当前位置: 仪器信息网 > 行业主题 > >

色谱四元泵

仪器信息网色谱四元泵专题为您提供2024年最新色谱四元泵价格报价、厂家品牌的相关信息, 包括色谱四元泵参数、型号等,不管是国产,还是进口品牌的色谱四元泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱四元泵相关的耗材配件、试剂标物,还有色谱四元泵相关的最新资讯、资料,以及色谱四元泵相关的解决方案。

色谱四元泵相关的论坛

  • 液相色谱四元高压泵、四元与低压泵与二元高压泵的区别与比较

    我们在使用高效液相色谱仪做分析时通常会接触到多元泵。所谓几元,指的是能同时控制流路的多少。多元泵又分为高压混合与低压混合。高压混合又叫泵后混合,多元高压泵由多个泵构成,有几元则有几个泵,例如LabAlliance的PC2001型二元高压梯度泵、Series 4000系列的四元高压梯度泵等。低压混合又称泵前混合,其实就是一个泵,几元就是安装几路电磁阀,例如Agilent 1200型四元低压梯度泵等。为方便理解,附图如下(以四元泵为例):http://img1.17img.cn/17img/images/201408/uepic/4a1125ae-ea25-4775-80f1-326341dd8e9e.jpg!t600x500.jpg如图所示,四元高压梯度:配置有四个可独立工作的泵+在线混合器。工作方式为四个泵并联,可同时有四个流动相,按照预先设定的配比进入,分别送液到泵后的混合室内,在高压下进行混合,混合配比更准确,不易产生气泡,不用为了转换流动相而反复清洗,不仅节省溶剂,也提高了工作效率。无需增加真空脱气机,降低了混合死体积(泵前混合时、混合管、泵头等体积,脱气机内死体积)。同时,可以做梯度洗脱:当待测样品成分复杂,用一个固定的流动相配比无法将样品中成分完全分开时,就需要用到梯度洗脱,在同一个分析过程中由仪器自动改变流动相配比,将样品中前期无法分离的物质进行洗脱,在同一谱图中得到分开的峰的效果。有助于提高分析准确性,避免了遗漏重要物质或对其进行错误定性定量。http://img1.17img.cn/17img/images/201408/uepic/75fdfc3c-6ecd-4e5b-bbd1-b2c676c90a64.jpg!t600x500.jpg然而,四元低压梯度:配置比较繁琐:由单泵+低压混合比例阀(电磁阀)+在线脱气机+混合器构成,它的工作方式也与高压梯度泵有很大区别:最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,是依靠电磁阀的切换使泵分段输送不同流动相,由于在常压下混合,气泡很容易从溶剂中析出,较易产生气泡,因此必须配备在线脱气机,可消除气泡影响。可以做梯度洗脱,在仪器上进行设定之后,在同一样品分析工程中,相隔一段时间后,按照用户的设定自行改变流动相配比,将样品中组分分离开来。目前HPLC仪器制造厂家大都推出四元低压梯度(带在线脱气)系统,而在数年前大都是二元高压梯度,以往四元低压系统通常是进口仪器的专属产品,国内大多采取高压混合的方式,并没有涉及到低压系统的应用开发,在国内有些招标项目中也有明确提出选用四元低压的案例,广大客户可能会误以为四元低压是进口仪器的先进技术,实则不然,四元低压实际上是对二元高压的补充,也就是说当比例发生改变的流动相数量较多,二元高压不能满足分析的时候,四元低压弥补了这一不足。但如果比例发生改变的流动相数量在2个以内,包括2个,应该来说二元高压梯度系统在作高精度分析时优势明显。从目前的售价看,四元低压的泵比二元高压的并低不了太多,但他们节约的成本是不少的。四元低压梯度系统采用单泵加梯度比例阀来实现,因为比例阀是在泵前的,并且各流路的溶剂在比例阀里就混合在一起了,所以是泵前、低压混合。一般地,对于常规分析来说,四元低压梯度也可以满足需要;如果分析样品成份复杂、对重现性要求较高,或者需要在低流量下进行梯度分析,还是选择高压梯度好一些。当然,现在美国SSI(LabAlliance)公司推出的四元高压梯度泵,在保证高精度分析的同时,也解决了流动相数量受限制问题。液相色谱从性能上比较,四元高压肯定优于四元低压。四元高压的混合比例是通过改变泵的流速来获得的,通常泵的流速都是很准的,所以混合的精度也是很高的。四元低压梯度的混合比例是通过控制不同流路的电磁阀的开闭时间长短来控制的,理论上混合的比例也是准确的,但是实际上电磁阀的开闭会有一个延迟,无论它动作多么快,总还是需要一点时间的。比如A路和B路各50%混合,在单位时间内,A路和B路的电磁阀各开通50%的时间,这时问题不大,电磁阀的延迟影响可以通过调整补偿系数来尽量弥补。但是如果极端一点的情况,[

  • 采用四元泵或二元泵的高效液相色谱仪分别有哪些

    采用四元泵或二元泵的高效液相色谱仪分别有哪些

    四元泵和二元泵的工作原理: 四元泵工作原理图:在常压下将两种(或多元溶剂)输至混合器中混合,然后用高压输液泵将流动相输入到色谱柱中。因溶剂混合在低压下进行,故称低压混合系统。http://ng1.17img.cn/bbsfiles/images/2014/09/201409161303_514050_1669358_3.jpg 二元泵工作原理图:用两个高压输液泵将两种溶剂输入混合器,进行混合后再进入色谱柱。因溶剂混合在高压下进行,故称高压混合系统。http://ng1.17img.cn/bbsfiles/images/2014/09/201409161311_514053_1669358_3.jpg优缺点比较:http://ng1.17img.cn/bbsfiles/images/2014/09/201409161311_514055_1669358_3.jpg讨论:您所知道的液相色谱仪中采用四元泵或二元泵的有哪些?回帖方式可参考:公司+仪器型号+泵的类型

