当前位置: 仪器信息网 > 行业主题 > >

太谱模拟器

仪器信息网太谱模拟器专题为您提供2024年最新太谱模拟器价格报价、厂家品牌的相关信息, 包括太谱模拟器参数、型号等,不管是国产,还是进口品牌的太谱模拟器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太谱模拟器相关的耗材配件、试剂标物,还有太谱模拟器相关的最新资讯、资料,以及太谱模拟器相关的解决方案。

太谱模拟器相关的资讯

  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 全国首个城市双碳模拟器在济南发布
    6月8日,第一届城市碳达峰碳中和高端战略研讨会暨济南双碳模拟器发布会召开,全国首个城市双碳模拟器——济南双碳模拟器正式发布。据介绍,济南双碳模拟器主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟等功能板块。模拟器的研发以济南市为应用目标,充分考虑了通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,服务各级政府、各行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。目前,济南双碳模拟器的大气二氧化碳模拟和同化反演子模块已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市双碳模拟器将对城市绿色低碳高质量发展提供重要数值模拟技术平台,能为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为我国众多城市实现碳达峰目标和碳中和愿景保驾护航。济南市科技局党组书记、局长陈西武介绍到,近年来,济南市紧紧围绕“双碳”工作目标,加快推动绿色低碳发展,成功申报国家碳监测评估试点城市,成为全国8个综合试点之一,率先开展了城市大气温室气体监测评估工作,为城市碳监测评估体系建设贡献了“济南案例”。中科院大气所在济南成立齐鲁中科碳中和研究院,为济南市聚集和培养了一批技术创新团队,为济南市碳排放监测和评估提供了技术支撑,特别是此次发布的济南双碳模拟器,必将推动相关绿色科技成果在济南落地转化,为济南市实现“双碳”目标奠定坚实基础。
  • 三永发布高准直太阳光模拟器新品
    日本SAN-EI公司推出高准直太阳光模拟器(高平行太阳光模拟器),准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。AM1.5G /AM0 太阳光光谱;准直接半角0.3度(可定制其他角度);不稳定性2% 均匀性可定制;照射距离可定制;照射角度和方向可定制;创新点:高准直稳态太阳光模拟器,准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。高准直太阳光模拟器
  • 国内首个自主研发的地球模拟器正式投入使用
    p  记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。/pp  207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。/pp  据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。/pp  后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。/p
  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格)作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。关于海洋光学(Ocean Optics)和豪迈(HALMA):总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • Bruel & Kjaer 5128型高频头和躯干模拟器问世
    5128型高频头和躯干模拟器问世全新“小绿人” Bruel & Kjaer的全新高频头和躯干模拟器已问世。 它解决了可听声范围内逼真、精确和可重复的声学测量需求。 为了满足越来越高的手机音频品质需求,以及耳机在通信及娱乐中的日益普及,我们的电信/音频团队开发了5128型高频头和躯干模拟器(HATS)。 高频HATS解决了可听声范围内逼真、精确和可重复的声学测量需求。人工头还提供大面积的硅胶围绕耳廓,以实现头戴式耳机的完美密封。高频HATS将音频性能测量的频率范围扩展到比目前市场上的头和躯干模拟器更高的频率范围。此外,人工头的结构更易接近内部组件。 高频HATS具有真实人耳结构的耳道,可在整个频率范围内实现正确的声阻抗并通过传感器电子数据表(TEDS)提供耳模拟器相关的校准信息。通过精确地复现人耳的音频响应,高频HATS可以前所未有的精确度提供高达20 kHz的音频测试。此外,口模拟器的性能也得到提高,可提供12 kHz及以上的均衡输出。这显著提高了智能设备及其配件的音频性能的主、客观评估之间的相关性,确保了新产品在市场上的先进地位,缩短了开发时间。 请访问Bruel & Kjaer官方网站,查询有关5128型高频头和躯干模拟器的详细信息。 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的官方网站。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团2016年销售额达13亿英镑,集团的4个业务板块在全球共有大约7,500名员工。
  • 中国首发城市双碳模拟器,助力城市绿色低碳高质量发展
    记者8日从中国科学院大气物理研究所(中科院大气所)获悉,由该所主办、济南市科学技术局协办的“城市碳达峰碳中和高端战略研讨会”当天下午在山东济南举行,中国首个城市双碳模拟器在会上发布,将对城市绿色低碳高质量发展提供重要数值模拟技术平台,为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为中国众多城市实现碳达峰目标和碳中和愿景做出贡献。中科院大气所主办“城市碳达峰碳中和高端战略研讨会”并发布首个城市双碳模拟器。 当天首发的城市双碳模拟器,是由齐鲁中科碳中和研究院研究团队,基于中科院大气所牵头建立的地球系统数值模拟国家大科学装置——地球模拟器“寰”(EarthLab),以及配套的国际先进水平的地球模型系统研制而成,充分考虑到城市双碳功能定位和需求,对复杂系统进行顶层构建和精细化设计。“寰”是中国首个具有自主知识产权的专用地球系统数值模拟装置,它以地球系统各圈层数值模拟软件系统为核心,实现软、硬件最佳适配,具有建构数字“孪生”地球系统的能力,其综合技术水平位于世界前列。最新发布的城市双碳模拟器被称为1.0版系统,其主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟、碳达峰碳中和预测和路径优化、城市风光资源评估与模拟预测、双碳与气候效应以及跨界碳输送模拟和预测等功能板块。该模拟器的研发以济南市为应用目标,充分考虑通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,通过提供碳达峰与碳中和进程、碳源汇时空变化、碳污动态协同演进、未来双碳情景预测、双碳全景可视化等,可服务各级政府、各个行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。据了解,目前,济南版城市双碳模拟器的大气二氧化碳模拟和同化反演子模块,已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市碳达峰碳中和高端战略研讨会上,与会专家学者代表围绕城市尺度碳达峰碳中和科技支撑工作进行深入研讨,聚焦碳达峰碳中和最新科技进展,包括碳源汇宏观管理、城市和区域温室气体监测、碳模拟和同化反演技术方法等议题,针对城市碳达峰碳中和实施工作中的难点与挑战建言献策。
