当前位置: 仪器信息网 > 行业主题 > >

色谱单体柱

仪器信息网色谱单体柱专题为您提供2024年最新色谱单体柱价格报价、厂家品牌的相关信息, 包括色谱单体柱参数、型号等,不管是国产,还是进口品牌的色谱单体柱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱单体柱相关的耗材配件、试剂标物,还有色谱单体柱相关的最新资讯、资料,以及色谱单体柱相关的解决方案。

色谱单体柱相关的资讯

  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical Atomic Spectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • 抢先体验全新色谱柱产品----3款抗体分析SEC色谱柱优惠促销
    随着治疗性抗体等蛋白药物在临床上的广泛应用及质量管理新要求的提出,TOSOH公司采用最新的填料表面修饰及优化技术,对抗体分析用的&ldquo 金标准&rdquo -SW色谱柱进行了全新的改进,正式推出了新一代单抗分析用SW色谱柱系列&mdash &mdash TSKgel SuperSW mAb HR、TSKgel SuperSW mAb HTP及TSKgel UltraSW Aggregate。新SW色谱柱在分析抗体的单体、二体和多聚体上的分离性能都有了显著的提高。 活动内容初次订购新一代SW色谱柱的客户,可与G3000SWXL或者SuperSW3000相同的价格购买。(仅限一次,数量不限)活动时间 即日起至2014年3月31日 *活动详情请致电我司销售人员或各大代理商
  • 赛默飞发布测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案
    2015年7月28日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了使用GC-FID法测定清漆中六亚甲基二异氰酸酯单体(HDI)的解决方案。六亚甲基二异氰酸酯是全球应用发展十分迅速的一种新型聚氨酯原料。HDI 及 HDI 缩二脲、三聚体是生产聚氨酯涂料及聚氨酯弹性体的重要原料,广泛用于航空、汽车、建筑、木器、塑料皮革等行业和领域。HDI吸入有毒,会强烈腐蚀皮肤,引起红肿、胀痛、感染和皮疹。本品蒸气会刺激眼睛粘膜和呼吸道,引起流泪和咳嗽,可能会引起永久性眼部疾病。接触皮肤或吸入其蒸气可能会引起过敏。目前六亚甲基二异氰酸酯单体检测的检测方法有《GB/T 18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,但是方法老旧,单点校正不准确,恒温分析会导致峰型较差,油漆残留在色谱柱内等缺点,因此需要改进。此次赛默飞发布的解决方案基于《GBT18446-2009 色漆和清漆用漆基 异氰酸酯树脂中二异氰酸酯单体的测定》,采用Thermo ScientificTM TRACE 1310气相色谱仪,搭配FID检测器,通过优化子内标物和HDI的浓度比,并将原来的130℃恒温模式分析改为程序升温模式分析(在高温度下运行几分钟,降低色谱柱污染,延迟使用寿命),对相应的气相色谱条件进行了优化;色谱柱由15m毛细管柱改为通用型的 30m 毛细管柱;同时采用多点校正的方式,使得内标物和待测组分的分离度更高、峰型更好,定量更加准确。产品链接:TRACE 1310 气相色谱仪www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html解决方案下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/petrochemical/documents/Measurement-of-HDI-in-varnish.pdf-------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 中石化研制世界首台高性能单体包裹体成分分析仪
    中国石化石油勘探开发研究院研制成功世界上第一台高性能单体包裹体成分分析仪,建立具有国际领先水平的单体油气包裹体剥蚀成分分析新技术。  据介绍,该技术突破性地实现了不改变单个包裹体内原始油气组成下的有机成分提取和分析。利用该分析仪,我国首次实现对塔河油田不同期次单体油气包裹体的成分分析,为塔河油田奥陶系油藏油气充注过程、油气成藏期次提供了可靠证据。同时,建立的一系列油气包裹体分析新技术方法所获得的分析数据及地球化学信息,已有效应用于塔河油田、普光气田、胜利油田等油气源对比、油气运移以及成藏过程研究,也为南方海相天然气勘探、我国碳酸盐岩油气成藏理论和勘探实践提供了科学依据。
  • 东曹推出新的亲和层析填料及SEC色谱柱
    近日,东曹(TOSOH)推出了新的专为单克隆抗体的分离纯化而设计的亲和层析填料TOYOPEARL AF-rProtein A HC-650F,其特点是具有高吸附载量,和优异的耐碱性能,主要适用于单克隆抗体(IgG1为主)、IgM和Fc融合蛋白的分析。和之前的具备高机械强度、高流速的A-650F不同,HC-650F的优势在于高载量,对抗体的吸附载量可达到68g/L以上。  东曹还推出了新型的三款用于分析抗体药物中多聚体、二聚体、单体及抗体断片的硅胶基质SEC色谱柱,针对单抗类药物在其生产、贮存过程中容易形成二聚体或多聚体、抗体断片的问题,用于在药物研发以及纯化生产中检测和控制多聚体含量。  其中TSKgel SuperSW mAb HR使用硅胶基质的4&mu m粒径填料,具有高分离度,并与TSK经典款色谱柱G3000SW具有同样的分离范围,非常适合用于单克隆抗体的二聚体、单体及片段的分离分析。  TSKgel SuperSW mAb HTP适用于高速分离、高分离度的抗体分析。使用与SuperSW mAb HR相同的填料,仅需一半的时间就能达到相同的分离效果。  TSKgel UltraSW Aggregate使用硅胶基质的3&mu m粒径填料。分子量排阻界限更高,适合用来分析抗体药物中三聚体及多聚体这种大分子量的蛋白。
  • 色谱柱为什么要老化?你知道吗
    老化,有两种情况一种是在装填好的色谱柱,连接于仪器上后,应先试压,试漏,而后在恒定的温度下用载气吹洗数小时后承受分析,一般称此为柱子的老化过程。老化的目的是把固定相的残存溶剂,低沸点杂质,低分子量固定液等赶走,使记录器基线平直,并在老化温度下使固定液在担体表面有一个再分布过程,从而涂得更加均匀牢固。装填好的色谱柱,经过老化一段时间后,柱效及性能均稳定了,这样才可使用。另一种情况,是做了一天样品,怕柱子里有残留,也会说今晚要老化一下柱子,或说烘烤一下柱子。为什么要老化是为了彻底除去填充物中的残留溶剂和某些挥发性的物质,气相色谱柱使用一段时间后柱子里面会有高沸点杂质残留,这些残留的污染物和样品作用,容易导致色谱峰拖尾,杂质峰等问题;另一方面是促进固定液均匀牢固地分布在担体的表面上,降低由于柱子流失而引起的本底噪声。色谱柱长期在高温下使用,固定相会缓慢流失,这就造成了毛细管柱内壁活性基团硅基暴露,暴露的硅基吸附样品也会造成色谱峰拖尾,以及基线起伏、噪声升高等问题。为了避免发生这些情况,我们就需要对使用时间较长的气相色谱柱进行老化操作,老化可以除去色谱柱中残留的污染物。也可以让色谱柱内壁上的固定相热胀冷缩后重新覆盖住部分活性点,这样就延长了色谱柱的使用寿命。老化的重点是什么关于气相色谱柱的老化,一直有各种各样的说法,比如有设个缓慢的升温程序走一整晚的,也有忽高忽低走好几次循环的,也有些实验室就简单粗暴的直接升到高温下烘烤。那到底怎样做才能有好的效果呢? 老化温度 老化的最高温度通常推荐设为方法最高设定温度和色谱柱耐受温度的中间值。值得注意的是色谱柱老化时温度越高伴随着固定相的流失也会越严重,所以老化温度以及老化时间需要精确把握。色谱柱老化的温度并不建议越高越好,而是在保证能赶走污染物的前提下温度越低越好。 老化时间 具体的老化程序,通常会缓慢升温至老化温度,比如2~5摄氏度/min,然后再继续老化2个小时 。程序升温的速率可以根据自己的经验或者实验要求来设置。而老化柱子的时间最主要还是要根据测定的样品来判断。如果经常性的使用仪器,那么就可以定为一到两个星期老化一次,老化时间也不用太长,可以直接升到老化温度,0.5-1个小时左右足够了。如果是长时间使用的色谱柱,并且色谱柱进样品端已经黑了,那就要系统老化。截去进样口端0.5-1米的长度,再以5度/分钟的速率升到老化温度,保持20-30分钟后再降温到初始,再以5度/分钟的速率升到老化温度这样循环两次。必要的时候要进行清洗和再生。柱子内部是看不到,摸不到的,所以是不是老化好了一般根据老时间来判断,而这个时间是很多做色谱柱的人总结出来的。 避免氧气 比纠结具体的升温速率更重要的事情是 对避免氧气的存在,这也是老化失败最常见原因。因为高温下的氧气是破坏化学键的好手,而色谱柱里的固定相一旦氧化,彼此间的键键链接会被破坏,固定相就不再能稳定“固定”在色谱柱里,造成大量柱流失,柱效也会大幅下降。 避免污染 另外,从避免污染的角度来说,新柱子老化的时候, 好不要连接检测器。如果是FID检测器,可以不用点火,也不用开氢气和空气。新填充的色谱柱不能马上使用还需要进行老化处理。老化的目的有两个,一是为了彻底除去填充物中的残余溶剂,和某些挥发性杂质,另一个目的是促进固定液均匀的、牢固分布在单体的表面上。
  • 气象色谱测定水中滴滴涕和六六六
    滴滴涕和六六六(666)均系有机氯杀虫药剂,在水中性质稳定,并具有臭味。1 应用范围1.1 本法采用电子捕获鉴定器,可分离鉴定滴滴涕和666的各种异构体。适用于测定生活饮用水及其水源水中有机氯农药的含量。2 原理水中有机氯农药经有机溶剂萃取浓缩后,由氮气载入色谱柱进行分离,载有有机氯农药的氮气进入电子捕获鉴定器,其出峰顺序为:①?&mdash 666;②?-666;③?-666;④?-666;⑤o,p-DDE;⑥p,P-DDE;⑦o,p-DDT;⑧p,p-DDD;⑨p,p-DDT。电子捕获鉴定器中具有一个放射源(3H或63Ni)的电离室,其?射线可使氮电离,并产生自由电子。向电离室正极施加电压,移动速度较快的自由电子形成恒定的电源。当氮气将有机氯农药载入电离室时,与自由电子反应形成负离子,导致电流量的降低,根据电流量的改变进行定量分析。3 仪器所用玻璃器皿均需经铬酸洗涤液浸泡。3.1 具电子捕获鉴定器的气相色谱仪固定相:3%OV-210(或QF-1)加0.5%OV-17固定液的Chromosorb W 酸洗硅烷化担体80~100。色谱柱:长2m,内径3mm的玻璃管。温度:镍源鉴定器柱温:185℃,气化室:250℃,鉴定器:225℃;氘源鉴定器柱温:180℃,气化室:220℃,鉴定器:195℃。3.2 1000ml分液漏斗。3.3 10ml具塞比色管。3.4 5?l微量注射器。4 试剂4.1 滴滴涕,666标准贮备溶液:称取?-666,?-666,?-666,?-666和o,p-DDE,p,p-DDE,o,p-DDT,p,p-DDD,p,p-DDT各10.0mg,分别置于10ml容量瓶中,用苯溶解并稀释至刻度。4.2 滴滴涕、666标准溶液:用环己烷将标准贮备液分别稀释100倍,使各成为1.00ml含10.0微克的中间浓度溶液。4.3 滴滴涕、666混合标准溶液:分别吸取33.1.4.2标准溶液:?-666、?-666各0.10ml,?-6660.2ml、?-666、o,p-DDE、p,p-DDE各0.50ml,o,p-DDT、p,pDDD、p,p-DDT各1.00ml,合并于10ml容量瓶中,加环己烷至刻度,摇匀。混合标准液1.00ml含?-666、?-666各0.10?g,?-6660.20?g,?-666、o,p-DDE、p,p-DDE各0.50微克,o,p-DDT、p,p-DDD、p,p&mdash DDT各1.00微克。根据仪器的灵敏度,用环己烷将此混合标准液再稀释成标准系列,贮存于冰箱中。4.4 苯:色谱纯。4.5 环己烷:重蒸馏。4.6 硫酸:优级纯。4.7 无水硫酸钠:分析纯,经350℃灼烧4h,贮存于密闭容器中。4.8 4%硫酸钠溶液:称取4g无水硫酸钠(33.1.4.7),溶于纯水中,稀释至100ml。5 步骤5.1 萃取和净化5.1.1 洁净的水样:取水样500~1000ml,置于1000ml分液漏斗中,加入10.0ml环己烷(4.5),充分振摇3min,静置分层,弃去水相。环己烷萃取液经无水硫酸钠(4.7)脱水后,供测定用。5.1.2 污染较重的水样:取水样500~1000ml,置于1000ml分液漏斗中,加入10.0ml环己烷(4.5),振摇3min,静置分层,弃去水相。加入2ml硫酸(4.6),轻轻振摇数次,静置分层,弃去硫酸相。加入10ml 4%硫酸钠溶液(4.8),振摇数次,分层后,弃去水相。环己烷萃取液经无水硫酸钠(4.7)脱水后,供测定用。5.2 吸取上述萃取液5.0微升注入色谱柱内,记录色谱峰,从标准曲线中分别查出滴滴涕和666各异构体的浓度。5.3 标准曲线的绘制:分别吸取混合标准溶液(4.3)5.0微升,注入色谱柱,以测得的峰高或面积为纵坐标,各单体滴滴涕和666的浓度为横坐标,分别绘制校准曲线。6 计算式中:C&mdash &mdash 水样中各单体有机氯农药的浓度,微克/L;C1&mdash &mdash 相当于标准有机氯农药的浓度,微克/ml;V1&mdash &mdash 水样体积,ml;V2&mdash &mdash 萃取液总体积,ml。滴滴涕和666的总量分别为各单体量之和。
  • 长沙投资160亿第三代半导体项目首批施工单体进入主体施工阶段
    p style="text-indent: 2em text-align: justify "经过40多天的紧张施工,总占地面积1000亩、投资160亿元的长沙三安第三代半导体项目,首批施工单体已全面进入主体施工阶段,第二批施工单体将于9月底完成基础施工,春节前完成所有单体封顶。/pp style="text-indent: 2em text-align: justify "位于长沙高新区的长沙三安第三代半导体项目,作为长沙17个制造业标志性重点项目之一,主要建设具有自主知识产权的衬底(碳化硅)、外延、芯片及封装产业生产基地,项目建成达产后将形成超百亿元的产业规模,并带动上下游配套产业产值预计逾千亿元。/pp style="text-indent: 2em text-align: justify "从7月20日开工以来,项目建设进展顺利。“项目建设得这样快,是长沙市和高新区的大力支持、有力担当,还有高新区负责联系我们项目的工作人员的辛苦付出!”长沙三安半导体有限责任公司报建负责人张博若感慨地说。/pp style="text-indent: 2em text-align: justify "在项目落地推进过程中,长沙高新区有关部门多次以容缺审批、担当审批方式,极大地便利和促进了项目报建有关工作。在此前三安项目的报建过程中,地勘单位一度工作进展缓慢,而及时提供地勘报告是进行项目施工图审查的必要条件。了解到这个情况后,高新区行政审批服务局项目代办员主动提出和地勘单位沟通,通过多次积极衔接推动,最终得以按照建设方报建铺排计划推进相关工作,没有延误进度。“这样保姆式的帮代办服务,让我们办事放心舒心。”张博若由衷说道。/p
  • 宁波材料所在新型高性能液态邻苯二甲腈单体研究方面取得进展