  • (色谱学堂第二期)到底二元泵好呢,还是四元泵好?(全面分析,值得一点)

    2”的纯数字的角度比较,肯定是不能客观反映两种泵孰优孰劣的。但在更深一步了解两种泵的原理结构以后,我们一般更倾向于认为二元泵要优于四元泵,原因是二元泵是基于高压混合的方式,在流动相混合的时候更不容易产生气泡,压力更稳定。如下图:http://mmbiz.qpic.cn/mmbiz/USLiaoO6BXERE7Fdd2unzm9w3KPEYxddSws9ibMvQgfEIfywmDQbu3wiab3flicGwwLSrpyYT0xGepic5dRpg1ng72w/0泵A(Pump Head A)和泵B(Pump HeaB)出来的流动相在混合器(Mixing Chamber)里面混合的时候,都是处于高压状态,这时候,流动相对气体溶解度较高,气体不容易从流动相中析出成气泡,导致压力波动,流速不准,基线波动等种种问题。而四元泵的混合,是采取在泵前用比例阀(Gradient Proportion Valve)来混合的方式,混合时流动相处于常压的状态,这时候,流动相对气体的溶解度较低,如果流动相中溶解的气体比较多的话,在混合时就可能有小气泡形成,导致压力波动等种种问题。气泡永远是液相色谱的天敌。http://mmbiz.qpic.cn/mmbiz/USLiaoO6BXERE7Fdd2unzm9w3KPEYxddS45Ilbb8ff8SH3YeQQ0gq1AKCSnlkh1mIuhSTo3gNzPe8licC2weRPfA/0所以说,四元泵一定要配脱气机,先对流动相进行在线脱气,才能用比例阀进行混合,要不然很容易产生气泡。而二元泵可以不用配脱气机就能在线混合,运行梯度方法。二元泵优于四元泵可不单单局限于高压混合的方式,下面我们一起看看二元泵到底还"好在哪里"?混合精确性从上面的介绍可以看到,两种泵的混合方式是完全不一样的。二元泵相当的直观,通过分别控制两个泵的流速,就能够准确控制两种流动相的比例。比如在1ml/min的流速下,要达到A:B两种流动相70/30的混合比例,那就设置A泵流速0.7ml/min,B泵流速0.3ml/min就可以了。当然这些都是系统和软件自动完成的。只要做到泵流速准确,比例就能准确。而四元泵通过比例阀来控制混合比例,那比例阀又是如何工作的呢?这可能知道的人就不多了。一般来说,比例阀是通过控制入口通道分别打开时间的长短来控制混合比例的。举个例子可能更容易理解,仍然是A:B两种流动相70/30的混合比例。为了达到这个效果,B、C、D三个通道都关闭,A通道打开7ms,这时候进入系统的都是A;然后,A、C、D关闭,B通道打开3ms,这时候进入系统的都是B。这样就得到了70/30的流动相的比例。大家能感觉出来,进入系统的流动相其实是一段A、一段B这样的。如果是四种流动相同时混合,出来的效果可能就是下面这个样子。http://mmbiz.qpic.cn/mmbiz/USLiaoO6BXERE7Fdd2unzm9w3KPEYxddSrsg2YS2mFeuqcZYMx2lgIwenvibnBibgibF3EBVAicRHsfXHyoUwyKUUMw/0这种通过时间控制的方式,在某个流动相比例比较低的时候,相对可能产生的误差会比较大。延迟体积二元泵流动相混合后,经过混合器(Mixing Chamber)、压力传感器(Pressure sensor)、阻尼器(Damper),冲洗阀(Purge Valve),然后进入进样器。反观四元泵,流动相混合后要经过整个泵头(包括主动入口阀、两个泵腔、出口阀、管路等等),才能到达进样器。(关于泵的具体构造,我们日后再聊)。一般来说,我们把流动相从混合开始,最后到达柱头这段体积叫延迟体积(delay volume)。流动相梯度的变化要到色谱柱头,才能够对分离产生影响,所以有一定的延迟。延迟体积越大,梯度的变化到达柱头的时间越长,直接导致分析时间越长。关于延迟体积,我们以后会专门来一篇文章具体解释和分析。但现在我们可以看到,二元泵的设计,先天地决定了,其延迟体积远小于四元泵。这就决定了在色谱分析时间要求很短的梯度方法中,比如各种小粒径的色谱柱的快速分析方法,都采用二元泵。不同品牌、类型的液相之间的延迟体积差异,是方法转移后出现结果跟以前不一样了的最大的原因之一。关于这一点,请关注我们的关于方法转移的后续文章。检测器基线稳定性由于四元泵采取的用时间控制比例的混合方式,直接导致不同流动相是一段一段地进入后面的进样器、色谱柱,甚至是检测器。假设仍然是A/B混合,如果在检测波长254nm下面,A/B都是没有任何吸收的,就算A/B没有混合地特别均匀,基线仍然是平稳的。但是,如果检测波长低到210nm,这时候A有了一点点吸收,B仍然没有吸收,或者A/B流动相吸收不一样。这样一段A、一段B的流动相经过流通池,基线肯定也是上下波动的。http://mmbiz.qpic.cn/mmbiz/USLiaoO6BXERE7Fdd2unzm9w3KPEYxddSqicxicfl1NBibKqbv9AZrQ38DXt3JDoicDrQxPHjDMvprkEoFIegl4B1Gw/0当然,四元泵也可以像二元泵后面在泵后面加上一个混合器,但是本来就比较大的延迟体积,将变得更加不可忍受。二元泵的混合方式决定了流动相的均匀程度要优于四元泵,在低波长检测的一些方法的时候,这种优势会直接导致基线稳定性要由于四元泵系统。四元泵逆袭看了这一大片的论述,你是否觉得二元泵已经在于四元泵的竞争中完全胜出了呢?事情总不是这么想当然,反而四元泵使用地更加普遍。四元泵的相对优势,主要有几点:http://mmbiz.qpic.cn/mmbiz/USLiaoO6BXERE7Fdd2unzm9w3KPEYxddSKAjicP4ECQRRiaWPTesWnRYi

