当前位置: 仪器信息网 > 行业主题 > >

太谱三棱镜

仪器信息网太谱三棱镜专题为您提供2024年最新太谱三棱镜价格报价、厂家品牌的相关信息, 包括太谱三棱镜参数、型号等,不管是国产,还是进口品牌的太谱三棱镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太谱三棱镜相关的耗材配件、试剂标物,还有太谱三棱镜相关的最新资讯、资料,以及太谱三棱镜相关的解决方案。

太谱三棱镜相关的资讯

  • 中国架起世界光谱望远镜之王
    中国国家重大科学工程——大天区面积多目标光纤光谱天文望远镜(英文简称LAMOST)中新社记者 孙自法/摄  新华网北京6月4日电 (记者 俞铮 王爱华) 24块造价昂贵的六边形反射镜,像被“上帝之手”操控,任意变幻镜面形状 每块对角径1.1米、厚25毫米的镜面,竟也能神奇地凹凸变形。这是世界上最强大光谱巡天望远镜的核心组件,采用的是中国人开创、全球独一无二的镜面自动拼接兼具变形高难度技术。  总面积20平方米的巨大反射镜自动拼接、变形的目的,是为了精确指向不同高度或位置的天体,配合50米长的钢筋混凝土巨型“镜筒”以及另一端同样拼接而成的30平方米主镜,这个建在距北京城东北170公里一座山上的超级望远镜即将开始对浩瀚星空进行“户口普查”。  中国科学院国家天文台兴隆观测基地的“大天区面积光纤光谱天文望远镜”4日通过了国家验收。  耗资2.35亿元人民币、貌似导弹发射架的这座超级望远镜,最高处超过15层楼,由口径3.6米的反射施密特改正镜、口径4.9米的球面主镜和焦面组成光学系统。成像的焦面上装着4000根可自动定位的光纤,连接16台光谱仪实时记录数据。望远镜每次夜间观测1.5小时,最多可获得4000条天体光谱。  300多年前牛顿偶然发现太阳光被三棱镜散解成有色光,启发后人用光波谱线确定物质的化学组成。光谱也是天文学家读懂不同天体化学组成、密度、大气、磁场信息的钥匙。人类成像巡天活动记下数百亿天文目标,仅万分之一已测过光谱。绝大多数遥远天体,依然是“知其然而不知其所以然”。  超级望远镜项目总工程师崔向群在接受新华社记者专访时说:“未来3到5年,科学家将用它获得2.4万平方度范围内250万颗恒星、250万个星系、150万个亮红星系、100万个类星体的光谱数据。”  伽利略率先制成了天文望远镜,此后无数望远镜观天400年。中国的这项天文观测计划雄心勃勃,旨在深入认识暗物质、暗能量、星系形成和演化。  崔向群说:“在同一块大镜面上采用可变形薄镜面主动光学技术和拼接镜面主动光学技术,在一个光学系统中同时采用两块大的拼接镜面,4000根光纤高精度控制定位,都是世界首创。”  这些首创技术一举解决了大视场望远镜兼具大口径的世界级难题。此前中国最大的光学望远镜口径为2.16米,同样矗立在兴隆基地,也用于光谱观测。  国际主动光学技术权威雷威尔逊评价:“中国的新设备是主动光学技术最先进和雄心勃勃的应用。”  新设备已进行了4次试观测,每次得到3600条光谱。崔向群说:“试观测结果令人满意,但设备仍需调试。好比每次都能准确打到靶子,不过还没打中10环。”  望远镜正式运行6年后,有望获取至少1000万条天体光谱数据。所有数据,将与国际科学界共享。  美国著名天文学家理查德埃里斯说:“一架大口径天文望远镜是人类文明进步的最好例子,看到了这个新家伙,我们才知道中国人都做成了些什么。”  中国人还打算在南极架一台新的超级望远镜,那里观测范围更大、条件更好。
  • 癌细胞难逃“光测”法眼 或为癌症预防新途径
    科技日报讯 (通讯员吴军辉 记者冯国梧)记者5月26日从南开大学获悉,该校物理科学学院田建国、刘智波研究组利用全内反射下石墨烯对介质折射率异常敏感的光学现象,实现了超灵敏单细胞实时流动传感。这一成果可以使癌细胞在形成之初即被精确&ldquo 光测&rdquo 出来,将为癌症预防提供一条新途径。  石墨烯是一种呈蜂巢状排列的单层碳原子结构,是目前已知的最薄、最坚硬的纳米材料。在全内反射这种特殊的结构下,对于介质折射率异常灵敏是石墨烯材料的重要特性之一。田建国、刘智波领导的研究组发现,折射率的灵敏度与石墨烯的层数有极大关系,并且层数有一个最优值。他们通过与南开大学化学学院陈永胜课题组合作,不断控制石墨烯的层数,最终制出厚度为8个纳米的石墨烯材料,其折射率的灵敏度和分辨率达到目前国际上最高水平。   在此基础上,课题组结合微流体技术和病变细胞的折射率差异,将这一超高的折射率灵敏度成功应用于单细胞传感。记者在实验室看到,实验人员将制备出的8纳米厚石墨烯均匀铺于一块三棱镜的一面,紧贴石墨烯上方建有一条细胞通道。实验时,一束光从棱镜一面射入,穿透石墨烯照射在细胞通道上,反射光从棱镜另一面射出。实验人员通过光电转化,即可得到一份波形图。如果细胞通道中存在癌细胞,则波形图上将会呈现出明显的波峰。即使数千个正常细胞中有一个发生了病变,这种&ldquo 光测&rdquo 方法都可以将其准确识别出来。 该课题组论文已在国际纳米科学技术领域权威刊物《Nano Letters》上发表,美国著名的纳米技术与纳米科学网进行了同步报道。
  • 北京积水潭医院4366.35万元采购高压灭菌器,生物显微镜,过氧化氢灭菌,生物安全柜,超净工作台,离...
    详细信息 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 北京市-西城区 状态:公告 更新时间: 2022-09-29 招标文件: 附件1 附件2 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 2022-09-29 项目概况 北京积水潭医院新龙泽院区开办费医疗设备采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-10-20 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000022210200006633-XM004 项目名称:北京积水潭医院新龙泽院区开办费医疗设备采购项目 预算金额:4366.35 万元(人民币) 采购需求: 包号 品目号 标的名称 采购包预算金额(万元) 数量(台/套) 简要技术需求或服务要求 1 1-1 数字化医用X射线摄影系统(DR) 200 1 最大载重≥200kg等 2 2-1 X线电子计算机断层扫描装置(CT) 400 1 自动螺旋:具备等 3 3-1 智能微剂量X射线骨龄仪 110 1 观察窗具备铅玻璃防护等 3-2 跟骨超声骨密度仪 30 1 具备病人趋势报告图等 3-3 手术器械 120 1批 直角钳≥18cm等 3-4 2.5倍放大镜 2.3 1 放大倍数:≥2.5等 3-5 生物安全型高温高压灭菌器 10 2 具有废弃物灭菌模式等 3-6 气溶胶喷雾器 0.2 1 粒子直径:≤60μm等 3-7 可移动紫外灯车 0.3 6 净重≤6Kg等 3-8 电子血压计 0.6 3 测量位置:上臂等 3-9 空气消毒机 8 10 额定风量≥600m3/h等 3-10 手持脉搏血氧饱和度测定仪 0.4 2 自动关机时间可调节等 3-11 心电图机 3 1 中文输入,可输入患者姓名或医生名等 3-12 生物安全柜1 8 2 照明:≥1000lx等 3-13 生物安全柜2 12 2 照明:≥1000lx等 3-14 生物安全柜3 10 2 照明:≥1000lx等 3-15 红光治疗仪 3 2 预热时间≤5min等 3-16 超低温冰箱 16 2 容积:≥600L等 3-17 医用冰箱1 3.75 5 玻璃门:双层钢化玻璃等 3-18 医用冰箱2 16.2 9 柜内照明: LED照明灯等 3-19 单通道移液器 1.2 8 双控旋钮,可单手操作等 3-20 八通道移液器 3.2 4 可整支高温高压灭菌等 3-21 迷你离心机 0.8 4 净重:≤1.5kg等 3-22 单人净化工作台 0.6 1 紫外灯功率:≥18W等 3-23 储血冰箱 32 4 外部材料:喷涂钢板等 3-24 医用低温保存箱 3 4 环境温度:10℃-32℃等 3-25 倒置摄影显微镜 9.5 1 照明装置: LED光源等 3-26 生物显微镜 3 2 物镜转盘:≥4孔等 3-27 便携式足底压力测量器 15 1 传感点数:≥2200个等 4 4-1 床旁移动式彩超 80 1 整机重量≤6.5kg(含电池)等 5 5-1 便携式彩色多普勒超声诊断仪1 50 2 重量≤5Kg(含电池)等 6 6-1 便携式彩色多普勒超声诊断仪2 50 2 中文操作界面等 7 7-1 普通输液泵 4.9 14 整机重量≤1.5kg,主机自带提手等 7-2 普通注射泵 0.35 1 预置输液总量范围:0.1-9999mL等 7-3 输液监护管理系统 72 6 注射精度:±2%以内等 7-4 中央监护站 6 1 系统报警声音可关闭等 7-5 高档呼吸机 30 1 气动电控呼吸机等 7-6 呼吸机 140 7 潮气量:20ml—4000ml等 7-7 无创呼吸机 60 4 电池电量低报警等 7-8 麻醉机 182 7 环境湿度:15 -95%等 7-9 多参数麻醉监护仪 140 7 支持扩展独立显示屏等 8 8-1 体腔热灌注治疗系统 90 1 水箱容量≥5L等 8-2 无创心排监护仪 35 1 无创血压测试周期可设置等 8-3 心理测评系统 30 1 具备神志病中医古籍检索功能等 8-4 心理评估系统 30 1 具备断点继续功能等 9 9-1 射频消融治疗仪 50 1 脉冲射频设定温度范围:30-95℃等 9-2 医用臭氧治疗仪 50 2 历史记录≥1000条等 9-3 血液透析机 75 5 监测方法:超声波等 10 10-1 血管内断层成像系统 100 1 功率≤25mW等 10-2 超声骨动力系统 160 1 可自动记录手术时间等 10-3 核酸快检设备 60 2 主机净重:≤5kg等 11 11-1 骨科手术机械臂系统 170 2 调节臂调节角度:≥360°等 12 12-1 心电图机 24 2 分析频率:≥1000Hz等 13 13-1 高频电刀 70 7 单极电凝:≥120W等 13-2 氩气刀 30 1 双极切割最大功率: ≥100W等 14 14-1 移动式C型臂 225 3 具备一体化刹车系等 15 15-1 腕关节镜手术牵引吊塔 30 2 上臂上下牵引调节范围:≥13.5cm等 15-2 关节镜系统 115 1 图像信噪比:≥60dB等 16 16-1 电动监护床 105 7 整床安全工作承重≥250Kg等 17 17-1 自动核酸提取仪 28 1 运行噪音:≤65dBA等 18 18-1 耳鼻喉综合治疗台1 70 2 水平方向调节范围:≥360°等 18-2 耳鼻喉综合治疗台2 18 2 水平方向调节范围:≥360°等 18-3 微创血流动力学检测仪 40 1 趋势图显示周期:0.5-24h等 18-4 彩色超声诊断仪 360 2 高分辨率局部图像放大功能等 19 19-1 鼻炎雾化器 1.8 2 雾粒直径小于5um的百分比:≥50%等 19-2 压缩雾化吸入机 1.8 9 平均雾粒5um占比:≥70%等 19-3 一氧化氮检测仪 5 1 测量方式:在线呼气等 19-4 便携式肺功能测试系统 10 1 支持支气管扩张试验等 20 20-1 快速生物阅读器 16 2 具有颜色标识等 20-2 便携式肌力测试与关节活动度计 8 1 可保存≥30个数据档案等 20-3 眼前节测量评估系统 145 1 具备眼前节异常参数快速筛查等 20-4 角膜内皮计 30 1 拍照模式:全自动、手动等 20-5 裂隙灯显微镜 38 1 有效像素:≥500万等 20-6 回弹式眼压计 6.5 1 电源:电池等 20-7 立式视力表 0.18 2 测试距离:2.5米等 20-8 直接眼底镜 1 5 具备防尘盖等 20-9 间接眼底镜 6.8 2 光源: LED光源等 20-10 全自动电脑验光仪 10 1 操作方式:操纵杆等 20-11 瞳距仪 0.25 1 光源:LED光源等 20-12 镜片箱 0.58 1 准确度等级:≤0.01D等 20-13 房角镜 1.9 2 镜高≤20mm等 20-14 视像移位三棱镜 0.68 1 用于小儿眼科临床的常规检查等 20-15 眼球凸出计 0.9 1 测量外眶缘和角膜的顶点等 20-16 HESS屏 2.5 1 测量外眶缘和角膜的顶点等 20-17 立体测试图 5 2 测试距离:3m等 20-18 超声波清洗器 0.28 1 超声功率:≥240W等 20-19 线状镜 0.4 1 用于检查双眼功能状态等 20-20 睑缘清洁治疗仪 1.6 2 具备刷头锁紧功能等 20-21 生物显微镜(螨虫工作站) 6 1 具备防霉技术等 20-22 试镜架 0.4 2 镜片在镜框内围绕光轴旋转度数: 360°等 20-23 遮盖板 0.2 2 适用于各种类型的斜视患者等 20-24 视标 0.72 2 适用范围:18个月—8岁儿童等 20-25 隐斜计 0.36 2 可检查人眼的隐斜视和隐斜的三棱镜度数等 20-26 非接触式眼压计 11 1 具备操作手柄等 21 21-1 骨科牵引手术床 184 2 最大承重量:≥360公斤等 21-2 手术室专用不锈钢器具 36 1 四脚配有橡胶防滑保护套等 21-3 不锈钢台车 3.3 33 整体304不锈钢材质,板材厚度≥0.7mm等 21-4 不锈钢微截流车 1 2 整体采用304不锈钢材质等 21-5 检查床 0.5 5 床脚配有橡胶套等 21-6 危化品柜 0.5 2 柜体具有反光标签等 21-7 抢救车 0.6 2 车体:采用铝合金型材等 21-8 治疗车 0.4 2 侧板、背板采用铝塑板拼装等 21-9 输液车 0.4 2 车体:铝合金专业型材等 21-10 污物车 0.2 2 整体由不锈钢管及不锈钢板经焊接组装而成等 21-11 全不锈钢操作台 20.3 7 表面处理:氩弧焊接,无漏焊、假焊等 21-12 透析用病床 4 5 整体最大承重≥200kg等 合同履行期限:详见第五章《采购需求》中各包技术要求 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 投标产品属于医疗器械的,投标人如为代理商,投标人应具有合法的医疗器械经营资格;投标人如为制造商,使用自身生产的产品投标时,投标人应具有合法的医疗器械生产资格。 三、获取招标文件 时间:2022-09-29 至 2022-10-11 ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。并在中国通用招标网(http://cgci.china-tender.com.cn/)进行免费注册报名。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-10-20 09:30(北京时间) 地点:北京市海淀区闵庄路42号蓝海智谷会议中心一层蓝海厅 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目需要落实的政府采购政策: (1) 鼓励节能、环保政策:依据《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知(财库(2019)9号)》执行。 (2) 扶持中小企业政策:本项目评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (3) 本项目采购标的接受进口产品情况:本项目是否接受进口产品见第五章《采购需求》。 2.申请人的资格要求补充: (1) 被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 (2) 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一包的投标或者未划分包的同一招标项目的投标。 1)本条所指单位负责人为同一人指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人。 2)本条所指控股关系指单位或股东的控股关系。控股股东指: a.出资额占有限责任公司资本总额百分之五十以上或者其持有的股份占股份有限公司股本总额百分之五十以上的股东; b.出资额或者持有股份的比例不足百分之五十,但其出资额或者持有的股份所享有的表决权已足以对股东会、股东大会的决议产生重大影响的股东。 3)本条所指管理关系指不具有出资持股关系的其他单位之间存在的管理与被管理关系。 注:本条所指的控股、管理关系仅限于直接控股、直接管理关系,不包括间接控股或管理关系。 (3) 为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的投标活动。 (4) 按照招标公告要求购买了招标文件。 (5) 符合法律、行政法规规定的其他要求。 3.本项目采用电子化与线下流程结合招标方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 3.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 3.4 获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 3.5编制电子投标文件(本项目不适用) 供应商应使用电子投标客户端编制电子投标文件并进行线上投标,供应商电子投标文件需要加密并加盖电子签章,如无法按照要求在电子投标文件中加盖电子签章和加密,请及时通过技术支持服务热线联系技术人员。 3.6提交电子投标文件(本项目不适用) 供应商应于投标截止时间前在北京市政府采购电子交易平台提交电子投标文件,上传电子投标文件过程中请保持与互联网的连接畅通。 3.7电子开标(本项目不适用) 供应商在开标地点使用CA认证证书登录北京市政府采购电子交易平台进行电子开标。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京积水潭医院 地址:北京市西城区新街口东街31号 联系方式:张老师,010-58516897 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦1101A室 联系方式:张伯涵、孙薇,010-63348683 3.项目联系方式 项目联系人:张伯涵、孙薇 电 话: 010-63348683 招标公告.docx 采购需求.docx × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:高压灭菌器,生物显微镜,过氧化氢灭菌,生物安全柜,超净工作台,离心机,核酸提取仪,超声波清洗器,超低温冰箱,大分子作用仪 开标时间:2022-10-20 09:30 预算金额:4366.35万元 采购单位:北京积水潭医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中技国际招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 北京市-西城区 状态:公告 更新时间: 2022-09-29 招标文件: 附件1 附件2 [公开]北京积水潭医院新龙泽院区开办费医疗设备采购项目-招标公告 2022-09-29 项目概况 北京积水潭医院新龙泽院区开办费医疗设备采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2022-10-20 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000022210200006633-XM004 项目名称:北京积水潭医院新龙泽院区开办费医疗设备采购项目 预算金额:4366.35 万元(人民币) 采购需求: 包号 品目号 标的名称 采购包预算金额(万元) 数量(台/套) 简要技术需求或服务要求 1 1-1 数字化医用X射线摄影系统(DR) 200 1 最大载重≥200kg等 2 2-1 X线电子计算机断层扫描装置(CT) 400 1 自动螺旋:具备等 3 3-1 智能微剂量X射线骨龄仪 110 1 观察窗具备铅玻璃防护等 3-2 跟骨超声骨密度仪 30 1 具备病人趋势报告图等 3-3 手术器械 120 1批 直角钳≥18cm等 3-4 2.5倍放大镜 2.3 1 放大倍数:≥2.5等 3-5 生物安全型高温高压灭菌器 10 2 具有废弃物灭菌模式等 3-6 气溶胶喷雾器 0.2 1 粒子直径:≤60μm等 3-7 可移动紫外灯车 0.3 6 净重≤6Kg等 3-8 电子血压计 0.6 3 测量位置:上臂等 3-9 空气消毒机 8 10 额定风量≥600m3/h等 3-10 手持脉搏血氧饱和度测定仪 0.4 2 自动关机时间可调节等 3-11 心电图机 3 1 中文输入,可输入患者姓名或医生名等 3-12 生物安全柜1 8 2 照明:≥1000lx等 3-13 生物安全柜2 12 2 照明:≥1000lx等 3-14 生物安全柜3 10 2 照明:≥1000lx等 3-15 红光治疗仪 3 2 预热时间≤5min等 3-16 超低温冰箱 16 2 容积:≥600L等 3-17 医用冰箱1 3.75 5 玻璃门:双层钢化玻璃等 3-18 医用冰箱2 16.2 9 柜内照明: LED照明灯等 3-19 单通道移液器 1.2 8 双控旋钮,可单手操作等 3-20 八通道移液器 3.2 4 可整支高温高压灭菌等 3-21 迷你离心机 0.8 4 净重:≤1.5kg等 3-22 单人净化工作台 0.6 1 紫外灯功率:≥18W等 3-23 储血冰箱 32 4 外部材料:喷涂钢板等 3-24 医用低温保存箱 3 4 环境温度:10℃-32℃等 3-25 倒置摄影显微镜 9.5 1 照明装置: LED光源等 3-26 生物显微镜 3 2 物镜转盘:≥4孔等 3-27 便携式足底压力测量器 15 1 传感点数:≥2200个等 4 4-1 床旁移动式彩超 80 1 整机重量≤6.5kg(含电池)等 5 5-1 便携式彩色多普勒超声诊断仪1 50 2 重量≤5Kg(含电池)等 6 6-1 便携式彩色多普勒超声诊断仪2 50 2 中文操作界面等 7 7-1 普通输液泵 4.9 14 整机重量≤1.5kg,主机自带提手等 7-2 普通注射泵 0.35 1 预置输液总量范围:0.1-9999mL等 7-3 输液监护管理系统 72 6 注射精度:±2%以内等 7-4 中央监护站 6 1 系统报警声音可关闭等 7-5 高档呼吸机 30 1 气动电控呼吸机等 7-6 呼吸机 140 7 潮气量:20ml—4000ml等 7-7 无创呼吸机 60 4 电池电量低报警等 7-8 麻醉机 182 7 环境湿度:15 -95%等 7-9 多参数麻醉监护仪 140 7 支持扩展独立显示屏等 8 8-1 体腔热灌注治疗系统 90 1 水箱容量≥5L等 8-2 无创心排监护仪 35 1 无创血压测试周期可设置等 8-3 心理测评系统 30 1 具备神志病中医古籍检索功能等 8-4 心理评估系统 30 1 具备断点继续功能等 9 9-1 射频消融治疗仪 50 1 脉冲射频设定温度范围:30-95℃等 9-2 医用臭氧治疗仪 50 2 历史记录≥1000条等 9-3 血液透析机 75 5 监测方法:超声波等 10 10-1 血管内断层成像系统 100 1 功率≤25mW等 10-2 超声骨动力系统 160 1 可自动记录手术时间等 10-3 核酸快检设备 60 2 主机净重:≤5kg等 11 11-1 骨科手术机械臂系统 170 2 调节臂调节角度:≥360°等 12 12-1 心电图机 24 2 分析频率:≥1000Hz等 13 13-1 高频电刀 70 7 单极电凝:≥120W等 13-2 氩气刀 30 1 双极切割最大功率: ≥100W等 14 14-1 移动式C型臂 225 3 具备一体化刹车系等 15 15-1 腕关节镜手术牵引吊塔 30 2 上臂上下牵引调节范围:≥13.5cm等 15-2 关节镜系统 115 1 图像信噪比:≥60dB等 16 16-1 电动监护床 105 7 整床安全工作承重≥250Kg等 17 17-1 自动核酸提取仪 28 1 运行噪音:≤65dBA等 18 18-1 耳鼻喉综合治疗台1 70 2 水平方向调节范围:≥360°等 18-2 耳鼻喉综合治疗台2 18 2 水平方向调节范围:≥360°等 18-3 微创血流动力学检测仪 40 1 趋势图显示周期:0.5-24h等 18-4 彩色超声诊断仪 360 2 高分辨率局部图像放大功能等 19 19-1 鼻炎雾化器 1.8 2 雾粒直径小于5um的百分比:≥50%等 19-2 压缩雾化吸入机 1.8 9 平均雾粒5um占比:≥70%等 19-3 一氧化氮检测仪 5 1 测量方式:在线呼气等 19-4 便携式肺功能测试系统 10 1 支持支气管扩张试验等 20 20-1 快速生物阅读器 16 2 具有颜色标识等 20-2 便携式肌力测试与关节活动度计 8 1 可保存≥30个数据档案等 20-3 眼前节测量评估系统 145 1 具备眼前节异常参数快速筛查等 20-4 角膜内皮计 30 1 拍照模式:全自动、手动等 20-5 裂隙灯显微镜 38 1 有效像素:≥500万等 20-6 回弹式眼压计 6.5 1 电源:电池等 20-7 立式视力表 0.18 2 测试距离:2.5米等 20-8 直接眼底镜 1 5 具备防尘盖等 20-9 间接眼底镜 6.8 2 光源: LED光源等 20-10 全自动电脑验光仪 10 1 操作方式:操纵杆等 20-11 瞳距仪 0.25 1 光源:LED光源等 20-12 镜片箱 0.58 1 准确度等级:≤0.01D等 20-13 房角镜 1.9 2 镜高≤20mm等 20-14 视像移位三棱镜 0.68 1 用于小儿眼科临床的常规检查等 20-15 眼球凸出计 0.9 1 测量外眶缘和角膜的顶点等 20-16 HESS屏 2.5 1 测量外眶缘和角膜的顶点等 20-17 立体测试图 5 2 测试距离:3m等 20-18 超声波清洗器 0.28 1 超声功率:≥240W等 20-19 线状镜 0.4 1 用于检查双眼功能状态等 20-20 睑缘清洁治疗仪 1.6 2 具备刷头锁紧功能等 20-21 生物显微镜(螨虫工作站) 6 1 具备防霉技术等 20-22 试镜架 0.4 2 镜片在镜框内围绕光轴旋转度数: 360°等 20-23 遮盖板 0.2 2 适用于各种类型的斜视患者等 20-24 视标 0.72 2 适用范围:18个月—8岁儿童等 20-25 隐斜计 0.36 2 可检查人眼的隐斜视和隐斜的三棱镜度数等 20-26 非接触式眼压计 11 1 具备操作手柄等 21 21-1 骨科牵引手术床 184 2 最大承重量:≥360公斤等 21-2 手术室专用不锈钢器具 36 1 四脚配有橡胶防滑保护套等 21-3 不锈钢台车 3.3 33 整体304不锈钢材质,板材厚度≥0.7mm等 21-4 不锈钢微截流车 1 2 整体采用304不锈钢材质等 21-5 检查床 0.5 5 床脚配有橡胶套等 21-6 危化品柜 0.5 2 柜体具有反光标签等 21-7 抢救车 0.6 2 车体:采用铝合金型材等 21-8 治疗车 0.4 2 侧板、背板采用铝塑板拼装等 21-9 输液车 0.4 2 车体:铝合金专业型材等 21-10 污物车 0.2 2 整体由不锈钢管及不锈钢板经焊接组装而成等 21-11 全不锈钢操作台 20.3 7 表面处理:氩弧焊接,无漏焊、假焊等 21-12 透析用病床 4 5 整体最大承重≥200kg等 合同履行期限:详见第五章《采购需求》中各包技术要求 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 投标产品属于医疗器械的,投标人如为代理商,投标人应具有合法的医疗器械经营资格;投标人如为制造商,使用自身生产的产品投标时,投标人应具有合法的医疗器械生产资格。 