    邻苯二甲腈树脂(又称为酞腈树脂)是一种集耐高温、阻燃、低烟、优异的力学性能于一身的先进耐高温树脂。该材料在极端环境领域具有非常好的应用潜力,但是苛刻的加工条件阻碍了它的大规模应用。于体系中刚性结构的存在,单体的熔点高(200℃),加工窗口窄,加工工艺繁琐,无法与成熟的树脂加工技术相结合。所以降低邻苯二甲腈单体熔点,对于扩大邻苯二甲腈树脂的应用具有很好的推动作用。   为解决以上问题,哈尔滨工业大学化工学院和中国科学院宁波材料技术与工程研究所先进能源材料工程实验室通过向邻苯二甲腈单体引入柔性链段,有效降低了邻苯二甲腈单体的熔点(如图1所示)。与刚性的苯环结构相比,单键的Si-O键和C-C键构象容易改变,并且Si-O-Si链段具有键长长、键角大的特点,使得链段的内旋转势垒小、柔顺性好。同时,高的结合能可以保证固化后的树脂具有良好的耐热性。   柔性链段的引入,将单体的熔点降低到室温以下(单体的玻璃化转变温度低至-35.6℃,图1a),得到室温下为液态的邻苯二甲腈单体,极大提高了邻苯二甲腈树脂的加工性能。这种液态的单体在室温下具有良好的流动性(30℃,粘度在~2Pas,图1b)和溶解性,可以溶于常见的有机溶剂,如乙酸乙酯、乙醇、丙酮等。这种液态的邻苯二甲腈单体还可以与其他高熔点的单体共混,用于提高粉末单体的加工性能。例如,将这种液态单体与粉末状的邻苯二甲腈单体(熔点~180℃)共混,得到室温下具有一定加工性的混合物(图2a)。固化后的邻苯二甲腈树脂,在氩气和空气中的初始分解温度(Td5%)分别为534.4℃和532.3℃(图2b)。这种共混的方式,可以在提高单体加工性的同时,保证树脂的耐热性。   这种低粘度、易加工的液态邻苯二甲腈单体可以用于复合材料RTM成型,芯片封装等领域。液态的单体能够将邻苯二甲腈单体与成熟的液态加工技术相结合,扩大邻苯二甲腈树脂的应用领域。   以上研究工作近期以“Novel Liquid Phthalonitrile Monomers Towards High Performance Resin”为题,发表在European Polymer Journal上(https://doi.org/10.1016/j.eurpolymj.2023.112027)该研究工作第一作者为哈工大博士生高慕尧,通讯作者为哈工大化工学院刘明教授和宁波材料所宋育杰副研究员。该工作得到了中央高校基本科研业务费(No. LH2021E055)资助。
  • AS塑料制品丙烯腈单体总量不能超标
    近日,宁波慈溪检验检疫局在对辖区某食品接触材料企业出口美国和科威特的两批次真空保鲜罐产品进行安全卫生项目检测时,连续检出不合格,其AS材质塑料部件检测项目“丙烯腈单体总量”结果分别超出美国标准FDA 21 CFR 177.1040和我国国家标准GB17327-1998《食品容器、包装材料用丙烯腈-苯乙烯成型品卫生标准》中的限量要求。  AS(丙烯腈-苯乙烯共聚物)是一种具有高透明度、耐油性和耐化学腐蚀性的塑料原料,在食品用具中广泛使用,如食品餐具、塑料水杯等。AS塑料中可能残留的丙烯腈则是一种对健康有着严重危害的化学物质,一旦人体摄入过量,轻者头晕、恶心,重者直接造成呼吸中枢的麻醉,出现四肢阵发性强直抽搐、昏迷。为此,中国、欧盟、美国、韩国及日本等国家和地区均将该物质纳入对食品接触AS塑料的必检项目,并严格限制其迁移量或总量。  经查找原因,问题出在使用了不符合食品接触材料标准的AS原料。原料采购时企业盲目相信供方提供的合格检测报告,却没有核实检测项目是否符合进口国相关标准。最终该两批产品被判不合格、不准出境,企业为此遭受较大损失。  检验检疫部门提醒相关食品接触材料企业,加强进口国标准及具体检测项目的了解学习,原料采购时仔细核对供方提供的检测报告。必要时可以在大量生产前对原材料中容易超标的项目如“丙烯腈单体总量”进行委托检测。
  • 东菱公司成功研制世界单体最大推力100吨电动振动试验系统
    据苏州高新股份4月15日消息,由中国机械工业联合会组织的科技成果鉴定会在苏州召开,会议对苏高新股份下属东菱公司自主研制的100吨电动振动试验系统等产品技术进行了科技成果鉴定。由中国科学院院士胡海岩、翟婉明领衔的7位行业权威专家组成的鉴定委员会一致认为,ES-1000型(100吨)电动振动试验系统已通过计量检定,是我国自行研制的单台最大推力的电动振动试验装备,获得多项国家发明专利,具有完全自主知识产权。该装备为全球首台套,总体水平国际领先。‍据悉,此次100吨电动振动试验系统的成功研制,是东菱公司继2007年研制出世界最大推力35吨振动台、2012年推出世界最大推力50吨振动台后取得的又一个“世界第一”。东菱公司于2021年开始对单体100吨电动振动试验系统的自主研发。历时2年的技术攻关,突破了超大推力高强动圈设计制造技术、动圈自适应高效冷却控制技术,以及超大型功率放大器等关键核心技术,解决了超大推力驱动下动圈设计制造难、导向持续可靠性稳定性差,以及超大推力电动振动试验系统发热量大、冷却效果差等难题,成功研制出单体100吨超大推力电动振动试验系统,通过了中国计量院的第三方计量。100吨电动振动试验系统的成功推出,可满足我国航空航天、船舶、轨道交通等重大部件乃至整机的可行性试验需求,提供可靠的试验保障,为我国高端装备制造的整机和零部件模拟现实工况提供正弦振动、随机振动、冲击、连续碰撞等力学试验,还可与环境试验箱配用进行综合环境的可靠性试验等等,为解决我国重点科研产品进行大推力振动试验的瓶颈问题提供全面的解决方案。
  • 首都科技条件平台北京建材总院基地成功举办“单体燃烧检测技术交流会”
    p  2018年12月27日,首都科技条件平台北京建筑材料科学研究总院研发实验服务基地(北京建材总院基地)成功召开以“交流、诚信、合作、共赢”为主题的“单体燃烧检测技术交流会”,来自全国各省市的优秀检测机构、设备生产企业代表20余人参加了此次会议。北京建材总院基地主管领导代德伟、基地办公室主任马国儒、昆山莫帝斯科燃烧技术仪器有限公司执行董事王海洋以及中国科学研究院有限公司、上海华慧检测技术有限公司、深圳建筑科学研究院有限公司、绍兴市质量技术监督检测院、江苏省产品质量监督检验研究院、TUV 南德等行业相关代表莅临会议。/pp  会上,北京建材院基地主管领导代德伟对与会代表表示热烈欢迎,北京建材院基地办公室主任马国儒对基地开放实验室国家建筑防火安全产品质量监督检验中心整体情况进行介绍。随后,相关人员分别对“SBI关于基材选取、试样状态调节、安装要求等方面介绍”、“SBI比对作业指导书技术讨论”、“SBI计量检定规程编制情况介绍”做了汇报。参会代表对单体燃烧试验标准的相关规定、单体燃烧试验的行业现状以及单体燃烧试验相关技术问题等进行了激烈的探讨。会后,与会代表参观了基地开放实验室国家建筑防火产品安全质量监督检验中心。参观期间,昆山莫帝斯科燃烧技术仪器有限公司技术负责人刘建从原理上对单体燃烧设备相关校准情况进行详细解说。/pp  此次技术交流会的成功举办,为单体燃烧试验所涉及的基材选取、状态调节、试样安装、设备校准等技术问题的解决提供了院起对接平台,加深了检测机构对相关标准的理解与掌握,为提高单体设备使用的可靠性、提升单体燃烧试验检测技术能力、促进建筑防火检测技术进步有着十分重要的意义。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/ef8c1029-4944-4a92-8c4f-984d2b02bc28.jpg" title="1_副本.jpg" alt="1_副本.jpg"//ppbr//p
  • 大连化物所发展出利用生物质合成共聚酯单体新方法
    近日,中国科学院院士、中科院大连化学物理研究所催化与新材料研究室(十五室)研究员张涛与研究员王爱琴/李宁团队,联合生物能源化学品研究组研究员(DNL0603)王峰团队,发展出一种利用乙醛和丙烯酸酯的生物质合成共聚酯单体新方法。  随着现代社会的快速发展,各行各业对性质可调的共聚酯需求越来越高。聚(对苯二甲酸-间苯二甲酸-环己烷二甲醇酯)(PCTA)作为一种代表性的共聚酯,其性质可以通过间苯二甲酸来调控。与传统的聚对苯二甲酸乙二醇酯(PET)相比,PCTA具有更高的耐化学腐蚀性、抗冲击性、玻璃化温度和透明度等特点,可广泛应用于化妆品容器、家用电器和医疗包装等领域。目前,PCTA单体主要由石油下游产品制备获得。为了减少对化石能源的依赖性,发展温和可持续路线制备PCTA单体具有重要意义。  该合作团队在生物质合成路线(Angew. Chem. Int. Ed.)的基础上,发展出一种以生物质基平台化合物丙烯酸酯和乙醛为原料,合成共聚酯PCTA单体的新方法。该过程包括三步反应,分别是乙醛与丙烯酸酯的Morita-Baylis-Hillman反应、H2SO4/SiO2催化一步脱水/Diels-Alder反应、Pd/C催化脱氢反应,总收率为61%;此外,改变上述过程的第三个反应催化剂,即利用Pd/C-Cu/Zn/Al双床层催化剂进行催化加氢反应,可获得另外一种重要的增塑剂单体——UNOXOLTM二醇(CHDM),该过程的总收率为67%。此外,合作团队还运用生命周期评价(LCA)方法将本工作中的生物质路线与传统石油路线进行对比,表明该生物质路线展现出积极的碳减排能力。该研究为共聚酯单体的合成提供了新方法,并为生物质资源转化提供了新思路。  近日,相关研究成果以Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde为题,发表在《德国应用化学》上,并被选为热点文章(Hot Paper)。研究工作得到国家自然科学基金、大连化物所所内合作项目、洁净能源创新研究院-榆林学院联合基金等的支持。  论文链接
  • 水壶材质中丙烯腈单体残留量超国标:决定召回
    质检总局12日发布消息称,由于材质中丙烯腈单体残留量超标,贝嘉贸易(上海)有限公司已向该局提交了召回计划,召回部分从荷兰进口的Royal vkb品牌多功能水壶,型号为VP360.LGC和VP360.BTQ,生产批次为50000138,生产日期为2015年5月至6月期间。据该公司统计,中国大陆地区受影响的产品数量共计66件。  本次召回范围内的多功能水壶由于材质中丙烯腈单体残留量超标,不符合我国标准GB 17327—1998《食品容器、包装材料用丙烯腈-苯乙烯成型品卫生标准》中丙烯腈单体的限量要求(50 mg/kg),长期使用该多功能水壶,可能危害人体健康。
  • Cubis 天平---超级单体传感器的高端杰作
    赛多利斯新实验室天平Cubis是为那些需要最好的质量,但却不想多花不必要花费的操作者提供的。Cubis提供了最大的灵活度,来完成用户特定的任务。  所有实验室环境中都能得到最佳的操作结果  Q-向导。 三种不同的显示和控制单元可以覆盖所有的实验室应用,为天平的各种选项操作提供支持。人机交互的界面只显示用户手边需要的应用控制。  MSA显示控制单元是操作Cubis的最高端单元,它集中了最先进的技术和完美的人机交互界面。高分辨率的TFT显示和触摸屏为您特殊的称量过程要求提供了亮丽的显示和精致的操作界面。这是适应于例如制药行业等有着最严格要求的应用的最佳显示和控制单元。  MSU显示控制单元有着经典的风格和通用的能力。高分辨率的黑白图形化显示宽大,按键反应精确。一些仪器的操作者在执行任何简单或复杂的称量应用过程时,会希望键盘有着触感反馈,那这一款就是适合您的显示控制单元。  MSE显示控制单元提供直观的称量功能,并且能保证高等级的性能表现和最大的使用方便性。它带有高对比度背光LCD,直白的语言为您提供使用向导,有着精确反馈的键盘按逻辑顺序排列。对于那些希望得到最高可能的称量精度,但却不希望复杂的称量过程能力或数据管理的用户来说,这就是最理想的款式。  MSA和MSU显示控制单元是一个全新研发的产品,为特定的称量任务度身定做。一旦操作者设定了特定的任务,操作向导系统就开始工作。不相关的设置选项就不会再出现。这样,设置复杂的称量任务也就变得很简单。  Q-秤盘 偏离中心误差或者叫&ldquo 四角误差&rdquo 是指负载不在天平秤盘的中央。Cubis是第一个能够补偿这个误差的天平。在操作者需要以很快速度工作时,这是必然会发生的情况。而现在,这已经不再是问题了。  Q-水平 如果天平没有完全处于水平状态,称量精度就会受到很大的影响。Cubis可以自动检测到天平是否有所倾斜,并通过一个按键进行自我补偿。(这是一个可选功能,2009年5月起供应 可读性为10或100 mg的型号不提供。)  Cubis MSU和MSA型号标准配置安装有智能警报系统,可以立即检查到倾斜。显示屏幕可以为用户提供清晰的指示帮助用户调整水平 &ndash 甚至不需要检查天平的机械水平泡。  不可比拟的称量技术  Cubis有着各种不同的量程可供选择,最大12kg,可读性从0.01 mg 到 0.1 g不等,Cubis几乎覆盖了所有实验室需要的范围。Cubis系列天平使用了第二代超级单体传感器。此系统特别坚固,比起它的前一代来更为紧凑,并且首次使得上皿式全分辨率半微量天平的最大量程达到了220 g &ndash 这对一个空间有限的实验室来说是一个真正的实惠。  所有的Cubis型号都有着杰出的机械性能规格,可以得到不可比拟的快速结果。  最优化适应您的应用  MSA和 MSU型号符合赛多利斯APC(先进制药规范)的严格要求。APC(先进制药规范)是赛多利斯收集的一个性能要求包,它最优化的适应于制药行业的高要求,适用于质量管理系统。APC(先进制药规范)能无缝衔接到实验室过程中并提供最好的安全特性,包括智能用户/密码管理、警告功能和根据用户定义行为等级进行安全提醒等。(例如水平、最小允许样品量和全自动校正/调整。)  Q-通讯 在标准配置中包括三种数据接口,确保了完美的通讯。这三种接口是:执行网络服务的以太网(MSE型号中不含)USB PC 接口和一个用于连接赛多利斯附件/打印机的RS-232C接口。其它选件还包括蓝牙、9针的RS-232C PC接口和PS/2接口。  内置的SD卡读卡器(仅在MSA和MSU型号中提供)可以用于在不同天平或电脑之间传输称量数据、用户文件、任务配置和设定。  适应未来发展  每一个Cubis实验室天平的模块化设计使得它能够快速进行各模块的独立升级。赛多利斯可以为每个单独模块根据市场导向快速设计研发新品。这样,你才能够使您的Cubis实验室天平随时候拥有最先进的技术。产品在购买几年之后仍然是最顶级的,帮助您减少对新设备的投资。     上海纳锘仪器有限公司  地址:上海市莲花南路1388弄8号楼碧恒广场1503室[201108]  电话:021-60900829,60900830,61131031,61131051  传真:021-61131052  E-Mail:info@nano-instru.com  --------------------------------------------------------------------------------  浙江办事处  地址:浙江杭州莫干山路425号瑞祺大厦814室[204888]  电话:0571-81954578  传真:0571-81954579  E-Mail:sales@nano-instru.com  纳锘仪器--提供给您纳米级的专业细致服务!
  • 液相色谱柱进展及其在药品标准中的应用(一)
