当前位置: 仪器信息网 > 行业主题 > >

色谱湿法装

仪器信息网色谱湿法装专题为您提供2024年最新色谱湿法装价格报价、厂家品牌的相关信息, 包括色谱湿法装参数、型号等,不管是国产,还是进口品牌的色谱湿法装您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱湿法装相关的耗材配件、试剂标物,还有色谱湿法装相关的最新资讯、资料,以及色谱湿法装相关的解决方案。

色谱湿法装相关的资讯

  • 技术引领,“智”创未来 | 谱育科技亮相第九届全国湿法冶金工程技术交流会
    2021年6月18-20日,第九届全国湿法冶金工程技术交流会在福建厦门隆重召开。本次会议由中国有色金属学会、中南大学、矿冶科技集团有限公司、紫金矿业集团股份有限公司、厦门钨业股份有限公司、中国科学院过程工程研究所联合主办。来自湿法冶金领域的专家学者、领导和优秀企业代表等近600余名参会人士齐聚厦门,济济一堂。谱育科技应邀参会,与一众与会人士共同探讨湿法冶金的先进新技术研发、工程化应用等关键方向,解决有色金属资源开发利用中的重大技术问题,提高资源综合利用效率,致力于推动冶金企业产品质量把控和提升产业核心竞争力。大会期间,谱育科技全面展示了由实验室分析检测、生产过程在线监测、环保排放监测构成的有色冶金行业综合解决方案,将质谱、光谱、色谱、前处理、全自动等技术平台与现代化信息技术相融合,在湿法冶金过程中实现智能监测。6月19日下午,在大会主会场的交流现场,谱育科技的行业技术经理林黎向在座的专家同行分享了“ICP-OES/ICP-MS分析技术在湿法冶金在线监测中的应用”的主题报告。他表示,基于ICP-OES/ICP-MS 分析系统的在线应用方案是谱育科技根据湿法冶金行业客户需求重点推出的,致力于从根本上解决行业客户痛点。并在现场通过有色湿法冶金在线分析的技术难点问题解答,实际应用案例展示的形式,对方案进行了全面介绍。与此同时,本次湿法冶金大会在开篇首日即隆重举办了“2021全国湿法冶金星级装备”评选活动。谱育科技FAAS 8000 工厂自动化在线分析系统 在众多优秀同行的产品中突出重围,成功被评选为”创新星级品牌产品”。谱育科技新业务发展总监袁汉华(右二)作为公司代表上台领奖。【 有色冶金行业综合解决方案 】谱育科技基于雄厚的技术实力,推出了集有色金属企业提供实验分析检测、生产过程在线监测、环保排放监测为一体的全方位综合解决方案,促进有色金属企业转型升级和高质量发展。【 FAAS 8000工厂自动化分析系统 】2020年4月,谱育科技针对目前企业生产中人工监测的问题,打造了FAAS 8000 工厂自动化分析系统。系统采用“原位分布式采样+中心分析服务器”的架构,实现了工业生产过程中液体样品的多元素同时快速在线监测。系统通过攻克远程气动送样、秒级无损传输、高精度在线万级稀释等流路关键技术,实现了远距离、多点位、多元素的实时快速在线监测,为生产工艺优化、产品品质提升、企业节能降本提供有效保障。
  • 品类先锋用户心声|莱伯泰科-湿法消解新体验
    在科学仪器行业竞争日益激烈的现状下,为帮助仪器用户快速找出单品类仪器中的千里马or领头羊企业及产品,仪器信息网从2017年开始推出【品类先锋】服务,以“为用户推荐值得信赖的品牌及仪器”为核心宗旨,持续地挖掘、推荐细分领域的优质企业及仪器。今日分享的是电热消解仪品类先锋——莱伯泰科的用户心声,以下内容摘自“北京诺红诺德医药科技有限公司”艾敬亭老师分享的使用心得:莱伯泰科-湿法消解新体验我们实验中心一直用的是湿法消解的方式,即在样品处理的过程中,实验员需要用不同酸/混合酸/过氧化氢/其他氧化剂的混合液,在加热状态下将含有大量有机物的样品中的待测组分转化为可测定形态。我们之前用的是电炉子,电热板,后来由于样品太多,工作效率跟不上才重新买了新仪器,没想到这台仪器直接代替了2个实验员的工作。我们是于2020年4月买的D-MASTER,到现在近二年多的时间做了2万多样品,消解了近390批样品,每批60个样,通过大量的试验,证明了该仪器的优越性。今年8月份刚刚买了第二台这个仪器,已经安装开始使用了。D-master这个仪器,是在常压状态下消解样品,用户只需向消解管中称量所测样品,仪器按照软件指令完成自动添加试剂、摇匀样品、程序升温、赶酸、提升冷却、定容等一系列操作,软件操作简单,样品经D-master 处理后可直接进行AAS、ICP、ICP-MS等分析。从我的使用经验来看,它的优越性主要体现在以下4个方面:1、仪器采用创新的人工智能设计,让实验随时随地自主运行,是我的智能眼睛(1)无线控制,我无需守在实验室酸气弥漫的通风橱前控制仪器。(2)多端同时控制查看,手机、电脑、Pad可同时控制查看仪器状态,便于我在不同时间段监控实验。(3)预约开机功能,可以提前预置方法,让仪器在指定时间自主运行,真正实现让仪器替我加班。(4)视频监控系统,高清视频实时监看仪器运行状态,出现问题可立即停止仪器,修改方法,让我安心在家看仪器自己实验。2、仪器室全自动化样品处理过程,是我的智能手臂,让实验更简单(1)仪器可以自动添加试剂、自动混匀样品、自动升降、自动梯度升温、自动赶酸、自动定容,中途补酸可自动提升冷却,让繁琐的操作变成自动化操作。(2)方法运行结束可自动生成实验报告,有效提高实验人员工作效率。3、仪器采用创新的结构设计,杜绝酸气腐蚀,仪器运行更稳定,是我的长期实验室助理(1)仪器采用360°旋转机械臂,全密闭式结构设计,直接杜绝酸气和冷凝酸液对传动部位的腐蚀,保证仪器连续加液的稳定性。(2)仪器标配通风系统,不占用实验室通风橱空间,仪器电器件与通风系统隔离设计,确保仪器电器件不会被高温影响、不会被酸气腐蚀,仪器使用寿命更长。4、全方位的安全预警系统,保障实验过程顺利,是我安心实验的底气(1)语音提示系统,方法运行结束后语音提示,避免由于远程控制而忽略时间造成样品被余热蒸干的实验情况。(2)试剂余量实时监控,低于设定值则立即报警提示,补充试剂后报警消除。经过我大量的实验操作,和长期使用后仪器的表明,D-MASTER能满足我们做食品和药品的实验要求,建议有与我们样品相似的实验室可以用D-MASTER来试一下,的确是能够明显提高工作效率,降低我们实验员的工作强度,是湿法消解新体验。今天的分享就到这里结束啦。欢迎大家投稿,分享更多品类先锋仪器使用心得。投稿邮箱:wuqs@instrument.com.cn,一经采用,投稿人将获得仪器信息网提供的50—200元京东卡作为奖励,投稿人需备注姓名、所在单位。投稿要求:1、 所投文章必须完整且条理清晰,文中至少包含1张仪器图片(人与仪器合照更佳),且字数不少于500字。分享的心得需是仪器信息网品类先锋的仪器心得。(详情见附表)2、 内容至少包含以下文稿提纲中的任意三点,每个网友投稿数量不限。• 仪器发展简介• 仪器产品介绍、实际应用中解决了什么问题• 仪器推荐附:2022-2023年度品类先锋名录(排名不分先后)品类名客户名称紫外、紫外分光光度计、紫外可见分光光度计上海元析仪器有限公司上海美谱达仪器有限公司北京普析通用仪器有限责任公司原子荧光光谱仪(AFS)北京海光仪器有限公司原子吸收光谱(AAS)北京普析通用仪器有限责任公司液质联用(LC-MS)赛默飞色谱与质谱SCIEX中国液相色谱(LC)上海伍丰科学仪器有限公司华谱科仪(北京)科技有限公司热解析仪、热解吸仪、热脱附仪奥普乐科技集团(成都)有限公司北京中仪宇盛科技有限公司过程质谱/在线质谱上海舜宇恒平科学仪器有限公司气相色谱仪(GC)浙江福立分析仪器股份有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)北京宝德仪器有限公司离子色谱(IC)青岛盛瀚色谱技术有限公司激光拉曼光谱(RAMAN)HORIBA 科学仪器事业部红外光谱(IR、傅立叶)赛默飞世尔科技分子光谱北京北分瑞利分析仪器(集团)有限责任公司核磁共振(NMR)布鲁克(北京)科技有限公司分子荧光光谱HORIBA 科学仪器事业部定氮仪、凯氏定氮仪、Dumas定氮仪艾力蒙塔贸易(上海)有限公司顶空进样器奥普乐科技集团(成都)有限公司吹扫捕集仪北京聚芯追风科技有限公司北京莱伯泰科仪器股份有限公司奥普乐科技集团(成都)有限公司PH计、酸度计上海仪电科学仪器股份有限公司(原上海精科雷磁)ICP-MS电感耦合等离子体质谱安捷伦科技(中国)有限公司ICP-AES/ICP-OES安捷伦科技(中国)有限公司自动电位滴定仪上海禾工科学仪器有限公司卡氏水分测定仪上海禾工科学仪器有限公司真空泵凯恩孚科技(上海)有限公司移液器、移液枪大龙兴创实验仪器(北京)股份公司研磨机、研磨仪、粉碎机、球磨机北京飞驰科学仪器有限公司北京格瑞德曼仪器设备有限公司蚂蚁源科学仪器(北京)有限公司旋转蒸发仪艾卡(广州)仪器设备有限公司(IKA 中国)洗瓶机/清洗机天津语瓶仪器技术有限公司美诺中国 Miele China微波消解仪培安有限公司上海屹尧仪器科技发展有限公司安东帕(上海)商贸有限公司北京莱伯泰科仪器股份有限公司天平德国赛多利斯集团平行真空蒸发仪天津市恒奥科技发展有限公司生物质谱广州禾信仪器股份有限公司离心机、实验室离心机湖南湘仪实验室仪器开发有限公司搅拌器、磁力搅拌器、电动搅拌器大龙兴创实验仪器(北京)股份公司废气/废水处理机四川优浦达科技有限公司电热消解仪、消化炉北京莱伯泰科仪器股份有限公司氮气发生器毕克气体仪器贸易(上海)有限公司氢气发生器毕克气体仪器贸易(上海)有限公司纯水器、超纯水器、纯水机、超纯水机上海乐枫生物科技有限公司高锰酸盐指数测定仪(CODMn)上海北裕分析仪器股份有限公司TOC分析仪/总有机碳分析仪艾力蒙塔贸易(上海)有限公司上海元析仪器有限公司COD测定仪/COD快速测定仪连华科技BOD测定仪/BOD快速测定仪连华科技总磷测定仪/总氮测定仪/总磷总氮测定仪连华科技水质分析仪/多参数水质分析仪连华科技氨氮测定仪/氨氮分析仪连华科技甲烷/非甲烷烃检测仪青岛明华电子仪器有限公司激光粒度仪HORIBA 科学仪器事业部丹东百特仪器有限公司珠海欧美克仪器有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司贝士德仪器科技(北京)有限公司扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)Park帕克原子力显微镜高内涵细胞成像分析系统美谷分子仪器(上海)有限公司酶标仪/微孔板读板机美谷分子仪器(上海)有限公司生物安全柜力康集团
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 湿法脱硫协同除尘机理及超低排放技术路线选择
    p  随着国家三部委《全面实施燃煤电厂超低排放和节能改造工作方案》的实施,燃煤电厂烟气治理设备超低排放改造工作突飞猛进,成绩显著。在实施湿法脱硫(WFGD)超低排放方面,各环保公司纷纷开发了脱硫喷淋塔技术改造提效升级的多种新工艺,如单塔双循环技术、双托盘技术、单塔双区(三区)技术、旋汇耦合技术等,特别在脱硫塔核心部件喷淋系统上,采用增强型的喷淋系统设计(如增加喷淋层、提高覆盖率、提高液气比等)。脱硫效率从以前平均在95%左右提高到99%甚至更高。特别引人关注的是,在超低排放脱硫系统脱硫效率大幅提高的同时,其协同除尘效果也显著提高,一批改造后脱硫系统的协同除尘效率(净效率,已包含脱硫系统逃逸浆液滴的含固量)达到了70%,甚至有更高的报道。p 面对这样的事实,与之相关的问题亟需得到解答与澄清:p (1)超低排放湿法脱硫协同除尘的核心机理是什么?p (2)湿法脱硫协同除尘技术是否有局限性?应用中应注意哪些问题?p (3)超低排放技术路线选择中如何把握好湿法脱硫协同除尘与湿式电除尘器的关系?p 本文旨在追根溯源,一方面回顾总结过去在这方面的研究 一方面从机理出发,研究喷淋系统(及除雾器)对颗粒物脱除的作用。并采用理论模型计算与实际工程案例比较的方法,论证湿法脱硫喷淋系统是协同除尘的主要贡献部件,同时分析湿法脱硫协同除尘的局限性及与湿式电除尘器的关系,为超低排放技术路线选择提供有益的参考意见。p 湿法脱硫协同除尘的研究简要回顾p 清华大学热能系对脱硫塔除尘机理的研究较多,脱硫塔内单液滴捕集飞灰颗粒物的相关研究,主要建立了综合考虑惯性、拦截、布朗扩散、热泳和扩散泳作用的单液滴捕集颗粒物模型并进行了数值模拟计算,分析了温度、液滴直径和颗粒粒径对单液滴捕集过程及效率的影响规律。清华大学王晖等通过测试执行GB13223-2011标准WFGD进出口颗粒物的分级浓度的研究表明,WFGD可有效捕集大颗粒,但对PM2.5的捕集效率较低,且分级脱除效率随粒径减小而明显下降。华电电力科学研究院魏宏鸽等于2011~2013年对39台锅炉(机组容量为25~1000MW)的执行GB13223-2011标准WFGD开展了除尘效率测试试验,结果显示,不同试验机组WFGD的协同除尘效率为18~68%,平均协同除尘效率为49%。国电环保研究院王东歌等通过对我国4座电厂5台不同容量的执行GB13223-2011标准WFGD进出口烟气总颗粒物浓度进行了测试,结果表明,WFGD对烟气中总颗粒物的去除效率介于46.00%~61.70%之间,平均达到55.50%。夏立伟等对某电厂超低排放改造前的WFGD进行了协同除尘效果测试,结果显示,WFGD协同除尘效率为53%。p 上述研究结果一致表明:WFGD具备协同除尘能力 执行GB13223-2011标准WFGD平均协同除尘效率大致在50%左右 湿法脱硫协同除尘的主要机理是喷淋液滴对颗粒物的捕获机理。这种认识在WFGD实施超低排放之前是行业内比较公认的。p 湿法脱硫喷淋液滴协同除尘机理p 1、湿法脱硫喷淋液滴捕集颗粒物的机理与模型喷淋塔除尘机理与湿法除尘设备中重力喷雾洗涤器相似。一定粒径(范围)的喷淋液滴自喷嘴喷出,与自下而上的含尘烟气逆流接触,粉尘颗粒被液(雾)滴捕集,捕集机理主要有重力、惯性碰撞、截留、布朗扩散、静电沉降、凝聚和沉降等。烟气中尘粒细微而又无外界电场的作用,可忽略重力和静电沉降,主要依靠惯性碰撞、截留和布朗扩散3种机理。前人的研究结果表明,Devenport提出的孤立液滴惯性碰撞效率模型、马大广的拦截效率模型、嵆敬文的布郎扩散捕集效率模型与实验结果吻合较好,因此我们根据上述相关模型计算单个液滴的综合颗粒分级捕集效率,然后结合实际工程参数参考岳焕玲提出的液滴群和多层喷淋层中不同粒径液滴的颗粒分级捕集效率模型进行了的计算,相关计算模型见表1所示。centerimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230061.jpg" width="500" height="465"//centercenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230934.jpg" width="500" height="478"//centercenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609231751.jpg" width="500" height="186"//centerp/pp/pp /pp  2、湿法脱硫喷淋层对颗粒物捕集效率影响因素p (1)颗粒物粒径及分级浓度分布对喷淋层协同粉尘脱除效率的影响p 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比L/G=14.283L/m3时,不同粒径范围(900~5000μm)液滴群对颗粒物分级脱除效果曲线如图1所示。