三、获取招标文件 时间:2022-09-29 至 2022-10-11 ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。并在中国通用招标网(http://cgci.china-tender.com.cn/)进行免费注册报名。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2022-10-20 09:30(北京时间) 地点:北京市海淀区闵庄路42号蓝海智谷会议中心一层蓝海厅 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目需要落实的政府采购政策: (1) 鼓励节能、环保政策:依据《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知(财库(2019)9号)》执行。 (2) 扶持中小企业政策:本项目评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (3) 本项目采购标的接受进口产品情况:本项目是否接受进口产品见第五章《采购需求》。 2.申请人的资格要求补充: (1) 被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 (2) 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一包的投标或者未划分包的同一招标项目的投标。 1)本条所指单位负责人为同一人指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人。 2)本条所指控股关系指单位或股东的控股关系。控股股东指: a.出资额占有限责任公司资本总额百分之五十以上或者其持有的股份占股份有限公司股本总额百分之五十以上的股东; b.出资额或者持有股份的比例不足百分之五十,但其出资额或者持有的股份所享有的表决权已足以对股东会、股东大会的决议产生重大影响的股东。 3)本条所指管理关系指不具有出资持股关系的其他单位之间存在的管理与被管理关系。 注:本条所指的控股、管理关系仅限于直接控股、直接管理关系,不包括间接控股或管理关系。 (3) 为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的投标活动。 (4) 按照招标公告要求购买了招标文件。 (5) 符合法律、行政法规规定的其他要求。 3.本项目采用电子化与线下流程结合招标方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 3.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 3.4 获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 3.5编制电子投标文件(本项目不适用) 供应商应使用电子投标客户端编制电子投标文件并进行线上投标,供应商电子投标文件需要加密并加盖电子签章,如无法按照要求在电子投标文件中加盖电子签章和加密,请及时通过技术支持服务热线联系技术人员。 3.6提交电子投标文件(本项目不适用) 供应商应于投标截止时间前在北京市政府采购电子交易平台提交电子投标文件,上传电子投标文件过程中请保持与互联网的连接畅通。 3.7电子开标(本项目不适用) 供应商在开标地点使用CA认证证书登录北京市政府采购电子交易平台进行电子开标。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京积水潭医院 地址:北京市西城区新街口东街31号 联系方式:张老师,010-58516897 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西三环中路90号通用技术大厦1101A室 联系方式:张伯涵、孙薇,010-63348683 3.项目联系方式 项目联系人:张伯涵、孙薇 电 话: 010-63348683 招标公告.docx 采购需求.docx
  • 潜力无限!高光谱技术及应用发展综述
    高光谱技术是指利用光谱仪获取的被测地物多个窄波段电磁波,并通过所获取的数据进行分析提取所需的信息的技术。光谱仪从1666年牛顿利用三棱镜观察到了光的色散开始,到1859年基尔霍夫和本生合作设计了第一台棱镜光谱仪并发现了铯和铷,化学分析的光谱方法也就此展开,高光谱技术随着光电技术的进步也在逐渐发展。现在,高光谱技术利用棱镜、光栅、干涉仪等手段,将混合光分散为连续的不同极窄间隔波段的光,根据使用目的不同,可以获取从远紫外到远红外不同波段的数据。目前,在高光谱遥感、原子吸收、材料发射率等领域均有应用。狭义的讲,高光谱技术目前大部分是指可见光到近红外(400-2500nm)的高光谱分辨率遥感技术,该技术始于成像光谱仪的研究计划,最早由美国加州理工学院喷气推进实验室的一些学者提出,并在美国国家航空航天局(NASA)的支持下,相继推出了机载航空成像光谱仪(AIS)系列,航空可见光/红外成像光谱仪(AVRIS),星载中分辨率成像光谱仪(MODIS)等等型号设备。与此同时,20世纪80年代中后期,我国开始着手发展高光谱成像系统,从多波段扫描仪到高光谱成像扫描仪,从光机扫描到面阵列CCD探测器固态扫描的发展过程。目前,我国中科院系统自行研制的第一台224波段扫帚式高光谱成像仪(PHI)与128波段的实用型模块化机载成像光谱仪(OMIS)已研制成功并进行了多次成功的航空遥感实验,近年来的珠海一号、高分五号也在持续的发回数据。国外的星载与大型机载的高光谱设备发展较早,商业应用成熟。随着我国经济实力的不断增强,近些年来,尤其是21世纪以后,基于中国科学院上海技术物理研究所与中国科学院长春光学精密机械与物理研究所 长期以来的钻研与突破,星载高光谱光路设计、中大型高精度衍射光栅制作、全色可见光近红外光路分离、小F数大视场低畸变远心成像、大平场度超低畸变精细分光、在轨高精度光谱辐射定标、大规模高帧频红外焦平面探测器等关键技术一一攻克,我国的星载高光谱设备厚积薄发,已达到国际领先的水平。在星载设备发展的同时,非成像光谱设备也伴随着电子技术与计算机技术的发展在逐渐地小型化与轻量化,从直读光谱仪到便携式地物光谱仪,光谱设备也从实验室走向了野外,由于便携式地物光谱仪不受天气的影响,光谱分辨率高于星载高光谱数据,对于光谱库的建立,分析模型的建立,筛选特征光谱波段,星载高光谱数据的地面验证等发挥着重要的作用。地质调查和矿产勘探是高光谱技术主要的应用领域之一,地质是高光谱遥感应用中最成功的一个领域。由于矿物内部物质组成、内部晶格结构等不尽相同,矿物光谱通常包含一系列特征光谱吸收带,这些特征谱带在不同的矿物中具有较稳定的波长位置和较稳定的独特波形,能够指示离子类矿物、单矿物的存在。目前,矿物识别、矿物填图、成矿预测、矿山环境分析等领域均有广泛应用。被测物光谱(蓝色)与光谱库数据自动进行匹配并计算相关性在沿海和内陆水域环境系统研究中,沿海、江河、湖泊中的叶绿素、众多浮游生物种类、不可溶解有机质、悬浮沉淀物、基底物质组成、半淹没水生植物在光谱方面有着显著的吸收和散射特性,利用高光谱技术,我们可以监测水华,识别水生植物,判别黑臭水体,针对悬浮物浓度、叶绿素浓度等水质参数进行定量反演。对于海洋及大面积的内陆湖泊,相比于河流与小面积的湖泊,使用星载高光谱数据,有着快速的反应及分析能力,可以进行整体水域的评估。以上两种领域是目前高光谱应用最为成熟的领域,由于卫星过境周期、天气等因素的影响,星载高光谱数据的时效性略显不足,且针对精准农业、胁迫研究、树种识别等应用,星载高光谱数据由于分辨率较差,无法发挥作用。随着无人机技术的发展,高光谱设备逐渐地小型化与轻量化,中小尺度、厘米/分米级别的高光谱数据的获取成为可能。随着我国经济社会的不断发展,人们生活节奏越来越快,日常生活用品工业产品不断更新,垃圾的产量迅速上升,组成成分多样。近年来,全国垃圾分类工作的逐渐展开,现有的分类方法检测时间长,分类效率低,利用高光谱技术,在记录待分类垃圾的空间信息同时,分析其光谱信息,通过建立识别分类模型对垃圾进行识别与分类,有着极为迫切的需要。目前,纸类、塑料、金属、木制产品均有比较好的效果,但受限于成本高与产业化程度较低,高光谱技术还未在垃圾分类领域有大范围的应用。垃圾分类的高光谱研究 北京欧普特科技有限公司在2000年从光谱仪的代理开始进入遥感领域,随着无人机技术的发展,全球的高光谱技术已经初具影响并有落地应用,我公司判断未来的高光谱技术必定是由星载数据、机载数据与地面数据相互支撑,并且基于无人机的高光谱技术的时效性强、易用性好和地面分辨率高,必定将成为高光谱技术在未来应用中的主流方式。我公司在2013年基于美国Headwall Photonics Inc.公司设计生产的推扫式全反射光栅光谱仪,进行了机载高光谱设备的研发工作,为高光谱成像仪配备了三轴稳定云台系统和GPS/IMU惯性导航系统,并搭载到滑跑起飞的固定翼无人机上,进行了低空的光谱数据采集,并申请了相关专利。随着光电技术的进步,光谱仪逐渐地小型化、轻量化与高度集成化,旋翼无人机的出现并且不断升级换代,整套无人机高光谱成像设备操作简单,场地限制小,折叠后可以放到汽车后备箱中,成为了目前的主流应用方式。目前,我公司以无人机机载设备为主,包含400-1000nm、900-2500nm、400-2500nm等推扫式全反射成像光谱仪,整套设备包含传感器、辐射亮度标定、地面定标布、采集与处理软件等,辅以室内采集的高精度高分辨率高光谱设备、野外便携式地物光谱仪、多光谱相机、热红外成像仪、热红外光谱仪、高清相机、激光LiDAR等设备,可以进行多源数据的采集与分析。 Nano Hyperspec(400-1000nm)与Co-Aligned(400-2500nm)高光谱设备挂载我公司也在进行高光谱成像光谱仪与便携式地物光谱仪的国产化工作,国内也有其他厂家进行设计生产,但是总体来说,核心的光栅部件均为采购或定制的产品,整体信噪比略低于国际水平,但是性价比高。我公司依托于深厚的光学元件设计加工生产经验,正在进行各个方面的优化,争取早日赶上国际水平。经过近10年的机载高光谱设计集成搭载等工作,我公司积累了丰富的经验,针对不同型号的光谱仪产品,设计专用的三轴稳定云台,搭载到不同类型的平台上,包括大疆M600 PRO、M300 RTK,科卫泰X6L,德国MicroDrones的MD4-1000等旋翼机,纵横CW15和飞马V20等垂起固定翼无人机,不同类型的有人机,并承接高光谱飞行服务工作,全方位的服务客户。在工业领域,我公司也为某厂进行了高光谱设备的安装架设工作,在病变溯源、肉质分级等方面均有应用。软件方面,我公司针对机载推扫式高光谱设备,开发了一套通用的几何校正软件,有效地纠正了飞行时的抖动问题,并适用于不同型号的传感器。针对内陆水系,开发了一套内陆水环境监测系统,大范围的监测水质,获取水质的遥感参数,一键生成评估报告,为上海某水库、辽宁某河流提供较为及时的数据支撑。 内陆水环境监测系统分析某河流悬浮物浓度与叶绿素浓度高光谱技术正在不断发展,伴随着无人机的发展及星载高光谱的发射,低空高光谱遥感正在由科研院校走入民用市场,未来大农场评估、森林树种识别、水环境监测、矿物识别与填图、垃圾分类等市场的潜力无限,尤其是水环境监测。近些年来,为了促进水质监测行业的发展,我国陆续发布了许多政策,如2021年生态环境部发布的《“十四五”生态环境监测规划》明确将要推动三水统筹,增强地表水环境监测,突出水生态监测评价。绿水青山就是金山银山,高光谱技术将大放异彩。作者:王辰泽,徐胜艳,魏志奇(北京欧普特科技有限公司)
  • 光谱大数据来自浩渺星河
    LAMOST望远镜内部拼接镜面。 LAMOST望远镜全景。 ■走近中国大科学工程 黑暗的燕山之巅,瞪着一只亮闪闪的眼&mdash &mdash 郭守敬望远镜(LAMOST),3月底,其获得的首批220万条巡天光谱数据正式向世界发布。 LAMOST是光谱加工厂,每个观测夜经&ldquo 流水线&rdquo 生产出万余条天体光谱,被誉为是实现&ldquo 更大口径的大视场望远镜的最佳方案&rdquo 。 星光不再模糊 LAMOST,是&ldquo 大天区面积多目标光纤光谱天文望远镜&rdquo 的英文缩写,位于北京北边200公里的河北兴隆县,中国科学院国家天文台兴隆观测站。观测站于1968年建站,2009年LAMOST建成前已运转多年,有一架2.16米口径的光学望远镜。 跟2.16米望远镜相比,LAMOST更大:它占据三栋6&mdash 10层高的筒状塔楼。星光经过两面镜子的先后反射,在接收端被光纤传给16台光谱仪。光谱仪像三棱镜一样,把光线分离成光谱,由32台灵敏的CCD相机记录。 夜间穹顶打开,随地球转动的LAMOST,扫过北半球的中天。遥远的星光投到LAMOST的镜片上,开始是一团模糊;LAMOST迅速调整,让接收端出现了清晰的像斑。 LAMOST的巨镜采用了主动光学技术。所谓主动光学,就是主动改变镜片形状,克服由于重力、温度和风力造成的镜面本身形变对成像带来的影响,使成像更加清晰。像LAMOST这样在一个光学系统中同时应用两块大口径拼接镜面,是前所未有的。 一块大镜面做出精确微调是很难的。LAMOST的Ma镜由24块六边形镜片拼接而成,如蜂窝;每块子镜1.1米长,25毫米厚;整个Ma镜长5.7米,宽4.4米。Mb子镜长度与Ma类似,厚度为75毫米,是球面。 国际上用光纤板打孔插光纤和机械手放置光纤只能到数百根,而LAMOST大大增加光纤数量。直径1.75米的成像焦面之上,密密麻麻地分布着4000根光纤单元(国际上同类设备仅640根)。4000根光纤的自动定位系统可在数分钟的时间内将光纤按星表位置精确定位,最大定位误差仅40微米。 这样,每次观测可获得多达4000个天体光谱,中科院国家天文台台长严俊说,&ldquo 相当于同时启动4000台望远镜&rdquo 。 LAMOST复杂的设计和制造,全部由中国科学家完成。著名的望远镜专家、主动光学发明人Wilson评价说:&ldquo LAMOST是主动光学最先进和雄心勃勃的应用,其成功对未来望远镜发展具有根本性的意义。&rdquo 海量数据,世界分享 宇宙浩瀚,斗转星移。众多的天体是如何产生的?数以百亿计算的星系又是怎样演化的?在这些问题的探索中,光谱的获取是揭开这些天体之谜的一把钥匙。 在星系探索中,包含着极其丰富信息的光谱起了非常关键的作用。其中星系的光谱可以提供距离、构成、分布和运动等信息,而恒星的光谱则包含构成、光度、温度、化学组成、空间分布和演化历史等资讯。从大量天体的光谱观测中还可以发现许多奇异的天体和天体现象。所有这些,将促进人类对宇宙演化规律、物质结构、相互作用等最基本物理规律的新认识。 然而,对望远镜来说,&ldquo 看得多&rdquo 与&ldquo 看得清&rdquo ,是鱼和熊掌,难以兼得。但LAMOST看得又多又清。 严俊说,LAMOST不仅是世界上口径最大的光谱巡天望远镜,也是光谱获取率最高的,是一件普查天体&ldquo 户口&rdquo 的利器。2011年9月至2013年6月,它完成的第一批数据集包含220万条光谱,已超过目前世界上所有已知恒星巡天项目的光谱总数。 2014年12月,第二批数据集对国内天文学家和国际合作者发布,共有413万条天体光谱,其中高质量光谱327万,还包括一个220万颗恒星的光谱参数星表。 与郭守敬时代不同,随着LAMOST这样的巡天望远镜的应用,如今用于天文学研究的数据非常富余。&ldquo LAMOST会给全球科学家提供一个完备的样本,供他们去研究发现。&rdquo 中国科学技术大学教授褚耀泉说。 中科院院士、LAMOST运行和发展中心总工程师崔向群指出,&ldquo 第一期光谱巡天计划在5年时间里获得超过500万条高质量的光谱,海量的光谱数据将成为&lsquo 数字银河系&rsquo 的重要基石,对于研究银河系的结构、运动、形成和演化具有不可替代的科学意义。&rdquo 根据天文学界惯例,在经过一年半保护期后,这些由LAMOST光谱巡天获得的数据资料将会向世界公布。 筛谷粒一样发现新星 天文学家利用LAMOST完成的第一批数据集,取得了有影响力的成果,LAMOST运行和发展中心常务副主任赵永恒介绍说。 赵永恒告诉科技日报记者,天文学家利用LAMOST在仙女星系和三角星系区域内新发现近2000颗类星体,这是目前在该天区发现的世界上数目最多的类星体样本。&ldquo 这些类星体可用来探测仙女星系和三角星系及其周围子结构中星际介质的化学组成、分布和运动学信息。&rdquo 此外,科研人员通过LAMOST发现了300多颗白矮星和28颗白矮-主序双星。白矮星的光度函数可确定恒星形成率和银河系的演化历史;从157颗天琴RR变星中探测到了3颗天琴RR变星存在超高声速激波现象。天琴RR变星对恒星结构与演化,银河系的形成和宇宙学的研究有重要意义;新发现了50颗贫金属恒星,为研究银河系形成和化学演化及早期宇宙中的恒星形成提供了观测限制。 对LAMOST大样本光谱数据进行分析研究,发现银盘上方的恒星正在远离银河系中心运动,并伴随着沿盘向下运动的趋势;而位于银盘中间下方的恒星则进行着相反方向的运动,这表明银河系盘星的运动模式并非简单的圆周运动。 美国合作者利用LAMOST数据发现了一颗超高速星。这是国际上已发现20颗超高速星中距离地球最近的。在赵永恒看来,研究超高速星能够帮助天文学家了解黑洞附近的情况,还能了解银河系暗物质晕的性质和暗物质的分布。 LAMOST的科学目标集中于银河系结构和演化,星系和宇宙学,多波段目标证认三个方面,它对北天可观测的约14000平方度高银纬天区进行光谱巡天观测。 同时,它将对数百万颗恒星进行光谱观测,用之于研究银河系晕的整体结构及亚结构、银河系的引力势与物质分布、从薄盘、厚盘到晕在反银心方向的结构特征、银河系球状星团来源及其与银河系结构的关系、银河系恒星金属丰度分布及贫金属星的搜寻等。LAMOST结合红外、射电、X射线、伽马射线巡天的大量天体的光谱观测将在各类天体多波段交叉证认上作出重大贡献。
  • 3i流式新品|棱镜泰克CytoFLUX三激光流式细胞仪
    新品快讯!CytoFLUX三激光流式细胞仪棱镜泰克的CytoFLUX流式细胞仪结合了高精度的细胞分析能力与卓越的用户体验,具有稳定、可靠、易用、灵活、高分辨率等特点,能够满足现代科研与临床实验的严苛要求。此前在2023年11月份,棱镜泰克Sperm-Cyto流式精子分析仪作为全国首台套,获得四川省食品药品监督管理局批准的二类医疗器械注册证(注册证编号:川械注准20232220389)成为全国第一台以流式细胞术为原理专用于“男科”实验室精子检测仪器。(点击查看)日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct关于棱镜泰克成都棱镜泰克生物科技有限公司(简称“棱镜泰克”),是一家专注于体外诊断技术研发和临床应用的高新技术企业。公司坐落于成都经开孵化园拥有集研发、生产、销售及服务为一体的综合技术平台。由多名行业专家和中科院博士团队领衔,是一支集高端精密仪器及诊断试剂的多元化研发团队。将打造流式细胞平台上游核心原料、流式细胞仪、配套自动化处理及分析设备的完整产业链条。目前,棱镜泰克已成功转化一系列临床检测产品,涵盖了血液检测、生殖检测、药物筛选等多个专业领域。同时,公司锐意创新,砥砺前行,承接多项国家级重大设备专项科研项目,致力于开发生命科学、精准医疗领域的创新型诊断技术,构建全新细胞分析诊断新生态,成为国内领先的体外诊断产品提供商。
  • 2019棱镜奖名单公布 这台拉曼光谱仪上榜
    p  2019年2月6日,2019棱镜奖(Prism Award)获奖名单公布。棱镜奖颁奖典礼在每年的SPIE Photonics West期间举行。/pp  “棱镜奖”设立于2008年,被誉为“光电行业的奥斯卡”,旨在表彰光学、光子学与成像科学领域中具有创新突破,并通过光学技术解决现实问题、改善生活的新发明与新产品。/pp  本次获奖产品涉及10个类别,值得一提的是,CloudMinds的云端AI手持拉曼光谱仪榜上有名。/pp  1、探测器与传感器类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/ae62c9b8-bea1-4f87-9355-f4c122b3c97e.jpg" title="拉曼.png" alt="拉曼.png" width="300" height="302" border="0" vspace="0" style="width: 300px height: 302px "//pp style="text-align: center "  XI™ AI 拉曼光谱仪(CloudMinds)/pp style="text-align: center "据悉,这是世界上第一台云端AI手持拉曼光谱仪,785 nm激光。/pp  2、诊断与治疗类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/eaf06d1d-ae24-4a9a-8326-bff7f2f6f1ce.jpg" title="double-helix-spindle-photo.png" alt="double-helix-spindle-photo.png"//pp style="text-align: center "Double Helix (SPINDLE)/pp style="text-align: center "无与伦比的精确深度成像和跟踪,可以达单分子水平。/pp  3、成像与相机类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/363a4c61-04e7-490f-b43e-bd5795a79ed9.jpg" title="莱卡.png" alt="莱卡.png" width="300" height="302" border="0" vspace="0" style="width: 300px height: 302px "//pp style="text-align: center "BLK3D(Leica)/pp style="text-align: center "精确的立体摄影测量装置,适合放在手掌心里操作。/pp  4、工业激光器类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/56d226f4-6a64-4be9-ace3-d87a00fa95e7.jpg" title="Corona Lasers.png" alt="Corona Lasers.png" width="300" height="294" border="0" vspace="0" style="width: 300px height: 294px "//pp style="text-align: center "Corona光纤激光器 (nLIGHT)/pp style="text-align: center "具有可编程光束质量的光纤激光器,用于高性能的材料加工。