  • MTS 发布新模拟器——地下设施和管道的守护者
    p style="text-align: justify text-indent: 2em "全球知名高性能试验机和传感器供应商MTS系统公司于9月25日宣布,已开发出一种独特的土壤-结构相互作用模拟器,该模拟器可在地下基础设施的保护工作中发挥重要作用。/pp style="text-align: justify text-indent: 2em "这一全新的系统将首先亮相于于英国伯明翰大学的新国家地下基础设施(NBIF)中,用以研究土壤位移和地面移动对地下设施、管道以及地下结构的影响。沉降和变形常使土壤发生位移,形成地下空洞和不稳定断裂区域,由此而产生的压力对埋在地下的管道施加了巨大的作用力,造成地下管道失效、泄漏和破裂的潜在风险,如果破裂的管道是天然气管道或石油管道,那很有可能将对人类、野生动物和财产带来极其严重的危害。运用MTS的这一新模拟系统,伯明翰大学大学将能够更好地研究复杂的土体变形过程及其对地下结构的影响。/pp style="text-align: justify text-indent: 2em "这个巨大的模拟系统有一个5× 10米的可移动地板,可以埋在地下5米深的设计复杂的坑内。可移动地板的运动依靠50个MTS DuraGlide制动器提供动力,额外的地面制动器将可以控制土壤的运动,并在尺度模型和全尺度试验中模拟灰岩坑等地面位移。据悉,伯明翰大学计划在未来利用这一革命性的新系统来改进管道检测和评估的地球物理遥感技术。/pp style="text-align: justify text-indent: 2em "MTS总裁兼CEO Jeffrey Graves博士接受采访时表示:“基础设施老化是一个全球性的问题,用MTS这一新模拟系统来开发的土壤稳定解决方案将对保护看不见的地下基础设施大有裨益,让建筑物和整个人类赖以生存的环境更加安全。”他告诉记者,这一模拟系统是MTS在众多应用领域成功经验的高度结晶。融合了汽车设计和构造、地震研究、航空航天多通道控制等各个维度的先进技术手段。伯明翰大学土木工程系主任 Nigel Cassidy教授补充说:“MTS在液压试验机等领域积累了大量专业知识和经验,我们很高兴能与他们合作,共建这一创新性的新设施。”/p
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 中国科大量子模拟取得新进展
    中国科学技术大学潘建伟、苑震生等与清华大学翟荟、兰州大学么志远等合作,使用自主开发的超冷原子量子模拟器,研究了格点规范场理论中的非平衡态热化过程与量子临界性之间的关系,揭示了具备规范对称性的多体系统处于量子相变临界区域时易于热化到平衡态的规律。这项研究成果近日以“编辑推荐”的形式发表于《物理评论快报》。规范理论和统计力学是物理学的两大重要基础理论。从经典电动力学的麦克斯韦方程组到描述基本粒子相互作用的量子电动力学、标准模型等,都是满足特定群对称性的规范理论。统计力学,则是基于玻尔兹曼等提出的最大熵原理,将大量微观粒子(原子、分子等)组成的系综的微观状态与其宏观统计规律连接起来的学科,如微观粒子的能量分布是如何影响其压力、体积或者温度等宏观量的。那么,由规范理论描述的、远离平衡态的量子多体系统会热化到热力学平衡态吗?回答这一问题将推动人们对规范理论、统计力学及两者关系的理解。虽然理论物理学家们提出了各种模型来分析这一问题,但是在实验上难于构建一个既由规范理论描述、又可人工操控并观测其热化过程的物理体系。近年来,超冷原子量子模拟器的出现为同时研究规范理论和统计物理提供了理想的实验平台。2020年,中国科大的研究团队开发了71个格点的超冷原子光晶格量子模拟器,首次对U(1)格点规范理论--施温格模型的量子相变过程进行了实验模拟;2022年,他们对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”。近期,此次工作的合作者翟荟和么志远等通过理论研究指出,在此类格点规范模型中,量子热化和量子相变之间存在关联,并从反铁磁Neel态出发,预言系统只有在量子相变点附近才能达到完全的热化 。进一步观测格点规范理论的量子热化和量子相变之间的关系,对之前的实验能力提出了新的挑战:如何在单格点精度原位地、可区分原子数地操控和探测多体量子态。潘建伟、苑震生团队在他们已有的超冷原子量子模拟器基础上,将量子气体显微镜、自旋依赖超晶格和可编程光学势阱等技术相结合,开发了单格点精度、粒子数可分辨的原子操作和检测技术。基于此,他们得以制备和探测任意原子构型的多原子量子态,并在满足规范对称性约束下,追踪多体量子态的动力学演化过程。在该工作中,他们在实验中制备了特殊原子构型的初态,利用绝热演化的方法研究了满足规范对称性约束的量子相变过程,通过有限尺寸标度理论首次在实验中精确地确定了相变点。同时,他们研究了同一构型初态在远离平衡条件时的退火动力学过程,揭示了具备规范对称性的多体系统处于量子相变临界点附近时易于热化到平衡态的规律。
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。  新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。  美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。  加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。  据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。  本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。  模拟执行太空任务  据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。  当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。  据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。  训练海中溅落  哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。  在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。  据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • 7亿元两套振动台,MTS中标5亿:世界最大地震模拟设施!