p 随着颗粒物分级粒径的增大,脱除效率明显增加,900μm粒径液滴群对1μm颗粒物的脱除效率不到5%,而对10μm颗粒物的脱除效率可达70%以上,因此,烟尘颗粒的分级浓度特性对喷淋层的协同除尘效率影响很大,小颗粒( 2.5μm)比重越大,脱硫塔的协同除尘效率越低。随着液滴粒径增大,因其数量占比大幅减小,发生惯性碰撞、拦截和扩散效应的概率随之降低,对同一粒径颗粒物分级脱除效率随之降低。centerimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609233040.jpg" width="416" height="343"//centerp (2)液气比对颗粒物协同脱除效率的影响/pp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比选为8、12、16、20L/m3,不同液气比条件下不同粒径范围(900~5000μm)喷淋雾滴群对2.5μm颗粒物脱除效果曲线如图2所示。/pp style="TEXT-ALIGN: center"img alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609240974.jpg" width="402" height="337"//pp 上述计算结果表明,随着液气比的增大,吸收塔单位截面上喷淋浆液量越大,喷淋液滴数目增加,表面积增加,与颗粒物接触机会增加,脱除效率明显增大。对于900μm左右粒径的液滴,液气比从8L/m3增加到16L/m3,对2.5μm颗粒分级脱除效率从14.35%增加到26.64%,脱除率增加了84%。因此增大液气比有助于提高湿法脱硫对粉尘和细颗粒(PM2.5)的协同脱除作用。/pp 3、超低排放WFGD与执行GB13223-2011标准WFGD协同除尘效率的比较/pp 为了分析问题,我们假定有一个脱硫工程需要做超低排放改造,设定进口SO2浓度为2450mg/Nm3,进口粉尘浓度20mg/Nm3,出口SO2浓度在超低排放改造前后分别设定为200mg/Nm和35mg/Nm3,选用双头空心喷嘴(液滴体积平均粒径1795μm),脱硫塔进口飞灰颗粒物浓度分布参考清华大学对某个实际工程的颗粒物质量累积分布测试结果。/pp 根据上述假定,我们计算了超低排放WFGD与执行GB13223-2011标准WFGD喷淋层的协同除尘效率、喷淋层对PM2.5的脱除效率,同时把除雾器出口液滴中的含固量考虑在内,测算了超低排放WFGD与执行13223-2011标准WFGD的协同除尘效率,结果如表2所示。/pcenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609242531.jpg" width="600" height="340"//centercenterimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609243491.jpg" width="600" height="322"//centerp 表2计算可以给我们以下几点认识:/pp (1)WFGD对飞灰颗粒物协同脱除的主要贡献是喷淋层。根据前述WFGD喷淋雾滴捕集颗粒物的机理分析与模型计算,喷淋层对较大粒径颗粒的脱除效率是较高的,而这一部分颗粒占重量浓度的大部分,所以计算结果显示,对执行GB13223-2011标准WFGD,喷淋层协同除尘效率74.95%,超低排放WFGD喷淋层协同除尘效率83.30% /pp (2)WFGD的整体协同除尘效率需要考虑WFGD逃逸液滴中的石灰石、石膏等固体颗粒物分量。在进口粉尘浓度条件不变的情况下,由于超低排放WFGD改造安装了高效除雾器,超低排放WFGD协同除尘效率可保持在72.05%,而执行GB13223-2011标准WFGD由于我们假设的原除雾器设计效率较低,出口液滴排放浓度较高,其协同除尘效率降到了37.45%。为了保障WFGD整体的协同除尘效率和较低的颗粒物总排放浓度,需要应用高效除雾器把WFGD出口液滴排放浓度降到足够低。/pp (3)对于我们特别关注的细颗粒物(PM2.5),执行GB13223-2011标准WFGD喷淋层的协同脱除效率为42.74%,超低排放WFGD喷淋层的协同脱除效率为61.83%,提效44.67%,分析超低排放WFGD喷淋层脱除细颗粒物效率较高的主要原因,在于大幅增加了WFGD的液气比,使得喷淋雾滴总的表面积增加,与细颗粒接触的概率增加,从而明显提高了颗粒物特别是PM2.5的协同脱除效率。/pp/pp/pp  表3是我国部分超低排放WFGD工程的协同除尘效果,其中A为华能南通电厂4号机组(350MW)B为华能国际电力股份有限公司玉环电厂1期1000MW机组,C为首阳山公司二期300MW机组。实际WFGD工程的协同除尘测试效率与理论计算结果存在一定的差别,但是趋势是一致的,部分案例数据还比较接近。centerimg alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609250410.jpg" width="600" height="157"//centerp 超低排放WFGD与执行GB13223-2011标准WFGD比较,无论是通过理论计算比较,还是通过工程实际测试结果来比较,证明超低排放WFGD对执行GB13223-2011标准WFGD提高协同除尘效率的大致幅度是一致的。这也间接地证明了喷淋层是WFGD协同除尘作用的主力军。/pp 湿法脱硫用机械类除雾器协同除尘机理/pp 1、除雾器的工作机理及主要作用除雾器是WFGD的重要设备,安装于脱硫塔顶部,常采用机械除雾器,用以去除烟气携带的小液滴,保护下游设备免遭腐蚀和结垢。/pp 除雾器对协同除尘的主要作用在于捕集逃逸液滴的同时捕集了液滴中颗粒物(石灰石、石膏及被液滴包裹的烟尘等)。SO2与颗粒物的超低排放对WFGD的除雾器组件提出了更高要求,一方面,通过增加液气比与喷淋层数、提高喷淋覆盖率等措施实现高效脱硫,但在另一方面一定程度上增加了进入除雾区的液滴总量,使其负荷增加。同时为了保证WFGD出口烟气的颗粒物达到超低排放浓度要求,实际超低排放WFGD工程一般会应用多级或组合型(管式、屋脊式、水平烟道式)高效除雾器以保证WFGD出口液滴浓度处在较低水平,以尽量减少逃逸液滴中的颗粒物对排放的贡献。/pp 2、WFGD除雾器协同除尘的贡献讨论当今高效除雾器能将WFGD出口液滴排放浓度控制得比较低已得到工程实际的验证。但有人可能要问,这一类的除雾器对喷淋层出口的飞灰颗粒物是否有较高的直接脱除作用呢?我们认为,应该说会有一定作用。但是,从本文对喷淋层协同除尘效果分析可以看出,未被喷淋层捕集的飞灰颗粒物的平均粒径非常小。在现实燃煤电厂超低排放治理条件下,脱硫前的除尘器出口飞灰颗粒物浓度一般控制在20mg/m3左右,平均粒径约是3.02μm,经过脱硫塔喷淋层协同除尘作用后,喷淋层出口的飞灰颗粒物平均粒径 1μm。从分析可知,机械除雾器对液滴的临界分离粒径在20~30μm左右,可以推断,机械除雾器对喷淋层出口的飞灰颗粒物直接脱除(液滴包裹的除外)作用很有限,不太可能成为协同除尘的主要贡献者。/pp 超低排放技术路线的选择/pp 1、WFGD的主要功能定位与协同除尘的局限性WFGD的主要功能定位是脱硫,工程项目设计时要确定设计输入与输出条件,在设计煤种上会选含硫量较高的煤种进行设计,根据要求的出口SO2浓度设计脱硫效率,从而设计整个脱硫系统(包括喷淋层系统和运行参数),对除尘作用基本上是协同的概念。从我们前述计算与测试数据来源,大多数是以全负荷运行状态而言。实际上,WFGD运行是与煤的含硫量、发电负荷紧密联系的,根据WFGD实际进口SO2浓度进行控制,调节循环泵开启的个数,控制喷淋量与浆液pH。这样可能导致协同除尘效率不是很稳定,运行中二者难以兼顾。当采用WFGD后没有配置湿式电除尘器的超低排放治理技术路线工程中,WFGD就是除尘的终端把关设备,在某种特定应用煤种情况下(如低硫煤、高灰分、高比电阻粉尘),WFGD进口比较低的SO2浓度与较高的飞灰颗粒物浓度同时出现,WFGD的运行将难以兼顾,不大可能为了维持较高的除尘效率将喷淋层全负荷投运,这就是WFGD协同除尘的局限性。WFGD的主要功能定位就是脱硫,除尘仅仅是协同作用,不可把除尘的终端把关全部责任交给WFGD。/pp 2、湿式电除尘器对超低排放与多污染物协同控制的重要作用湿式电除尘器(WESP)安装于WFGD下游,WESP除尘原理与干式电除尘收尘原理相同,都是依靠高压电晕放电使得粉尘颗粒荷电,荷电粉尘颗粒在电场力的作用下到达收尘极。在工作的烟气环境和清灰方式上两者有较大区别,干式电除尘器主要处理含水很低的干气体,WESP主要处理含水较高乃至饱和的湿气体 干式电除尘器一般采用机械振打或声波清灰等方式清除电极上的积灰,而WESP则通过喷淋系统连续喷雾在收尘极表面形成完整的水膜将粉尘冲刷去除。由于WESP进口烟气温度低且处于饱和湿态,水雾与粉尘结合后比电阻大幅下降,使得WESP对粉尘适应能力强,同时不存在二次扬尘,因此无论前部条件是否波动,WESP对细颗粒和WFGD除雾器逃逸液滴均具备较高的脱除效率,WESP还能有效捕集其它烟气治理设备捕集效率较低的污染物(如PM2.5、SO3酸雾和Hg等),可作为烟气多污染物治理终端把关设备。实际工程中WESP应用较广,除尘效果显著,甚至可达到更低排放要求,例如河北国华定洲发电有限责任公司1号机组(600MW)配套WESP出口粉尘排放浓度低于1mg/m3。/pp 3、是否配置湿式电除尘器是超低排放技术路线选择中的一个重要问题根据我们的经验可以列出以下几点作为考虑是否需要配置WESP的主要因素:/pp (1)脱硫前除尘器的除尘效率是否有较大余量?如有较大余量,就可以在不利条件下启用除尘器余量,不用过分依赖WFGD的协同除尘作用 /pp (2)煤种的条件:实际供应的煤种含硫量是否波动较小?含硫量波动小,意味着协同除尘效率比较稳定,依靠度较高 /pp (3)影响除尘器除尘效率的煤种条件和飞灰条件是否相对稳定?如果经常可能使用影响除尘性能的困难煤种,那脱硫系统的协同除尘负担就重。/pp (4)是否考虑未来对SO3等其他污染物的控制要求?/pp 如果有以上(1)~(3)的不利条件,同时考虑到未来对SO3等可凝结颗粒物和其他污染物的控制要求,那么论证配置WESP的必要性是应该的。/pp 目前,关于超低排放技术路线的选择有很多探讨,实际工程上的问题和条件是很复杂的,除了技术条件,还有现场场地条件、煤种来源稳定性、负荷波动状况等等其他因素需要考虑。所以我们认为超低排放技术路线选择的核心就是具体问题具体分析。/pp 超低排放技术路线中的关键问题是多污染物协同控制,在各主要治理设备中理清主要功能和协同功能非常重要,一定要考虑当主要功能与协同功能有矛盾时如何处理,还是要保留有应对措施。比如,在煤种多变的条件下,保留一个适当规格的WESP作为终端把关,是一个较符合实际的选择。/pp/pp/pp  4、湿法脱硫协同除尘与湿式电除尘器在除尘中相互关系计算举例p 为了说明WFGD与湿式电除尘器在除尘中的相互关系,我们举了个计算例子,按第3节“湿法脱硫喷淋液滴协同除尘机理”的关于超低排放脱硫系统的基本假设,取超低排放WFGD出口烟气液滴浓度为15mg/m3(含固量15wt%),计算液气比分别为10、12.5、15、17.5和20L/m3的WFGD进出口粉尘浓度关系曲线(注:这里是简化计算,实际应考虑塔内其他部件对烟尘的捕集作用),结果见图3所示。p WFGD的液气比越大,喷淋层协同除尘效率越高,越容易达到超低排放。对于特定液气比条件下的WFGD,WFGD进出口粉尘浓度呈线性关系,当其进口粉尘浓度在一定范围以内(较低)时,对应的出口粉尘浓度处于图中垂直网格区域,此时由高效除雾器配合即可满足WFGD出口粉尘浓度达到超低排放要求 但是在斜线网格区域时就不能满足WFGD出口粉尘浓度≤5mg/m3。/pp style="TEXT-ALIGN: center"img alt="" src="http://img01.bjx.com.cn/news/UploadFile/201707/2017070609254032.jpg" width="413" height="301"//pp 这个结果可以供设计参考,考虑实际用煤的含硫量(特别要注意低含硫量煤种)可以估算实际应用的液气比,考虑最差煤种可以估算进口粉尘浓度最高值,这样可以帮助判断是否需要配置WESP作为除尘终端把关设备。上述结果也可以供实际运行控制时参考,在正常的煤种条件下,充分发挥WFGD的协同除尘作用,同时控制好WESP的运行参数 在低硫煤、飞灰条件对除尘器不利条件下,用好WESP起到终端把关作用实现超低排放(≤5mg/m3)。/pp 通过以上分析,我们得出如下结论:/pp (1)WFGD协同除尘的主要贡献是喷淋层,其除尘的核心机理是雾化液滴对飞灰颗粒物的惯性碰撞、拦截和扩散效应。通过理论计算和工程案例数据比较可看出,由于超低排放WFGD喷淋层应用了高液气比、多层喷淋层、高覆盖率等措施以及高效除雾器的配合,协同除尘效率可达到70%左右。/pp (2)湿法脱硫装置的主要功能定位是脱硫,除尘是协同功能。当燃用低硫煤煤种、对除尘器不利飞灰两种情况同时出现时,WFGD的脱硫与协同除尘较难兼顾,所以在粉尘超低排放技术方案选择时,不应过度依赖WFGD的协同除尘作用(设计上直接应用70%协同除尘效率是有风险的)。/pp (3)机械除雾器主要通过高效脱除来自喷淋层的雾滴抑制WFGD出口液滴中固体含量对排放粉尘的贡献,其液滴的临界分离粒径在20~30μm左右,对粒径更小的喷淋层出口飞灰颗粒物(≤10μm)的脱除作用很有限,起到辅助除尘作用。/pp (4)湿式电除尘器对颗粒物、雾滴及其他(SO3等)污染物具有高效捕集能力,在超低排放中作为终端把关设备可以应对煤种、工况变化的复杂情况。/pp (5)超低排放技术路线选择的核心是具体问题具体分析,在各主要治理设备中理清主要功能和协同功能非常重要,在中国煤种普遍波动较大的现实条件下,更要仔细认清协同控制中协同功能的局限性,不能简单地套用一些国外经验。/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p/p
  • 众瑞仪器发布ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)新品
    ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)产品简介ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。整机采用一体便携式设计,采样管和主机为一体,携带方便。可供环境监测部门对各种锅炉排放的气体浓度、排放量进行检测,也可应用于工矿企业进行各种有害气体浓度的测量。参考标准JJG968-2002 烟气分析仪检定规程HJ/T 397-2007 固定源废气监测技术规范DB37/T 2704-2015 固定污染源废气氮氧化物的测定紫外吸收法DB37/T 2705-2015 固定污染源废气二氧化硫的测定紫外吸收法DB37/T2641-2015 便携式紫外吸收法多气体测量系统技术要求及检测方法HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法GB13233-2011 火电厂大气污染物排放标准Q/0214 ZRB009-2017 烟气综合分析仪GB/T 37186-2018 气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱分析法HJ 1045-2019 固定污染源烟气( 二氧化硫和氮氧化物 )便携式紫外吸收法测量仪器技术要求及检测方法功能特点采用热湿法紫外差分原理检测SO2、NO、NO2和NH3,适合高湿低硫工况,完全避免冷凝除湿造成的烟气组分损失;带有皮托管、烟温传感器接口,能够自动测量烟温、流速和含湿量;内置含湿量传感器,可同步测量含湿量,实时折算干态浓度选配传感器(CO、CO2、H2S);内置电池,采样结束后自动完成反吹功能;内置蓝牙,通过手机或平板进行人机交互、数据存储;采样分析一体式结构,便携性好;数据显示和接口丰富:蓝牙打印、U盘导出、100万条数据存储、排放量折算、浓度折算;内置高效冷凝除水模块,防止O2传感器进水损坏,蠕动泵排水,自动化程度高;预热时间短,可以在现场快速达到测量要求;自主知识产权的高稳定吸收池,采用前端维护和调整结构,可靠性高,非专业人员也可进行气室擦拭和维护。采用钛合金真空隔热管,隔热效果好;配有高温探针,满足不同烟温工况。 创新点:ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p  湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。/pp  但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中?/pp  我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。/pp  燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。/pp  大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。/pp  一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。/pp  脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。/pp  烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。/pp  中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因!/pp  接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。/pp  这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。/pp  这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。/pp  有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。/pp  烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。/p
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style="text-indent: 2em "涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。/pp style="text-indent: 2em "激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。/pp style="text-indent: 2em "/pp style="text-indent: 2em "1 实验部分/pp style="text-indent: 2em "1.1 主要原料及仪器br//pp style="text-indent: 2em "钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。/pp style="text-indent: 2em "1.2 试验方法/pp style="text-indent: 2em "(1) 干法测试/pp style="text-indent: 2em "称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。span style="text-indent: 2em "(2) 湿法测试/span/pp style="text-indent: 2em "湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。span style="text-indent: 2em "1.3 粒径分布参数/span/pp style="text-indent: 2em "Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。/pp style="text-indent: 2em "2 结果与讨论/pp style="text-indent: 2em "2.1 钛白粉粒径分布的测试/pp style="text-indent: 2em "2.1.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title="1.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。/pp style="text-indent: 2em "2.1.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title="2.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。/pp style="text-indent: 2em "2.1.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title="3.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。/pp style="text-indent: 2em "2.1.4 钛白粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。/pp style="text-indent: 2em "2.2 滑石粉粒径分布的测试/pp style="text-indent: 2em "2.2.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title="4.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。/pp style="text-indent: 2em "2.2.2 湿法测试(未加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.3 湿法测试(加分散剂六偏磷酸钠)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title="5.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。/pp style="text-indent: 2em "2.2.4 滑石粉粒径分布2种测试方法之间的差异/pp style="text-indent: 2em "比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。/pp style="text-indent: 2em "2.3 石墨烯粒度分布的测试/pp style="text-indent: 2em "2.3.1 干法测试/pp style="text-indent: 2em "测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title="7.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。/pp style="text-indent: 2em "2.3.2 湿法测试(不加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title="8.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。/pp style="text-indent: 2em "2.3.3 湿法测试(加分散剂)/pp style="text-indent: 2em "测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title="9.webp.jpg"//pp/pp style="text-indent: 2em "测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。/pp style="text-indent: 2em "2.3.4 石墨烯2种测试方法之间的差异/pp style="text-indent: 2em "从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。/pp style="text-indent: 2em "2.4 涂料粒径分析干法和湿法之间的差异/pp style="text-indent: 2em "干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。/pp style="text-indent: 2em "2.5 干法和湿法测试的重复性比较/pp style="text-indent: 2em "2.5.1 干法测试重复性/pp style="text-indent: 2em "重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title="10.webp.jpg"//pp/pp style="text-indent: 2em "2.5.2 湿法测试重复性/pp style="text-indent: 2em "选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。/pp style="text-indent: 2em "img src="http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title="11.webp.jpg"//pp/pp style="text-indent: 2em "目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。/pp style="text-indent: 2em "影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。/pp style="text-indent: 2em "3 结语/pp style="text-indent: 2em "讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。/pp style="text-indent: 2em "在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。/p
  • 年产40台设备,这个半导体湿法设备制造项目将落地合肥
    8月10日,合肥经济技术开发区管理委员会网站发布关于对合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)环境影响评价文件拟作出审批意见的公示。△Source:合肥经开区网站截图据披露,合肥至汇半导体应用技术有限公司将在合肥经济技术开发区建设半导体湿法设备制造项目(一期),项目总投资1.8亿元,投产后可年产30台年产批次式半导体湿法清洗设备和10台单片式半导体湿法清洗设备。天眼查显示,合肥至汇半导体应用技术有限公司成立于2019年,注册资本1000万元,是上海至纯洁净系统科技股份有限公司的全资子公司,经营范围包括半导体设备、机械设备、自动化设备、计算机及辅助设备、配电开关控制设备制造、销售、维修、调试及技术服务;工业自动化科技、计算机科技、半导体科技领域内的技术研发、技术咨询、技术转让、技术服务等。△Source:天眼查截图据悉,该项目最早可追溯至2019年。2019年5月,至纯科技发布公告称,为顺应我国半导体产业的发展,拟募集资金总额不超过3.56亿元,扣除发行费用后将用于半导体湿法设备制造项目和晶圆再生基地项目,而负责半导体湿法设备制造项目的实施主体正式合肥至汇。△Source:至纯科技公告截图公告显示,半导体湿法设备制造项目建设周期为2年,建成后,主要开展批次式半导体湿法清洗设备和单片式半导体湿法清洗设备的生产制造。至纯科技当时披露,该项目已经取得了合肥经济技术开发区经贸发展局的备案,并取得了合肥市环境保护局经济技术开发区分局出具的《关于合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)审核意见》,认为项目可以在合肥市环境保护局经济技术开发区实施。
  • 德图隆重推出湿法脱硫出口SO2采样探针