    p style="text-align: center "  strong液相色谱柱进展及其在药品标准中的应用(一)/strong/pp style="text-align: right "strong——液相色谱柱及其填料种类/strong/pp  高效液相色谱法(HPLC)已成为药物分析,特别是多组分分析和杂质控制中最重要、最广泛的分析技术之一。伴随着理论体系不断完善,分离方法不断更新,仪器性能不断改进,应用领域不断扩展,液相色谱分析技术已经、正在和必将继续飞速发展。就技术领域发展而言,主要包括仪器性能、数据处理以及色谱柱技术等方面的提高和改进。如今,色谱柱技术的不断改进创新,填料种类的日益丰富,分离模式和分离方法的逐步完善,为分离分析科学描绘了一幅幅绚丽的图景。由于色谱柱是液相色谱分离的核心,开发新型或高性能的高效液相色谱填料(又称为填充剂、固定相),提供多种色谱柱类型一直是色谱研究中最丰富、最有活力、最富于创造性的内容。本文将主要讨论液相色谱柱及其填料的进展分类,以及在药品标准、特别是在药典中的应用现状。/pp  span style="color: rgb(0, 0, 0) "strong1 液相色谱柱及其填料种类/strong/span/pp  改善分离度和色谱峰形一直是分析工作者关注的主要问题,通过改变流动相组成来提高色谱柱的选择性是分析工作中常用的手段。不过,由于改变流动相如有机相比例、pH、缓冲盐浓度等以提高色谱柱的选择性或分离能力有限,为适应日益增加的分离要求,开发选择性更高、性能更优越的色谱柱就成为液相色谱法的研究热点之一。如今,为适应分离工作数量和难度的需求,越来越多的色谱固定相被开发出来,并不断地被应用于实际分析包括药物分析工作中。色谱柱填料的基质、形状、尺寸、类型、直径、孔径、比表面积等因素将影响色谱柱的性能。为便于理解,下文按不同的方式对色谱柱或填料进行分类。/pp  span style="color: rgb(0, 112, 192) "strong1.1 按色谱填料种类不同分类/strong/span/pp  按基质材料化学组成的不同,液相色谱填料主要分为两大类:有机基质填料和无机基质填料。无机基质填料是研究和应用的主流,其中应用最多的材料是硅胶,其具有机械强度高,比表面积大及表面易于修饰等特点,是开发最早,研究最为深入,应用最为广泛的液相色谱填料,其应用占液相色谱填料的90%以上。硅胶表面覆盖着强极性的硅醇基,在非极性流动相中与样品分子发生作用,也可以作为化学键合相的反应位点。因此,硅胶、键合硅胶是正反相液相色谱法中最常用的色谱柱填充剂。/pp  最初使用的硅胶填料是无定形微粒硅胶,无定形硅胶易于制备,价格低廉,但涡流扩散大,渗透性差,柱效不高,重现性较差。20世纪70年代,科克兰(J. J. Kirkland)采用硅珠堆砌技术制备全多孔球形ZORBAX 硅胶,该填料平均粒径约7微米,具有更好的渗透性、比表面积和更高的柱效,而且球形填料易于填装,重现性好。到1995年,在分析色谱中不定型填料基本被5-10微米的球形颗粒填料取代,前者因为价格便宜,主要是用于制备色谱分离 现在的分析色谱中,球形颗粒硅胶基质的色谱填料已经占绝对地位。/pp  硅胶基质分为A型硅胶和B型硅胶:A 型硅胶金属含量较高,导致硅胶纯度较低,且酸性较强,从而导致色谱峰拖尾和某些化合物回收率很差 B 型硅胶是通过全合成获得的填料,称之为高纯硅胶,可有效地控制金属离子的含量(一般控制在0.05%以内),避免活性化合物在色谱柱上与金属离子产生螯合,也降低了硅醇基的活性,有利于避免碱性化合物拖尾。另外,为了提高硅胶基质的稳定性,在硅胶表面进行有机改性,如聚合物包覆,或引入有机杂化基团,可以使基质填料表面的部分硅羟基被有机基团代替,从而提高pH 耐受性,也能降低碱性化合物的拖尾。/pp  有机基质填料主要分为多糖型和聚合物型两大类,前者是以天然多糖化合物为原料,用物理方法加工成微球并经过交联而得到的凝胶,如葡聚糖、琼脂糖等基质的凝胶,主要用于凝胶渗透色谱(GPC)。后者以合成单体与交联剂为原料,用化学聚合方法制备的交联高聚物微球,如苯乙烯- 二乙烯基苯共聚物以及聚甲基丙烯酸酯类树脂等,有机聚合物填料排除了硅醇基的影响,具有较强的色谱容量,不容易产生不可逆的非特异性吸附,有较好的化学稳定。/pp  span style="color: rgb(0, 112, 192) "strong1.2 按键合相种类不同分类/strong/span/pp  中国药典(0512 高效液相色谱法)按键合相种类不同分类如下:/pp  反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等 常用的填充剂有十八烷基硅烷键合硅胶(C18)、辛烷基硅烷键合硅胶(C8)和苯基键合硅胶等。/pp  正相色谱柱:用硅胶填充剂或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等,在使用正相体系时,一般都采用弱极性的溶剂作为流动相。此类极性固定相如硅胶、氨基键合硅胶和氰基键合硅胶等也可使用含水的流动相,此时化合物的保留随着流动相中水的比例增加而减弱,这种分离模式称为亲水作用液相色谱(hydrophilic interaction liquid chromatography,HILIC)。/pp  离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。/pp  手性拆分色谱柱:用手性填充剂填充而成的色谱柱。/pp  在中国药典分类所述的各类色谱柱中,反相色谱柱是应用最广泛、最常见的一种。/pp  span style="color: rgb(0, 112, 192) "strong1.3 按色谱柱填料粒径大小分类/strong/span/pp  根据色谱填料粒径的大小,色谱柱可分为常规色谱柱、亚2 微米填料色谱柱和大粒径色谱柱。常规的色谱柱内径一般为3.9~4.6 mm,填充剂粒径为3~10微米。限于仪器系统、载样量、柱效、分离度等因素的影响,5微米粒径,4.6 mm× 250 mm 尺寸的色谱柱依然是常规液相分析中最广泛的色谱柱尺寸。但在常规液相体系中使用3微米或3.5微米的填料时,可在获得较快分析速度的同时,节省溶剂,故又称溶剂节省柱。/pp  亚2微米填料色谱柱通常填充1.3~2.0微米 的颗粒填料,色谱柱内径一般为2.1~3.0 mm,长度一般为30~150 mm。由于这样的色谱柱填料粒径小,在液相系统中会产生极高的反压,压力通常大于40 MPa,故需要在更高的超高压(或超高效)液相色谱系统中使用。/pp  大粒径色谱柱(粒径大于10微米)现主要用于制备色谱分离纯化,即制备色谱柱 或者用于大分子物质分析如凝胶渗透色谱或体积排阻色谱(GPC/SEC)。用于大分子物质,如聚合物、蛋白、单抗等分析时,一般相对分子质量都大于2000,采用的色谱填料孔径应大于300 。/pp  span style="color: rgb(0, 112, 192) "strong1.4 按色谱柱填料结构类型分类/strong/span/pp  在色谱分离过程中,溶质分子与固定相间的传质速率通常被其在色谱柱填料中的扩散所左右。颗粒形状和大小,孔的结构、孔径及其分布等与比表面积有关。按照色谱填料孔结构类型主要有无孔型、全多孔型和表面多孔型。/pp  无孔型的填料表面无孔,消除了溶质在孔内较慢地扩散传质引起的谱带展宽效应,可提高柱效,但由于其比表面积非常小,载样量也很小,故应用不多。一般使用非常细的填料(1~1.5 微米),填充于较长的色谱管柱中,用于大分子物质分析。/pp  全多孔型填料是在硅胶制备过程中形成的多孔硅胶,多孔体系的形成有利于提高溶质在固定相中的分配和保留,具有柱容量大和选择范围宽等优点。全多孔型填料又分为颗粒型(particles)和整体化色谱柱(monolithic column),其中全多孔型填料颗粒(total porous particles)是目前使用最多的液相色谱固定相材料。/pp  表面多孔型填料是在无孔实心的硅胶核外面生成一个均匀的多孔外壳。由于颗粒内核是实心的,溶质成分在通过固定相时,只在颗粒填料表面的多孔成分进行吸附和分配,其扩散路径缩短,传质效率提高,只需要花费少量的时间便能扩散至硅球表面的颗粒孔中,在较短时间完成扩散,更快地传质。与相同粒径的全多孔型填料相比,其传质速度和柱效得到大大提高。全多孔颗粒填料和核壳型填料的颗粒构造如图1所示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/8a99a421-5f3e-456d-aac4-1acc6d21ba4a.jpg" title="图1_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong图1 全多孔颗粒填料与表面多孔壳填料比较示意图/strong/span/pp  span style="font-family: 黑体, SimHei "注:近年来,液相色谱柱技术发展的非常迅速,这同时也促进了高效液相色谱法在药物分析中更为广泛的应用。据统计,一个典型的制药企业甚至可能会拥有成百上千支液相色谱柱,在一种药物分析方法的开发过程中,如何选择适当的色谱柱往往会给实验人员带来很多困扰。/span/pp  span style="font-family: 黑体, SimHei "本文献原文刊登于《药物分析杂志》2017年37卷第2期,作者为洪小栩、石莹、宋雪洁等八人,分别来自国家药典委员会、扬子江药业、安捷伦科技和江苏省食品药品监督检验研究院等单位。本文为该文献的第一部分,详细介绍了液相色谱柱及其填料的种类。仪器信息网后续还将发布该论文其余内容,为广大色谱柱用户以及色谱柱供应商提供相关参考。/span/pp  br//ppbr//p
  • SGLC:浅谈液相色谱柱现代史
    p style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "色谱是一种分离分析手段,分离是核心,因此担负着分离工作的色谱柱是色谱系统的心脏。目前市场上色谱柱种类和规格繁多,在制药、食品、环保、石化、农林、医疗卫生等领域有应用广泛,相关从业人数不断增长。/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "以往大家比较关注色谱柱的应用情况,为使大家更全面的了解色谱柱类别、相关技术及最新应用进展等内容,仪器信息网特别策划了strong“/strong/spana href="https://www.instrument.com.cn/zt/spzfl" target="_self"strongspan style="font-family: 楷体, 楷体_GB2312, SimKai text-decoration: underline "i走近色谱的‘心脏’——色谱柱新技术新应用/i/span/strong/aspan style="font-family: 楷体, 楷体_GB2312, SimKai "strong”/strong专题,并邀请色谱柱主流厂商来分享对色谱柱类别、技术发展及最新应用进展的看法。以下为岛津(上海)实验器材有限公司市场部(SGLC)相关负责人分享的对液相色谱柱现代史的看法。/span/pp style="text-indent: 2em "span style="font-family: 宋体, SimSun "“千锤万凿出深山,烈火焚烧若等闲”,于谦的《石灰吟》用来记述硅胶填料的生产、制作过程,也恰如其分。从最初的硅酸岩原材料处理成水玻璃,进而通过溶胶-凝胶等方法制备成多孔性硅胶微球,最后在硅胶表面进行化学修饰,键合特定的基团,这其中每一道工艺的优化都凝聚了色谱柱相关从业人员数十年来不懈的努力。/span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong填料基质:硅胶vs聚合物/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "在过去的五十年中,高效液相色谱(HPLC)色谱柱的开发与HPLC仪器开发并行,有时甚至超过了仪器的进步。 随着色谱分离技术的发展,对固定相填料也有了更高的要求,现有HPLC填料大部分为硅胶基质,其次为聚合物基质。硅胶因原材料经济、高机械强度、高比表面积、化学修饰简单等优点而应用广泛,但同时也存在从原材料、制作过程中继承的缺点——金属残留、硅醇基残留以及Si-O键在碱性条件下(pH 8)断裂的问题。相较于硅胶填料,聚合物基质的优势在于无碱性吸附、无金属离子残留,pH值稳定性好,但也存在柱效低和溶胀的问题。80年代,色谱研究人员创造性的将硅胶和有机聚合物的优势结合,通过在硅胶表面包覆一层聚合物薄膜,使内部的硅胶基体不受影响,具有高机械强度和分析效率;同时表面的聚合物层保护颗粒在碱性条件下不会溶解(耐pH=10),阻隔硅胶中残留的金属及硅醇基与化合物的相互作用(图1)(比如岛津Shim-pack GIST 系列,ACE Super系列,大阪曹達Capcell pak MG-III系列等)。进入21世纪后,研究人员又开发了“杂化颗粒技术”,用烷基桥来取代连接在碱性条件下不稳定的Si-O键,使其pH耐受范围拓宽到1-12(图2,3)(比如岛津Shim-pack Scepter系列, 沃特世XBridge系列等)。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/25eb2763-8d26-4313-9301-26847e4aa249.jpg" title="1_副本.png" alt="1_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图1 聚合物包被硅胶/strong/span/ppspan style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun font-size: 14px "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/9f8cbcd6-2fcb-44eb-b47e-351c9e14e79e.jpg" title="2_副本.png" alt="2_副本.png"//pp style="text-align: center "span style="font-family: 宋体, SimSun font-size: 12px "strong图2 有机杂化硅胶/strongbr//span/ppspan style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun font-size: 14px "/span/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/22c959b8-51ab-4d72-8956-e859ea991aaf.jpg" title="3_副本.png" alt="3_副本.png"//pp style="text-align: center "span style="font-family: 宋体, SimSun "span style="font-family: 宋体, SimSun font-size: 12px "strong图3 在不同的pH 流动相条件或者不同的流动相添加剂条件下, 岛津Shim-pack Scepter LC 色谱柱都表现出了优异的稳定性/strong/spanstrongspan style="font-family: 宋体, SimSun font-size: 14px "/span/strongbr//span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong色谱发展趋势之一:快速液相/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "快速液相体现在表面多孔硅胶的发展和小粒径短柱日益广泛的应用两个方面。