当前位置: 仪器信息网 > 行业主题 > >

色谱转换炉

仪器信息网色谱转换炉专题为您提供2024年最新色谱转换炉价格报价、厂家品牌的相关信息, 包括色谱转换炉参数、型号等,不管是国产,还是进口品牌的色谱转换炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱转换炉相关的耗材配件、试剂标物,还有色谱转换炉相关的最新资讯、资料,以及色谱转换炉相关的解决方案。

色谱转换炉相关的资讯

  • 2020版药典专辑 液相色谱方法转换工具重磅上线
    0512高效液相色谱法“方法转换” 2015版与2020版药典中“色谱参数调整”比较2015年版《中国药典》0512通则规定:品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等可适当调整。 2020版药典全面增订“色谱参数允许调整的范围”,品种项下条件不再是固定的,本次增订内容提供了“使用不同粒径、内径色谱柱的液相色谱方法转换的操作准则”,用户可依据通则进行HPLC法向UHPLC法转换,可有效较少单针分析时间,提高分析通量,减少仪器用电耗能、人工成本、废液处理成本、试剂成本。注:表格来自《中国药典》2020年版四部 0512通则 可通过相关软件计算表中流速、进样体积和梯度洗脱程序的调整范围,并根据色谱峰分离情况进行微调。 岛津方法转换应对方案 面对标准变化和用户需求,岛津提供“方法转换工具”、超高效液相色谱仪、色谱柱整体解决方案助力用户应对方法转换。 岛津方法转换工具 岛津方法转换工具特点• 全中文界面,操作简便,既支持独立运行,亦可嵌入LabSolutions工作站运行,可兼容不同的岛津机型,产品系列、型号和产品图可视化。• 内置ChP(中国药典2020年版)计算公式,自动计算流速、进样体积、梯度洗脱程序;内置流速自定义输入框,如调整,软件自动同步计算调整后的梯度程序。• 内置梯度模式、混合器体积、最大进样体积、死体积及检测池体积选择项目,方便用户进行系统匹配。• 可实现梯度开始时间或梯度程序的调节,梯度表折线图及转换前后梯度叠加图显示可视化;速度提升倍数、节约溶剂量显示可视化,助力成本核算。• L/dP值自动计算,自动计算参考范围(0512通则色谱参数允许调整的范围),自动检查是否超范围与超出参考范围提示(红色标记,评价区文字提示)。• 仪器系统压力预测,自动提示是否超出型号耐压限值并给出提示,指导选择合适型号仪器与色谱柱可为仪器选型和色谱柱规格选择提供参考。 使用方法1点击初始方法和目标方法下对应系列按键,进入设置界面,选择转换前后的仪器型号,梯度模式和混合器体积。2先后输入当前HPLC使用色谱柱和计划转换后UHPLC使用色谱柱规格,需注意L/dp 值应在原有数值的-25%~+50%范围内。3左侧输入转换前HPLC色谱方法条件,软件自动计算转换后条件数值。4左侧梯度表输入当前HPLC梯度程序,右侧即会自动转换为UHPLC梯度。5评价区智能提示超限项目。 使用注意事项为获得良好方法转换效果及高匹配色谱图表现,建议使用同一品牌同一系列(如Shim-pack系列)或者性能相近的色谱柱。 对于梯度分析, 系统延迟体积对于分析影响较大,需要注意HPLC和UHPLC使用仪器混合器体积差异,并在软件设置模块输入相应参数。 不同LC平台选择和对应色谱柱选择岛津多系列HPLC可以满足用户不同分析需求,选择和 LC 液相系统更为匹配的色谱柱可以获得更高的分离效率,如下表格总结了针对不同的液相系统配置如何选择色谱柱。 应用案例 赤芍配方颗粒HPLC转化为UHPLC法 转换成UHPLC法后,分析效率提升至原来的3倍以上。转换成UHPLC法后,特征峰顺序、数量、RRT、相对峰面积均符合标准规定。 银杏叶提取物UHPLC法转化为HPLC法 转换前后,各色谱峰出峰顺序和个数保持一致,指纹图谱相似度均达到0.90以上。
  • 富鲁达发行可转换优先债券5000万美元
    p style="text-align: center"img style="max-width: 100% max-height: 100% width: 537px height: 275px " src="https://img1.17img.cn/17img/images/201911/uepic/f2ebe4f1-67bb-416d-924e-d3fe44d7b613.jpg" title="富鲁达fluidigm质谱流式 (2).jpg" alt="富鲁达fluidigm质谱流式 (2).jpg" width="537" height="275" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "总部位于加利福尼亚州南旧金山的Fluidigm(富鲁达)近日表示,strong它计划向合格的机构买家私募发行5000万美元的可转换优先债券,于2024年到期/strong。这家公司还希望向初始购买者提供13天的选择权,使其可以购买本金总额不超过500万美元的债券。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "票据持有人可以在到期日之前的第二天(包括第二个预定交易日)的任何时候将其债券转换为Fluidigm普通股。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "Fluidigm估计,此次发行的净收益约为4780万美元(如果初始购买者行使其选择权购买全部票据,则为5260万美元)。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "这些票据将是Fluidigm的高级无抵押债务,将按每年5.25%的利率每半年支付一次拖欠的利息。这些票据将在2024年12月1日到期,除非提前进行转换或购回,其初始转换价格约为每股普通股2.90美元。span style="text-indent: 2em "在2021年12月1日至2022年12月1日之间以及2022年12月1日至2024年12月1日之间,当票据到期时,Fluidigm可以在某些条件下根据自己的选择转换所有票据。/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "Fluidigm本月早些时候表示,它在第三季度末以现金和现金等价物为2590万美元。/ppbr//p
  • 蓄能2020药典系列|快速方法转换,助力制药QC实验室提升效率
    蓄能2020药典系列|快速方法转换,助力制药QC实验室提升效率关注我们,更多干货和惊喜好礼经过多年的发展,超高效液相色谱UHPLC技术,因其能获更高的柱效和更快的分析速度,且在多数情况下可替代常规HPLC方法,目前已经得到一定范围内的普及。但是,由于缺乏公认方法转换规则,制药行业的质控QC,大多数还在使用HPLC 方法。2020年版《中国药典》的液相色谱通则,终于给出了色谱参数调整的具体规定。参照新版药典的准则,实验室分析人员可以将常规HPLC方法转换为UHPLC 方法。 新版药典0512通则《高效液相色谱法》中规定:“若需使用小粒径(约2μm)填充剂和小内径(约2.1mm)色谱柱或表面多孔填充剂以提高分离度或缩短分析时间,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配,必要时,色谱条件(参数)可适当调整。” 对于新版的准则,品种正文项下规定的色谱条件(参数), 除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变调整。对于分析人员来说,如何能快速且高效地进行方法转换,就显得尤为关键了。专用方法转换工具,轻松生成目标方法 赛默飞可提供色谱方法专用方法转换工具,可以帮您做药典相关的快速的转换梯度方法,对于方法转换后色谱柱的规格,流速,进样体积,在方法转换软件左侧输入原有色谱柱规格及梯度条件,在软件右侧输入新的色谱柱规格,其他的条件系统都会自动为您生成,非常方便。(点击查看大图) 有了上面的小工具,方法转换不再难,下面让我们用实际案例来看看吧! 示例一Vanquish Core和核壳型Accucore色谱柱联用,支持HPLC方法转换成UHPLC方法(点击查看大图) 色谱柱是作为液相分离的核心,是方法转换的关键。核壳型填料Accucore 系列色谱柱最大的特点是低反压、高柱效,从上面的示例看,运行时间从75min变为23.7min,大大提高了分析速度,同时反压是常规高效液相色谱仪可以接受的范围内。使实验室的HPLC仪器实现UHPLC仪器的效率。 示例二Vanquish Flex UHPLC 和Acclaim色谱柱联用——强强联手,提高效率(点击查看大图) Acclaim系列超高效液相色谱柱,高碳载量,有效提高化合物的保留,改善分离的同时,2.2μm粒径在同类型色谱柱中反压较低,满足更多仪器需求。结合Vanquish Flex超高效液相,可以在优化条件下,帮您实现更快的分析速度。 示例三Vanquish Core液相支持梯度、速度和温度都改变的UHPLC药典方法转换——超级灵活(点击查看大图) 最新Vanquish Core液相系统耐压700bar,采用了核壳型填料(Accucore系列)色谱柱,依药典原则转换后的乌苯美司UHPLC方法最高压力不过400bar,Vanquish Core可以轻松应对。(点击查看大图) 分析时间缩短近70%,溶剂消耗减少74%,企业节约增效显著!!! 示例四Vanquish Core液相支持等度的UHPLC药典方法转换——极致提升效率(点击查看大图) 最新Vanquish Core液相系统耐压700bar,采用了Acclaim系列超高效液相色谱柱,依药典原则转换后的多索茶碱UHPLC方法最高压力不过500bar,Vanquish Core可以轻松应对。 示例五Vanquish Core双梯度分析赤芍配方颗粒——左右开弓,HPLC与UHPLC同时进行(点击查看大图) 如流路图所示,Vanquish Core液相配有双针双阀双流路的自动进样器,可以同时做两套不同的应用实验,没有任何流路的交叉污染,完全各自独立,也可以共用一个柱温箱。是高效低成本的不二之选。(点击查看大图) 依药典原则转换为UHPLC方法后,压力不过500bar,同时各参数指标均符合公示稿要求,而且分析效率提升300%,溶剂成本降低了87.5%。原来做一针进样的时间,相当于方法转换后的4针进样,增效显著。 快速方法转换,可以帮助制药QC实验室客户优化分析方法、全面提升仪器效率。赛默飞可以提供“全面、高效、合规”的解决方案,开创了合规数据管理为核心,创新科技支撑为动力的制药行业整体解决方案,引导更为高效的制药行业发展流程。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台https://www.instrument.com.cn/netshow/sh100244/
  • 沃特世5月15日"如何根据法规要求进行高效的UPLC方法转换"网络讲座即将启动
    近年来,医药行业不断被国家新发布的法规所推动与界定。仿制药一致性评价工作已经成为中国医药行业生态圈优胜劣汰的重要一环。如何在开展项目中利用UPLC技术进一步加快重点项目推进速度,并有利于未来项目落地生产后的分析通量与效率的极大提升,则成为各大药企需要面临的巨大问题。 来自沃特世总部的Jonathan博士,将为大家介绍沃特世在方法转换案例中所遇到的实际问题以及重要的经验技巧。 来自于中国药典-沃特世联合开放实验室的付龙博士也将为大家补充介绍中国药典对于HPLC向UPLC转换的规定,以及已开展过的实际案例研究。 主讲人: Dr. Jonathan E. Turner(沃特世耗材事业部高级产品经理) 负责沃特世全球UPLC色谱柱产品线。自2006年加入沃特世,曾任职于色谱填料研发核心实验室,先后负责色谱填料的研发工作以及对全新色谱柱产品的设计、开发与全面评价,对色谱填料及色谱柱产品研发经验丰富。 付龙 博士 (沃特世高级应用科学家) 致力于各国药典标准方法研究以及将先进色谱与质谱技术应用于标准方法提高的可行性探索与研究。曾任职于制药企业研发部门负责质量分析方法开发与标准制订,对药学经验丰富。 讲座概要: 1.UPLC方法转换的决策树与各法规指导条例 2.如何进行UPLC方法转换——实际问题与要点剖析 3.中国药典规定与实际案例研究 登录沃特世官网并搜索“如何根据法规要求进行高效的UPLC方法转换”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加,收到您的注册信息后我们会筛选并在讲座前一天通过电子邮件给您发送讲座登录链接。如有任何问题请拨打电话:021-61562642或发送邮件至minxing_guo@waters.com,谢谢。
  • 量子关联上转换新方案,实现超灵敏中红外光谱探测
    中红外(2.5-25 μm)波段能够覆盖复杂分子的振动和转动能级跃迁,揭示多种分子的基础吸收带和复杂化合物独特的光谱特征。因此,高效分析工具——超灵敏中红外光谱探测,成为智能生化传感、新兴材料研究、环境气体监测、高精度医学层析成像等领域的重要测量手段。近年来,随着非线性频率上转换技术的进步,基于频率上转换的中红外光谱探测技术表现出显著的科研潜力。该技术利用强泵浦光场作用于非线性光学材料,将中红外光子耦合转换至近红外或可见光波段进行探测,从而规避了现有中红外探测器噪声大的不足,成为了一种有效的中红外直接光谱探测的替代方案,有望在中红外光谱探测灵敏度、探测效率、响应速度、成本效益等方面取得重要突破。现有对中红外光谱探测系统的研究成果表明,进一步扩大中红外频率上转换技术的超灵敏、宽频段的优势,可使其更广泛适用医学、生物、国防等领域的应用。然而,基于多种非线性光学材料的宽带中红外频率上转换系统往往需要强泵浦场来提升宽带转换效率,且系统在短波泵浦模式下工作,强泵浦场导致的非线性参量噪声将覆盖中红外波段,使得实现超灵敏的宽带中红外光谱探测极具挑战。为解决上述问题,华东师范大学精密光谱科学与技术国家重点实验室武愕、陈昱、蔡羽洁等研究团队基于非简并光子对的时间-光谱量子关联技术,提出了一种低功耗、强鲁棒性的高灵敏中红外单光子光谱探测方案,实验验证了单光子水平光子通量下的中红外样品光谱测量。相关研究成果发表于Photonics Research 2022年第11期。该文章报道了一种极低光子通量条件下的中红外上转换光谱测量方案。该方案利用结合同步频率上转换技术的非简并关联光子、对时间-光谱量子关联特性实现了单光子水平的中红外上转换光谱探测,降低了强泵浦非线性噪声和环境噪声对中红外光谱测量的影响,大幅度提高单光子水平下的中红外光谱测量灵敏度和鲁棒性。图(a)展示了基于时间-光谱量子关联的宽带中红外单光子上转换光谱探测系统光路图。利用啁啾极化铌酸锂晶体中的非线性过程,自发参量下转换产生非简并宽频带的关联光子对,光子对产生率6.76×106 counts s-1 mW-1。其中,中红外信号光子覆盖3.14-3.80 μm中红外波段,提供了大于660 nm的光谱探测波长窗口。图(a)单光子频率上转换量子光谱系统图;(b)38 μm厚聚苯乙烯薄膜透射光谱实验基于同步脉冲泵浦技术实现了中红外信号光子的非线性频率上转换,验证了中红外上转换光子(0.78-0.81 μm)与共轭的近红外预报光子之间的非经典相关性得以保留,展示了基于时间-光谱量子关联的中红外单光子上转换光谱测量的可行性。利用该系统对38 μm厚的聚苯乙烯样品进行透射光谱的测量,如图(b)所示。入射样品的中红外光子通量低至每脉冲0.09光子。实验表明,中红外单光子上转换光谱与傅里叶变换红外光谱仪(FTIR)的测量结果吻合,系统的光谱分辨率约为11.4 nm(10.5 cm−1)。相比于传统FTIR光谱探测方案,基于时间-光谱量子关联技术的宽带中红外单光子上转换光谱系统,既能够利用光子对的时间关联、频率关联量子特性降低频率上转换过程中多种噪声的影响,将中红外光谱测量灵敏度推进至单光子水平;又能使单光子探测器和单色仪等元件工作在其最优的工作波段,无需受待测样品特征波长的限制,拓展了系统的应用场景。系统高灵敏、低噪声、强鲁棒性、结构简单的优势,为光敏生化样品的中红外光谱测量提供了新的技术方案。后续将进一步开展更宽中红外带宽、更高灵敏度、更高信噪比的上转换光谱成像研究。
  • 催化转换器的回收:用于铂族金属分析的4个快速手持式荧光光谱仪技巧
