当前位置: 仪器信息网 > 行业主题 > >

色谱表示法

仪器信息网色谱表示法专题为您提供2024年最新色谱表示法价格报价、厂家品牌的相关信息, 包括色谱表示法参数、型号等,不管是国产,还是进口品牌的色谱表示法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱表示法相关的耗材配件、试剂标物,还有色谱表示法相关的最新资讯、资料,以及色谱表示法相关的解决方案。

色谱表示法相关的仪器

  • 开创聚合物分离的新纪元以更高分离度的体积排阻分离进行聚合物色谱表征通过实现快速的日常校准提升数据一致性和数据质量利用系统先进的技术实现自动化的方法开发以更快的速度获取目标聚合物的更多信息增强对聚合物化学结构的了解,加速创新如今,聚合物科学家所处的市场环境日趋活跃,对高性能材料、生物材料创新的需求不断增长,愈发激烈的竞争导致产生了更强的紧迫感。有了ACQUITY APC系统,聚合物色谱表征脱去极长运行时间的标签。得益于超高效聚合物色谱的优势,分析人员能以快于传统GPC/SEC技术5-20倍的速度,获取准确且可重现的聚合物分子量信息,从而加快创新速度,同时改善实验室运营环境。缩短聚合物样品实验室检测周期:更快地为研发实验室、生产运营团队以及您的客户提供可供决策的结果。推动创新:更快获取结果并掌握更多信息,帮助整个环节更快速地做出响应,从而缩短开发周期并加快上市步伐。简化工艺监测并灵活实现批次一致性控制,可对工艺和合成优化做出灵活的“动态”决策。显著降低每个样品的分析成本:减少溶剂消耗和废液处理量。通过快速溶剂切换和强溶剂兼容性优化方法开发配备聚合物四元溶剂管理器(p-QSM)的APC系统赋予了化学家和聚合物科学家出众的灵活性,让他们能够在同一套系统上使用标准聚合物色谱、梯度聚合物洗脱色谱(GPEC)和反相LC分析非常复杂的共聚混合物和聚合物添加剂。附加的系统功能支持自动化选择多达六种不同的溶剂。自动化色谱柱切换功能结合ACQUITY APC色谱柱的刚性和可灵活溶剂切换的颗粒配合使用,为体积排阻色谱法分离聚合物的方法开发,率先提供了全世界真正意义上的自动化解决方案。这套解决方案支持在数小时内完成聚合物的方法开发到检测,而无需数天时间。全方位多维色谱细节决定一切 — 更优的细节是我们不懈努力的目标当与PSS Polymer Standards Service GmbH的WinGPC UniChrom&trade 软件结合使用时,沃特世APC系统有助于研究人员使用多维分离方法深入了解复杂的聚合物材料,从而增加单次色谱分析的峰容量。应用多维色谱方法能够通过两种不同的连续保留机制分离分析物。该方法可以使分析物与单维色谱分离中通常发生共洗脱的其它化合物实现分离。这有助于大幅提升多维分离度,并提供有关复杂聚合物样品化学结构和组成的详细信息。始终能满足您研究需求的色谱柱技术BEH色谱柱技术采用亚乙基桥杂化(BEH)技术的颗粒可确保色谱柱在恶劣的运行条件下仍具有高柱效和长使用寿命。先进的反相和HILIC HPLC色谱柱BEH色谱柱适用于常见的反相色谱分析,此外,这款色谱柱在极端pH条件下可保持稳定,并且广泛适用于多种化合物,因此也是方法开发的理想选择。使用先进的检测解决方案获取有关聚合物样品的更多信息ACQUITY APC系统配备先进的检测器,可通过单次分析为聚合物研究人员提供有价值的决策支持信息。将沃特世APC系统与先进的检测解决方案相结合,可通过引入示差折光(RI)检测器、紫外(UV) PDA、光散射(LS)和粘度检测器(IV)显著提升SEC分析的信息获取能力。借助第三方先进检测功能集成,科学家还能对样品进行更全面的表征,从而更好地掌握新型复杂聚合物的结构-性能关系。利用业内率先推出专用校准套件提升数据质量和一致性由于运行时间小于10 min,使用ACQUITY APC校准标准品在30 min内即可校准一套串联ACQUITY APC色谱柱。这些标准品套件与ACQUITY APC色谱柱的分子量范围相匹配,可通过简单的稀释后进样为任何串联色谱柱生成10点校准图。这是一款有助于为特定应用选择理想色谱柱和校准标准品的便捷工具。得益于可对串联色谱柱进行日常校准的优势,数据一致性得到了极大改善,提供批次间测量结果始终如一的可靠性。功能和优势加速创新:亚3 μm刚性大孔径ACQUITY APC色谱柱与ACQUITY APC系统的超低系统扩散优势相结合,实现高分离度的聚合物分离。优化方法开发:快速溶剂切换和强溶剂兼容性,有助于应对聚合物分析中的严苛分离条件。提高分析范围和实验室效率:一套系统支持多种应用,包括基础LC、梯度、等度、反相和GPC分析。更深入地了解您的聚合物样品:可兼容多种检测器技术包括第三方先进的检测器,例如示差折光、紫外/可见光、光电二极管阵列或蒸发光散射检测器,还可兼容多角度光散射和粘度检测器等。缩短聚合物样品实验室检测周期:以快于传统SEC/GPC技术5-20倍的速度为您的研发实验室、生产运营团队和客户提供可供决策的结果。简化并优化串联色谱柱的校准:提供与串联色谱柱分子量范围匹配的标准品。多样化的色谱柱管理功能:可自动从多达两套串联ACQUITY APC色谱柱和多达两套串联传统GPC色谱柱中进行选择 - 所有色谱柱都安装在稳定的恒温环境中。溶剂管理器提供的精确流量:可确保分子量数据的准确性始终如一。
    留言咨询
  • Agilent 7820A VL不但丰富了安捷伦气相产品组合,对预算有限的客户来说兼具了经济性和高性能,并且一样享有安捷伦可信赖的技术、品质和服务。7820A VL气相色谱传承了安捷伦高品质气相色谱的特质,可以安装双进样口、双检测器,流量控制精度(EPC或EPR)为0.01psi,以确保优秀的再现性。除了GC柱温箱外,还通过五个独立的加热区实现温度控制,柱温箱,进样口和FID的最高温度分别高达425°C,400°C和425°C,从而提供了广泛的设置可能性适用于各种应用。可搭载FID、 TCD、 uECD和FPD多种检测器,保证高灵敏度和高选择性同时,可以灵活配置和组合。安捷伦副总裁兼气相分离部门总经理张建苗表示:“新型7820A VL气相色谱仪将使更广泛的客户获得安捷伦领先市场的气相色谱质量和技术。我们有信心,高质量的气相色谱可以帮助许多客户取得成功,尤其是对于安捷伦的新客户。”安捷伦的气相色谱产品范围广泛,包括高性能、高度可配置的系统、整体解决方案和用于一般分析任务的基本系统,为实验室提供了选择适合其应用和预算的气相色谱组合。
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • 优势特点1)样品处理开始后样品池中真空度可达到10-3 Pa;2)样品测量过程中各样品可同时或分别进行预处理、吸附、脱附探针分子;3)测量所需探针分子为酸性或碱性分子,高硼硅玻璃材质避免了各类气体的相互污染;4)真空处理系统由机械泵与玻璃四级扩散泵串联组成,可满足样品测试所需的高真空度的要求,具有抽速快、体积小、噪音低、操作简单、使用方便等特点;5)低真空部分主要是抽除系统中的高浓度气体或吸附的残余气体;6)各部分节门选用高硼硅玻璃节门,满足系统高真空的要求,透明性操作,便于调试;7)真空测量仪使用数显高精密真空计;8)本系统所配透过式石英红外吸收池,可对样品进行陪烧、流动氧化还原、抽空脱气、吸附反应等处理过程,可随时移入或移出到红外光谱仪的光路中进行实验,对样品的加热温度可达450度;9)波纹管更换方便。10)高真空系统和原位红外吸收池可按客户要求进行更改和定制。产品应用1 吸附态研究和催化剂红外光谱表征红外光谱已经广泛应用于催化剂表面性质的研究,其中有效和广泛应用的是研究吸附在催化剂表面的所谓“探针分子”的红外光谱,如:NO、CO、CO2、NH3、C3H5N等,红外光谱表征可以提供催化剂表面尤其是原位反应条件下催化剂表面存在的“活性中心”和表面吸附物种的信息,因此对于揭示催化反应机理十分重要。1.1 CO吸附态研究CO具有很高的红外消光系数,其未充满的空轨道很容易同过渡金属相互作用,同时许多重要的催化反应如羰基合成、水煤气合成、费托合成等均与CO密切相关,因此,研究CO在过渡金属表面的吸附态是一项十分广泛的研究课题。1.2催化剂表面组成测定合金催化剂表面组成与体相组成的差异会导致催化剂的性能显著不同,因此,测定催化剂的表面组成对理解反应的活性位相当重要。利用两种气体混合物在双组份过渡金属催化剂表面上的竞争吸附,并通过红外光谱测定其强度,可以方便地测定双金属负载催化剂的表面组成。典型的例子是CO和NO在Pt-Ru双金属催化剂上共吸附的红外光谱。1.3几何效应和电子效应研究在高分散金属催化剂中引入第二金属组元,由于金属间的几何效应和电子效应可显著改变催化剂的吸附性能从而改变催化活性。如在Pd-Ag/SiO2催化剂体系中,Ag对Pd起稀释作用,当Ag含量增加,成双存在的Pd浓度减少,因而桥式CO减少,线式CO增加,说明几何效应改变了CO在Pd-Ag/SiO2体系中的吸附性能,同时,随Ag含量的增加,CO吸附谱带红移加大,说明Pd-Ag之间存在电子效应。1.4吸附分子相互作用研究CO吸附在过渡金属表面时存在d-π反馈,nco同d-π反馈程度有有关,而d-π反馈程度与金属本身的d轨道情况有关,因此,通过CO吸附态的红外吸收光谱的化学位移,可以考察其它分子与CO共同吸附时导致的分子与金属组元之间的电子转移过程。如:当能够给出电子的Lewis碱与CO共吸附在Pt上时,根据d-π反馈原理,吸附在Pt上的CO伸缩振动向低波数位移,而当能够接受电子的受体与CO共吸附在Pt上时,根据d-π反馈原理,吸附在Pt上的CO伸缩振动向高波数位移。2 氧化物、分子筛催化剂的红外光谱表征2.1 固体表面酸性测定固体表面酸性位一般可看作是氧化物催化剂表面的活性位。在众多催化反应如催化裂化、异构化、聚合等反应中烃类分子与表面酸性位相互作用形成正碳离子,该正碳离子是反应的中间物种。正碳离子理论可以成功解释烃类在酸性表面上的反应,也对酸性位的存在提供了有力证明。为了表征固体酸催化剂的性质,需要测定表面酸性位的类型(Lewis酸,Bronsted酸)、强度和酸量。测定表面酸性的方法很多,如碱滴定法、碱性气体吸附法、热差法等,但这些方法都不能区分L酸和B酸部位。红外光谱法则广泛用来研究固体催化剂表面酸性,它可以有效区分L酸和B酸,在该方法中,常用碱性吸附质如氨、吡啶、三甲基胺、正丁胺等来表征酸性位,其中应用比较广泛的是吡啶和氨。2.2 氧化物表面羟基的研究氧化物尤其是大比表面的氧化物的表面结构羟基同许多催化反应如脱水反应、甲酸分解反应等有关,而表面结构羟基的性质又同表面酸性有密切的关系,多年来,人们对氧化物表面羟基进行了大量的研究,其中大部分研究着眼于氧化物表面羟基的结构、性质以及同酸性中心的关系,进而同催化剂的反应性能相关联。研究催化剂表面结构羟基的方法很多,但卓有成效的是红外光谱法。2.3 氧化物表面氧物种研究甲烷是烃类分子中结构简单、对称、化学惰性的分子,从基础研究角度认识以甲烷为代表的低碳烃类活化机理具有极大的学术意义。但是,甲烷分子很难吸附在催化剂表面上,因此很难直接观察到它在氧化物表面的活化过程。而氧化物表面(尤其碱性氧化物表面)的氧物种研究由于表面存在一层稳定的碳酸盐使得对其研究十分困难。鉴于上述原因,氧化物表面氧物种的研究一直没有取得重大进展。近年来采用了“化学捕集”技术、同位素交换技术和低温原位红外光谱方法相结合应用于上述研究取得了一些关于表面氧物种和甲烷活化的重要信息。3 原位红外光谱应用于反应机理研究长期以来人们研究了各种分子在催化剂表面的吸附态并获得了许多重要的信息,但是这些信息都是在反应没有发生时测得的。而反应条件下的吸附物种的类型、结构、性能与吸附条件下的吸附物种的类型、结构、性能有很大差别,因此,仅利用吸附条件下分别测得的吸附物种信息无法准确阐明反应机理,为此,进行反应条件下吸附物种的研究十分必要。而在反应条件下催化剂表面吸附的物种并未都参与反应,因此如何在多种吸附物种中识别出参与反应的“中间物种”是非常重要的课题。原位红外光谱可以测量催化剂在反应状态下吸附物种的动态行为,因此可以获得催化剂表面物种的动态信息,并可据此推断反应机理。详细介绍原位红外光谱表征高真空系统是用于测定催化剂表面组成、吸附、酸性、物种、表面羟基及反应机理的专用设备,包括高真空系统和原位红外吸收池两部分,可以配合Bruker布鲁克等主要红外光谱仪进行氨、吡啶、一氧化碳、一氧化氮、甲醇、乙醇等化合物的化学吸附测定及反应机理研究。