  • 【分享】【基础知识普及】二元泵与四元泵的区别

    电脑里面找出来的,分享一下~我们平时用得多的是二元泵~ 通常来讲,二元指二元高压溶剂输送系统,四元指四元低压溶剂输送系统。二元高压是有两个高压输液泵,分别输送一种流动相,实现梯度洗脱,也就是所谓的泵后混合;四元低压是由一个高压输液泵,通过时间比例阀次序选择不同流动相而实现梯度洗脱,就是通常所说的泵前混合。 二元高压形成的梯度比例,是依靠两个输液泵来计量,远比时间比例阀依靠时间分配更为准确,特别是两相比例相差较大时,所以高压梯度具有更高的梯度精度。 我们知道在梯度洗脱中,梯度延迟体积非常重要,特别是复杂样品的分析,低的延迟体积具有更快的梯度响应时间,能够实现更好的样本在同个色谱柱上的分辨率。二元高压的延迟体积是从混合器后开始计算的,而四元低压是从比例阀混合部分开始计算的,多出了泵死体积、泵到比例阀的管线和泵到混合器的管线,所以四元低压的梯度延迟梯度较二元高压要大,梯度响应慢。 我们知道流动相都会溶解一定的气体,二元高压是泵后混合,气体的溶解度随压力的增大而增大,所以二元高压混合不会产生气泡。当然有时我们会看到检测器明显有气泡产生的噪音,那是由于流动相流出色谱柱后,压力降低,气体从流动相中溢出产生的气泡,一般可以在流通池后增加一定的反压就可以解决。而四元低压是泵前混合,是在常压下进行的,由于两种液体混合,会降低气体在混合溶液中的溶解度,所以通常会有气泡产生(除非流动相预先经过严格脱气处理),这就是为什么四元低压一般都要配在线脱气机的主要原因。 二元高压同四元相比唯一的不足,就是数量上的差别,二元高压只能同时使用两种流动相,而四元低压同时可以使用四种流动相。但通常的样品分离,两种流动相的梯度洗脱足可以解决问题,即使有三种流动相色谱条件,使用两种流动相调整梯度条件也足可以实现。

  • 【第三届原创参赛】高效液相色谱仪“四元泵泵头突然无压力”问题的解决

    【第三届原创参赛】高效液相色谱仪“四元泵泵头突然无压力”问题的解决

    高效液相色谱仪“四元泵泵头突然无压力”问题的解决 本文为作者zhufengdr原创,若需转载请直接先与本人取得联系,经双方协商并签定遵守相关协议后才可转载。未经本站作者授权自行转载的,属侵权违法行为。问题:如图1显示,按标准操作走流动相时四元泵突然无压力,且柱后无流动相流出!http://ng1.17img.cn/bbsfiles/images/2017/10/201009142041124649_01_1890635_3.jpg图1 走流动相时,四元泵无压力,无流动相流出可能原因分析:http://ng1.17img.cn/bbsfiles/images/2017/10/201009142042113988_01_1890635_3.jpg图2 四元泵流动相走势(四元泵工作原理图)根据四元泵工作原理图(图2)可以发现,流动相从溶剂瓶过来,先经过入口主动阀和出口单向阀,出冲洗阀(Purge阀)进色谱柱或者被排至废液。因此,泵头无压力的原因可能为:1)溶剂过滤头堵塞;2)入口主动阀故障;3)出口单向阀故障。有同志会问,Purge阀呢?因为Purge阀阀芯堵塞也常出现!答案是泵头无压力跟Purge阀无关,即使是Purge阀出问题了,堵塞了,泵头压力只会增大!上述原因我们得一一排查,当然,排查需要细致进行,都是逻辑性比较强的东西,在后面详述。先把笔者自己操作过的或者觉得合适的具体解决方式列表如下: http://ng1.17img.cn/bbsfiles/images/2010/09/201009142216_243998_1638724_3.jpg下面是详细的排查过程(尽量图解哈):1)Purge A通道:0.5ml/min及1.0ml/min无流动相流出,泵体无压力。各单独换成B、C、D通道:皆无流动相流出。步骤小结:溶剂过滤头是正常的。2)接下来将进行入口主动阀的确证。2.1 关色谱系统电源(重要,千万不要忘记:带电拔线可能伤害阀体!)2.2 拆主动阀,将滤芯拿出来先用超纯水超声10分钟,再用HPLC级甲醇超声5分钟2次。http://ng1.17img.cn/bbsfiles/images/2010/09/201009142046_243962_1890635_3.jpg图[font=Times New Ro