    催化转换器是一种有助于汽车产生更清洁排放物的装置。催化转换器通过使用催化剂(一种加速化学反应的基质)将排气系统中的有害气体转化为污染较少的气体。这种设备还可以通过另一种方式 — 回收利用,起到保护环境的作用。催化转换器的回收除了能减少废物外,在经济性上也有所帮助,因为催化转换器中含有稀有金属。催化转换器内的催化剂成分通常是铂(Pt)、钯(Pd)和铑(Rh)的组合,这些都是稀有且昂贵的铂族金属(PGM)。通过对催化转换器废料进行适当的分类和处理,可将这些金属回收并重新用于制造新的催化转换器或其他设备。使用手持式荧光光谱仪识别催化转换器废料中的铂族金属回收工厂需要一种快速、准确的方法,在回收过程的多个步骤中识别这些令人们趋之若鹜的金属。手持式荧光光谱仪是一种有用的工具,可以在现场对催化转换器废料进行元素分析,以进行快速分拣和定价。虽然像Vanta系列这样的手持式XRF光谱仪可以快速提供答案,但遵循最佳做法以确保分析仪充分发挥其固有性能也比较重要。在回收厂,一名技术人员正在使用手持式XRF分析仪检测催化转换器废料要优化您的Vanta手持式XRF光谱仪,以便在催化转换器回收的过程中更快地检测并测量铂、钯和铑等元素,请采用以下快速技巧:检查您的仪器窗口首先,检查您的手持式XRF光谱仪上是否安装了正确的窗口。例如,我们根据Vanta型号和X射线管类型提供了不同的仪器窗口。另一个需要考虑的重要因素是窗口的状况。窗口是否完好无损? 您要检查窗口是否有任何刺破或撕裂的迹象。如果看到有孔洞,就该更换窗口了。要使分析仪正常工作,保持窗口清洁至关重要。在检测之前,请确保用酒精或湿巾清洁窗口。正确制备用于检测的样品为了使XRF分析获得具有代表性的准确结果,我们建议您通过研磨、筛滤、匀质处理方法,对催化剂废料进行适当的制备。将分析仪与便携式Vanta工作站结合在一起使用,在完全联锁的系统中测量铂族元素。按等级对废料进行分类在匀质处理催化剂废料之前,回收商应使用Vanta分析仪对废料进行分类和分离,将相同类型的材料放在一起。催化剂废料分为三个或四个等级,例如:氧传感器三路转换器双向转换器柴油微粒过滤器(DPF)核查检测时间在检测汽车催化转换器废料中的铂族元素时,确保使用正确的检测时间至关重要。以下是一些建议使用的检测时间:快速扫查,以探测铂、钯、铑:光束1 — 最长15秒。这是进行基本分类和确定是否存在铂族元素及钽(Ta)和硒(Se)添加物的不错选择。标准检测,以探测铂、钯、铑:光束1 — 最长30秒,光束2 — 最长15秒。这种检测方式非常适合于完全制备送至精炼厂的样品。全面扫查,以探测到所有元素:光束1 — 最长45秒,光束2 — 最长15秒。可用于优化精炼厂内的回收过程。建议Vanta手持式XRF光谱仪在测量铂、钯和铑元素时使用的检测时间随着全球对铂族金属需求的快速增长(分析师预测全球铂族金属市场将以4.38%的复合年增长率增长),催化转换器回收商需要高效工作,才能满足这种需求。
  • 沃特世推出全新ACQUITY Arc Bio系统,将先进的方法转换功能融入常规生物分离
    美国马萨诸塞州米尔福德市,2018年2月1日 - 沃特世公司(纽约证券交易所代码:WAT)近日隆重推出Waters ACQUITY Arc Bio系统。这套设计精良的通用四元液相色谱系统由不含铁的生物惰性材料制成,可以有效转换和改进采用任何LC平台开发的生物分离方法。 Waters ACQUITY Arc Bio是一套设计精良的四元液相色谱系统,由不含铁的生物惰性材料制成,可以有效转换和改进采用任何LC平台开发的生物分离方法自2015年上市以来,ACQUITY Arc系统已发展成为全球药物开发和QC实验室的主力分析工具。如今,随着ACQUITY Arc Bio系统的推出,生物制药实验室也能充分利用ACQUITY Arc平台的强大功能,开发稳定可靠的分析方法,使其能在不同实验室和LC仪器平台之间轻松转换,并且不影响方法完整性。 沃特世公司制药市场开发高级总监Diane Diehl博士表示:“对于许多GLP/GMP实验室来说,开发、验证和转换用于产品放行分析和多属性监测的分析方法是一项基本工作,我们希望通过Arc Bio系统帮助实验室研究人员简化这方面的工作。从发现研究、产品开发到生产线,沃特世始终致力于满足分析科学家和实验室管理人员在各个阶段的不同需求。ACQUITY Arc Bio系统和BioResolve RP mAb色谱柱的发布是沃特世践行这一承诺的又一力证。” ACQUITY Arc Bio系统的生物分子残留极低且回收率极高,是运行反相、离子交换、体积排阻和疏水作用LC方法的理想之选。该系统的流路由不含铁的非不锈钢生物惰性材料制成,设计精良,能够将不良的蛋白质相互作用降至最低,同时最大限度提高系统在高盐浓度和极端pH条件下的稳定性。这款仪器与众不同的性能得益于其独有的Arc Multi-flow path技术,该技术通过修改系统的延迟体积模拟方法开发时所用仪器的延迟体积,以“即插即用”的方式实现HPLC与UHPLC方法的兼容,从而最大限度缩短实验室重新开发来自内部或外部合作伙伴的方法时所需要的时间。 ACQUITY Arc Bio系统不仅能重现当前的HPLC方法,还能与更先进、高效的2.5 - 2.7 μm颗粒色谱柱相结合,进一步改善色谱方法的灵敏度、分离度以及分析速度,其中就包括全新的Waters BioResolve RP mAb实心核颗粒多苯色谱柱。这款色谱柱能够分析和重现完整单克隆抗体(mAb)、mAb亚基以及抗体偶联药物(ADCs)。此外,ACQUITY Arc Bio系统还可运行使用3 - 5 μm HPLC色谱柱开发的“传统”方法。 ACQUITY Arc Bio系统可兼容多款沃特世多款检测器,包括光电二极管阵列检测器、UV/Vis检测器、荧光检测器、示差折光检测器、蒸发光散射检测器以及ACQUITY QDa质谱检测器。此外,ACQUITY Arc Bio系统还采用了新型Auto Blend Plus技术,该技术能以任意组合或比例自动混合多达四种溶剂。操作人员可通过设置pH和离子强度为离子交换或体积排阻分离方法优化梯度,也可以通过设置有机溶剂浓度和pH为反相分离方法优化梯度,从而显著减少手动配制缓冲流动相可能产生的人为错误和工作量。ACQUITY Arc Bio系统由Waters Empower 3和MassLynx软件控制。 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。
  • 安捷伦新ISET实现对沃特世液相方法无缝转换
    2012年12月6日,安捷伦公司宣布推出其革命性智能化模拟技术(ISET)这个新版本的ISET可以应用于沃特世Alliance LC系统。  使用此版本ISET,科学家可以实现把在沃特世Alliance LC系统上建立的传统方法无缝转移到安捷伦1290 Infinity液相平台。有了这种独特的能力,现在沃特世Alliance LC用户可以将旧设备更换成安捷伦1290 Infinity,但仍然可以执行传统的方法,同时提供相同的色谱结果。  带有ISET功能的1290 Infinity液相色谱,用户可以:  1、通过简单的鼠标点击即模拟其他U(HPLC);  2、无需修改现有的(U)HPLC方法即可运行原方法;  3、相比于现有的方法转换解决方法,该版本ISET可以获得相同的保留时间和峰分辨率。  对于需要将不同品牌仪器做出的液相方法在不同部门和地点进行转换的实验室而言,方法转换时一个重要的课题。在高度监管的环境中,如制药行业的质量控制,液相方法转移可能是一个挑战,因为任何原始方法的修改都应被避免。  安捷伦 1290 Infinity液相产品经理Christian Gotenfels说,“我们已售出超过1000个 ISET许可,我们正在解决客户在工作流程中的一大空白。我们将继续扩大ISET的能力,使其可以模拟其他厂商的液相色谱仪,如岛津和戴安(现赛默飞)。”
  • 华东师大科研团队实现高帧频中红外单光子上转换光谱仪
    华东师大曾和平教授与黄坤研究员课题组在中红外高速光谱探测方面取得重要进展,发展了宽波段、超灵敏、高帧频的中红外上转换光谱测量技术,其具有逼近量子极限的单光子探测灵敏度和近百万帧每秒的光谱刷新率,可为燃烧场分析、高通量分选和化学反应跟踪等应用所需的高速灵敏红外光谱测量提供支撑。相关成果以《High-Speed Mid-Infrared Single-Photon Upconversion Spectrometer》为题于2023年5月9日在 Laser & Photonics Reviews 在线发表。中红外波段包含众多分子振转能级跃迁的特征谱线,是分子的“指纹”光谱区。高灵敏、高速率的中红外光谱技术在天文观测、药物合成和环境监测等诸多应用中具有重要应用。然而,传统中红外光谱仪的性能往往受到探测器灵敏度及宽带光源亮度的限制。长期以来,实现高信噪比的中红外高速光谱测量,一直都是红外光谱领域的研究热点。近年来,频率上转换技术为红外灵敏探测提供了一种有效方案。该技术通过非线性过程将中红外波段转换到可见光或近红外波段,进而利用高性能硅基探测器实现信号的灵敏捕获。当前,实现宽带光谱范围内的高转换效率与低背景噪声仍颇具挑战。迄今,单光子水平的超灵敏中红外光谱测量仍局限在较窄的光谱范围内,单次测量谱带一般仅为数十纳米。此外,基于热辐射或参量荧光作为照明源的上转换光谱仪,其较低的光谱亮度使得光谱探测速率受限。因此,实现宽波段、超灵敏、高帧频的中红外上转换光谱探测仍具挑战,亟需发展高亮度中红外光源、高效率频率转换和低噪声光子探测等关键技术。图2:宽波段中红外单光子上转换光谱仪示意图为此,研究团队构建了具有单光子探测灵敏度和亚兆赫兹刷新率的宽带中红外上转换光谱仪(图2)。在中红外光源制备方面,利用氮化硅(Si3N4)光子波导制备出覆盖1.5-4.2 μm的宽光谱中红外超连续谱光源,相对传统热辐射光源具有更好方向性、更优光束质量以及更高光谱亮度,且通过波导结构色散调控与泵浦光场时频控制,可以实现光谱覆盖范围以及光谱平坦度等参数的定制与优化(图3)。此外,相对于基于固态光学参量振荡器的中红外制备方式,基于光学波导集成的超连续谱源可以直接兼容光纤激光,为发展高集成、高稳定的中红外宽带相干光源获取提供了有效途径,有助于提升后续光谱测量的信噪比与刷新率。图3:基于氮化硅光子波导的中红外超连续谱产生,光谱覆盖范围1.5-4.2 μm在中红外光谱探测方面,研究人员发展了同步脉冲泵浦的非线性频率上转换探测技术,通过制备与红外信号光子时域高精度同步的泵浦脉冲,在啁啾性极化铌酸锂非线性晶体中实现了1700 nm超宽带的中红外高效转换,然后借助高性能可见光/近红外分光与探测器件,实现了高分辨、高灵敏的中红外光谱测量(图4)。为了进一步压制参量荧光噪声与环境背景噪声,研究人员结合高效空间滤波与光谱滤波技术,获得了高达210 dB的噪声抑制比,利用硅基EMCCD最终获得了0.2光子/纳米/脉冲的超灵敏度中红外光谱,光谱分辨率为5 cm−1。进一步地,得益于高亮度的宽带中红外源、高效率的频率转换以及高抑制比的噪声滤波性能,研究者利用高性能硅基CMOS相机实现了高达212,500帧的光谱采集速率,比此前相关报道在相同信噪比下提高了至少一个数量级。图4:宽波段中红外上转换光谱,探测灵敏度达0.2光子/纳米/脉冲值得一提的是,所发展的中红外光谱仪利用硅基探测阵列,能够在室温条件下工作,有助于其在实际应用中的稳定运行。在未来工作中,可将直波导换成双芯氮化硅波导,从而产生更加平坦的中红外超连续谱;通过优化频率转换泵浦脉冲的光谱宽度,利用啁啾脉冲非线性上转换技术,可以进一步提升系统的光谱分辨率;同时,将面阵列COMS相机换成线阵列,有望将光谱采集速率提高到MHz以上。该光谱仪具备的宽带光谱覆盖、单光子灵敏度和 兆赫兹刷新率等性能可为燃烧场分析、高通量分选和反应跟踪等领域的红外瞬态光谱测量提供有力支撑。本项成果得到了上海大学郭海润教授团队的支持,论文第一作者为博士研究生郑婷婷,通讯作者为黄坤研究员与郭海润教授。近年来,曾和平教授与黄坤研究员课题组在红外光子非线性测控方面开展了系列创新研究,先后发展了中红外单光子上转换成像技术、中红外非线性广角成像技术、中红外单光子单像素成像等。相关工作得到了科技部、基金委、上海市科委、重庆市科技局与华东师大的资助。
  • PAT应用:清洁验证和产品转换时的旁线TOC分析
    Sievers M9便携式TOC分析仪具有功能多样性,极大提高清洁验证和产品转换的效率。自从2004年推出《PAT—制药行业发展、生产和质量保证的框架》行业指南以来,制药业就已经利用各种工具来实现理想的产品质量。上述指导文件提供了科学的和基于风险的框架,旨在支持企业在药品开发、生产、质量保证方面实现创新和高效。该框架建立在对工艺理解的基础之上,帮助企业进行创新,帮助监管机构作出风险管控决策。在创新时,需要用“旁线at-line”方法从工艺流程中获得测量数据,例如,在接近工艺流程的地方测量样品的总有机碳(TOC)。本文证明了旁线TOC分析法对于清洁验证的定期擦拭取样的适用性和能力,探讨了如何用Sievers M9便携式TOC分析仪将旁线TOC分析法应用到产品转换过程。本文还展示了Sievers M9便携式分析仪的多功能性,并举例说明如何用TOC分析法来提高效率,确保在清洁和产品转换过程中不会发生显著污染。此外,本文还举例说明了旁线TOC过程分析技术(PAT,Process Analytical Technology)的应用。在验证文档中加入便携式TOC分析仪的使用2006年,一家大型制药公司在清洁验证时使用了旁线TOC分析法。公司在制定了验证主计划、选择了最坏情况、确定了接受标准之后,就用《Sievers清洁验证支持包》中的任务模板和报告编制了具体的验证任务和报告,以进行TOC清洁验证。验证文档和分析结果表明,TOC分析法(用Sievers UV过硫酸盐和膜电导法)非常适用,在分析方法的验证和达标过程中回收了难以回收的化学成分。此外,TOC分析仪为便携式仪器,可以方便地用于监测生产设施的各种位置。公司使用Sievers认证的系统适用性标样,并在取样之前和之后进行系统适用性测试。用TOC分析法进行定期监测(清洁确认)和产品转换监测根据任务报告,定期(或在切换产品时)进行直接取样(擦拭取样)。经过验证,直接取样(擦拭取样)和间接取样(淋洗取样)的接受标准确定为1.25 ppm C。尽管耐用性验证研究显示了成功的结果,但公司仍选择最具挑战性的区域来代表最坏情况,用擦拭取样和TOC分析对其进行定期监测。图1是大型Chromaflow色谱柱上的4个“最坏情况”或具有挑战性的位置。图 1. 擦拭取样的最坏情况位置协议指出,应在擦拭后进行注射用水(WFI,Water for Injection)淋洗,以确保系统清洁,且擦拭过程不会污染系统或设备。在擦拭取样后,将Sievers便携式TOC分析仪移至原位清洗(CIP,Cleaning in Place)滑橇的位置,以分析WFI淋洗液。在最终淋洗循环时,采集TOC淋洗样品以再次证明系统中没有痕量取样物质(污染物)残留。如何实现PAT—旁线TOC分析在实验室中制备擦拭样品和淋洗样品,并测试系统适用性。在通过系统适用性测试之后,为TOC样品分配实验室信息管理系统(LIMS,LaboratoryInformation Management System)编号。用设定的擦拭区域信息来标记样品,并将样品信息输入实验室电脑或设备专用的记录中。将取样材料和TOC分析仪拿到原位清洗和旁线取样的生产车间。采集擦拭样品并重新连接部件之后,用M9便携式分析仪的集成在线取样器(iOS,Integrated On-Line Sampler)开始TOC分析。将分析结果记录在实验室电脑和相应产品转换的文档中。完成对棉签的TOC分析之后,就开始WFI淋洗,按照相关程序设定的时间提取淋洗样品。用Sievers M9便携式分析仪旁线提取和分析淋洗样品,以确保没有来自棉签或环境的痕量物质污染设备。表1是生成的完整文档的示例。精简流程,提高质量此例是使用创新仪器进行PAT应用的众多实例之一。通常,可以用Sievers M9便携式分析仪在几分钟或几小时内完成产品转换监测或样品定期监测,帮助一个或多个产品设施提供高效率。此方法简便易行,可以节省产品转换成本,且不影响分析性实验室进行定期水取样或其它清洁验证的TOC取样。质控和生产团队可以实时记录分析结果,快速签署验证包和产品转换记录,严格确保设备清洁,为下一批产品的生产做好准备。*如果发生偏差或TOC故障,产品转换或定期监测程序要求生成事故报告,LIMS编号应记录在实验室电脑和设备专用的记录中。◆ ◆ ◆联系我们,了解更多!