/pp  5、光源类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/7cf23a1b-1f3a-4980-8ee6-d2ba0c4e58d7.jpg" title="2019-Prism-Award-for-Smart-Vision-Lights.jpg" alt="2019-Prism-Award-for-Smart-Vision-Lights.jpg" width="300" height="400" border="0" vspace="0" style="width: 300px height: 400px "//pp style="text-align: center "NanoDrive/pp style="text-align: center "(Smart Vision Lights)/pp  6、光学与光机械类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/80cd6062-a7e8-47ad-a40d-458d00930c7b.jpg" title="OMPlex_V2_Awards.jpg" alt="OMPlex_V2_Awards.jpg" width="300" height="150" border="0" vspace="0" style="width: 300px height: 150px "//pp style="text-align: center "OMPlex(Modular Photonics)/pp  7、科研激光器类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/9baad039-623e-4532-b87b-d0bacfcbd5f5.jpg" title="TOPTICA_TOPO_01.jpg" alt="TOPTICA_TOPO_01.jpg" width="300" height="210" border="0" vspace="0" style="width: 300px height: 210px "//pp style="text-align: center "DLC TOPO(TOPTICA Photonics)/pp  8、测试与测量类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/ea092d52-9129-49d4-9442-951bd4e7c674.jpg" title="4D-inspec-xl-DSC00847_web-1.jpg" alt="4D-inspec-xl-DSC00847_web-1.jpg" width="300" height="450" border="0" vspace="0" style="width: 300px height: 450px "//pp style="text-align: center "4D InSpec XL 表面缺陷测量仪/pp style="text-align: center "(4D Technology Nanometrics) /pp style="text-align: center "用于三维非接触表面缺陷测量的手持精密仪器。/pp  9、运输系统/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/7e507b7c-c619-4a96-a7b4-cb9e70e9275a.jpg" title="Blackmore Automotive Lidar.jpg" alt="Blackmore Automotive Lidar.jpg" width="300" height="232" border="0" vspace="0" style="width: 300px height: 232px "//pp style="text-align: center "汽车多普勒激光雷达系统(Blackmore)/pp  10、视觉技术类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/83545e4b-8bb3-47a1-aa65-1b710fa5a194.jpg" title="RETISSA Display.jpeg" alt="RETISSA Display.jpeg" width="300" height="198" border="0" vspace="0" style="width: 300px height: 198px "//pp style="text-align: center "RETISSA Display(QD Laser)/p
  • 我的离子色谱世界(下篇)——离子色谱的“七子之歌”
    p  span style="color: rgb(0, 112, 192) "strong前言:/strong/span七子之歌,闻一多1925留美期间创作,共七首,分别是澳门、香港、台湾、威海卫、广州湾、九龙、旅大(旅顺-大连)有着特别的历史背景。今引用于此,主要取意于其在艰苦环境中的一种美好的盼望,以下也是我对离子色谱的美好盼望与期待。其实,看图片摘要就已经一目了然(英文期刊Graphical abstract 很重要),柱子做的还是炒饭。一个人的看见是有限的,但是我们每个人的看见分享出来,大家就能一起看到整个图片。那就先看我怎么讲一个重复而老旧的故事吧(新瓶装旧酒)!/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/3e2a8842-3bb2-47e6-b0f0-ff7c636f4454.jpg" title="七子之歌图片摘要2.jpg" width="450" height="417" border="0" hspace="0" vspace="0" style="width: 450px height: 417px "//pp  span style="color: rgb(0, 112, 192) "strong故事背景/strong/span(离子色谱各部件的比喻):/pp  span style="color: rgb(0, 112, 192) "strong泵前纯水源:/strong/span汽车车轮,有它才可能有下面的故事,没有它就什么都不会发生;/pp  span style="color: rgb(0, 112, 192) "strong泵头:/strong/span汽车引擎,没有它,一切都将沉寂如死水;/pp  span style="color: rgb(0, 112, 192) "strong淋洗液发生器:/strong/span汽车油门,车能跑多快就全靠加多大的油门。如果跑得太快,就分不清人、事、物,会错过许多美景;/pp  span style="color: rgb(0, 112, 192) "strong分离柱:/strong/span犹如三棱镜一样,将白光分成绚丽的彩虹。又好比从中药药方中提取出一个个有效成分,用来治愈疾病。今天我们将提炼出七个主要的有效成分;/pp  span style="color: rgb(0, 112, 192) "strong抑制器:/strong/span抑制住中国传统文化中的糟粕部分,也就是除去巨大的噪音背景,从而水落石出;/pp  span style="color: rgb(0, 112, 192) "strong电导检测器:/strong/span显扬这个时代所需要的正能量,宣扬积极与正面的理念(比方说“为你点赞”);/pp  span style="color: rgb(0, 112, 192) "strong七子之歌的故事/strong/span/pp  用图片摘要中的七个离子来代表洪柱所追求的离子色谱七小点,且看我如何娓娓道来。/pp  前四个离子是一价的,代表着我们个人所需要做到和追求的,就好比是建筑的根基,没有它们四者就没有后面的三者!/pp  紧接的是两个二价离子,代表着我们集体的追求,就是“求自由发声”与“求资源共享”!/pp  最后一个是十二价离子,代表着我们集体最高的理想与追求,那就是“求共同进步”!/pp  span style="color: rgb(0, 112, 192) "strong下面就听我唱一曲《七子之歌》吧!/strong/span/pp  span style="color: rgb(0, 112, 192) "strongFsup-/sup:/strong/spanFsup-/sup是第一个洗涤出来的离子(暂且忽略其前面可能有其它不常见离子)。 “尊师重道”是我们传统文化所宣扬的美德,也应当是我们所需要看重的第一样个人品质,,在此就不展开叙述。就说两个不常见的,那就是F-有两个功用,一个是防腐,一个是发光。前者是含氟牙膏,后者是夜明珠。“扬尊师重道”,真正的尊重技术与人才,尊重行业前辈,这个行来就永远不会腐朽,而是会不断发光。所以,扬“尊师重道”!/pp strong span style="color: rgb(0, 112, 192) "CHsub3/subCOOsup-/sup:/span/strong是一个有机弱酸,出峰时间一般在Fsup-/sup之后。正如它通常不完全电离的性质一样,CHsub3/subCOOsup-/sup(意指论资排辈)是当受抑制的成分。而CHsub3/subCOOH正如其名,因为它就是醋的本身与实质。有关“吃醋”来源的唐朝故事,大家应当都听说过吧,就不多言了。同行相妒,同行相轻就是这醋的缘故。经过时间的发酵,它就变为了陈醋,就是中国人心里几千年来的阶级制度,有出身高低贵贱之分,有论资排辈之嫌。“抑论资排辈”就是要抑制这醋,它也是这“七子”之中唯一消极的。只有抑制住,才能实现人与人之间的平等与尊重,因为刚入行的,入行十几年乃至几十年的,心中都有他自己的离子色谱世界。/pp  span style="color: rgb(0, 112, 192) "strongClsup-/sup:/strong /spanClsup-/sup是飘浮不定的,来无影去无踪。它可以来自于空气,来自于样品,来自于水源,来自于各种化学器皿。总之,在离子色谱的谱图上或多或少总能见着它的身影。这Clsup-/sup就是我们里面的想象力。我们看重它,它就会长大;我们轻视它,它就会减少。有人讲Clsup-/sup这个东西太虚化,我们要干实事不需要。可是,回头想一想,我们每一天吃了多少的Clsup-/sup,就不要责备它了。Clsup-/sup吃多了,我们多喝几口水,还是可以接着做实事,不耽搁。反过来,我们的脑袋无时无刻不在想象漂浮之中,或在这里或在那里。再想象一下,没有盐的生活将是多么的枯燥无味。“寻天马行空”就是去除中国人“师承”的思想禁锢(“师承”本意即学生的思想与理念,发表的作品与观点不能超过导师所画的框架。)这样,才能有学术思想自由的天空。/pp span style="color: rgb(0, 112, 192) " strongNOsub3/subsup-/sup:/strong /spanNOsub3/subsup-/sup它是非常踏实的一位,也见于我们所接触的多数水体样品之中。“脚踏实地”的NOsub3/sub-,不仅电导检测器能看见它,紫外可见检测器也看得见它。它多多少少总存在于我们中国人的美德之中,正是这美德,让海外的中国人在科研学术中作出了卓越的贡献。各行各业,古今中外华夏儿女有很多这样的杰出之士,就不一一列举了。想提到的就是NOsub3/subsup-/sup很容易就变成了NOsub2/subsup-/sup,那就是“脚踏实地”的两个反义词,一个是“偷工减料”,一个是“好高骛远”,这二者都是极为有毒的成分,也给中国人“脚踏实地”的美德蒙灰而褪色。今天,我们就一起努力,再加回这个O原子,让NOsub3/subsup-/sup增多,让NOsub2/subsup-/sup减少。另外,NOsub3/subsup-/sup虽然没有Clsup-/sup峰高,可是它的面积更大,所以意义更重要。“行脚踏实地”就是学习德国人、日本人追求极致的态度与理念,推崇匠人文化,十年磨一剑(国内虽然整体没有这样的风气,但是我已经遇到好多这样的例子了),寻求超越前人。/pp span style="color: rgb(0, 112, 192) " strongCOsub3/subsup2-/sup与tartrate/strong:/span这二者都是二价离子,在离子色谱上相隔很近,有时很难分开,所以一起来讲。前者对应着“自由发声”,后者对应着“资源共享”。COsub2/sub无处不在,虽然它在现代的离子色谱的分离中常常是一种干扰,干扰其它离子的定量检测。可是它在经典传统的离子色谱中,却是一个“好人”,成就了其它离子的分离与测定,而自己消失在背景之中,是个无私的角色。COsub3/subsup2-/sup就如鱼塘里青蛙的叫声,或多或少,你总能听见。有人看是好的,有人看是不好的,全在于你的角度。Tartrate(酒石酸根)发现于1769年,关于它被发现的故事很有意思,感兴趣的可以自己去查找一下,这里也正是取意于此。只有资源共享,我们才不会浪费时间与精力去重复别人已经做过的工作,才会更快地发现新的东西。站在前人的肩膀上,我们才能看得更远。让我们自由分享已经发表的工作,分享或失败或成功的实验经历,分享离子色谱新的技术与产品,分享离子色谱背后有趣的故事,让我们在一个更好的舞台上共同起舞。自由发声才能激发人的思维发散,资源共享才是脚踏实地向前的推动力;自由发声才能实现人与人之间的平等相待,资源共享才能打破壁垒,实现科学无国界。/pp  span style="color: rgb(0, 112, 192) "strongPhytate(肌醇六磷酸):/strong/spanstrong /strong本来想选citrate(柠檬酸盐),后来发现Phytate更好,有更好的象征意义。同时,它涉及到我已经发表的两篇文章(请补充文章链接)[1,2],那就算是广告植入吧。Phytate (意指共同进步)是我们的终极梦想。Phytate做为一个带12价的阴离子,按理讲它永远不会有出头之日。它会被分离柱死死地抓住,因为梦想与现实正负差异太大了。就算将淋洗液发生器的油门踩到最大时,按理讲也无法砍断它12道防锁,总是藕断丝连。梦想终究逃脱不了现实的残酷禁锢,只能做为梦想而已。可是,它最终神奇地出现了,跑到了马拉松赛的终点,电导检测器记录下它的到达时间,39分59秒(取意于其在我所用色谱柱上的出峰时间约为40 分钟)。梦想庞大的身躯使它不留恋于环境的拦阻(空间位阻效应)。路边不断加油的拉拉队给了它前进的动力(淋洗液中的阳离子成分能减少Phytate实际的有效负电荷),这两个神助攻,加速了它的前进。总之,Phytate能突破柱子里面的重重拦阻,出现在离子色谱的谱图上,那“共同进步”的梦想也会出现在离子色谱世界。span style="color: rgb(0, 112, 192) "strong前面所提的六条的神助攻就能实现共同进步的理念,这是一种双赢的局面,那就让我们一起做个大蛋糕吧!/strong/span/pp  总而然之,这是前面所写《我的离子色谱世界》与《柱子”离谱“的中国梦》的残羹冷饭做成的炒饭。我们中间有很多厉害的人物,肯定有更多可实现有用的理念。柱子只是做青蛙的,下面就来讲讲青蛙。青蛙有几个特点:span style="color: rgb(0, 112, 192) "strong一是眼睛大/strong/span(好像看见东西,实则啥也没看见,只有外面动的肤浅的才看得见);span style="color: rgb(0, 112, 192) "strong二是爱哇哇叫/strong/span(即不能像黄鹂一样有美妙的歌声,也不能像喜鹊一样带来好消息就是呱呱叫);span style="color: rgb(0, 112, 192) "strong三是爱冬眠/strong/span(当群里冷静时它也不发出叫声了);span style="color: rgb(0, 112, 192) "strong四是肚子鼓鼓的/strong/span(看似里面有货,实则是空气无用之物,虚张声势而已)。但是,这又怎么样呢?span style="color: rgb(0, 112, 192) "strong当大鱼被吸引起来时,青蛙就满了意义!/strong/span/pp  【1】 Anion Composition of Acai Extracts/pp  a href="https://pubs.acs.org/doi/abs/10.1021/jf4014185" _src="https://pubs.acs.org/doi/abs/10.1021/jf4014185" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "https://pubs.acs.org/doi/abs/10.1021/jf4014185/span/a /pp  【2】 Enigmatic Ion-Exchange Behavior of myo-Inositol Phosphatesbr//pp span style="color: rgb(0, 112, 192) " /spana href="https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00351" _src="https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00351" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00351/span/a /pp style="text-align: right "  供稿人:廖洪柱博士/pp  德克萨斯大学阿灵顿分校分析化学博士,博士期间主要是借助离子色谱仪与柱后碱引入方法实现对极弱酸的灵敏检测。先后开发出小体积高混合率的在线混合器,挥发性弱酸(硫化氫与氰化氢等)的转移与检测装置,以及挥发性胺的引入装置并申请了相关国际专利。现就职于德克萨斯州NEOS Therapeutics公司,该公司主要开发ADHD(专注力失调与过度活跃症)类缓释药物,主要利用离子交换树脂来吸附与缓释药物有效成分,目前公司已有三款新药上市。作为研发部门的一员,一方面专注于药物分析方法的开发与验证,另一方面专注于新药的研发工作,在离子色谱,高效液相色谱,液质联用,扫描电镜仪等仪器的应用方面有较深入研究。/p
  • 2020棱镜奖揭晓 两款拉曼光谱仪上榜
    p  美国旧金山当地时间2月5日(北京时间2月6日),美国西部光电展期间,由国际光学工程协会(SPIE)与Photonics媒体联合颁发的2020年棱镜光子学创新奖(Prism Award,棱镜奖)获奖名单盛大揭晓。/pp  “棱镜奖”设立于2008年,被誉为“光电行业的奥斯卡”,旨在表彰光学、光子学与成像科学领域中具有创新突破,并通过光学技术解决现实问题、改善生活的新发明与新产品。/pp  本次获奖产品涉及通讯、能源、医疗、生命科学、制造、质量控制、安全与保卫、运输、视觉技术等9个类别,其中,质量控制、安全与保卫两大类别分别都是a href="https://www.instrument.com.cn/zc/34.html" target="_blank"strong拉曼光谱仪/strong/a上榜。/ppspan style="color: rgb(255, 0, 0) "strong  质量控制类/strong/span/pp style="text-align: center "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/56b7f694-1ba5-4a99-96b6-f0c8f48f2738.jpg" title="Smart MEMs Handheld Raman XI² .jpeg" alt="Smart MEMs Handheld Raman XI² .jpeg"//pp style="text-align: center "strongCloudMinds/strong/pp style="text-align: center "strong智能MEMs手持式拉曼XI² /strong/pp  特别值得一提的是,a href="https://www.instrument.com.cn/news/20190219/480292.shtml" target="_blank"CloudMinds的云端AI手持拉曼光谱仪曾获得2019棱镜奖(探测器与传感器类)/a,今年CloudMinds智能MEMs手持式拉曼XI² 再次获得棱镜奖(质量控制类)。/ppspan style="color: rgb(255, 0, 0) "strong  安全与保卫类/strong/span/ppspan style="color: rgb(255, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/946fb6c5-ee0b-4a53-ba68-10b0da4fc1f8.jpg" title="Pendar X10.jpg" alt="Pendar X10.jpg"//pp style="text-align: center "strongPendar Technologies/strong/pp style="text-align: center "strongPendar X10/strong/pp  Pendar X10是一款便携式手持式拉曼光谱仪,在最远距离为3英尺的情况下,可以快速识别包括高荧光、深色和敏感材料在内的有害化学物质。/pp  其他获奖名单如下:/pp strong 通讯类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d05e7339-07f3-460c-81fc-f19e66d05a58.jpg" title="250x250_Innolume_Prism.jpg" alt="250x250_Innolume_Prism.jpg"//pp style="text-align: center "strongInnolume/strong/pp style="text-align: center "strongCW Datacom激光/strong/pp  strong能源类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/6ed2ec37-c6f5-40c1-8ecf-02dd79ddcd84.jpg" title="250x250_Prisma_Prism.jpg" alt="250x250_Prisma_Prism.jpg"//pp style="text-align: center "strongPrisma Photonics/strong/pp style="text-align: center "strongPrismaSense/strong/pp  strong医疗类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ec7e544e-6460-4c41-a761-daf4f93e8802.jpg" title="image-asset.jpeg" alt="image-asset.jpeg"//pp style="text-align: center "strongPhotoniCare/strong/pp style="text-align: center "strongTOMi Scope/strong/pp  strong生命科学类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/e1ca253f-3dd0-449d-a517-195cd8e1dfce.jpg" title="TERA-Fab E Series.jpeg" alt="TERA-Fab E Series.jpeg"//pp style="text-align: center "strongTERA-print/strong/pp style="text-align: center "strongTERA-Fab E 系列/strong/pp  strong制造类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ab07e4a3-c001-4eea-9c20-96e56cd20f08.jpg" title="Inspekto S70.jpg" alt="Inspekto S70.jpg"//pp style="text-align: center "strongInspekto/strong/pp style="text-align: center "strongInspekto S70/strong/pp strong 运输类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/01239d09-0bc6-4c23-b4a8-749af957b4f0.jpg" title="3D Semantic Camera.jpg" alt="3D Semantic Camera.jpg"//pp style="text-align: center "strongOutsight/strong/pp style="text-align: center "strong3D Semantic Camera/strong/pp  strong视觉技术类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/f379524f-1510-4f0a-a151-7f4122b36439.jpg" title="Waveguides.jpg" alt="Waveguides.jpg"//pp style="text-align: center "strongWaveOptics/strong/pp style="text-align: center "strongWaveguides/strong/pp  strong相关新闻:/strong/pp  a href="https://www.instrument.com.cn/news/20190219/480292.shtml" target="_blank"strong2019棱镜奖名单公布 这台拉曼光谱仪上榜/strong/a/p
  • 如何测定潜望式镜头中棱镜的反射率?