催化剂表征对于了解催化剂结构和组成在预处理、诱导期和反应条件下以及再生过程中所发生的变化是至关重要的。催化反应机理的知识、特别是结构、动态学和沿催化反应途径中生成的反应中间物的能量学可为开发新催化剂和改良现有催化剂提供更深刻的认识。原位谱学观察又是阐明反应机理、分子与催化剂相互作用的动态学和中间物结构的有效技术。这些研究还可以提供有关催化剂和底物相互作用及有关活化势垒的热力学方面信息。反应机理和动力学的研究,特别是对催化反应中间物的原位观察,对发展催化科学是非常必要的。因为这样的研究结果提供了催化作用的全面知识,并有助于阐明催化剂结构和功能的关系。高真空系统由玻璃四级扩散泵、真空泵、精密真空表、电离规、集气瓶、球形安瓶、制备瓶、可伐、真空活塞等组成。该系统的高真空是通过一台优质低噪声的机械泵和一台玻璃四级扩散泵组成的机组而获得。原位红外吸收池由石英制成,分样品台和真空密封窗口两部分。样品台带有加热组件、热电偶、冷却系统和气体引入系统;真空密封窗口由冷却系统和CaF2窗片组成。该吸收池采用透射模式进行红外光谱表征,可对样品进行焙烧、流动氧化还原、抽空脱气、吸附反应等处理过程,可随时移入或移出到红外光谱仪的光路中,也可利用配备的延长管路进行原位表征实验。样品的加热采用程序升温方法控制温度,温度可达450℃。标准配置的吸收池窗口材料为CaF2,工作区间为4000—1000cm-1,也可按用户需要配置其他窗口材料。表1 红外窗口材料的性质材料使用范围cm-1反射损失*(1000cm-1)溶解度 g/100ml@20oC相对价格物理性质NaCl5000至6257.5%401.0溶于水,硬但易抛光和切割,潮解慢KBr5000至4008.5%701.2溶于水,较软但易抛光和切割,潮解慢,价格高,范围宽CsI5000至18011.5%807.8溶于水,软且易划伤,不能切割,潮解慢CaF25000至10005.5%难溶3.5难溶于水,耐酸碱,不潮解,忌用于铵盐溶液BaF25000至7507.5%不溶6.2类似于CaF2,对热和机械振动敏感SrF25000至8506%不溶5.1类似于CaF2,对热和机械振动敏感AgCl5000至45019.5%不溶6.6不溶于水但溶于酸和NH4Cl溶液,可延展,长期暴露于紫外光变暗,腐蚀金属及合金AgBr5000至28025%难溶难溶于水,软且易划伤,冷变形长期暴露于紫外光变暗KRS-55000至25028%0.19.1微溶水,溶于碱但不溶于酸, 软且易划伤,冷变形,剧毒Infrasil(SiO2)5000至2850NA不溶不溶于水,溶于HF溶液,微溶于碱难切割Poly-ethylene625至10NA不溶1.6不溶于水,耐溶剂,软易溶胀,难清洗,可压片*两个面上的反射损失, NA 不透明. 玻璃高真空系统部分组成及说明请参阅图1所示,本玻璃高真空实验测试系统,主要应用红外光谱催化剂原位表征、催化剂表面吸附物种和催化剂表征方面(探针分子的红外光谱)以及反应动态学方面的研究。该系统包括由机械真空泵A,真空波纹管B,可伐KF接头C,缓冲球D,组成一级真空泵,用于抽取低真空段,该部分真空可以抽取到1.0Pa;玻璃扩散泵E,用于提升真空度,提升真空度到10-2-10-3Pa,此为二级真空泵,液氮冷阱F,用于冷却系统中杂质气体,也有利于帮助提高真空度;真空规管G和精密真空表J,分别用于测量系统的高真空度及低真空度;玻璃球瓶H、I为储气瓶,用于储存备用纯化好的气体;玻璃管P为高真空部,为工作玻璃管,为该系统的核心部分;玻璃管Q为低真空部,用于连接测试样品池M,进气接口L,为工作管P服务,并实现高低真空的转换;玻璃制备瓶K,用于气体的纯化与制备;制备安瓶N,用于液体的纯化与制备;该系统全部采用玻璃真空阀门,更好的保证了气密性,02,03为三通玻璃真空阀门(详图2),01、04、05、06、07、08、09、10、11为二通玻璃真空阀门(详图3)。本实用新型中所采用的管路均为玻璃管路,所采用的阀门均为玻璃高真空阀门,真空阀门可以保证系统使用过程中不会产生漏气或缓慢渗漏的情形。图1-C中不锈钢管与玻璃管路采用可伐(Kovar)连接。
    留言咨询
  • PlantSpecTM 100高通量高光谱表型成像系统可以配合植物传输系统使用(另售),从而移动植物通过成像塔。该系统包含成像室及两个高光谱照相机(VNIR标准),照明系统和高光谱工作站。包含数据可视化软件,以及其他可用于高光谱成像分析的软件工具。基本配置PlantSpec 100高通量高光谱表型成像系统包含以下组件:• 带自动门的避光成像塔;• 适用于顶部及侧面成像的照明系统;• 供电模块;• 软件控制的电动驱动器,用于驱动每个摄像头的图像扫描;• MSV 500 VNIR高光谱相机400-1000nm(标准);• OLE 17mm镜头(可选);• 白色参比面板;• 带有PLC接口的快速图像采集软件;• 可用于连续操作的自定义传输系统;• 射频扫描RFID植物识别系统;• 水肥站(自选);• 自动测量模块;应用领域植物科学农业科学园艺花卉 产地与厂家:美国 MSV
    留言咨询
  • Videometer Lab 4是一款新型、功能强大且性价比超高的多光谱表型成像测量系统,通过控制系统就可以进行高分辨率多光谱成像。多光谱成像模块包括可见光成像,UV紫外成像以及NIR成像。可固定摄像头或移动摄像头。因拍照速度迅速,可实现较高通量成像。Videometer Lab 4通过测量样品在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的彩色图像。Videometer备选模块包括叶绿素荧光成像模块,能够实现叶绿素荧光成像(叶绿素a和叶绿素b)。Videometer Lab 4 同时也可以测量较小的样品,比如拟南芥等小植株、用多孔板培养的植物、多孔板里的叶圆片、植物的种子、药片、肉类、调料等,分析软件功能强大。该系统也可以对细菌等进行高通量成像测量,进行毒理学或其它研究。对于拟南芥等冠层平展的植物,可以进行自动的叶片计数等。Videometer Lab 4 用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。Videometer Lab 4 可选配基于盛料盘的进料系统,用于测量前后自动分发和移动样品。Autofeeder配件与Videometer Lab 4 共同为颗粒样品提供了高通量多光谱分析检测。对于特定谷物或颗粒,样品大小可达100g(基于密度和分辨率),成为一款测量成品以及生产控制用的独特模块。自动进料器使用振动器将颗粒从漏斗均匀分布到传送带上,传送带将颗粒传送到Videometer Lab 4下,然后进入一个收集箱。在采集、分割和分析样本图像后,在测量结束时自动创建摘要报告。根据需求,系统还可以定制分拣机器(如图所示),根据分析结果来筛选颗粒。筛选系统设计用于高价值颗粒的物理分拣,例如去除缺陷颗粒(破碎、未发芽、受感染等)。自动进样模块的振动装置将颗粒均匀地分布在皮带上,形成单层。分割程序提取颗粒,分离接触颗粒,并为样本中的所有颗粒创建blob图像。预测模型根据颜色、形状和纹理特征对颗粒进行分类。测量过程中显示颗粒图像和分析结果。测量结束时自动创建总结报告。如配置分拣机器可直接实现样品颗粒分类放置。产品功能:通过成像,可获取样品的图像,包括单波段的灰度图像和对应的反射率值及sRGB图像,用于不同的形状分析:可用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等;可用于种子品种鉴别,例如不同品种的水稻、玉米、小麦等;可用于花朵测量,可分析花径、花瓣面积、花色分级、花朵病斑、花图像提取等;可用于果实测量,可分析果实纵径、果实横径、果实颜色分级、果实数量、果实病斑、果实裂缝、果实图像提取等;可用于植物资源品种鉴别和种质资源研究(形态学结合多光谱信息)、植物疾病(如小孢链格孢属鉴别)研究、植物生理生态发育以及胁迫研究(如对植物进行激素处理后、植物形态学的一些变化)、植物繁育栽培研究、果品和蔬菜品种、品质检测(如草莓、浆果品质特征和成熟阶段研究);可用于中药、民族药和茶叶等的形态、分类、品质、种植和地道性研究;可用于茶叶分类、鉴别、品质检测与评估等;可用于食品参假鉴定,比如食品原料的选择;可用于昆虫如蚕蛹雌雄鉴别、动物寄生虫检测、进行昆虫的游动测试,自动获取图像;产品特点:积分球提供均匀和弥散光线照明5-10秒钟内实现光谱成像和定量分析19-20种不同波长/光源6或9.1百万像素/波长提供1.2-3.6亿像素/帧分辨率标准设备包括使用设备校准与传统RGB技术相比具有卓越的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时独特LED光源技术稳定性增强前光灯和背光灯组合、备选背光灯相对样品自动移动照明研究应用强大的软件分析多光谱荧光备选颗粒产品自动进料备选分拣机器备选产品技术参数主机技术参数摄像头:顶部,可固定或者移动,6或9.1百万像素,波长提供1.2-3.6亿像素/帧分辨率采用积分球设计,积分球提供均匀和弥散光线照明5-10秒钟内实现光谱成像和定量分析,19-20种不同波长的光源与传统RGB技术相比具有卓越的彩色测量功能光源寿命长,可达10万小时具有19个高功率LED灯源,波段范围从375nm-970nm,集成了RGB成像模块、紫外UV成像模块、叶绿素荧光成像模块、NIR近红外成像模块备选350nm-1700nm,包含30-40个波段图像尺寸:2056 × 2056像素或更高分辨率:~45μm/像素根据应用需求可自动切换动态范围NIST可追溯校准,使用2个反射校准以及几何定标靶。简单校准向导程序,只需3分钟样品尺寸:(台式)高度最高可调定制;落地式可根据用户需求调节设计尺寸,需要对相机镜头进行设置快速无损检测,分析时间:每个样品5-10秒室温,操作:5~40℃,储存:-5~50℃,环境湿度:20~90%RH相对湿度,非冷凝PC要求:最低配置:Intel i7 或更高,16GB RAM, 1THDD,USB3高端端口,千兆以太网软件:Microsoft Windows 7 Professional 64 bit, full windows update可选配颗粒样品自动进样模块、暗场/明场背光、滤波轮(用于荧光),可选配图像处理工具盒(IPT)、光谱成像工具盒(MSI)、斑点工具盒选配进样器技术参数样品容量标准为1.5升(可定制更大的样品尺寸)传送带宽度76nm处理速度每分钟1200cm2传送面积。样品处理量示例:宠物食品吊桶,18分钟内1公斤。玉米粒:6分钟300克。小麦和大麦:10分钟100克适用于不同尺寸和类型颗粒产品,软件自动进料器选项由Videometer Lab Biob Analyzer工具控制,可通过定制的软件插件与外部进样接口
    留言咨询
  • 工作原理: 气相色谱专用氢气发生器是一款便携式高纯氢气的制取装置,采用电解水制氢的方法,通过电解水分解产生氢气。这种方法基于电化学原理,通过在水中加入电解质,然后在两个电极之间通电使水分子分解成氢气和氧气。电解水制氢的制作原理可以用化学反应式表示为2H2O(液态)-2H2(气态)+O2(气态)。 适用标准: 《固定污染源废气总烃、甲烷和非甲烷总烃的测定便携式催化氧化一氢火焰离子化检测器法》 《固定污染源废气总烃、甲烷和非甲烷总烃的测定便携式气相色谱一氢火焰离子化检测器法》 《废气无组织排放总烃、甲烷和非甲烷总烃的测定便携式气相色谱一氢火焰离子化检测器法》 《环境空气和废气总烃、甲烷和非甲烷总烃便携式监测仪器技术要求及检测方法》 产品特点: 1\多重除湿,氢气纯度≥99.995% 多重除湿装置,对可制出氢气脱出水分,达到3ppm水分干燥效果。 2\内置电池,小巧便携 电池连续工作6小时,也可边用边充 整机尺寸:140*106*200mm(含电池),小巧便携
    留言咨询