    冲破技术难关 湿法脱硫出口SO2采样探针 ——全新Testo专利特殊低SO2采样探针拥有50多年历史的德图公司,是世界上最大的便携式仪器制造商。在享有“测量专家”美誉的同时,德图公司始终根据市场和客户的需求,不断积极研发最新产品。近两年间,我们发现,湿法脱硫后SO2的测量是近两年来烟气测量中的典型问题。其原因为,湿法脱硫后气体湿度高(达到饱和湿度),温度低以及低SO2。这些因素是SO2气体测量中急需解决的难题。为了有效地解决测量中的这些问题,德图隆重推出了适用于湿法脱硫出口的全新测量解决方案,即“全新专利特殊低SO2采样探针”。正如其名,该采样探针已经在中国市场成功申请专利技术。 全新革命性测量方案 德图本着致力于未来的口号以及为用户提供最佳测量方案的原则,历经1年的研发,终于在2010年8月隆重推出了“全新专利特殊低SO2采样探针”,该技术的推出极大地简化了高湿低硫环境下SO2气体的测量。只需一个外观与普通采样探针极为相似的“全新专利特殊低SO2采样探针”,便可随时随地对高湿低硫环境下的SO2进行快速、便捷而精准的测量。该探针长700mm,其标准探针长度及重量与普通探针基本一致。配备标准2.2m耐硫采样管,最高耐温+200℃。整个测量系统无需使用交流电供电,测量便捷,响应快,并且能够保证测量精度。 全新测量方案的升级优势 在2009年6月德图即对高湿低硫环境下的SO2测量做出过解答:全加热型testo 350 Pro/XL,即标准testo 350 Pro/XL主机加全加热采样系统,其中含热采样管(加热温度+180℃)、加热手柄(加热温度+180℃),以及全加热采样软管(最高至+200 ℃,符合HJ/T397-2007标准)。这种全加热的测量方案在于对输气管路中的被测气体进行加热保温,随后进行过滤、除湿和气液分离的预处理,以防止采样气体中水分在连接管和仪器中冷凝干扰测定。 首先在价格方面,新系统省去了庞大的加热采样部分,也无需提供交流电,在节能的同时更为经济实惠。同时,新的测量测量系统的采样环节无需加热且响应快,大大节省了时间。在重量方面,也极为轻巧,便于携带。值得一提的是,新的测量系统经过多次比对试验,测量效果与全加热系统完全一致。 配备全新专利特殊低SO2采样探针的testo 350 Pro于德国Niederaussem 电厂湿法脱硫喷淋后端进行测量。实验结果是:testo 350Pro配全新专利特殊低SO2采样探针,短时间测量可完全不使用交流电源,并且读数与在线或参比级光学仪器比对误差可达到±2 ppm。同时,测试结果还标明,即使在耐硫管的长度(10米)以及测量时长(22小时连续测量)的情况下,精度也不受影响。 随后,testo 350Pro再次转战至浙江两家电厂进行同样的测试,与此两家电厂的光学在线连续监测系统比对误差同样在±2 ppm。使用全新专利特殊低SO2采样探针可实现快速、精确并可靠的测量。 可见全新高湿低硫环境下SO2测量解决方案,不仅满足了特殊环境下的烟气测量分析,且改善了原有测量系统中的不足,为客户提供了有效、便捷、可靠的测量,堪称测量系统的一大革命。因为德图始终秉持着以客户的需求为本,不断追求创新与完善,与客户一起致力于未来。
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p  在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。”/pp  “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!”/pp  “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!”/pp  从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的?/pp  在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。/pp  曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。/pp  我谈谈自己的经历。/pp  去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。/pp  我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。/pp  而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。/pp  这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。/pp  2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。/pp  更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!/pp  今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。/pp  其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。/pp  我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。/pp  十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜:/pp  几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍!/pp  超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。/pp  既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。/pp  原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。/pp  燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。/pp  以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。/pp  也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。/pp  难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。/pp  有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。/pp  现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。”/pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667799730726.jpg" width="571" height="395" style="width: 571px height: 395px "//centerp  更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。/pp  湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。/pp  我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程:/pp  /pcenterimg alt="2" src="http://img.caixin.com/2017-07-10/1499668426791886.jpg" width="562" height="234"//centerpbr//pp  湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径:/pp  1. 在原来湿法脱硫的基础上打补丁。其具体措施是:/pp  1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /pp  2) 加装烟气除雾装置(例如旋风分离器) /pp  3) 加装湿法静电除尘器 /pp  4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667818346916.jpg" width="584" height="241"//centerpbr//pp  但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。/pp  但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。/pp  2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是:/pp  1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /pp  2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667826241238.jpg" width="567" height="179"//centerpbr//pp  德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。/pp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667836914688.jpg" width="597" height="403" style="width: 597px height: 403px "//centerp  /pcenterimg alt="asd" src="http://img.caixin.com/2017-07-10/1499667844142957.jpg" width="460" height="496" style="width: 460px height: 496px "//centerp  上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。/pp  燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物 5~10毫克/立方米烟气,SOx 35毫克/立方米烟气 NOx 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。/pp  湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。/pp  这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。/pp  最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢!/ppstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任/strongstrong style="color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) "陶光远/strong/p
  • 湿法冶金生产技术国家工程实验室成立
    由国家发展和改革委员会批准组建的湿法冶金清洁生产技术国家工程实验室成立暨首届理事会第一次会议近日在京举行。会议选举中科院副院长李静海院士为首届理事会理事长,中科院过程工程研究所张懿院士和常务副所长张锁江研究员为副理事长,聘任中科院过程工程研究所研究员齐涛为实验室主任。来自产业界和科技界16个理事单位60余位代表参加了会议。  李静海表示,实验室的成立对研究所来说是一件大事,对解决成果产业化提供了很好的机遇,研究所要发挥学科积累优势满足国家的重大需求,理顺与企业的合作机制,促进科研成果的产业化。他指出,来自企业的代表提出了很多中肯的意见,金融危机对企业影响很大,科研机构要依靠科学技术为企业排忧解难。衡量科研机构对企业贡献的标准是看有没有成果在企业发挥效益。他强调,无论是实验室建设,还是研究所发展,都要解放思想、更新理念。  该实验室以中科院过程工程研究所为依托单位,中国科学院为主管单位。建设目标与任务是:围绕我国金属矿产资源的高效、清洁、综合利用与行业节能减排的需要,以铬、铝等难冶两性金属资源为重点研究对象,开展以亚熔盐非常规介质为主的高效反应系统、多组分分离技术与设备、冶金固体废弃物综合利用与污染控制等研究,并进行大规模工程化技术转移,促进有色金属行业清洁生产,成为我国有色金属行业清洁生产技术研究和工程化的重要平台。建设期为3年。
  • 我国湿法冶金的开拓者陈家镛院士逝世 享年98岁
    p  北京8月26日,中国共产党党员、中国科学院院士、中国科学院过程工程研究所研究员陈家镛,因病医治无效,于2019年8月26日在北京逝世,享年98岁。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 296px " src="https://img1.17img.cn/17img/images/201908/uepic/9c6877b3-5d83-44b6-a541-6b96ee6b83a6.jpg" title="622762d0f703918f4f63d3a65d587e9258eec493.png" alt="622762d0f703918f4f63d3a65d587e9258eec493.png" width="450" height="296" border="0" vspace="0"//pp style="text-align: center "strong陈家镛院士/strong/pp  陈家镛1922年2月17日生于四川省金堂县,1980年7月加入中国共产党。1943年毕业于国立中央大学化学工程系(重庆)并留校任教,1949和1951年先后获美国伊利诺伊大学化工系硕士和博士学位。1956年回国参与筹建中国科学院化工冶金研究所(现名过程工程研究所),曾任副所长。1980年当选中国科学院学部委员(院士)。/pp  1939年中学毕业后,心怀科学与工业报国理想的陈家镛如愿考取了名师荟萃、专业拔尖的国立中央大学化学工程系。他在重庆遇到了杜长明、高济宇、李景晟、时钧等国内学界一流的老师。凭借学业上的过人天赋和勤奋刻苦,陈家镛赢得了老师们的称赞,毕业后得到了留校任教的机会。任化学系助教期间,在恩师高济宇的指导下,陈家镛试制成功了被国外垄断的农药滴滴涕(DDT)。/pp  陈家镛是我国湿法冶金学科奠基人、化工学科开拓者之一。他针对国家经济建设中的重大急需,开拓了湿法冶金新工艺和新流程,并将化学工程学新原理和方法用于湿法冶金过程,为我国湿法冶金学科的建立和工程技术的发展奠定了基础。他积极倡导气液固多相反应器的反应工程学研究,并将其扩展到化工分离、生物化工、特种材料制备等新领域,取得令人瞩目的基础研究和应用成果。/pp  陈家镛曾获1978年全国科学大会奖2项、1980年国家发明三等奖、1987年国家自然科学三等奖、1996年何梁何利基金科学与技术进步奖、2009年国家自然科学二等奖、2014年国家技术发明二等奖。/pp  为向陈家镛的诸多贡献致敬,中以合作的首颗微重力化工实验卫星,命名为“陈家镛一号星”,于2017年2月15日在印度成功发射。/ppbr//p
