予厚望,讨论非常活跃。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2018 年 11 月,在撰写本文时,岩手赛马比赛中参赛的赛马 Ubatouban 被检测出使用禁用药品去氢睾酮(14)。今后,我将继续改进和优化该检测方法(包括简化毛发前处理技术),使这种来自日本的新型检测方法在世界赛马领域中用以进行违禁药品检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者同时还得到岛津制作所的大力支持, 并与Equine Racing Co., Ltd.的全体员工进行广泛合作,其中来自Equine Racing Co., Ltd.的代表人也是本文的合著者。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者将在图8 中展示马毛采样图片以及作者和合著者的最新照片作为本文的结尾。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee91fa21-88d0-4e07-a965-a1df9ad924ef.jpg" title="7.png" alt="7.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 7 ICRAV2018/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)、(B)ICRAV 2018 会场的场景,(C)举行 ICRAV 的 Meydan 赛马场。Meydan 赛马场景色壮观,其规模和完备程度在日本也数一数二。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6a43445f-916c-4ab3-9fb7-890880d85bf3.jpg" title="8.png" alt="8.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 8 参观 Equine Racing Co., Ltd./pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)Equine Racing Co., Ltd.的工作人员介绍马匹。(B)在马腿上可以看到的称为“栗子”的部分:角质化的退化拇指(C) 鬃毛采样 (D)作者(右)和合著者(左)的近期照片。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  参考文献/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (1) Masahiro Ohno (2005) Asahi Law Review, 32, 144-199/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (2) Dai Mizuno (2017) Analysis, 12, 589-590/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (3)Shima N et al. (2017) Drug. Metab. Dispos., 45, 286-293, https://doi.org/10.1124/dmd.116.074211/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (4)Wong JKY et al. (2018) J. Pharm. Biomed. Anal., 158, 189-203,a href="https://doi.org/10.1016/j.jpba.2018.05.043" _src="https://doi.org/10.1016/j.jpba.2018.05.043"https://doi.org/10.1016/j.jpba.2018.05.043/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(5) Madry MM et al. (2016) BMC Vet. Res., 12, 84, /spana href="https://doi.org/10.1186/s12917-016-0709-5" _src="https://doi.org/10.1186/s12917-016-0709-5" style="text-indent: 0em "https://doi.org/10.1186/s12917-016-0709-5/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(6)Kamata T et al. (2015) Anal. Chem., 87, 576-81, https://pubs.acs.org/doi/10.1021/acs.analchem.5b00 971/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (7)Hang W, Ying Wang (2017) Anal. Chimica Acta, 975, 42-51, a href="https://doi.org/10.1016Zj.aca.2017.04.012" _src="https://doi.org/10.1016Zj.aca.2017.04.012"https://doi.org/10.1016Zj.aca.2017.04.012/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(8)Harada T et al. (2009) Anal. Chem., 81,9153-7, https://doi.org/10.1021/ac901872n/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (9) https://www.shimadzu.co.jp/labcamp//pp style="text-align: justify text-indent: 0em line-height: 1.75em " (10)Shimma S et al. (2013) J. Mass Spectrom., 48, 1285-90, https://doi.org/10.1002/jms.328/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (11)Nakamura J et al. (2017) Anal. Bioanal. Chem., 409, 1697-1706, a href="https://10.1007/s00216-016-0118-4" _src="https://10.1007/s00216-016-0118-4"https://10.1007/s00216-016-0118-4/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(12) Shimma S et al.(2016) Anal. Bioanal. Chem., 408, 7607-7615,/spanspan style="text-indent: 0em "https://doi.org/10.1007/s00216-016-9594-9/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (13) http://company.jra.jp/0000/law/law07/07.pdf/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (14) http://www.iwatekeiba.or.jp/news/180915i/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制