    p style="text-indent: 2em "提及天价设备,我们容易想到光刻机行业霸主ASML生产的世界上最顶尖的EUV光刻机,单台售价超1亿美元,2018年,中芯国际首次向ASML订购EUV光刻机,采购价格高达1.2亿美元,大概相当于七亿人民币。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 241px " src="https://img1.17img.cn/17img/images/202003/uepic/4add9eea-8f18-4022-9ae6-102ca95d41d3.jpg" title="1.jpg" alt="1.jpg" width="450" height="241" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "其实,在科学仪器领域,也不乏这样的过亿天价设备,比如大阪大学两台价值约约合人民币2.72亿元的高端电镜(日立高新H3000与日本电子物质及生命科学超高压电子显微镜)、去年8月MTS系统公司2.14亿元中标的世界单套最大规模重载车辆道路模拟系统、以及span style="text-indent: 2em color: rgb(0, 32, 96) "strong近日采购预算超7亿元的天津大学大型地震工程模拟研究设施地震模拟振动台采购项目。/strong/span/span/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "7亿元采购两套振动台系统,MTS独中5亿元/span/strong/pp style="text-indent: 2em "2019年11月28日,天津大学委托北京泛华国金工程咨询有限公司发布“天津大学大型地震工程模拟研究设施地震模拟振动台采购项目”,预算金额为7.156亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 175px " src="https://img1.17img.cn/17img/images/202003/uepic/4e270f62-2db7-4f85-9a34-eb4b5495787f.jpg" title="2.png" alt="2.png" width="500" height="175" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "2020年1月21日,MTS系统公司与天津市天锻压力机有限公司共同中标,其中MTS系统中标金额超5亿元,天津市天锻压力机有限公司中标2.15亿元。/span/pp style="text-indent: 2em "strong此次中标项目的“天价”主要体现在以下几方面:/strong/pp style="text-indent: 2em "strong1)/strong此次采购项目背后是天津大学牵头建设的世界上最大的地震工程模拟研究设施,总投资预计超过15亿元人民币。被称作继贵州“中国天眼”、广东散裂中子源、上海光源等之后的又一国家大科学装置,也是地震工程领域的唯一一个。/pp style="text-indent: 2em "strong2)/strong此次中标,创下MTS系统公司有史以来单一合同订单最高金额纪录,合同总计金额超过7148万美元(根据当前汇率折算人民币超5亿元)/pp style="text-indent: 2em "strong3)/strong由于此次采购项目金额巨大、技术要求比较高,单靠一个投标人的力量不能顺利完成的,所以采取了联合体投标形式,即MTS系统公司与天津市天锻压力机有限公司集中各自优势,以一个投标人的身份获得中标。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "采购项目背景/span/strong/pp style="text-indent: 2em "2018年8月2日,国家发改委批复立项:依托天津大学高水平创新主体,建设开放共享、揭示复杂岩土介质与水动力环境中重大工程动力损伤机理的国家重大科技基础设施—“大型地震工程模拟研究设施”。总投资预计超过15亿元人民币。/pp style="text-indent: 2em "设施总体目标为:面向地震工程领域需求,结合国内外优势力量,集中建设国际一流、规模最大、装备最先进、综合程度高、高度智能化、开放共享的大科学装置。设施可为解决地震工程研究中关键科学问题提供大尺寸大载重地震模拟、多点多维地震差动激励及地震-波流耦合激励等高水平试验手段,大幅提升我国防灾减灾原始创新能力和全社会减轻自然灾害风险的能力,加快地震工程领域人才培养,为提高我国地震灾害的防范水平提供重要支撑。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 236px " src="https://img1.17img.cn/17img/images/202003/uepic/8cef066b-b568-4966-a779-f1d45dfde727.jpg" title="3.png" alt="3.png" width="450" height="236" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大跨桥梁水下振动台台阵波流耦合试验现场效果图/span/pp style="text-indent: 2em "项目首席科学家、天津大学校长钟登华院士说,该设施建设周期为5年,主要包括地震工程模拟试验系统、高性能计算与智能仿真系统、试验配套与共享系统等3大系统。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 269px " src="https://img1.17img.cn/17img/images/202003/uepic/5ad5b226-e052-4356-9baa-0388cd49c915.jpg" title="4.png" alt="4.png" width="450" height="269" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大型水坝-库水-岩体大型振动台试验效果图/span/pp style="text-indent: 2em "在崭新的天津大学北洋园校区内将建设大型的“地震模拟振动台”,总建筑面积7.7万平方米。地震模拟振动台是开展抗震模拟研究的有效试验平台。目前国内外已有的地震模拟振动台或规模较小,或实验功能单一——不能同时模拟地震与其它多种灾害荷载的作用,已经不能满足一旦地震时确保工程安全和正常服役的需要。天津大学将建设尺寸荷载重量更大的地震模拟振动台,以及能同时模拟地震与水下波流耦合作用的振动台台阵试验装置。该设施建成后,可大幅提升我国工程技术领域的创新能力和水平。