  • 【原创大赛】离子色谱仪检定新方法探索(一)——四元梯度泵

    【原创大赛】离子色谱仪检定新方法探索(一)——四元梯度泵

    离子色谱仪检定新方法探索 ——四元梯度泵 目前离子色谱仪器有国家标准的验证方法,但要求低,适合国产低端设备,对高端和特殊的仪器则没有做出明确的要求。本课题组在现有的国家标准的基础上,对离子色谱的各种部件(尤其是进口的),建立全新的检定方法。对现有国标的检定方法进行一定的修改和补充。 在JJG823-2014《离子色谱仪检定规程》中对于泵的检定包括三个方面,包括泵耐压检定、泵流量设定值误差、泵流量稳定性,只需要进行首次检定,不包括后续检定和使用中检定。而我们认为对于泵的检定还需要加入对其梯度设置精度的检定,在戴安公司离子色谱仪出厂检定标准中加入了这一检定方法。 JJG705-2014《液相色谱仪检定规程》与JJG823-2014《离子色谱仪检定规程》对比,该检定规程中对泵的检定增加了对其梯度精度的要求,其中规定最大允许误差Ge为±3%。本课题组在检定离子色谱仪的四元peek泵时,借鉴了这一检测方法,流路A流动相为超纯水,其他流路均为0.1%的丙酮水溶液。将泵与检测器连接(不接色谱柱),开机后以流路A中溶剂冲洗系统,基线平稳后开始执行梯度程序,记录其他流路溶剂从0%到100%的梯度变化曲线。重复测试,并依据相关公式计算出每一段的梯度误差Gi。 我们的实验方法也是在这一方法的基础上进行改进,但是不仅是局限于紫外检测器。由于现有的离子色谱用户中,电导检测器更加普遍,所以需要开发一个新的利用电导检测器的检定方法。在本课题中主要是采用电导检测器,以及二者串联的方式,对四元泵的梯度设置精度进行检定。1 实验部分1.1 实验仪器 分析泵;peek泵;电导检测器;紫外可见检测器1.2 试剂 0.1%丙酮溶液;100mg/L NO3-溶液(KNO3)1.3 紫外可见检测器检定四元泵 分模块检定的过程中,在configuration中只需要将泵和紫外可见检测器接入到系统中。A流路流动相为超纯水,B、C、D三个流路均为0.1%的丙酮溶液。每次检定只进行两个流路,将A与其他三个流路两两混合。流路连接如图1所示。http://ng1.17img.cn/bbsfiles/images/2016/09/201609202056_611323_3143520_3.png 开机后以流路A中溶剂冲洗系统,基线平稳后开始执行梯度程序,记录其他流路溶剂从0%到100%的梯度变化曲线。采用梯度变化方式,如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/09/201609202057_611324_3143520_3.png 设置紫外可见检测器波长为254nm,流动相流速为1mL/min。根据上述设计方案进行实验。这个方法是液相色谱泵的标准的方法。1.4 电导检测器紫外可见检测器串联检定四元泵 本实验共对三个泵进行了梯度精度检定,使用了100mg/L NO3-溶液(KNO3)。分模块检定的过程中,在configuration中只需要将泵,电导检测器和紫外可见检测器接入到系统中。A流路流动相为超纯水,B、C、D三个流路均为100mg/L KNO3溶液。每次检定只进行两个流路,将A与其他三个流路两两混合。流路连接如图3所示。http://ng1.17img.cn/bbsfiles/images/2016/09/201609202058_611325_3143520_3.png 开机后以流路A中溶剂冲洗系统,基线平稳后开始执行梯度程序,记录其他流路溶剂从0%到100%的梯度变化曲线。 经过实验条件的更换尝试,发现紫外可见检测器波长设置为230nm时,紫外可见检测器信号基本与电导检测器信号大小相当,实验效果最佳。所以,设置紫外可见检测器波长为230nm,流动相流速为1mL/min。根据上述设计方案进行实验。2 紫外检测器检定四元泵比例阀2.1 0.1%丙酮溶液 流动相为0.1%丙酮溶液,流速为1mL/min,紫外可见检测器波长为254nm。图4为AB两流路20%等度混合时的紫外可见检测器信号谱图。表1为流路梯度变化对照表。 http://ng1.17img.cn/bbsfiles/images/2016/09/201609202058_611326_3143520_3.png 表1 梯度变化与信号变化对照表 梯度变化 20% 20% 20% 20% 20% 平均值 RSD 信号变化37.4538.3338.2837.4737.9037.891.12% 由上述计算结果可知,泵梯度改变20%时,信号的变化值为37.89左右。计算得RSD为1.12%,说明该泵的梯度准确度很高。3 电导检测器紫外可见检测器串联检定四元泵3.1 100mg/L NO3-(KNO3) 流动相为100mg/L NO3-(KNO3)溶液,流速为1mL/min。图5为AB两流路20%等度混合时的电导检测器信号谱图。图6为AB两流路20%等度混合紫外检测器信号谱图,表2、表3分别为流路梯度变化对照表。http://ng1.17img.cn/bbsfiles/images/2016/09/201609202100_611327_3143520_3.png 表2 梯度变化与信号变化对照表 梯度变化 20% 20% 20% 20% 20% 平均值 RSD 信号变化30.69[align=center

  • 到底二元泵好呢,还是四元泵好?

    到底二元泵好呢,还是四元泵好?