    1. 前言智能设备的功能日益多元化,如人脸识别、测距、AR功能等。其中,相机在追求高分辨的同时,还要求外形小巧、高倍率变焦。传统相机镜头通过与智能设备垂直放置,实现高倍变焦,但变焦倍率越高,所需焦距越长,需要占用一定的纵深空间安装镜头,造成镜头部分较厚。图1 传统镜头示意图现在大多数手机制造商通过搭载潜望镜式镜头,实现了相机的小巧与高倍率变焦。潜望镜式镜头平行于智能设备安装,并通过棱镜改变光路方向,将焦距所需要的厚度转化为与智能设备平行的长度,同时实现了超薄化与高倍率变焦。图2 潜望式镜头的示例因此,测定潜望式镜头中棱镜的反射率至关重要,但棱镜元件尺寸很小,准确测定其反射率需要专业的附件。日立紫外可见近红外分光光度计UH4150可以选配微小棱镜测定附件,并通过专业定制支架测定潜望镜式镜头中的棱镜。2. 应用数据附件:微小棱镜附件,标配两种样品支架,适用于5~6mm立方体和7~20mm立方体;偏振附件图3 微小棱镜附件本次实验使用定制支架测定两种尺寸为5mm的直角棱镜。直角棱镜巧用临界角,可以使光路偏转90度。测定时,采用偏振附件求出S偏振和P偏振的反射率,分别计算出S、P偏振光的平均值。图4 两种棱镜的反射光谱测定结果表明即使是微小棱镜,也可得到低噪音的光谱,从而有效评价样品的光学特性。3. 总结棱镜是常用的光学元件,日立UH4150凭借优异的平行光束性能,通过安装精密的微小棱镜附件,可为小尺寸棱镜的光学评价提供准确的解决方案。
  • RISE显微镜获得2015年棱镜奖(Prism Award)
    棱镜奖(Prism Award)是光子学领域中最著名的奖项,由国际光学工程学会(SPIE)和美国Photonics Media共同举办。RISE显微镜从130多个申请者中脱颖而出,获得棱镜奖计量类冠军。这是RISE显微镜在获得“2014年度分析科学家创新奖”后,获得的又一个重量级的奖项。 RISE显微镜是一款新型的联用技术,结合了拉曼共聚焦和扫描电子显微镜在同一系统中。这种独特的组合方式可以最全面的进行样品表征。扫描电子显微镜可以在毫米到纳米范围对样品表面进行观察;共聚焦拉曼成像是建立在光谱方法上,对样品的化学成分进行检测。在这个系统中,可以生成二维和三维的图像,深度剖析样品分子化合物的分布。RISE显微镜首次通过拉曼光谱和扫描电子显微镜的联用,将采集自同一区域的超微结构和化学信息联系起来。RISE显微镜拥有独立的扫描电子显微镜的所有功能,并具备拉曼光谱分析的分析特点。 “RISE显微镜是又一个突出的案例,WITec 公司具有巨大的创新实力。我们很荣幸在2011 年TrueSurface 显微镜技术获奖之后,再次得到一个棱镜奖。” WITec 研发总监,Dr. Olaf Hollricher 在会上感言。 “RISE显微镜的成功,是对我们研发团队的明确证明,同时也体现了与著名研究机构及有创新型公司合作的能力。创新,是TESCAN ORSAY控股公司成为优秀企业的重要的驱动力。” TESCAN ORSAY控股公司的 CEO,Jaroslav Klíma 先生在会上感言。
  • JAI推出"Flex-Eye" 定义自己独有的Fusion系列多光谱棱镜相机
    p style="text-indent: 2em text-align: justify "JAI向广大机器视觉用户隆重推出Flex-Eye:一种创新的相机概念,使视觉系统工程师能够自定义基于JAI的Fusion系列2-CMOS或3-CMOS棱镜的多光谱相机中波长的起始范围。/pp style="text-indent: 2em text-align: justify "通过对Flex-Eye进行定制,可以和JAI现有的Fusion系列棱镜相机相结合,便客户能够参与设计多光谱相机。该相机可以查看特定的可见光和近红外光波段,切实地满足用户视觉应用要求。br/ img style="max-width:100% max-height:100% " src="https://www.jai.com/uploads/images/Partner-Section/Hi-Res-Images-and-Thumbnails/Flex-Eye-Launch-Image.jpg"//pp style="text-indent: 2em text-align: justify "这种新方法可以使视觉检测任务或其他多光谱成像应用程序更加高效,因为通过针对目标波段(面向特定应用程序设计)进行微调后的2-CMOS或3-CMOS棱镜相机,可以更精确地显示所需的成像信息,完美屏蔽不需要的波段。/pp style="text-indent: 2em text-align: justify "如果JAI的Fusion系列中现有标准型号的默认波段组合无法完全满足相机用户的特定需求,通过Flex-Eye的定制服务,便可以解决这一问题。/pp style="text-indent: 2em text-align: justify "由于Flex-Eye概念最初是应用于JAI的Fusion系列多光谱模型的,因此,客户可以配置具有2或3传感器棱镜配置的模型,目前其配置为Sony Pregius™ CMOS传感器中160万像素(IMX273)或320万像素(IMX252)两种。在确定传感器之后,再为相机中的每个传感器定义特定的波段位置和区间。/pp style="text-indent: 2em text-align: justify "根据用户的要求,用户所指定的波段可以都位于可见光谱(405-680nm)内,或者也可以放置在整个可见光和近红外光谱的多个位置上,最高可达1000nm。波段的宽度最短可以是25nm,以5nm的增量进行递增。br//pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/e5c016d8-84d5-4431-aee5-56abc4c1bf9e.jpg" title="1.png" alt="1.png"//pp style="text-align: center "span style="font-size: 14px "上图为定制一个3传感器相机的波长示例,其中指定了一个可见光波段(波段1)和两个NIR波段(波段2和波段3)。 每个波段最短可达25nm宽,以5nm的增量递增。/span/ph3 style="text-align: justify "Flex-Eye目标用户/h3p style="text-indent: 2em text-align: justify "Fusion系列Flex-Eye相机适用于几种不同应用场景下的用户,多光谱成像技术在这些市场目前已经得到了应用,但是新的波段组合可以带来新的功能效果。这些最常见的应用场景可细分为:/pul class=" list-paddingleft-2" style="list-style-type: square "lip style="text-align: justify "荧光引导手术,病理学或其他生命科学应用/p/lilip style="text-align: justify "水果,蔬菜,果仁等食品的分选/检查/p/lilip style="text-align: justify " 农业和植被分析或除草系统/p/lilip style="text-align: justify " 包装检查,尤其是塑料包装物的印刷/p/lilip style="text-align: justify "多层电子线路板检查/p/li/ulp style="text-indent: 2em text-align: justify "img style="max-width: 100% max-height: 100% float: right " src="https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/surgical.png"/例如,越来越多的外科手术系统正在利用注入到血管或周围组织中并由激光激发的荧光化合物来辅助进行。荧光显示通过覆盖在外科医生的可见彩色图像上的区域来对病变处进行突出显示,从而起到指导手术的作用。系统是设计成突出显示周围的恶性组织还是血管内血液流动,可能需要使用具有不同波长的不同荧光团进行激发和反射。设计者通过对特定的波段的选择,使其系统在性能上区别于常见的多光谱配置。/pp style="text-indent: 2em text-align: justify "img style="max-width: 100% max-height: 100% float: right " src="https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/farming.png"/同样,现代科技农业中,通过对NDVI(归一化植被指数)或NDRE(归一化差异红边)公式建立起来的算法,来进行杂草驱除或作物健康分析的系统,需要农业机械提供可见光波段和NIR波段的数据组合。这需要农业机械能从幼苗中识别杂草,或者从作物中标记需要额外灌溉水或肥料的作物。目前在基于标准波段的标准算法,仍需要不断开发定制新的算法以提高特定作物和环境条件的性能,来适应多种多样的作物生产方面的需求。此时,这些现代农业科技公司,就向JAI寻求特定多光谱波段方面的支持,可以通过定制,以使这些系统更准确,有效地获得所需的结果。/pp style="text-align: justify text-indent: 2em "类似的概念也可以应用于当前许多其他使用多光谱成像的应用程序,包括食品检查,药品,包装,电子产品等。/ph3 style="text-align: justify "Fusion Flex-Eye的在线配置器/h3p style="text-indent: 2em text-align: justify "span style="text-indent: 2em "作为可定制的产品,产品的制作和销售过程与JAI的标准Fusion系列型号或其他相机是不同的。首先客户需要定义自己需要Fusion系列Flex-Eye相机的技术要求,并将其提交给JAI,以从技术角度来确认是否可以完成制作。/span /pp style="text-indent: 2em text-align: justify "于是JAI开发了一款strongFlex-Eye在线配置器/strong,可以让客户轻松定义自己的技术要求,它把自定义选择所需波段过程可视化了。通过鼠标逐步点选完成对传感器分辨率,个数,黑白彩色等参数进行选择。直观的GUI界面可以帮助用户在简单的频谱图上进行拉伸或收缩,来完成对波段范围的选择。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/f577a45e-37c1-467f-b8a6-0ddf9da4f98d.jpg" title="1.png" alt="1.png"//ph3 style="text-align: justify "有关Fusion Flex-Eye相机性能的更多信息/h3p style="text-indent: 2em text-align: justify "Fusion系列的Flex-Eye系统订制出的棱镜相机具有与JAI的Fusion系列的标准型号相同的高性能。配备三个320万像素传感器的相机在全分辨率下能高达107fps运行,而两个320万像素传感器的双通道棱镜相机能以123fps的速度运行。对于具有三个160万像素传感器的棱镜相机,全分辨率下的最大速率为212fps,而对于两个160万像素传感器,更是达到了226fps的速度。/pp style="text-align: justify text-indent: 2em "配备集成的自适应技术的10GBASE-T(10GigE)接口支持相机数据的大数据量要求,提供对NBASE-T(5Gbps和2.5Gbps)和传统1000BASE-T(1Gbps)的自动向下兼容低速以太网标准。除了8位输出之外,相机还可以提供10位和12位输出,并在多个传感器上既支持同步又支持非同步的操作模式。/p
  • Science:这款颠覆牛顿棱镜的光谱仪仅几十微米
    p  作为一种常规的分析仪器,光谱仪的应用涵盖了大多数科学和许多工业学科。随着应用需求的提升,仪器的小型化或者微型化一直吸引大家的眼球。但是,目前大部分光谱仪的工作原理仍和牛顿的实验相似,需要用到棱镜或光栅之类的分光元件。这种光谱仪体积庞大已无法满足日益发展的光谱应用技术的需求。而减小分光和探测元件的尺寸将导致光谱仪的光谱分辨率、灵敏度及动态检测范围显著下降,因此光谱仪的微型化是目前科技界面临的重大技术挑战。br//pp  日前,英国剑桥大学的科研团队与来自中国、英国以及芬兰的研究机构合作,成功克服了这个技术难题,开发出了尺寸仅几十微米的光谱仪,其大小仅为市面上最小光谱仪的千分之一,主要由一根比人类头发千分之一还细的半导体纳米线组成。该研究工作于9月6日发表在世界顶级杂志《Science》上。/pp  该工作由来自中国、英国和芬兰的多个研究组合作完成:上海理工大学的谷付星副教授,浙江大学的童利民教授、杨青教授和王攀教授,南京大学的王肖沐教授,上海交通大学的蔡伟伟教授,北京大学的戴伦教授,以及芬兰Aalto大学的孙志培教授。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 485px " src="https://img1.17img.cn/17img/images/201909/uepic/2fce7c98-2bff-4ad2-821b-4acc161b0ef2.jpg" title="微信图片_20190906102844.png" alt="微信图片_20190906102844.png" width="500" height="485" border="0" vspace="0"//pp  科研人员用一种带隙渐变的特殊纳米线替代了传统光谱仪中的分光和探测元件,采用和制作电脑芯片类似的工艺在这种纳米线上加工出了光探测器阵列,巧妙地利用各个探测器对不同颜色光具有不同响应的特性,通过逆问题的求解,从响应函数方程组中重构出所需要测量的光谱信息。/pp  据介绍,该微型光谱仪与广泛使用的手机摄像系统具有良好的兼容性,可设计成紧凑式光谱仪模块使手机具备光谱探测能力,把强大的光谱分析技术从实验室搬到手掌上,方便在生活中测量食物、皮肤的光谱信息,从而判断食品安全以及身体健康程度,使得光谱检测技术有望走进大众日常生活中。/pp  由于尺寸极,该微型光谱仪还可以对单个细胞进行扫描光谱成像。不同与以往的细胞成像技术,该光谱成像可以让图像中的每个像素包含丰富的光谱信息,从而可以分析细胞每个部分的化学变化。通过后续的开发这种微型光谱仪将有望可以通过注射植入到人体,用于实时监测人体健康状况,为癌症等疾病检测提供一种新的方法。/pp  据悉,剑桥的研究团队已经在申请这个微型光谱仪的专利。他们希望在这种光谱仪的基础上开发出一系列覆盖紫外到红外的微型光谱仪,用大概五年左右的时间使微光谱仪广泛应用到科研、生产以及生活中。/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  第一作者:杨宗银博士,Tom Albrow-Owen;通讯作者:Tawfique Hasan/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  文章链接:https://science.sciencemag.org/content/365/6457/1017/span/p
  • 2012棱镜光子学创新奖揭晓
    日前在美国旧金山举行的西部光电展上揭晓了2012年度棱镜光子学创新奖。该奖项由国际光学工程学会(SPIE)和Photonics Online网站共同赞助,评审委员会专家主要来自于产业界和学术界。  获奖成果包括以下九项:  ①用于转换激发拉曼差分光谱的体布拉格光栅(VBG)稳定双波长激光;  ②超高速飞秒光纤激光器;  ③T-Sight 5000(一种置于高速机车前方,用于探测和分析隧道、铁轨、桥梁电线杆等可能影响安全的障碍物的系统);  ④Laser Speckle Reducer(一种结构紧凑成本低廉的仪器,可降低激光照明中的散斑对比度);  ⑤Heliophor(一种荧光成像的新光源,可替代弧光灯和LED光源);  ⑥Mobile ELISA-based Pathogen Detection(一种手持的、低成本、即插即用、USB供电的生化危险检测系统);  ⑦3 μm DFB激光器;  ⑧True Surface Microscopy(一种可对粗糙或倾斜样品进行测量,同时保持聚焦成像优势的显微镜);  ⑨超窄线宽激光器;
  • ‘上海仪迈’国内首创光电瞄准的数字显示V棱镜
    受“仪器信息网”的邀请,上海仪迈于《仪器快讯》杂志的2011年第4期 “技术与市场”专栏成功发表一篇题为《国内折光仪的研制现状及发展趋势》的技术前瞻性文章,同时推出了高性价比的台式折光仪系列和手持式折光仪系列,奠定了上海仪迈在国产折光仪领域的领导地位。为了“将折光进行到底”,上海仪迈又进入到折光仪领域最高精度的V棱镜的研发中,可喜的是,上海仪迈终于在国内首创光电瞄准的数字显示V棱镜。在此期间,公司的研发专家进行了V棱镜多项核心技术的大胆革新,取得了技术的全面突破,真正做到了“精益求精”的科学精神和科研态度。我们衷心期待新一代的光电瞄准的,数字显示的V棱镜早日面市。
  • 液相色谱企业赛分科技上市路漫漫,难点在哪?
    很早人们就发现,太阳光通过三棱镜折射后会形成红、橙、黄、绿、蓝、靛、紫,像彩虹一样,这种现象在1666年被牛顿证明白光含有七种单色光。像太阳光这种复色光经过色散系统(如棱镜)分光后,单色光按波长(或频率)大小依次排列的图案,被成为光谱。  1906年,俄国植物学家茨维特在研究植物叶的色素成分时,将植物叶子的萃取物倒入装有碳酸钙微粒的玻璃柱子上部,然后加入石油醚使其自由流下,结果使不同的色素在柱中得到分离而形成不同颜色的谱带,按光谱的命名方式,这种方法因此得名为色谱法。  以后色谱法逐渐应用于无色物质的分离,但“色谱”二字仍被人们沿用至今。  苏州赛分科技股份有限公司(下称“赛分科技”)是一家研发、生产、销售用于药物分析检测和分离纯化的液相色谱材料的企业,在2022年12月30日向上交所科创板递表。赛分科技拟发行不超过4,072.09万股普通股,募资8亿元,用于20万升/年生物医药分离纯化用辅料项目、研发中心建设项目、补充流动资金。保荐机构为中信证券,审计机构为容诚。目前已回复第二轮问询。  有媒体研读其招股书(特指赛分科技2022年12月30日提交的申报稿)后,认为赛分科技此次上市之路或有波折。为何?  一、实控人减持数年,控制权或旁落  2002年2月,36岁的学霸黄学英与妻子一起,和另一对夫妻在美国特拉华州共同成立Sepax Technologies, Inc(美国赛分),并担任董事长至今。当时黄学英任职为美国杜邦研发中心资深化学家,2005年他离开了工作五年的以科研为基础的化工巨头美国杜邦。  美国赛分主要从事分析色谱产品的研发、生产及销售,2009年同时成为Agilent Technologies Inc.(美国安捷伦科技有限公司及其关联公司)和Wyatt Technology(怀雅特技术公司)的OEM供应商。  自己的产品却贴上别人的标签,不知这是不是有违黄学英从杜邦出来自己创立公司的本意,从双方保持合作至今来看,应该是欣然接受的。  黄学英为江苏南京人,同样在2009年,他和沈建林、潘鼎在苏州创立苏州赛分科技有限公司(下称“赛分有限”),即赛分科技的前身,注册资本1,000万元,黄学英出资比例90%。2012年4月,赛分有限注册资本增至2,000万元,由三位老股东按原始出资比例认缴。  此后,到2021年9月赛分有限整体变更为股份公司前,黄学英一直在转让自己的出资额,受让方有看好公司发展的个人投资者,有员工持股平台,有黄学英的好友组建的投资平台,也有外部投资机构。  根据转让数量与转让价格,我们测算这9年间黄学英的6次有价转让大约可以套现4,400万元:  令人不解的是,表中的外部投资机构高新同华、华泰大健康一号和二号、道兴投资在受让黄学英出资额三个月后就对赛分有限进行了增资 复星惟盈更是在和黄学英签署《股权转让协议后》的两天,又和赛分有限签署了增资协议。而且这些投资机构的增资价格均高于受让黄学英出资额的价格,对复星惟盈来说,差不多同时签署的两份合同,整体估值却差了6,000万元。  据招股书,到了2019年年初的时候,黄学英直接持有赛分有限的出资比例已由设立时的90%大幅降至36.69%。报告期(2019年至2022年1-6月)内前两年赛分有限未发生股权变动,近半年赛分科技未发生股份变动。2021年却很热闹,股改前赛分有限有2次股权转让、1次增资,股改后赛分科技有2次外部机构增资、1次资本公积转增资本。  因此到了报告期末,赛分科技股东共计32名,黄学英直接持股比例已下降至25.20%。若此次IPO成功,黄学英直接持股比例会进一步被稀释至22.68%,就算加上通过员工持股平台而间接持股的5.75%,合计比例也才28.43%(见下图)。  自己本有90%的绝对控制权,却陆续将所持股份对外转让至30%都不到,不知这是不是有违黄学英回国创立企业的初衷,但从他可以套现4,400万元来看,可能是不亦乐乎的。  科创板上市审核问答第5问关于实控人认定有要求:发行人股权较为分散但存在单一股东控制比例达到30%的情形的,若无相反的证据,原则上应将该股东认定为控股股东或实际控制人。由此可知30%是一般而言认为控制权较为稳定的最低比例,如果低于这个比例,可能会存在其他股东通过收购公司股权或其他途径导致现有实控人的控制地位不稳的风险,进而对公司的发展战略和经营方针存在不利影响,甚至损害中小股东的利益。  此外,外部投资机构华泰大健康一号、高新同华、国寿疌泉和复星惟盈,入股赛分科技后均委派了董事,除复星惟盈外其他投资机构持股比例都在5%以上。因此赛分科技目前董事会的9名董事中,3名独立董事全部系由黄学英提名,6个非独立董事席位上述投资机构占据了4席,其余为董事长黄学英和员工持股平台委派的董事。  即便加上独立董事黄学英能控制的表决权不到三分之二,何况上交所2023年8月4日发布的《科创板股票上市规则(2023年8月修订)》中明确“要求独立董事履职不受上市公司及其主要股东、实际控制人等单位或者个人的影响”。  二、科创属性或不够“硬”  赛分科技招股书中关于其科创属性披露见下图,认为其自身符合相关要求:  图中的4项指标需同时符合,其中“形成主营业务收入的发明专利数量”这一项几乎是踩线达标。研发费用、收入及员工数量是否有水分我们下文再讨论,此处就先由从专利说开去,来看看赛分科技的科技实力到底如何。  1.专利少于同行  赛分科技与可比企业专利取得数量比较情况如下图:  赛分科技表示,与其同处国内医药分离纯化领域、以液相色谱材料为主营产品的上市公司仅纳微科技一家,而纳微科技(688690.SH)专利中还有光电、仪器设备等相关的专利,经过咨询业内专业人士筛选后,其色谱材料相关的专利为28项。赛分科技自身色谱材料相关专利为18项。  据了解比美国赛分成立晚五年的纳微科技未曾公布披露以不同领域分类的专利数量,先不论赛分科技咨询的专业人士筛选得是否准确,筛选后的纳微科技细分专利数量仍然比赛分科技的数量高。  2.市场占有率低  一般来说市场份额能够最直观的反映企业在市场上的地位,市场占有率越高,说明产品的竞争力越强。  赛分科技的主营产品包括分析色谱和工业纯化:分析色谱产品主要用途是将每组成分精确地分离开来并准确测定其含量,通常应用于药品的分析检测 工业纯化产品的主要用于实现目标成分的提取,侧重于对目标物的捕获以及杂质的去除,以确保最终药品的纯度。  黄学英2002年先创立美国赛分的时候,就是以色谱材料领域起家的。后被苏州的赛分科技收购,成为赛分科技境外业务的核心运营主体,自身具备采购、生产及销售模式。报告期内分析色谱产品收入占比在60%以上。  据问询回复,分析色谱柱市场主流厂商均为境外上市公司。因无相关公开数据和行业报告,尚无可获取这些主流厂商在我国的市场份额。于是赛分科技结合关于我国分析色谱市场规模预测的相关行业研究,自己测算出在分析色谱市场其2022年国内市场占有率为5.68%。  这个比例是不高的,至少与2021年相比还有所下降。据招股书,2021年中国色谱柱市场规模达到12.5亿元,以赛分科技2021年分析色谱柱收入0.81亿元测算,其市场份额为6.48%。  其实从网上可检索到很多专业机构对我国色谱柱行业的研究报告,在赛分科技2023年6月披露问询回复之前,某家咨询机构已推出《2023-2029年中国色谱柱行业发展战略规划及市场规模预测报告》,并被多家主流媒体推荐,据说其核心数据已更新至2022年12月底。以下为该报告对外展示的部分内容截图:  该报告提到色谱柱行业重点企业的目录和内容都没有看到赛分科技的身影,我们不禁想套用一下国内当红带货主播近日引发人们热议的句式:在色谱柱领域发展二十余年,市场份额仍不理想、没被专业机构视作重点企业,有的时候要找找自己的原因,有没有认真研发提升产品竞争力?  工业纯化领域方面就更不用说了,赛分科技自己也说前期聚焦于分析色谱业务,工业纯化业务仍处于起步阶段,自2020年起才开始积极布局。该领域同样被国外主流厂商占据主导地位,2021年五大国际主流厂商占据了约54%-67%的全球市场份额。赛分科技自己测算的其2022年色谱介质市场的国内占有率为0.98%,可以说是很低了。  3.产品优势是否“优”了个寂寞?  赛分科技在经营规模远低于可比企业、市场份额也较低的情况下,仍然认为其核心产品的关键性能指标总体持平甚至个别指标优于Cytiva(美国思拓凡公司)、Tosoh(日本东曹株式会社,股票代码4042.T)等全球主流厂商同类产品比如赛分科技报告期内收入占比最高的产品体积排阻色谱柱,赛分科技选取分析色谱领域主流厂商Tosoh在全球最大的医药综合服务平台之一VWR上销量排名第一的产品相比较。对比结果显示赛分科技的体积排阻色谱柱粒径更小、可耐受pH范围更广、耐高温性能更佳、能分离的蛋白质分子量范围更广、耐压性更高、可耐受的盐浓度范围更广。  六个“更”字显得方方面面都比国外最牛的产品要好,可是赛分科技的体积排阻色谱柱在2019年至2022年的收入占比分别为39.32%、37.24%、30%、27.84%,在2019年至2021年的毛利占比分别为42.16%、39.74%、31.97%,均呈下降趋势。  按理说,既然是如此好的产品,是赛分科技成立后首先推出的产品,也是由2006年就加入美国赛分的研发部总监Mathew George博士主导研发的产品,不是应该继续往前推,去和国外产品抢市场吗?怎么就慢慢退居二线了呢?  赛分科技在报告期内重点开拓市场的是工业纯化业务,其核心产品亲和层析填料收入规模及比重不断增加,2022年收入占比23.72%,在赛分科技所有产品中排名第二,仅次于体积排阻色谱柱。  对于该产品赛分科技选取了Cytiva、纳微科技及经销商Thermo Fisher(股票代码TMO.N)的相关产品进行比较。一共7个指标,有4个指标基本相同或无显著差异,有2个指标赛分科技与两个可比企业无显著差异,还剩一个指标不置可否,只说和其他企业存在区别。  这样看来,赛分科技主推的亲和层析填料貌似并没有独自优于主流厂商的地方。如果没有显著的技术优势,国外大佬先不谈,仅仅是国内的纳微科技可能就会让赛分科技望尘莫及。赛分科技坦言,纳微科技由于进军该领域较早,已先于自己完成对部分客户的生产阶段替换。