  • 岛津应用:将ATR光谱转换为透射光谱的高级ATR校正
    ATR法不仅用于验证分析,还广泛用于异物分析。对ATR法扫描获取的光谱和用透射法扫描获取的光谱进行比较可以发现,因为原理不同,纵轴及横轴的数值有一定差别。所以,将ATR法的光谱与透射法的光谱或数据库进行比较时,通过对ATR光谱进行适当的校正,可取得更高精度的结果。本文向您介绍通过高级ATR校正,对ATR光谱和透射光谱进行近似处理的示例。经高级ATR校正可使ATR光谱与透射光谱相似。并且,如果通过透射法数据库检索ATR谱图,可获取高精度的检索结果。 岛津高级ATR校正功能,可对上述纵轴和横轴变化进行校正。该校正可同时进行以下3种校正:1. 受波长影响的红外光穿透深度带来的峰强度变化。2. 由折射率的异常分散引起的低波数峰偏移。3. 由偏光特性引起的来自朗伯-比尔定律的偏差。 在BCEIA2013上展出的岛津IRTracer-100 了解详情,请点击“将ATR 光谱转换为透射光谱的高级ATR 校正的介绍” 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • UPLC技术获美国药典认可 权威的HPLC与UPLC方法转换指导在这里!
    近年来,国内制药行业发展日新月异,药品的分析检测需求也与日俱增。液相色谱作为药物分析领域使用最广泛的技术手段,也被寄予了更高的期望。而随着小粒径色谱柱的发展,越来越多的业内人士期望使用亚2μm粒径色谱柱的超高效液相色谱(UPLC)来拓宽选择性、提高工作效率、降低耗能、减少污染。UPLC技术有着更高的分离度,更快的分析速度和更高的检测灵敏度,并已广泛应用在生命科学、医药化学、食品卫生等方面。 作为全球制药行业法规标杆,美国药典(USP)在制药行业拥有广泛的影响力。而在今年更新的最新版本USP中,收录了大量基于UPLC技术的各论(monograph),其中截止2016年年底将生效的品种高达57个。这说明监管机构已经认可UPLC作为一个成熟的技术,可以被广泛应用于药物检测领域。 USP收录UPLC品种名录(部分) UPLC方法被大量收录于药典,说明企业在制定新药标准时,可以充分享受UPLC技术带来的优势。同时,由于HPLC方法之前已经被大量应用于药品检测,要提高效率,会存在如何转换以及转换后如何被监管机构认同的担忧。对于此类担忧,USP通则621中规定:已有USP方法在由5μm粒径更换为亚2μm粒径方法时(柱化学一致),在保持色谱柱长度与粒径比值不减小的前提下,对进样量与流速相应修改后,可只对修改后的方法进行确认而无需进行全验证。这为用户使用UPLC方法提供了法规上的依据。 沃特世UPLC系统及亚2μm粒径色谱柱 针对这一热点问题,中国药典-沃特世联合实验室撰写了“超高效液相色谱与高效液相色谱方法转换及验证”文章,近期发表在了《药物分析杂志》(2016年第7期)。文中阐述了HPLC方法向UPLC方法如何进行转换,以及转换后需要进行哪些关键的验证项目。这一研究成果为企业和药检所进行方法转换提供了指导,促进UPLC技术的推广应用,从而实现提高药物分析效率及节能环保的目的。 “超高效液相色谱与高效液相色谱方法转换及验证”论文预览 中国药典-沃特世联合实验室进行了数种药物HPLC与UPLC方法的转换工作,流速和进样体积按前述公式计算,梯度洗脱程序按方法转换软件进行转换,并根据分离度和分析时间进行人工优化,简单方便。转换后的方法灵敏度和分离度均有提高,分析时间大大缩短,溶剂消耗减少数倍。实验室对转换后的方法进行了全面验证,结果除HPLC方法分离度略逊UPLC方法外,其他均一致,从实际案例证明了UPLC方法与HPLC方法转换的可行性。
  • 参照新版USP621指南从HPLC-SEC到UHPLC-SEC的方法转换
    2022年末,USPChromatography指南的修订版生效,日本随之公布了第十八版日本药典第一次增补本。其内容是将规定了市售医药品通过色谱法等方法进行检测的USP专论,更新为通过超高速、高性能色谱法(UHPLC)进行试验。在将专论试验法转换为UHPLC时,不需要进行重新验证,可在保持以往实验方法的分离性能的同时,实现缩短时间、节省溶剂的成本优势。另外,其内容不仅适用于等度分离,还适用于梯度分离。我们将详细说明在进行尺寸排阻色谱分析时,根据新版USP规定,L59类型色谱柱以及转换为UHPLC-SEC方法时的条件设定。一、SEC分析方法的转换 USP对影响分离的因素,如色谱柱内径(dc)、长度(L)、填料内径(dp)、流速(Fc)等参数做出了更改,不仅以短柱确保了不低于原有检测法的分离性能,还实现了缩短时间、节省溶剂的优势。将与USP(L59)对应的色谱柱TSKgel G3000SWXL(5 um,HPLC)色谱柱转换为TSKgel UP-SW3000-LS(2 um,UHPLC)时,流速变化允许范围如下表所示。作为参考,如果是串联2支TSKgel G3000SWXL色谱柱、以高分离度为目的的色谱柱体系的质量管理/分析法的情况下,使用30cm的TSKgel UP-SW3000-LS色谱柱,也可得到相同的分离效果。* 使用2支30cm(串联2支色谱柱)时,与UHPLC 30cm色谱柱相同** 应在不超过色谱柱最大压降的流速下使用二、从HPLC-SEC(30cm色谱柱)转换为UHPLC-SEC(15cm色谱柱) 分析单克隆抗体时,从30 cm的TSKgel G3000SWXL色谱柱转换为15 cm的TSKge UP-SW3000色谱柱的分析示例如下图所示。在符合USP规定的分析条件下进行UHPLC分离,在确保分离度为同等以上的同时,分析时间减少了约50%,流动相也减少了约80%。
  • A91 PLUS实验室气相色谱仪
    table width="624" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="491" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"A91 PLUS/span/strongstrongspan style=" line-height:150% font-family:宋体"实验室气相色谱仪/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"常州磐诺仪器有限公司/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"罗雅菲/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="162" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"836850200@qq.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 √技术入股 □合作开发 □其他/span/p/td/trtr style=" height:207px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="207"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/b7d4e7d9-b83f-4e65-8a53-f66a714e966c.jpg" title="32.png" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"A91 PLUS/spanspan style=" line-height:150% font-family:宋体"实验室气相色谱仪 可对/spana href="https://baike.baidu.com/item/%E6%B7%B7%E5%90%88%E6%B0%94%E4%BD%93" target="https://baike.baidu.com/item/%E6%B0%94%E7%9B%B8%E8%89%B2%E8%B0%B1%E4%BB%AA/_blank"span style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none"混合气体/span/aspan style=" line-height:150% font-family:宋体"中各组成成分进行定量和定性分析,还能测定样品在固定相上的分配系数、活度系数、/spana href="https://baike.baidu.com/item/%E5%88%86%E5%AD%90%E9%87%8F" target="https://baike.baidu.com/item/%E6%B0%94%E7%9B%B8%E8%89%B2%E8%B0%B1%E4%BB%AA/_blank"span style=" line-height:150% font-family: 宋体 color:windowtext text-underline:none"分子量/span/aspan style=" line-height:150% font-family:宋体"和瑞盛比表面积等物理化学常数。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术先进性:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"“双芯”处理器进一步提升电子气路控制精度(EPC)至0.001Psi/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" “/spanspan style=" line-height:150% font-family:宋体"数字化放大电路技术”让检测器的信噪比更具竞争力/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体" “/spanspan style=" line-height:150% font-family:宋体"新型加热丝材料”防止加热丝的老化氧化,保证易损部件长期稳定可靠/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"三维导轨式样品预处理及进样系统,集成了液体自动进样、样品自动稀释、顶空进样、固相微萃取预处理进样等功能模块,不仅极大提高了实验室分析工作的批量有效性和重复精度,也丰富了对各类复杂样品的处理方式和手段/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"适配质谱检测器(MSD)让检测更全面更可信/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"升级版软件Chemlab 2.0通过权限管理、项目管理、单机服务器及审计追踪等功能保证了最终结果数据的完整可信/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"全套电子自动化流量控制(AEFC,Automated Electronic Flow Control) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"网络化数据通讯及远程控制系统 (LAN communication) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"行业领先的检测器设计 (Advanced detector design) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"全部汉化的键盘和软件操作界面 (Chinese version of keypad and software)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"独创的电源分配管理分流器 (Patented power supply management) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"苛刻的环境测试(高温高湿) (Strict environment test for QA)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"精密的程序升温炉膛温度控制 (Precise programmable oven temperature control)/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"独立加热小柱箱 (Separated columns oven) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"极高的分析结果重复精度 (High reproducibility of analysis results) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"强大的自检及报错功能 (Strong function of self-diagnostic) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"可实现序列自动运行 (Sequence Run Available) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"各种阀配置满足气体分析 (Comprehensive Valve Configuration for Complicated Analysis) /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"微气路切割技术实现多位色谱及反吹功能 (Sandwich plate device for two dimension GC and/or back-fluch etc.)/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"该产品直接填补了国内高端气相色谱和国外品牌25年的差距,其核心技术和产业化经验不仅可以弥补高端色谱产品在平台上的短缺,而且磐诺仪器公司秉承开放的平台和众多国内色谱厂家合作,一起将中国高端色谱平台带入和国外高端色谱品牌竞争的格局,为我国国民经济和国防军工等领域做出贡献。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2018/spanspan style=" line-height:150% font-family:宋体"年度预估高端色谱市场占有率为5%。直接为终端客户节省了因购买国外品牌费用2个亿,总体利税1600万。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"带吹扫保护的膜阀 ZL.2015 2 0183437.3/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"带吹扫保护的转子阀 ZL.2015 2 0183284.2/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"一种等离子发射检测器 ZL.2015 2 0147673.X/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"一种零死体积转换头装置 ZL.2015 2 0147649.6/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"一种微填充柱进样口 ZL.2015 2 0198932.1/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"一种微填充柱进样口 ZL.2015 1 0156568.7/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"全军技术装备二等奖等奖项/span/p/td/tr/tbody/tablepbr//p