    2”的纯数字的角度比较,肯定是不能客观反映两种泵孰优孰劣的。但在更深一步了解两种泵的原理结构以后,我们一般更倾向于认为二元泵要优于四元泵,原因是二元泵是基于高压混合的方式,在流动相混合的时候更不容易产生气泡,压力更稳定。如下图:http://ng1.17img.cn/bbsfiles/images/2015/12/201512291752_579891_708_3.png泵A(Pump Head A)和泵B(Pump HeaB)出来的流动相在混合器(Mixing Chamber)里面混合的时候,都是处于高压状态,这时候,流动相对气体溶解度较高,气体不容易从流动相中析出成气泡,导致压力波动,流速不准,基线波动等种种问题。而四元泵的混合,是采取在泵前用比例阀(Gradient Proportion Valve)来混合的方式,混合时流动相处于常压的状态,这时候,流动相对气体的溶解度较低,如果流动相中溶解的气体比较多的话,在混合时就可能有小气泡形成,导致压力波动等种种问题。气泡永远是液相色谱的天敌。http://ng1.17img.cn/bbsfiles/images/2015/12/201512291753_579892_708_3.png所以说,四元泵一定要配脱气机,先对流动相进行在线脱气,才能用比例阀进行混合,要不然很容易产生气泡。而二元泵可以不用配脱气机就能在线混合,运行梯度方法。二元泵优于四元泵可不单单局限于高压混合的方式,下面我们一起看看二元泵到底还"好在哪里"?混合精确性从上面的介绍可以看到,两种泵的混合方式是完全不一样的。二元泵相当的直观,通过分别控制两个泵的流速,就能够准确控制两种流动相的比例。比如在1ml/min的流速下,要达到A:B两种流动相70/30的混合比例,那就设置A泵流速0.7ml/min,B泵流速0.3ml/min就可以了。当然这些都是系统和软件自动完成的。只要做到泵流速准确,比例就能准确。而四元泵通过比例阀来控制混合比例,那比例阀又是如何工作的呢?这可能知道的人就不多了。一般来说,比例阀是通过控制入口通道分别打开时间的长短来控制混合比例的。举个例子可能更容易理解,仍然是A:B两种流动相70/30的混合比例。为了达到这个效果,B、C、D三个通道都关闭,A通道打开7ms,这时候进入系统的都是A;然后,A、C、D关闭,B通道打开3ms,这时候进入系统的都是B。这样就得到了70/30的流动相的比例。大家能感觉出来,进入系统的流动相其实是一段A、一段B这样的。如果是四种流动相同时混合,出来的效果可能就是下面这个样子。http://ng1.17img.cn/bbsfiles/images/2015/12/201512291755_579893_708_3.png这种通过时间控制的方式,在某个流动相比例比较低的时候,相对可能产生的误差会比较大。延迟体积二元泵流动相混合后,经过混合器(Mixing Chamber)、压力传感器(Pressure sensor)、阻尼器(Damper),冲洗阀(Purge Valve),然后进入进样器。反观四元泵,流动相混合后要经过整个泵头(包括主动入口阀、两个泵腔、出口阀、管路等等),才能到达进样器。(关于泵的具体构造,我们日后再聊)。一般来说,我们把流动相从混合开始,最后到达柱头这段体积叫延迟体积(delay volume)。流动相梯度的变化要到色谱柱头,才能够对分离产生影响,所以有一定的延迟。延迟体积越大,梯度的变化到达柱头的时间越长,直接导致分析时间越长。关于延迟体积,我们以后会专门来一篇文章具体解释和分析。但现在我们可以看到,二元泵的设计,先天地决定了,其延迟体积远小于四元泵。这就决定了在色谱分析时间要求很短的梯度方法中,比如各种小粒径的色谱柱的快速分析方法,都采用二元泵。不同品牌、类型的液相之间的延迟体积差异,是方法转移后出现结果跟以前不一样了的最大的原因之一。关于这一点,请关注我们的关于方法转移的后续文章。检测器基线稳定性 由于四元泵采取的用时间控制比例的混合方式,直接导致不同流动相是一段一段地进入后面的进样器、色谱柱,甚至是检测器。假设仍然是A/B混合,如果在检测波长254nm下面,A/B都是没有任何吸收的,就算A/B没有混合地特别均匀,基线仍然是平稳的。但是,如果检测波长低到210nm,这时候A有了一点点吸收,B仍然没有吸收,或者A/B流动相吸收不一样。这样一段A、一段B的流动相经过流通池,基线肯定也是上下波动的。当然,四元泵也可以像二元泵后面在泵后面加上一个混合器,但是本来就比较大的延迟体积,将变得更加不可忍受。二元泵的混合方式决定了流动相的均匀程度要优于四元泵,在低波长检测的一些方法的时候,这种优势会直接导致基线稳定性要由于四元泵系统。四元泵逆袭看了这一大片的论述,你是否觉得二元泵已经在于四元泵的竞争中完全胜出了呢?事情总不是这么想当然,反而四元泵使用地更加普遍。四元泵的相对优势,主要有几点:http://ng1.17img.cn/bbsfiles/images/2015/12/201512291757_579894_708_3.png1. 便宜啊。四元泵只需要一个泵头就能运行梯度条件,注定成本和定价都由于二元泵。在运行方法条件不是很苛刻的时候,四元泵能达到跟二元泵一样的分析效果,而价格可能要便宜30%以上。2. 还是便宜啊。后期的维修保养成本便宜,两个泵头的二元泵,基本单向阀、密封圈等等数量直接翻倍,故障率和维修成本肯定高于四元泵。3. 方便啊。因为相对便宜,所以市场保养量大,导致N多的标准方法都是在四元泵系统下开发的,很多方法拿下来就能直接用。如果你用二元泵,不好意思,有时候方法转移起来可能会碰到一些问题。4. 回到最初我们讲的,毕竟四还是大于二的。在偶尔碰到一些要求三相混合的分(qi)析(pa)方法,二元泵就直接悲剧了。说简单点,冲柱子都不用换瓶子。所以,下次碰到别人问你这个问题的时候,你该知道如何专业地回答了吧。【来源:色谱学堂】