  • Videometer Lite采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer Lite可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。田间Videometer多光谱植物表型功能分析系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer Lite可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab Lite的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab Lite便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 µ m。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • JB-5型比表面积测试仪,采用氮吸附动态法测定粉体比表面积,4个工作分析站,同时可以测试4种样品,适合产量大、品种多的生产企业。分析范围:0.0005m2/g~无上限;测试精度高、重现性好。采用双气源动态气相色谱法,以氦气作为载气,氮气为被吸附气体作为测试气体,对不同样品的固体表面进行分析,能快速测试各行业粉体、颗粒等材料的比表面积。 应用领域:各种粉末、颗粒的比表面积分析,比如:石墨、钴酸锂、氢氧化镍、锰酸锂、钛酸锂、碳酸锂、医药粉、催化剂、吸附剂、水泥、陶瓷原材料等。参数指标测量范围0.0005m2/g~无上限测量原理气相色谱、低温动态氮吸附原理参照标准ISO-9277/GB/T19587-2004等标准测试精度采用标准物质校准,测量误差≤±1%样品试管优质耐温GG材料的U型样品管测试气体高纯氦气作为载气,吸附气体为高纯氮气作为测试气体测试工位4个工作台,每次同时测4个样品测试方法单点测试、多点(BET)、对比测试。测试步骤将样品装入样品管,样品预处理后,在电脑控制下自动完成测试分析测试效率每测试一个样品约5~7分钟,换样测试操作方便,可以不关机连续测试分析软件软件功能齐全,实时显示测试结果,方便对比分析,保存或打印操作系统运行Windows XP/win7/ win10仪器尺寸700mm×300mm×600mm (因产品不定期升级,尺寸仅供参考)工作电源AC220V ±22V 50Hz±0.5Hz JB-5性能特点1、4个工作站,有效提高测试效率,每测试1个样5-7分钟左右,测试时间短效率高。2、高灵敏度探测器,工作温度低寿命长,探测器不会因气体成份的改变而损坏。3、高精密稳流稳压阀,保证了测试气体均匀稳定,保证测试结果准确。4、杜瓦瓶采用大口径容量500mL,真空玻璃内胆,保温时间长。5、软件功能齐全,方便测试结果对比分析,支持在线保存、查看或打印。6、仪器结构合理、性能稳定、精度高、测试速度快,对使用环境无特殊要求。
    留言咨询
  • EIE 色谱模拟馏程仪 400-860-5168转4050
    EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪简介:油品蒸发性:油品气化的难易程度。描述指标:饱和蒸汽压、馏程、闪点。馏 程:油品在规定的条件下蒸馏所得到的以初馏点和终馏点表示其蒸发特性的这一温度范围叫做馏程。馏分组成:石油产品蒸馏测定中,馏出温度与馏出体积分数相对应的一组数据。如:初馏点、5%回收温度、10%回收温度等。馏程是评定液体燃料蒸发性的重要质量指标,是确定石油加工方案、加工工艺、保证油品质量与产量的重要参考,是装置生产操作控制的依据,是判断油品使用性能的重要指标。EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程方法 常规馏程的蒸馏仪:本标准是在减压条件下测定液体最高温度达400℃时,能部分或全部蒸发的石油产品的沸点范围.常压等同温度atmospheric equivalent temperature(AET):是指在常压下蒸馏而无热分解的蒸馏温度。终点endpoint(EP)或终馏点(final boiling point)(FBP): 在试验中达到的最高蒸气温度。 初馏点inital boiling point(IBP):从冷凝管下端流下第一滴液体时观察的瞬间蒸气温度。原理:在0.13~6.7(1 mmHg~50 mmHg)之间某个准确控制的规定压力下,用约一个理论塔板的分馏装置蒸馏试样,可以得到初馏点、终馏点和回收体积百分数与常压等同温度相关的曲线。石油产品常压蒸馏测定法(GB/T6536-1997)1、本标准适用于天然汽油(稳定轻烃)、车用汽油、航空汽油、喷气燃料、特殊沸点的溶剂、石脑油、石油溶剂油、煤油、柴油、粗柴油、馏分燃料和相似的石油产品。2、分解点 decomposition point:蒸馏烧瓶中液体开始呈现热分解时的温度计读数,以℃表示 。3、干点 dry point:蒸馏烧瓶中最低点的最后一滴液体气化时一瞬间所观察到的温度计读数,以℃表示 4、原理:100mL试样在适合其性质的规定条件下进行蒸馏。系统地观察温度计读数和冷凝液的体积,并根据这些数据,再进行计算和报告结果。EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 常规馏程和模拟馏程的优缺点:常规的蒸馏方法用样量多、分析周期长、精密度差、劳动强度高、对操作人员身体危害性大且有较严重的环境污染。色谱模拟蒸馏方法数据准确、分析快速、用样量少、自动化程度,已成功应用于轻石脑油、汽油、煤油、柴油、润滑油、渣油、原油的馏程测定。EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程原理:色谱模拟馏程是运用色谱技术模拟经典的实沸点蒸馏方法,来测定各种石油馏分的馏程。色谱模拟馏程方法建立依据:样品中每一个组分都是按照它们的沸点次序而流出色谱柱。由此必须保证色谱柱是非极性,即保证样品组分与色谱固定相间仅有色散力的作用。(取向力、诱导力、色散力、氢键)。化学键(离子键、共价键、金属键)色谱模拟蒸馏原理:用具有一定分离度的非极性色谱柱,分析一组正构烷烃混合物,得到保留时间与沸点的关系曲线。在相同条件下,测定石油样品,获得对应百分收率的累加面积及保留时间,利用前面得到的保留时间与沸点的关系曲线可以计算出百分收率-温度的馏程数据。分子间作用力:分子间作用力按其实质来说是一种电性的吸引力,因此考察分子间作用力的起源就是研究物质分子的电性及分子结构。色散力:所有 类型分子间的瞬时偶极间的作用力。诱导力:在极性分子和非极性分子之间以及极性分子和极性分子之间都存在诱导力。取向力:发生在极性分子与极性分子之间。氢键:一种特殊的分子间或分子内相互作用。化学键存在于分子内,是将原子结合成分子的力 分子间作用力存在于分子间,是保持物质聚集状态的力,它们本质上都是静电引力,但大小相差好几个数量级。氢键既存在于分子内又存在于分子间,但无论是哪中情况,它都不是形成分子的必要条件(破坏氢键只改变聚集状态而不使分子本身发生变化),而且它只存在于少数分子之间,大小又与其他分子间作用力相近,表示时也只用虚线,表示它和化学键不是一个级别,因此它是分子间作用力。 EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程应用-关联恩氏蒸馏: 色谱模拟蒸馏所模拟的是实沸点蒸馏方法,因而,模拟蒸馏数据与恩氏蒸馏数据有很大差异。但是,由于恩氏蒸馏长期以来用作产品的规格,生产企业更熟悉恩氏蒸馏。所以,有必要寻找一条模拟蒸馏与恩氏蒸馏数据的关联曲线。研究人员经过大量数据的对比,发现可以用回归方程将二者联系起来。下面是由模拟蒸馏计算恩氏蒸馏某收率点温度(Yi)的公式: Yi=a0+a1*T1+a2*T2+a3*T3 式中:a0、a1、a2、a3—回归系数; T1、T2、T3—分别为模拟蒸馏中不同收率点的温度,℃模拟蒸馏数据与恩氏蒸馏数据的关联成功,扩展了模拟蒸馏方法的使用范围,近年已逐渐将其用于工业装置的中控分析中。同时,由于模拟蒸馏方法数据远较恩氏蒸馏精确,精密度好。因此,1975年在一些地方已经用模拟蒸馏代替恩氏蒸馏来表示航空汽油的规格。 EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程应用-关联减压蒸馏: 在润滑油基础油的生产中,除应控制油品粘度外, 更重要的是要控制其馏程宽度, 这就需要有可靠的分析手段。原有的减压蒸馏分析方法难以保证分析精度, 而且对终沸点高于500℃的馏分也不能分析全馏程。由于色谱模拟蒸馏技术具有快速、精确、用样量少等特点,研究人员提出了利用模拟蒸馏数据关联计算减压蒸馏数据的方法,从而实现了用色谱模拟蒸馏数据获得减压蒸馏结果的目标。 EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程应用-计算蒸汽压:由于蒸汽压与油品中的低碳组分的含量有关。所以,利用色谱模拟蒸馏的数据可以计算油品的蒸汽压。已有报道利用ASTM D2887色谱法模拟蒸馏数据关联计算石油产品雷特蒸气压等检验方法数据。EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程应用-计算闪点 :1975年,Kimball等曾报导使用自动的色谱模拟蒸馏可代替恩氏蒸馏、闪点及比重的测定。他认为闪点常常是蒸汽压的函数,而蒸汽压又是组成的函数。所以可以用下列公式计算: TF = A + BlogP =A + Blog(∑XiPi) 式中:A及B—回归系数; Xi—色谱所得组成数据;。 Pi—各组分在某一温度时的蒸汽压,(常用100℉)。 目前,石油化工科学研究院已经研究出仅使用色谱模拟蒸馏数据关联油品的闭口闪点或开口闪点进行闪点预测的方法,其典型的关联公式如下: TF = a0 + a1TIBP + a2T5% +a3T10% 或 TS = b0+ b1*T10% 式中:a0、a1、a2、a3、b0、b1—回归系数; TIBP、T5%、T10%— 分别为模拟蒸馏中不同收率点的温度,℃。 EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程应用-计算冰点: 有文献报导利用色谱模拟蒸馏数据以对数回归方法计算喷气燃料的冰点,方法简单、快速、准确性好、精密度高,甚至优于常规测定方法。 EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 色谱模拟馏程标准:EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 ASTMD7096(2010)-汽油、煤油:色谱柱:HP-1,30m×0.53mm×5μm载 气:He流速5mL/min(0.5min) -20mL/min(速率60mL/min)柱 温:40℃(1min)-25℃/min-265℃(4min)进 样 量:1μL分 流 比:50:1采集速率:5Hz正碳分析(C4-C16):用CS2稀释,约1:10(m:m)。 R(N12~N13)=(t13-t12)/(W13+W12)=6~ 10EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 ASTMD2887(2008)-煤油、柴油:进样口程序升温:毛细管柱不分流进样口,温度100℃(0min)-35℃/min- 360℃(1min)。色谱柱:HP-1,10m×0.53mm×0.88μm柱温:60℃(0min)-35℃/min-350℃(0min)载气氦气 (99.99%):恒流26mL/min,老化温度不超过350℃。进样量:0.1μL正碳(C5-C44)标样用CS2稀释:CS2稀释,约1:20(m:m) R(N16~N18)=(t16-t18)/(W16+W18)3EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 ASTMD7213(2011)-轻润滑油:范围:100℃~ 615℃进样口程序升温:毛细管柱不分流进样口,温度100℃(0min)-35℃/min- 400℃(1min)。色谱柱:HP-1,5m×0.53mm×(0.8-1.0)μm柱温:40℃(0min)-10℃/min-380℃(12min)载气氦气 (99.99%):恒流12mL/min进样量:1μL正碳(C5-C60)标样用CS2稀释:约1:100(m:m) 样品用CS2稀释:约1:50(m:m)R(N50~N52)=(t52-t50)/(W52+W50)=1 ~ 8EIE 加拿大进口 EIE-SDR-01 色谱模拟馏程仪 ASTMD7169(2011)-原油、渣油:范围:常温 ~ 700℃进样口程序升温:毛细管柱不分流进样口,温度50℃(0min)-15℃/min-425℃(1min)。色谱柱:HP-1,5m×0.53mm×(0.09-0.15)μm柱温-20℃(0min)-15℃/min-425℃(10min)载气氦气(99.99%):恒流20mL/min进样量:0.2-1.0μL正碳(C1-C100)标样用CS2稀释:约1:100(m:m) 样品用CS2稀释:约1:50(m:m) R(N50~N52)=(t52-t50)/(W52+W50)=1.8~ 4.0