  • 虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换
    虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换总述:Media Converter可在车载以太网连接 (100BASE-T1或1000BASE-T1或10GBASE-T1)和任何具有带RJ-45连接器的标准以太网网络接口卡 (NIC) 的设备之间建立物理层转换。在转换过程中,设备不存储或修改任何数据包,并具有高可靠性。 一个镀锌钢板的便携外壳,加上方便配置DIP开关,使用户可以毫不费力地与转换器交互。它的设计使它便于携带,易于安装在测试架上。金属外壳使其具有坚固的IP20保护性能。是理想的智能、易于管理的解决方案,协助高效处理车载以太网的工作。它使用车规级连接器,满足在下一代车辆系统中测试与验证最先进的通信技术解决方案日益增长的需求。Media Converter产品亮点1. 100BASE-T1 &bull 全双工100BASE-T1 (1 x非屏蔽双绞线-UTP) 快速转换为100BASE-TX&bull 应用BCM 100BASE-T1 PHY&bull 2 x DIP开关,便于配置 (Master/Slave HalfOut/FullOut) &bull 2 x状态指示灯 (包括Linkup和Data数据指示灯)2. 1000BASE-T1 &bull 应用Marvell 88Q2112 A2 PHY, 兼容100BASE-T1&bull 1 x RJ-45端口,用于100BASE-TX/1000BASE-TX&bull 1 x 100/1000BASE-T1端口,不同接口:MATEnet、HMTD (若ECU端带有四孔HMTD接口或需要其他接口,可以修改线束来匹配)&bull 4 x DIP开关,便于配置 (Master/Slave 100/1000 Mbit/s 传统/IEEE模式 帧生成)&bull 状态指示灯&bull MQS连接器&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”3. 2.5/5/10GBASE-T1&bull 允许通过2.5/5/10GBASE-T1多千兆的车载以太网端口轻松地连接到ECU&bull 兼容车载以太网的PHY 88Q4364 2.5G/5G/10GBASE-T1 IEEE 802.3ch&bull 1 x H-MTD端口,用于10GBASE-T1&bull 1 x 标准 SFP+模块 (10GBASE-T,光学,直接连接电缆)&bull 4 x 状态指示灯&bull 4 x DIP开关,便于配置 (Master/Slave 10GBASE-T1/other 2.5GBASE-T1/5GBASE-T1)&bull I/O信号,易于与自动化系统接口&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”Media Converter应用领域1. 具体用途有:激光雷达、相机等传感器数据采集;自动化在环HiL测试;下线测试EOL;DV和PV试验等。2. 针对性案例:车载以太网接口的传感器,通过转换器与PC上位机连接,进行数据传输。
  • 使用超高效合相色谱系统测定甲糖宁色谱含量
    使用超高效合相色谱(ACQUITY UPC2&trade )系统测定甲糖宁(tolbutmide)色谱含量 目的利用沃特世(Waters)ACQUITY UPC2&trade 系统,成功地将测定甲苯磺丁脲药物含量的美国药典正相HPLC方法转换为超临界流体色谱方法。 背景超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主要流动相,通常使用极性溶剂(如MeOH)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,从而减少溶剂的用量和处理,降低每次分析的成本,同时增强环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。目前,美国药典(USP)规定了含有甲糖宁(苯磺酰胺,CAS # 64-77-7)药物的正相HPLC方法。利用4.0 x 300 mm的硅胶柱(L3)进行等度分离,流速1.5mL/min,流动相为475:475:20:15:9的正己烷:水饱和的正己烷溶液:四氢呋喃:冰醋酸的混合溶液,运行时间约为20分钟。如大多数药典中的方法一样,本方法经过验证且可靠。但是,分析过程使用了含有正己烷和四氢呋喃的复杂流动相混合溶剂。出于环保和成本的原因,许多实验室都希望杜绝这些溶剂的使用。 这种新型的超高效合相色谱(UPC2&trade )方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法10倍,且消耗的溶剂更少。 解决方案将甲糖宁与内标物甲糖宁混合,利用目前USP方法制备和分析样品。分析结果与使用ACQUITY UPC2方法得到的结果进行对比。UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,3.0 x 100 mm,1.7微米温 度: 50 ° C流动相: 95% CO2:5%甲醇/异丙醇 (1:1),含 0.2% TFA流 速: 2.5 mL/min背 压: 120 Bar/1740 psi检测器: UV /PDA ,254 nm 目前的正相HPLC方法,获得仍可接受的色谱分离(见图1),虽然内标物色谱峰拖尾严重(拖尾因子1.65)。由于已经通过了所列出的适应性标准(重复进样的相对标准偏差不超过2.0%;妥拉磺脲和甲糖宁的分离度R不小于2.0),因此也没有再作进一步的改进。 由新开发的UPC2方法得到的结果,同样符合美国药典适应性的要求(甲糖宁和妥拉磺脲的保留时间RSD值分别为1.2%和0.9%,两个化合物的面积RSD值小于0.90%,n=6),保持两个目标化合物间分离度(R = ~15)的同时,运行时间大大缩短。内标物妥拉磺脲拖尾现象得到大大改善(拖尾因子1.2)。需要注意的是,利用UPC2从混合物中分离并检测出许多小峰,说明了本方法具有很高的分离效率。本例中,每次正相HPLC分析大约使用29mL正己烷和各少于1mL的四氢呋喃和乙醇。相比之下,UPC2方法中每次进样大约使用0.25mL的甲醇和异丙醇。这说明,通过将正相HPLC方法转换为UPC2方法,可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相HPLC分析的成本大约是1.40美元,而每次UPC2分析的成本大约是0.01美元,说明通过将正相HPLC方法转换为UPC2方法可以大大地降低成本。 总结使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法的10倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,使实验室生产率提高,每个样本的分析成本降低。对于希望将目前的正相HPLC方法转化为更高效、更省钱方法的实验室而言,ACQUITY UPC2系统是一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 略论光谱色谱仪器五大系统的创新切入点
    前言光谱仪器种类繁多,总共有紫外、可见、红外、原子吸收、原子荧光、拉曼、旋光等20多类光谱仪器;色谱仪器也有液相、气相、离子色谱、薄层扫描色谱、毛细管电色谱、高压微流电色谱等10多类;光谱、色谱仪器是使用最多、覆盖面最广的分析仪器之一;它们在“农、轻、重、海、陆、空、吃、穿、用”等的各个领域、各行各业的科研、生产工作中,都无所不在,无所不有。广大从事光谱、色谱仪器研发、制造、使用的科技工作者对光谱、色谱仪器最基本的要求是稳定可靠。所谓稳定,就是漂移小、重复性好;所谓可靠,就是分析检测的数据准确可靠、灵敏度高(信噪比S/N高或检测限小)。这些问题都是光谱仪器、色谱仪器及其应用的研究人员,值得特别重视的关键问题。 本文根据仪器学理论和作者长期的实践,对如何提高各类光谱仪器、各类色谱仪器的可靠性、稳定性和灵敏度等的创新切入点进行了讨论;文中从保证知其然知其所以然的角度,重点讨论了光谱仪器、色谱仪器的电光系统、光学系统、光电系统、电子学系统和计算机系统的重要性、影响这些关键部件的关键点、提高这些系统和整机稳定性、可靠性的关键点和创新切入点;本文所论述的问题,是目前国内外业内很多科技工作者还没有引起重视的问题,这些问题对有关的科技工作者都有重要的参考意义。一、电光系统光谱仪器、色谱仪器及其有关的联用仪器,都离不开电光系统;而电光系统主要包括光源(氘灯、钨灯、氙灯)和电源(交流电源、直流或脉冲电源等)。在电光系统中,灯泡是重要元器件之一,其质量在某种程度上,决定整个光谱仪器、色谱仪器的质量和可靠性(包括灵敏度)。如果灯泡发光不稳定,整个仪器就不可能稳定。但是电光系统中除灯泡外,灯泡的电源是非常重要的、容易被人们忽视的部件;科学家从仪器学理论中的电子学与电光器件相关的理论出发,对光谱仪器、色谱仪器的氘灯灯泡所发出的光通量的稳定性,与灯泡所加的恒流电源稳定性的关系进行了研究;研究结果表明:氘灯恒流电源的电流稳定性与氘灯灯泡发出的光通量的稳定性关系如下[1]:(I2/I1)Y=Φ2/Φ1式中,I1为氘灯恒流电源在电流波动变化前的恒定电流值;I2为氘灯恒流电源因某些 因素影响,其电流微量变化后的电流值;Φ1为氘灯灯泡在氘灯恒流电源电流未变化前发出的稳定光通量;Φ2为氘灯灯泡在氘灯恒流电源波动变化后发出的光通量;Y为通过大量实验后总结得到的经验系数,一般取Y=6.05〜6.75 (作者的实践证明 取6.5为最佳)。若设波动前的光通量为100,波动后的光通量为Φ2;波动前的恒电流为300mA,波动后的恒电流为303mA ;即:因为电源的电流波动电流上升1%(3mA)。将波动前后的数据代人上式,则:(303/300)6.5=Φ2/1001.016.5=Φ2/100Φ2=1.016.5ꓫ100=6.7%上述计算表明:氘灯电源的电流波动1%,则灯泡发出的光波动6.7%,这是一个很大的波动值,可能使得各类光谱仪器和各类色谱仪器失去应用功能。光谱仪器、色谱仪器的钨灯电源,是一种恒压电源;其电压稳定性与钨灯灯泡发出的光通量的稳定性的关系如下[1]:(V2/V1)k=Φ2/Φ1式中,V1为钨灯恒压电源在电压变化前的恒定电压值;V2为钨灯恒压电源因某些因素影响,其电压微量变化后的电压值;Φ1为钨灯灯泡在钨灯恒压电源电压未变化前发出的光通量值;Φ2为钨灯灯泡在钨灯恒压电波动源变化后发出的光通量值;K为通过大量实验后总结得到的经验系数,一般取K=3.36〜3.51 (作者 的实践表明取3.45为最佳)。钨灯恒压电源一般为12V;若设钨灯电源波动前的光通量Φ1为100,波动后的光通量为Φ2;波动后的恒压电压为12.12V (即:因为波动电压上升1%(0.12V)。将波动前后的数据代人上式,则:(12.12/12)3.45=Φ2/1001.013.45=Φ2/100Φ2=1.013.45ꓫ100=3.4%上式计算结果表明:若钨灯恒压电源的电压波动1%,则钨灯发出的光通量波动3.4%。这个波动也将严重影响到整机使用的稳定性、可靠性。美国科学家Wenstead[2]的研究结果表明:光谱仪器的不稳定,90%以上是由电源引起的。所以,电光系统的重要性和认真研究光谱仪器、色谱仪器的电光系统的重要性就不言而喻了。并且,作者认为从事光谱仪器、色谱仪器研发、制造、应用的科技工作者应该认识到,电光系统是提高光谱仪器、色谱仪器可靠性和灵敏度的创新切入点之一,必须引起高度重视。二、 光学系统光谱仪器、色谱仪器及其联用仪器和有关的元素分析仪器(例如:总硫分析仪等等),都离不开光学系统;光学系统比较复杂,一般分为外光路和单色器两大部分:1、外光路:主要作用有三个[1]:一是通过各类聚光镜(凹面或平面反射镜或透射镜),尽量将光源(灯泡)发出的光聚集到单色器的入射狭缝上或样品上;二是将从灯泡发出的光改变前进方向,转向后直接汇聚到入射狭缝上或样品上;三是将氘灯和钨灯灯泡切换,以改变波仪器的长范围。所以外光路也是光学系统的重要组成部分之一,加强对外光路的研究,是提高光谱仪器、色谱仪器灵敏度的创新切入点之一。2、单色器:它是一个比较复杂的部件;它由入射狭缝、准直镜、光栅、物镜(聚光透镜或成像凹面反射镜)、出射狭缝等光学元件组成。它的作用是将灯泡发出的复合光分解成单色光。从出射狭缝射出的单色光纯度(光谱带宽),取决于单色器的狭缝、准直镜、物镜、光栅的指标,这些指标直接决定或影响光谱、色谱仪器整机的可靠性、稳定性等核心指标。单色器的种类很多[2]、[3]、[6]、[8],它是光谱仪器中最重要的部件之一。单色器的所有光学元件中,只要有一个元件出现故障,整个光谱仪器、色谱仪器就不能正常工作。单色器是光学系统中非常重要的部件,是提高光谱仪器、色谱仪器的可靠性、保证分析检测数据准确可靠和提高仪器灵敏度的最重要创新切入点之一。三、光电系统顾名思义,光电系统就是将光信号转换成电信号的光电转换系统;它有很多种类,例如:光电管、光电倍增管、硅光电池、光电二集管、光电二集管阵列等等。这些光电转换元器件是光谱仪器、色谱仪器中最重要的元器件之一。有的光电转换器件只是单纯的起光电转换作用;例如:光电管、硅光电池、二极管阵列等;有的则具有很大的电流放大倍数;例如:光电倍增管,它在1000V直流高压下,可达到100万倍的电流放大倍数;即在1000V直流高压下,一个光子入射到光电倍增管的阴极上,在其阳极上可以输出100万个光子,基本上形成了nA级的电流。但是1000V高压如果波动1%,则光电倍增管的一百万倍的放大倍数将波动10-12%,将是以10万倍的数据波动。作者的实践表明:如果光电倍增管工作在600V的情况下(作者的实践表明:一般光谱仪器、色谱仪器中的光电倍增管的最佳工作电压为600V左右),此时,光电倍增的放大倍数约是50万倍,如果600V高压波动1%,则50万倍的放大倍数将波动10%以上,即是5万倍的波动。这时整个光谱仪器、色谱仪器就因为高压不稳定而没有办法使用了。所有光电系统的稳定性,都将严重影响光谱仪器、色谱仪器整机的可靠性、稳定性和灵敏度。由此可见,电光系统多么重要就不言而喻了。所以,认真研究光电倍增管的高压电源、认真选择光电倍增管、认真研究光电系转换统,是提高光谱仪器、色谱仪器的可靠性、稳定性和灵敏度的最重要的创新切入点。四、电子学系统任何光谱仪器、色谱仪器都必须有电子学系统,其作用就是将从光电系统转换过来的电信号或通过其他办法采集的电信号予以放大、并处理到符合后面计算机系统所要求的电信号。