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "关于中标的两套振动台系统/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 323px " src="https://img1.17img.cn/17img/images/202003/uepic/e2e24e48-cebc-4281-af7a-cf9a9a0816a1.jpg" title="5.png" alt="5.png" width="600" height="323" border="0" vspace="0"//pp style="text-indent: 2em "据悉,该地震工程模拟试验系统包含两套独立的试验设施,建成之后,均为最大规格的地震工程模拟试验设备。其中一套系统为六自由度(6DoF)振动台,有效工作尺寸为16mx20m,有效负载为1350吨,可以开展足尺建筑或者低缩比模型的抗震性能评估。/pp style="text-indent: 2em "另外一套系统是由两个6mx6m的六自由度(6DoF)振动台组成,每个振动台的有效负载均为150吨。两个振动台既可以独立工作,也能够联合起来组成台阵系统,并且该台振系统可以在3m深的水下工作,其中的一个振动台还能够在长度为57m的槽道中移动位置以满足不同跨度样件的抗震试验,例如各种类型的水利枢纽、桥梁、隧道、管路结构等等。水下台振系统周围将布置造浪模拟设备来模拟不同的海洋工况,可以将地震与波流组合起来实现多灾害现象的模拟。/pp style="text-indent: 2em "MTS系统公司首席执行官Dr. Jeff Grave表示,“ MTS系统公司在中国以及全世界的抗震工程以及多灾害试验模拟领域具有技术领先地位,拥有无与伦比的技术能力与专家团队。作为该行业的领军者,MTS系统公司是少数能够提供如此超大规模地震工程模拟设备的工程公司。这个项目包含了诸多挑战,复杂的系统集成、超大载荷与位移的控制、先进的地震仿真和模拟软件,并且将地震与波流结合起来开展试验应用。MTS能够赢得天津大学的项目,对此我们深表自豪,MTS将与天津大学共同努力创造更好的地震模拟试验技术,为中国以及全世界基础建设,包括大型水利枢纽、建筑、桥梁、可再生能源设施等,做出贡献,一同创造一个更加安全、美好、可持续发展的世界!”/pp style="text-indent: 2em "天津大学副校长,项目执行总指挥张凤宝教授表示,“我们非常期待与MTS系统公司一同建设这套世界最大规模、最先进的地震模拟系统,这套系统是我们大型地震工程模拟研究设施的基础系统之一,也是迄今为止在天津建设的首个国家重大科技基础设施的一部分。当整个项目完成之后,所有的科研成果将与全世界的同行共享,我们的目标是重大工程和基础设施建设更加安全、可持续。天津大学欢迎全球的科学家和工程专家来参观、指导未来的地震工程模拟试验研究。“/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "那些“高”价的仪器设备/span/strong/pp style="text-indent: 2em "strong1)一套仪器设备订单成交,2.14亿元,3年分批交付/strong【a href="https://www.instrument.com.cn/news/20190812/490962.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2019年7月29日,MTS系统公司宣布获得世界单套最大规模重载车辆道路模拟系统订单,订单总额3040万美元(约2.14亿元人民币),将为美国陆军设计、生产、制造与集成世界上最大的主轴耦合道路模拟器。该合同为长期持续投入合同,系统部件将在后续2020、2021、2022财年三个财年之中分批交付使用。/pp style="text-indent: 2em "该道路模拟器将安装在美国陆军位于马里兰州的军阿伯丁测试中心。用于加速军用车辆耐久性测试,一旦投入使用,所需的测试时间将缩短75%至80%。通过在实验室中模拟真实路面环境条件,帮助陆军快速评估和改进车辆的可靠性和耐久性,以避免潜在的、耗时的现场故障。/pp style="text-indent: 2em "除了道路模拟器,解决方案还包括MTS SWIFT EVO 50车轮力传感器,用于收集这些车辆在各种试验场地形上的实时数据。同时系统也采用了MTS最大液压动力系统,将可以提供每分钟达数千加仑的连续液压动力。该道路模拟器将能够用于测量最多五轴的载重车辆,对应车辆重量达100,000磅(约45.3吨)。/pp style="text-indent: 2em "“此套道路模拟器离不开MTS系统公司过去五十余年在重载车辆测试技术方面的开发能力与经验积累”,MTS系统公司总裁兼首席执行官Jeffrey Grave博士表示,“MTS公司很高兴能够应用商用车辆建模和仿真的知识,为陆军创建整车测试解决方案。这个新系统将有助于提高军用车辆的可靠性,并为陆军更佳性能量身定制车辆设计提供理论支持。”/pp style="text-indent: 2em "strong2)大阪地震,日立高新与日本电子这两台近3亿元高端电镜受损/strong【a href="https://www.instrument.com.cn/news/20180624/466369.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2018年6月18日,日本大阪府发生里氏6.1级地震,位于大阪府茨木市的大阪大学超高压电子显微镜中心也遭遇强烈晃动,每台价值约23亿日元(约合人民币1.36亿元)的电子显微镜有两台受损,修复需要花费1年以上。受地震影响,一些世界顶级科研项目或出现停滞。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 418px " src="https://img1.17img.cn/17img/images/202003/uepic/2ae993eb-c06b-4ca5-bfe2-047f5fd579d9.jpg" title="6.jpg" alt="6.jpg" width="500" height="418" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "H3000 UHVEM(日立高新)/span/pp style="text-indent: 2em "该中心这两台高端显微镜,一台正是日立高新生产的H3000 UHVEM(3 MV ultra-high voltage electron microscope,300万伏超高压电子显微镜),其高度为17米,使用世界最高电压对于较厚样品也能进行观察;另一台则是日本电子生产的Materials- and Bio-Science UHVEM(物质及生命科学超高压电子显微镜),其高度为12米,能在一秒钟内对每一个原子的运动进行1600次拍摄。这两台电子显微镜可以观察到从物质及生物的微细结构到物质受到放射线损伤的情况,能观察到纳米级的微小结构。