  • 盛美上海推出新型化合物半导体系列设备加强湿法工艺产品线
    盛美半导体设备(上海)股份有限公司(以下简称盛美上海)(科创板股票代码:688082),一家为半导体前道和先进晶圆级封装(WLP)应用提供晶圆工艺解决方案的领先供应商,今推出了支持化合物半导体制造的综合设备系列。公司的150-200 毫米兼容系统将前道集成电路湿法系列产品、后道先进晶圆级封装湿法系列产品进行拓展,可支持化合物半导体领域的应用,包括砷化镓 (GaAs)、氮化镓 (GaN) 和碳化硅 (SiC) 等工艺。化合物半导体湿法工艺产品线包括涂胶设备、显影设备、光阻去胶设备、湿法蚀刻设备、清洗设备和金属电镀设备,并自动兼容平边或缺口晶圆。“随着不同市场的需求增长,化合物半导体行业正在迅猛发展。” 盛美上海董事长王晖博士表示,“通过对这个行业的调研,我们意识到,应利用现有的前道集成电路湿法和后道先进晶圆级封装湿法系列产品中重要的专业知识和技术,来提供满足化合物半导体技术要求的高性价比、高性能产品。我们认为,化合物半导体设备市场为 盛美上海提供了重要的增长机会,因为 GaAs、GaN 和 SiC 器件正成为未来电动汽车、5G 通信系统和人工智能解决方案日益不可或缺的一部分。”盛美上海的化合物半导体设备系列Ultra C 碳化硅清洗设备:盛美上海的Ultra C碳化硅清洗设备采用硫酸双氧水混合物 (SPM) 进行表面氧化,并采用氢氟酸 (HF) 去除残留物,进行碳化硅晶圆的清洗。该设备还集成盛美上海的SAPS 和 Megasonix™ 技术实现更全面更深层次的清洗。Ultra C 碳化硅清洗设备可提供行业领先的清洁度,达到每片晶圆颗粒≤10ea0.3um,金属含量< 1E10atoms/cm3水平。该设备每小时可清洗超过 70 片晶圆,将于 2022 年下半年上市。Ultra C 湿法刻蚀设备:可为砷化镓和磷化铟镓 (InGaP) 工艺提供<2% 的均匀度,< 10% 的共面度及< 3% 的重复度。Ultra C 湿法刻蚀设备可提供行业领先的化学温度控制、刻蚀均匀性。该设备将于 2022 年第三季度交付给某重要客户,并由其进行测试。Ultra ECP GIII 1309 设备:盛美上海的Ultra ECP GIII 1309 设备集成了预湿和后清洗腔,支持用于铜、镍和锡银的铜柱和焊料,以及重分布层 (RDL) 和凸点下金属化 (UBM) 工艺。设备实现了晶圆内和模内小于3%的均匀度和小于2% 的重复度。该设备已于 2021 年中交付给客户,并满足客户技术要求。Ultra ECP GIII 1108 设备:Ultra ECP GIII 1108 设备提供金凸块、薄膜和深通孔工艺,集成预湿和后清洗腔。设备采用盛美上海久经考验的栅板技术进行深孔电镀,以提高阶梯覆盖率。它可达到晶圆内和模内< 3%的均匀度和< 2% 的重复度。腔体和工艺槽体经过专门设计,可避免金电镀液的氧化,且工艺槽体具有氮气吹扫功能,可减少氧化。该设备已于去年年底交货给关键客户。Ultra C ct 涂胶设备:盛美上海的Ultra C ct 涂胶设备采用二次旋转涂胶技术,可实现均匀涂胶。设备拥有行业领先的优势,包括精确涂胶控制、自动清洗功能、冷热板模块以及每个腔体的独立过程控制功能。Ultra C dv 显影设备:在化合物半导体工艺中,盛美上海的Ultra C dv 显影设备可进行曝光后烘烤、显影和硬烤的关键步骤。设备利用盛美上海的先进技术,可按要求实现+/-0.03 LPM的流量和 +/-0.5 摄氏度的温度控制。Ultra C s刷洗设备:Ultra C s 刷洗设备以盛美上海先进的湿法清洗技术为基础,实现优秀的污染物去除效果。该设备通过氮气雾化二流体清洗或高压清洗实现高性能,以更有效地清洗小颗粒。此外,设备还可兼容盛美上海专有的兆声波清洗技术,以确保优良的颗粒去除效率(PRE),且不会损坏精细的图形结构。Ultra C pr 湿法去胶设备:盛美上海的Ultra C pr湿法去胶设备利用槽式浸泡和单片工艺,确保高效地进行化合物半导体去胶。该设备最近由一家全球领先的整合元件制造商(IDM)订购,用于去除光刻胶,这进一步验证了盛美上海的技术优势。Ultra SFP无应力抛光设备:Ultra SFP 为传统的化学机械抛光在硅通孔 (TSV) 工艺和扇出型晶圆级封装 (FOWLP)应用提供了一种环保替代方案。在 TSV 应用中,盛美上海的无应力抛光 (SFP) 系统可通过运用专有的电抛光技术去除低至 0.2µm 的铜覆盖层,再使用传统的 CMP 进一步去除剩余铜至阻挡层,并通过湿法刻蚀去除阻挡层,从而显著降低耗材成本。对于 FOWLP,相同的工艺可以克服由厚铜层应力引起的晶圆翘曲,并应用于RDL中铜覆盖层并平坦化 。
  • 中国电科45所湿法设备进入国内主流8英寸芯片产线
    近日,中国电科45所(以下简称45所)研制的双8英寸全线自动化湿法整线设备进入国内主流FAB厂。该整线设备满足8英寸90nm~130nm工艺节点,适用于8~12英寸BCD芯片工艺中的湿化学制程。晶圆尺寸与工艺线宽代表湿法设备的工艺水准,45所研制的整线设备具备了8寸主流FAB厂湿法设备运行标准,自动化程度高,系统集成度高,覆盖了8英寸BCD芯片工艺中的湿化学工艺制程,实现了全自动湿法去胶、湿法腐蚀、湿法金属刻蚀、RCA清洗、Marangoni干燥等工艺。设备是半导体产业的基石,据SEMI统计,2021年全球半导体制造设备销售额创历史新高,达到1026亿美元,同比增长了44%。在全球芯片扩产潮的推动下,晶圆厂的设备支出将继续提升,预计全球市场2022年将达到1175亿美元,2023年将增至1208亿美元。旺盛的市场需求,为本土半导体设备企业带来了发展契机。中电科电子装备集团有限公司董事长、党委书记景璀表示,基于半导体设备行业“技术密集、人才密集、资金密集,回报周期长”的特点,国内先进的设备企业已经形成“研发先行,产业跟进,金融支撑”的发展模式,并具备以下三个特点:一是半导体设备行业集中度高。据中国电子专用设备工业协会统计,国内前十家半导体设备公司销售收入占国产设备企业销售收入总额的80%。设备龙头企业与制造领军企业在工艺与设备开发方面深度合作,不断强化龙头企业地位。二是国产半导体设备细分品种不断丰富,逐步步入产业化替代阶段。例如,北京烁科中科信公司目前已实现中束流、大束流、高能及第三代半导体等特种应用全系列离子注入机自主创新发展,工艺段覆盖至28nm。三是资本市场对半导体设备科技创新和产业化的支撑力度日益增强。2019年以来,多家企业借助科创板迅速实现IPO上市,募集资金,加速科研投入,产业化进一步提速。
  • 累计出货超300台!盛美半导体湿法设备2000腔顺利交付
    “盛美半导体设备”官方公众号消息,10月18日盛美半导体湿法设备2000腔顺利交付!累计出货超过300台设备。资料显示,盛美是国内集成电路湿法设备龙头企业。在清洗机和电镀机等领域,该公司形成了集成电路专用清洗系列设备(包括单片、槽式、单片槽式组合清洗、背面清洗、刷洗等)、前道铜互连及先进封装电镀设备、先进封装湿法设备和立式炉管设备等产品线,覆盖了集成电路前道、先进封装和晶圆制造领域。盛美董事长王晖表示,近几年,盛美半导体在清洗、镀铜和炉管等多个领域不断取得重大突破,并跻身全球半导体设备供应商前列。今天很高兴与大家共同见证盛美湿法设备2000腔成功交付这一重要时刻,这标志着盛美在行业细分市场树立了新标杆 ,同时在半导体设备领域跨越新征程、开启新篇章。
  • 枣庄市陶庄供水有限公司离子色谱仪成功运行
    2016年9月6日,枣庄市陶庄供水有限公司的IC-8618型离子色谱仪在赵工程师的指导下调试成功,并稳定运行。用户单位IC-8618型离子色谱仪我公司工程师—赵工
  • 批量样品,湿法消解,iGBlock-36为您带来“三个一”
    在重金属含量检测、元素分析等无机类样品检测项目的前处理流程中,湿法消解设备稳定性良好,批量处理能力强,使用成本低,与原子吸收光谱仪、原子荧光光谱仪、ICP-MS电感耦合离子质谱仪等分析仪器配套使用,广泛应用于各类理化实验室。设备换新不费心邀您即刻体验iGBlock-36智能消解全解析iGBlock-36湿法消解高效解决方案立体环绕式加热,石墨空间温度均一同时快速消解36位样品,可兼容各种材质的消解管双PID精确控温,迅速升温,加热温度可达420℃保证控温温度在±1℃,高效节能,降低热损失多重防护工艺,陶瓷表面光洁如一导热材质:经耐高温防腐陶瓷涂层的高纯石墨石墨模块的陶瓷涂层可有效避免石墨粉污染样品加热模块零电子元器件,整机喷涂PTFE防腐蚀涂层智能控制终端与加热模块分体,确保操作安全智能终端控制,远程监控稳健如一7寸高清触屏控制,实时显示消解温度双曲线监控方法界面中,可预设多个变温曲线和对应加酸提示支持DTLabs微信小程序远程监控消解进程,完成后自动通知应用标准广泛应用于各类重金属检测、元素分析前处理环境监测土壤、水质、污泥、固废等食品安全蔬果、肉类、水产、谷物、各种加工食品等药物分析中药材、中成药、胶囊等生化分析动物组织、血液、尿液、毛发等冶炼地质岩石、矿物、沉积物等部分应用标准GB 5009.94-2012 食品安全国家标准 植物性食品中稀土元素的测定GB 5009.12-2017 食品安全国家标准 食品中铅的测定GB 5009.15-2014 食品安全国家标准 食品中锑的测定HJ 1046-2019 水质 锑的测定 火焰原子吸收分光光度法HJ 1047-2019 水质 锑的测定 石墨炉原子吸收分光光度法HJ 766-2015 固体废物金属元素的测定 电感耦合等离子体质谱法 HJ 781-2016 固体废物22种金属元素的测定 电感耦合等离子体发射光谱法HJ 1080-2019 土壤和沉积物 铊的测定 石墨炉原子吸收分光光度法 HJ 1081-2019 土壤和沉积物 钴的测定 火焰原子吸收分光光度法… …
  • CCATM’2010分场报告会:湿法分析 ICP-AES、AAS、AFS、ICP-MS
    仪器信息网讯 2010年9月13-15日,由中国金属学会、中国机械工程学会主办,国际钢铁工业分析委员会支持,钢铁研究总院承办的“第十五届冶金及材料分析测试学术报告会及展览会(CCATM’2010)”在北京九华山庄隆重召开。会议现场  大会同期举行了以“湿法分析:ICP-AES、AAS、AFS、ICP-MS”为主题的分会报告,来自冶金及材料分析测试领域的多位知名专家、企业代表及多家仪器厂商做了精彩的报告。现摘录部分精彩报告内容如下。报告题目:电感耦合等离子体原子发射光谱仪的最新进展报告人:中实国金实验室能力验证中心 郑国经教授  郑国经教授在其报告中,简要总结了近几年来电感耦合等离子体原子发射光谱仪(ICP-AES)的技术进展,指出进口ICP-AES的产品型号、种类、结构及主要功能已无显著变化,国外ICP-AES厂家已经转向以生产全谱直读ICP-AES和固体检测器型ICP-AES为主。国产ICP-AES的性能及制造水平均有了明显的提高,但在总体水平上仍落后于进口仪器,且型号较为单一,均使用光电倍增管作为光电转换器件。从市场情况而言,中阶梯光栅型ICP-AES的市场占有率在不断扩大,且占据主要地位,但扫描型ICP-AES以其均一的高分辨率仍具有吸引力,多道型ICP-AES凭借高稳定性,其市场也所有回暖。郑国经教授特别提出,希望国产厂商能在国家的支持下,尽快推出中阶梯光栅交叉色散型ICP-AES和CCD光电转换式的“全谱型”ICP-AES。从论文发表数量来看,ICP-AES在冶金分析领域中正得到越来越广泛的应用,它在如下方面具有实用发展前景:高含量成分的测定(与化学法可比);难处理样品的分析(结合微波溶样);各种冶金物料的分析等。报告题目:远紫外(VUV)谱区在ICP-OES中的应用报告人:德国斯派克分析仪器公司技术顾问 符廷发先生  符廷发先生指出VUV远紫外区(190-250nm)具有如下特点:1、在该区有丰富的可利用的谱线,发射谱线受到的干扰小;2、空气会强烈吸收;3、仪器光学系统中的各种透光器件会吸收波长低于190nm的光能。德国斯派克公司利用这些特点,特别设计推出了SPECTRO ARCOS型ICP-AES。SPECTRO ARCOS使用三个光栅,较使用双光栅而言分辨率提高了一倍,且无需吹扫和抽真空,因此具有开机即用的优势。利用SPECTRO ARCOS在真空紫外波段进行元素分析,可以有效避免谱线干扰。SPECTRO ARCOS的典型应用包括:钢铁样品中的磷的测定;钢铁样品中低硼、低铅的测定;氯、溴、碘等卤素元素的测定等。  报告题目:电感耦合等离子体四级杆质谱离子光学系统的现状与进展  报告人:钢铁研究总院 余兴先生  余兴先生在报告中指出ICP-MS的离子光学系统对仪器的分析性能有着重大的影响,各仪器厂商在离子光学仪器上设计各不相同,整体上存在着光子挡板类型、离子轴类型和90度偏转三种类型。无论采用哪种设计方式,都是为了增加离子传输效率、消除光子和中性粒子影响和提高仪器灵敏度的目的。采用离轴或彻底离轴的设计有利于灵敏度的提高,成为越来越成为仪器厂商青睐的离子光学系统 非离轴方式的结构简单、参数设置方便的优点也成为其继续存在的理由。  报告题目:火试金富集-电感耦合等离子体质谱法测定铜精矿中金、钯、铂含量  报告人:江苏出入境检验检疫局 赵伟先生  赵伟先生介绍电感耦合等离子体质谱法已是大家公认的理想的测定微量和超痕量元素的方法。铜精矿中贵金属元素含量极低,目前运用电感耦合等离子体质谱法测定铜精矿中贵金属的研究开展较少。研究了以火试金富集、微波消解溶解样品为基础的、电感耦合等离子体质谱法准确测定铜精矿中金、钯、铂。讨论了分析检出限、精确度及回收率,并利用这种方法测定了三种铜精矿样品中金、钯、铂元素的含量,结果令人满意。  报告题目:扇形磁场电感耦合等离子体质谱仪灵敏性的改进  报告人:赛默飞世尔科技 Mrs. Meike Hamester  Mrs. Meike Hamester介绍说扇形磁场电感耦合等离子体质谱仪(ICP-SFMS)代表着固体或液体试样、元素、同位素比或种类最高端的元素分析方法。高性能的双聚焦扇形磁场分析仪是研究相关应用不可或缺的工具,在现代实验室中使用已经非常成熟。Mrs. Meike Hamester在报告中描述了ICP-SFMS改进的技术细节,通过改进显著增强了测定的灵敏度、离子传输和检测功率。