下游企业商业化生产阶段如果替换填料供应商,涉及的工作主要依次包括小试、中试、PPQ、药监局审批等,总替换周期通常需要18个月以上。这意味着赛分科技想再次替换纳微科技,似乎没那么容易。  总而言之,赛分科技的科创属性从定量和定性两方面都表现得差强人意。赛分科技表示,在分析色谱领域将“凭借先进的技术水平、优异的产品性能及优质的客户资源,预计未来将进一步推动国产化率的提升”,在工业纯化领域将“在部分医药项目中实现供应商替换,并用于大规模商业化生产,预计未来将逐步打破由国外巨头和进口产品主导的竞争格局,进一步推动国产化率的提升”。然而,科创属性不是靠口号喊出来的,也不是用饼画出来的。  三、经销疑云  赛分科技报告期内经销收入占比分别为38.99%、29.14%、29.63%和21.45%,据招股书其境内销售采用直销为主,经销为辅的业务模式 境外由于国外客户数量分布广泛,采用直销和经销相结合的业务模式,境外经销商客户Thermo Fisher在报告期内一直位居前五大客户。  1.股东“送”来的“一次性”经销商?  值得注意的是,赛分科技之前“素未谋面”的千络供应链(上海)有限公司成为2021年第二大客户、第一大经销客户,也从而将当年经销模式下新增客户收入占比整体拉高至34.05%。  千络供应链分别于2021年7月、9月向赛分科技支付预付款,合计1,491万元(含税),采购色谱填料1,500L(工业纯化业务)。赛分科技当期确认收入1,319.47万元,实现营业利润1,149.65万元。  上述交易之后,千络供应链未再次采购,而且据审核问询,2021年年末该批填料千络供应链并未对外销售,2022年末未销库存数量还有700L,之后的销售情况千络供应商拒绝提供。  对这诸多不合常理之处,赛分科技的解释长达19页,涉及当事人也较多:什么这批填料的终端客户为北京生物,来自其疫苗生产项目的需求 该疫苗项目的研发工作主要由国药中生研究院负责,后续转产则由北京生物承接,两者均为国药集团下属企业 北京生物通过谈判采购招标确定中标方为国药集团旗下采购平台—国药化学试剂,千络供应链系国药化学试剂的采购代理商。  我们将赛分科技解释内容的主要节点按时间顺序重新整理如下:  不得不说,表中反映的信息量有些大。2019年才成立的外商独资企业千络供应链如何成为国药化学试剂的采购代理商?未实现销售的700L填料目前的情况为何拒绝提供?国药化学试剂对接赛分科技时,为何为商业谈判而不涉及履行招投标程序?为何未公布中标结果前就开始找生产商?离职的陈志后来新增的500L填料采购是否源自北京生物相关疫苗生产项目所需填料的复购需求?  超出本文讨论内容的我们不予置评,要关注的是,国药中生基金入股赛分科技从尽调到最后签署合同,正好与这笔1,500L合同前后交易的时间差不多。如果将千络供应链的这笔交易纳入客户国药集团,赛分科技测算出2021年国药集团这家股东关联客户收入合计占当期主营业务收入的比例高达12.92%。这很难让人不觉得是客户的关联方给与的特殊照。  赛分科技表示向千络供应链销售产品的单价与向其他客户销售同类产品的单价较为接近,不存在重大差异。但其实这里比较的不应该是价格差异了,而应该比较的是销售机会,尤其是在报告期,尤其是科创属性对营业收入有要求。  2.实控人“关注”的非买断式经销商?  在遇到国药集团这样的有资源有实力的股东之前,赛分科技自己为收入也费了些心思。一边宣称经销业务是买断式经销,一边又以“提高经销商相应市场需求的能力”为由,在2020年确定了一批重点合作的经销商名单,并口头承诺给予较合同约定更为宽松的信用政策及退换货政策,但签订的协议仍然是买断式销售协议,即合同约定的信用政策与实际执行存在差异。  于是这些经销商们在2020年四季度“备货式”采购,2020年末经销商未实现销售的存货金额为343.42万元,这批存货赛分科技在2020年确认收入661.71万元。  上述存货中金额前两位的经销商是山东创祥化工科技有限公司和通化捷创科技有限公司,分别持有“备货”库存72.23万元、67.26万元,产品大类均主要为硅胶机智填料。你说巧不巧,山东创祥实控人的配偶刘立峰系赛分科技的前员工。刘立峰2016年3月入职赛分科技,担任销售工程师,2017年6月从离职后加入山东创祥。  此外,实控人黄学英对这两家经销商也格外关注。问询回复显示,“备货”相关合同履行的内部审批大多是运营长审批后销售总监审批就行,但山东创祥与通化捷创的审批流程是销售总监审批后总经理亲自审批:  其实,这种操作赛分科技肯定自己都觉得不合理、不合规。不然的话,为何协议约定的条款不敢按实际执行的情况来写?中介机构也觉得不合规,要求赛分科技与上述重点合作经销商协商后于2021年1-5月陆续收回尚未实现终端销售的商品,并作为发出商品列报。  可能中介机构认为主动整改了应该没什么问题,谁知上交所发出灵魂拷问-存货的含义,收回的存货能否按照赛分科技控制的库存商品进行管理和盘点?结果,赛分科技于2023年7月10日进行了会计差错更正,将2020年4季度经销商提前备货采购而发送至相关经销商的商品由“存货”重分类至“其他流动资产”。  赛分科技如果能将这些心思多花在研发上,可能这二十年结出的果会更大更甜。  综上所述,赛分科技科创属性或不突出,市场份额低,技术优势不显著 变相向经销商压货,股东关联客户“介绍”业务,以小见大可知内控不够规范,收入疑有水分 连创始人都多年减持所持的股份,可能难以说服潜在投资者对赛分科技保持信心 加之其持股比例已在30%边缘,日后控制权或旁落,或对企业经营发展可能有不利影响。  2023年8月,赛分科技已完成两轮问询。从所披露的信息来看,赛分上市的挑战远不止上面那些。  原材料采购量、领取量数据矛盾  报告期(2019年至2022年上半年)各期末,赛分科技的营收规模分别为7,373.07万元、9,766.97万元、15,488.71万元、7,493.60万元,净利润分别为-1,064.81万元、938.57万元、2,162.02万元、977.11万元,扣非后的归母净利润为-964.01万元、646.82万元、2,001.72万元、492.27万元。2022年上半年赛分科技的经营成果受非经常性损益影响较大,其中购买的理财产品及结构性存款获取的投资收益为利润出了一份力。  与纳微科技相比,2020年刚扭亏为盈的赛分科技在营收规模及利润方面尚有一定差距。2022年1-6月,纳微科技的半年度利润已突破亿元大关。  赛分科技生产的色谱柱和色谱填料,根据应用可划分为分析色谱和工业纯化两大领域。分析色谱材料的微球粒径通常在10微米及以下,主要用于药物的研发分析、质量控制和小量样品的制备,实现对不同组分的分离,分析色谱产品多以填装成柱的色谱柱形态存在。工业纯化色谱填料(又称“层析介质”)的微球粒径通常在10微米以上,主要在药物的临床研究阶段以及工业化生产阶段用于分离纯化,实现目标成分的提取,工业纯化类色谱产品形态多为散装层析介质,便于药企大规模纯化使用。  赛分科技生产产品所需的原材料包括基质及基质生产试剂、色谱柱柱管及配件、表面功能化用试剂等。其中,基质及基质生产试剂主要为琼脂糖、多孔硅胶、聚合物单体等。据首轮问询回复文件,2019年至2022年,赛分科技采购琼脂糖的金额分别为2.79万元、23.52万元、996.69万元、890.58万元。  赛分科技还在首轮问询回复文件里披露了琼脂糖、多孔硅胶、聚合物单体采购量、领用量和产品产量的匹配关系表,但是表格中琼脂糖仅在2021年和2022年有采购量,分别为3,051.50L、2,543.50L,另外两种原材料多孔硅胶、聚合物单体则披露了2019年至2022年的四年的采购量。为什么琼脂糖2019年和2020年有采购额,却没有披露采购数量?首轮问询回复文件中提及,赛分科技在2019年及2020年尚未规模化开展琼脂糖基质填料生产,不知是否是此因素影响。  然而,赛分科技的信披显然不够充分。赛分科技在首轮问询回复文件中分析存货中原材料的去向时,2019年期初,琼脂糖结存数量为10.52L,2019年至2022年的各期入库量分别为0L、107.00L、3,083.90L、2,828.56L,对应的入库金额分别为0万元、78.15万元、1,074.68万元、1,057.48万元。琼脂糖仅2019年没有入库量,其后三年入库数量均高于前文披露的采购数量。琼脂糖2019年至2022年的入库金额也与前文披露的采购金额不一样,除2019年的入库金额低于采购额外,其余三年的入库金额均高于采购额。  分析存货中原材料去向的表格下有一条注释,“上表金额勾稽差异系汇率波动所致”。以上数据的差异若是汇率波动导致,那为什么该表格中琼脂糖2021年和2022年的生产领用数量、研发领用数量又与之前披露琼脂糖采购量、领用量和产品产量的匹配关系时同期的生产领用量、研发领用量一致?  再来看赛分科技另一种原材料滤片的生产领用和研发领用数量情况,在首轮问询回复文件中也出现了数据打架的情况。  根据首轮问询回复文件,赛分科技在披露“色谱柱柱管采购量、领用量和产品产量的匹配关系”时,滤片2020年的生产领用量为39,747.00个,研发领用量为2,155.00个 2022年的生产领用量为44,626.00个,研发领用量为6,515.00个。但是赛分科技披露存货中滤片的使用去向时,2020年滤片的生产领用量和研发使用量分别为39,743.00个、2,155.00个,2022年的生产领用量和研发领用量分别为44,626.00个、6,495.00个。  扬州一、二期项目多处数据有变  赛分科技在工业纯化领域形成了系统完善的技术及产品体系,为满足生物制药下游分离纯化需求,于2017年12月成立全资子公司赛分科技扬州有限公司(下称“扬州赛分”),建设占地达41,405㎡的生产基地,专注色谱层析介质的生产。据招股书,扬州一期工程建设抗体、疫苗、胰岛素等药物专用介质八条生产线,年产能达24,760升,在2021年正式投产。  这次IPO,扬州赛分实施建设的募投项目“20万升/年生物医药分离纯化用辅料”也就是扬州二期工程建设项目。  从招股书披露的扬州一期工程相关信息来看,一期工程项目的全称或为“新建生物医药分离纯化用色谱介质生产基地项目”。  根据扬州市邗江区人民政府官网2019年8月公示的项目环评文件,新建生物医药分离纯化用色谱介质生产基地项目的投资总额为20,000.00万元,在扬州生物科技园征地41,405㎡并分两期来建设,其中一期新建色谱层析介质生产线5条(含1条小批量线),形成年产小分子药物专用色谱介质、胰岛素专用色谱介质、生物大分子专用介质共计21,760升 二期新建色谱层析介质生产线4条,形成年产小分子药物专用色谱介质、胰岛素专用色谱介质、生物大分子专用介质共计21,000升。其中一期土建工程包括车间1、车间2、仓库1、公用工程房、综合楼及其他公用配套工程 二期土建工程包括车间3、车间4、车间5、仓库2、产品应用中心等,另外配套环保工程在一期工程建设过程中一次性建成。  从江苏卓环环保科技有限公司(下称“江苏卓环”)2022年8月编制的项目竣工环境保护验收监测报告来看,新建生物医药分离纯化用色谱介质生产基地项目的实际投资金额缩减至10,000.00万元,在实际建设中,一期建设车间一、车间二生产小分子药物专用色谱介质、胰岛素专用色谱介质、生物大分子专用介质共计21,760L/年,生产规模未发生变化。一期工程在2020年6月开工,2021年3月竣工,于同年6月通过竣工环境保护验收。二期在车间一生产胰岛素专用色谱介质、生物大分子专用介质共计13,000L/年,放弃建设8,000L小分子生产线,而且二期土建工程(三座生产车间、一座仓库、一座产品应用中心)也未建设。二期于2021年11月开工,2022年3月竣工。建成后,项目的合计规模为34,760L/年。以上新增产能比招股书披露的扬州一期工程产能多出了10,000L/年,并且投产时间也存在分歧。  据招股书(签署日期2022年12月24日),扬州二期工程“20万升/年生物医药分离纯化用辅料”建设项目的投资总额为41,467.68万元,拟使用募集资金33,423.41万元,年新增20万升色谱介质产能,建设周期为两年。  根据扬州市邗江区人民政府官网去年12月公示的20万升/年生物医药分离纯化用辅料项目环评文件(江苏卓环于去年11月编制的项目环评文件)。该份文件中,扬州赛分要利用现有厂区内的预留用地来建设之前放弃的土建工程(车间三、车间四、车间五、仓库二等),同时建设配套公用工程、辅助工程、环保工程等。扬州二期工程也将分成两期来建设,其中一期工程依托车间一现有生产线,通过延长工作时间实现年产药物分离纯化用辅料4,000L/a,二期工程新建四条生产线,年产药物分离纯化用辅料196,000L/a。项目投资总额为55,000.00万元,施工期为一年。  赛分科技的招股书签署日期与扬州二期工程项目环评文件的编制时间仅相差一个月,但是项目的投资金额与建设周期均发生了重大变化,不知道该环评是否需要重新报批。
  • 3i流式动态|全国首台流式精子分析仪棱镜生物Sperm-Cyto上市
    棱镜泰克生物Sperm-Cyto流式精子分析仪作为全国首台套,2023年11月获得四川省食品药品监督管理局批准的二类医疗器械注册证(注册证编号:川械注准20232220389),并成为全国第一台以流式细胞术为原理专用于“男科”实验室精子检测仪器,实现对精子功能的全面检测,弥补传统精液常规无法检测的男性不育指标,解决传统精液检测方法偏形态、无法评估精子功能的痛点。更多的精子检测产品即将同步上市,让我们的目标客户有更多期待。流式精子分析仪区别于传统检验科流式平台:1.使用独有的CLS液流控制技术,有效避免了精子样本液流堵管以及检测试剂染料残留的传统流式检测顽疾; 2. 全面支持精子功能检测,提供满足临床及科研对于精子DNA完整性、诱发顶体反应、顶体完整性、精子活性氧、精子线粒体、精子凋亡等的各项功能的检测,不断提升对精子评价的广度和深度;3. 采用深度学习算法,软件整合了精子DNA完整性、诱发顶体反应、顶体完整性、精子活性氧等自动分析功能,实时计算检测结果并且显示,实时预览报告,支持一键式分析、审核及报告打印或LIS系统双向通讯。流式精子分析仪检测方法学优势流式精子分析仪(SCSA法)检测快速,检测速度每分钟高达50000个精子以上,更具有临床统计学意义。软件自动分析,结果无主观偏倚,可重复性强;显微镜(SCD法)人工镜检计数,每次检测200个精子,检测人员工作量大,且存在主观偏倚、重复性差;流式精子功能检测项目临床意义
  • 中科院光电所在旋转双棱镜光束控制技术研究中取得进展
    p  旋转双棱镜(Risley棱镜)可实现光束的大角度、精确偏转控制,具有结构紧凑、响应快、环境适应性好的特点,其难点在于同时达到高精度和大的动态范围。国际上很多研究机构对其进行研究。NASA在下一代卫星激光测距系统(Next Generation Satellite Laser Ranging,NGSLR)中,利用旋转双棱镜作为超前瞄准装置,实现了高精度的超前瞄准角,在几十角秒的偏转范围内实现1.5″的指向精度 鲍尔航天技术公司在无人机等小型航空器上的红外侦查与瞄准设备中采用旋转双棱镜,实现了偏转角度70° 、精度优于200″、偏转角度动态范围34dB。/pp  中国科学院光电技术研究所光束控制重点实验室任戈、陈科研究团队采用强泛化能力物理模型辨识技术和矢量光学迭代优化技术,从理论上解决了旋转双棱镜光束偏转的强耦合、非线性和多解问题,并解决了工程应用中加工、安装和测量误差的影响,在旋转双棱镜的偏转精度和动态范围等方面得到突破,实现了大角度、高精度的光束偏转技术指标:3° 偏转角范围内光束偏转精度优于1″,动态范围大于43dB,优于目前公开文献中的最高水平。/pp  相关研究成果发表在Applied Optics上,并已申请/授权国家发明专利多项,该技术在空间激光通信、目标跟踪等方面具有广泛的应用前景。研究工作获得了中科院重点实验室基金、西部之光等的支持。/pp style="text-align: center "img width="300" height="167" title="001.png" style="width: 300px height: 167px " src="http://img1.17img.cn/17img/images/201712/insimg/60cf6bda-c2a2-41ac-98ad-cbe811ef1cd6.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong示意图/strong/pp /p
  • 中国制造业企业首次丨摩方精密获全球光电行业最高奖荣誉Prism Awards(棱镜奖)
    北京时间3月3日,2021年全球光电科技领域最高奖“棱镜奖(Prism Award)”最终获奖名单颁布,重庆摩方精密科技有限公司的超高精密3D打印系统microArch S240荣获2021年度该世界级大奖。今年由于疫情原因,改为线上颁奖,本次评选有来自18个国家的149家企业进行角逐,所颁奖项分为生命科学、制造业、医疗器械、软件等十大类别,每个类别有且仅有一位获奖者。其中,摩方精密的超高精密3D打印系统“microArch S240”凭借过硬的技术,最终赢得“制造业”类别大奖。决赛中与重庆摩方精密竞争的,是两家著名美国工业上市企业nLight和IPG,这是中国企业第一次凭借本土原创精密制造技术的领先性,获得此奖项。棱镜奖是国际光学工程学会(SPIE)联合Photonics Media于2008年创立,是目前全球光电行业的最高奖项。该奖项由SPIE和Photonics Media共同赞助,杜绝商业运作,具有极高的科技权威性。棱镜奖是年度国际竞赛,旨在鼓励市场上最好的新型光学和光子学产品,以及在光学,光子学与成像科学领域中具有创新突破,并通过光学技术解决现存问题,改善现有技术,并提升生活质量的新发明与新产品,素有光学界的奥斯卡之称。决赛入围者和获胜者由国际专业评审团选出,评审团包括来自全球的技术专业人士,企业高管及金融专家。本次获奖的microArch S240,是摩方第二代系统,S240具备更大的打印体积(100mm×100mm×75mm),打印速度提升最高10倍以上,能够生产更大尺寸的零部件,或实现更大规模的小部件产量。同时,在打印材料方面,S240支持高粘度陶瓷(≤20000cps)和耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料,极大满足了工业领域制造对产品耐用的需求,也为科研领域开发新型功能性复合材料提供支持。部分打印样件图:(一)微流控芯片(二)火柴对比视角下的北京鸟巢体育馆(三)仿生微针结构重庆摩方精密科技有限公司成立于2016年,是目前全球唯一能够生产制造打印精度达2微米超高精密3D打印系统的企业,并实现全球产业化。在此领域,摩方在全球没有仿制对标他人,而是走在全球最前沿,是被追赶的对象。2018年6月至今,已为全球超过25个国家、500家以上的企业/院所提供了超高精密的3D打印设备、材料和打印服务。在工业领域,全球最大的眼科医疗器械厂商Alcon,全球最大的连接器厂商泰科TE,全球最大规模的医疗卫生企业Johnson & Johnson,以及Facebook,HRL,Apple,Merck, Intuitive Surgical,Stryker等世界尖端企业均已采购摩方的系统或服务。(美国强生公司Johnson & Johnson采用摩方设备现场照片)摩方超高精密3D打印系统及服务也出口至日本SDK等著名知名企业及院校,中国企业出口超高精密基础制造系统至日本客户,尚非常罕见,充分说明摩方在这一领域全球范围内的优势。在科研领域,我国众多知名大学,包括清华大学,北京大学,南京大学,北京航空航天大学,北京理工大学,上海交通大学,浙江大学,香港城市大学等均已采购摩方设备。国际范围内,包括日本东京大学,早稻田大学,德国德累斯顿工业大学,英国诺丁汉大学,新加坡南洋理工,阿联酋Khalifa等众多知名院校均也采购了摩方的系统。(英国诺丁汉大学采用摩方设备现场照片)
  • 基因检测持续升温 业界传出“冷静相对”声音
    目前国内精准医学行业良莠不齐,确实有公司刻意炒作概念来进行融资,“当新兴事物出现时,出现质疑是正常的 一窝蜂地上,没有任何的思考与怀疑反而是危险的。”  12月4日晚间,天兴仪表披露贝瑞和康借壳上市重组草案,作价43亿元购买基因检测公司贝瑞和康100%股权。虽有上市前估值过高、借壳后大幅打折的情况,这一消息还是将近年来热得发烫的基因测序又一次被推上风口。  基因测序市场潜力巨大在今天已不是新鲜事。得益于如人类基因组测序等大规模生物数据库的建立、高通量组学的发展以及各种检测手段的兴起,近年来精准医疗技术不断得到提升。  据BBC Research数据显示,全球基因市场总量从2007年的794.1万美元增长至2013年的45亿美元,并预计2018年全球市场将达到117亿美元,复合年增长率为21.2%。另据Markets and markets预测,中国的基因测序产业2012~2017年间复合年均增长率将达到20%~25%。  精准医学因为出现在2015年奥巴马国情咨文中被世人所熟知,行业中近二三十年以来一直关注或使用的一些产品都符合精准医学的概念。从 80 年代的荧光定量,到一代测序、数字化 PCR,再到到二代测序,这些用于分子诊断或者基因分析的产品其实都属于精准医学的应用。  今年3月,国家卫生计生委发布《关于临床检验项目管理有关问题的通知》,为临床实验室自建项目(LDT)开启绿色通道。此后,《国民经济和社会发展第十三个五年规划纲要》全文,在第二十三章支持战略性新兴产业发展规划中,生物技术、精准医学赫然名列其中。到如今,精准医学重大专项成功立项,60多个科研项目相继落地。中国版的精准医学计划正在紧锣密鼓进行中。  不断升温的同时,精准医疗行业发展参差不齐的态势也让业界不断传出“冷静相待”的声音。  测序巨头赛默飞世尔科技中国区总裁江志成表示,在未来精准医学的国家竞争中以及其发展初期,建立精准医学的“生态系统”至关重要。在未来的工作部署中,精准医学的发展需要联合医院、政府、学界以及包括药厂和基因检测机构的相关方共同推进。  另一方面,由于目前患者数据的收集没有标准,样本库与样本库之间都是孤岛发展。各地涌现的生物样本库如何从孤岛联结为更有价值的公共样本数据库是接下来的挑战。  贝达药业副总裁万江认为,在国家的大形势下讨论精准医学产业,中国最大的优势是政府的组织力量比较强,而精准医学更需大的组织。“靠碎片化信息肯定解决不了,美国也有类似计划,未来要把一百万个人的基因测序和疾病状况、精神状况、生理状况、寿命等联系起来,将数据库开放给社会、科研机构,精准医学才有意义。”  泛生子基因首席科学家阎海则强调公众需要对精准医学给予耐心,受到广泛关注的精准医学正处于一个最好的时期。目前国内精准医学行业良莠不齐,确实有公司刻意炒作概念来进行融资,“当新兴事物出现时,出现质疑是正常的 一窝蜂地上,没有任何的思考与怀疑反而是危险的。”
  • 三款电镜产品入围2015年度R&D 100大奖
    仪器信息网讯 日前,R&D Magazine杂志公布了2015年R&D 100大奖入围名单。其中有3台电镜产品入围分析测试类R&D 100大奖名单,分别是:FEI的Teneo VS扫描电镜、美国Delong Instruments公司LVEM25台式透射电镜、WITec GmbH与TESCAN ORSAY合作推出的拉曼光谱-扫描电镜联用系统RISE。FEI Teneo VS扫描电子显微镜   Teneo VS是FEI于2014年9月推出的一款针对生命科学领域大容量样品分析的电镜产品,可分析的样品体积可达到500×500×1200μm3。Teneo VS紧密集成了FEI最新一代Volume Scope扫描电镜和室内显微切片机。  该仪器最特别的地方在于它的多能量电子成像功能,根据不同加速电压的电子束进入样品的深度不同,可以获得不同深度的样品信息,从而在大容量样品分析中明显改善Z轴的分辨率。  Teneo VS可以帮助从事细胞、组织、发育和神经生物学、以及毒理学和药理学研究的人员,在体积相对较大的样品中看到纳米级的细节。Delong Instruments LVEM25台式透射电子显微镜  LVEM25是Delong Instruments继LVEM5之后推出的第二款台式透射电镜新产品。LVEM25采用肖特基场发射电子枪,电子加速电压范围在10-25 kV,较低的加速下,研究者不需要对样品进行染色,即可得到很高的图像对比度。同时在25 kV电压下,LVEM25还避免了低电压对样品厚度的限制要求,只需要研究者按照正常厚度要求制作样品切片即可。  LVEM25的电子透镜模块由永磁体构成,从而精简了一般大型电镜中的磁体电源系统。这一创新性设计使得LVEM25的设备尺寸大大缩小。LVEM25对设备安装环境没有任何要求,不需要高功率电源,无需磁屏蔽和减震装修,更不需要冷却水和液氮冷阱等复杂配置,日常维护成本低。WITec GmbH和TESCAN ORSAY合作推出的拉曼光谱-扫描电镜联用系统RISE  2014年4月,在analytica 2014举办期间,TESCAN ORSAY和WITec公司联合举行RISE Microscopy新品发布会。  RISE显微镜结合了共聚焦拉曼光谱和扫描电子显微镜在同一系统中。扫描电子显微镜可以在毫米到纳米范围对样品表面进行观察 共聚焦拉曼成像是建立在光谱方法上,对样品的化学成分进行检测。在这个系统中,研究人员即可以生成样品的二维和三维图像,又可以深度剖析样品分子化合物的分布。  今年3月,RISE还获得了2015年度棱镜奖(Prism Award)。  关于R&D100大奖  R&D100大奖被誉为科技创新“奥斯卡奖”,是国际科技研发领域极为推崇的科技研发奖。R&D Magazine杂志每年从全球上千件科技创新技术中,依照科技突破性、创新独特性及应用实用性3项标准进行评选,评选出全球过去一年100个最具创新和技术意义的上市产品。
  • 泰思肯(TESCAN)出席东北三省第十八届电子显微学术会议
    近日,由黑龙江省电镜学会主办的东北三省第十八届电子显微学术会议在黑龙江省哈尔滨市哈尔滨工业大学举行。会议期间进行了电子显微学学术交流、电镜相关技术发展和电镜及其他显微学仪器的使用技能与技巧的交流,TESCAN作为此次会议赞助商应邀出席,并带来了“TESCAN在扫描电镜、FIB技术领域的创新和应用”的精彩报告。2017年东北三省电子显微学术会议TESCAN发源于全球最大的电镜制造基地-捷克Brno,有超过60年的电子显微镜制造历史,是电子显微镜和聚焦离子束领域的技术领导者。此次学术交流会,TESCAN公司市场部马耀娇向参会专家们简单介绍了TESCAN的发展历史以及其在显微领域的技术创新,并重点介绍了TESCAN “All In One”综合分析平台的产品设计理念以及其首创的氙等离子源的超高速双束FIB系统、电镜-拉曼光谱一体化系统(RISE)和双束聚焦离子束与飞行时间二次离子质谱一体化系统(TOF-SIMS),以及TESCAN最新发布的FIB新品S8000系列产品的特点和应用优势。TESCAN中国市场部马耀娇作会议报告TESCAN 首创的氙等离子源超高速双束FIB系统,离子束流高达2μA,其溅射速率相比传统的Ga离子源高达50倍以上,非常适合于大尺寸材料去除的应用,特别是应用于TSV的半导体封装技术。在材料科学领域,利用氙等离子双束FIB技术,可以轻松提高加工速度。例如钢铁样品的EBSD三维重构,TESCAN FERA3 氙等离子源双束FIB系统首次实现了FIB加工速度快于EBSD分析速度。此外,在生命科学领域中,氙等离子源FIB技术也扩展了生物组织三维重构的应用。TESCAN FERA3氙等离子超高速双束FIB系统TESCAN首创的双束聚焦离子束与飞行时间二次离子质谱联用技术(TOF-SIMS)是电镜厂家中第一个将飞行时间二次离子质谱和自己的SEM/FIB成功集成在一起,创新成为一体化系统。联用系统的创新打破了EDS及WDS的分析局限性,拥有更灵敏的检出限和更好的空间分辨率,在对轻元素的探测、同位素检测、深度剖析和化学结构解析应用中具有很大的优势。另外,TESCAN首创的电镜-拉曼光谱一体化系统(RISE)在微观观测和分析领域带来了重大应用革新。传统的扫描电镜分析性能薄弱,SEM与拉曼光谱仪虽然都是强大的分析工具,但各自都具有一定的应用局限。而电镜-拉曼光谱一体化系统(RISE)很好地解决了传统的应用难题,例如拉曼光谱对样品平整度的苛刻要求以及光镜观察形貌结构分辨率的不足和信息单一等难题,并在联用导航、探测器适配以及软件分析应用上都有革命性的提高和拓展,目前已在地质、碳材料、纳米科技、矿物晶体、聚合物、半导体以及生命医药、医学、检测鉴定等领域有了丰富的应用。TESCAN RISE系统还分别获得了“2014年分析科学家创新奖”和光谱仪器的最高奖项“2015年棱镜奖”。TESCAN拉曼-电镜一体化系统RISE Microscopy会议期间,来自东北三省的专家和老师与TESCAN中国公司的工作人员积极互动,展开了热烈的交流。感谢这个平台和交流机会,TESCAN将持续提升个性化服务,为广大用户提供更全面、更专业的综合解决方案!关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN中国官方微信“TESCAN公司”,更多精彩资讯