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 283px " src="https://img1.17img.cn/17img/images/202003/uepic/4b2cb873-b969-4437-a040-682fd076074b.jpg" title="7.jpg" alt="7.jpg" width="500" height="283" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Materials- and Bio-Science UHVEM(日本电子)/span/pp style="text-indent: 2em "此次地震致使产生高压的零部件脱落,对精密度有严格要求的电子加速器严重变形等,两台显微镜都遭受致命性打击。该中心主任保田英洋无奈地表示,已经完全不能使用,将与厂家等商谈进行修理,完全修复需要花费1年以上。/pp style="text-indent: 2em "strong3)南方科技大学2.8亿冷冻电镜二期采购:赛默飞中标其中2.6亿/strong【a href="https://www.instrument.com.cn/news/20181225/477695.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong详情/strongstrong/strong/span/a】/pp style="text-indent: 2em "2018年12月24日,南方科技大学 “冷冻电镜项目二期采购”项目中标结果揭晓,中标金额2.82亿元。中标的生产供应商中,赛默飞成最大赢家,其中4套高端冷冻电镜Krios G3i中标金额为2.18亿元。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/d3dcbe57-ba9c-4c12-ad5f-93a6bc7dc12a.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Krios™ G3i 冷冻透射电子显微镜/span/pp style="text-indent: 2em "strong4)西湖大学冷冻电镜采购项目揭晓:赛默飞1.53亿元中标/strong【a href="https://www.instrument.com.cn/news/20181231/478034.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2018年12月27日,西湖大学“科研仪器设备(第四十一批)”采购项目结果公布,赛默飞Krios G3i等冷冻电镜系统以2225.7255万美元(根据当前汇率,约合1.53亿元人民币)中标。/pp style="text-indent: 2em "strong5)上海交大冷冻电镜采购揭晓:赛默飞1.05亿元中标/strong【a href="https://www.instrument.com.cn/news/20181231/478035.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong详情/strongstrong/strong/span/a】/pp style="text-indent: 2em "2018年12月26日,“上海交通大学冷冻电镜系统”采购项目结果公布,赛默飞Krios G3i和Talos F200i分别以1094.8万美元(根据当前汇率,约合7527.3万元人民币)、438.5万美元(根据当前汇率,约合3014.9万元人民币)中标,总中标金额为1.05亿元。/pp style="text-indent: 2em "strong....../strongbr//p
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户:只需单击鼠标,即可模拟其他 (U)HPLC 仪器。运行现有 (U)HPLC 方法,无需修改方法或系统。与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台
    恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台壹台,型号:AP-ZD-300,签定日期2015年12月03日,送货地址位于:重庆市沙坪坝区先锋街2号。业务负责人:李冬梅;电话:86-0769-81015055 手机:13316686114;全国服务热线:400-6727-800。重庆地质仪器厂是1969年为响应党中央关于加强三线建设的号召,由北京地质仪器厂、上海地质仪器厂与原重庆地校留守处的部分职工内迁组成的一个企业,工厂原属地矿部(国土资源部)现属为国机集团下的中国地质装备总公司领导,生产地球物理勘探仪器的专业生产企业,性质为全民所有制。重庆地质仪器厂主要从事地质勘探仪器的生产、开发、经营,兼营数字仪表、环保仪器、汽车电器及电子仪器产品和社会有关机械电子一体化产品。面向全国找矿、工程勘探、环境监测,地震预报,寻找地下水源等方面的产品和服务,属于高科技产品生产企业。2001年通过ISO9001质量体系认证,2010年7月获重庆市高新技术企业认定,重庆市沙坪坝区“企业研发中心认定。企业位于重庆市沙坪坝区先锋街2号,是重庆市园林式企业,工厂全厂占地面积18.3万平米,其中生产用地约4.5万平米。企业在2010年被评为重庆市精神文明单位。重庆地质仪器厂主要专业产品有六大系列:1、地震仪器系列产品:DZQ48/24/12等各种型号的地震仪器,高分辨率地震仪,数字深层地震仪等。主要用于:水、工、环的,地质基础调查及找矿。2、测井仪器系列主要产品有:综合数字测井系统、系统轻便工程测井,绞车控制器等各种测井产品、各种用途探管,测斜仪系列产品。主要用于:煤田数字测井,水文工程数字测井,固体金属矿测井,工程测井等。3、电法仪器系列:其中又分为直流电法和交流电法,二大系列产品。主要产品有DZD6—6A多功能直流电法仪,DUK-2A高密度电法测量系统,工程瞬变电磁测量系统等各种型号产品,用于寻找地下水及水、工、环地质勘察,矿产资源勘察等。4、放射性仪器系列有FD-803A,NP-4 γ射线能谱仪等多种系列产品,用于找矿及环境监测等。5、地震传感器系列主要产品有低频系列检波器,大振级检波器,井中三分量检波器和各种中高频检波器等。主要用于深部的地质勘探、人工地震监测、各种工程振动监测和道路、建筑等安评检测等。6、社会产品:汽车、摩托车电喇叭,以及承揽表面加工业务。爱佩品牌模拟运输振动台符合美国及欧洲运输标准及 EN、ANSI、UL、ASTM、ISTA国际运输标准。试品装夹采用导轨式,操作方便、安全、 数字仪表显示振动频率、 同步静噪皮带传动,噪声极低、机台底座采用重型槽钢配减振胶垫,安装方便,运行平稳,无需安装地脚螺丝。重庆地质仪器厂选用的模拟运输振动试验台更多优势特点参数价格请联系爱佩公司客服人员.