    留言咨询
  • 产品介绍 JB-5型比表面积测试仪,采用氮吸附动态法测定粉体比表面积,4个工作分析站,可以依次测试4种样品的比表面积。分析范围:0.0005m2/g~无上限;测试精度高、重现性好。采用双气源动态气相色谱法,以氦气作为载气,氮气为被吸附气体作为测试气体,对不同样品的固体表面进行分析,能快速测试各行业粉体、颗粒等材料的比表面积。常适合样品产量大、品种多的行业使用。产品优势u 仪器结构合理、性能稳定、精度高、测试速度快,对使用环境无特殊要求。u 4个工作站,有效提高测试效率,每测试1个样5-7分钟左右,测试时间短效率高。u 灵敏度探测器,工作温度低寿命长,探测器不会因气体成份的改变而损坏。u 高精密稳流稳压阀,保证了测试气体均匀稳定,保证测试结果准确。u 杜瓦瓶采用大口径容量500mL,真空玻璃内胆,保温时间长。u 软件功能齐全,方便测试结果对比分析,支持在线保存、查看或打印。应用领域 各种粉末、颗粒的比表面积分析,比如:石墨、钴酸锂、氢氧化镍、锰酸锂、钛酸锂、碳酸锂、医药粉、催化剂、吸附剂、水泥、陶瓷原材料等。产品参数测量范围0.0005m2/g~无上限测量原理气相色谱、低温动态氮吸附原理参照标准ISO-9277、GB/T19587-2017等标准测试精度采用标准物质校准,测量误差≤±1%样品试管优质耐温GG材料的U型样品管测试气体高纯氦气作为载气,吸附气体为高纯氮气作为测试气体测试工位4个工作台,可依次测试4个样品测试方法单点测试、对比测试测试步骤将样品装入样品管,样品预处理后,在电脑控制下自动完成测试分析测试效率每测试一个样品约5~7分钟,换样测试操作方便,可以不关机连续测试分析软件软件功能齐全,实时显示测试结果,方便对比分析,保存或打印操作系统运行Windows XP/win7/ win10仪器尺寸700mm×300mm×600mm (因产品不定期升级,尺寸仅供参考)工作电源AC220V ±22V 50Hz±0.5Hz 测试原理JB-5依据国标GB/T19587-2017气体吸附BET法测定固态物质比表面积:气相色谱法,测试样品的比表面积。动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;动态色谱法适合测试各种妇粉体、颗粒等的比表面积,尤其是中小吸附量小的比表面积样品,且测试速度快速,测试效率高。
    留言咨询
  • EP-600型便携式离子色谱仪 自从2005年公司的研发人员就开始研发便携式离子色谱仪,经过不懈努力,优化设计,以及用户的支持,历经8年于2012年正式推出真正的无需外接电源的便携式实用仪器。国内/国际首款通过CMC认证、便携式离子色谱仪,适用于野外现场检测的要求,同时也满足实验室操作。技术特点:精心设计优化组合,集台式机的所有功能集中在一个手提箱内,具有说走就走的时尚风格无需外接电源,内置锂电池提供动力,适用于野外操作,应急检测。串联式双柱塞泵,安装设计便于更换、维修。内置双极电导池抑制器,实现零死体积检测。自主开发的色谱工作站。计算机控制仪器运行,数据采集,数据处理。用无线传输方式。配件齐全,可为用户提供完美的检测方案。●仪器一体化设计。结构简洁。便于移动,适用于野外操作运行。●人工手动进样模式。按键式启动数据采集。●仪器采用串联式双柱塞泵,镶嵌式PEEK材料加工。与液体接触部分为惰性材料。适用于pH1-14酸碱度。无需阻尼器,运行稳定、极低的脉动流动相输送。●输液泵设有过压保护程序,系统超压仪器自动停止运行。●高压六通进样阀,具有信号采集功能、不断流运行,进样体积可达1.0微升以下,适于高浓度样品分析。●停止仪器运行误操作,EDI自动关闭。以保护检测系统安全。●内置双极电导池抑制器,实现零死体积检测。连续自动再生膜抑制器,无需外加酸,可连续不间断工作。●智能化色谱工作站EASY2016AIO,中文操作界面,数据积分,标准曲线制作,未知样品浓度计算。●计算机反控仪器运行;仪器运行参数设定;数据采集。●无线通讯模式,计算机只要安装色谱工作站软件,均可操作仪器运行。 串联式 双柱塞泵 外部为不锈钢材料,内部镶嵌式PEEK材料加工方式。即保证部件的强度,又满足液体接触部分为惰性材料的要求。适用于pH1-14酸碱度。 通过六通阀的定量环确定进样体积,定量环可依据您的实验要求自行更换。采用新型锥形设计的六通阀,进样体积可达1.0微升以下, 适合于高浓度样品分析。 内置双极电导池抑制器,实现零死体积检测。连续自动再生膜抑制器,无需外加酸,可连续不间断工作(专利号:ZL 2013 2 0017038.0)。 仪器技术性能指标: 智能化色谱工作站(计算机软件著作权登记号:2012SR125147)中文计算机控制界面:使您的操作简单易行;四项参数设定: 两项启动开关:l泵启动 lEDI启动l 保护压力(MPa) l 流量设定(min/mL) l 色谱量程 (uS) l 抑制器电流(mA)五项运行观察参数: l 当前压力 l 当前温度 l 总电导 l 当前电导 l 当前抑制器电流两项启动开关:l 泵启动 l EDI启动EP-1000系列离子色谱仪试样分离图谱 进口离子色谱柱AS23 分离图 国产离子色谱柱分离图 标准样品重复性重复性图谱比较 :相同浓度标样连续进样(6次),每个组分的保留时间误差应在±1.5%范围内;响应值(用峰面积表示)误差应在±2%范围内。 标准曲线图:氯离子检测浓度0.5-4.0mg/L。不同浓度标准样品测定后,输入数值,自动生成标准曲线。相关系数大于0.995。未知样品检测完成后,软件自动计算出 样品浓度。
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • 北京北分三谱水质苯系物分析仪器  水是人类和其他生物生存所不可或缺的资源。水体污染危及地球上大多数生物和人类自身的生存。当前,我国一些地区水环境质量差、水生态受损重、环境隐患多等问题十分突出,影响并危及人类健康,不利于经济社会持续发展。 2020生态环境部于3月25日印发《2020年环保设施和城市污水垃圾处理设施向公众开放工作实施方案》,为当前和今后一个时期我国水污染防治指明了方向和奋斗目标。重点保护好饮水水源地、生态良好湖泊等高功能水体,消灭国控断面劣 V 类等污染严重水体。 针对水体中痕量挥发性有机物 VOC 监测,北京北分三谱为您提供全面的自动进样装置和捕集产品,使您能够针对应用选择有效的进样方法。HJ 1067-2019水质苯系物的测定顶空气相色谱法 警告:实验中使用的溶剂和标准样品为有毒有害化合物,其溶液配制及样品前处理过程 应在通风柜中进行,操作时应按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定水中苯系物的顶空/气相色谱法。 本标准适用于地表水、地下水、生活污水和工业废水中苯、甲苯、乙苯、对二甲苯、间 二甲苯、邻二甲苯、异丙苯和苯乙烯等 8 种苯系物的测定。 当取样体积为 10.0 ml 时,本标准测定水中苯系物的方法检出限为 2 μg/L ~3 μg/L,测定下限为 8 μg/L ~12 μg/L。详见附录 A。序号名称型号数量单位备注1气相色谱仪GC-98601台主机+FID检测器+毛细柱进样系统2顶空进样器AHS-20A plus1台9位自动顶空进样器3毛细管色谱柱DB-FFAP1根极性柱4氢气发生器BF-300E1台高纯氢气,300mL/min5空气发生器BF-2L1台清洁空气,2000mL/min6氮气钢瓶40升1瓶高纯氮气+40升钢瓶+减压阀7标液2ml1盒8种苯系物8电脑打印机1套联想+HP北京北分三谱仪器有限责任公司技术部
    留言咨询
  • 水质(饮用水及工业废水)中的挥发性有机物检测专用气相色谱(顶空色谱法)仪器简介:水质检测专用气相色谱(饮用水及工业废水中的)挥发性有机物(顶空色谱法)摘要生活饮用水及饮水水源往往受到工业废水、农药和日用化学品等各种有机物的污染,水质污染,除了生活废水外,工厂企业排放的污水是主要原因,通过完善的水质检测技术,将是遏制水质污染,保护人类生命之源的重要手段。其中苯、甲苯、乙苯、间二甲苯、对二甲苯、邻二甲苯及有机磷农药、有机氯农药、多环芳烃、多氯联苯以及邻苯二甲酸酯类等半挥发性有机物严重危害人体健康。测定这些化合物常用的方法是将它们分类,液液萃取浓缩后,选用不同气相色谱的检测器分别测定,不仅费时费力,而且存在有机溶剂用量大、样品处理复杂等问题。为此北京北分三谱仪器有限责任公司对生活饮用水及饮水水源中挥发性有机物的分析方法进行了研究,并将顶空进样技术与气相色谱仪联用,从而缩短了分析时间。水质(饮用水及工业废水)中的挥发性有机物检测专用气相色谱(顶空色谱法)方法引用标准及适用范围GB3838-2002生活饮用水及饮水水源工业废水《饮用天然矿泉水》(GB8537-2008)《生活饮用水卫生标准》(GB 5749-2006)强制性国家标准和13项生活饮用水卫生检验国家标准,本方法适用于各行各业的各种废水,如车间有害空气工业废水、锅炉废水农药和日用化学品等各种有机物有机磷农药、有机氯农药、多环芳烃、多氯联苯以及邻苯二甲酸酯类等半挥发性有机物在印染、农药等行业作为中间体, 工厂企业排放的污水中含有硝基苯类化合物属有毒污染物是染料合成、油漆涂料、塑料、医药及农药制造等的中间体,其中硝基苯属持久毒性有机污染物。酚类化合物, 氯苯, 硝基苯类, 邻苯二甲酸酯类, 甲醛, 有机磷农药, 氯乙烯, 氯丁二烯, 三乙胺,吡啶, 2、4-滴, 六氯丁二烯,三氯乙烷, 甲草胺, ,乐果、苯、甲苯、二甲苯、乙苯、二氯甲烷、二氯甲烷, 氯仿、四氯化碳、四氯乙烯、三氯乙烯、二氯甲烷、、三氯甲烷、四氯化碳、石油类苯、甲苯、二甲苯、乐果、丙烯腈、乙腈,、环氧氯丙烷、甲胺磷等农药残留都可采用色谱法进行分离。在生产过程中往往因转化不彻底而残留, 石油化工、炼焦化工生产的排放废水都可以应用。方法原理本方法利用有机物易挥发的特性,结合顶空进样器的进样技术,采用顶空-气相色谱法,氢火焰检测器进行检测,得到了较满意的分析结果。该方法具有简便、快速、灵敏度高、重现性好、能实现半自动化的特点。顶空气相色谱法分析(饮用水及工业废水中的)挥发性有机物(顶空色谱法)北分三谱AHS-20A plus全自动顶空进样器介绍顶空进样技术是气相色谱法中一种方便快捷的样品前处理方法,其原理是将待测样品置入一密闭的容器中,通过加热升温使挥发性组分从样品基体中挥发出来,在气液(或气固)两相中达到平衡,直接抽取顶部气体进行色谱分析,从而检验样品中挥发性组分的成分和含量。使用顶空进样技术可以免除繁琐的样品前处理过程,避免有机溶剂对分析造成的干扰、减少对包谱柱及进样口的污染。该仪器可以和国内外各种型号的气相色谱仪相连接。北分三谱GC9860-5C气相色谱仪器介绍应用范围: GC-9860系列网络化气相色谱仪可广泛的应用于石油化工、环境检测、生物医药、食品加工、有机化学、卫生检疫等的微量、痕量分析。仪器特点:★ 显示窗口采用5.7寸工业彩色液晶屏设计,显示信息更全,界面操作更合理;★ 具有中、英文2套操作系统,满足不同的用户需求;★ 摒弃了易破、低档的PVC贴皮按键,采用塑料模具按键,手感好,经久耐用;★ 采用了的10/100M自适应以太网通信接口、内置IP协议栈,便于企业通过内部局域网、互联网实现远距离的数据传输;方便实验室架设、简化实验室的配置及数据的管理;★ 内部设计3个独立的连接线程,可以连接到本地处理、单位主管(如总工、技术厂长等)、以及上级主管部门(如环保局、技术监督局等),方便单位主管和上级主管单位实时监控仪器的运行以及分析数据结果;★ 配备的NETChrom工作站,可以支持多台色谱仪(253台)同时工作,实现数据处理以及反控,达到了业界的水平;★ NETChrom工作站内建的Modbus/TCP服务器,可以方便地使分析结果接入DCS(集散控制系统;★ 采用模块化的结构设计,设计明了,便于更换升级,保护了投资的有效性,可满足复杂样品分析,可选配多种高性能检测器,如FID、TCD、ECD、FPD和NPD等;★ 彻底摒弃了传统指针式压力表,并可加载EPC技术进行气路控制,自动化水平和整体性能接近国际一线品牌;★ 实现了气路故障自我保护、自动点火、熄火重点、自动开启气路,达到了一键启动;★ 设计定时自启动程序,可以轻松的完成气体、液体样品的在线分析(需配备进样部件);★ 系统设计自动进样器接口,内置多款驱动程序,可随时加装自动进样器;水质检测专用气相色谱(饮用水及工业废水中的)挥发性有机物(顶空色谱法)仪器配置产品名称主要配置(规格)数量气相色谱仪GC9860毛细管进样系统、八阶程序升温、智能后开门。FID检测器1套顶空进样器 AHS-20A plus1台毛细管色谱柱SE-54 30*0.32*0.51根色谱工作站3000(电脑自备1台)1套顶空瓶20ml100只氢氮空一体发生器或钢瓶气BF-300N1台顶空压盖机 20m' m1台待测水中所用标准试剂分析纯各一瓶北分三谱主营业务:销售本公司制造的色谱仪,顶空进样器,氢气发生器、空气发生器、氮气发生器、热解吸仪、电子皂膜流量计以及进口和国产的各类色谱仪、色谱仪配件、各种色谱柱、色谱标样及色谱试剂;兼营其他各种分析仪器、相关配件和试剂。顶空气相色谱法分析(饮用水及工业废水中的)挥发性有机物(顶空色谱法)