此外,Mrs. Meike Hamester还介绍了ICP-SFMS未来的发展。  激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)是一种固体原位微区分析新技术,通过激光对样品表面进行剥蚀,直接分析形成的气溶胶,可以大大缩小激光光束从而达到缩小剥蚀斑点的目的,将微创分析推进到极限,这也是该技术近年来取得飞速发展并得到广泛应用的一个原因。对于非平面表面分析而言,LA-ICP-MS可以大大满足分析中对空间分辨率和灵敏度的要求,而且其多元素同时分析的能力可同时提供更多的主、次、痕量元素信息,位置控制精度可达微米级,是进行原位统计分析的极佳工具。  报告题目:激光烧蚀电感耦合等离子体质谱应用于断口断面表面元素原位统计分布分析表征  报告人:钢铁研究总院 袁良经先生  袁良经先生在报告中介绍了通过LA-ICP-MS对标准样品表面进行四点定点分析,从而得到工作曲线,再利用得到的工作曲线对断口表面进行扫描分析,用样品移动台的精确定位得到样品表面的位置分析,用激光器的聚焦位置来模拟样品表面的深度信息,描述了样品表面形貌,从而得到样品表面元素原位统计分布分析状况。实现了对非平面表面元素的原位统计分布分析表征。  报告题目:LA-ICP-MS在地球化学、材料科学及生命科学研究中应用  报告人:中国地质大学(生物)胡圣虹教授  胡圣虹教授结合最新文献和其小组的研究工作介绍了LA-ICP-MS在地球化学、材料科学、生命科学中应用潜力。如在地球化学中玄武岩玻璃的整体分析、熔融包体的同位素测定及微体生物化石的微量元素分析 材料科学中多层薄膜材料、光纤材料的深度剖析分析 生命科学研究中免疫芯片中多个蛋白质的同时检测、人脑海马组织及帕金森病老鼠大脑组织中生物成像及植物组织中元素累积的成像分析研究等。  报告题目:激光烧蚀电感耦合等离子体质谱应用于低合金钢焊缝中元素分布分析  报告人:钢铁研究总院 韩美女士  韩美女士介绍研究组通过优化条件参数实现了LA-ICP-MS方法对低合金钢中Al、Ti、V、Ni等元素含量的准确测定,并将所建立的方法应用于焊缝及其附近的Al、Ti、V、Ni等元素含量的变化趋势研究,发现这些合金元素的含量在焊缝中存在着明显的过渡区间(95-360μm),且其含量在两块母材中差别越大,该元素含量在焊缝中过渡区间就越宽。
  • 至纯科技称28nm湿法工艺设备完成认证 明年进军14/7nm
    日前国内半导体设备公司至纯科技在互动平台表示,目前至纯科技28纳米节点全部湿法工艺设备已认证完毕。至纯科技表示,国内目前有三家在湿法工艺设备端提供中高阶湿法制程设备,分别是至纯科技、北方华创和盛美,国内厂商的市场占比在逐年上升中。除了28nm工艺节点之外,上海证券报告中指出,至纯科技14nm及7nm工艺预计2022年可供客户验证,客户包括中芯国际、华虹集团、长鑫存储、华为、台湾力晶等行业领先者。2020年湿法设备出货量超过30台,新增订单5.3亿元,增长211.8%。官网介绍,至纯科技成立于2000年,是一家在上交所上市的高新技术企业,证券代码603690.SH。公司坐落于上海紫竹这个国家级科学园区内,注册资本2.08亿元,致力于为高端先进制造业企业提供高纯工艺系统的解决方案。系统解决方案涵盖了提供整个系统的设计、选型、制造、安装、测试、调试和系统托管服务。 至纯提供的系统和专业服务,广泛应用于半导体、微电子、生物医药、光伏、光纤、TFT-LCD、LED等领域。
  • 消解机器人,让工作轻松的智能伙伴!来自一线用户对D-MASTER湿法消解的新体验
    导读:“D-MASTER让我们体验到了最简单的湿法消解过程,最贴心的智能控制优势,也让我们能以最轻松的方式做实验、工作。”——江苏当升材料科技有限公司我们是2022年10月买的D-MASTER,到现在使用已满1年,而在这一年里又分别采购了2台这个仪器,在常州等不同的分厂使用。这1年多的时间里共做了1万多样品,消解了近200批次样品,每批50-60个样,每天生产线上都要定时采样。D-MASTER不论从稳定性还是耐用性,都经受住了考验,证实了该仪器的优越性。D-MASTER让我们体验到了最简单的湿法消解过程,最贴心的智能控制优势,也让我们能以最轻松的方式做实验、工作。在使用过程中,真心感觉D-MASTER是我们的编外同事,为我们做了很多我们懒得去做的工作:最贴心的功能-预约开机功能,它可以让仪器在任何指定时间自主运行消解,需要加班时D-MASTER主动请战,真正实现让仪器替我们加班最高等级的安全设计-各种预警,语音提示功能,运行方法前,自动计算试剂瓶内试剂量是否够用,主要维护件的维护保养时间自动定时提醒,还有方法结束后的语音提醒等最简单的样品处理过程-无需转移,在同一根管子里完成自动添加试剂、混匀样品、升降并梯度升温、自动赶酸、自动定容,只用我们称样最快的加液速度-360°旋转机械臂,加液速度快,定位准,采用全密闭式结构设计,直接杜绝酸气和冷凝酸液对传动部位的腐蚀,保证仪器连续加液的稳定性最少的酸气酸液接触-自带通风系统,我们再也不用在酸气酸液弥漫的通风橱前处理样品了,自带风机,自带过滤,观察小窗,更好的保护我们不被酸气酸液伤害经过我们长时间的大量的样品消解操作后,D-MASTER表现很好,能完全满足我们做新材料的实验要求,建议有与我们样品相似的实验室可以用大胆启用D-MASTER,的确是能够明显提高工作效率,降低我们实验员的工作强度,是湿法消解样品最轻松的一次体验,当之无愧的智能消解机器人。
  • 中南民族大学-戴安联合色谱实验室成立
    中南民族大学-戴安中国有限公司联合色谱实验室揭牌仪式暨液相色谱技术报告会圆满结束  为加强液相色谱分析方法的开发、为技术人员提供更好的液相色谱应用平台,中南民族大学与戴安中国有限公司共同建立了液相色谱联合实验室,并于2009年11月3日在中南民族大学学术交流中心第一会议室进行联合色谱实验室揭牌仪式。中南民族大学雷振扬副校长,设备管理处孙奉娄处长,戴安中国有限公司总经理杜平先生出席了揭牌仪式,出席仪式的还有中南民族大学药学院盘剑波书记、杨天鸣副院长、梅之南副院长以及中南民族大学化学与材料学院的邓克俭院长,中科院生态环境中心研究员、戴安中国有限公司应用中心负责人牟世芬教授。活动由戴安中国有限公司中国区市场部经理刘静主持,中国科学院化学研究所研究员刘国诠教授、戴安液相色谱上海应用实验室经理李浪先生、中南民族大学-戴安中国有限公司联合色谱实验室负责人李效宽老师作为特邀嘉宾出席了仪式并做了技术报告。参加此次活动的还有近百位来自武汉不同院校的老师以及武汉质检、药检、药厂、监测站等系统的科技工作者。  首先由中南民族大学副校长雷振扬为联合实验室的揭牌致辞,雷副校长介绍了中南民族大学药学院的发展以及特点,对联合应用实验室的合作模式表示赞许,提出这种校企合作的模式应成为科技发展的方向,它充分利用厂家的先进仪器技术以及院校的研究与应用能力,不仅为广大的科技工作者提供一个液相色谱技术平台,也是合作双方的社会责任的体现,相信这个合作会使学校、公司、用户、社会都得到益处,是一个多赢的模式。     戴安中国有限公司总经理杜平先生发表讲话,介绍戴安中国有限公司的发展过程以及强大的技术实力,戴安公司一直以离子色谱先进技术享誉世界,从上世纪九十年代开始发展液相色谱技术,目前戴安的液相色谱已经成为知名品牌,戴安与中南民族大学的合作实验室的建立,是以戴安先进的液相色谱技术与中南民族大学的深厚的液相色谱技术力量结合,建立一个液相色谱技术平台,让更多的人了解戴安的液相技术,让戴安的技术更加直接地为更多的用户服务,也是戴安为社会做出的贡献。相信这个合作会有非常光明的前景。     中科院生态环境中心研究员、戴安公司应用中心负责人牟世芬教授介绍了戴安公司的液相色谱技术现状,阐述了这个合作实验室的重要意义同时为大家展示了这个合作技术平台的发展前景。   在欢快的乐曲声中戴安中国有限公司总经理杜平先生以及中南民族大学雷副校长一起为联合实验室揭牌。  揭牌仪式结束后,特邀嘉宾中国科学院化学研究所研究员刘国诠教授,为大家做了“色谱技术的现状与发展”的技术报告,用浅显易懂的方式让大家认识了色谱技术的发展历程以及发展趋势。戴安公司资深液相色谱技术专家李浪为大家介绍了戴安公司液相色谱优势产品双三元液相色谱,通过技术讲解以及应用实例,让大家对双三元液相色谱技术有更新了解,最后,中南民族大学药学院李效宽老师通过自己大量的实验经验与大家共同分享了液相色谱条件的开发和应用。此次活动最终在大家的掌声中圆满结束。   戴安中国市场部
  • 未来已至 变革已来 | D-MASTER全自动消解仪 开启智能湿法消解新时代
    “我们在谈论未来的时候,未来已来,当我们讨论将至的可能性时,将至已至。面对席卷而来的未来浪潮,我们只有以变革的姿态迎接未来,决胜未来。”① 近十年来,随着人工成本的不断攀升,以及移动互联网技术日新月异的发展,仪器仪表行业尤其是分析仪器行业的从业者们越来越注重仪器设备的智能化、自动化和高效性,如果想要更进一步满足使用者的需求,同时顺应科学技术发展潮流,传统的分析化学前处理方式必将经历一场系统性的变革。 作为全球先进的样品前处理设备、分析仪器和解决方案供应商之一,莱伯泰科自2002年成立之初,便一直进行技术革新,锐意突破,致力于推动实验分析仪器从自动化、高通量、多功能向全流程自动化和智能化发展,迎接来自未来的挑战。2011年,莱伯泰科推出了第一款全自动消解仪,有效的解放了实验室人员的双手,并且在接下来的十年中历经了两次次技术革新,在2020年,推出了代表全自动消解仪3.0技术的新款仪器-- D-MASTER。 D-MASTER全自动消解仪的高自动化和高智能化更是开启了湿法消解的新时代。后续,D-MASTER还将搭载莱伯泰科首款质谱--LabMS 3000 ICP-MS,结合各行业的特点和需求,开展定制化和多元化服务,必将领创无机元素分析的新未来。 D-MASTER全自动消解仪六大优势:u 自动添加试剂系统360°旋转式机械臂,曲线形加液路径,定位更灵活,可满足更复杂的定位需求。u 自动升降摇匀系统高频率圆周震荡摇匀功能,使消解管内样品形成高速涡旋,充分将试管底部及挂壁样品溶解。u 高精度加热模块智能PID控温高低温报警功能,保证准确控温,具有提前预加热功能,可更有效的缩短实验时间,提高工作效率。u 自动定容系统超声波微距传感器,可自动校准定容参数,测量准确,具有高定容精度。u 专业通风系统HEPA级别净化装置,持续净化进入的空气,有效减少污染,将酸气封闭在通风系统内,节省实验室通风橱孔间。u 智能控制软件可中英文自由切换,图形模块化的软件界面,信息全面清晰,多重报警功能主界面实时显示,实验更安全。 ① 摘自华东师范大学教育学部主任袁振国《未来已来,将至已至——科技创新加速教育变革》
  • 不会判断湿法制粒的终点?粉体流变技术前来救驾
    p style="text-align: justify text-indent: 2em "湿法制粒是制药行业内的一项常规的单元操作,也是压片前一道常见的工序。通常单批运行,因此如何判断制粒终点是一个关键问题。在这方面,动态粉体流变性具有独到的优势。应用独立于生产规格的粉体特性,灵敏地检测湿团到颗粒的转变,强大的分析表征技术能够加速放大生产的进程,并长期优化生产效率。/pp style="text-align: justify text-indent: 2em "高剪切混合机作为湿法制粒的首选。干颗粒初步混合后,添加溶液润湿混合物,促进湿团形成直至达到理想终点。通过改变制粒溶液的添加量、添加速率、处理时间和桨叶转速进行工艺参数的调整和控制。/pp style="text-align: justify text-indent: 2em "点击下方视频,产品专家将为你详细介绍粉体流变技术在湿法制粒中的应用:/pp style="text-align: justify text-indent: 2em "script src="https://p.bokecc.com/player?vid=4FABF2DFBE31CEAA9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptbr//pp style="text-align: justify text-indent: 2em "工艺研发过程中主要存在两个问题。首先,湿法制粒通常是一个中间步骤,确定制粒终点通常涉及到多个批次的处理,直至得到最终产品。粉体一旦离开制粒机,处理过程中的性能无法与颗粒性能直接关联,因此考察与加工过程相匹配的性能变得十分困难。其次,控制湿法制粒的过程变量,与批次规格并未简单的线性关系。例如,为了达到相同的制粒终点,大规模生产可能需要添加27%的水,而小试工艺加水量为24%。基于上述两种原因,在整个研发周期中能够获直接度量取制粒终点的方式都极其关键的。/pp style="text-align: justify text-indent: 2em "使用粉体流变仪测量基本流动能 (BFE)这一粉体动态特性,并且在湿法制粒的过程中监控该参数可以有效地追踪工艺进程。制粒溶液浓度较低时,BFE几乎不变,但随着水分的增加,BFE急剧增加。在突增变化时抽取样品进行图像分析,可以验证湿团到颗粒的转变。在这一关键工艺,BFE参数的敏感性,确保精准获取制粒终点。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 300px height: 300px " src="https://img1.17img.cn/17img/images/202007/uepic/f429b574-5906-4c75-8b4f-9e46a4ffb5ba.jpg" title="图片1.jpg" alt="图片1.jpg" width="300" height="300" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "a href="https://www.instrument.com.cn/netshow/C301690.htm" target="_self" style="text-decoration: underline "span style="text-decoration: underline color: rgb(0, 176, 240) "strongFT4粉体流变仪/strong/spanstrong/strong/a/pp style="text-align: justify text-indent: 2em "对于不同的湿法制粒工艺,控制BFE能够快速确定工艺参数。设定目标BFE的范围确保获得最佳的颗粒,根据这一范围处理多个批次条件。通过关联最佳的颗粒与BFE值,而非与工艺条件的关联,从而定义独立于生产规格的相关性。对于确定的处方,只需建立BFE与最终产品质量之间的关系,无需针对每种生产规格分别建立相关性。/pp style="text-align: justify text-indent: 2em "动态测试方法为所有后续研发工作提供一种直接量度的手段。