  • 世界最先进大气环境模拟平台开工
    8月26日,“大气霾化学”基础科学中心启动会暨“大气环境模拟系统”开工仪式在山东大厦举行。“大气霾化学”基础科学中心、“大气霾化学”基础科学中心—清华大学分中心、“大气霾化学”基础科学中心—中国科学院化学研究所分中心同时揭牌,“大气环境模拟系统”同日正式开工。“大气霾化学”基础科学中心是目前我国环境领域唯一的基础科学中心,拟开展大气霾化学基础研究,聚焦环境化学领域的国际前沿,围绕细颗粒物和臭氧协同控制的迫切科技需求,建立霾化学理论。中心将通过大气科学、环境化学等相关领域高端创新资源的聚集,建设成为国际一流的科研平台,同时也将形成高水平人才技术交流和协同创新创业平台。“大气环境模拟系统”是目前世界上最先进、功能最全的大气环境模拟平台。系统将通过外场观测获得大气污染状况和气象参数,通过实验研究我国典型区域大气污染化学机制、健康影响和气候效应及其关键参数,结合大气化学模拟和地球数值模拟装置等宏观模型,为我国大气污染预测、诊断、控制决策及防治提供科技支撑。
  • 我国研发的模拟移动床色谱分离技术酝酿新突破
    我国自主研发的模拟移动床色谱分离技术继成功用于天然产物活性成分提取后,又在酝酿新的突破。日前,黑龙江省八一农垦大学与上海石油化工研究院、华东理工大学石油研究所签订了模拟移动床设备研发合作协议书,将研制适合高温高压条件下使用的烃类化工设备,石油化工、生物产业将成为这一精细分离技术的又一个用武之地。  模拟移动床色谱分离技术是一种高效、先进的分离纯化技术,应用领域遍及石油化工、食品、精细化工、生物发酵和医药等。利用模拟移动床技术可以实现石油化工分离的连续性,提高产品纯度和收率,使原料、副产品得到充分利用,能耗大幅度下降。  隶属黑龙江省八一农垦大学的黑龙江省农产品加工工程技术研究中心自主研发的模拟移动床色谱分离实验设备,采用了旋转分配阀,分离精度高,柱外死体积少,自动化程度高,可实现连续分离操作。同时该设备也可根据不同工艺要求调整组合分离柱,任意设置料液进出口位置,灵活多变以适应分离各种不同产品的分离工艺。  该设备分离效率较一般色谱高出40%,设备投资少,运行成本低,可使加工成本降低50%以上。目前,黑龙江省农产品加工工程技术研究中心已掌握了模拟移动床色谱分离的产业化设备制造技术,研发出高纯度甜叶菊甙产业化分离技术、玉米蛋白抗氧化肽纯化技术以及果糖、山梨醇等十余项的分离纯化技术。目前,该中心正在与三家企业洽谈技术与装备配套转化的意向。  记者了解到,模拟移动床色谱分离技术在我国的发展尚处于起步阶段,且研究进展较为缓慢。其原因是涉及到这一技术应用的实验设备极为稀少,我国自制的模拟移动床色谱分离关键部件及配套设备几乎是空白,其核心技术配件都要依靠进口。我国目前仅有几台进口的实验型模拟移动床色谱分离设备售价极高,且物料分离提取的试验具有专一性,不能广泛应用于各种生物、药物活性成分的分离纯化研究。  新闻链接:  模拟移动床(SMB)色谱分离技术是一种现代化分离技术,具有分离能力强,设备体积小,投资成本低,便于实现自动控制并特别有利于分离热敏性及难以分离的物系等优点,在制备色谱技术中最适用于进行连续性大规模工业化生产。  SMB技术的兴起是化工技术中的一次革新,其应用范围也不断扩大,目前已遍及石油、精细化工、生物发酵、药、食品等很多生产领域,尤其在同系化合物、手性异构体药物、糖类、有机酸和氨基酸等混合物的分离中显示出其独特性能。  在石油化工领域,该技术在上世纪70~80年代主要用于石油产品的分离,其本身就是在研究分离石油产品的过程中发展起来的。1969年美国UOP公司将模拟移动床色谱技术用于分离对二甲苯和间二甲苯,该分离过程被其称为Parex过程。同时UOP公司还将该技术应用于其他工业级的石油产品的分离过程中,如对甲苯酚和间甲苯酚的分离,从C8芳香族化合物中分离乙苯,从煤油C4烯烃混合物中分离丁烯-1,从蒎烯混合物中分离β-蒎烯等。Toray工业公司建造了年产p-二甲苯10万吨的模拟移动床装置,他们将该分离过程称为Aromax过程。
  • 英斯特朗 -- 【案例分享】采埃孚6自由度轴耦合道路模拟试验台
    采埃孚“底盘系统”业务部的轴耦合车桥试验台以其优异的特性被广泛应用于多种车辆类型的试验,从小型车辆,如大众Polo,到SUV,如戴姆勒M级,宝马X5,以及厢型车辆,如戴姆勒Sprinter,大众Crafter等车型车桥的测试中。轴耦合试验台对于车桥道路数据的模拟试验使设计人员能够在台架试验中获得实际路况条件下载荷时间函数。车轴的耐久性测试有两种方式:一种是在汽车制造商指定的放行试验试验场进行的道路试验,另外一种是轴耦合试验台进行的车桥道路谱模拟试验(车桥试验台简称“SSP”=道路模拟试验台),道路谱是利用记录在汽车制造商指定的测试路段上的实际采集数据。道路模拟试验可以代替驾驶试验,并且具备以下几个重要优势:1.节省试验时间 (因为24小时连续试验,使得测试时间减少到20%以下) 2.试验不受天气影响3.可过滤掉不会造成损伤的测试路段,以缩短测试时间4.载荷试验的可重复性精度提高轴耦合试验台由两个对称的加载单元组成,分别布置在静压支撑旋转平台上,这样的设计使得车桥在试验中可以转向。纵向、横向、垂直作用力以及制动、转向、外倾和动力输入等力矩可以被导入到车桥结构当中。方向盘的旋转由伺服控制液压马达完成。同时试验台也可以进行不带转向的试验。