20世纪60年代在高效液相发展的初期,便已出现了薄壳型硅胶固定相,使液相色谱实现了高效和快速分离。但受低的样品负载量限制,未能推广使用。直到2007年,一种新研制的2.7um(1.7um熔融硅核和 0.5um的多孔层薄壳)表面多孔粒子的出现,总体积约75%为多孔结构,解决了早期薄壳粒子负载样品容量低的问题。而柱性能的突破来自2013年,亚2um 表面多孔硅胶粒子的使用,实现了更高的柱效(比如岛津Shim-pack Velox系列,安捷伦Poroshell系列,沃特世Cortecs系列等)。QA-QC部门、LCMS和LCMSMS分析对高通量的需求,以及组合化学领域对提高灵敏度的需求,都在驱使向小粒径短柱和表面多孔硅胶柱的转变。但受现有仪器技术的限制,短期内不会出现小于1um填料的应用。/span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong色谱发展趋势之二:丰富的固定相选择/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "以C18为代表的高效反相液相色谱柱一直被描述为药物发现、方法开发的心脏,常规HPLC方法的开发几乎总是从C18作为出发点。C18固定相主要利用疏水性保留和分离化合物,因此当遇到在C18柱上保留弱的化合物(如:极性化合物)和疏水作用力相似的物质(如:同分异构体)的分离问题时,实在是力有未逮。近年来色谱柱研究人员开发了键合相迵异的色谱填料以增强色谱柱的选择性,从而满足实际样品分离过程的需要。如针对极性化合物及其杂质的分析项目而开发的五氟苯基(PFPP)色谱柱,由于含有五个氟,因此具有较强的氢键作用力和阳离子交换作用力,对芳香族化合物和含硝基、卤素的化合物,具有强大的分离能力,保留能力甚至可以达到接近HILIC模式的强度(如岛津Shim-pack Scepter PFPP系列, 岛津Shim-pack Velox PFPP系列)。另一类无法用反相C18柱解决的分离难题就是异构体的分离。二苯基柱就是针对这一类难题而开发的色谱柱(如岛津Shim-pack Biphenyl系列,图4),键合的两个联苯具有十字交叉结构,立体选择性很强,因此对位置异构体的识别度较高,适合用来做诸如基因毒性杂质的分析项目。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f87756b8-cff9-48c6-82c0-0c08211a1ce0.jpg" title="4_副本.png" alt="4_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图4 二苯基柱分离维生素D3及其3种同分异构体,展现了优于普通C18固定相的空间选择性/strong/span/pp style="text-indent: 2em "span style="color: rgb(84, 141, 212) font-family: 宋体, SimSun "strong色谱发展趋势之三:特定解决方案色谱柱/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "随着生物制药行业的持续增长,新兴的生物仿制药在生物制药领域也越来越受欢迎。然而,生物仿制药可在制造过程中经历各种翻译后修饰,影响产品的生物活性和稳定性。准确表征和监测生产过程中如蛋白质聚集、电荷异构等关键质量属性(CQAs),是确保药物研发稳定性和过程一致性的重要环节。专为解决此类问题而此设计的液相色谱柱也应运而生(图5,6)。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f1b2e341-23b5-4c58-a329-2221fc9f5313.jpg" title="5_副本.png" alt="5_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图5 盐梯度方法,用岛津Shim-pack Bio IEX分离贝伐单抗生物仿制药的电荷异质/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/c13665cd-a00d-4a96-8015-944434c12eb8.jpg" title="6_副本.png" alt="6_副本.png"//pp style="text-align: center "span style="font-size: 12px font-family: 宋体, SimSun "strong图6 岛津Shim-pack Bio Diol 分离贝伐单抗生物仿制药的单体和二聚体/strong/span/pp style="text-indent: 2em text-align: justify "span style="font-family: 宋体, SimSun "从60年代第一台商品化的高压液相色谱仪器的面世,液相色谱已经历了50多年的发展历程,在这过程中,针对小分子的分离问题,衍生了全多孔颗粒和表面多孔颗粒的技术。近年来,更多的兴趣转向了大分子的分离项目,可用于表征复杂系统的色谱技术具有广阔的应用前景。在不久的将来,可以预见,表面多孔的反相色谱柱将成为市场上的主导产品,同时,具有不同选择性的苯基柱的发展趋势也日渐明晰。/span /p
  • 关注色谱与大健康 2019北京色谱年会举行
    p style="text-align: justify line-height: 1.5em text-indent: 2em "strong仪器信息网讯 /strong2019年12月12日,由北京理化分析测试技术学会、北京色谱学会共同主办的“2019年北京色谱年会”于北京世纪金源香山商务酒店成功举行。自2002年举办以来,北京色谱年会历经十七载,已成为了北京地区色谱工作者的年度盛会。2019的北京色谱年会,来自科研院校、应用单位、仪器企业等约300余名业内相关人士参加了本次会议。/pp style="text-align: justify line-height: 1.5em text-indent: 2em "本次色谱年会的主题是“色谱与大健康”,与会专家分别就色谱技术在生命健康、环境、药物分析、食品分析等方面的最新成果与应用进展进行了分享。仪器信息网全程参与并报道了此次会议。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/e7ae82f5-874b-4530-bc3e-5d34539d0135.jpg" title="大会现场.JPG" alt="大会现场.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong会议现场/strong/pp style="text-align: center"strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/75a80d27-792a-42a7-815f-677b6cc7a513.jpg" title="刘虎威致辞.JPG" alt="刘虎威致辞.JPG"//strong/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong北京大学教授刘虎威致开幕辞/strong/pp style="line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/f909c88b-7d83-4a98-9015-591079c293e5.jpg" title="江桂斌.JPG" alt="江桂斌.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong中国科学院生态环境研究中心院士江桂斌/strong/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《细颗粒化学:从纳米到PM2.5》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "在报告之初,江桂斌院士首先介绍了细颗粒化学的概念以及细颗粒对人体的影响,并从纳米颗粒研究到PM2.5研究等角度介绍了细颗粒化学相关研究进展、挑战及问题。随着纳米科技发展,各类纳米颗粒在生活中广泛应用,其中纳米银应用繁多,并在环境中广泛存在。报告介绍了课题组在纳米银所做的三项研究,包括发展了一种结合毛细管电泳与ICP-MS联用的纳米银表征技术;关于纳米颗粒可天然生成的相关研究以及纳米银本身可以产生同位素分馏等。/pp style="text-align: justify line-height: 1.5em text-indent: 2em "大气污染是我国目前及今后很长时期面临的重要环境问题,近年来,PM2.5污染严重,危害广泛。随着大气十条的颁布和实施,我国PM2.5污染得到了显著控制,但如何在2020-2030年将PM2.5控制到35μg/m3,还面临着严峻挑战。已有研究表明癌症发病率与雾霾天数有相关性,但是PM2.5健康危害机制认识仍不清楚。为此基金委细颗粒重大研究计划做了一系列工作。包括探查大气细颗粒毒性组分发现和溯源;细颗粒物污染长期和短期健康影响的研究以及细颗粒物生物学效应和毒理学机制的研究。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/ee5c4a75-1afc-48e3-bd6e-b2bce4a487b0.jpg" title="陈义.JPG" alt="陈义.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong中国科学院化学研究所研究员陈义/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《高重现毛细管电泳(hrCE)》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "毛细管电泳具有微量、高效、快速、环保、经济、通用等优点,在生物活体化学分析中有良好的应用前景。但目前毛细管电泳也面临着诸多挑战,报告介绍了陈义课题组在高重现毛细管电泳(hrCE)方面所做的研究工作,提出了hrCE具有完备分析能力的hrCE新方法,提升了其定性定量能力,并介绍了将该技术应用于血红蛋白病筛查、生物活体原位分析等应用的探索。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2c478be9-b879-4bf7-b75b-0b9b718b2993.jpg" title="李攻科.JPG" alt="李攻科.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong中山大学教授 李攻科/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《复杂样品快速检测前处理方法研究进展》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "在样品分析过程中,样品前处理不仅耗费时间长,同时也对分析结果误差与否有着重要的影响,尤其是对于复杂体系的分离分析来说,如何快速进行样品前处理至关重要。中山大学李攻科团队一直以来从事复杂样品前处理相关研究,卓有建树,报告介绍了团队在复杂样品快速检测前处理方法相关研究进展, 包括场辅助同步萃取衍生化、膜保护同步固相微萃取衍生化微型阵列气膜分离衍生化等快速前处理方法研究,以及在食品、化妆品等复杂样品中痕量组分液相色谱分析研究。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/84a61670-678e-4b72-a547-60c649573775.jpg" title="冀峰.JPG" alt="冀峰.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong岛津企业管理(中国)有限公司 冀峰/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《岛津多维液相色谱技术在药物杂质鉴定中的最新应用》/strong/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/1e0d6f7d-5ac1-4e2d-9117-51bef80bcb9d.jpg" title="那顺.JPG" alt="那顺.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong安捷伦科技(中国)有限公司 那顺/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《全新安捷伦智能互联气相色谱系列》/strong/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/415c6855-29d4-4d1d-b7db-fcdd07e61f05.jpg" title="汪琼.JPG" alt="汪琼.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong赛默飞世尔科技(中国)有限公司 汪琼/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《赛默飞色谱质谱技术在环境领域的最新应用》/strong/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/0410a307-6740-4d10-9a09-d565357ef4dd.jpg" title="刘震.JPG" alt="刘震.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong南京大学教授 刘震/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《亲和分离:更快、更高、更强》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "常规色谱追求最大限度地分离,而亲和色谱与之不同,更关心如何精准分离目标物质,是近年来生物学家最依赖的工具之一。刘震的报告,介绍了课题组10年来在硼亲和色谱方面的研究工作。针对亲和色谱亲和力、专一性不足等影响实际体验的问题,通过合成新的有机配基、共同单体间的团队协同、团体硼亲和、多位点协同作用、分子间相互作用机理以及分子印迹聚合物等研究,诠释了如何实现亲和分离更高、更快、更强,提升实际应用效果,并展示了团队研制的亲和识别材料在多个生命科学、疾病诊断等重要领域中的良好应用前景。