  • 冷静面对基因测序热潮——访中科院半导体研究所周晓光研究员
    pspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  是谁早期发明了解析电喷雾质谱数据的新方法,并因此获得美国专利?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  是谁开发了世界第一款利用低能碰撞诱导解离技术进行多肽测序的质谱数据解析软件?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  是谁参与了世界第一台液相色谱-离子阱多级质谱联用仪产品的研发工作,发明了至今还在主流离子阱质谱仪中使用的离子阱智能控制新模式及独一无二的离子阱自动增益控制方法,并再获美国专利?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  是谁主持了世界第一台高分辨飞行时间液质联用仪数据系统研发工作,该产品后来在世界最大分析化学和光谱应用会议暨展览会PITTCON荣获Editor' s Award?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  是谁主持了一系列基于MALDI-TOF和MALDI-TOF-TOF技术的蛋白组、功能基因组、代谢组以及生物标记物应用分析产品的研发?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  又是谁,参与设计了国内自主知识产权二代基因测序系统的原始样机的研发?/span/ppspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"  难以想象,这些成就均来自于同一个人,他就是来自中科院半导体所集成光电子学国家重点实验室、生物信息获取与传感技术实验室以及基因组与精准医学检测技术北京市重点实验室的周晓光研究员。带着敬意和好奇,仪器信息网编辑近日专程采访了周晓光。/span /pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="04.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/insimg/c93addf7-2e05-447a-b6bc-0c4b7f920215.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"strong中科院半导体所集成光电子学国家重点实验室、生物信息获取与传感技术实验室以及基因组与精准医学检测技术北京市重点实验室 周晓光研究员/strong/ppstrong  提供工具的人/strong/pp  2008年,周晓光被中科院北京基因所聘请为外国专家及客座教授,与中科院基因组学于军教授合作承担了“模块化DNA分析系统”的研发工作,并于2011年成功通过中科院专家组评审验收,完成了具有自主知识产权的二代基因测序系统原始样机的研制。/pp  就在不久之前又有喜讯传来,该基因测序系统已经被正式命名为BIGIS二代测序系统,并已进入大规模用户试用阶段。 其生产商中科紫鑫于2015年8月7日召开产品推介会,宣告BIGIS二代测序系统的产业化正式启动。/pp  作为高端仪器研发方面的专家,并在多个领域取得杰出成就,但周晓光依然谦称自己只是一个“提供工具的人”。他认为仪器的设计原理是相通的,离不开机械、软件、光、电以及化学等相关技术的集成。/ppstrong  人类基因组计划/strong/pp  1985年,美国科学家率先提出人类基因组计划(human genome project, HGP)。/pp  1990年正式启动该项计划,美国、英国、法国、德国、日本和我国科学家共同参与。/pp  2001年人类基因组工作草图发表,被认为是人类基因组计划成功的里程碑。/pp  2005年,人类基因组计划的测序工作完成。/pp  人类基因组测序基本完成后,科学家们开始思考,接下来基因组科学应该怎么走?随后“human genome for everybody”,即“全民测序”被提了出来。要知道第一次的“人类基因组测序”花费了30亿美元,耗时13年才完成。要实现“全民测序”,依靠当时的测序方法是根本行不通的,所以开发新一代测序仪迫在眉睫。/pp  对于新一代测序仪的测序价格,科学家们给出的预算是1000美元/全基因组,由此“1000美元的全基因组测序”的口号在行业内流传开来,但是直到最近两、三年这一美好愿景才被真正实现。/pp  据周晓光回忆,科学家们对新一代测序仪测序价格的考量来自当时最贵的临床检测技术——CT,其价格在800-900美元之间,这一价格在当时美国保险公司的可承担范围之内。/ppstrong  不断发展的基因测序技术/strong/pp  从1977年第一代基因测序技术(Sanger法)问世,发展至今三十多年时间,基因测序技术已取得了相当大的发展。从第一代测序成本高,通量低;到第二代测序成本大大降低,测序速度大幅度提高,但也存在错误率高、有扩增偏向性和读长短等缺点 而第三代测序技术是为了解决第二代缺点开发的,原理是单分子测序。/pp  对于目前的第三代测序技术,周晓光有着自己的看法,他认为第三代测序技术的划分应当同时具备以下两个条件:一是单分子基因测序;二是实时跟踪检测。而当谈到纳米孔单分子测序技术时,周老师表示:“从技术层面上讲,这是一种不同的方法,应该属于三代后”。/pp  在聊及不同的测序技术时,周晓光还特别提到了质谱技术。他告诉笔者质谱在基因测序方面有自己独特的优势,因为质谱有较大的质量范围和较高的分辨率。事实上,ABI在2002年就已经完成了质谱SNP的研发,试用结果良好,可进行多个位点SNP检测,并且试剂耗材价格低廉。但是由于某些商业原因,当时的ABI公司雪藏了这项技术。/pp  周晓光建议,“低于几个少数位点的SNP分析可以选择PCR技术,成百上千个位点当然可以选用基因测序仪,而10到几十个位点可以用质谱技术来填充。对于癌症来说,有时候可能就是十几个靶标,也许质谱更有优势。”/ppstrong  基因测序与精准医疗/strong/pp  基因测序作为目前生物学领域最炙手可热的专业门类之一,其发展势头可谓如火如荼,风生水起。很多相关报导称,它不仅能够追踪传染病途径,还能预测个体化疾病风险,有效预测癌症、糖尿病、唐氏综合征等多种疾病,从而为后期的防御和治疗提供有效的帮助。/pp  随着美国总统奥巴马提出“精准医疗”计划,基因测序热度再次升温。我们在周晓光名片上看到了“北京精准医疗实验室”的字样。据了解这个实验室建立于两年前,可以说我国的“精准医疗”工作也早已开始。/pp  尽管目前的测序技术已经基本成熟,但基因组学最终能给我们提供多少与疾病有关的信息?大量的数据代表什么意义?周晓光告诉笔者,基因测序用于“精准医疗”的重点和难点,将是利用生物信息学对大数据进行分析解读,最后医生能够根据这些分析结果给出病人的治疗方案。譬如:一些复杂的疾病,像心血管疾病和老年痴呆等老年病的检测手段,正在向靶向检测发展。未来可能需要在基因组学、蛋白质组学等分子水平上寻找病因,用药前也可以检测靶向位点是否存在。/pp  再比如肺癌,由于基因突变位点不同,有二十几种亚型,周晓光认为这些亚型已经不能归为同一种疾病,靶向治疗也不会是同一个位点,用药前应该对靶向位点进行基因或蛋白检测以确定治疗位点是否存在。/pp  有资料显示,精准医疗是以个人的基因组信息为基础,结合蛋白质组,代谢组等相关内环境信息,为病人量身设计治疗方案,以期达到治疗效果最大化和副作用最小化的一门定制医疗模式。而要真正实现个体化医疗,还有很多工作要做。所以以基因测序为前提的精准医疗目前只能说是“看上去很美,但路还很长”。/ppstrong  “1:9”模式/strong/pp  2008年起,我们国家开始大幅度支持基因测序产业,但是到现在为止,基因测序在我国基本是消费服务市场,而缺乏上游的设备提供商。处于产业链最上游的基因测序系统核心技术,据了解,除软件系统外,仪器和试剂几乎完全被国外厂商垄断。/pp  周晓光曾在2014年分析指出,“国内基因测序基底单薄,创新性不够,大多数企业仍处在给国外基因测序企业贴牌的这样一个局面,此外融资环境中投资者抱着短期回报的心态也会给这个行业带来负面影响。我国在未来一段时期内,不能单一依靠某一代测序技术解决问题,应该专注自主创新,实现第一、二、三代基因测序技术并存与互补发展。”/pp  本次采访的最后,周晓光提出了一个“1:9”的概念,“1”为基因测序仪原始样机的研发,“9”为样机开发成功后大量的相关工作,包括产品样机工程化、相关试剂、耗材以及软件的开发,这些部分完成后,才能构成一个完整的基因测序系统,最后成为应用到实践中的产品。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="03.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/insimg/9cf13d7e-1c00-4d65-8aea-edd0f42ebfa9.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"strong周晓光与仪器信息网编辑合影/strong/pp  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"strong采访后记/strong:/spanspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"本次采访中,周晓光研究员的冷静、睿智给笔者留下的印象颇深,同时也近距离感受到了一名资深仪器研发人员的所思、所想。生命科学的发展依赖于相关仪器的精准和完善,而国内在用的大部分相关仪器及耗材均来自于国外,我们什么时候才能实现真正国产化的科学研究?希望国内像周晓光这样的仪器研发方面的领军人物能够不断涌现,正是因为有了他们,才使我们能够在一些像基因测序这样长期为国外产品所垄断的领域发起追赶。/span/pp style="TEXT-ALIGN: right"采访编辑:史秀明/pp style="TEXT-ALIGN: left"  strong10月21日/strongstrong“基因测序前沿技术”网络主题研讨会:/stronga title="" href="http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1673" target="_self"strong链接网址/strong/a/p
  • 纪念诺贝尔奖级科学家:近红外光谱技术之父Karl Norris
    pstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  摘要:本文扼要综述了近红外光谱分析技术的发展里程,主要介绍了Dr. Karl H. Norris对近红外光谱分析技术做出的贡献,并汇总了与近红外光谱相关的诺贝尔奖获得者的贡献。很遗憾Dr. Karl H. Norris没有荣获诺贝尔奖,但这丝毫不影响Karl Norris的伟大,也不影响近红外光谱技术的伟大。世上诺贝尔奖可以缺席,但是却不能没有Karl Norris这位科学家,也不能没有近红外光谱这项分析技术。现代近红外光谱对分析技术和过程控制技术都产生了深远的影响。/span/strong/ppspan style="font-family: 宋体, SimSun "  2019年7月17日,被誉为“近红外光谱技术之父”(Father of NIR Technology)的Dr. Karl H. Norris去世,享年98岁。7月18日收到国际知名光谱学家日本Ozaki教授发来的邮件:span style="font-family: 宋体, SimSun color: rgb(255, 0, 0) "strong“We share the deep sadness for Dr. Karl Norris. I think his contribution truly corresponds to Nobel Prize. Although we lost the great scientist, we have to keep his great spirit not only in NIR spectroscopy but also in science and engineering. His contribution is much wider than NIR spectroscopy. ”/strong/spanOzaki教授评价Dr. Karl Norris的贡献可以与获得诺贝尔奖的科学家媲美。Ozaki教授的这段话让我萌发写一篇小随笔的冲动,随后系统整理了多年积累的相关文献,几经脉络的调整,终成这篇小文。/span/ppstrong  一、Dr. Karl H. Norris之前的情况/strong/pp  近红外光是人们发现的第一个非可见光区域,由英国物理学家赫歇耳(F.W.Herschel,1739-1822)发现。赫歇耳是一位天文学家,他通过自己磨制镜片制作的天文望远镜发现了天王星。赫歇耳制作了400多个望远镜提供给天文爱好者使用,其中有些人抱怨通过望远镜观测星体会灼痛眼睛。于是,他设计了一个实验来研究太阳光线的热效应(图1)。赫歇耳利用1666年牛顿发现的三棱镜分光现象将太阳光色散成不同颜色的光,然后用温度计逐一测量不同颜色光的热量,在偶然情况下他发现在红色光之外仍存在更大强度的热量,他断定在红光之外仍存在不可见的光,他用拉丁文称之“红外”(Infra-red)。由于赫歇耳用的棱镜是玻璃制成的,其吸收了中红外区域的辐射,实际上该波段是近红外(Near Infrared,NIR),波长范围大致位于700~1100nm范围内,因此,在一些文献中常把这段短波近红外区域称为Herschel区。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 389px " src="https://img1.17img.cn/17img/images/201908/uepic/b75f5ce8-1b56-4da0-8121-0fff654f330e.jpg" title="01.jpg" alt="01.jpg" width="300" height="389" border="0" vspace="0"//pp style="text-align: center "strong图1 赫歇耳发现红外辐射实验的示意图/strong/pp  巧合的是,第一次测量近红外吸收谱带的人是赫歇耳的儿子John Herschel,1840年他设计了一个巧妙的实验,将经玻璃棱镜色散后的太阳光照射到乙醇上,用黑色多孔纸吸收乙醇蒸气,然后通过称重方法来测定乙醇的蒸发速度。1881年英国天文学家阿布尼(W Abney)和E R Festing用Hilger光谱仪以照相的方法拍摄下了48个有机液体的近红外吸收光谱(700~1200nm),发现近红外光谱区的吸收谱带均与含氢基团有关(例如C-H、N-H和O-H等),并指认出了乙基和芳烃的C-H特征吸收位置。1889年瑞典科学家K Angstrem采用NaCl材料的棱镜和辐射热测量计作检测器,首次证实尽管CO和COsub2/sub都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱。这个试验最根本的意义在于它表明了红外光谱吸收产生的根源是分子而不是原子,整个分子光谱学科就是建立在这个基础上的。/pp  上述这些原始性的科学发现都是在诺贝尔奖设立前完成的,诺贝尔奖设立时间是1900年6月,首次颁发是1901年12月。/pp  直到上世纪六十年代,近红外光谱都没有得到较好的应用,主要是它的吸收非常弱,且谱带宽而交叠严重,依靠传统的光谱定量(单波长的朗伯-比尔定律)和定性分析(官能团的特征吸收峰)方法很难对其进行应用,一度被称为光谱中的“垃圾箱”(The garbage bin of spectroscopy)。相比较而言,近红外光谱两端的外延区域(紫外-可见光谱和中红外光谱)在这段时间内却得到了快速发展。/pp  一些影响分子光谱分析的理论或技术,也都是在此期间(1900~1960)提出或发明的。例如,1912年丹麦物理化学家N Bjerrum 提出HCl 分子的振动是带负电的Cl原子核与带正电的H原子之间的相对位移,分子的能量由平动、转动和振动组成,以及转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。同年,F E Fowle用近红外光谱吸收谱带测定空气湿度,这可能是近红外光谱首次用于定量分析。1927年美国加州大学的J W Ellis观测到有机化合物近红外光谱中750nm、820nm、900nm、1000nm、1200nm、1400nm、1700nm、2200nm的吸收峰与C-H键相关,并指出3400nm处的为基频吸收峰,1700nm和1200nm处的分别为一级和二级倍频吸收峰,2300nm和1400nm分别为6800nm与3400nm、1400nm的合频吸收峰。1928年美国加州大学的F S Brackett利用1200nm谱带可以鉴别多个不同的化合物,并指认1190nm、1220nm和1230nm分别为-CH3、-CH2和-CH的吸收谱带。/pp  1924年法国科学家J Lecomte首次提出分子指纹图谱的概念,发现中红外光谱可以识别同分异构体(如所有的辛烷异构体)。这一发现为二次世界大战期间,将中红外光谱用于分析性质相似的碳氢燃料以及橡胶产品提供了重要信息,人们真正认识到了中红外光谱的实用价值。1930年Mecke提出了表示分子振动的符号,如ν表示键伸缩振动,δ表示键角弯曲振动,γ表示面外弯曲振动,并对谱带的归属进行了研究,这些符号沿用至今。/pp  为描述紫外-可见区测定无机颗粒物质漫反射光谱时的光学行为,P Kuhelka和 F Munk于1931年提出了K-M理论,其理论基础是假设光的多重散射,即反射被观察到之前,已在系统内由一个粒子到另一个粒子进行了多次反射。1933年,H Hotelling写出了关于主成分分析(PCA)的经典论文, 1936年,P C Mahalanobis提出了计算马氏距离的方法,后来PCA和马氏距离被广泛用于近红外光谱多元定性分析。/pp  1942年,用于中红外气体分析的怀特池(White Cell)被发明,使得中红外光谱在气体分析中逐渐得到广泛应用。二次世界大战前的1939年世界仅有几十台中红外光谱仪,但到1947年世界已有500余台红外光谱仪在工作,中红外光谱已成为分子结构的分析的主要手段。1945年美国Beckmam公司推出世界上第一台成熟的紫外可见分光光度计商品仪器,仪器稍加改动便可以测定近红外区域的光谱了。二次世界大战还加速了1930年研制出的硫化铅检测器的发展,使其成为非常灵敏的商品化检测器,用于近红外区1~2.5μm波长范围的测量。1950年左右,干涉滤光片在光谱仪器中得到了应用,基于几个特定波长的红外滤光片式在线过程仪器相对独立地出现了,主要用于气体、水分和湿度的分析,这类仪器的应用延续至今。1955年左右,美国IBM公司已开发出Fortran语言,这是第一个结构化和科学化的计算机语言。1960年左右,Fahrenfort和Harrick发明了红外衰减全反射(ATR)测量附件,可直接测量一些特殊样品的红外光谱,显著扩展了红外光谱的应用范围。/pp  尽管上述的理论和技术都有鲜明的原创性,也对后来的分子光谱技术产生了很大影响,但都与诺贝尔奖无缘,这些理论和技术或许算不上重大的发现或发明吧。/pp  上世纪四五十年代,也有将近红外光谱用于定量分析的报道,包括测定环氧化合物官能度、聚合物和酚醛塑料不饱和度、化合物的羟基、药物的水分等,例如,英国化学工业公司(ICI)Harry Willis不仅采用近红外光谱表征聚合物的结构,还采用近红外光谱测量聚合物薄膜的厚度。但上述这些研究和应用从严格意义上讲都不属于现代近红外光谱分析技术,都是沿用传统的中红外光谱官能团解析和朗伯-比尔定律的定性和定量分析路线。/pp  现代近红外光谱分析技术是从Dr. Karl H. Norris的工作开始的。/ppstrong  二、Dr. Karl H. Norris的贡献/strong/pp  Dr. Karl Norris是美国农业部研究中心(马里兰州贝茨维尔市)的一位工程师。1949年他曾用自己改造的Beckmam DU紫外光谱仪通过透射测量方式对鸡蛋的新鲜度进行研究,发现750nm处的吸收峰为水中OH基团的倍频吸收。这或许是第一张复杂混合物(天然产物)的近红外光谱,所以很多介绍近红外光谱发展史的文章中都会引用这张图(见图2)。遗憾的是因当时条件和技术所限,没有建立光谱与鸡蛋品质之间的关系,只能靠蛋壳的颜色开发出了鸡蛋自动筛选设备,这项工作得到了时任美国总统Dwight D. Eisenhower的关注(见图3)。Karl Norris通过这项研究还发现水果和蔬菜在700~800nm有明显的吸收谱带,这对Karl Norris之后开发近红外无损果品品质分析仪(例如苹果的水心病等)埋下了伏笔(见图4)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 346px " src="https://img1.17img.cn/17img/images/201908/uepic/54b74d3d-7d4b-4ba5-a8b1-e7df3ea6bdd5.jpg" title="02.jpg" alt="02.jpg" width="500" height="346" border="0" vspace="0"//pp style="text-align: center "strong图2 鸡蛋随时间变化的吸收光谱图/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 401px " src="https://img1.17img.cn/17img/images/201908/uepic/918f91a2-f561-4b74-82e0-31a2915f6589.jpg" title="03.jpg" alt="03.jpg" width="500" height="401" border="0" vspace="0"//pp style="text-align: center "strong图3 1953年D D Eisenhower总统参观Karl Norris研制的鸡蛋自动筛选设备/strong/ppstrong/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 346px " src="https://img1.17img.cn/17img/images/201908/uepic/73f9c7ca-f06c-4909-aead-a7dedf4b2a85.jpg" title="04.jpg" alt="04.jpg" width="500" height="346" border="0" vspace="0"//pp style="text-align: center "strong图4 Karl Norris与Neotec公司研制的近红外内部品质分析仪/strong/pp  Karl Norris真正开始近红外光谱技术的研究是1960年从测定种子中的水分开始的,早期的思路也是基于朗伯-比尔定律的,例如测定种子甲醇提取物中的水分,后来又将粉碎的谷物与四氯化碳混合成浆,以减少光的散射,他们找到了透射光谱中两个波长(1.94μm和2.08μm)吸光度之间差值与水含量之间的一元二次多项式定量关系,获得了满意的结果。这个差值光谱的概念对Karl Norris影响很深,之后滤光片仪器波长的筛选和导数光谱消除颗粒等影响都源于此。但是,当实际应用推广时,发现四氯化碳有毒,且这种方法操作起来也相对繁琐,用户不接纳。没有四氯化碳做稀释剂,无法实现光谱的透射测量,Karl Norris开始尝试采用反射方式,他们买来了当时最好的Cary 14光谱仪。但这台仪器的性能并不能满足他们的需求,例如测量速度慢(20min才能得到一张光谱),没有合适的反射测量附件(尽管也有积分球,但信噪比很差),样品仓太小无法适合样品的无损分析等。在随后的多年中,随着电子技术的进步,Karl Norris与他的合作者不断对其进行了改造(见图5),包括样品仓、光路系统(将双光路变为单光路)、电子器件、A/D转换板、检测器和计算机等。span style="color: rgb(255, 0, 0) "strong正是在这台被称为“The Norris Machine”的光谱仪上,Karl Norris开启了现代近红外光谱分析技术的大门。/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 384px " src="https://img1.17img.cn/17img/images/201908/uepic/f1619571-5833-423b-b460-6684cfca33f5.jpg" title="05.jpg" alt="05.jpg" width="500" height="384" border="0" vspace="0"//pp style="text-align: center "strong图5 Karl Norris与他主持改造后的Cary 14光谱仪(1957年和1988年)/strong/pp  首先,Karl Norris创造性地将传统光谱分析中的吸光度(A=log1/T)用log1/R代替,这明显不符合朗伯-比尔定律,没有任何理论基础,受到当时大多数光谱学家和化学家的质疑。值得庆幸的是Karl Norris不是光谱学家,他是一位农业工程师,以解决实际应用问题为研究导向。Karl Norris的结果却是非常积极,log1/R与水分存在较强的相关关系。