电子学系统的放大倍数、噪声、漂移是非常重要的性能技术指标,也是决定光谱仪器、色谱仪器可靠性、稳定性、灵敏度的关键指标;很多科技工作者重视光机和计算机,但是不大重视电子学系统的性能指标,这是我国、甚至全世界光谱仪器、色谱仪器研发者、制造者的通病,更是阻碍我国分析仪器发展的重要问题之一。光谱仪器、色谱仪器出现故障的概率最多的是电子学系统;例如:放大器的±15V电源等、电光系统的氘灯电源、钨灯电源、光电系统的高压电源等等,这些电源都是值得光谱仪器、色谱仪器研发、制造、使用者高度重视的关键部件。因为电源发热,会致使产生整机漂移;由于电子元器件的浴盆效应理论,会使得电子元器件老化(只有10年左右的寿命),使电子元器件整体性能变坏,使整机产生故障;有些科技工作者不重视设计放大倍数,他们随意的将直流放大器的放大倍数设计为100倍以上,致使整机的噪声增加,灵敏度(信噪比)降低;作者的实践表明,直流放大器的放大器的放大倍数一般在25~30倍左右为最佳。有些科技工作者由于将直流放大器的放大倍设计过小或过大,使得输出的电信号不符合后面计算机要求,以致产生整机漂移、使整机稳定性变差、灵敏度降低。还有纹波电压,是很多科技工作者容易忽视的指标,很多研发、生产光谱仪器、色谱仪器的科技工作者,不给出(不测试)仪器各类电源的纹波系数,使得整机的噪声增加、稳定性变坏等等。所以,重视电子学系统的指标研究,是提高光谱仪器、色谱仪器可靠性、灵敏度的很重要的创新切入点之一。五、计算机系统提高仪器的自动化水平,是光谱仪器、色谱等仪器研发者、制造者的重要使命之一;自动化可以实现仪器的五个保证:第一,保证仪器工作在最佳状态;第二,保证避免人为操作误差;第三,保证分析工作者的人身安全;第四,保证避免仪器带病工作,延长有关仪器的使用寿命;第五,保证得到最佳的分析检测数据。过去比较长的一段时间里,我国分析仪器使用者们认为,我国分析仪器与国外同类仪器的最大差距是软件。的确,软件方面的差距是我国分析仪器与国外分析仪器的主要差距之一。据我国科技部的调查结果表明:我国90%的用户对我国国产分析仪器的软件不大满意。但是近十年来,由于国家科技部的重视和广大科技工作者的努力,情况大有好转;目前我国光谱仪器、色谱仪器等分析仪器的软件已经有很大提高,可以与国外同类同档次的仪器抗衡(有些指标优于、有些指标一样、个别指标不及),并且性价比大大优于国外同类同档次的产品。例如:我国上海科哲的薄层扫描色谱仪器、制备色谱仪器,北京普析的紫外、北京海光的原子荧光广州和信的质谱、浙江福立的气相色谱等等,其软件都可以与国外同类高档产品抗衡,或优于国外同类同档次的产品。特别是近几年,国内外广大软件科技工作者,在光谱仪器、色谱仪器研发、制造中,采用软件降噪声技术;在降噪声时可以不降低有用信号,可以轻而易举的提高仪器的信噪比。例如:北京西派特在自己研发的HF-ExR510 便携拉曼光谱仪上(仪器的激发光源:785nm; 积分时间:10s;功率等级:10级),对被分析样品进行数据采集、采用软件降噪声、软件降荧光,以及通过软件对五种组分的复合样品进行数据采集、数据处理,效果都很好,他们走在国外同行的前列;具体情况如下:1、通过软件对滑石粉(强荧光物质)的数据采集和降荧光、降噪处理的效果: 2、 对滑石粉、重钙、五组分等样品进行定性检测的结果;滑石粉定性检测的结果(见下图);滑石粉 检测的匹配度:0.999(见下表)所以,重视软件开发,是提高光谱仪器、色谱仪器的可靠性、稳定性和灵敏度非常重要的创新切入点之一。必须引起光谱仪器、色谱仪器研发、制造、应用的有关科技工作者高度重视。主要参考文献[1] Wensted,lnstrument Check Systems,Published in Great Britain by Hencry Kimpton PublishersLondon,1971.[2] 李昌厚著,《仪器学理论与实践》,北京:科学出版社,2008 [3] 李昌厚著,《紫外可见分光光度计》,北京:化学工业出版 社,2005。[4] 李昌厚,略论分析仪器的主要核心技术指标及有关问题,仪器信息网,2024[5] 李昌厚,便携式激光拉曼仪器及其应用的最新进展,仪器信息网,2019/7/11.[6] 李昌厚著,《紫外可见分光光度计及其应用》,北京:化学工业出版 社,2010。[7]李昌厚,用好AAS的一些关键问题,仪器信息网,2020/8/17[8] 李昌厚著,《高效液相色谱仪器及其应用》,北京:科学出版社,2014[9] Tony Owen,Fundamentals of UV-Visible Spectroscopy,1996,Germany Hewkett-Packard publication number 12-5965-123-E[10] 赵志慧等,《国联股份第21届中国(合肥)食品安全检测技术高峰论坛PPT》, 合肥,2023-06[11] A. J .Owen. 1988. The Diode-Array Advantage in UV/Visible Spectroscopy Printed in theFederal Republic of Germany 03/88. (Hewlett-Packard Publication No. 12-2954-8912)[12] 李昌厚,试论分析仪器研发创新的切入点及有关问题,仪器信息网,2023作者简介李昌厚,男,1963年毕业于天津大学精密仪器系光学仪器专业;中国科学院上海营养与健康研究所原仪器分析室主任、生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授、天津大学兼职教授;终身享受国务院政府特殊津贴。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等方面有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家发明奖和省部级(中国科学院、上海市、科技部)科技成果奖5项;发表论文280篇(退休后97篇),出版《仪器学理论与实践》、光谱和色谱仪器及其应用等专著5本。曾任中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届、第六届副理事长兼光谱仪器、高速分析等多个专业委员会的副主任;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组组长、上海市科学仪器专家组成员、《生命科学仪器》副主编、《光学仪器》副主编、《光谱仪器与分析》副主编、上海化工研究院院士专家工作站成员等数十个学术团体和专家委员会成员,和北京瑞利、北京普析、上海科哲、美国ISCO等十多家公司的技术顾问或专家组组长等职务。
  • 2011年上半年上市仪器新品:色谱类
    色谱仪是目前世界上应用最为广泛的分析仪器之一,近年来,生命科学研究、药物研发及食品安全检测成为色谱仪市场增长的重要动力。  各类产品更多详细内容见如下各分类,排名不分先后。  一、气相色谱仪  气相色谱仪技术经过多年的发展,技术已经很成熟了,相关新产品较少。在2011年上半年中,赛默飞世尔在Pittcon上推出新型的微型气相色谱仪C2V-200,该仪器的核心技术是拥有一个只有信用卡大小的独特的分离柱,它包括一个注射系统,柱子和检测器,C2V-200可应用于天然气的快速分析。赛默飞世尔C2V-200  安捷伦公司推出了Agilent LTM-II系统,此系统采用第二代低热容专利技术,色谱柱被加热元件和温度传感器包裹,程序升温速率与降温速度都将显著加快,从而实现更快速的色谱运行周期。该系统可以安装在安捷伦7890A GC上。此外,安捷伦在今年Pittcon上首次推出了适用于目前各大品牌、各种型号的气相色谱仪系列消耗品Crosslab,安捷伦希望“用户能在不同品牌的气相色谱仪上享用到安捷伦技术与产品,并且为实验室的一站式采购提供便利。”Agilent LTM-II系统  安捷伦CrossLab系列消耗品  二、UHPLC/UPLC  在液相色谱方面,UHPLC/UPLC已经成为液相色谱仪发展的主要方向,近几年,每年均有公司推出UHPLC相关产品。市场上的液相色谱仪主流厂家也均有UHPLC产品,随之,市场也趋于平淡。今年上半年,只有兰博色谱推出了一台UHPLC UP2000,该仪器最高耐压达25000psi。兰博色谱UP2000  安捷伦在今年Pittcon上推出一款针对安捷伦1290 Infinity LC系统的方法转换软件—智能化系统模拟技术ISET,可以实现UHPLC方法到HPLC方法的转换,而且可以转换为不同品牌HPLC系统的方法。  而作为UPLC技术最先商品化的公司沃特世在UPLC平台上又有了新的拓展。今年上半年,沃特世公司推出基于二维色谱技术的ACQUITY UPLC系统及基于UPLC的SFC分析系统ACQUITY UPSFC™ 系统。沃特世在成熟的ACQUITY UPLC技术上,拓展二维色谱技术使得科学家可更好地进行样品诱捕、中心馏分和平行柱再生以消除其中的基质效应,可以满足“一些需要超高灵敏度的最具挑战性的实验,同时还保持卓越的仪器耐用性和仪器运行时间。”  二维色谱技术的ACQUITY UPLC系统  ACQUITY UPSFC™ 系统使科学家采用二氧化碳作为初级流动相进行正相色谱分离,取代了昂贵有毒的溶剂,此举可为实验室节省上万美元的费用并延长仪器的使用寿命。与传统的 HPLC 相比,它能够使许多行业的研究型或质控实验室在进行日常UPSFC分离时获得巨大裨益。ACQUITY UPSFC™ 系统  此外,赛默飞世尔公司推出了纳升级UHPLC EASY-nLC 1000,该系统先进的设计使其通过更高的压力以及微珠尺寸和柱长的变化,使蛋白质和肽的识别率提高了30%,非常适合分离生物分子。赛默飞世尔纳升级UHPLC EASY-nLC 1000  三、HPLC  在通用HPLC方面,日立高新今年重磅推出全新打造的新一代液相Chromaster,该产品日立经过了全球调研,在技术方面别具匠心,在仪器的性能、操作的便利性、仪器的耐用性三方面都有很大的提高。如,泵,采用新型低压梯度系统高频模式HFM。相比于传统方式,HFM电磁阀切换频率加倍,提高了溶剂混合效率。自动进样器,设计了新型注射器驱动单元。将进样口和进样阀直接连接,彻底消除自动进样器流路死体积,并且通过专用泵主动清洗进样针外壁,实现了极低的样品残留。日立新一代液相Chromaster  赛智科技与美国Syltech公司共同研发的一款液相色谱仪LC-10Tvp HPLC,该仪器全面实现了人机对话、远程无人操作。赛智科技LC-10Tvp HPLC  四、色谱柱  在色谱柱方面,现有的气相色谱柱已经可以解决99%的应用问题,相应的新品也少 而随着UHPLC的普及,相应的色谱柱的种类却远远不及普通的HPLC柱,各大厂商都关注UHPLC柱的研发,推出的新产品也较多。  在2011年上半年,安捷伦推出用于UHPLC 系统的ZORBAX RRHD 300SB-C18 1.8 微米色谱柱,该产品为反相硅胶柱,可实现对完整蛋白质和蛋白质酶解物更高级结构的反相色谱表征 赛默飞世尔推出Accucore HPLC 系列色谱柱,该产品基于最先进的表面多孔实心核增强技术结合相键合与柱装填的丰富经验,能够提供亚2μm填料的柱效,同时柱压在普通HPLC色谱仪可承受的范围内,全面提升实验室工作流程和效率 资生堂推出CAPCELL PAK C18 MGIII-H,其兼具高分离能力和高耐压性。  了解更多色谱仪器,请访问仪器信息网色谱专场  了解更多新品,请访问仪器信息网新品栏目  关于申报新品   凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示 一些申报材料齐全、有特色的新品还将被推荐到《仪器快讯》杂志上进行刊登 越早申报的新品,将获得更多的展示机会。
  • 使用超高效合相色谱系统测定氨苯砜片(Dapsone)的色谱含量
    使用ACQUITY UPC2系统测定氨苯砜片(Dapsone)的色谱含量目的使用沃特世(Waters)ACQUITY UPC2&trade 系统将药典中氨苯砜含量的正相HPLC测定方法转换为超临界流体色谱(SFC)方法。背景目前,美国药典(USP)规定了含有氨苯砜(4,4&rsquo -二氨基二苯砜,CAS #80-08-0)药物片剂的正相HPLC分析方法。使用4.0 x 300 mm,10µ m的硅胶柱(L3)进行等度分离,流动相为正己烷、异丙醇、乙腈和乙酸乙酯(7:1:1:1)的混合溶液。该方法的运行时间约为12.5min(最后一个主峰出峰时间的2倍,流速1.5mL/min)。如大多数药典中的方法一样,本方法经过验证且可靠。但是,该方法使用了正己烷和乙酸乙酯溶剂。出于健康、安全和环保的原因,许多实验室都想减少这些溶剂的使用。超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主流动相,以极性溶剂(如甲醇)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,减少溶剂的消耗和处理,降低每次分析的成本,同时增强了健康、安全和环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。对寻求更高效、更低成本的氨苯砜片分析方法的实验室而言,ACQUITY UPC2系统不愧为理想之选,该方法同时加强了健康、安全和环境方面的保护。解决方案使用目前美国药典(USP)方法,制备和分析氨苯砜标准品和片剂样品,如图1所示(该样品也用于SFC分析)。使用目前USP方法的分析结果与使用ACQUITY UPC2方法得到的结果进行对比,如图2所示。SFC方法的条件如下:色谱柱: ACQUITY UPC2 BEH,3.0 x 50 mm,1.7µ m柱温: 45 ° C流动相: 85% CO2:15% MeOH流速: 3.0 mL/min,背压: 130 bar/1885 psi检测器: UV /PDA,254 nm药典方法所列出的适应性条件是最低要求(相对标准偏差不得大于2%)。标准品6次重复进样,目前正相HPLC方法得到的保留时间和峰面积的相对标准偏差(%)分别为0.1%,1.1%。超高效合相色谱方法UltraPerformance Convergence Chromatography&trade (UPC2)重复6次进样得到的实验结果符合USP药典系统适应性要求(保留时间RSD值0.8%,峰面积RSD值0.9%),且运行速度(1.75 min)大大加快。两种方法测定片剂样品的分析结果高度一致。本例中,每次正相HPLC分析使用正己烷13.1mL,异丙醇、乙腈和乙酸乙酯各1.9mL 。相比之下,UPC2方法仅消耗约0.50mL甲醇。这说明了通过将正相色谱方法转换为UPC2方法可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相色谱HPLC分析成本大约为1.08美元;相比之下,UPC2仅为0.01美元。总结使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好;速度是目前的HPLC方法的7倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,则实验室生产率提高,每个样本的分析成本降低。ACQUITY UPC2系统是实验室将目前的正相HPLC方法转换为更高效、更省钱的UPC2的方法的一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #Waters、UPC2、UltraPerformance Convergence Chromatography、ACQUITY和UPLC是沃特世公司的注册商标。联系方式: 叶晓晨沃特世科技(上海)有限公司市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 液相色谱法/液相色谱质谱联用法测定苯氧羧酸类除草剂中游离酚