随着工艺进程的推进,每个生产阶段都可快速地确定工艺条件,达到目标BFE值。此外,长期匹配工艺与粉体特性,而非以预设参数运行生产设备,操作人员也能够控制变量,即使原料变化也能保持稳定的生产。如此,采用粉体流变学有助于最优制粒工艺的研发,同时在产品的整个生命周期中都能灵活、高效地生产。/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/netshow/SH100677/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong关于麦克仪器公司/strong/span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/netshow/SH100677/" target="_self"img style="max-width: 100% max-height: 100% width: 150px height: 47px " src="https://img1.17img.cn/17img/images/202007/uepic/0fdbfa7f-0489-48af-bb95-0eaff420c1d5.jpg" title="微信图片_20200720103255.png" alt="微信图片_20200720103255.png" width="150" height="47" border="0" vspace="0"//a/pp style="text-align: justify text-indent: 2em "麦克仪器公司是提供材料表征解决方案的全球知名厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有仪器和应用技术。span style="text-indent: 2em "公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "公司同时具备丰富的科学知识库和内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。/span/pp style="text-align: justify text-indent: 2em "战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。/pp style="text-align: right text-indent: 2em "strong作者:陆向云/strong/pp style="text-align: right text-indent: 2em "strong麦克仪器产品专家/strong/p
  • 国家正制定数项油品检测标准 色谱法为主
    仪器信息网讯 根据《2013年第一批国家标准制修订计划的通知》,其中有数项关于航空涡轮燃料、汽油、石油产品、绝缘油检测的方法标准。具体内容见下表:计划编号项目名称标准性质制修订代替标准号采用国际标准完成时间主管部门归口单位起草单位20130251-T-469航空涡轮燃料中脂肪酸甲酯(FAME)含量的测定 高效液相色谱蒸发光散射法推荐制定 IP 590/102014国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会中国石油化工股份有限公司石油化工科学研究院、中国石油天然气股份有限公司石油化工研究院20130252-T-469航空涡轮燃料中脂肪酸甲酯含量的测定 GC-MS法推荐制定 IP 585/102014国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会中国石油化工股份有限公司石油化工科学研究院、中国石油天然气股份有限公司石油化工研究院20130253-T-469汽油中甲基苯胺的测定(气相色谱-质谱法)推荐制定  2015国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会深圳市计量质量检测研究院20130255-T-469石油产品中氟、氯和硫含量的测定 燃烧离子色谱法推荐制定 ASTM D7359-082014国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会中国石油化工股份有限公司石油化工科学研究院、中国石油天然气股份有限公司石油化工研究院20130256-T-469石油产品中痕量金属的测定 湿法灰化 电感耦合等离子体原子发射光谱法推荐制定 UOP 389-102014国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会中国石油天然气股份有限公司石油化工研究院、中国石油化工股份有限公司石油化工科学研究院20130589-T-524绝缘油中溶解气体组分含量的气相色谱测定法推荐修订GB/T 17623-1998 2014中国电力企业联合会全国电气化学标准化技术委员会西安热工研究院有限公司、福建电力科学研究院、湖南电力科学研究院
  • 我国HPLC色谱柱填料的发展现状及最新进展
    李昌厚中国科学院上海生物工程研究中心 上海 200233)  摘要  本文重点介绍了HPLC色谱分离柱的柱填料发展现状(研发中的关键点、理论依据、国内外的发展梗概等等)和发展趋势、柱填发展料的最新进展(重点讨论最具代表性的核壳柱的问题) 同时,对与填料有关的问题进行了讨论。  1、前言  色谱柱是HPLC系统的心脏,而色谱填料是色谱柱的核心,因此色谱填料或色谱柱被誉为“色谱芯”。HPLC色谱技术的进步,往往取决于新型色谱填料的出现,可以说色谱填料的发展是研发具有高选择性、高灵敏度、高通量的色谱分离柱的关键之一。众所周知,HPLC分离柱的基本原理是:利用混合样品各组份在固定相(色谱填料)和流动相中的分配系数不同,当恒定的流动相推动样品中的各组份在色谱柱中迁移的时候,由于各组分在流动相和固定相两相中进行连续、反复、多次的分配,从而形成差速移动,因而出现从色谱柱中洗脱出的时间差异,从而达到色谱分离的目的。  由于HPLC具有高速度、高分离效率、高灵敏度等优点,所以其仪器和应用发展很快[1]、[2]。从二十世纪60年代问世以来, HPLC已经成为分析化学领域发展最快的技术之一。经过几十年的发展和完善,HPLC现在已成为生物技术、生物化学、医学、药物临床、化学化工、食品、卫生、环保检测和商检等领域不可缺少的检测和分离手段之一。而色谱分离技术的重大进展,往往是随着新的色谱分离材料技术的突破而出现的。由此可见,色谱柱填料的重要性。  为了弘扬民族色谱柱填料的发展,本文根据仪器学理论[6]、分析检测实践的要求[7],和作者长期研发、使用HPLC仪器的经验和教训,重点介绍作者所了解到的部分国产色谱填料产品。同时讨论了HPLC分离柱填料的发展趋势,和色谱柱填料研发时应该特别重视的有关问题,供有关科技工作者参考。  2 HPLC色谱分离柱填料的发展现状[3]和趋势  1)色谱填料发展中值得特别重视的三个关键点问题  (1)柱效(N):一般由填料粒径、均匀性、孔道结构决定   (2)选择性(a):分离选择性由填料表面功能基团,孔道结构,流动相和pH决定 方法开发的最终目标是如何使得a≠1   (3)保留因子(K):由填料功能基团及其密度,比表面积,孔道结构,流动相决定 保留因子的最佳值为K=5   2)研发、选择色谱填料的理论依据[3]  研发、选择色谱填料,主要根据色谱分离方程式[3]  3)应该重视色谱填料粒径决定柱效的问题[3]图1  结论:柱效(N)、选择性(ɑ)、保留因子(K),是色谱填料研发的关键点所在 也是使用者挑选、使用中必须高度重视的三个根本性的问题。  色谱柱的柱效是最重要的关键指标,一般都取决于固定相(填料)的性能和装柱技术。而HPLC的色谱柱填料大致可以分为三种[1]:硅胶或以硅胶为基质的填料、聚合物填料和无机物填料。正相色谱柱大多采用硅胶类填料,反相色谱柱则多以硅胶为基质组成的官能团类的填料。以聚合物为填料的色谱柱最大的特点是PH值可在1-14之间都能使用,疏水性强。但无机填料色谱柱一般只是限于特殊用途,比较少用。  目前绝大部分的HPLC分析和分离材料都是在几种主要基质材料上衍生而来的。按基质的不同,填料主要可分为三大类,即以二氧化硅为代表的无机基质填料、以交联聚苯乙烯和聚甲基丙烯酸酯为代表的合成高分子填料、以葡聚糖为代表的天然碳水高分子改性填料。在高效液相分析领域,二氧化硅(硅胶)及硅胶键合分离填料是应用历史最悠久、也是最为广泛的高效液相色谱柱填料,而合成高分子填料和天然高分子改性填料主要用于现代生物制药工业色谱分离纯化。  4)发展简况  据统计,硅质填料在色谱分析填料家族的应用方面占80%左右。硅胶除了具有良好的机械强度、容易控制的孔结构和比表面外,一个突出的优点就是其表面含有丰富的硅羟基,这是硅胶可以进行表面化学键合和改性的基础, 因此硅胶填料装填的色谱柱柱效高,分辨率高,可用于高效液相色谱分离。早期的硅胶是无定型的二氧化硅颗粒(图2),主要是通过碾磨块状硅胶, 然后通过筛分制备而成。这种色谱填料装成的柱子柱效低,稳定性和重复性,适用于较粗分析和分离。HPLC技术取得极大的进步是得益于球形硅胶的出现(图3), 尤其是小粒径的球形硅胶(粒径10微米)的出现(图4),极大地改善了色谱填料的性能, 大幅度增大高效色谱的分离和分析能力, 才使得HPLC成为生化、医学、药物临床、化学化工、食品、卫生、环保检测和商检等领域不可缺少的检测和分离手段。图2 无定型硅胶(早期) 图3 球形硅胶 (现在) 图4 单分散球形硅胶(将来)  在采用多孔二氧化硅微球作为色谱分离和分析材料的性能时,一般由其粒径大小、粒径分布、孔径,以及表面功能基团等决定。一般来说,粒径越小, 柱效越高, 分辨率也越高,但反压也越高.因此用于工业制备的色谱填料颗粒往往在10微米以上, 常规HPLC色谱柱硅胶填料粒径在3-5微米之间, 而用于UHPLC 的色谱填料在2微米以下。在其它条件相同的情况下, 粒径分布越窄, 柱效越高, 反压也越低, 重复性越好,粒径越小的色谱填料对粒径的均匀性要求越高。目前工业球形多孔氧化硅微球主要用溶胶一凝胶法 (So-Gel)和喷雾干燥法制得。这两种方法适合于大工业制备各种尺寸大小的球形硅胶, 但制备的粒径分布宽, 不能直接满足色谱填料的需求,产品需要进行复杂的分级工艺去除大小不合格的硅胶。  国外大规模生产硅胶色谱填料的主要厂家是瑞典的Kromasil、日本大曹(Daisol)和富士公司 (Fuji)。近几年硅胶色谱填料的研制及产业化在国内进展也非常快,下面介绍一下作者经过调查所了解的、值得读者们高兴和骄傲的,部分国产色谱柱填料的研发情况,供大家参考。  我国月旭科技(上海)股份有限公司正在大力发展色谱柱和色谱填料研究和生产,年销售各种色谱柱达到4万根以上。月旭科技2005年开始从事色谱相关的业务,14年来在色谱领域坚持自主研发和自主生产自己的品牌,先后推出了包括Ultimate、Xtimate、Welchrom、Topsil和Boltimate等多个品牌的色谱柱及色谱填料产品,为广大客户提供色谱分离分析技术、产品和整体解决方案。  特别值得一提的是,月旭科技打破进口品牌的壁垒,在色谱填料的研发和色谱分离分析方法开发已经达到国内领先、国际先进的水平。据悉,目前月旭开发的色谱柱填料超过百余种,在医药、食品和环境检测方面的应用超过5000个,并且已经有19款被列入美国USP-PQRI数据库。  苏州纳微科技股份有限公司利用独有的专利技术制备出均粒、高纯、全孔硅胶色谱填料(UniSil™ 系列),突破了单分散二氧化硅制备技术难题。该填料具有精确的粒径尺寸和高度均匀的粒径分布,是目前色谱技术应用的理想填料之一。纳微科技生产的高质量,高性能,种类齐全的硅胶基质色谱填料(图5)。常规硅胶色谱填料粒径大小分别有2、3、5、8、 10、 15、 20、 30、40、 50μm 常规孔径可选择0.1nm,、0.12nm 、 0.17nm 、 0.3nm 、0.5nm。该填料具有机械强度高、柱效高、分辨率高和反压低等特点,并已广泛应用于有机化合物及中性分子的分析和大规模生产制备。图5 纳微系列单分散多孔超纯硅胶色谱填料扫描电镜图  纳微科技的UniSil™ 硅胶介质的特点如下:  (1)球形粒径高度均一:这一特点,会带来装柱容易、装好的色谱柱高分辨率   (2)优化的孔径结构:可以带来高载量,高选择性   (3)良好的封尾 这是一个很重要的特点,它可以使色谱柱耐碱性好,使用寿命长   (4)无泄漏、无碎片 产品洁净,甚至可以延长色谱柱的寿命等等   纳微科技研发的色谱填料,突破了很多难关,取得了具有完美的球形和高度的粒径均一性,相对市场上粒径分布较宽的填料而言,具有装柱容易、反压低、柱效高、柱床稳定、分辨率高、流速均匀、柱通透性好等优点。同时,无碎片、无小颗粒的纳微填料也可避免筛板堵塞等问题。纳微UniSil硅胶填料与国外进口产品的扫描电镜对比如图6所示。图6 纳微UniSil硅胶填料与国外进口产品的扫描电镜对比图  纳微科技公司生产的色谱填料与国内外生产的一般色谱柱填料相比较,具有粒度均匀等优点。其粒径分布与流速特征关系图如图7所示:图7 国内外一般的色谱填料 纳微科技优质色谱填料  如图7所示:由于纳微科技色谱填料具有完美的球形和高度的粒径均一性(右图),所以,具有装柱容易、反压低、柱效高、柱床稳定、分辨率高、流速均匀、柱通透性好等优点。同时,无碎片、无小颗粒的纳微填料也可避免筛板堵塞等问题。  国内外开展色谱填料研发的企业还有很多,有的公司已经达到了很高的水平。但是因为篇幅所限,作者不可能在一篇文章中一一介绍,恳求广大读者谅解。  5)硅胶色谱填料的发展趋势  第一代,无定型硅胶色谱填料:1960年前后,国内大规模生产,但是形态不规则、粒径大小不可控、粒径分布宽、孔径分布宽、容易破碎、柱效低、金属杂质高、柱床不稳定、重复性差、使用寿命短、线性流速不均、适用于粗慥的分析工作。  第二代,多分散球形硅胶色谱柱填料:1980前后,国外垄断、国内空白、形态(球型)粒径大小不精确、粒径分布较宽、孔径分布窄、柱床较稳定、不容易破碎、重现性较好、金属杂质低、产品使用寿命长、线性流速较均、可以满足各种高效分离要求。  第三代,单分散球形硅胶色谱柱填料:2010以后,中国纳微独家生产、形态(完美球型)粒径精确可控、粒径分布极窄、孔径分布窄、柱床极稳定、不容易破碎、柱效高、重现性好、金属杂质低、产品使用寿命长、线性流速非常均匀、分离效率更好。  目前中国纳微公司的色谱柱填料总体上可以说国际领先水平。  3、色谱分离柱填料的最新进展  目前,色谱分离柱还是以硅胶填料为,但是各种新型的填料也在不断涌现。因篇幅所限,本文重点简介具有代表性的核壳柱的进展情况:  3.1、核壳HALO色谱填料问世  新型的核壳型(core-shell)色谱填料是Jack Kirkland 于2006年研制成功。