    留言咨询
  • HJ 1067-2019水质苯系物的测定顶空气相色谱法 警告:实验中使用的溶剂和标准样品为有毒有害化合物,其溶液配制及样品前处理过程 应在通风柜中进行,操作时应按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定水中苯系物的顶空/气相色谱法。 本标准适用于地表水、地下水、生活污水和工业废水中苯、甲苯、乙苯、对二甲苯、间 二甲苯、邻二甲苯、异丙苯和苯乙烯等 8 种苯系物的测定。 当取样体积为 10.0 ml 时,本标准测定水中苯系物的方法检出限为 2 μg/L ~3 μg/L,测定下限为 8 μg/L ~12 μg/L。详见附录 A。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ 494 水质 采样技术指导 HJ 91.1 污水监测技术规范 HJ/T 91 地表水和污水监测技术规范 HJ/T 164 地下水环境监测技术规范3 方法原理 将样品置于密闭的顶空瓶中,在一定的温度和压力下,顶空瓶内样品中挥发性组分向液上空间挥发,产生蒸气压,在气液两相达到热力学动态平衡,在一定的浓度范围内,苯系物在气相中的浓度与水相中的浓度成正比。定量抽取气相部分用气相色谱分离,氢火焰离子化检测器检测。根据保留时间定性,工作曲线外标法定量。4 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯化学试剂。实验用水为二次蒸馏水或纯水设备制备的水,使用前需经过空白检验,确认不含目标化合物,且在目标化合物的保留时间区间内没有干扰色谱峰出现。4.1 甲醇(CH3OH):色谱纯。4.2 盐酸:ρ(HCl)=1.19 g/ml,优级纯。4.3 氯化钠(NaCl):优级纯。 使用前在 500℃~550℃灼烧 2 h,冷却至室温,于干燥器中保存备用。4.4 抗坏血酸(C6H8O6)。4.5 盐酸溶液:1+1。4.6 标准贮备液:ρ≈1.00 mg/ml,溶剂为甲醇。 市售有证标准溶液,于 4℃以下避光密封冷藏,或按照产品说明书保存。使用前应恢复至室温,混匀。4.7 标准使用液:ρ≈100 μg/ml。 准确移取 1.00 ml 标准贮备液(4.6),用水定容至 10 ml。临用现配。4.8 载气:高纯氮气,纯度≥99.999%。4.9 燃烧气:高纯氢气,纯度≥99.999%。4.10 助燃气:空气,经硅胶脱水、活性炭脱有机物。5 仪器和设备5.1 采样瓶:40 ml 棕色螺口玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。5.2 气相色谱仪:具分流/不分流进样口和氢火焰离子化检测器(FID)。5.3 色谱柱 I:规格为 30 m(柱长)× 0.32 mm(内径)×0.5 μm(膜厚),百分百聚乙二醇固定相毛细管柱,或其他等效毛细管柱。5.4 色谱柱 II:规格为 30 m(柱长)×0.25 mm(内径)×1.4 μm(膜厚),6%腈丙苯基+94%二甲基聚硅氧烷固定相毛细管柱,或其他等效毛细管柱。5.5 自动顶空进样器:温度控制精度为±1℃。5.6 顶空瓶:顶空瓶(22 ml)、聚四氟乙烯(PTFE)/硅氧烷密封垫、瓶盖(螺旋盖或一次使用的压盖),也可使用与自动顶空进样器(5.5)配套的玻璃顶空瓶。5.7 移液管:1 ml~10 ml。5.8 玻璃微量注射器:10 μl~100 μl。5.9 一般实验室常用仪器和设备。6 样品6.1 样品采集 按照 HJ/T 91、HJ 91.1,HJ/T 164 和 HJ 494 的相关规定进行样品的采集。 采样前,测定样品的 pH 值,根据 pH 值测定结果,在采样瓶(5.1)中加入适量盐酸溶液(4.5),并加入 25 mg 抗坏血酸(4.4),使采样后样品的 pH≤2。若样品加入盐酸溶液后有气泡产生,须重新采样,重新采集的样品不加盐酸溶液保存,样品标签上须注明未酸化。 采集样品时,应使样品在样品瓶中溢流且不留液上空间。取样时应尽量避免或减少样品在空气中暴露。所有样品均采集平行双样。 注:样品瓶应在采样前用甲醇(4.1)清洗晾干,采样时不需用样品进行荡洗。6.2 全程序空白样品的采集 将实验用水带到采样现场,按与样品采集相同的步骤(6.1)采集全程序空白样品。6.3 样品保存 样品采集后,应在 4℃以下冷藏运输和保存,14d 内完成分析。样品存放区域应无挥发性有机物干扰,样品测定前应将样品恢复至室温。 注:未酸化的样品应在24 h内完成分析。6.4 试样的制备 向顶空瓶(5.6)中预先加入 3 g 氯化钠(4.3),加入 10.0 ml 样品(6.3),立即加盖密封,摇匀,待测。6.5 实验室空白试样的制备 用实验用水代替样品,按照与试样的制备(6.4)相同的步骤进行实验室空白试样的制备。7 分析步骤7.1 仪器参考条件7.1.1 顶空进样器参考条件 加热平衡温度:60℃;加热平衡时间:30 min;进样阀温度:100℃;传输线温度:100℃; 进样体积:1.0 ml(定量环)。7.1.2 气相色谱仪参考条件 进样口温度:200℃;检测器温度:250℃;色谱柱升温程序:40℃(保持 5min),以 5℃/min 速率升温到 80℃(保持 5 min);载气流速:2.0 ml/min;燃烧气流速:30 ml/min;助燃气流速:300 ml/min;尾吹气流速:25 ml/min;分流比为 10:1。7.2 工作曲线的建立 分别向7个顶空瓶(5.6)中预先加入3 g氯化钠(4.3),依次准确加入10.0 ml、10.0 ml、10.0 ml、9.8 ml、9.6 ml、9.2 ml和8.8 ml水,然后,再用微量注射器和移液管依次加入5.00 μl、20.0 μl、50.0 μl、0.20 ml、0.40 ml、0.80 ml和1.2 ml标准使用液(4.7),配制成目标化合物质量浓度分别为0.050 mg/L、0.200 mg/L、0.500 mg/L、2.00 mg/L、4.00 mg/L、8.00 mg/L、12.0 mg/L的标准系列(此为参考浓度,可选取能够覆盖样品浓度范围的至少5个非零浓度点),立即密闭顶空瓶,轻振摇匀,按照仪器参考条件(7.1),从低浓度到高浓度依次进样分析, 记录标准系列目标物的保留时间和响应值。以目标化合物浓度为横坐标,以其对应的响应值 为纵坐标,建立工作曲线。7.3 试样测定 按照与工作曲线的建立(7.2)相同的条件进行试样(6.4)的测定。 仪器配置:序号名称型号数量单位备注1气相色谱仪GC-98601台主机+FID检测器+毛细柱进样系统2顶空进样器AHS-20A plus1台9位自动顶空进样器3毛细管色谱柱DB-FFAP1根极性柱4氢气发生器BF-300E1台高纯氢气,300mL/min5空气发生器BF-2L1台清洁空气,2000mL/min6氮气钢瓶40升1瓶高纯氮气+40升钢瓶+减压阀7标液2ml1盒8种苯系物8电脑打印机1套联想+HP 北京北分三谱仪器有限责任公司技术部
    留言咨询
  • 仪器简介:德国(迪赛克)公司专业致力于薄层技术的研究和薄层分析仪器的开发制造,曾于二十世纪五十年代生产出世界上第一台薄层色谱扫描仪为薄层色谱技术的发展做出过重要贡献集数十年的经验积累,仪器的性能和技术先进性一直居世界前列。至今,在欧洲已有四百多套薄层扫描仪在各个领域的用户那里发挥着很好的作用。DESAGA公司的产品薄层色谱分析、凝胶检测的全系列仪器,从点样、展开、浸渍、扫描分析,到图谱照相和图像的定量分析,均有多种型号可供选择,如扫描仪、点亲仪、展开仪、喷雾器、图谱观察和成像系统,电泳仪等。技术参数:由特殊设计的光源系统、数码相机及软件控制系统组成, 可对薄层色谱图谱或凝胶电泳图谱进行拍摄,真实记录真色彩, 获取图谱的指纹信息,能自动计算斑点的Rf值 , 能进行文字编辑、保存、打印或所需的其他处理, 并可通过升级程序进行定量分析检测。 软件控制系统符合GLP 规范,所有的拍摄条件和参数等原始数据都被实时记录,可追踪、符合,可对拍摄的照片加注文字、标示,可任意选择字体和字体大小, 可被任意比例显示,叠加比对。每张照片都自动标示工作日记如日期,实验人, 唯一序列号 , 可设置密码保护。所拍摄的照片可直接与打印机相连打印出来, 也可通过计算机打印输出。 光源系统:内置254nm/366nm紫外光管,和白光管(400-750nm),以及透射灯管, 专利排布设计, 确保照度均匀, 完全排除杂散光的干扰。设置专门的滤光片。主要特点:由特殊设计的光源系统、数码相机及软件控制系统组成, 可对薄层色谱图谱或凝胶电泳图谱进行拍摄,真实记录真色彩, 获取图谱的指纹信息,能自动计算斑点的Rf值 , 能进行文字编辑、保存、打印或所需的其他处理, 并可通过升级程序进行定量分析检测。 软件控制系统符合GLP 规范,所有的拍摄条件和参数等原始数据都被实时记录,可追踪、符合,可对拍摄的照片加注文字、标示,可任意选择字体和字体大小, 可被任意比例显示,叠加比对。每张照片都自动标示工作日记如日期,实验人, 唯一序列号 , 可设置密码保护。所拍摄的照片可直接与打印机相连打印出来, 也可通过计算机打印输出。 光源系统:内置254nm/366nm紫外光管,和白光管(400-750nm),以及透射灯管, 专利排布设计, 确保照度均匀, 完全排除杂散光的干扰。设置专门的滤光片。
    留言咨询