    引言酚类化合物是一种细胞原浆毒,其毒性作用是与细胞原浆中蛋白质发生化学反应,形成变性蛋白质,使细胞失去活性,它所引起的病理变化主要取决于毒物的浓度,低浓度时可使细胞变性,高浓度时使蛋白质凝固,低浓度对局部损害虽不如高浓度严重,但低浓度时由于其渗透力强,可向深部组织渗透,因而后果更加严重。酚类化合物可经皮肤、粘膜的接触,呼吸道吸入和经口进入消化道等多种途径进入体内。 FAO与WHO 早已对2,4-滴、2,4-滴酯类、2,4-滴钠盐、二甲铵盐、2甲4氯、2甲4氯钠、2甲4氯丁酸、2甲4氯丙酸等农药中的游离酚进行了限定,对苯氧羧酸类除草剂中的游离酚进行限量有利于减少有害杂质对农产品安全的影响,也有利于各级质量管理部门对农药产品质量实施监督。进而保证农药产品的安全性、保障人身健康和环境安全。 《GB/T 41225-2021苯氧羧酸类除草剂中游离酚限量及检测方法》新标准已于2022年7月1日正式实施,新标准共给出3种试验方法:化学显色法,高效液相色谱法,液质联用法。 岛津解决方案一、 UV-3600i Plus紫外可见近红外分光光度计高灵敏度—标配三检测器配置了三个检测器,一个检测紫外及可见区域的PMT检测器,检测近红外区域的InGaAs 和 PbS检测器。InGaAs检测器弥补了PMT和 PbS转换波长灵敏度低的特点,从而保证了在整个检测波长范围内高灵敏度测定。在1500 nm波长检测时噪声小于0.00003 Abs,达到超低的噪声水平。 高分辨率—宽测量范围及超低的杂散光采用高性能双光栅单色器,实现高分辨率(分辨率高达0.1nm)和超低杂散光(340nm处杂散光0.00005%以下)。测定波长范围为185nm-3300nm,可在紫外、可见及近红外的宽波段范围进行测定,应对不同领域的测定要求。 丰富可选的附件使用多功能大样品室和积分球附件可测定固体样品,使用保证测定精度的绝对反射测定装置ASR系列也可进行高精度的绝对反射测定。此外,可安装电子冷热式恒温池架和超微量池架等,适应广泛的应用测定。 智能化软件全新升级的LabSolutions UV-Vis软件包括光谱模块,光度模块,动力学及报告编辑模块等功能。软件具有自动光谱评价、自动Excel数据传输、自动样品测试等功能,可升级为DB或者CS版实现更强大的数据管理,确保数据完整性和可信度。 二、Prominence Plus 系列液相色谱仪深根本土,经典焕新。由精心挑选和优化的模块组成稳健的液相色谱系统,Prominence Plus 系列液相色谱仪具有优异的可扩展性和兼容性。无论是常规分析还是高效的快速分析,可让更多的用户得到一如既往的高准确性高可靠性的分析结果,成为各个领域实验室的有力工具,包括制药、生物制药、化学、环境和食品等。 灵动 Prominence Plus系列包含高效/超高效液相色谱系统,灵活兼容常规LC及快速LC分析需求; 经典的积木式设计,基于强大的系统管理器,提供优异的模块扩展性,灵活应对您多样的用需求。 高效 最高支持66Mpa高压输液; 支持2μm-3μm小粒径色谱柱,实现高分离度高灵敏度的快速分析; 可靠 延续Prominence系列一贯的高稳定性、高耐用性、低维护性的特点,助您轻松开展分析工作; 快速液相模式可实现高效而精确的梯度分析,获得理想的保留时间重复性; 专业 60年液相色谱技术沉淀之作,力求优异性能与轻松操作间的平衡; 使用功能强大的LabSolutions工作站,符合GMP法规数据完整性技术要求,匹配实验LIMS系统。 三、超快速液相色谱质谱联用仪岛津LCMS-8045三重四极杆液质联用仪 迅捷的速度,敏捷的灵敏度得益于岛津深厚的质谱研发积淀,在诺贝尔获奖者的指导下实现关键技术的突破。作为行业范围内将三重四极杆高灵敏度和高速度相结合的公司,为质谱领域带来真 正意义上的创新。为用户着想,秉承超快速分析的理念,显著提升分析通量,打 造实验室的效率之星。 优异的稳定性,值得信赖的准确性LCMS-8045重视仪器抗污染能力和整体耐用性,即使在严苛的连续分析中也可保 持出色的稳定性,提供准确可靠的分析结果。无论是食品安全还是药物分析,环 境监测还是临床研究,在面对复杂基质样品时都可以轻松应对。 功能丰富的软件,强大的MRM方法包Labsolutions LCMS集合型工作站软件,具备丰富的支持多组分定 量方法制作的便利功能,以直观的界面帮助用户迅速上手。从方 法建立、实时分析到报告编辑,化繁为简,大幅提升分析工作的 效率。更提供多领域分析方法包,无需方法摸索,即刻开展工作。 本文内容非商业广告,仅供专业人士参考。
  • 2015年上半年上市仪器新品盘点:色谱类
    色谱仪被广泛应用在化工、制药、环境、食品安全等领域。近年来色谱仪呈现出向高通量、模块化、自动化、和其他仪器联用等方向发展的趋势。一、高效/超高效液相色谱系统(HPLC/UPLC/UHPLC)  从2015年上半年发布的高效液相色谱新品来看,其技术改进主要集中在了产品的自动化和模块化等方面。例如改变其启动方式、样品管理方式以及系统内流路的集成程度,采用积木式的单元模块等,提高了产品的易操作性、方便性和可维护性。  超高效液相色谱系统经过多年发展,取得了巨大的成功,如提高了样品的分析通量、加快了分析速度等。但是,还有相当一部分用户仍然在使用常规高效液相色谱,并且大量的标准和方法也是基于常规高效液相色谱。一些仪器厂家为了用户方便地进行方法转移,兼容常规液相和超高效液相通用型平台,帮助用户从HPLC到UPLC技术的转换链接起一个桥梁,从而开发出了通用型超高效液相色谱系统平台。在该平台上既可以平顺地运行HPLC方法,也可以运行UHPLC方法。同时,在价格、日常维护费用方面也有所降低。在超高效液相色谱柱的填料方面,有厂家推出了1.5μm 表面多孔硅胶颗粒构成的色谱柱,系统压力达到了1500bar(22000psi),流速达到了5mL/min,实现超短扩散路径和高效分离。  各类产品更多详细内容见如下各分类,排名不分先后。(一)、高效液相色谱系统(HPLC) AltusRHPLC 高效液相色谱仪PerkinElmer AltusRHPLC 液相色谱仪  珀金埃尔默近期发布了PerkinElmer AltusRHPLC液相色谱仪,该系统采用低扩散的内置集成流路设计,并配有一键式启动、自动化样品管理和免工具维护等功能,从而使得操作者都能简单快速地进行样品分析。同时,PerkinElmer AltusRHPLC液相色谱仪搭配了业内应用最广泛的Empower 3色谱数据工作站。PerkinElmer AltusRHPLC液相色谱仪主要用于食品原料的真实性检测、水质,空气和土壤检测,以及为达到环保标准而进行的化工和工业材料检测。EClassical 3100高效液相色谱仪 EClassical 3100高效液相色谱仪 大连依利特分析仪器有限公司2015年上半年推出了EClassical 3100高效液相色谱仪,该产品主要面向中端市场或者企业用户,其采用了全景窗口,方便客户实时观察样品分析情况。并且,其积木式的单元模块可根据客户需求灵活实现等度、二元高压梯度、四元低压梯度系统配置,并且可根据不同用户的需求灵活选配O3100色谱柱温箱、S3100自动进样器、M3100溶剂管理器等单元模块。(二)、超高效液相色谱系统(UHPLC/UPLC)ACQUITYRArcTM系统ACQUITYRArcTM系统  2015年6月,沃特世公司发布了ACQUITYRArcTM是一个四元梯度系统,配备了30cm柱温箱和多款液相色谱检测器。此次,ACQUITYRArcTM系统设计中的一个亮点是其创新性的Arc Multi-flow path技术,由于该技术的采用,使得ACQUITYRArcTM系统可以仿真模拟其他系统的梯度延迟体积以及混合行为而不需要改变它的梯度表等色谱条件,并且只需要一个切换即可实现HPLC和UHPLC方法的“即插即用”的转换,无需额外人工干预。该系统能够很好地兼容沃特世质谱检测器ACQUITYRQDa。VanquishTMUHPLC 系统VanquishTMUHPLC 系统  2015年3月30日,赛默飞世尔科技(中国)有限公司发布了液相新品Vanquish,其核心为Thermo Scientific Accucore VanquishTM UHPLC色谱柱,该色谱柱由1.5μm 表面多孔硅胶颗粒构成,并采用了增强的核壳技术,使得系统压力达到了1500bar(22000psi),流速达到了5mL/min,实现超短扩散路径和高效分离。同时,Vanquish泵采用了SmartFlow 技术,可以提高其保留时间的重现性和降低基线噪音,提高其检测灵敏度。此外,Vanquish采用了Life Tech的二极管阵列检测器,线性范围可达3000mAU。AltusRUPLCTM系统 AltusRUPLCTM液相色谱仪 珀金埃尔默股份有限公司于 2015年上半年,发布AltusRUPLCTM液相色谱仪,该系统结合了四元泵和流通式进样设计的灵活性和简单性,并且采用了Waters AutoBlend技术,该技术通过软件自动控制纯溶剂或浓溶液的比例来在线配制所需要的流动相。同时,还能自动配制不同pH值和离子强度的流动相,避免不必要的时间和溶剂消耗。此外,系统自带的计算器能够对任何HPLC或UPLC的方法实现方法转移。AltusRUPLCTM液相色谱仪主要用来帮助环境、工业和应用市场的科研人员检测掺伪物质、杂质和污染物。 二、气相色谱仪(GC)  在气相色谱仪方面,样品的分析速度和通量方面已有了较大的提高,这些进步主要依赖于柱温箱结构的改进、电子流量控制(EFC)系统性能的提升及特种色谱柱的应用等。整体来说,气相色谱仪器经过多年的发展已经进入一个稳定期,突破性的技术很难出现,在以后一段时间里会继续保持这种情况。从2015年上半年推出的气相色谱仪新品来看,其变化主要集中在产品的兼容性和稳定性方面,例如采用多种检测器、双柱补偿和双气路系统等。GC9790Plus气相色谱仪GC 9790Plus气相色谱仪  浙江福立分析仪器有限公司于2015年上半年推出GC 9790Plus气相色谱仪,该系统是Ex2-Chrom系列气相色谱仪的最新型号产品,GC 9790Plus气相色谱仪具有双气路系统,可同时支持安装2种进样口,包括填充进样口和分流毛细进样口、分流/不分流毛细进样口等,同时,GC 9790Plus气相色谱仪支持安装3种检测器,包括FID、TCD、FPD等,且可依据需求进行组合,实现一机多用。GC5890N网络型实验室气相色谱仪GC5890N网络型实验室气相色谱仪  南京科捷分析仪器有限公司2015年上半年推出了GC5890N网络型实验室气相色谱仪,该款气相色谱仪具有双柱补偿功能,可以解决升温带来的程序漂移和减去背景噪音的影响,从而得到更低的最小的检测限。同时,GC5890N网络型实验室气相色谱仪具备7阶程序升温,升温速率为0.1~120℃/min,并且可以由用户重新校正炉温,在420℃以内随意设定最高温度,由用户决定加热炉温度平衡时间。三、离子色谱仪(IC)  从2015年上半年推出的离子色谱仪新品来看,其变化主要集中在智能化和自动化等方面,例如其产品不再需要与PC机配合、采用云存储技术和集成智能MT技术等。在自动化方面,新推出的离子色谱仪具备了自动信号采集系统、自动识别、设置最优工作参数和自动保存使用记录和溯源等功能。同时,随着接口和基体消除技术的发展,离子色谱与其他分析设备的联用也将得到更加广泛的应用。目前已经出现了离子色谱-质谱联用的商品化仪器。PIC-20型离子色谱仪PIC-20型离子色谱仪  青岛普仁仪器有限公司于2015年1月推出了PIC-20型离子色谱仪,该色谱仪是与以前的PIC-10型离子色谱仪相比,可以独立运行,不再需要与PC机配合。此外,其采用了云存储技术,可以对数据进行随时下载浏览。并且,和PIC-10型离子色谱仪相比,PIC-20型离子色谱仪可以支持更多种类的检测器。IC-8618全自动型离子色谱仪IC-8618全自动型离子色谱仪  青岛轩汇仪器设备有限公司于2015年上半年推出了IC-8618全自动型离子色谱仪,该离子色谱仪采用了进样器与整机一体化模式,可以实现全自动操作,并且其加配了紫外/可见光检测器或电化学检测器或PH、电导率模块,可以满足非常规样品分析和多项数据同时分析。同时,IC-8618全自动型离子色谱仪具备自动信号采集系统,可避免人为手动操作带来的误差。此外,IC-8618全自动型离子色谱仪在一定时间停机状态下,可定期自动启动流路冲洗各系统部件,避免管路结晶,达到保养维护目的。YC9000智能型离子色谱仪YC9000智能型离子色谱仪  青岛埃仑色谱科技有限公司于今年上半年推出了YC9000智能型离子色谱仪,该仪器在智能化方面有了较大的提高。YC9000智能型离子色谱仪采用了功能模块化设计,集成了智能MT技术,可自动识别、自动设置最优工作参数、自动保存使用记录和溯源,并能实现双通道和多种检测器同时检测。同时,YC9000智能型离子色谱仪的专利技术—多功能正压排气装置,内置快速气体抽取装置,能更好消除淋洗液中所产生CO2,对基线和仪器稳定性的影响,并且提高柱效和分离度。 欲了解更多新品信息请访问新品栏目
  • 气相色谱VS液相色谱
    什么是气相色谱、液相色谱?气相色谱法是一种以气相为流动相的色谱方法。样品流经气体系统并被气化,最后进入充满填充物的色谱柱以实现有效分离。气相色谱法具有高灵敏度、样品用量少、分离能力强、选择性好、应用范围广、分析速度快等优点。液相色谱法使用填充层、纸和薄板作为固定相。液相色谱在室温下操作,不需要考虑在物质分离过程中样品挥发性和热稳定性的影响。因此,液相色谱可用于分离和分析高热敏性、难汽化和非挥发性物质。根据其分离原理,液相色谱可分为四种类型:吸附色谱、分配色谱、离子交换色谱和凝胶色谱。液相色谱法的工作原理与经典液相色谱法类似,主要区别在于填充颗粒的大小。液相色谱法主要用于分离分子量大、沸点高和不同极性的有机化合物。由于运输流动相需要高压,因此液相色谱也被称为高压液相色谱。怎么读取气相色谱谱图和液相色谱谱图?气相色谱谱图和液相色谱谱图可以用相同的方法解析。检测器输出的数据为线形图,检测到的化合物数随时间不同而变化。挥发性的化合物的峰首先出现在图表上。图中随后出现的峰表示混合物的挥发性逐渐降低。研究人员可以使用这些色谱图进一步分解样品中混合物的化学性质。峰尺寸的比例与样品中物质的含量有关。峰下的面积用于确定样本大小。例如,要确定样品中的成分,首先需要分析已知浓度的标准样品,将标准品色谱图上的保留时间和峰面积与测试样品进行比较,获得样品中的目标化合物浓度。气相色谱和液相色谱工作流程在气相色谱中,样品溶液进入蒸发室后,由载气(载气通常为氮气或氦气)输送进入色谱柱。在色谱柱中分离出不同的成分,最后流出色谱柱。柱中的活动由检测器进行检测。每个成分逐一检测之后,记录器、积分器或数据处理系统会记录下这些色谱信号。在液相色谱中,液相流动相流经输液泵,与样品溶液混合,最后流出色谱柱。吸附分离在柱中进行。在色谱检测站,检测器最终将所有成分转换成电信号,或相应的样品峰。气相色谱和液相色谱的应用气相色谱可用于手性化合物的化学分离实验、对羟基苯甲酸酯食品防腐剂中对羟基苯甲酸酯的分离与测定、各种农药的分离、血浆中掺杂的检测以及环境污染物化学成分的检测等多方面研究。液相色谱法在食品检测,例如食品中有毒有害物质、微生物产品、营养物和添加剂的检测、环境中农药污染的潜在生物标志物的研究以及血浆和尿液中毒素的测定等。