它将多孔硅壳熔融到实心的硅核表面。它的多孔的环状颗粒具有极窄的粒径分布和扩散路径,能同时减小轴向和纵向扩散,可以允许使用更短的色谱柱和较高的流速以达到快速、高分辨率分离。核壳HALO色谱填料的问世,是近50年来色谱填料进展的重大突破,对液相色谱仪器及其应用将产生巨大影响。  3.1.1、核壳HALO填料的结构  实心球:无孔硅胶,粒径大小1.7 µm左右   壳层:纳米级硅胶颗粒,厚度为0.5 µm 外表层可键合不同功能基团,以满足不同分离模式的分离要求。  3.1.2、HALO柱填料的端基封口[3]、[4]  端基封口非常重要,要求封口残余硅羟基,防止柱内不要的化学反应发生,减少不可逆吸附或防止峰拖尾,增加碳含量(0.1-1.0%),提高柱性能。  常用封尾试剂:三甲基氯硅烷  由于空间位阻的存在,键合反应最多只能覆盖50%的硅羟基, 超过一半硅羟基是活性硅羟基,与碱性基团会发生离子交换作用,增加了保留,导致峰形拖尾,用短链氯硅烷(如三甲 基氯硅烷)键合活性的硅羟基,可以减小拖尾,增加硅胶的化学稳定性,延长使用寿命。但不是所有的分离纯化都需要完全封端,在一些场合未封端的硅胶填料由于有硅羟基的存在,反而增强选择性和分离度。反应条件及硅胶表面性能是影响封端的重要因素。  3.1.3、核壳结构色谱填料的特点  核壳型(core-shell)色谱填料是将多孔硅壳熔融到实心的硅核表面而制备的,这些多孔的“光环”状颗粒具有极窄的粒径分布和扩散路径,可以同时减小轴向和纵向扩散,允许使用更短的色谱柱和较高的流速以达到快速、高分辨率分离。  国产Boltimate核壳色谱柱的硅胶颗粒粒径是2.7μm,它是由1.7μm直径的实心核与0.5μm厚的多孔层所构成的[3]。这种核壳型的硅胶颗粒提供了较短的传质路径,减少了轴向扩散,而实心核硅胶提供坚固的支撑结构,可以承受高压,具有与1.8 μm填料相似的分离效率,且柱反压只有sub-2μm色谱柱的50%和明显的抗污染性能。由于实心核的存在,以及薄的多孔层,使得样品分子的扩散距离减小,即可以使用更高的流动相流速,极大的提高了分析速度。  3.1.4 关于核壳柱的指标等有关问题,作者已经在仪器信息网(2020-08-21)上讨论过了。此不赘述,请读者自己查阅。  3.2. 体积排阻色谱填料  体积排阻色谱填料的推出,是色谱填料的重要进展之一。体积排阻色谱(Size exclusion chromatography,SEC)是一种完全按照溶质分子在流动相溶剂中的分子尺寸大小分离的色谱法,是一种非常重要的分离分析生物大分子如蛋白质、多肽、生物酶的工具。其分离原理如下:体积排阻填料具有一定孔径分布,当具有不同尺寸的目标物分子进入体积排阻色谱柱时,分子量很大的分子无法进入填料内部孔中,因此最先被洗脱下来 分子量相对较小的分子能够进入一部分填料内部孔中,因此随后被洗脱下来 分子量很小的分子则能够进入到填料的所有内部微孔中,因而其洗脱体积接近色谱柱的柱体积。根据洗脱体积的不同,可实现各组分之间的有效分离。体积排阻色谱填料通常是具有适合一定孔径的球形硅胶基质填料,由于它具有良好的机械强度及具有极高的分离纯化效率,在生物大分子的分离分析领域广泛使用。  国产的Xtimate SEC填料是在超高纯全多孔硅胶表面包覆一层具有良好稳定性的亲水性聚合物的体积排阻色谱填料,其填料的作用基团为二醇基,填料表面因受二醇基官能团保护而不与蛋白质相互作用,使得蛋白、生物酶、多肽等样品的非特异性吸附极小,因而广泛应用于生物大分子的分离。  3.3 改进型的3微米新型核壳型HALO色谱柱填料  福立仪器利用公司的专利技术,采用改进的3微米的新型核壳型色谱柱填料,使HPLC系统压力降低到常规HPLC范围,解决了亚2微米分析柱的不足,保证了UPLC超高效的分离分析结果的同时,降低了柱压,仪器的理论塔板数与采用亚2微米的全多孔型柱效相同,但是压力只有其1/2左右。这种改进对HPLC分离柱的发展及应用,将起到重要作用。  3..4 稀有填料(如微米球形金颗粒)的出现,也是色谱柱发展中值得注意的问题,可能会对色谱柱的发展带来新机。  下图是一种微米球形金颗粒填料:(摘自:J. Chromatogr. A, 1198-1199, (2008), 95-100.)  随着以人类健康、生物工程为核心的生命科学、环境科学及制药、合成化学的迅猛发展,人们对HPLC也将不断提出更高、更新、更多的要求。各种色谱柱及其填料将会有更大的发展、各种新型的色谱柱也将不断涌现。有关HPLC色谱分离柱及其填料的发展非常快,开展研发HPLC色谱分离柱及其填料研究与开发的单位很多,例如迪马公司等等,因篇幅所限,本文不能一一列举,希望大家谅解。  4、讨论  从仪器学理论[5]和实际情况来看,HPLC系统是一个比较复杂的、高科技系统,由高压恒流泵、色谱柱、检测器三大部分组成。还有数据处理、智能化等部分,都涉及到很多学科。本文只是讨论了色谱柱的填料,但是建议读者们一定要将色谱填料和色谱柱联合起来考虑。建议有关企业应该引起重视,若要真正研发出优质色谱填料和色谱柱,还必须把它们与HPLC系统联合起来考虑。从整体来看,作者认为如果全世界的科技工作者能将泵、柱、检测器、应用联合起来考虑(研发),则还可以大大加快HPLC仪器及其应用的发展的速度。所以,作者建议我国的有关科技人员联合起来,为发展我国的民族分析仪器、发展国产品牌的HPLC系统、提高有关的应用水平、赶超HPLC领域仪器和应用的国际先进水平共同努力奋斗。  5、主要参考文献  [1]李昌厚,高效液相色谱仪器及其应用,北京:科学出版社,2014.  [2]李昌厚,高效液相色谱仪器及其最新进展和有关问题,2019年,仪器信息网.,2019-11-07  [3]江必旺,硅胶色谱填料制备技术最新进展,2020年7月14日,仪器信息网第五届色谱网络会议(iCC2020)  [4]闫超,液相色谱及其应用的最新进展,“我国科学器自主创新发展”论坛,2012年8月23日,上海。  [5]李昌厚,仪器学理论与实践,北京:科学出版社,2008  [6]李昌厚,用好HPLC的九大关键问题,仪器信息网,2020/2/26  [7]李昌厚,色谱分离柱主要技术指标及有关问题的探讨,仪器信息网,2020/8/21  作者简介  李昌厚,男,中国科学院上海生物工程研究中心原仪器分析室主任、兼生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授,终身享受国务院政府特殊津贴。  主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究 特别对《仪器学理论》和分析仪器招标检测等有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家级和省部级科技成果奖5项(含国家发明奖1项);发表论文183篇,出版专著5本;现任中国仪器仪表学会理事、《生命科学仪器》副主编 曾任中国仪器仪表学会分析仪器分会第五届、第六届副理事长 国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组成员或组长、上海市科学仪器专家组成员、《光学仪器》副主编、《光谱仪器与分析》副主编、上海化工研院院士专家工作站成员等十多个学术团体和专家委员会成员等职务。
  • 埃仑通用:研发离子色谱仪先进技术,改变国产低质低价现状
    2020年12月8-10日,第十八届中国国际科学仪器及实验室装备展览会(CISILE 2020)在京召开,青岛埃仑通用科技有限公司(以下简称:埃仑通用)携多款产品盛装亮相。展会期间,仪器信息网有幸采访了埃仑通用市场经理张芳,请其就公司发展概况、本次参展产品以及公司接下来的发展战略等进行了介绍。埃仑通用创建于2001年,是国内较早生产离子色谱仪的厂家之一,通过十几年的努力,从生产离子色谱仪单一产品的小型企业,已经发展成为集研发、制造、销售和售后服务为一体的高新技术企业。目前,埃仑通用的产品主要有水质监测仪器和气体监测仪器两大类。采访过程中,张芳经理重点介绍了DM600(Ⅱ)自动红外分光测油仪和AILUN-9886固体形态检测型在线离子色谱仪两款仪器。此外,张芳经理在采访中表示,埃仑通用做了未来3-5年的战略发展规划,首先是做好“拳头产品”——离子色谱仪,缩小国产与进口品牌的差距,通过深入研发离子色谱仪的先进技术,改变国产仪器低质低价的现状;二是实现产品的多元化,基于大数据推出私人订制产品和服务方案等,以满足多行业用户需求;三是针对互联网、物联网以及人工智能方向进行技术研发等。更多采访内容,请查看视频:
  • 超高效液相色谱仪市场现状及发展潜力
    p  自2004年沃特世公司于Pittcon展会上率先推出AcquitysupTM/sup UPLC系统以来,超高效液相色谱技术已逐渐发展成熟,并广泛应用于制药、食品/饮料、环保/水工业、农/林/牧/渔、石油/化工等众多领域。/pp  与传统的采用5μm粒径色谱柱填料的HPLC技术比较,超高效液相色谱技术能获更高的柱效,并且在更宽的线速度范围内使柱效保持恒定, 因而有利于提高流动相流速,缩短分析时间,提高分析通量。在峰容量、分析效率、灵敏度等方面较常规HPLC都有了很大的提高, 为复杂体系的分离分析提供了良好的技术平台。/pp  a href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=140" target="_self" title=""strongspan style="color: rgb(0, 112, 192) "超高效液相色谱仪(UHPLC/UPLC)市场现状及发展潜力调研报告(2017版)/span/strong/a从超高效液相色谱仪的市场容量、用户分布、品牌销量份额、用户采购及使用情况、重点行业的应用特点等多方面对我国超高效液相色谱仪市场现状进行了分析阐述,同时也对超高效液相色谱仪的市场发展潜力进行了评估。/pp  本报告对于有关厂商在制定相关产品研发、市场推广营销等策略方面具有重要参考意义。/pp  strongspan style="color: rgb(0, 112, 192) "报告目录节选如下:/span/strong/pp  版权及免责声明 I/pp  前言 II/pp  第一章 超高效液相色谱技术简介 1/pp  第二章 超高效液相色谱仪市场及应用特点 3/pp  2.1超高效液相色谱仪使用情况分布 3/pp  2.2超高效液相色谱仪用户的地域分布 4/pp  2.3超高效液相色谱仪的应用市场 5/pp  2.4超高效液相色谱仪用户所在单位类型 6/pp  2.5超高效液相色谱仪用户所使用的检测器类型 6/pp  2.6超高效液相色谱柱技术及市场概况 7/pp  2.7超高效液相色谱仪市场概况 10/pp  2.8超高效液相色谱仪在重点行业的应用特点 15/pp  2.8.1 制药 15/pp  2.8.2 食品/饮料 15/pp  2.8.3 环保/水工业 15/pp  第三章 相关超高效液相色谱仪产品 17/pp  第四章 超高效液相色谱市场潜力及影响因素 23/pp  第五章 用户采购途径、价格、相关评价 25/pp  5.1用户最近购买超高效液相色谱仪的途径分布 25/pp  5.2用户最近购买超高效液相色谱仪的价格区间分布 26/pp  5.3 用户对所购买超高效液相色谱仪使用成本的评价 26/pp  5.4 用户对所购买超高效液相色谱仪质量及售后服务的评价 27/pp  第六章 总结 28/pp  参考文献 29/pp  附录 30  /pp  strongspan style="color: rgb(255, 0, 0) "欢迎来电洽谈报告购买《超高效液相色谱仪(UHPLC/UPLC)市场现状及发展潜力调研报告(2017版)》事宜,联系电话010-51654077转销售部!/span/strong/ppbr//p
  • 普仁仪器携离子色谱系列产品盛装亮相BCEIA 2019
    2019年10月23日,北京分析测试学术报告会暨展览会(BCEIA 2019)在北京国家会议中心胜利举行。普仁仪器携离子色谱系列产品盛装亮相BCEIA 2019,吸引了相关部门领导和行业内很多专业人士驻足咨询。  本次展会,普仁仪器携旗下PIC-10型离子色谱、PIC-60型便携式离子色谱仪、PIC-80型双系统离子色谱仪及PAS-III型自动进样器等产品隆重出席。普仁仪器是国家鼓励发展的重大环保技术装备依托单位,国家高新技术企业,其研发的离子色谱类产品多次被评为“国产好仪器”。  离子色谱仪器哪家好?当然是普仁仪器,欢迎咨询。
  • 老司机亲手教:90元抢购迪马色谱通用样品瓶套装
    仪品汇为了帮广大实验猿谋福利,与迪马科技紧密沟通,终于将色谱样品瓶套装从原价254元/套砍到了90元/套!!!仪品汇与迪马共同保证原厂正品,保质保量!但是!数量有限!时间有限!手快有,手慢无!时间:2016年8月22日-9月2日数量:限量500套  商品描述:色谱通用2 mL 螺纹广口瓶(透明,带书写处和刻度)+ 螺纹盖和PTFE/白色硅胶垫,100个/套  原价:254元/套  仪品汇协议专供价:90元/套 活动规则:(仔细读!简单三步领红包!!!)  1、使用仪器信息网ID登录仪品汇,每个ID购买上限为10套  2、活动期间仅限本限时折扣的商品方可参与晒单返现活动  3、如何获取仪品汇专属微信红包?  1) 到货后,登录仪品汇,在订单中心点击确认收货  2) 开箱拍照并编辑好评发至微信朋友圈进行晒单(好评须带有“仪品汇”字样)  3) 将朋友圈截图以及订单编号发给仪品汇负责人(微信号:zhaokang839513)  4) 等待领取20元现金红包 温馨提示:  ※发票:请在填写收货地址页面填写发票信息,本次活动迪马将开具普通发票   ※同一ID只能领取一次红包,同一订单编号多发无效   ※微信红包将按照先后顺序发送,如您第二天仍未收到,请私信仪品汇负责人或致电仪品汇官方买家热线:400-666-1175。  产品简介:  迪马科技色谱通用样品瓶:2 mL 螺纹广口瓶(12 x 32 mm, 9 mm, 兼容Agilent 等)  ★ 大开口,为自动进样器提供更多方便  ★组装好的瓶盖和垫,方便直接使用  ★ 带书写处,方便铅笔等标记  ★ 适用Agilent,Waters,Varian 和岛津等各种型号自动进样器  ★ 瓶颈尺寸精确,保证自动进样器抓取无误  ★ 严格的品质保证,每批产品尺寸完全一致  ★平底保证与内衬管相配下单猛戳这里,下单猛戳这里,下单猛戳这里!  北京信立方科技发展股份有限公司旗下网站  仪器信息网、我要测、仪品汇
  • 买Athena C18液相色谱柱送保护柱套装
    下载: 买Athena C18液相色谱柱送保护柱套装.pdf关键词: Athena C18液相色谱柱 保护柱 CNW上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制