  • 概述在香精和食品工业中,天然、植物来源的原料是很常见的原料之一,而精油、植物提取物或分离物的质量控制和气味分析是一项非常艰巨的任务。离子迁移谱系统 (IMS)一种多功能与高灵敏度的气相色谱检测器天然产物的气味分析:IMS系统作为补充检测器与气相色谱-质谱联用的优势概述在香精和食品工业中,天然、植物来源的原料是很常见的原料之一,而精油、植物提取物或分离物的质量控制和气味分析是一项非常艰巨的任务。图 1: 典型的植物原料来源供应商面临的挑战定义分析与感官规格遵守监管指南气味分析的常见工具分析仪器: GC-FID, GC-MS, GC-O, HPLC-MS感官评价:由专家小组进行感官评价背景介绍目前气味分析通常采用气相色谱技术,如气相色谱-质谱联用仪,该领域的专家通常会配置嗅闻仪,以获取气味的感官信息。植物和花卉中许多气味分子都属于萜烯类物质,对于原料质量的等级区分在气相色谱柱上分离这些分子并进行定性和定量是一项特别的挑战的工作。离子迁移谱仪具有极高灵敏度,可以检测低至 ppb 级的典型气味,具有与人类鼻子相当的灵敏度。FlavourSpec G. A.S.研发的FlavourSpec是一种基于GCIMS原理联用的分析仪器,配备自动顶空进样器,无需样品前处理可对固体/液体直接顶空分析。该仪器已被证明在食品和气味相关检测中提供独特的补充信息,如质量控制、公正的数字化风味文件、产品的真实性分析、产品分类和过程控制等,这些应用大多是在弱极性色谱柱上开发的方法,主要用于分析具有较高挥发性的气味物质(保留指数RI ≤1100)。如何扩大检测范围FlavourSpec 的设计是在气相色谱柱中通过载气流速的变化等温分离分析物的,当前最高色谱温度限制在 80°C。 使用最先进的台式 GC,可以使用更多的GC 控制选项,例如程序升温。分析半挥发性物质 (1100 RI 1500) 如倍半萜需要程序升温,采用优化最佳 GC 条件来实现包括萜烯类在内的高挥发性物质的分离。 G.A.S.研发的 IMS 检测器,以类似于 MS 检测器的方式与台式GC联用,通过在色谱柱末端进行合适的分流(Y 分流器或 Dean Switch),可以同时运行 MS 和 IMS。 这种配置的使用,即使是质谱领域经验丰富的工作人员也能从离子迁移谱上获取更多新信息,使得数据更为全面客观。图 2: PAL 3 顶空进样器, HS 和ITEX 模块, Agilent GC 6890 偶联MS检测器5975C和 G.A.S. 的离子迁移谱检测器(蓝色圈出部分)物质的保留指数(RI)可提高至1400H. A.S. 专有的数据分析软件 VOCal 嵌入了一个实用程序来执行 GC 的标准化,根据GC分离方法的不同,实际保留时间可能会有所不同,故必须与RI 相关联,离子迁移谱采用 6 种正构酮(2-丁酮至 2-壬酮)的水溶液进行色谱柱的标准化,基于此归一化曲线,可以使用来自NIST GC (Kovats-)RI库以及G.A.S.的迁移时间Dt库进行定性, 有效性可以外推至归一化范围外物质的RI,即归一化曲线可以包含已知的分子与更高RI的物质。为便于理解,我们在正构酮混合物中添加香兰素( R I1400)作为演示,如下图所示。图 3: 香兰素是一种具有高强度的香味物质(RI ~1400弱极性柱),在GCxIMS色谱中可以检测到信号峰IMS系统的优点IMS 可以非常灵敏的检测含有酯类、醇类、酮类或醛类等官能团的风味化合物(样品上方顶空的低 ppb 级别的挥发性有机物)。特别是醛类物质,它们是产品新鲜度的重要指标,通常是由与产品老化有关的有机脂肪酸氧化降解过程中形成的。此外,IMS对萜烯类和倍半萜类的灵敏度更为明显,下图为从一种商业薄荷茶的顶空中测得的GCxIMS色谱图.图 4: 薄荷茶顶空 GC-IMS 色谱图和 IMS 色谱图薄荷茶顶空的GCxIMS色谱数据表明感官评价为薄荷味成分的各种分子的存在,如桉树油、薄荷酮、薄荷醇、香芹酮等单萜类化合物经NIST MS 数据库检索确认。图4中的黄色矩形为检测到的倍半萜石竹烯,所有物质的鉴定由NIST-RI和NIST-MS数据库进行确认。互补的色谱信息由 MS检测器给出的GC总离子流图和由IMS给出的色谱图对比,根据检测的信号峰可以给出重要的互补信息,如图 5 中的红线所示,在MS检测器上显示为噪声。图 5: MS-TIC 色谱图与 GC-IMS 色谱图进行比较。 标有红线的信号表示在 NIST MS数据库检索无法识别的分子,而在VOCal 化合物数据库中可以检测(暂定识别)天然产物分析的优势在其他气味剂中,萜烯是一类化合物,它们在植物、花、提取物或精油中产生特定的香味,例如柑橘类精油或柑橘类馏分,广泛应用于香水或饮料工业。对于训练有素的专家来说,可以通过图谱上的微小变化来确定重要的感官差异。但不同的萜烯比例很难用MS检测器(结构相似度,灵敏度)进行表征,不同感官性质的精油其总离子流图可能没有显示出分子组成差异;另一方面,IMS系统便可给出新的信息,如红色圆圈所示,这是非常有用的感官评价的结果支撑。图6: A) 两种不同柠檬油的质谱图。色谱图没有显示出明显的差异;B) IMS色谱图进行了比较:枳壳酸橙给出更多的色谱特征峰(红色图谱),并且在 RT = 7 分钟时显示出为两个分子的共流出;软件: Gallery-Plot插件VOCal 软件允许定义评估区域,可以在分子峰位置上绘制。 如图 7 所示的 GCxIMS 色谱图中单萜已初步鉴定出来,结果可以直接在 Gallery-Plot 中进行比较,可以目测评估信号峰的强度。 图 8 左图: 经GC - IMS色谱(放大图)初步鉴定出30个峰。右图: Gallery-Plot指纹图谱,直接比较相关峰,只有少数分子具有类似的强度 ( 编号8,10,13-15 和 22-25)IMS系统可检测倍半萜类物质在柑橘类产品中,存在大量倍半萜烯,例如 β-石竹烯。该化合物无需任何样品前处理,直接顶空进样,便可由 IMS 系统检测到。 为了说明不同柑橘产品挥发性有机物的指纹图谱,仪器分析酸橙 (LL/LA)、橙子、柠檬和柑橘样品, 在没有详细鉴定分析的情况下,指纹图谱表明除了单萜的变化之外,倍半萜的强度(区域 32-42 对应于 1300 RI 1550)也可用于产品区分,其中可以观察到β-石竹烯的存在。图 9: Gallery-Plot指纹图谱显示柑桔3个亚科产品的单萜和倍半萜的强度(酸橙、柠檬和柑橘),每一种柑橘类产品都有自己的指纹IMS系统显著性优势&bull IMS与台式GC/GC-MS仪器耦合可以得到更多的数据信息,使得与GC-MS的数据互补&bull 检测范围扩大到倍半萜等半挥发性化合物&bull 对天然产物的分析非常有帮助IMS系统目前可以耦合&bull Agilent GC 6890, 7890B 和8890&bull Shimazdu GC 2010 Plus / Nexis 2030&bull 其他型号的GC需要另外咨询
    留言咨询
  • 【上海沃珑仪器】C-660馏分收集器可根据时间、体积或峰值模式将所有样品收集在任何的试管或容器中。可选适合放置20mL、50mL或250mL试管的试管架。可方便地集成两台泵、一个探测器和一个馏分收集器的工作台。 功能和特点- 根据时间、体积或峰值选择合适的收集模式,手动或计算机控制馏分收集,四种收集模式可供选择;- 可使用多达八个检测器信号;- 可靠的峰值检测算法;- 适用于长时间和高流速收集的强大的收集能力;- 通过可编程的延时时间实现精确的化合物收集;- 向导式客户自定义试管架功能(规则或不规则试管架);- 收集臂的高度可调;- 采用选配的废液液位传感器,实现安全运行;- 多语言操作界面。 规格参数尺寸(W×H×D)465×高度可调(370~460)×470mm重量14kg供电要求100~230V±15%频率50/60Hz功耗最大25wIP防护等级IP20过电压类别II污染等级2峰值检测类型峰阀值峰值检测1个或者2个检测器信号监测保险丝T 500mA,L 250V显示背光LCD,28×64像素(58×29mm)语言EN/DE/FR/IT/ES/JA支架4×FC60:4×(60×20mL 试管);4×FC30:4×(30×50mL 试管);4×FC12:4×(12×250mL 试管);Syncore支架(R4,R6,R12,R24,R48,R96);11个用户指定的支架示例功能。接口2×RS485(系统总线);1×RS232(过程数据输出);1×Mini-DIN(废液阀);1×Mini-DIN(TTL模式输入/报警监测/外部启动);1×Mini-DIN(废液容器液位传感器);2×Cinch In(检测器信号输入);2×Cinch Out(检测器信号和分数变化记分器)。收集区区域大小(W×D)440mm×350mm模式时间模式(间隔定时器1s~100h);体积模式(仅支持使用BUCHI Sepacore泵组件下的功能);峰阀值模式(与检测器一起实现的功能);环境要求温度5~35℃仅限室内使用海拔最高2000m湿度31℃以下80%,31~40℃线性递减至50% 可选配件- 废液阀;- 管件和配件;- 废液位传感器;- 一套4个FC12/FC30/FC60支架;- FC12支架用10×250mL试管;- FC30支架用20×50mL试管;- FC60支架用100×20mL试管;- 色谱表;- 带显示器支架的色谱表;- 色谱表用显示器支架;- 色谱柱模块;- 馏分收集器的清洗盒。
    留言咨询
  • LC-Forte/R多功能循环制备色谱仪创新点:1、同时搭载MPLC和HPLC功能,MPLC用于快速初步纯化,HPLC用于目标物质最终纯化2、标配循环制备功能,可以将常规制备色谱装置无法分离的目标物质得以轻松实现高纯分离制备 LC-Forte/R是YMC全新推出的中低压和高压兼容多功能半制备色谱仪,可使用Flash柱、中低压玻璃柱及高压不锈钢色谱柱,样品的前期粗分到后续高纯度分离可在一台设备上完成,在节约成本的同时极大地提高分离纯化的效率。 对于分子结构差别较小的化合物分离纯化,理论上可以通过加长色谱柱得到分离,但在实际应用中,随着色谱柱长度增加,柱压升高,成本增加,且填充的难度也会增大,所以仅通过增加色谱柱长度,无法完全分离提纯结构相似的化合物。循环制备液相色谱仪是在常规制备色谱仪的基础上,通过切换装置将检测器中流出的分离物质再次注入色谱柱,进行多次分离,这就相当于延长了色谱柱的长度,而且避免了柱压升高。 常规的凝胶色谱因分子量相差很小,是很难实现完全分离的,但对循环制备液相色谱仪而言,却可以通过多次分离而轻松解决。 循环制备技术已被广泛应用于难以分离的结构相似的多组分混合物的分离提纯,如:顺反异构体、手性异构体、天然产物、生物药物、富勒烯和其他结构近似物。 LC-Forte/R同时搭载MPLC和HPLC制备纯化功能,在1台设备上实现从样品粗分到高纯化分离,在其紧促的机身内集中了制备中需要的所有功能,包括:再循环功能、自动进样、自动清洗功能、可变3波长紫外检测器等。 触摸屏控制/谱图显示 标准配置10.4英寸的彩色LED触摸屏,直观显示,操作简便,无需配置计算机即可实现设备控制、谱图处理和数据储存。HPLC/MPLC功能 通过高性能切换阀可实现二元低压梯度洗脱,MPLC模式对混合样品进行粗分,HPLC对含有目标物质的馏分进行等度洗脱/循环分离,制备获得超高纯度的目标物质。再循环分离制备功能 对于难以分离的混合样品,很难在1次分离就能获得良好的分离效果,LC-Forte/R可将样品循环多次通过色谱柱,最终达到分离要求,并且可以大大节省试剂的消耗。可变3波长UV检测器 标准配置新开发的可变3波长UV检测器,增大了液相的使用范围和色谱柱的选择性,无须在意波长的选择,可直接进样,非常适合于天然物的分离制备。另外,还可以配置示差折光检测器,与UV检测器同时使用,不会遗漏重要样品的检出。输液泵 采用YMC独自研发的侧电动驱动式泵,保证了输液的稳定性和高耐压性能,最大流量为50ml/min,最高耐压为30MPa。 LC-Forte/R产品规格LC-Forte主机Column SpecificationsLC触摸屏10.4英寸OS: Windows Embedded Standard 2009设备控制LCD触摸屏或外接电脑堆积进样功能电磁切换抽吸模式手动进样器附带进样器(标配10mL定量环)Manual/Auto模式进样、再循环、收集重叠进样电磁阀切换模式清洗功能分步式柱清洗+流路自动清洗再循环功能电磁切换模式简易梯度功能电磁阀切换低压梯度方式简易梯度功能内藏专用软件外接PC控制功能专用软件/LAN连接标记标示功能开始、进样、收集等泵的时间控制功能泵自动停止限压功能任意设定上限值色谱图表示功能设备LCD屏幕上表示色谱图数据保存USB储存或外接PC模拟信号输出可(模拟信号端口)LAN端口1漏液感应器搭载检测器收藏设备框体内机箱大小500(W)×500(D) ×400(H)mm电源AC100-240V功率400W重量约35kg输液部分功能配置参数最大流量50.0mL/min最小流量0.1mL/min流量精度±2%(5mL/以上时)耐压30MPa上下限压力限制器标准配置输液泵控制模式侧电动驱动双柱塞泵驱动电机AC伺服电动机接液部材质SUS316,氧化锆,PEEK,PTFE,红宝石,蓝宝石压力表模拟显示(PC表示)检测器功能和规格3波长UV检测器LC-Forte检测器类型配置参数型号YUV-3400波长200-400nm(3波长同时检测)光源氘灯感度/噪音1.3×10-4AU漂移3.0×10-3AU/h测定方式单波束透过方式 示差折光检测器(选配)LC-Forte示差折光检测器类型配置参数型号YRI-8830光源LED流通池8μL感度/噪音1.4×10-6RIU漂移7.9×10-6RIU/h折光率范围1.00-1.75测定方式特殊反射清零功能有 示差折光检测器(带温控,选配)LC-Forte温控示差折光检测器类型配置参数型号YRI-8800光源LED流通池8μL感度/噪音1.2×10-9RIU漂移2.0×10-8RIU/h折光率范围1.00-1.75测定方式特殊反射温度控制 / 清零功能有LC-Forte馏分收集器功能配置参数馏分收集方式出峰收集(连接PC控制软件),重演收集馏分试管数21支(标配)对应馏分容器φ40×21外形大小300(W)×500(D) ×300(H)mm电源主机供给 LC-Forte/R多功能循环制备液相色谱仪手性化合物拆分实例:
    留言咨询
  • 2020年环保设施和城市污水垃圾处理实施方案  生态环境部于3月25日印发《2020年环保设施和城市污水垃圾处理设施向公众开放工作实施方案》,确保到2020年年底前,各省(区、市)地级及以上城市符合条件的四类设施(环境监测设施、城市污水处理设施、城市生活垃圾处理设施、危险废物和废弃电器电子产品处理设施)开放城市的比例达到百分之百。详情如下: 关于印发《2020年环保设施和城市污水垃圾处理设施向公众开放工作实施方案》的通知  各省、自治区、直辖市生态环境厅(局),新疆生产建设兵团生态环境局:  为贯彻《中共中央 国务院关于全面加强生态环境保护 坚决打好污染防治攻坚战的意见》(以下简称《意见》),落实《关于进一步做好全国环保设施和城市污水垃圾处理设施向公众开放工作的通知》(环办宣教〔2018〕29号,以下简称《通知》)要求,确保到2020年年底前,各省(区、市)地级及以上城市符合条件的四类设施(环境监测设施、城市污水处理设施、城市生活垃圾处理设施、危险废物和废弃电器电子产品处理设施)开放城市的比例达到百分之百,我部研究制定了《2020年环保设施和城市污水垃圾处理设施向公众开放工作实施方案》,现印发给你们。请结合实际,认真组织实施,并按照方案时间节点要求,及时报送有关信息。HJ 1067-2019水质苯系物的测定顶空气相色谱法 警告:实验中使用的溶剂和标准样品为有毒有害化合物,其溶液配制及样品前处理过程 应在通风柜中进行,操作时应按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定水中苯系物的顶空/气相色谱法。 本标准适用于地表水、地下水、生活污水和工业废水中苯、甲苯、乙苯、对二甲苯、间 二甲苯、邻二甲苯、异丙苯和苯乙烯等 8 种苯系物的测定。 当取样体积为 10.0 ml 时,本标准测定水中苯系物的方法检出限为 2 μg/L ~3 μg/L,测定下限为 8 μg/L ~12 μg/L。详见附录 A。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ 494 水质 采样技术指导 HJ 91.1 污水监测技术规范 HJ/T 91 地表水和污水监测技术规范 HJ/T 164 地下水环境监测技术规范3 方法原理 将样品置于密闭的顶空瓶中,在一定的温度和压力下,顶空瓶内样品中挥发性组分向液上空间挥发,产生蒸气压,在气液两相达到热力学动态平衡,在一定的浓度范围内,苯系物在气相中的浓度与水相中的浓度成正比。定量抽取气相部分用气相色谱分离,氢火焰离子化检测器检测。根据保留时间定性,工作曲线外标法定量。4 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯化学试剂。实验用水为二次蒸馏水或纯水设备制备的水,使用前需经过空白检验,确认不含目标化合物,且在目标化合物的保留时间区间内没有干扰色谱峰出现。4.1 甲醇(CH3OH):色谱纯。4.2 盐酸:ρ(HCl)=1.19 g/ml,优级纯。4.3 氯化钠(NaCl):优级纯。 使用前在 500℃~550℃灼烧 2 h,冷却至室温,于干燥器中保存备用。4.4 抗坏血酸(C6H8O6)。4.5 盐酸溶液:1+1。4.6 标准贮备液:ρ≈1.00 mg/ml,溶剂为甲醇。 市售有证标准溶液,于 4℃以下避光密封冷藏,或按照产品说明书保存。使用前应恢复至室温,混匀。4.7 标准使用液:ρ≈100 μg/ml。 准确移取 1.00 ml 标准贮备液(4.6),用水定容至 10 ml。临用现配。4.8 载气:高纯氮气,纯度≥99.999%。4.9 燃烧气:高纯氢气,纯度≥99.999%。4.10 助燃气:空气,经硅胶脱水、活性炭脱有机物。5 仪器和设备5.1 采样瓶:40 ml 棕色螺口玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。5.2 气相色谱仪:具分流/不分流进样口和氢火焰离子化检测器(FID)。5.3 色谱柱 I:规格为 30 m(柱长)× 0.32 mm(内径)×0.5 μm(膜厚),100%聚乙二醇固定相毛细管柱,或其他等效毛细管柱。5.4 色谱柱 II:规格为 30 m(柱长)×0.25 mm(内径)×1.4 μm(膜厚),6%腈丙苯基+94%二甲基聚硅氧烷固定相毛细管柱,或其他等效毛细管柱。5.5 自动顶空进样器:温度控制精度为±1℃。5.6 顶空瓶:顶空瓶(22 ml)、聚四氟乙烯(PTFE)/硅氧烷密封垫、瓶盖(螺旋盖或一次使用的压盖),也可使用与自动顶空进样器(5.5)配套的玻璃顶空瓶。5.7 移液管:1 ml~10 ml。5.8 玻璃微量注射器:10 μl~100 μl。5.9 一般实验室常用仪器和设备。6 样品6.1 样品采集 按照 HJ/T 91、HJ 91.1,HJ/T 164 和 HJ 494 的相关规定进行样品的采集。 采样前,测定样品的 pH 值,根据 pH 值测定结果,在采样瓶(5.1)中加入适量盐酸溶液(4.5),并加入 25 mg 抗坏血酸(4.4),使采样后样品的 pH≤2。若样品加入盐酸溶液后有气泡产生,须重新采样,重新采集的样品不加盐酸溶液保存,样品标签上须注明未酸化。 采集样品时,应使样品在样品瓶中溢流且不留液上空间。取样时应尽量避免或减少样品在空气中暴露。所有样品均采集平行双样。 注:样品瓶应在采样前用甲醇(4.1)清洗晾干,采样时不需用样品进行荡洗。6.2 全程序空白样品的采集 将实验用水带到采样现场,按与样品采集相同的步骤(6.1)采集全程序空白样品。6.3 样品保存 样品采集后,应在 4℃以下冷藏运输和保存,14d 内完成分析。样品存放区域应无挥发性有机物干扰,样品测定前应将样品恢复至室温。 注:未酸化的样品应在24 h内完成分析。6.4 试样的制备 向顶空瓶(5.6)中预先加入 3 g 氯化钠(4.3),加入 10.0 ml 样品(6.3),立即加盖密封,摇匀,待测。6.5 实验室空白试样的制备 用实验用水代替样品,按照与试样的制备(6.4)相同的步骤进行实验室空白试样的制备。7 分析步骤7.1 仪器参考条件7.1.1 顶空进样器参考条件 加热平衡温度:60℃;加热平衡时间:30 min;进样阀温度:100℃;传输线温度:100℃; 进样体积:1.0 ml(定量环)。7.1.2 气相色谱仪参考条件 进样口温度:200℃;检测器温度:250℃;色谱柱升温程序:40℃(保持 5min),以 5℃/min 速率升温到 80℃(保持 5 min);载气流速:2.0 ml/min;燃烧气流速:30 ml/min;助燃气流速:300 ml/min;尾吹气流速:25 ml/min;分流比为 10:1。7.2 工作曲线的建立 分别向7个顶空瓶(5.6)中预先加入3 g氯化钠(4.3),依次准确加入10.0 ml、10.0 ml、10.0 ml、9.8 ml、9.6 ml、9.2 ml和8.8 ml水,然后,再用微量注射器和移液管依次加入5.00 μl、20.0 μl、50.0 μl、0.20 ml、0.40 ml、0.80 ml和1.2 ml标准使用液(4.7),配制成目标化合物质量浓度分别为0.050 mg/L、0.200 mg/L、0.500 mg/L、2.00 mg/L、4.00 mg/L、8.00 mg/L、12.0 mg/L的标准系列(此为参考浓度,可选取能够覆盖样品浓度范围的至少5个非零浓度点),立即密闭顶空瓶,轻振摇匀,按照仪器参考条件(7.1),从低浓度到高浓度依次进样分析, 记录标准系列目标物的保留时间和响应值。以目标化合物浓度为横坐标,以其对应的响应值 为纵坐标,建立工作曲线。7.3 试样测定 按照与工作曲线的建立(7.2)相同的条件进行试样(6.4)的测定。 仪器配置:序号名称型号数量单位备注1气相色谱仪GC-98601台主机+FID检测器+毛细柱进样系统2顶空进样器AHS-20A plus1台9位自动顶空进样器3毛细管色谱柱DB-FFAP1根极性柱4氢气发生器BF-300E1台高纯氢气,300mL/min5空气发生器BF-2L1台清洁空气,2000mL/min6氮气钢瓶40升1瓶高纯氮气+40升钢瓶+减压阀7标液2ml1盒8种苯系物8电脑打印机1套联想+HP 北京北分三谱仪器有限责任公司技术部
    留言咨询
  • 色谱柱分离法FID便携式甲烷非甲烷总烃分析仪MH3500-A采用色谱法分离甲烷+FID检测技术,通过双定量环定量,实现甲烷、总烃以及非甲烷总烃浓度的现场检测,是目前市场上集成度较高的用于非甲烷总烃监测的便携式设备。色谱柱分离法FID便携式甲烷非甲烷总烃分析仪广泛应用于固定污染源甲烷非甲烷总烃的现场测定、大气环境中甲烷非甲烷总烃的监测、燃烧装置排放检测、油漆喷涂车间气体检测、天然气泄漏检测等。执行标准HJ 1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》HJ 38-2017 《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》HJ 604-2017 《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》GB 37822-2019 《挥发性有机物无组织排放控制标准》主要特点色谱柱分离法FID便携式甲烷非甲烷总烃分析仪采用色谱柱分离法+FID检测技术,可选配苯系物模组,分离效率高、非甲烷总烃分析周期120秒,苯系物分析周期300秒;甲烷、非甲烷总烃全自动测定:完全自动化的流路设计,单阀双通道进样,双定量环,一次性自动测定甲烷、非甲烷总烃,可选配苯系物模组,实现甲烷、非甲烷总烃以及苯系物的一次性测量;拥有自开发Linux操作系统色谱工作站,测量过程支持自动控制,无需进行繁琐的操作;支持批量导出谱图报告,免去逐个导出的繁琐过程;载气使用氮气,可标定氧干扰值做固定扣除;采用低压型固态氢储瓶,安全可靠,便于携带及运输,可按设定流量使用达9小时以上;全程高温伴热,有效解决高温高湿气体场合下样品的冷凝损失问题,提供精准的测试结果;配套伴热管采样枪无任何VOC挥发干扰检测;后置样品泵在非加热区且不接触待测样品,对样品无吸附无污染、维护量低;内置锂电池,可提前热机,节省等待预热时间,方便设备转场使用;可搭配外置电池,使用MH5080型便携式电源,超大容量续航15小时;可配工况枪,能测量计算包括动压、静压、全压、烟气流速、烟气温度、含湿量、折算浓度等参数;触摸高亮真彩大屏,色谱谱图显示,清晰标准;配备打印机,检测数据现场打印,且支持U盘导出;整机不足15kg,轻松实现单手拎持,方便现场使用。
    留言咨询
  • Agilent 7820A VL不但丰富了安捷伦气相产品组合,对预算有限的客户来说兼具了经济性和高性能,并且一样享有安捷伦可信赖的技术、品质和服务。7820A VL气相色谱传承了安捷伦高品质气相色谱的特质,可以安装双进样口、双检测器,流量控制精度(EPC或EPR)为0.01psi,以确保优秀的再现性。除了GC柱温箱外,还通过五个独立的加热区实现温度控制,柱温箱,进样口和FID的最高温度分别高达425°C,400°C和425°C,从而提供了广泛的设置可能性适用于各种应用。可搭载FID、 TCD、 uECD和FPD多种检测器,保证高灵敏度和高选择性同时,可以灵活配置和组合。安捷伦副总裁兼气相分离部门总经理张建苗表示:“新型7820A VL气相色谱仪将使更广泛的客户获得安捷伦领先市场的气相色谱质量和技术。我们有信心,高质量的气相色谱可以帮助许多客户取得成功,尤其是对于安捷伦的新客户。”安捷伦的气相色谱产品范围广泛,包括高性能、高度可配置的系统、整体解决方案和用于一般分析任务的基本系统,为实验室提供了选择适合其应用和预算的气相色谱组合。