  • 液相色谱多元高压泵与低压泵的区别与比较
    液相色谱多元高压泵与低压泵的区别与比较 我们在使用高效液相色谱仪做分析时通常会接触到多元泵。所谓几元,指的是能同时控制流路的多少。多元泵又分为高压混合与低压混合。高压混合又叫泵后混合,多元高压泵由多个泵构成,有几元则有几个泵,例如LabAlliance的PC2001型二元高压梯度泵、Series 4000系列的四元高压梯度泵等。低压混合又称泵前混合,其实就是一个泵,几元就是安装几路电磁阀,例如Agilent 1200型四元低压梯度泵等。为方便理解,附图如下(以四元泵为例):如图所示,四元高压梯度:配置有四个可独立工作的泵+在线混合器。工作方式为四个泵并联,可同时有四个流动相,按照预先设定的配比进入,分别送液到泵后的混合室内,在高压下进行混合,混合配比更准确,不易产生气泡,不用为了转换流动相而反复清洗,不仅节省溶剂,也提高了工作效率。无需增加真空脱气机,降低了混合死体积(泵前混合时、混合管、泵头等体积,脱气机内死体积)。同时,可以做梯度洗脱:当待测样品成分复杂,用一个固定的流动相配比无法将样品中成分完全分开时,就需要用到梯度洗脱,在同一个分析过程中由仪器自动改变流动相配比,将样品中前期无法分离的物质进行洗脱,在同一谱图中得到分开的峰的效果。有助于提高分析准确性,避免了遗漏重要物质或对其进行错误定性定量。 然而,四元低压梯度:配置比较繁琐:由单泵+低压混合比例阀(电磁阀)+在线脱气机+混合器构成,它的工作方式也与高压梯度泵有很大区别:最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,是依靠电磁阀的切换使泵分段输送不同流动相,由于在常压下混合,气泡很容易从溶剂中析出,较易产生气泡,因此必须配备在线脱气机,可消除气泡影响。可以做梯度洗脱,在仪器上进行设定之后,在同一样品分析工程中,相隔一段时间后,按照用户的设定自行改变流动相配比,将样品中组分分离开来。目前HPLC仪器制造厂家大都推出四元低压梯度(带在线脱气)系统,而在数年前大都是二元高压梯度,以往四元低压系统通常是进口仪器的专属产品,国内大多采取高压混合的方式,并没有涉及到低压系统的应用开发,在国内有些招标项目中也有明确提出选用四元低压的案例,广大客户可能会误以为四元低压是进口仪器的先进技术,实则不然,四元低压实际上是对二元高压的补充,也就是说当比例发生改变的流动相数量较多,二元高压不能满足分析的时候,四元低压弥补了这一不足。但如果比例发生改变的流动相数量在2个以内,包括2个,应该来说二元高压梯度系统在作高精度分析时优势明显。从目前的售价看,四元低压的泵比二元高压的并低不了太多,但他们节约的成本是不少的。四元低压梯度系统采用单泵加梯度比例阀来实现,因为比例阀是在泵前的,并且各流路的溶剂在比例阀里就混合在一起了,所以是泵前、低压混合。一般地,对于常规分析来说,四元低压梯度也可以满足需要;如果分析样品成份复杂、对重现性要求较高,或者需要在低流量下进行梯度分析,还是选择高压梯度好一些。当然,现在美国SSI(LabAlliance)公司推出的四元高压梯度泵,在保证高精度分析的同时,也解决了流动相数量受限制问题。液相色谱从性能上比较,四元高压肯定优于四元低压。四元高压的混合比例是通过改变泵的流速来获得的,通常泵的流速都是很准的,所以混合的精度也是很高的。四元低压梯度的混合比例是通过控制不同流路的电磁阀的开闭时间长短来控制的,理论上混合的比例也是准确的,但是实际上电磁阀的开闭会有一个延迟,无论它动作多么快,总还是需要一点时间的。比如A路和B路各50%混合,在单位时间内,A路和B路的电磁阀各开通50%的时间,这时问题不大,电磁阀的延迟影响可以通过调整补偿系数来尽量弥补。但是如果极端一点的情况,A路99%,B路1%,这种情况下单位时间内,A路的电磁阀开通99%的时间,B路只占 1%,时间是很短的,这时B路电磁阀的延迟就影响很大了,甚至可能延迟的时间比工作的时间还要长。这是两个管路的情况,假如四个管路同时工作,其结果可想而知。高压梯度就不会存在这种问题了。此外,低压还应注意清洗,尤其使用缓冲盐时,电磁阀送液管路很容易堵住。
  • GC7980Plus气相色谱仪
    —赛里安技术与中国制造完美的结合、打造中国顶级气相色谱仪  上海天美科学仪器有限公司,自1994年推出第一代气相色谱仪——GC7890I,历经20余载,技术储备不断夯实,通过产品的持续升级换代,始终保持着产品竞争力。  GC7980Plus是在上海天美GC7980基础上全面提升品质的升级型号。一款中国顶级气相色谱仪,引入了赛里安部分核心技术,与中国制造完美结合,配备了世界一流的EFC模块和高灵敏度FID检测器,可以进行高灵敏度、高精度和高可靠性的痕量分析。GC7980Plus主要革新体现在如下方面:电子流量控制(EFC)模块压力控制:全量程范围内精度0.1%压力设定分辨率:0.001psi流量控制重复性:0.5%分流/不分流进样口压力设定范围:0~150 psi总流量:500 ml/min(N2/Ar)1500ml/min(He/H2)FID检测器检测限:2pg C/sec 火焰喷嘴类型:陶瓷喷嘴,优化峰形通讯工作站以太网方式通讯接口,可以实现多机控制CompassCDS工作站(中文版),符合FDA 21 CFR Part 11法规要求关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 德国研制出世界最小光电信号转换器
    光纤网络是现代信息传递的基础,光电信号转换器是其核心,德国卡尔斯鲁尔研究中心的科研人员研制出一种世界最小的光电信号转换器。其内部结构为平行排列的两个微小黄金电极,长度约29微米,两电极之间的间隙约为0.1微米,整个结构直径不到人头发的1/3,两电极之间引入变化的电压信号,其频率与传输的数据信号相关,在电极中间充填有特殊的塑料材料,其对光线的折射率随所施加的电压发生改变。在两电极的间隙中导入连续光束后,会激发出表面电磁波(表面等离子体),这种表面电磁波受到施加与电极间隙中充填的塑料材料中的电压信号的调制,而经过调制的表面电磁波又可影响穿过间隙的光束的相位,实现信息通过施加于两电极的电压信号调制光束而转换成光信号在光介质中的传输。经过实验验证,这种光电转换器可实现的数据转换速率达到40G比特/秒,可工作在目前宽带光纤网常用的红外光波长范围内(波长1480-1600纳米),工作温度可达85摄氏度,是目前世界上最小型化的高速光电信号(相位)转换器,可用目前成熟的微电子技术手段进行规模化生产,并集成在微电子芯片中,可实现信息的高速率低能耗传输。
  • 访中国色谱分析的先驱者卢佩章
    将一生心血献科学 记中国色谱分析的先驱者卢佩章 记者采访他的那天,2009年9月18日,恰是他在大连工作生活整整60年的纪念日。作为中国科学院院士、我国著名分析化学与色谱专家――卢佩章先生将他的科学人生向记者细细道来,令人十分感奋。卢院士是开创中国色谱科学从无到有、从平常到辉煌的领军人物,他将60载的宝贵光阴奉献给了色谱研究,为中国色谱学及技术的发展和推广应用乃至走向世界,作出了杰出的贡献。现今已85岁高龄的卢院士依然精神矍铄,眼中时刻闪烁着智慧的光芒。  雄心多磨难  卢佩章祖籍福建永定,1925年10月7日出生于浙江杭州。那是一个战争频繁、民不聊生的时代,年幼的卢佩章饱经忧患。1938年杭州沦陷,卢佩章小学未毕业就随家人踏上了流浪之路,最后在重庆落脚。日本轰炸重庆造成大批伤亡,卢佩章作为一名童子军,目睹了尸首不断从面前抬过的一幕幕惨景。少年卢佩章眼见日本帝国主义的铁蹄肆虐家乡,无比愤恨。  其父卢公恒早年留学日本,一生厌恶官、商。受父亲影响,卢佩章立志长大献身科学,走科技报国之路。在重庆读中学时,他接受了进步思想,因此被学校开除。他找到了一个小学教师的临时工作,一边教学一边自学,同年考入同济大学化学系,成为优才生。1948年,卢佩章留校任助教,同时他积极参加共产党地下组织的反饥饿反内战运动,并作为上海市学联代表到南京参加“五二○游行”,后被捕入狱。  1949年9月,在新中国成立前夕,卢佩章怀着发展祖国科学技术事业的勃勃雄心,奔赴百废待兴的东北,走进了当时新组建的中国科学院大连化学物理研究所的前身――大连大学科学研究所。  初创色谱学  新中国成立初期,我国的气相色谱研究还是个空白。卢佩章和他的研究小组经过无数次的试验和探索,于1953年我国第一个五年计划开始时,设计出我国第一台体积色谱仪,使分析石油样品的速度由原来的30多个小时缩短到不到1小时,而且所用样品量仅是原来的千分之一。这一开创中国色谱学先河的研究成果迅速在全国石油化工企业普及应用,促进了石油工业的发展。抗美援朝期间,卢佩章接受国防科研分析任务,协助鞍钢焦化厂制取甲苯,为生产前线急需的TNT炸药并提高其产量作出了重大贡献。  20世纪50年代初期,卢佩章先后开展了气相色谱及液相色谱理论、新技术发展及其应用方面的研究。1956年,在中国科学院学部委员会成立大会上,30多岁的卢佩章作了我国第一篇气相色谱研究的学术报告。  卢佩章开创了中国色谱科学,色谱技术其后在工农业生产、国防、科研、医学、生物制药、环境保护等方面广为应用。几十年来,卢佩章执著于以色谱为主的分析化学研究,这位中国色谱分析的先驱者之一,是当之无愧的“中国色谱之父”。  国防贡献多  卢佩章的色谱研究,作为中国科技界的崭新学科,和我国国防工业的发展紧密地联系在一起。  20世纪60年代是中国核工业发展的最关键时期,在前苏联专家撤走、我国自己制造原子弹最困难之时,卢佩章和他的研究小组承担了测定金属铀235和铀238同位素中气体杂质的科研课题。在卢佩章的领导下,研究小组在极短的时间里,完成了原子能工业应用的气相色谱研究,创建了固体中痕量气体的色谱分析,准确地测定出金属铀235和铀238这两种同位素气体杂质的含量,为中国第一颗原子弹的爆炸成功尽了分析化学工作者应尽的责任。  色谱在核潜艇上也发挥了很大作用。核潜艇可以在水下连续航行数月以至一年以上,艇上空气如何净化、再生及解决含氧量是制约各国核潜艇技术发展的一大要素。卢佩章接受了为我国第一艘核潜艇密封舱气体分析的紧急任务,随后他带领科研小组研制出了当时世界上最先进的船用色谱仪。  拥有先进可靠的运载火箭武器系统是当今世界强国的重要标志。卢佩章和他的团队在长达20年的科学探索中,成功研制出当时国际上仅少数国家才能生产的新型吸附剂――分子筛,并敏锐地察觉到这种吸附剂用做催化剂将有特殊性能,使我国先于国际上其他国家首先研制成功脱氧分子筛105催化剂,解决了液氢生产制备的关键技术环节。为液氢用于火箭燃料,作出了应有的贡献。  我是一个兵  在“文化大革命”中,卢佩章被打成“反动学术权威”,关进“牛棚”,一度被迫中断研究。“文革”结束后,他立即重新投入色谱科学的探索中,不久率领团队研制成功了细管径的高效液相色谱柱。当时,这项技术曾独步世界,西方国家直到两年后才研制成功。卢佩章还领导了色谱专家系统工作,通过软件,普通操作者也可以完成以往科学家才能做到的复杂的色谱分离技术,这无疑是色谱研究中的一场革命。  卢佩章和所有致力于色谱研究的专家们同心联手,为中国的色谱研究赢得了荣誉,也赢得了时间。1980年,卢佩章以他30年间在新中国分析化学方面、尤其是在开创色谱学科领域、并把这种先进的色谱分析分离技术运用到国防工业和国民经济建设中所取得的卓越成就,当选为中国科学院学部委员(院士)。在国内外色谱研究工作中处于领先地位的大连化物所色谱中心,在卢佩章的设计下,开始了色谱专家系统的研究。经过3年的努力,这套系统得以实现,成为色谱研究中一项里程碑式的工程。  中国的色谱事业从无到有,经过几代人的努力,已跻身国际一流。作为先驱者,卢佩章院士满怀欣慰,回首往昔,他无限感慨:“我只是集体中的一个兵,一个小兵,成绩都是集体团结协作,开拓进取的结果,我不过是尽到了一个分析工作者的责任而已。”淡泊名利,专心科研,专心培养下一代科学家,几十年来,卢佩章就是这样默默地为祖国的科学发展贡献着自己。  甘于做人梯  卢佩章研究色谱分析半个多世纪,300余篇论文以及大量专著,凝结着他数十年科学探索中的丰硕成果和心血。  上世纪90年代初,卢佩章提出不再担任研究领导和学会的领导工作,而是将重点转向培养年轻一代上,使年轻人能挑起更重要的担子。  卢佩章院士的弟子中有8名已是博士生导师。22岁即到所和他共同工作、后又协助其带研究生的张玉奎也于2003年当选为中科院院士。提起他的弟子们,卢佩章由衷地说:“看到他们干出成绩,比我自己成功还高兴。”“卢院士弟子并不是特别多,但挑大梁成为国际色普界著名专家的多。”人们这样评价。  卢佩章把培养年轻一代作为己任,不仅注重培养年轻人严谨的学术思想和创新精神,更重要的是培养年轻一代热爱祖国热爱科学。卢佩章告诉过许多人:“中国的科学家应该有一颗热爱祖国、热爱科学的心。我不相信一个只追求个人名利的人,能在科学上作出更大的贡献。”  卢院士严谨的科学作风,豁达开朗的人生态度,十分值得晚辈们学习。已经85岁高龄的卢院士,如今仍然十分关心年轻人的成长,并尽可能为他们创造良好的科研环境,为他们提供最新的科研方向。  卢院士将一生的心血全部倾注于我国的科学研究事业,为“科教兴国”作出了杰出的贡献。(插图 阎峰樵)
  • 记中国色谱分析的先驱者——卢佩章院士