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/df60baa5-8916-4b11-b702-df207b3b14e0.jpg" title="黄岩谊.JPG" alt="黄岩谊.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong北京大学教授 黄岩谊/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《如何消除DNA测序的错误》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "报告介绍了DNA测序技术的发展历程以及目前DNA测序技术存在的问题,并展示了多年来课题组在DNA测序技术方面的研究工作,发展一种全新概念的测序方法—纠错编码测序法(简称ECC),该方法采取一种独特的边合成边测序(SBS)策略,利用多轮测序过程中产生的简并序列间的信息冗余,大幅度增加了测序精度,是一种新的高通量、高精度DNA测序技术。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/54a58fe9-419e-492a-beb8-c4bd79cbdf3a.jpg" title="IMG_6719.JPG" alt="IMG_6719.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong中国科学院化学研究所研究员王铁/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《生命流动体系的分析检测》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "生命体内的痕量物质与生命过程、健康状况息息相关,可用于疾病诊断及病症监控。而如何在动态条件下,实时在线对生命流动体系中痕量目标物进行捕获及分析时一个科学难题。报告介绍了王铁课题组在生命流动体系分析检测研究上的方法思路以及相关研究进展。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/b4002fc4-a564-4f85-b46c-bd3f84c02b15.jpg" title="IMG_6724.JPG" alt="IMG_6724.JPG"//strong/pp style="line-height: 1.5em text-indent: 0em text-align: center "strong北京妇产医院 曹正/strong/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《液相串联质谱如何帮助临床实验室?》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "报告主要通过临床检测中1,25(OH)2VD、甲状腺球蛋白、他克莫司、微生物A、多囊卵巢综合征以及疼痛药物管理等几项实际应用案例,从灵敏性、特异性、可用性、可负担性、灵活性和可能性等方面,介绍了液相串联质谱技术在临床实验室的应用前景广阔。/pp style="text-indent: 0em text-align: center line-height: 1.5em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/e19edb3e-5adb-4399-b64e-6b3aadd7e000.jpg" title="IMG_6732.JPG" alt="IMG_6732.JPG"//pp style="text-indent: 0em text-align: center line-height: 1.5em "strong北京大学医学部教授 叶敏/strongbr//pp style="text-indent: 0em text-align: center line-height: 1.5em "strong报告题目:《色谱技术在中药分析中的应用》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "中医药是中国的十大国粹之一,中药现代化研究对于中药应用发展十分重要。中药的现代研究主要从两方面进行,单体成分以及提取物的研究,其中,提取物作为中药特色多组分复杂体系,其发挥药效有效化学成分是什么是其中非常重要的科学问题。报告主要介绍了叶敏课题组在该领域的研究进展,建立了中心切二维液相色谱以及多重中心切割二维液相色谱等多种中药色谱分析新方法以及对重要活性成分的阐释。/pp style="text-align: center line-height: 1.5em text-indent: 0em "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/f1a58436-cccb-45f9-bbf7-0d137503a5b3.jpg" title="IMG_6740.JPG" alt="IMG_6740.JPG"//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong北京大学教授 刘虎威/strongbr//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong报告题目:《常压离子化质谱成像技术及其应用》/strong/pp style="text-align: justify line-height: 1.5em text-indent: 2em "常压敞开式质谱可实现原位、实时、快速分析,但在检测灵敏度、空间分辨率等方面存在一定问题。报告介绍了课题组在常压敞开式质谱特别是实时直接分析离子化上进行的研究,发展了等离子体辅助激光解吸离子化(PALDI)和常压基质辅助激光解吸附离子化技术,以及利用常压离子化质谱技术在成像分析中的探索。并介绍了PALDI-MS成像用于印章、文物艺术品真伪鉴定以及中药材鉴定的应用。/pp style="text-align: justify line-height: 1.5em text-indent: 2em "本届色谱年会受到了多家仪器厂商的赞助,包括岛津、安捷伦、赛默飞、北京捷安杰、日立高新、东曹、珀金埃尔默、海光、span style="text-indent: 2em "成都科林、加拿大AFP、同田生物、利曼中国、北京伊诺凯、北京中兴汇利等。各家厂商在会议上展示了各自的产品,吸引了大量与会者驻足。/span/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201912/uepic/746509ca-9bf2-4c9d-994b-0245a49c1725.jpg" title="IMG_6681.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6681.JPG" style="width: 300px height: 200px "/img style="width: 300px height: 200px " src="https://img1.17img.cn/17img/images/201912/uepic/7da9d816-5c67-445c-8ada-cf69553e51ff.jpg" title="IMG_6661.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6661.JPG"/img src="https://img1.17img.cn/17img/images/201912/uepic/1aa5e9f9-60d9-44fe-8195-b348032dd2ad.jpg" title="IMG_6663.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6663.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/1c5e0329-ba42-4391-8817-00d31c2d84a7.jpg" title="IMG_6676.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6676.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/5225fba1-a3a1-44fc-8ee4-d9aa0175cde9.jpg" title="IMG_6662.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6662.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/a745aad3-a254-4e7c-833f-0c60fb02a56b.jpg" title="IMG_6665.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6665.JPG" style="width: 300px height: 200px "//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201912/uepic/8906e8ff-5765-4db1-b66f-b159b0b56458.jpg" title="IMG_6667.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6667.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/ebd01692-15e2-4209-8fe5-374397fa3da5.jpg" title="东曹.jpg" alt="东曹.jpg" width="300" height="200" border="0" vspace="0" style="max-width: 100% max-height: 100% width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/2049bb71-a7e1-4eb6-9bdf-884f4dd7cbf0.jpg" title="IMG_6674.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6674.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/6370b4e5-c91c-4f04-9598-2793f386c2f2.jpg" title="IMG_6673.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6673.JPG" style="width: 300px height: 200px "//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201912/uepic/226c9d61-b058-4ac2-82ea-5f315f01f2bd.jpg" title="IMG_6675.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6675.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/56faf735-004a-4282-b39a-6df66287aad5.jpg" title="IMG_6677.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6677.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/f6a5ec42-2724-4016-85b6-3ef40c41630c.jpg" title="IMG_6669.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6669.JPG" style="width: 300px height: 200px "/img src="https://img1.17img.cn/17img/images/201912/uepic/f5573a8a-a618-46ab-930a-1c9ea2651146.jpg" title="IMG_6679.JPG" width="300" height="200" border="0" vspace="0" alt="IMG_6679.JPG" style="width: 300px height: 200px "//pp style="text-align: center line-height: 1.5em text-indent: 0em "strong参会厂商/strong/ppbr//p
  • 离子液体柱——脂质组学中分离脂肪酸的气相色谱柱