    留言咨询
  • Agilent 7820A VL不但丰富了安捷伦气相产品组合,对预算有限的客户来说兼具了经济性和高性能,并且一样享有安捷伦可信赖的技术、品质和服务。7820A VL气相色谱传承了安捷伦高品质气相色谱的特质,可以安装双进样口、双检测器,流量控制精度(EPC或EPR)为0.01psi,以确保优秀的再现性。除了GC柱温箱外,还通过五个独立的加热区实现温度控制,柱温箱,进样口和FID的最高温度分别高达425°C,400°C和425°C,从而提供了广泛的设置可能性适用于各种应用。可搭载FID、 TCD、 uECD和FPD多种检测器,保证高灵敏度和高选择性同时,可以灵活配置和组合。安捷伦副总裁兼气相分离部门总经理张建苗表示:“新型7820A VL气相色谱仪将使更广泛的客户获得安捷伦领先市场的气相色谱质量和技术。我们有信心,高质量的气相色谱可以帮助许多客户取得成功,尤其是对于安捷伦的新客户。”安捷伦的气相色谱产品范围广泛,包括高性能、高度可配置的系统、整体解决方案和用于一般分析任务的基本系统,为实验室提供了选择适合其应用和预算的气相色谱组合。
    留言咨询
  • 仪器简介:循环制备HPLC的目的: 1 单次进样量最多可达1g、典型地,采用300mg进样量往复进样不会影响分析精度。在具备自动进样装置条件下,每天可收集多达2g的纯化样品。 2 尽管现在的光谱设备(如FT-IR)具有很高的灵敏度,但仍需大量的纯化样品来进行精确测定,如应用13C-NMR进行样品分析时一般需要100mg的纯化样品。循环制备HPLC一次进样即可获得100mg的纯化样品,满足您的试样用量需求。 3 活性物质的完全分离。比如说,非常难以分离的手性化合物利用循环方法也能实现完全分离。彻底分离之后能够得到生物学研究用的纯物质。 4 研究阶段有机合成物的分离。将通过有机合成反应得到的过程产物直接注入本设备中,可以短时间内完成目标产物和副产物的分离,是缩短合成时间,开拓新合成方法不可或缺的设备。 循环制备HPLC的特点: 1. 最重视循环功能的LC。JAI的液相色谱是综合了我司30年来在循环分析相关领域的技术结晶。不仅是可供选用的色谱柱具有分离样品的能力。通过循环功能,不论使用何种色谱柱都能达到完美分离样品的目的。实际上,利用循环方法进行分离,可以使用样品溶解性好的、分离后易于除去的溶剂,有利于缩短分析时间并且不会对样品有影响。此外,循环中溶剂不会有任何消耗。 2. 使用合成高聚物填充的制备色谱柱。这种色谱柱比硅胶柱吸附能力弱,适用于循环分离方法。样品的回收率高,寿命长,通常可以连续使用6年。进入色谱柱的样品不会出现在硅胶柱上面的开环、异化等行为。而且这些色谱柱上样量比之硅胶柱大,溶剂消耗量是硅胶柱的1/3。 3. 不需要配备分析柱。由于配备了理论塔板数很高的制备色谱柱和高灵敏度的检测器,可以利用制备柱进行通常的HPLC分析(&mu g级)。技术参数: 输液泵L-9104A 输液方式: 串联双活塞往复式输液泵 最大出口压力: 20MPa(0.01-15.00ml/min) 15MPa(15.01-25.00ml/min) 10MPa(25.01-30.00ml/min) 输出流量范围: 0.01~30.00ml/min 流量设定方法: 3位数字设置 压力表示: LCD表示 内置重复进样器 重复进样器 100&mu l~50ml 进样部分(手动) 手动进样器 Rheodyne 7725i型 样品环 10 ml(标配) 进样标记器 内置 内置自动循环功能 溶剂瓶: 5L瓶× 1(标配) 溶剂台: 一个(标配) 色谱柱支架: 标配(最大可以装载4根20× 600mm的色谱柱 或4根40× 600mm的色谱柱) 馏分收集器 FC-339型 通过手触屏输入数据 馏分数量: 最大33个 流路切换: 废液/馏分 程序模式: 手动,时间模式,时间程序模式 标准配置: 专用进样器一只、备用管路一套、工具一套、注射器 接液部分: SUS316、红宝石、蓝宝石、陶瓷、Teflon、氟化树脂、石英玻璃 主机尺寸(mm): 560(宽)× 675(高)× 500(深) 主机电源及质量: AC100~115V、200~240V、50/60Hz、800VA、70Kg(满装) 主要特点:□适于大量制备 LC-9104型循环制备HPLC配备JAI生产的GEL H-40色谱柱,内径为40mm,高压输液泵、进样系统、流路配管系统,检测器及馏分收集器都配合该色谱柱进行了精心的优化。试样处理量是LC-9105型循环制备HPLC的4倍。 □循环系统是基本配置 为了提高分离性能,LC-9104型循环制备HPLC配备了自动循环系统,经过精心优化,流动相损耗极低。 □操作自动化 LC-9104型循环制备HPLC配备本装置专用的自动馏分收集器FC-339。通过LCD控制面板设定参数,能实现从进样到馏分收集的全程自动化。 □结构紧凑 LC-9104型循环制备HPLC结构紧凑,体积小巧。根据实验室标准通风橱设计,可方便收纳。
    留言咨询
  • STARK系列技术特点一、功能1. 采用X射线荧光光谱法无损测量金属镀层、覆盖层厚度,测量方法满足GB/T 16921-2005标准(等同ISO3497:2000、 ASTM B568和DIN50987)。1.镀层元素范围:钛~铀,包含常见的金、镍、铜、银、锡、锌、铬、钯等。2.镀层层数:多至5层。3.测量点尺寸:圆形、方形测量点,圆形准直器Φ0.1~0.8mm等,方形准直器0.05mmX0.25mm、0.05mmX0.05mm等4.测量时间:通常35秒-180秒。5.样品台尺寸:450 x 300 (长x宽)。6.测量误差:通常小于5%,视样品具体情况而定。7.可测厚度范围:通常0.01微米到30微米,视样品组成和镀层结构而定。8.同时定量测量8个元素。9.定性鉴定材料达20个元素。10.自动测量功能:编程测量,自定测量;修正测量功能:底材修正,已知样品修正 定性分析功能:光谱表示,光谱比较;定量分析功能:合金成份分析 数据统计功能:x管理图,x-R管理图,直方柱图。 二、特点1.采用基本参数法校准,可在无标样情况下生成校准曲线以完成测量。2.X射线采用从上至下的照射方式,即使是表面高低不一的样品也可以正确测量。反之,如果是从下至上的照射方式,遇到表面凹凸的样品,无法调整Z轴距离,导致测量光程的变化,引起测量的误差。3.具有多种测试功能,仅需要一台仪器,即可解决多种测试4.相比其他分析设备,投入成本低5.仪器操作简单,便可获得很好的准确性和重现性6.综合性能:镀层分析 定性分析 定量分析 镀层分析:可分析四层以上厚度,独有的FP分析软件,真正做到无标准片亦能进行准确测量(需要配合纯材料),为您大大节省购买标准片的成本.完全超越其他品牌的所谓FP软件. 定性定量分析:可定性分析20多种金属元素,并可定量分析成分含量. 光谱对比功能:可将样品的光谱和标准件的光谱进行对比,可确定样品与标准件的差别,从而控制来料的纯度. 统计功能:能够将测量结果进行系统分析统计,方便有效的控制品质.
    留言咨询
  • 工作场所空气有毒物质测定 第84部分:甲醇、丙醇和辛醇 一、原理 空气中的甲醇用硅胶采集,热解吸后进样,经气相色谱柱分离,氢焰离子化检测器检测,以保留时间定性,峰高或峰面积定量。 二、仪器2.1 硅胶管,热解吸型,内装200mg 硅胶。 2.2 BS-H2空气采样器,流量范围为0mL/min~500mL/min。 2.3 TDS-III热解吸器。 2.4注射器,1mL、100mL。 2.5 GC-2010气相色谱仪,具氢焰离子化检测器2.6 色谱柱:2m×4mm,GDX-102 三、分析步骤 53.1样品处理:将硅胶管放入TDS-III热解吸器中,其进气口端与100mL 注射器连接,另一端与载气(氮) 相连,流量为50mL/min。在160℃下,解吸至100.0mL。样品气供测定。 5.5.2 标准曲线的制备:取4 只~7 只100mL 气密式玻璃注射器,用清洁空气稀释标准气成0.0μg/mL~ 0.60μg/mL 浓度范围的甲醇标准系列。参照仪器操作条件,将气相色谱仪调节至更佳测定状态,进样1.0mL,分别测定标准系列各浓度的峰高或峰面积。以测得的峰高或峰面积对相应的甲醇浓度(μg/mL) 绘制标准曲线或计算回归方程,其相关系数应≥0.999。 5.5.3 样品测定:用测定标准系列的操作条件测定样品气和样品空白气,测得的峰高或峰面积值由标准曲线或回归方程得样品气中甲醇的浓度(μg/mL)。若样品气中甲醇浓度超过测定范围,用清洁空气稀释后测定,计算时乘以稀释倍数。 四、TDS-III型多功能热解吸仪简介TDS-III型多功能热解吸装置是一种样品予处理装置,与气相色谱仪配套使用。它首先把样品热解吸到大注射针管中,然后手工取样进样,进行气相色谱分析。一、 用途及应用范围 TDS-III型多功能热解吸装置是专门为执行GB50325-2006年版“民用建筑工程室内环境污染控制规范”中的“室内空气中苯的测定”和“室内空气中总挥发性有机化合物(TVOC)的测定”标准中热解吸后手工进样气相色谱分析和中华人民共和国国家职业卫生标准GBZ/T 300.62—2017中热解吸仪-气相色谱法而设计,TDS-III型多功能热解吸装置除配有解吸炉外,还配装了大注射器加热恒温炉实现了一机多用的目的,因此和以往的同类解吸仪相比具有简化操作、提高了工作效率和分析精度。 二、 工作原理 TDS-III型多功能热解吸装置是一种样品予处理装置,与气相色谱仪配套使用。它首先把样品热解吸到大注射针管中,然后手工取样进样,进行气相色谱分析。TDS-III型多功能热解吸装置主要由:解吸活化处理炉、大注射器加热恒温炉、双温度控制器和手动操作四部分组成。 三.TDS-III型多功能热解吸装置具有以下诸多特点: 1. 解吸活化处理炉和大注射器加热恒温炉一体化设计,一机多用,大大提高本装置的性价比和运行成本; 2. 同一样品可以实现多次重复进样,消除进样或分析过程中误操作后带来的不利影响; 3. 做TVOC的测定时,可以使用廉价的活性碳吸附管等; 4. 同国产不同类热解吸仪(装置)相比,安装解吸管简单,且实现了无死体积操作; 5. 特别适合于对色谱分析不太熟悉的操作新手。技术参数:1.解吸活化处理炉 ⑴ 控温范围:室温~400℃,以增量1℃任设; ⑵ 控温精度: ±0.5℃; ⑶ 解吸管规格: 外经φ6(或1/4英寸),长度不限; ⑷解吸回收率: 〉85%(和组分有关); ⑸ 采样流量:10mL/min~200 mL/min; ⑹ 可连续调节流量稳定性:<0.1%。 2 大注射器加热恒温炉 ⑴ 控温范围:室温~100℃, 以增量1℃任设; ⑵ 控温精度: ±0.5℃; ⑶ 可放置100mL针筒注射器。 3 仪器规格 ⑴ 仪器尺寸: 高× 宽 ×长 = 390 × 170 × 360 mm3; ⑵ 功率: 约500W; ⑶ 重量: 约9 Kg。 甲醇的热解吸-气相色谱法专门为分析工作场所中甲醇而设计的TDS-III型热解吸仪北分三谱热解吸仪专业、专注、专一 北京北分三谱仪器有限责任公司(工程部)热解析仪干什么用的 热解析仪与顶空的区别 热解析仪价格 气体中笨的检测 有机化合物检测 TVOC检测 有毒气体检测 二次热解析仪 全自动热解析仪 第三方检测 职业卫生 二氧化硫分析仪
    留言咨询
  • 产品概述GC 4310便携式气相色谱仪(催化法)采用催化FID检测原理,可用于污染源与环境空气的非甲烷总烃的移动监测。设备体积小、重量轻,携带方便,广泛用于企业污染源排放口、生产车间的出入口、企业边界等环境的非甲烷总烃监测,监测结果可用于在线设备比对、监管执法等用途。系统特点? 工业平板电脑操控,可显示数据曲线及报表? 直接电池供电和市电两种供电形式? 内置气瓶和电池,一体化设计? 采用EPC控制气体流量,保障检测精度? 精密PID控温技术,控温精度优于±0.1℃,保障分析准确性? 特有反吹技术,极大缩短分析周期,具备数据打印功能技术指标? 测量量程:0-10000mg/m3(VOCs)? 检出限:0.02mg/m3? 分析周期:<2minF.S.? 线性误差:≤±2%? 重复性:≤2%? 气瓶使用时间:≥8h? 供电电源:AC 220V/DC 14V
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制