  • 【原创】【活动申请】液相单元泵、二元泵、四元泵知识讲座

    申请版面:液相色谱申请基金:400积分申请内容:目前液相色谱的泵工作不外单元泵、二元泵、四元泵几种,仪器构造上也不太一样。活动以angilent的1100&1200为例讲解二元泵与单元泵对比以及常见问题,介绍四元比例阀结构、工作原理、维修等一些内容。 活动已经联系了板油pandora98,前不久写了个精华帖[URL=http://www.instrument.com.cn/bbs/shtml/20090615/1952921/]Agilent 四元比例阀漏液问题分析及解决方案(更新至23楼)[/URL],虽然是等级是赤贫,但是帖子分析的很透彻,回答问题也很负责。所以邀请他做专家,内容由他撰写,答应给他200积分,另外200积分用来奖励提问与回答问题的板油。 申 请 人:emoc98311策 划 人:emoc98311

  • 新四元泵液相拖尾

    之前单泵等度走的峰型很好,安装升级成四元泵,一样的流动相和柱子,等度走出来的峰型就拖尾了,而且理论塔板数急剧下降。是管路没有接好,死体积过大造成的吗?换了新色谱柱也不行,是不是安装没到位啊?

  • 安捷伦液相色谱仪二元泵和四元泵常用的配件和耗材

    [b][size=18px]常用的配件[/size][/b]damper 、出口阀、purge阀、溶剂选择阀、主动阀、漏液传感器、主板、四元比例阀、泵驱动、风扇、网卡[size=18px][b]常用的耗材[/b][/size]过滤白头、蓝宝石活塞杆、密封金垫、柱塞密封、主动阀芯、不锈钢管线。peek接头、不锈钢两通、管路接头配件如果损坏,可以及时维修或者更换,耗材也需要定期更换。

  • 小白菜对高效液相色谱的了解记录-2元和4元泵

    [align=left][size=12px]液相色谱仪的2元泵和4元泵,[/size][font=arial][size=12px][color=#333333]都是梯度洗脱系统[/color][/size][/font][/align][align=left][font=arial][size=10px][color=#ff9900][img]https://simg.instrument.com.cn/bbs/images/default/emyc1010.gif[/img]1、[/color][/size][/font][size=10px][color=#ff9900]梯度洗脱系统[/color][/size][/align][font=arial][size=10px][color=#33ff33]又称为梯度淋洗或程序洗脱。在同一个分析周期中,按一定程序不断改变流动相的浓度配比,称为梯度洗脱。[/color][color=#33ff33]原理: 流动相由几种不同极性的溶剂组成,通过改变流动相中各溶剂组成的比例改变流动相的极性,使每个流出的组分都有合适的容量因子k,并使样品中的所有组分可在最短时间内实现最佳分离。[/color][/size][/font][align=left][color=#ff6666]特点:提高柱效改善检测器的灵敏度。当样品中的一个峰的k'值和最后一个峰的k'值相差几十倍至几百倍时,使用梯度洗脱效果特别好。梯度洗脱中为保证流速的稳定,必须使用恒流泵,否则难获重复结果。梯度洗脱常用一个弱极性的溶剂A和一个强极性的溶剂B。[/color][/align][align=left][color=#ff6666][img]https://simg.instrument.com.cn/bbs/images/default/em09510.gif[/img]2、2元梯度高效液相色谱仪系统[/color][color=#666666]2元梯度高效液相色谱仪系统是两个高压输液泵独立控制,每一路流动相均由相互独立的高压输液泵输送,从而保证了相当高的比例输送精度。可同时有两个流动相,按照预先设定的配比进入,在高压下进行混合,每一路流动相均由相互独立的高压输液泵输送,从而保证了相当高的比例输送精度,不易产生气泡,不用为了转换流动相而反复清洗,提高了工作效率。[/color][/align][align=left][color=#666666][img]https://pics5.baidu.com/feed/72f082025aafa40fcd7b55d3a6b4b34979f01951.jpeg?token=c253f1946461d28e0691a03d2ed34d88[/img][img=,640,372]https://ng1.17img.cn/bbsfiles/images/2021/08/202108261424265721_5214_5357830_3.jpeg!w640x372.jpg[/img][/color][/align][align=left][color=#666666][img]https://simg.instrument.com.cn/bbs/images/default/em09510.gif[/img]3、4元梯度高效液相色谱仪系统 4元梯度高效液相色谱仪系统是一个低压系统,并不是四个泵,而是一个单泵和一个泵前比例阀组成,流动相的输入由比例阀控制,最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,由于在常压下混合所以较易产生气泡,因此必须配备在线脱气机。[/color][/align][align=left][color=#666666][img=,579,342]https://ng1.17img.cn/bbsfiles/images/2021/08/202108261428416552_6568_5357830_3.jpeg!w579x342.jpg[/img][/color][/align][align=left][color=#666666][img]https://simg.instrument.com.cn/bbs/images/default/emyc1010.gif[/img]4、2元泵和4元泵各自特点[/color][color=#cc33cc][img]https://simg.instrument.com.cn/bbs/images/default/em09511.gif[/img]2元泵:1、两个输液泵可以独立控制,独立使用。2、在小于0.2ml/min的低流速下,有很好的流速精度和混合精度。3、由于是高压混合,可以不用在线脱气[/color][color=#ff99ff]。 2元系统使溶剂在泵头后混合,因而体积延迟非常低。[/color][color=#666666][img]https://simg.instrument.com.cn/bbs/images/default/em09511.gif[/img]4元泵:[/color][color=#666666]1、4元系统使溶剂在泵头前混合,能够提供多达四种溶剂的多组分梯度,流动相配比灵活,随意切换。[/color][color=#666666]2、泵结果简单,故障率少,维护费用低。[/color][color=#666666]3、由于是低压混合,溶液产生气泡,必须要配在线脱气,混合精度比2元差,尤其是使用缓冲盐等缓冲物质时易堵塞电磁阀。2元高压的混合比例是通过改变泵的流速来获得的,通常泵的流速都是很准的,所以混合的精度也是很高的。4元低压梯度的混合比例是通过控制不同流路的电磁阀的开闭时间长短来控制的,理论上混合的比例也是准确的,但是实际上电磁阀的开闭会有一个延迟,无论它动作多么快,总还是需要一点时间的。[/color][/align][align=left][color=#666666]每日积累一点点,了解高效液相色谱多一点[img]https://simg.instrument.com.cn/bbs/images/default/em09506.gif[/img][/color][/align][align=left][color=#666666][/color][/align]