随着研究的深入,他们发现两波长测量谷物水分时会受样品中其他成分的干扰,例如小麦中的蛋白质,大豆中的油脂等。Karl Norris又创新性地将多个波长的吸光度通过多元线性回归(MLR)方法建立预测方程,显著提高了预测谷物水分的准确度。之后很短的时间内,Karl Norris意识到近红外光谱还可以测量这些干扰物的含量,例如蛋白质、油分含量等。经过Norris的努力,筛选出了6个关键波长(1680nm、1940nm、2100nm、2230nm、2310nm),这为随后开发商品化的滤光片仪器奠定了坚实的基础(见图6)。为了降低颗粒粒度对漫反射光谱的影响,Karl Norris采用导数方法对光谱进行处理,并提出了“Karl Norris滤波”方法,这种光谱预处理方法当时在光谱学中较少使用。/pp  span style="color: rgb(255, 0, 0) "strongKarl Norris所做的上述工作被认为是现代近红外光谱技术的开端,其已具备了现代近红外光谱技术的显著特征:整粒谷物无损分析、分析速度快、基于光谱预处理和多元校正的多物性参数同时分析,建标样本为实际样本等。值得注意的是,与传统分析技术相比,近红外光谱从创始起就存在着两个显著特点:(1)推崇不对样品进行处理,以附件的形式解决不同形态样品的测量问题 (2)推崇不将样品带到仪器旁边,而将仪器带到样品旁边(即现场分析和在线分析)。这两个特点对影响分析技术的发展是深远的。/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 407px " src="https://img1.17img.cn/17img/images/201908/uepic/37802891-a429-40c4-8bd3-a316c16795b5.jpg" title="06.jpg" alt="06.jpg" width="500" height="407" border="0" vspace="0"//pp style="text-align: center "strong  图6 1968年Karl Norris操作首台4个滤光片的大豆近红外分析仪样机(最初是基于粉碎大豆与四氯化碳混合成浆的透射测量方式,后来改为漫反射测量方式)/strong/pp  Karl Norris的另一项贡献是在他的指导下,DICKEY-john和Neotec两家公司于上世纪七十年代初,基于滤光片技术首次开发出了商品化的近红外光谱谷物专用分析仪,这是近红外光谱技术发展过程的一个重要里程碑。之后,滤光片型的仪器也进行了较多改进,针对不同的测量对象(例如草料和烟草等)选取不同波长的滤光片、增加滤光片的数量、温度控制、光学系统密封以适应恶劣的现场环境等,但Karl Norris提出的仪器本质的特征没有改变。DICKEY-john公司生产的GAC Model 2.5AF和Neotec公司生产的GQA Model 31成为上世纪70年代中期主力的近红外谷物快速分析仪器。这些仪器在实际应用中,发挥了很大的作用,在很大程度上推动了近红外光谱技术的发展。例如,在加拿大Phil Williams通过必要的改进,将这类近红外谷物分析仪(起初是Neotec Model I仪器)用于小麦出口区快速测定蛋白质的需求。因为贸易商愿意为高蛋白质含量的小麦付更多的钱,这样交易量大的贸易商,通过近红外分析仪经几次交易赚得钱,就能够购买一台近红外分析仪。因此,数百台这样的仪器进入大型粮仓和出口区,同时一些面粉厂、大豆加工厂和食品生产厂等也开始使用近红外分析仪。进入上世纪70年代末期,光栅扫描型近红外光谱分析仪开始出现,其关键技术都是以“The Norris Machine”为原型样机(雏型)研制的,例如Neotec Model 6100和Tchnicon InfraAlyzer 500等。/pp  1975年,加拿大谷物委员会(Canadian Grain Commission,CGC)将近红外方法规定为蛋白质检测的官方方法。1978年,美国农业部联邦谷物检验服务中心(USDA,FGIS-Federal Grain Inspection Service)也为其所有的小麦出口基地购置了近红外分析仪,1980年FGIS采纳该方法作为官方指定的测定小麦蛋白质的标准方法。1982年美国谷物化学家协会(American Association of Cereal Chemists,AACC)正式批准了该方法(AACC No.39-00)。span style="color: rgb(255, 0, 0) "strong2009年Phil Williams在匹兹堡沃特斯论坛上讲到,全球约90%小麦的贸易是基于整粒谷物近红外分析仪检测蛋白质含量进行的(Today, Phil Williams estimates that over 90% of wheat world-wide is sold on the basis of protein testing by whole-grain NIRS instruments)。有文献报道,加拿大采用近红外光谱技术后(主要是对农作物的管理),稻米的产量每公顷提高约0.6吨,小麦的产量提高约1.1吨,小麦蛋白质含量提高约1%(The success of NIR-based tissue testing services is substantial, being estimated to enhance yields of rice by 0.6 tonne ha–1and wheat yields by 1.1 tonnes ha–1. NIR spectroscopy has also helped producers raise the protein content of wheat grain by 1% protein)。/strong/span/ppspan style="color: rgb(255, 0, 0) "strong  Karl Norris的工作,尤其是“The Norris Machine”迅速得到农业领域的关注,在上世纪七十年代,一些美国本土和国际同行纷至沓来,Karl Norris以无私、大度、开放的科学家精神,将他的研究成果毫无保留地传授给每位来访的学者,并与他们进行深入合作。毋庸置疑,Karl Norris的实验室成为了培养现代近红外光谱分析大师的摇篮,“The Norris Machine” 也成为名副其实的“Master Instrument”。这期间在Karl Norris实验室进行访问的学者有:美国宾州的John Shenk,美国北卡州的W Fred McClure,加拿大的Phil Williams,日本的Mutsuo Iwamoto,匈牙利的Karoly Kaffka等等。/strong/span这些学者后来都成为近红外光谱分析技术的卓越践行者和强有力推动者,他们参照Karl Norris的模式纷纷研发仪器、开发软件和推广应用。例如John Shenk在美国建立了第一个近红外光谱草料分析网络,并开发了著名的化学计量学软件DOSISI和WinISI Mutsuo Iwamoto回到日本后,在他的带领和影响下,近红外光谱技术在日本得到了广泛的应用,日本在上世纪八十年代末期就基于近红外光谱开发出果品品质自动分选装置,并得到了广泛推广应用。上世纪九十年代Karl Norris在日本静冈参观了Mitsui公司研制的果品近红外在线分选装置(图7),曾感叹说:“My dream has come true in Japan”。可见,Karl Norris在培育国际近红外大师这一方面的贡献无疑是巨大的。/ppspan style="color: rgb(255, 0, 0) "strong  在Karl Norris的带领下,开创现代近红外光谱技术并取得成功应用的是农业工程师、农学家和动物营养家等,而不是物理学家、化学家和光谱学家,这与其他光谱技术的发展道路是截然不同的。/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 390px " src="https://img1.17img.cn/17img/images/201908/uepic/2ce59b3e-c11f-4517-8fe6-20d24847a29e.jpg" title="07.jpg" alt="07.jpg" width="500" height="390" border="0" vspace="0"//pp style="text-align: center "strong图7 Karl Norris在日本参观过的Mitsui公司研制的果品近红外在线分选装置/strong/pp  Karl Norris的工作也对我国产生了间接影响,我国的近红外光谱技术也是从农业领域的研究和应用开始的。上世纪七十年代后期我国科研人员通过Karl Norris等人的学术论文、仪器厂商的宣传、以及到日本等国家的考察学习开始认识近红外光谱技术(图8)。早在八十年代初期中国农科院吴秀琴老师和长春光机所陈星旦院士就开始合作研制滤光片型的近红外光谱分析仪,并取得了成功。这之后,严衍禄教授组建了中国农业大学近红外光谱分析实验室,开始了近红外光谱在农业领域的系统研究,他们的研究成果集中发表在1990年《北京农业大学学报》增刊上。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 339px " src="https://img1.17img.cn/17img/images/201908/uepic/e1ba8853-96e4-4f72-a072-7edfb406c351.jpg" title="08.png" alt="08.png" width="500" height="339" border="0" vspace="0"//pp style="text-align: center "strong图8 我国早期开始关注近红外光谱技术的文献/strong/pp  在上世纪六七十年代,Karl Norris等人的近红外光谱分析研究工作并未获得光谱界的认可。一度被光谱学家和化学家认为是“Black Magic”。Karl Norris为促进近红外光谱获得当时一些光谱学家的支持做了很多工作。Karl Norris在从事近红外光谱分析谷物研究初始,就找到美国著名的光谱学家Tomas Hirschfeld寻求帮助,但当时Karl Norris的研究工作并未得到Tomas Hirschfeld的支持,因为从传统光谱学来看,近红外光谱没有任何优势。但是,Karl Norris与Tomas Hirschfeld的交往并没有因此而终止,Karl Norris取得一些进展后,都会与Tomas Hirschfeld进行沟通交流,最终使Tomas Hirschfeld从近红外光谱的强烈反对者变为近红外光谱的强烈支持者。这一时期开始支持近红外光谱技术的光谱学家还有Peter Griffiths和Bill Fateley等人。这些光谱学家的加入,对近红外光谱技术理论体系的形成起到了重要的作用。例如,1985年Tomas Hirschfeld通过巧妙的实验设计,找到了近红外光谱可以预测水中氯化钠含量的光谱信息依据(图9)。1984年,在Tomas Hirschfeld的倡导下,美国材料与试验协会(ASTM)成立了近红外光谱工作组(E13.03.03),研究近红外光谱技术的标准方法问题。/pp  令人惋惜的是,Tomas Hirschfeld英年早逝(1939-1986),但是他对近红外光谱的贡献被大家一直记得。在Karl Norris等人的倡议下,国际近红外光谱学会在上世纪八十年代末设立了“Tomas Hirschfeld Award”,表彰在近红外光谱领域做出突出贡献的科学家,截至2019年已有30位获此荣誉。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/4a48c389-3bc3-4217-9043-14d1a184efff.jpg" title="09.jpg" alt="09.jpg"//pp style="text-align: center "strong图9 NaCl浓度对水近红外光谱的影响/strong/pp  1974年瑞典化学家S Wold和美国华盛顿大学的B R Kowalski教授创建了化学计量学学科(Chemometris)。化学计量学是将数学、统计学、计算机科学与化学结合而形成的化学分支学科,其产生的基础是计算机技术的快速发展和分析仪器的现代化。据报道,1981年PC机全球销量为三十万台,但到1982年就激增至三百万台。计算机使仪器的控制实现了自动化,且更加精密准确,同时使数据矩阵计算变得相对简单了,可以用来处理更为复杂的定量或定性程序。遗憾的是,化学计量学产生初期并没有与近红外光谱在农业中的应用结合起来。是Karl Norris的不懈努力使化学计量学家逐渐重视这一技术,为近红外光谱技术的崛起起到了推波助澜的作用。一些基于主成分分析的化学计量学方法开始被大家所采用,如主成分回归和偏最小二乘等,这显著提高了近红外光谱分析结果的准确性和可靠性,这也是近红外分析理论体系的重要组成部分,使其基本达到了理论与实践的统一。在上世纪九十年代中期,人工神经网络方法已经出现在用于近红外光谱分析的化学计量学商品化软件中。/pp  1984年,T Hirschfeld与B R Kowalski在美国《Science》杂志上发表了题为“Chemical Sensing in Process Analysis”的文章,文中多次提到近红外光谱技术。同年,MathWorks公司成立,正式把Matlab推向市场。也是在1984年,B R Kowalski受美国国家科学基金会(NSF)和21家企业共同资助,在美国华盛顿大学建立了过程分析化学中心(Center for Process Analytical Chemistry,CPAC),后更名为过程分析与控制中心(Center for Process Analysis and Control,CPAC)。该研究中心的核心任务是研究和开发以化学计量学为基础的先进过程分析仪器及分析技术,使之成为生产过程自动控制的组成部分,为生产过程提供定量和定性的信息,这些信息不仅用于对生产过程的控制和调整,而且还用于能源、生产时间和原材料等的有效利用和最优化,近红外光谱是其中一项关键的技术。与CPAC合作的这些企业都是当时化工和石化等领域知名的大企业,这意味着近红外光谱技术已开始从农业应用领域转向工业过程分析领域。其中一项划时代的创新技术是利用近红外光谱测定汽油的辛烷值,它可以在很多场合替代传统大型的马达机测试仪器(图10)。与此同时,一些知名的仪器制造商也开始研制新型的近红外光谱仪器,近红外光谱仪器市场和应用研究从此开始呈现出百花齐放的局面。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 246px " src="https://img1.17img.cn/17img/images/201908/uepic/85a20100-29a6-4c0b-a551-cdcd5e3a4ece.jpg" title="10.jpg" alt="10.jpg" width="500" height="246" border="0" vspace="0"//pp style="text-align: center "strong图10 传统测定汽油辛烷值的马达机与CPAC研制的近红外辛烷值分析仪/strong/pp  另外,Dr. Karl H. Norris还是将近红外光谱技术用于医学领域的先行者之一,始终从事和指导近红外光谱在这一领域的研究和应用工作。/ppstrong  三、与近红外光谱相关的诺贝尔奖/strong/pp  下面介绍几个与近红外光谱技术相关的诺贝尔奖。/pp  迈克尔逊干涉仪是1883年美国物理学家迈克尔逊(Albert Abraban Michelson)和莫雷(Edward Williams Morley)合作,为研究“以太”而设计制造出来的精密光学仪器。实验结果否定了“以太”的存在,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,迈克尔逊被授予了1907年度诺贝尔物理学奖。目前,迈克尔逊干涉仪目前被广泛应用于近红外光谱仪器和中红外光谱仪器。/pp  2017年诺贝尔物理学奖授予3位美国科学家Rainer Weiss、Barry C. Barish和Kip S. Thorne,获奖理由是“对LIGO探测器和引力波观测的决定性贡献”。LIGO全称“激光干涉引力波天文台(Laser Interferometer Gravitational-Wave Observatory)”。该项目的成就在于,当引力波到达地球时,两台大型激光干涉仪成功地检测到了比原子核还要小数千倍的细微变化(导致的空间变化程度最大值为10sup-21/sup,相当于1亿千米的长度内产生一个原子大小(10sup-10/sup米)的变化)。LIGO的干涉仪是迈克尔逊干涉仪在18世纪80年代的巨型版本,创新性的技术和工程将LIGO的干涉仪延伸到1120公里,使LIGO的干涉仪比迈克尔逊所使用的大144000倍,以保证有足够的灵敏度检测到引力波。2015年9月14日,LIGO探测器首次捕获到宇宙中的引力波,这次的引力波信号由两个黑洞相互碰撞而产生,经过了13亿光年才到达地球。/pp  1922年诺贝尔物理学奖授予丹麦哥本哈根的尼尔斯· 玻尔(Niels Bohr,1885-1962),以表彰他在研究原子结构,特别是在研究原子发出的辐射方面所作的贡献。玻尔综合了普朗克的量子理论、爱因斯坦的光子理论和卢瑟福的原子模型,提出了新的定态跃迁原子模型理论,即后来被称玻尔理论,这理论成功地解释了氢光谱并排出了新的元素周期表。玻尔建立的原子量子论,打开了人类认识原子结构的大门,为近代物理研究开辟了道路。量子力学这一近代物理学大厦的基础,是以玻尔为领袖的一代杰出物理学家集体才华的结晶,包括1929年获得诺贝尔物理学奖的德布罗意(电子的波粒二象性理论)、1932年获得诺贝尔物理学奖的海森堡(矩阵力学)、1933年获得诺贝尔物理学奖的薛定谔(波动力学)、1945年获得诺贝尔物理学奖的泡利(泡利不相容原理)等。玻尔提出的能级跃迁理论至今仍在原子和分子光谱领域中得到广泛使用。/pp  1964年诺贝尔物理学奖授予美国的汤斯(Charles H.Townes)、前苏联的巴索夫(Nikolay G.Basov)和普罗霍罗夫(Aleksandr M.Prokhorow),以表彰他们从事量子电子学方面的基础工作,这些工作导致了基于微波激射器和激光原理制成的振荡器和放大器。1960年美国加利福尼亚州休斯实验室的科学家梅曼宣布成功的研制了世界上第一台红宝石激光器,获得了波长为0.6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。激光器的发明是20世纪科学技术有划时代意义的一项成就。自激光器发明后,激光理论、激光器件、激光应用各方面的研究广泛开展,各种激光器也如雨后春笋一般涌现,激光科学成果累累,已成为影响人类社会文明的又一重要因素。/pp  印度物理学家拉曼(Chandrasekhara Venkata Raman, 1888-1970),因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。受散射光强度低的影响,拉曼光谱经历30年的应用发展限制期。直到1960年后,激光技术的兴起,拉曼光谱仪以激光作为光源,光的单色性和强度显著提高,拉曼散射信号强度得以提高,拉曼光谱技术才得到迅速发展。1980年后,探针共焦激光拉曼光谱仪的成功研制,大大扩展了拉曼光谱的应用范围,出现了像共焦显微拉曼光谱技术、傅里叶变换拉曼光谱技术、表面增强拉曼光谱技术、激光共振拉曼光谱技术、光声拉曼技术、高温高压原位拉曼光谱技术等,使得拉曼光谱被广泛应用于物理、化学、医药、工业等各个领域。/pp  1969年,贝尔实验室的科学家Willard S. Boyle和George E. Smith发明了第一个数字影像传感器技术:电荷耦合器件(CCD)。CCD的应用范围甚广,如数字相机、手机,影响了社交媒体和视讯共享革命的发展。据报道,2009年,CCD一年出货量达13亿颗。这两位技术发明人在2009年获颁诺贝尔物理奖,以表扬他们在数字成像领域的贡献。CCD作为阵列检测器,在光谱仪上的应用也十分广泛。/pp  被誉为“光纤之父”的高锟(Charles Kao)获得2009年诺贝尔物理学奖。1966年高锟在一篇论文中首次提出用玻璃纤维作为光波导用于通讯的理论。简单地说,就是提出以玻璃制造比头发丝更细的光纤,取代铜导线作为长距离的通讯线路。这个理论引起了世界通信技术的一次革命。1970年,美国康宁公司研制出损耗为20dB/km的光纤,使光在光纤中进行远距离传输成为可能,光纤通信新纪元自此拉开序幕。现阶段光纤通信可实现同时传输24万路的信号,其容量比微波通信增加一千倍。而且,在确保通信质量的前提下,普通电缆或微波通信的中继距离为1.5~60公里,而现阶段光纤可实现2000~5000公里的无中继传输。光纤除用于通讯领域外,还在医学、传感器和光谱仪中得到广泛应用。没有光纤,在线近红外光谱技术在工业中的应用也不会像如今这样广泛。/pp  与发射单一频率的传统激光器不同,频率梳光源可同时发射多个频率,均匀间隔以类似于梳齿的谱线,它可覆盖从太赫兹到紫外可见较宽频率的光。光学频率梳已经成为继超短脉冲激光问世之后激光技术领域又一重大突破。在该领域内,开展开创性工作的两位科学家J. Hall和T. W. Hansch于2005年获得了诺贝尔奖。光梳相当于一个光学频率综合发生器,是迄今为止最有效的进行绝对光学频率测量的工具,可将铯原子微波频标与光频标准确而简单的联系起来,为发展高分辨率、高精度、高准确性的频率标准提供了载体,也为精密光谱、天文物理、量子操控等科学研究方向提供了较为理想的研究工具,逐渐被人们运用于光学频率精密测量、原子离子跃迁能级的测量、远程信号时钟同步与卫星导航等领域中。/pp  strong四、结束语/strong/pp  原创性是诺贝尔科学奖的奖励宗旨,原始性创新就是向科学共同体贡献出以前从未出现过、甚至连名称都没有的东西,包括重大科学发现、理论突破、技术和方法的发明等。拉曼效应属于科学发现,激光和光纤属于理论突破,迈克尔逊干涉仪和频率梳属于技术发明,这些都是重大的原始性创新工作,其贡献也是巨大的,无容置疑。/pp  当然,诺贝尔奖也有无奈和尴尬,例如1948年的诺贝尔医学奖授予发明剧毒有机氯杀虫剂DDT(二氯二苯三氯乙烷)的瑞士化学家米勒。DDT能够有效地杀除蚊虫、控制疟疾蔓延,但是DDT很难降解,毒性残留时间长,世界各国现已明令禁止生产和使用。再例如,一些重大的发现和发明没有获得诺贝尔奖,提出元素周期表的德米特里· 门捷列夫,发明电灯泡的托马斯· 爱迪生,提出黑洞死亡理论的史蒂芬· 霍金,爱因斯坦虽然获得了诺贝尔奖,可是他提出的划时代意义的相对论并不是获奖的理由,等等。/pp  Karl Norris的研发工作和成果对近红外光谱技术的贡献是巨大的,也是原创性的,对分析技术的进步(包括对过程控制技术的进步)也是革命性的。Karl Norris是近红外光谱技术的开拓者,是名副其实的“近红外光谱之父”。没有Karl Norris,人们可能会在近红外光谱技术探索之路的黑暗期中徘徊更长的时间,也或许这个“沉睡者”永不被唤醒,永不会成为分析技术家族中的“巨人”。Karl Norris遗憾与诺贝尔奖失之交臂,但这丝毫不影响Karl Norris的伟大,也不影响近红外光谱技术的伟大。/pp  世上可以没有诺贝尔奖,但是却不能没有Karl Norris这位科学家,也不能没有近红外光谱这项分析技术。/pp  谨以此文悼念Dr. Karl H. Norris!/ppstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai "  参考文献/span/strong/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  1 W F McClure. 204 Years of near Infrared Technology: 1800–2003. Journal of Near Infrared Spectroscopy,2003,11(6):487~518/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  2 F E Fowle. The Spectroscopic Determination of Aqueous Vapor. Astrophysical Journal,1921,35(3):149~162/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  3 K H Norris. Early History of near Infrared for Agricultural Applications. NIR news,1992,3(1):12~13/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  4 T Davies. Happy 90th Birthday to Karl Norris, Father of NIR Technology. NIR news,2011,22(4):3~16/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  5 S Kawano. Past, present and future near infrared spectroscopy applications for fruit and vegetables. NIR news,2016,27(1):7~9/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  6 G Batten. An appreciation of the contribution of NIR to agriculture. Journal of Near Infrared Spectroscopy,1998,6(1):105~114/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  7 R D Rosenthal,D R Webster. On-line system sorts fruit on basis of internal quality. Food Technol,1973,27(1):52~56, 60/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  8 K H Norris,P C Williams. Optimization of Mathematical Treatments of Raw Near-Infrared Signal in the Measurement of Protein in Hard Red Spring Wheat. I. Influence of Particle Size. Cereal Chem,1984,61(2):158~165/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  9 K H Norris. When Diffuse Reflectance Became the Choice for Compositional Analysis. 