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME)第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析第十二讲:擒魔序曲&mdash &mdash 脂质组学研究中的样品处理前言  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用气相色谱、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的气相色谱方法。1、基本情况  由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用气相色谱有些困难,逊色于薄层色谱和液相色谱。如果使用气相色谱进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于气相色谱以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常气相色谱用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用气相色谱进行脂质组学研究的基本方法。用气相色谱可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温气相色谱-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。  近年把离子液体用作气相色谱固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161&minus 175)2、室温离子液体作气相色谱固定相  室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根([PF6]-)、四氟硼酸根([BF4]-)、硝酸根(NO3-)、三氟甲基磺酰亚胺([{CF3SO2}2N]-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作气相色谱固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作气相色谱固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离&alpha -甲基吡啶和&beta -甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作气相色谱固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ([BuMIm][PF6] ) 及相应的氯化物([BuMIm][Cl] )用作气相色谱固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了[BuMIm][PF6]和[BuMIm][Cl]色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作气相色谱固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作气相色谱固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体气相色谱固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490)(1).室温离子液体气相色谱固定相的特点  室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,气相色谱固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到气相色谱固定相,它们非常适应毛细管色谱柱的多方面要求:(a) 蒸汽压低  气相色谱固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足气相色谱固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺([C4mim][NTf2])的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合气相色谱固定相的要求。表1 [C4mim][NTf2]在不同温度下的蒸汽压温度/℃蒸汽压/P× 102 (Pa)184.51.22(0.92 mmHg柱)194.42.29(1.72 mmHg柱)205.55.07 (3.8 mmHg柱)214.48.74 (6.6 mmHg柱)224.415.2 (11.4 mmHg柱)234.427.4 (20.5 mmHg柱)244.346.6 (35.0 mmHg柱)(b) 粘度高  室温离子液体的粘度高,适合于气相色谱固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为气相色谱固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。(c) 湿润性好  要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。(d)热稳定性好  大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体气相色谱固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220&ndash 250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335&ndash 405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体气相色谱固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较(e) 极性高  固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及&pi -电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。表 2 几种商品离子液体固定相的极性 商品色谱柱组成McRynolds 极性(P)相对极性数(p.N.)*SLB-IL 111 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺5150116SLB-IL 1001,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺4437100TCEP1,2,3-三(2-氰乙氧基)丙烷429494SLB-IL 821,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺363882SLB-IL 76三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺337976SLB-IL 69未知 312670SLB-IL 65未知 283464SLB-IL 611,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐270561SLB-IL 601,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活)266660SLB-IL 591,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺262459SupelcoWax100%聚乙二醇232452SPB-5MS5%二苯基/95%二甲基)硅氧烷2516Equity-1100%聚二甲基硅氧烷1303*相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性(McRynolds 极性指标是上世纪60年代中期研究建立的一种气相色谱固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691)几种离子液体色谱柱的结构和性能见表3表3:几种离子液体色谱柱的结构和性能3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4表4 离子液体色谱柱在脂肪酸甲酯分离中应用1SLB-IL111奶油中的脂肪酸使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体12SLB-IL 82 和 SLB-IL 100 水藻中的脂肪酸这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。一维:聚二甲基硅氧烷二维:SLB-IL 82 和 SLB-IL 10023SLB-IL100鱼的类脂中反式20碳烯酸顺反异构体的分析用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,5734SLB-IL111分离16碳烯酸顺反异构体和其他不饱和脂肪酸如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。45SLB-IL111分离脂肪酸顺反异构体SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸56 SLB-IL100牛奶和牛油中的脂肪酸顺反异构体使用全二维GC,把离子液体柱用作第一维色谱柱一维:SLB-IL100二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷67SLB-IL 100(快速柱)生物柴油中的脂肪酸甲酯(C1-C28)SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维GC。78SLB-IL100分离C18:1, C18:2, 和 C18:3顺反异构体SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱89SLB-IL111SLB-IL100SLB-IL82SLB-IL76SLB-IL61SLB-IL60SLB-IL59评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开910SLB-IL59SLB-IL60SLB-IL61SLB-IL76SLB-IL82 SLB-IL100 SLB-IL111用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系1011SLB-IL111使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 &mu m)快速分离食用油(例如奶油)中的反式脂肪酸1112SLB-IL111使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体12 表中文献1Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat [J].J. Chromatogr.A,2012, 1233:137-1462Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography&ndash mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota[J]. J. Chromatogr.A, 2011, 1218:3056-30633Ando Y.Sasaki, GC separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase[J]. J. Am. Chem. Oil Soc.,2011,88:743-7484Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography&ndash mass-spectrometry using ionic-liquid coated capillary column[J]. J.Chromatogr.A 2011,1218: 9384&ndash 93895Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column[J]. J.Chromatogr.A, 2011,1218: 545&ndash 554 6Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers [J].J. Chromatogr. A, 1217 (2010) 775&ndash 7847Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase[J]. J. Chromatogr.A, 2009,1216:8992&ndash 89978Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids[J]. Anal. Chem., 2009, 81:5561&ndash 55689Dettmer K, Assessment of ionic liquid stationary phases for the GC analysisof fatty acid methyl esters,Anal Bioanal Chem ,2014, 406:4931&ndash 493910Characterisation of capillary ionic liquid columns for gaschromatography&ndash mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, Anal Chim Acta , 2013 803:166&ndash 17311Inagaki S,Numata M, Fast GC Analysis of Fatty Acid Methyl Esters Using a HighlyPolar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,Chromatographia , 2015,78:291&ndash 29512Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography&ndash flame ionisation detector equipped with highly polar ionic liquid capillary column, Food Chemistry , 2014 160:39&ndash 45 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。
  • 综述:色谱柱及填料技术最新进展和发展趋势