  • 若买液相色谱仪,二元泵和四元泵的,你更倾向哪一个呢?

    指Agilent的液相的,二元泵属泵后高压混合,四元泵是泵前混合的,两者对气泡敏感不一样,四元泵往往需要配的在线脱气以免气泡对后面影响。另外四元泵可以走四个溶剂,通过比例阀控制百分比。不过大家实验室有用到这么多的吗?http://simg.instrument.com.cn/bbs/images/brow/em09.gif

  • 【讨论】是真正技术 还是 混淆概念?——Q_Rrad 高压四元梯度泵

    对于二元,四元的概念,其实很多朋友都容易和泵的数量混淆。还有系统中低压和高压的具体所指概念也同样有此类问题。元,指的是流动相的管路 二元, 一般常规是配2个泵,在泵后混合,也就 混合器里是高压状态,这种梯度混合系统就是 二元高压梯度混合系统。 四元,一般只用一个泵来提供压力,混合器在泵前面,混合器里是低压状态(相对二元那种的高压,而不是和生活中那种所谓的 大气压对比,这里很容易混淆) 这种就是所说的 四元低压梯度混合系统。那么还要特别说一下以上的全称:二元高压梯度混合系统高压液相色谱仪 四元低压梯度混合系统高压液相色谱仪对,后面都是高压液相色谱仪, 这就是为什么会容易被人故意混淆概念。这里要说明一点:四元高压梯度混合系统高压液相色谱仪 这种是可以做的,但管路和柱子的压力几乎难以工作,何况常规液相流动相也就常规3种混合。举个浅显的例子:你会在家用汽车上装个喷气式发动机吗?!如果有人对 Q_Rrad 3600Q 这个系统有比较清楚的了解,请告知一下,诚心求教。

  • HPLC二、四元泵的区别

    简单解释:二元泵是高压泵,四元泵是低压泵,二元泵的精度比四元泵好,看你的分析要求,要求不高四元泵就可以了。详细解释:泵,可组装成为二元高压梯度与四元低压梯度两种系统,两者区别如下:二元高压梯度:配置:双泵+在线混合器工作方式:双泵并联,可同时有两个流动相,按照预先设定的配比进入,再高压下进行混合,混合配比更准确,不易产生气泡,不用为了转换流动相而反复清洗,提高了工作效率。同时可以做梯度洗脱,当待测样品成分复杂,用一个固定的流动相配比无法将样品中成分完全分开时,就需要用到梯度洗脱,在同一个分析过程中由仪器自动改变流动相配比,将样品中前次无法分离的物质进行洗脱,在同一谱图中得到分开的峰的效果。有助于提高分析准确性,避免遗漏重要物质的检测。四元低压梯度:配置:单泵+低压梯度阀+在线脱气机+混合器工作方式:最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,由于在常压下混合所以较易产生气泡,因此必须配备在线脱气机,可消除气泡影响。可以做梯度洗脱,在仪器上进行设定之后,在同一样品分析工程中,相隔一段时间后,按照用户设定的配比自行改变流动相配比,将样品中所有组分分离开来,有助于提高分析准确性。做简单的分析,一般性的化合物用二元的系统就很好,如果做蛋白类,多肽等半制备或梯度洗脱还是四元系统方便,但需配在线脱气机。