  • 阿泰可发布阿泰可整车综合性能环境试验舱(转毂+红外线阳光模拟)新品
    该套环境舱主要用于整车高低温存放试验、整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。该产品主要由气候模拟试验室主体、升降温装置、新风/尾排系统、阳光模拟系统、仓内温度采集系统、电气控制系统构成。采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠 一. 主要技术指标1 温度指标温度范围:-40℃~+60℃;温度均匀度:≤±2℃(空载);温度偏差:≤±2℃(空载);温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)升温速度:≥1℃/min(带载,发动机不启动,全程平均);降温速度:≥0.7℃/min (带载,发动机不启动,全程平均);负载:汽车,重量≤6吨;依据标准序号试验项目依据标准1汽车起动性能试验方法GB/T12535-20072除霜除雾试验GB11556-20093电机性能试验GB/T 18297-2001(参考)4太阳辐射试验GB /T 2423.24-19955恒定湿热试验方法GB/T2423.3-20066汽车采暖性能要求和试验方法GB/T 12782-20077汽车空调整车性能试验方法QC/T658-2000 创新点:采用复叠式螺杆压缩机组分布式IO控制系统应用 l 设备可靠性提高l 压缩机使用寿命延长l 动力平衡好,节能环保l 控制系统更加灵活、可靠
  • 胡伟教授团队在分子光谱的人工智能模拟方面取得研究进展
    齐鲁工业大学(山东省科学院)化学与制药学部胡伟教授团队,在分子光谱的人工智能模拟方面取得研究进展。研究成果以“A Deep Learning Model for Predicting Selected Organic Molecular Spectra”为题,在Nature子刊 《自然-计算科学》(Nature Computational Science)杂志上在线发表。论文第一单位为齐鲁工业大学(山东省科学院),化学与制药学部2019级本科生邹子涵为第一作者,化学与制药学部胡伟教授、光电科学与技术学部张玉瑾副教授、中国科学技术大学罗毅教授和江俊教授为本文的共同通讯作者。分子光谱作为“分子指纹”,被广泛地应用于物理、化学、生物、材料、医学、食品、环境、化工等领域。传统的分子光谱模拟采用量子化学方法,涉及昂贵的电子结构计算和复杂的光谱模拟,导致效率低下。针对该难题,胡伟教授团队结合E(3)-等变几何组、自注意机制,开发了一套深度学习模型:DetaNet,从而建立了更高效、更准确、更快速的分子性质和分子光谱的人工智能模拟方法。研究团队首先建立了包含 13万余种分子的红外、拉曼、紫外-可见吸收、核磁共振光谱数据库:QM9S 数据集;其次,通过传递高阶几何张量信息,使得DetaNet 能够预测各种分子的标量(能量、原子电荷等)、矢量(电偶极矩、原子力等)以及高阶张量(Hessian矩阵、电四极矩、极化率、电八极矩、第一超极化率等)性质。在此基础上,开发了通用模块用来预测四种重要的分子光谱,即红外光谱、拉曼光谱、紫外可见吸收光谱、核磁共振光谱。通过测试,研究团队发现DetaNet的计算效率比量子化学快3-5个数量级。本研究成果提供了原创的深度学习模型:DetaNet,在世界上首次提出直接预测分子张量性质的机器学习算法,开发了多种分子光谱的人工智能模拟算法,对分子高通量筛选、光谱辅助结构鉴定等重要的领域提供了坚实的理论基础和高效的软件工具。本课题受到国家自然科学基金、山东省泰山学者计划、济南市高校20条等项目支持。
  • 《自然》:量子计算机首次模拟全息虫洞