    高效液相色谱(HPLC)是一种现代分离、分析方法。20世纪60年代以来,HPLC作为一种分析技术在生命科学、环境科学、药物分析等领域的应用日益普遍。其中色谱填料可谓是色谱技术的核心,它不仅是色谱方法建立的基础,而且是一种重要的消耗品。色谱柱作为色谱填料的载体,当之无愧被称为色谱仪器的&ldquo 心脏&rdquo 。高性能的液相色谱填料一直是色谱研究中最丰富、最有活力、最富于创造性的研究方向之一。  近年来,液相色谱填料技术呈现二大趋势。 第一个趋势是快速液相,利用亚 2 µ m小粒径硅胶、核壳型硅胶 第二大趋势是越来越丰富的选择性。下面就这二大趋势做一个简单介绍。  (一)快速液相色谱填料技术  硅胶基质的色谱填料因为其优异的色谱性能是目前应用最为广泛的液相色谱填料,尤其是针对有机小分子的分离和分析,硅胶基质的色谱填料占据绝大多数的市场份额。最近10年,这个领域最激动人心的进展是基于以下二个方向的快速液相技术的发展。  1、超高效液相色谱(UHPLC)填料技术  从2004年Waters公司推出UPLC仪器,超高效液相色谱技术以其快速、高分离度和高灵敏度的优势得到了广泛的应用。而这种技术的核心是基于亚 2 µ m小粒径硅胶的色谱填料。当填料颗粒小于2 µ m时,不仅柱效明显提高,而且随着流速的增加,分离效率并不降低。采用高流速可将分离速度和峰容量扩展到一个新的极限,但同时柱压也显著升高。小粒径填料需要使用压力更高的超高效液相色谱仪系统,对色谱柱的生产工艺也有更高的要求,必须解决色谱柱的装填难度大、柱头容易漏液、填料容易堵塞等问题。目前,除了国际知名色谱仪器和色谱柱公司(如Waters、Agilent、Phenomenex)生产UHPLC色谱柱,国内的色谱柱厂家也陆续推出此类产品。虽然UHPLC仪器还是国际知名品牌垄断市场的情况, 但是国产的UHPLC色谱柱已经可以取代进口品牌。 图1为月旭公司Ultimate XB-C18 UHPLC色谱柱(2.1× 100 mm, 1.8 µ m)对奶制品中黄曲霉毒素M 1、M 2测定的色谱图。  2、核壳型色谱填料  核壳型(core-shell)色谱填料是由著名色谱科学家 Jack Kirkland 在2006年研制成功的一种新型色谱填料。它是将多孔硅壳熔融到实心的硅核表面而制备的。这些多孔的&ldquo 光环&rdquo 状颗粒具有极窄的粒径分布和扩散路径,可以同时减小轴向和纵向扩散,允许使用更短的色谱柱和较高的流速以达到快速、高分辨率分离。并且,核壳型色谱柱所产生的反压明显低于UHPLC色谱柱,低反压可以使仪器承受压力降低,使得在常规的液相仪上就能够实现超高效液相仪的分离效果。但是,核壳型色谱柱对仪器的柱外死体积要求高、且柱容量小于全多孔色谱填料,因而并不适用于大规模的制备液相分离需求。  过去3-5年全球的色谱研究人员发表了大量的有关核壳型色谱填料的学术文章,但是其在工业界的应用是一个渐进式推进的过程,不会一下子大面积被采用。国内还没有报道有国内厂家生产核壳型填料。  (二)具有丰富选择性的色谱填料  液相色谱技术的广泛应用也得力于近年来各种色谱填料技术的发展为色谱分离提供了越来越多样的选择性。近年来人们制备了大量的含有不同键合基团的色谱填料以增强色谱柱的选择性,从而满足实际样品分离的需要,例如亲水作用色谱(HILIC)填料、立体保护键合色谱填料、极性嵌入反相色谱填料、有机-无机杂化色谱填料、亲水性体积排阻色谱填料、混合模式色谱填料、手性色谱填料以及聚合物基质色谱柱填料等。  1、HILIC色谱填料。它采用极性固定相和含有一定水的水溶性有机溶剂为流动相,不仅克服了正相色谱和反相色谱对极性化合物分离的不足,而且提供了与反相色谱截然不同选择性,在强极性和离子型化合物如氨基酸、碳水化合物和多肽等的分离中发挥着重要作用。并且,由于其流动相含有高浓度的有机溶剂,有利于增强电喷雾离子源质谱的离子化效率,进而提高其灵敏度,与质谱具有很好的兼容性。过去5-6年HILIC模式色谱柱的应用增长非常快。目前商品化的HILIC色谱填料种类繁多,基于硅胶基质的HILIC填料包括裸硅胶、氨基、氰基、二醇基、酰胺型以及两性离子型等。目前生产HILIC色谱填料的国内公司主要有月旭、艾杰尔、迪马以及赛分等公司。  2、极性嵌入反相色谱填料。它通过在硅胶键合烷基链的中下部镶嵌一些极性基团,如烷基胺、酰胺、季铵或者氨基甲酸酯等极性基团来降低未反应硅醇基活性和改善对极性化合物的保留能力。这种填料具有的最大优势是减少了填料表面游离硅羟基与碱性化合物间的&ldquo 次级保留&rdquo 作用,从而改善碱性化合物峰型的拖尾,而且由于极性基团的嵌入,增强了对极性化合物的保留,提供和普通C18很不一样的选择性。月旭公司的Ultimate Polar-RP色谱柱装填的即为该类型色谱填料。  3、立体保护键合相。它是在硅胶的烷基链侧链键合含异丙基和异丁基的C18固定相。由于在C18烷基链上引入了较大的基团以及立体效应,阻碍了硅醇基与分析物的相互作用,因而对碱性化合物的分离呈现出对称的峰型并具有良好的柱效,防止碱性化合物在色谱柱上的拖尾,并且在低pH值时有较高的水解稳定性。月旭Ultimate LP色谱柱填充的即为此类型的色谱柱填料,特别适合在极低pH条件下(例如pH=0.8)分离极性化合物。此款色谱柱可以很好地取代市场上广泛应用的安捷伦 Zorbax SB 色谱柱。  4、有机-无机杂化色谱填料。它是在超高纯全多孔硅胶微球基质表面涂覆一层厚度均匀的有机-无机杂化层,进而提高填料的pH耐受范围和应用能力的一种填料(其填料结构示意图如图4所示)。这种类型的填料能够耐受pH值很高的流动相,并且具有很好的pH值稳定性,它的pH耐受范围可以达到1.5-12,而常规的硅胶基质色谱填料pH值范围一般仅为2-8 它能够耐受各种缓冲液体系,柱寿命长。目前,月旭科技的Xtimate反相填料、菲罗门公司的Gemini NX均是属于此类有机-无机杂化硅胶色谱填料。Waters 公司的X-Bridge 色谱填料采用的是其专有的有机-无机整体杂化技术,不是表面涂覆。  5、亲水性体积排阻(SEC)色谱填料。它是在超高纯全多孔硅胶表面包覆一层具有良好稳定性的亲水性聚合物的体积排阻色谱填料,其填料的作用基团为二醇基(填料结构示意图如图5所示)。其填料表面因受二醇基官能团保护而不与蛋白质相互作用。使得蛋白、生物酶、多肽等样品的非特异性吸附极小 因而广泛应用于生物大分子的分离。月旭Xtimate SEC填料即为此类型的色谱填料。目前已有120 Å 、300 Å 、500 Å 和1000 Å 等四种孔径尺寸规格的SEC色谱柱产品。国内外也有一些色谱柱厂家成功研发了该类型产品,例如TOSOH公司的TSK gel SW-型色谱填料、安捷伦公司的ZORBAX GF色谱填料。  6、混合模式色谱填料。它是在一根色谱柱上实现两种或多种分离机理共同主导的色谱柱填料。混合模式色谱分离的基础是色谱固定相能同时提供多种作用力,如键合相同时包含烷基链和电荷中心,则可以提供疏水作用力和静电作用力,实现反相和离子交换混合模式色谱分离。由于多种作用力的存在,混合模式色谱可以显著地提高分离选择性,这样就可以实现根据样品的不同特性进行分离。月旭公司目前具有多种混合基质的色谱填料,例如C18/SCX、C18/SAX等。图7为月旭公司研发的C18/SCX色谱填料结构示意图。  7、手性色谱填料。它是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。一个有效的手性填料应当具有能够快速分离对映体,测定对映体的纯度,尽可能适应多种类型的对映体的分离 应当具有较高的对映体分离选择性和柱容量。目前,手性填料主要有以下5大类: (1)多糖类手性色谱填料:主要包括纤维素和淀粉两大类手性固定相 (2)大环手性色谱填料:主要是用大环分子和环糊精、手性冠醚来形成的固定相 (3)糖肽类手性固定相:主要是用万古霉素、利福霉素B等制成的手性固定相 (4)多肽或蛋白质手性固定相 (5)配体交换手性固定相:建立在金属配合物的配体交换的基础之上的固定相。目前生产手性填料的国内外厂家有大赛璐、色谱科、菲罗门、广州研创、月旭等公司。  8、最后,有机高分子基质液相色谱填料也是一个非常活跃的领域,主要分为多糖型基质填料和聚合物型基质填料。同硅胶基质的填料相比,此类填料具备高负载量、 高化学稳定性(耐酸 、耐碱、耐溶剂处理),对于生物大分子不易产生不可逆的非特性吸附作用等优点。这些优点决定了其广泛的应用前景,特别是生物大分子的分离和分析。一般来说,有机高分子基质色谱填料的柱效低于硅胶基质的填料。生产此类填料的国外厂家很多,例如GE、Tosoh (东曹)等,国内厂家这方面起步较晚,目前有纳微、赛分和月旭等。  以上所述是色谱填料在技术方面的二大趋势,现在我们再来看看色谱柱和色谱填料的市场趋势。色谱柱的国内市场在过去的10年是一个快速发展的市场,这是因为色谱技术在国内的应用呈现了突飞猛进的势头。但是,色谱柱市场在发达国家是一个相对成熟和稳定的市场,虽然技术层面不断有新的创新,但是新的技术的出现并不是一下子推翻以前的技术,Waters 公司的Symmetry 色谱柱已有20几年的历史了,但市场上还是很多人用它。各个厂家的市场份额也相对稳定,新的色谱柱公司基本没有机会。国内市场不会马上达到像欧美国家那种稳定的状态,但是趋势是竞争的门槛在提高。  一方面,和液相色谱仪相比,色谱柱这个细分产业是一个国内生产企业可以率先达到国际先进水平的行业,核心原因是色谱填料和色谱柱虽然也有较高的技术门槛,但是对专业的集成要求要低得多,主要是化学和材料,不需要机械、电子和软件方面的专长。一些有较好研发基础的厂家通过坚持不懈的努力和知识的积累,可以在几年内达到国际先进水平。目前,月旭公司大量销售的色谱柱产品主要的就是取代市场上知名国际品牌的产品。  另一方面,色谱工作者对色谱柱产品的要求越来越高,四、五百美元的色谱柱,相比它的重要性,大多数情况下价钱不是问题。用户更关心的是色谱柱的重现性、寿命和选择性,甚至高于对柱效、拖尾因子等纯技术参数的关注。这就对厂家在产品质量管理和产品种类的丰富性方面提出了很高的要求。这二个方面都离不开产品研发能力和对色谱填料核心技术的掌握。产品质量方面,除了研发能力,还必须在各个生产环节,从原材料选材、键合工艺、装柱工艺到色谱柱出厂质量检测都要进行严格的控制。  除了产品质量和产品种类,色谱柱厂家还要在色谱方法开发方面持续地进行投入,客户对色谱柱品牌的选择有一定的粘性,最有效的营销是靠应用去替换。客户不缺色谱柱,缺的是色谱分离分析的解决方案。注重应用开发的色谱柱厂家才能成为行业内公认的&ldquo 色谱专家&rdquo ,才能赢得客户的认可。  我所创办的月旭材料科技(上海)有限公司和全资子公司浙江月旭材料科技有限公司专注于色谱填料和色谱柱产品的研发、生产、销售和技术服务,2005年推出月旭Ultimate 系列色谱柱,至今已经成功推出70种HPLC固定相。公司员工从当年拿着中科院化学所刘国诠老师编写的《色谱柱技术》一书给客户介绍月旭的色谱柱,一根一根给客户试用,到今天月旭色谱柱被数量众多的色谱工作者广泛接受,见证了中国色谱柱市场过去10年的快速发展。相信通过和国内同行共同的奋斗,我们能够使中国自主研发和生产的色谱柱产品在技术上和市场影响力上达到或超过国际知名品牌的水平,说得具体点就是在未来的5-10年内实现在中国市场国产色谱柱市场份额从现在的大约30%提高到70%,而且使国产的色谱柱出口的数量和产值超过从国外进口的色谱柱。  (作者赵岳星博士是月旭公司创办人,国家&ldquo 千人计划&rdquo 入选者,现任月旭公司董事长和总经理。)  注:文中观点不代表本网立场,仅供读者参考。
  • 均多相融合选择性催化制备生物基可降解聚酯单体——岛津XPS用户成果分享
    团队介绍:李福伟研究员团队李福伟老师现任中国科学院兰州化学物理研究所研究员,博士生导师,中科院特聘研究员,国家优秀青年基金获得者。2005年于中科院兰州化学物理研究所夏春谷研究员组获物理化学博士学位,随后在中科院过程工程研究所张锁江院士研究组从事绿色化工研究,2006年4月-2009年12月在新加坡国立大学化学系贺子森教授(Professor Andy Hor, 现香港大学副校长)研究组开展博士后研究。2010年入选中科院“百人计划”并于同年获择优支持,在兰州化学物理研究所开始独立研究工作,研究领域为面向清洁能源和先进合成的绿色催化,主要开展功能含氮杂环化合物的高效催化合成以及可再生碳资源(生物质、二氧化碳)的增值催化转化研究。已发表研究论文80余篇,论文H因子30,其中2011年以来以通讯作者在Chem. Rev., Nat. Commun., Angew. Chem. Int. Ed., ACS Catal., J. Catal., Appl. Catal. B: Environ., Green Chem.等期刊上发表50余篇论文。编著中英文专著2个章节,申请授权中国发明专利10余项。曾获中国化学会催化委员会首届“中国催化新秀奖”(2012)、中科院院长优秀奖(2005)等。2015年获国家自然科学基金“优秀青年基金”资助。均多相融合选择性催化制备生物基可降解聚酯单体羟基脂肪酸酯(PHA)是制备生物可降解聚酯高分子材料的重要单体, 现有制备方法存在催化效率和选择性低等不足。从可再生的生物基碳氧资源出发,发展简便、高效、高选择性的催化制备生物基羟基烷酸酯聚酯单体技术具有重要意义和潜在应用价值。中科院兰州化学物理研究所李福伟研究员团队从半纤维素下游产品糠醇出发,发现Pd与具有一定咬角结构的双膦配位后能够高效、高选择性地实现均相催化切断糠醇的羟基C-O键,插入制备PHA所需要的羧酸酯官能团,催化转化数(TON)高达104以上。减压蒸馏出呋喃乙酸酯产物后,催化剂可以循环使用二十次而不失活,为生物质的“量体裁衣”增碳提供了一个新的方法。图1 利用原位XPS分析xNi/CeO2催化剂中Ni物种的结构特点及演变规律Science Technology 以糠醛衍生物呋喃乙酸的C-O键氢解制备6-羟基羧酸酯为例,开发制备了非贵金属催化剂Ni/CeO2,并表现出高的催化活性和稳定性;如图1所示,利用in situ XPS技术详细分析了xNi/CeO2催化剂中Ni物种的结构特点及Ni物种在制备过程中的演变规律,结果显示8Ni/CeO2中存在金属Ni0物种和界面Nin+-VO-Ce物种。研究了Ni/CeO2表界面Ni物种类型及相对含量,发现催化剂界面Ni物种主要为Ni0和Niδ+,结合动力学分析,推断Ni0是C=C加氢的活性中心,而Niδ+是C-O氢解的活性中心。通过改变Ni负载量优化Ni0和Niδ+相对含量,实现C=C加氢和C-O氢解反应速率的动力学匹配,获得理想催化性能。相较于传统的石油基制备方法而言,其合成策略显示出:高的原子经济性,高能源利用率,原料来源可持续,并避免了易爆过氧化物的使用。参考文献Zelun Zhao, Guang Gao, Yongjie Xi, Jia Wang, Peng Sun, Qi Liu, Wenjun Yan, Yi Cui, Zheng Jiang, Fuwei Li*, Chem, 2022, 8, 1034-1049.本文内容非商业广告,仅供专业人士参考。
  • 盒子替代色谱柱,制备色谱法的新选择
    如果您想鉴定复杂样品中可能有的多种分析成分,那么你对色谱柱的主要要求就是高分辨率。另一方面,如果你想将大量的感兴趣的蛋白质(如生物反应器中产生的基于蛋白质的生物制药)与不需要的化合物分离,那么你对色谱柱的主要需求是产量。  这就是为什么分析柱倾向于高而薄,而用于大规模分离分析物的制备柱则倾向于更宽,以允许高流速。但是,虽然分辨率对于制备色谱柱的重要性不如对分析柱那样重要,但它仍需要足够高的分辨率,才能将感兴趣的蛋白质与不需要的化合物清晰分离。  不幸的是,实现所需的分辨率有时可能是相当大的挑战,因为宽的直径允许感兴趣的蛋白质采取各种不同长度的路线通过色谱柱。这将导致蛋白质洗脱成宽带,可能与一些不需要的化合物重叠。  科学家已经开发了各种技术来提高制备色谱的分辨率。现在拉戈什(Raja Ghosh)和他在加拿大麦克马斯特大学(McMaster University)的同事们提出了一种完全不同的方法,其中包括完全废除色谱柱并用一个盒子替换它。  他们的想法是用制备色谱中使用的常规离子交换颗粒填充特制的长方形盒子,体积为5mL至50mL。样品和流动相从一端引入盒子的顶部,而被分离的分析物则在相对端流出盒子的底部。这种安排使盒子具有与相同体积的制备柱相似的通量,但感兴趣的蛋白质通过盒子的路径都是相似的长度。  这是因为蛋白质都需要沿着盒子向下移动相同的距离以达到远端的出口,从而提高分辨率。它们可以先向前然后向下,或先向下然后向前,或沿着任何变化路径迁移,但它们都行进相同的距离,并在窄带中同时洗脱。  这种新型色谱盒,称为长方体填充床装置,Ghosh和他的团队的对其进行了测试,试图用它分离三种蛋白质的混合物。为了使其具有挑战性,他们选择了三种具有相似等电点的蛋白质:核糖核酸酶A,细胞色素C和溶菌酶,这些都很难分离。事实上,传统的制备柱很难做到这一点,而立方体填充床装置将蛋白质分离成三个清晰的峰。  他们的立方体填充床装置,所测试的每种效率指标都超过了制备柱。例如,对于分辨率的测量,计算出他们的装置,当流速为每分钟0.5mL时,每单位床高度的理论塔板数为8636 / m,而制备柱的则为1480 / m。  所以,相当有意味的是,Ghosh和他的团队通过思考如何改进制备色谱的方法,却想出了一个实际上可以取代制备色谱的应用生物制药纯化的盒子。  原文请参阅:  Thinking inside the box:A novel alternative to preparative chromatography   Published: Apr 9, 2018   Author: Jon Evans   Channels: Ion Chromatography,separationsNOW.com  符斌供稿