    p  img width="600" height="724" title="20120819131658-lpz.jpg" style="width: 600px height: 724px " src="http://img1.17img.cn/17img/images/201708/noimg/431fc4c5-eca7-4eb7-94a3-8e0bcde87bf2.jpg" border="0" vspace="0" hspace="0"//pp  记者采访他的那天, 2009年9月18日,恰是他在大连工作生活整整60年的纪念日。作为中国科学院院士、我国著名分析化学与色谱专家,卢佩章先生将他的科学人生向记者细细道来,令人十分感奋。卢先生是开创中国色谱科学从无到有、从平常到辉煌的领军人物,他将60载的宝贵光阴奉献给了色谱研究,为中国色谱学及技术的发展和推广应用乃至走向世界,作出了杰出的贡献。现今虽已85岁高龄,但他依然精神矍铄,眼中时刻闪烁着智慧的光芒。/ppstrong  雄心多磨难/strong/pp  卢佩章祖籍福建永定,1925年10月7日出生于浙江杭州。那是一个战争频繁的时代,年幼的卢佩章饱经忧患。1938年杭州沦陷,卢佩章小学未毕业就随家人踏上了流浪之路,最后落脚在四川重庆。日本轰炸重庆造成大批伤亡,卢佩章作为一名童子军,目睹了尸首不断从面前抬过的一幕幕惨景。少年卢佩章眼见日本帝国主义的铁蹄践踏家乡,无比愤恨。/pp  其父卢公恒早年留学日本,一生厌恶官商。受父亲影响,卢佩章立志长大献身科学,走科技报国之路。在重庆读中学时,他接受了进步思想,因此被学校开除。他找到了一个小学教师的临时工作,一边教学一边自学,同年考入同济大学化学系,成为优才生。1948年,卢佩章留校任助教,同时他积极参加共产党地下组织的反饥饿反内战运动,并作为上海市学联代表到南京,参加“五二○游行”,后被捕入狱。/pp  1949年9月,在新中国成立前夕,卢佩章怀着发展祖国科学技术事业的勃勃雄心,奔赴百废待兴的东北,走进了当时新组建的中国科学院大连化学物理研究所的前身——大连大学科学研究所。/ppstrong  初创色谱学/strong/pp  新中国成立初期,我国的气相色谱研究还是个空白。卢佩章和他的研究小组经过无数次的试验和探索,于1953年我国第一个五年计划开始时,设计出我国第一台体积色谱仪,使分析石油样品的速度由原来的30多个小时缩短到不到1小时,而且所用样品量仅是原来的千分之一。这一开创中国色谱学先河的研究成果迅速在全国石油化工企业普及应用,促进了石油工业的发展。抗美援朝战争期间,卢佩章接受国防科研分析任务,协助鞍钢焦化厂制取甲苯,为生产前线急需的TNT炸药并提高产量作出重大贡献。/pp  从20世纪50年代初期,卢佩章先后开展了气相色谱及液相色谱理论、新技术发展及其应用方面的研究。1956年,在中国科学院学部委员会成立大会上,刚刚30岁的卢佩章做了我国第一篇气相色谱研究的学术报告。/pp  卢佩章开创了中国色谱科学,色谱技术其后在工农业生产、国防、科研、医学、生物制药、环境保护等方面广为应用。几十年来,卢佩章执着于以色谱为主的分析化学研究,这位中国色谱分析的先驱者之一,是当之无愧的“中国色谱之父”。/ppstrong  国防贡献多/strong/pp  卢佩章的色谱研究,作为中国科技界的崭新学科,和我国国防工业的发展紧密地联系在一起。/pp  20世纪60年代是中国核工业发展的最关键时期,在苏联专家撤走、我国自己制造原子弹最困难之时,卢佩章和他的研究小组承担了测定金属铀235和铀238同位素中气体杂质的科研课题。在卢佩章的领导下,研究小组在极短的时间里,完成了原子能工业应用的气相色谱研究,创建了固体中痕量气体的色谱分析,准确地测定出金属铀235和铀238这两种同位素气体杂质的含量,为中国第一颗原子弹的爆炸成功尽了分析化学工作者应尽的责任。/pp  色谱在核潜艇上也发挥了很大作用。核潜艇可以在水下连续航行数月以至一年以上,艇上空气如何净化、再生及解决含氧量是制约各国核潜艇技术发展的一大要素。卢佩章接受了为我国第一艘核潜艇密封舱气体分析的紧急任务,随后他带领科研小组研制出了当时世界上最先进的船用色谱仪。/pp  拥有先进可靠的运载火箭武器系统是当今世界强国的重要标志。卢佩章和他的团队在长达20年的科学探索中,成功研制出当时国际上仅少数国家才能生产的新型吸附剂——分子筛,并敏锐地察觉到这种吸附剂用做催化剂将有特殊性能,使我国先于国际上其他国家研制成功脱氧分子筛105催化剂,解决了液氢生产制备的关键技术环节。为液氢用于火箭燃料,作出了应有的贡献。/ppstrong  我是一个兵/strong/pp  在“文化大革命”中,卢佩章被打成“反动学术权威”,关进“牛棚”,一度被迫中断研究。“文革”结束后,他立即重投色谱科学的探索中,不久率领团队研制成功了细管径的高效液相色谱柱。当时,这项技术曾独步世界,西方国家直到两年后才研制成功。卢佩章还领导了色谱专家系统工作,通过软件,普通操作者也可以完成以往科学家才能做到的复杂的色谱分离技术,这无疑是色谱研究中的一场革命。/pp  卢佩章和所有致力于色谱研究的专家们同心联手,为中国的色谱研究赢得了荣誉,也赢得了时间。1980年,卢佩章以他30年间在新中国分析化学方面、尤其是在开创色谱学科领域、并把这种先进的色谱分析分离技术运用到国防工业和国民经济建设中所取得的卓越成就,当选为中国科学院学部委员(院士)。在国内外色谱研究工作中处于领先地位的大连化物所色谱中心,在卢佩章的设计下,开始了色谱专家系统的研究。经过3年的努力,这套系统得以实现,成为色谱研究中一项里程碑式的工程。/pp  中国的色谱事业从无到有,经过几代人的努力,已跻身国际一流。作为先驱者,卢佩章院士满怀欣慰,回首往昔,他无限感慨:“我只是集体中的一个兵,一个小兵,成绩都是集体团结协作,开拓进取的结果,我不过是尽到了一个分析工作者的责任而已。”淡泊名利,专心科研,专心培养下一代科学家,几十年来,卢佩章就是这样默默地为祖国的科学发展贡献着自己。/ppstrong  甘愿做人梯/strong/pp  卢佩章研究色谱分析半个多世纪,300余篇论文以及大量专著,凝结着他数十年科学探索中的丰硕成果和心血。/pp  上世纪90年代初,卢佩章提出不再担任研究领导和学会的领导工作,而是将重点转向培养年青一代,使年轻人能挑起更重要的担子。/pp  卢佩章院士的弟子中有8名已是博士生导师。22岁即到所和他共同工作,后又协助其带研究生的张玉奎也于2003年当选为中科院院士。提起他的弟子们,卢佩章由衷地说:“看到他们干出成绩,比我自己成功还高兴。”“卢院士弟子并不是特别多,但挑大梁成为国际色谱界著名专家的多。”人们这样评价。/pp  卢佩章把培养年青一代作为历史的责任,不仅注重培养年轻人严谨的学术思想和创新精神,更重要的是培养年青一代热爱祖国热爱科学。卢佩章告诉过许多人:“中国的科学家应该有一颗热爱祖国、热爱科学的心。我不相信一个只追求个人名利的人,能在科学上作出更大的贡献。”/pp  已经85岁高龄的卢院士,仍然十分关心年轻人的成长,尽可能为他们创造良好的科研环境,为他们提供最新的科研方向。尤其是卢院士严谨的科学作风,豁达开朗的人生态度,十分值得晚辈们学习。卢院士将一生的心血全部倾注于我国的科学研究事业,为“科教兴国”作出了杰出的贡献。/p
  • 科学家通过红外光上转换实现高效的太阳光合成
    基于太阳光开展能源转化和工业生产,是解决全球能源危机、助力我国实现“双碳”目标的重要路径之一。太阳光中蕴含着大量的红外光子,这些光子不为人眼所见,且能量较低,通常难以有效转化和利用。胶体量子点是一类溶液法生产的理想捕光材料,它们的吸光范围很容易被拓展至红外波段。同时,吸光后的激发态量子点能够参与丰富的光化学转化过程,生产太阳燃料或者精细化学品,是国际上的重要科学前沿。近日,中国科学院大连化学物理研究所(以下简称“大连化物所”)研究员吴凯丰团队在量子点光化学研究中取得重要进展。团队率先实现了低毒性量子点敏化的近红外至可见上转换,并将该体系与有机光催化融合,实现了高效快速的太阳光合成,有望对光合成技术产生深远影响。相关成果发表在《自然-光子学》上,共同第一作者是大连化物所博士梁文飞、聂成铭和副研究员杜骏。利用低毒性量子点开展近红外光子上转换和有机催化合成红外光到可见光的上转换在能源、医学、国防等诸多领域具有重要意义。比如对太阳能电池而言,上转换能使器件可以有效利用阳光中大量的低能量红外光子,颠覆性地提升太阳能转换效率。在各类上转换技术中,基于有机分子三线态湮灭的光敏化技术可对非相干、非脉冲光源实现上转换,具有较强的实用前景。然而,此前报道的近红外光敏剂普遍效率较低或含有贵金属和有毒金属,相对廉价环保的高效近红外光敏剂仍有待开发。前期工作中,团队深入系统地研究了量子点敏化有机分子三线态的动力学机制,并探索了这些新机制在光子上转换、有机光合成等领域的初步应用。此次研究中,团队聚焦于CuInSe2基近红外量子点,该类量子点相对绿色环保,可用于替代剧毒性的铅基近红外量子点。团队制备了ZnS包覆的Zn掺杂CuInSe2核壳量子点,有效解决了该类量子点缺陷多和稳定性差的难题。随后,在量子点表面修饰羧基化的并四苯分子作为三线态受体,并采用红荧烯分子作为湮灭剂,构建了溶液相上转换体系。该体系成功实现了近红外至黄光的上转换,量子效率高达16.7%。进一步地,团队将该上转换体系与有机光催化融合,将上转换产生的红荧烯单线态直接用于“原位”有机氧化、还原、光聚合等反应,巧妙避免了上转换光子传播至溶液表面所经历的量子点重吸收损失。此外,得益于近红外光子的有效利用和量子点的宽谱吸收特性,该上转换-有机催化融合体系可在太阳光下高效快速运行。在室内窗台上(光照强度约32 mW cm-2),几秒内即可实现丙烯酸酯的光诱导聚合。“一个世纪以来,在阳光下进行有机合成是许多科学家的想法,但前期的探索主要局限于利用太阳光中的可见光子。”吴凯丰说,“这项研究将太阳能合成的范围扩大到了阳光中丰富的可见光和近红外光子,将有力地推动光合成技术的发展。”该工作不仅实现了低毒性量子点敏化的近红外至可见高效上转换,还发展了一种高效快速太阳光合成的新路径。这一交叉创新型研究成果对光化学和光合成技术的发展具有重要意义。
  • 安捷伦科技推出气相色谱新系统Agilent LTM-II
    安捷伦科技公司于近日推出用于气相色谱的Agilent LTM-II系统,这是第二代低热容专利技术,使用更快的色谱柱加热/冷却循环大大提高样品通量。LTM-II系统可以利用标准安捷伦色谱数据系统软件,使用户能够将通量更高的LTM技术无缝集成到他们的实验室工作流程中。  安捷伦气相色谱系统和工作流自动化部门的副总裁ShanyaKane说道:“许多客户都面临提高实验室效率的压力,但是他们又不想运行多个仪器软件系统。新型LTM-II控件能够配合所有的安捷伦数据系统平台,包括最新的OpenLABCDS软件。”  Agilent LTM-II系统可与以性能强大而闻名的Agilent 7890A GC联用。与使用传统气相色谱柱温箱的7890A不同,此系统的色谱柱被加热元件和温度传感器包裹,程序升温速率与降温速度都将显著加快。  LTM-II系统使用与7890A GC相同的、现有GC和GC/MS方法所采用的进样系统、检测器和熔融石英色谱柱。安捷伦方法转换软件能够方便用户进行方法转化,利用更快的程序升温和降温实现更快速的色谱运行周期。  安捷伦的另一项气相色谱专利技术——微板流路控制技术,可提供可靠的、无泄漏的反吹功能,延长色谱柱寿命。这使色谱柱免受污染,还省去了烘烤去除后流出化合物所耗的时间,进一步提高了效率。微板流路控制技术配合LTM-II能实现二维色谱的功能,可实现对不同色谱柱在同一运行周期同时提供独立的温度控制。  这些特性使得快速Agilent LTM-II系统非常适于石油化工、环境分析、食品安全检测、法医学、药物QA/QC以及食品/香精/香料的分析。  LTM硬件包含一个用于安捷伦7890 AGC的可更换的柱箱门,包括内置电子器件和插槽,可以控制多达四个LTM柱模块。如有需要,7890A GC仍可用作传统柱温箱的气相色谱。
  • 中国气相色谱质谱联用仪市场调研报告(2016版)“新鲜出炉”
    为了解近年来气相色谱质谱联用仪的技术发展趋势、市场发展行情、气相色谱质谱联用仪各品牌在市场中的占有率以及重点应用领域等内容,同时,为各气相色谱质谱联用仪厂商在制定仪器销售和市场推广策略时提供参考,仪器信息网特组织了“中国气相色谱质谱联用仪市场调研”活动。此次调研,面对的调研对象包括仪器信息网相关注册用户、气相色谱质谱联用仪制造、应用领域专家以及部分气相色谱质谱联用仪生产厂商等。  在此基础上完成的《中国气相色谱质谱联用仪市场调研报告》内容包含了气相色谱质谱联用仪产业概述、气相色谱质谱联用仪器新品盘点、近些年技术发展回顾与主要制造商地区分布、销量与份额分析(地区、品牌)、价格分析、营销渠道分析、市场发展趋势、产业研究总结等。  《中国气相色谱质谱联用仪市场调研报告》的完成得到了广大用户、企业以及业内专家的大力支持。在前期调研过程中,咨询了业内相关专家20余位,近2500家实验室用户参与了此次气相色谱质谱联用仪调研。  由于2016年度刚刚结束,相关数据尚不完整,故本报告中所引数据主要为2015年度的数据。  报告链接:中国气质联用仪市场调研报告(2016版)  节选第一章 气相色谱质谱联用仪产业概述  1.1 气相色谱质谱联用仪定义  气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。GC/MS已经成为分析复杂混合物最为有效的手段之一。  气质联用法是将气相色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。气相色谱和质谱由接口相连。气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。  本报告仅包含单四极杆、三重四极杆、单TOF、QTOF和离子阱类型的实验室气质联用仪。 第二章 气相色谱质谱联用仪新品盘点  小结:2015年至2016年这两年,中国市场上的主流企业共推出了12款实验室用气质联用仪产品:5款单四极杆,3款三重四极杆,1款orbitrap,3款飞行时间。总体的发展趋势包括:进一步提高离子化和离子传输效率 进一步提高检测器灵敏度 在保证仪器性能的同时,实现节能、降耗、减排 使操作维护更加简便 开发专属性谱图的数据库,以提供有针对性的解决方案 进一步提高质谱扫描及数据采集处理的能力等等。 第五章 气相色谱质谱联用仪销量与份额分析(品牌)  5.1主要品牌气相色谱质谱联用仪销量及市场份额    图5.1 2015年主流企业销量市场份额(台)  来源:抽样统计,2016年12月  2015年中国气相色谱质谱联用仪市场规模**~**台,销售总额为20亿人民币左右。总的来说,国内气相色谱质谱联用仪市场现在的格局是完全被国外厂商垄断,并且从长期来看,这种局面很难打破。  2015年中国市场上的主流气相色谱质谱联用仪厂商包括安捷伦、岛津、赛默飞、珀金埃尔默、布鲁克、天瑞仪器、东西分析、天美、普析通用、舜宇恒平、力可、日本电子等。 第七章 气相色谱质谱联用仪市场发展趋势    图7.1 2014-2016年质谱联用仪进口量(台)及增长趋势  来源:中国海关,2016年12月  图7.1显示的进口量包括气质和液质,液质商品化时间相对较短,且价格是气质的2~3倍,所以占比非常小,大约占到1/4。所以总体上看气质联用仪市场增长迅速,2012~2016年复合增长率约*.*%。   正文目录  第一章 气相色谱质谱联用仪产业概述... 1  1.1 气相色谱质谱联用仪定义... 1  1.2 气相色谱质谱联用仪使用单位分布... 3  1.3 气相色谱质谱联用仪产业链结构... 5  1.4 气相色谱质谱联用仪产业概述... 5  第二章 气相色谱质谱联用仪新品盘点... 7  2.1 安捷伦... 7  2.2 岛津... 11  2.3 赛默飞... 14  2.4 力可... 15  2.5 日本电子... 17  2.6 天瑞... 20  2.7 东西分析... 21  2.8 舜宇恒平... 22  第三章 气相色谱质谱联用仪产品发展回顾和主要制造商地区分布及技术进展... 24  3.1主要生产企业气相色谱质谱联用仪生产基地分布... 24  3.2主要生产企业气相色谱质谱联用仪技术进展... 25  3.2.1 近些年国外气质联用仪技术进展... 25  3.2.2 近些年国内气质联用仪技术进展... 26  第四章 气相色谱质谱联用仪销量与份额分析(地区)... 28  4.1 2015分地区销量分析(台)... 28  4.2 2010-2015售价分析... 29  第五章 气相色谱质谱联用仪销量与份额分析(品牌)... 31  5.1主要品牌气相色谱质谱联用仪销量及市场份额... 31  第六章 气相色谱质谱联用仪营销渠道分析... 33  6.1 气相色谱质谱联用仪营销渠道现状分析... 33  6.2 气相色谱质谱联用仪营销渠道特点及其发展趋势... 34  第七章 气相色谱质谱联用仪市场发展趋势... 35  7.1 2014-2016年质谱联用仪进口量及增长趋势... 35  7.2 气相色谱质谱联用仪未来市场预测... 36  第八章 气相色谱质谱联用仪产业研究总结... 39
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制