    国际著名学术期刊《自然》最新发表一篇量子物理学论文,首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这一演示使用的是谷歌(Google)的悬铃木(Sycamore)处理器,标志着距离在实验室研究量子引力的可能性又进了一步。该论文介绍,广义相对论描述的是高能或高物质密度的物理世界,比如天体物理对象。量子力学描述的则是原子和亚原子水平上的物质。量子引力是一种假设的物理理论,描述的是与这两类情况都相关的对象,比如黑洞的内部。不过,量子力学与广义相对论在根本上是不相容的,因此对于量子引力的理论目前尚未达成共识。而全息原理是连接不同理论的一种方式,或有助于调和量子力学和广义相对论,它利用一个受限的物理系统将相对论解释为量子物理学的扩展。本次研究中,根据全息原理,论文通讯作者、美国加州理工学院玛丽亚斯皮罗普鲁(Maria Spiropulu)和同事与合作者设计了一个简单系统,用来模拟一个全息虫洞,其经过适当设计的量子系统的性质符合引力系统所该有的性质。该量子模拟利用一台量子计算机进行,有一个9量子比特的电路。量子比特在这台处理器上传输时的动力学特征与量子比特穿过可穿越虫洞时所该有的动力学特征相同。
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12 MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0 MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。  前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。  “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。  据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。  据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 国内首台动静态相变热模拟FORMASTOR-FZ顺利落户攀钢研究院
    国内首台动静态相变热模拟FORMASTOR-FZ顺利落户攀钢研究院世界老牌相变仪热模拟制造商日本富士电波工机株式会社制造的动静态相变热模拟FORMASTOR-FZ设备首次进入中国,已于近日在攀枝花顺利验收完毕。感应和通电双加热电源系统以及LED光学自动跟踪膨胀测量系统的先进设计造就了这款设备的独特性能,使其不但是一台先进的动静态相变仪设备,而且更是一台性能优异的具备拉、压动态变形和焊接模拟等功能的热模拟设备,相比市场上其它热模拟设备,该款设备以其测试的高精度和高可重现性而著称,高精度薄板相变测试功能则是其它种类的相变仪所不具备的独特功能。尤其是同时使用双电源加热的情况下,即使是钛合金这样的材料都可以获得几乎没有鼓度的均匀热压缩。富士电波公司制造的相变仪和热模拟设备在多年前已经是事实上的测试标准而为广大的科研人员所认同,如今这款具备多种功能的先进的动静态相变热模拟设备更是可以让您在一台机器上就可以完成以往需要两台设备才能完成的测试工作,极大的提高了测试的效能,更何况其所具备的高精度测试能力是其它的热模拟设备所不可比拟的。
  • 天霁大气采样器完成模拟高海拔采样测试
    天霁HN-ASA1双模正压大气采样器在中国计量科学研究院成功完成了模拟高海拔低温条件下的采样测试。测试分别模拟了珠峰大本营(海拔5100米、0.5大气压、-10℃)和前进营地(海拔6500米、0.42大气压、-20℃)的气压和温度条件,天霁HN-ASA1双模正压大气采样器在这些极端条件下均可以正常启动,并成功完成了气体样品的采集工作,采集的样品压力均可满足后续分析的要求。 这批采样器随“巅峰使命2022”第二次青藏科考北京大学分队赴珠峰进行高海拔空气采样工作。这是我国首次在珠峰营地开展针对甲烷和含氟气体的采样实验,所得数据对于珠峰地区乃至全球的温室气体浓度分布与传输状况的研究具有重要意义。此前,天霁采样器还曾搭乘“雪龙号”极地考察船,在南极圆满完成了空气采样工作。天霁系列大气采样器专门为环境空气正压采样所开发,采用便携拉杆箱设计,携带方便,稳定可靠。采样器具有独特的抽气-充气双模式切换功能,在现场只需一台采样器即可完成采样罐的冲洗和采样,极大提高空气采样效率和样品可靠性。天霁大气采样器还提供全自动(ASP2)、多通道可编程(ASP8)等多个型号,并可选配流量控制、内置电池等模块,满足各种场景下的空气采样需求。
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授江苏省儿童呼吸疾病(中医药)重点实验室骨干成员。2012年毕业于中国药科大学药学(药物代谢动力学)专业。美国NIH West Coast Metabolomics Center (UC Davis)访问学者。近年来主持国家自然科学基金等厅局级以上课题研究8项;以第yi作者或者通讯作者在Anal Chim Acta,J Chromatogr A等杂志发表SCI论文10篇。现为世界中医药学会联合会儿科专业委员会理事。研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制