  • 选择月旭UHPLC色谱柱,享受极速分离体验
    月旭UHPLC色谱柱作为一名色谱工作者,您可以想象一下:有这样一根色谱柱,它既可以实现高柱效、对称的峰型和良好的分离度,同时还比一般色谱柱分离得更快速,可以带给您超快速的分离体验!您想认识这样的色谱柱吗?您想使用它吗?继续读下去,您会发现它真的是色谱柱当中一颗非常闪亮的“明星”!#1自主研发UHPLC色谱柱的研发生产,其实没那么简单!月旭科技凭借多年键合技术的经验,自主研发出具有国际先进技术的Ultimate UHPLC(1.8μm)色谱柱。在此过程中,公司研发团队攻克装柱难度大,填料容易堵塞等多个技术难题,使得该色谱柱具有更高的柱效和良好的批次间重现性,并减少溶剂的消耗量。因而不仅提高了实验室的效率,还降低了实验室的运营成本。#2重要优势告诉您为何要选择月旭UHPLC色谱柱?(1)高分离度(Ultra Resolution):在比一般色谱柱更短、更细的情况下,达到一般色谱柱同样甚至更好的的分离度。(2)快速(Ultra Speed):在保证得到同样质量数据的前提下,月旭UHPLC能提供单位时间内更多的信息量。在不影响解析度的情况下,小粒度能提供更高的分析速度,同样也能使柱长减少,根据Van Deemter色谱理论,最you流速反比于粒度大小。(3)高灵敏度(Ultra Sensitivity):提高柱效N,从而使峰宽W变的更窄,而峰高却增加了,同时,由于UHPLC运用了更短的柱子(柱长L更小),进一步增加了峰高。因此,在提高柱效的同时,运用1.8μm的UPLC系统比5μm和3.5μm的系统灵敏度分别提高了70%和40%,而在柱效相同情况下,能分别提供3倍和2倍的灵敏度。#3应用案例月旭Ultimate UHPLC色谱柱性能如何?布洛芬色谱柱:Ultimate UHPLC XB-C18 2.1*100mm,1.8μm。进样量:2ul;流速:0.35ml/min;布洛芬与主峰前杂质分离度:2.3;拖尾因子:1.26;理论塔板数:17650;运行时间:5min。#4规格型号月旭UHPLC家族有多种不同的键合相和多种规格的色谱柱供您选择。
  • 广东省农业标准化协会发布《甘薯中 13 种类胡萝卜素单体物质含量的测定》团体标准征求意见稿
    各有关单位及专家:由广东省农业科学院作物研究所等单位提出的《甘薯中 13 种类胡萝卜素单体物质含量的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2023年11月25日前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《甘薯中 13 种类胡萝卜素单体物质含量的测定》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2023年10月26日附件1:甘薯中 13 种类胡萝卜素单体物质含量的测定-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • Kromasil优化中国区分析色谱柱代理体系
    2017年全球色谱填料和色谱柱知名品牌Kromasil对其在中国的代理商及其代理区域进行了重新划分和调整。3月28日,在AkzoNobel上海总部举行的Kromasil中国区新代理商启动会议上,亚太区市场和销售总监金兴涛先生分别与上海鲲霆生物科技有限公司,深圳爱湾生物科技有限公司的代表签订了Kromasil色谱柱代理协议。 在本次代理商调整中,自2017年4月1日起,Kromasil将中国区的销售和服务体系重新划分为:东北,华北,西北、西南、华东、中南、华南等七个区域,其中东北,华北,西北、西南、华东大区由上海鲲霆生物科技有限公司负责,中南及华南区域的八个省份则由深圳爱湾生物科技有限公司负责。(备注:中南及华南区域八省包括湖南、江西、云南、贵州、广东、广西、福建、海南)。 Kromasil 希望通过此次调整,能够更好地推广以性能出色,品质稳定著称的色谱柱产品,为中国的色谱柱用户提供更加优质、及时的售前和售后服务。 Kromasil品牌:Kromasil是AkzoNobel集团旗下高性能化学品的知名品牌,是全球领先的高性能色谱填料和色谱柱品牌。长期以来,Kromasil的色谱填料被广泛应用于胰岛素及其类似物、多肽、小分子化药,天然药物等的纯化生产中;Kromasil多个品种的色谱柱也在中国药典示例中,如那格列奈、布洛芬、雷尼替丁等被列为参考液相色谱柱。 Kromasil可以在1.8μm-25μm的范围内提供反相、正相、超临界色谱、手性、核壳等各种用途的色谱柱,以满足广大用户不断增长的分析及制备需求。Kromasil色谱柱经久耐用,品种多样,是中国多代色谱人的优选品牌。 上海鲲霆生物科技有限公司 作为瑞典Kromasil在中国的小规模填料和半制备代理商,上海鲲霆生物科技有限公司长期以来服务于中国的制备色谱用户,秉承“精益求精、开拓进取、服务至上”的理念服务新、老用户,并赢得了新老用户的一致认可。随着本次分析色谱柱业务的增加,上海鲲霆将在分析到制备的领域上,从解决方案、实际应用、售后服务、技术支持等多个方面为客户提供更加专业化、更加贴心的服务! 深圳爱湾生物科技有限公司 爱湾医学是一家总部设立在深圳,连锁化,集团化经营的第三方独立医学实验室,着重致力于质谱技术在临床医学的应用,目前爱湾医学已取得医疗机构执业许可证,并在2016年12月获得”国家高新企业”和”深圳高新企业”,拥有1400平方的BSL-2等级的实验室,配置有多台HPLC,LC-MS/MS,GC-MS,UV,FTIR,AA等设备,并配置有PCR实验室。 爱湾生物为爱湾医学全资子公司,着重致力于为客户提供完善的色谱技术应用方案,基于自身1400平米的实验室,将为中国的Kromasil客户提供售前到售后的全套解决方案。
  • 上海同田中标哈尔滨医科大学高速逆流色谱仪项目
    2月底,逆流色谱行业领先的上海同田公司中标哈尔滨医科大学高速逆流色谱仪项目一套。中标仪器:TBE-300B+AKTA PRIME此配套设备是上海同田联合GE共同推出的半制备型高速逆流色谱仪 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 立式构造,三分离柱设计,双六通阀设计,提供在线检测 分离量:毫克-克量级 主机容量:280ml 进样圈:20ml 转速范围:0-1000 转/分 (无级变频调速) 分离转速:700-1000 转/分 流速范围:0.1-30ml/min 分离流速:2.0-4.0ml/min 推荐工作转速:900 转/分 推荐工作流速:3.0ml/min 温控模块(接循环水浴): 温度调控范围 15~40℃ 精度 0.5 ℃ 温控循环液量1~10L/min 电源:220V± 20V 50± 0.5HZ 功率:300W 压力:0-2MPa 主机尺寸:330× 600× 550mm 适合进行中草药、化学合成物质、抗生素等中、小分子类物质的分离,并累积小量的有效成分单体进行后续的科学研究 尤其适合对环境温度有严格要求的活性成分的分离。 点击这里查看更多高速逆流色谱仪信息! 上海同田生物 市场部 2010.3.1
  • 岛津隆重推出Essentia LC-15C高效液相色谱仪
    Essentia LC-15C秉承岛津高效液相色谱仪一贯优良品质的同时,为满足更加简便• 高效的分析需求,设计开发而成,丰富了LC产品线,在保留卓越性能与扩展性的基础上,提供更加人性化的LCsolution 15C色谱工作站,充分满足各行各业分析工作者的日常分析需求。Essentia LC-15C产品概述 每个设备组件的特点概述如下。LC-15C 送液单元 继承Prominence LC-20AT卓越性能的LC-15C,通过传送系统的改进,发挥出前所未有的送液性能。采用浮动柱塞支持机构,提高柱塞、柱塞密封圈的使用寿命,是耐用性出色的高性能送液单元。SPD-15C 紫外可见双波长检测器 SPD-15C是追求卓越性能和功能的紫外可见双波长检测器,高灵敏度和宽线性范围是从Prominence SPD-20A继承下来的优异性能。四种测定方式(双波长检测、比例色谱、波长时间程序和停泵扫描)可对应各种测定需求。使用选配件溶剂循环阀,不仅可以降低分析成本,更有利于环保。 SIL-10AF 自动进样器 SIL-10AF是追求可靠性和高性能的自动进样器。提高了每个部件的品质,保证长期连续使用的稳定性。独特的进样方式可获得出色的定量重现性。实现稀释、添加、编程等智能操作,还可以实现样品自动衍生化等预处理功能。CTO-15C 柱温箱/储液盒 CTO-15C经过全新设计,集柱温箱与储液盒为一体,简洁实用。储液盒可放置3个容量为1000mL或4个500mL的流动相瓶;柱温箱采用模块加热机构,可准确调节色谱柱柱温,保持分析的稳定。同时,还可将手动进样器安装在储液盒上,使系统的流路体积更加优化。 推荐配置例 等度系统 (Essentia ISO-UV) 构成: 基本配置, 等浓度洗脱 目的: 适合常规的医药品分析、化学分析、教学实习等   即便是简单体系,Essentia 也可以提供优质性能和可靠的分析数据。根据需要,可对系统进行升级。 等度系统二元高压梯度系统 (Essentia HGE-UV) 构成: 采用独立的二元高压梯度洗脱法的高性能系统。 目的: 适于常规分析至半制备分析的HPLC。 送液单元由两台独立LC-15C送液泵构成,配置灵活。 二元高压梯度系统四元低压梯度系统 (Essentia LGE-UV) 构成: 采用四元低压梯度洗脱法的灵活系统。 目的: 应用范围广, 从方法开发到日常分析。 节省空间设计,低压梯度单元内置于LC-15C送液泵内。 四元低压梯度系统欣赏视频请点击http://www.shimadzu.com.cn/upload/product_add/ana/lc-15c_vedio.html或http://www.instrument.com.cn/webinar/v/100479.htm,进入观赏
  • 网络讲座:TSKgel色谱柱在抗体分析与表征中的新应用
    2018年9月11日-14日,仪器信息网将举办“第三届色谱网络会议”,东曹(上海)生物科技将在13日下午做技术报告《TSKgel 色谱柱在抗体分析与表征中的最新应用》。报告内容将介绍各种分离模式的TSKgel 色谱柱在抗体、ADC、抗体片段、抗体聚糖及抗体定量分析方面的具体应用、实验条件优化。报 告 人:张琳,东曹技术中心应用开发部 部长报告时间:2018年9月13日(周四),下午15:00-15:30您可通过如下链接报名参加此次色谱网络会议:https://www.instrument.com.cn/webinar/meetings/iCC2018/
  • 广东省农业标准化协会立项《甘薯中13种类胡萝卜素单体物质含量测定方法标准》项团体标准
    各相关单位:根据《广东省农业标准化协会团体标准管理办法》的相关要求,2023年8月21日-8月28日,广东省农业标准化协会对《甘薯中13种类胡萝卜素单体物质含量测定方法标准》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述所申报的团体标准符合立项条件,现批准立项。请制标单位严格按照相关要求抓紧组织实施,严把标准质量关,切实提高标准编制的质量和水平,增强标准的适用性和有效性。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。特此公告。联系人:钱波 电 话:020-85161829 电子邮箱:gdnybzh@163.com 广东省农业标准化协会2023年8月28日2023.8.28-粤农标协字〔2023〕38号广东省农业标准化协会关于《甘薯中13种类胡萝卜素单体物质含量测定方法标准》项团体标准立项的公告.pdf
  • 二维液相色谱丨含碘造影剂,你的微量手性杂质我来查
    导读最近看到一则新闻,某患者因为肺部感染、哮喘,到医院放射科做了CT平扫,发现有一肺部肿块,医生建议再做个增强CT来进一步确定疾病的性质。那么,新闻中所说的增强CT究竟是什么呢?其实,增强CT就是指在CT平扫基础上,对发现的可疑部位,在经静脉注入含碘造影剂后,进行有重点的检查。也许您有疑问,为什么要注入含碘造影剂呢?它的安全性又如何控制呢? 为什么要注入含碘造影剂呢?含碘造影剂具有密度大的特点,经静脉注射进入体内后,因为病变组织内或血管丰富或血流缓慢而在病理组织中停滞、积蓄,使病变组织与邻近正常组织间的密度对比增加(即影像上黑白对比增加),CT图像能够更加清楚地显示组织血流和病变情况,以帮助鉴别疾病的良、恶性,提高病灶的定性能力,从而提高诊断准确率。 含碘造影剂小科普l 含碘造影剂的变迁自20世纪50年代被发现后,含碘造影剂经历了第一代的离子型造影剂飞跃到非离子型单体造影剂,再次飞跃到非离子型二聚体造影剂的过程。 图1 4种碘化CT造影剂的化学结构:离子单体、离子二聚体、非离子单体和非离子二聚体 目前被广泛用于临床的非离子型造影剂,如碘帕醇、碘海醇、碘普罗胺、碘曲轮、碘克沙醇等,具有毒性低、性能稳定、低渗等渗、耐受性好等优点。 l 碘帕醇的手性构型碘帕醇是一种非离子型水溶性碘造影剂,具有良好的显影作用,对血管壁及神经组织毒性低,化学性质稳定,不良反应较少,适应范围广。 碘帕醇(CAS号:66166-93-0)有1个手性中心,两个异构体(S-构型、R-构型),结构式见图2。碘帕醇中的R-碘帕醇含量增加会使碘帕醇注射液黏度升高,进而导致碘帕醇注射液的不良反应增加。因此控制不良构型的含量是碘帕醇及其他含碘造影剂质量控制的关键步骤。 图2 碘帕醇的S构型(左)和R构型(右) l 碘帕醇的一维手性分离探索利用色谱柱中手性固定相对异构体的吸附速度不同实现的色谱分离是常用手段。以Chiralpak MA(+)色谱柱和硫酸铜溶液为流动相建立碘帕醇的分离,R/S-碘帕醇分离结果如图3所示。 图3 250 mg/L浓度的R-碘帕醇样品溶液 (1)和S-碘帕醇样品溶液(2) 的1stD LC色谱图 通过分离结果可以看到,该手性分离体系能在20 min内实现碘帕醇两种构型的手性分离,但和多数液相手性分离的色谱行为相似,存在柱效较低的问题,因此在定量分析中对于含量较低的待测物的检出存在不足。 岛津解决方案对于类似碘帕醇这样的分子结构提示其可在反相色谱上有良好保留,因此考虑构建手性色谱体系和反相色谱体系的二维液相色谱系统,对已获分离的异构体杂质再次进行反相色谱分离以提高检测的灵敏度。 l 手性构型的二维分离 l 分离结果解析R-碘帕醇溶液(0.5 mg/L)2D LC 分析色谱图 5-10min间为R碘帕醇在1维液相上的保留,可以看到该浓度下无明显色谱峰,无法进行定量分析。经过阀切换将R碘帕醇在1维液相上的组分切入二维后,通过反相色谱作用,可以在16.5min左右发现明显的色谱峰同手性分离的 1 stD LC 结果相比,经过二维液相色谱分离的 R-碘帕醇灵敏度较之有 10 倍的提升。 结语药物杂质的高灵敏检查是控制药物纯度,提高药品质量的一个非常重要的环节。为了让含碘造影剂更加安全的为患者服务,岛津的二维液相色谱系统可发挥作用,弥补手性色谱柱效不足的缺点,既获得两种异构体的有效分离,又在经过反相色谱分离中获得良好响应。 撰稿人:李月琪 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制