  • 【哺育新手活动】安捷伦四元泵

    【哺育新手活动】安捷伦四元泵

    [color=#DC143C][size=4][B][center]Agilent1100四元泵[/center][/B][/size][/color][color=#00008B][B]一、四元泵结构图[/B][/color][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625574_1613992_3.jpg[/img]四元泵包括一个溶剂柜、一个真空脱气器和一个四通道的梯度泵。四通道的梯度泵包括一个高速配量阀和一个泵部件。它通过低压混合来产生梯度。脱气是 低压梯度系统必需的,因此Agilent 1100 系列的真空脱气器是四元泵系统的一部分。溶剂柜提供了足够的空间,可放四个1 升瓶。当四元泵使用了浓的缓冲溶液时,可使用主动密封圈冲洗(可选)。[color=#00008B][B]二、泵头结构[/B][/color][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200932193724_01_1613992_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200932193746_01_1613992_3.jpg[/img][color=#DC143C]密封垫冲洗-Seal Wash ( 可选)[/color][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200932193824_01_1613992_3.jpg[/img]1、当流动相中盐浓度0.01M时,可以减小密封垫的磨损。2、于Agilent 1100系列泵为可选冲洗。3、用10%的异丙醇水溶液冲洗。[color=#00008B][B]三、四元泵的工作原理[/B][/color][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200932193926_01_1613992_3.jpg[/img]当四元泵启动时,通过运行一个 初始程序来决定第一个活塞能到达的最高位置。第一个活塞慢慢向上移动至最高位置,然后从那儿向回移动一个预定的路径长度。控制器在内存中存储这一活塞位置。初始化完毕后,四元泵按照设定的参数运行。入口主动阀打开,向下移动的活塞将溶剂抽人第一个泵头。与此同时第二个活塞向上移动往系统里传送溶剂。在一个控制器所确定的冲程长度(取决于流速)后,停止驱动器电机、关闭入口主动阀。电机方向倒转并使第一个活塞向上移动,一直到存储设定的上极限点,同时第二个活塞向下移动。这样两个活塞按顺序在两个极限点之间进行循环。在第一个活塞向上移动时,泵头里的溶剂通过出口球阀压入第二个腔体中。第二个活塞吸入第一个泵单元送来溶剂的一半,另外一半直接进入色谱系统。当第一个活塞吸取溶剂时,第二个活塞就把吸入的溶剂打到色谱系统里。因为溶剂来源于A、B、C、D 四个溶剂瓶,控制器将吸人冲程的长度分成固定的几部分,每部分都由梯度阀将专门的溶剂通道连接到泵的入口。[color=#00008B][B]四、流路图[/B][/color] [img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903191719_139396_1613992_3.jpg[/img][color=#00008B][B]五、使用注意事项[/B][/color]1、将装有溶剂瓶的溶剂箱放在泵上面(或较高处)。 2、当在四元泵上使用盐溶液或有机溶剂时,建议将盐溶液接 在底部得梯度阀口上,将有 机溶剂接在上面得梯度阀口上。有机通道最好在盐溶液通道得上面。3、建议用水定期冲 洗所有 MCGV 通道除去可能在 阀口析出得盐结晶。 操作泵之前,用至少两个体积(标准脱气机 30ml,对微脱气机 10ml)冲洗 真空脱气机 , 特别是当泵关闭了一段时间后(例如,过夜),以及在通道中使用挥发性混合溶剂时。 防止溶剂过滤器堵塞及长菌 ,当虑器表面有黑色或黄色污染层说明虑器发生了堵塞, 请立即清洗或更换之。 定期检查排液阀的虑芯。检查方法:拧开排液阀,以水作流动相,流速 5ml/min,若压力大于 10bar,则须立即更换。[color=#00008B][B]六、泵的日常维护[/B][/color]1、更换出口过滤芯[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200932194046_01_1613992_3.jpg[/img]2、更换活塞杆密封圈[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200932194123_01_1613992_3.jpg[/img]

  • 【求助】关于HPLC四元泵和二元泵

    HPLC有四元泵和二元泵,据说四元泵是低压梯度泵,二元泵是高压梯度泵,那么这个低压梯度泵和高压梯度泵怎么理解呢?四元低压梯度泵:泵前低压汇流,泵后高压混合;高压混合又叫泵后混合;低压混合又叫泵前混合。是这样子吗?上面说的都对吗?如果还有关于泵的说明,请大家补充,我想学习学习,谢谢各位啦!

  • 【讨论】二元泵和四元泵在实际应用中的区别

    二元泵和四元泵在实际应用中的区别。 二元有两个泵,高压混合,对气泡不敏感  四元只一个泵,低压混合,对气泡较敏感,须配在线脱气机 二元高压混合和四元低压混合的一个重大区别就是前者进入输液泵后立即进行混合,而后者是进泵以后慢慢混合,有的还要过一混合器,混合不但置后,而且效果明显不如前者。  高压梯度现在很多都可以用一个泵来控制另一个泵,而低压梯度往往需要一个梯度控制系统。  几元泵,分为高压混合和低压混合。高压混合又叫泵后混合,几元泵就是几个泵;低压混合又叫泵前混合,其实就是一个泵,几元就是安装几路电磁阀。

  • 液相色谱四元泵报错,柱温箱外接管断掉求助各位老师

    各位老师好,有两个问题求助大家!图一:安捷伦1260(Serial No. DEAAC25185)四元泵出现报错。 错误状态: 通道A马达功率过高。未就绪状态: 驱动关闭。图二和图三:安捷伦1260柱温箱的接头断开了,请问各位老师有没有解决方法?[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2023/03/202303091709435448_8992_5325622_3.png[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2023/03/202303091709438314_1702_5325622_3.png[/img][img=,690,1226]https://ng1.17img.cn/bbsfiles/images/2023/03/202303091709442320_7528_5325622_3.png[/img]

  • 【求助】Agilent四原泵的冲洗程序怎么设置?

    最近做三聚氰胺用的是Agilent1200的液相色谱,由于刚接手对泵设置不太熟悉,那位网友和我用的仪器一样请指点一下。点击泵图标会有四原泵的配置比例,下面的对话框是时间表,估计是编辑梯度冲洗的,但是我尝试后比例不会改变。如果我有30个样品,每个15分钟。那序列走完后怎么设置梯度?时间表内第一栏的时间是从何时开始计算的,是不是30*15=450分钟?还是从序列走完开始计时?直接在第一栏添5?谢谢!!

  • 【原创】二元泵与四元泵的原理及流路系统对比

    【原创】二元泵与四元泵的原理及流路系统对比

    [img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006122210_224094_1890635_3.jpg[/img]四元泵工作原理[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006122212_224096_1890635_3.jpg[/img]二元泵工作原理[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006122216_224097_1890635_3.jpg[/img]二元泵与四元泵的流路对比

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制