1993,4(5):10~11/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  10 G L Bosco,l James. waters symposium 2009 on near-infrared spectroscopy. Trends in Analytical Chemistry,2010,29(3):197~208/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  11 T Davies. The history of near infrared spectroscopic analysis: Past, present and future - " From sleeping technique to the morning star of spectroscopy" . Analusis,1998,26(4):17~19/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  12 J S Shenk. Early History of Forage and Feed Analysis by NIR 1972–1983. NIR news,1993,4(1):12~13/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  13 F EBarton II. Near Infrared Equipment through the Ages and into the Future. NIR news,2016,27(1):41~44/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  14 T Davies. NIR Instrumentation Companies: The Story So Far. NIR news,1999,10(6):14~15/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  15 K H Norris. NIR is Alive and Growing. NIR news,2005,16(7):12/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  16 K H Norris. NIR-spectroscopy From a small beginning to a major performer. Cereal Foods World,1996,41(7):588/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  17 K J Kaffka. Near Infrared Technology in Hungary and the Influence of Karl H. Norris on Our Success. Journal of Near Infrared Spectroscopy,1996,4(1):63~67/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  18 M Iwamoto,S Kawano,Y Ozaki. An Overview of Research and Development of near Infrared Spectroscopy in Japan. Journal of Near Infrared Spectroscopy,1995,3(4):179~189/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  19 K H Norris. History of NIR. Journal of Near Infrared Spectroscopy,1996,4(1):31~37/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  20 P Geladi,E Då bakk. An Overview of Chemometrics Applications in near Infrared Spectrometry. Journal of Near Infrared Spectroscopy,1995,3(3):119~132/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  21 J J Workman. A Review of Process near Infrared Spectroscopy: 1980–1994. Journal of Near Infrared Spectroscopy,1993,1(4):221~245/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  22 A M C Davies. The History of near Infrared Spectroscopy 1. The First NIR Spectrum. NIR news,1991,2(2):12/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  23 R Miller. Professor Harry Willis and the History of NIR Spectroscopy. NIR news,1991,2(4):12~13/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  24 K B Whetsel. The First Fifty Years of Near-Infrared Spectroscopy in America. NIR news,1991,2(3):4~5/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  25 K B Whetsel. American Developments in near Infrared Spectroscopy (1952–70) . NIR news,1991,2(5):12~13/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  26 D Miskelly,J Ronalds,D M Miskellya,J A Ronaldsb. Twenty-One Years of NIR in Australia: A Retrospective Account with Emphasis on Cereals. NIR news,1994,5(2):10~12/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  27 B Osborne. Twenty Years of NIR Research at Chorleywood 1974–1993. NIR news,1993,4(2):10~11/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  28 F E Barton II. Progress in near Infrared Spectroscopy: The People, the Instrumentation, the Applications. NIR news,2003,14(2):10~18/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  29 P C Williams. The Phil William' s Episode. NIR news,1992,3(2):3~4/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  30 P E K Donaldson. In Herschel' s Footsteps. NIR news,2000,11(3):7~8/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  31 K I Hildrum,T Isaksson. Research on near Infrared Spectroscopy at MATFORSK 1979–1992. NIR news,1992,3(3):14/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  32 C Paula,J M Montesb,P Williams. Near Infrared Spectroscopy on Agricultural Harvesters: The Background to Commercial Developments. NIR news,2008,19(8):8~11/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  33 G D Battena,A B Blakeneyb,S Ciavarellaca,V B McGratha. NIR Helps Raise Crop Yields and Grain Quality. NIR news,2000,11(6):7~9/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  34 J Reeves III,S R Delwiche. Near Infrared Research at the Beltsville Agricultural Research Center (Part 1): Instrumentation and Sensing Laboratory. NIR news,2005,16(6):9~12/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  35 J Reeves III. Near Infrared Research at the Beltsville Agricultural Research Center (Part 2) . NIR news,2005,16(8):12~13/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  36 I Foskett. The Art and Science of Interference Filters. NIR news,1993,4(1):3~5/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  37 R F Goddu. Determination of Unsaturation by Near-Infrared Spectrophotometry. Analytical Chemistry,1957,29(12):1790~1794/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  38 R L Meeker,F E Critchfield,E T Bishop. Water determination by near infrared spectrophotometry. Analytical Chemistry,1962,34(11):1510~1511/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  39 R T O’Connor. Near-infrared absorption spectroscopy—a new tool for lipid analysis. Journal of the American Oil Chemists' Society,1961,38(11)641~648/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  40 W A Patterson. Non-Dispersive Types of Infrared Analyzers for Process Control. Applied Spectroscopy,1952,6(5):17~23/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  41 J R Hart,C Golumbic,K H Norris. Determination of moisture content if seeds by near-infrared spectrophotometry of their methanol extracts. Cereal Chem,1962,39(2):94~99/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  42 K B Whetsel. Near-Infrared Spectrophotometry. Applied Spectroscopy Reviews,1968,2(1):1~67/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  43 J A Jacquez,W McKeehan,J Huss,J M Dmitroff,H F Kuppenheim. Integration Sphere for Measuring Diffuse Reflectance in the Near Infrared. J. Opt. Soc. Am.,1955,45(10):781-0/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  44 D L Wetzel. Near-Infrared reflectance analysis sleeper among spectroscopic techniques. Analytical Chemistry,1983,55(12):1165A~1176A/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  45 F W McClure. Near-infrared spectroscopy. the giant is running strong. Analytical Chemistry,1994,66(1):43A~53A./span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  46 P Williams. John Shenk' s Retirement: Some Tributes from His Friends, Colleagues and Students. NIR news,2005,16(2):6~12/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  47 P Flinn. A Giant of a Man: In Memory of John Stoner Shenk II, 1933–2011. NIR news,2011,22(7):4~5/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  48 T Davies. Karl' s London Marathon. NIR news,2002,13(3):3/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  49 D W Hopkins. What is a Norris Derivative? NIR news,2001,12(3):3~5/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  50 G E Ritchie. Investigating NIR Transmittance Measurements through the Use of the Norris Regression (NR) Algorithm: Part 1: How Do We Come to “Norris Regression”? NIR news,2002,13(1):4~6/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  51 P Williams. Twenty-Five Years of near Infrared Technology—What Were the Milestones? NIR news,1997,8(1):5~6/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  52 W F McClure. Breakthroughs in NIR Spectroscopy: Celebrating the Milestones to a Viable Analytical Technology. NIR news,2006,17(2):10~11/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  53 J L Gonczy. Developments in Hungary 1970–1990. NIR news,1993,4(3):3~4/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  54 T Fearn. Chemometrics for NIR Spectroscopy: Past Present and Future. NIR news,2001,12(2):10~12/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  55 T Davies. Looking Back… Looking Forward: My Hopes for 2020. NIR news,2006,17(7):3~4/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  56 P Williams. Near Infrared Technology in Canada. NIR news,1995,6(4):12~13/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  57 T Hirschfeld,J B Callis,B R Kowalski. Chemical Sensing in Process Analysis. Science,1984,226(4672):312~318/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  58 T Hirschfeld. Salinity Determination Using NIRA. Appl. Spectrosc.,1985,39(4):740~741/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  59 D A Burns,E W Ciurczak. Handbook of Near-Infrared Analysis(Third Edition),Marcel Dekker Inc,New York,2007/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  60 M Ferrari,K H Norris,M G Sowa. Medical near Infrared Spectroscopy 35 Years after the Discovery. Journal of Near Infrared Spectroscopy,2012,20(1):vii~ix/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  61 J T Kuenstnerb,K H Norris. Spectrophotometry of Human Hemoglobin in the near Infrared Region from 1000 to 2500 nm. NIR news,1994,2(2):59~65/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  62 K H Norris. Moving NIR into the Next Century. NIR news,1999,10(1):4~5/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  63吴敏,胡高峰,姚文坡,干振华,徐达军,黄亚萍,汪长岭. 近红外光谱在医学应用方面的最新进展. 中国医疗设备,2017,32(6):109~113/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  64 薛凤家编著. 诺贝尔物理学奖百年回顾. 北京:国防工业出版社出版,2003/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  65 李丽. 时空向度的现代探索-诺贝尔物理学奖获得者100年图说. 重庆:重庆出版社,2006/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  66 郭奕玲,沈慧君. 诺贝尔物理学奖一百年. 上海:上海科学普及出版社,2002/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  67 吴润,彭蜀晋. 光谱分析方法的演变与百年诺贝尔奖. 化学教育,2014,35(16):58~64/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  68 中国仪器仪表学会近红外光谱分会. 《回望 继承 凝聚 奋进—我与近红外故事文集》,北京:化学工业出版社,2017/span/pp style="text-align: right "  褚小立/pp style="text-align: right "  2019年8月8日/p
  • 产品资讯:得利特(北京)公司引入**傅立叶红外光谱仪
    红外光谱仪的发展主要经历了以下三个阶段:  第一阶段是棱镜色散型红外分光光度计, 它是基于棱镜对红外辐射的色散而实现分光的, 其缺点是光学材料制造麻烦, 分辨本领较低, 而且仪器要求严格的恒温降湿。  第二阶段是光栅色散型红外分光光度计(如港东WGH-30A), 它是基于光栅的衍射而实现分光的, 与第一代相比, 分辨能力大大提高, 且能量较高, 价格便宜, 对恒温、恒湿要求不高, 是红外分光光度计发展的方向,  第三阶段是基于干涉调频分光的FTIR红外光谱仪(如港东FTIR-650), 它的出现为红外光谱的拓展应用开辟了新的方向,相比之前色散型红外来说,傅里叶变换型红外具有分辨能力高、扫描时间快、光通量大、高扩展性等优点,但对湿度和温度有要求,尤其是湿度,通常要求不能超过70%。 从上个世纪70年代到现在的几十年中,傅里叶变换红外光谱技术(FTIR)发展非常迅速,FTIR光谱仪的更新换代速度很快。世界上主要的FTIR生产商,一般每三到五年就推出新型号的FTIR光谱仪。随着傅里叶变换红外光谱技术的不断发展,红外光谱仪的附件也在不断的发展,不断的更新换代。新的、先进的红外光谱仪附件的出现,促使红外光谱仪附件的功能和性能不断的得到加强和提高,进一步使红外光谱技术得到了更加广泛的应用。 不可否认,国内的FTIR厂家的技术和世界主流公司相比还是有一定的差距,但是这个差距正在不断缩小。国外有代表性的FTIR生产厂商,经过几十年的技术积累,研发出来的产品在附件和主机集成上、产品联用上、产品专用化上及产品小型化上的优势比较明显。 整体而言,最近几年FTIR技术发展非常之快,无论是从产品的智能化程度、产品联用、应用领域专用上还是产品的小型化上都显示出很强的发展势头,未来FTIR技术会随着客户对产品的不同需求,朝着更加智能化、更加专用化、更加小型化的方向发展。傅立叶红外光谱仪(软件带有各种分析定量方法库) 定货号:DH108 红外光谱仪使用傅立叶转换红外光谱仪(FTIR)对在用油品的质量和污染状况进行检测,可以检测油液衰化变质,氧化,水解,添加剂含量等,分析速度快,2分钟即可得到所有参数的测试结果,本仪器符合ASTM E2412红外光谱法润滑油监测标准,红外水中油含量分析标准,GB/T 23801-2009中间馏分油中脂肪酸甲酯(生物柴油)含量的测定(红外光谱法),广泛应用于军队,工矿企业,石化和运输行业仪器特点:1、采用了技术的抗振傅立叶干涉仪,从根本上解决了傅立叶红外光谱仪过于娇嫩,故障率过高的固有缺陷,使仪器可以适应各种恶劣环境的要求2、采用了技术的DTRANTM进样系统,无需任何清洗试剂,大大加快了分析速度,也避免了对操作人员的健康损害3、仪器操作简单,软件界面友好,操作人员仅需简单培训就可以轻松使用仪器4、可以分析包括润滑脂在内的各种油液油脂而不需要任何样品处理5、对各种油液中水分的测量下限达到50ppm,从而大大提高了红外光谱仪的分析效能(其它红外光谱仪对水分的测量下限为500 ppm)6、各种油液分析方法库和各项指标的界限值数据库技术参数:规 格:20×20×10 cm工作温度:-10℃至50℃进样系统:钻石透射池进样系统分 束 器:人造宝石光谱分辨率:zui高为0.5cm-1分析速度:1-2分钟/每个样品光谱范围:7800-350 cm-1检 测 器:DTGS检测器信 噪 比:大于20000:1重 量:4Kg
  • 美西北大学科学家研制太赫兹隐形斗篷材料
    2011年9月6日,据国外媒体报道,美国西北大学的研究人员创造了一种新型的隐身材料,这种材料能使物体在太赫兹波段下隐形。由西北大学麦考密克工程和应用科学学院机械工程助理教授孙成(Cheng Sun,音译)设计的隐身材料,通过微梯度折射率材料对光线的反射和折射进行控制,虽然这个设计不能发展成对可见光波段隐身的隐形斗篷,但是这项技术可进行对隐形斗篷部分性能的评估以及在安全性上沟通了解。   二极管激光器是连续波太赫兹波产生的理想激光源  人类对一个物体的辨认主要是通过两个因素:即外形和颜色。要使一个物体变得不可见,那就必须能够操纵光线,使光线在物体表面上以特殊的方式运动,既不会在表面上分散,也不会被物体吸收和反射,而吸收和反射的过程主要是体现物体所具有的颜色。  该研究小组为了操纵光线在太赫兹频率的行为,孙助理教授使用研发了一种新型的超材料,该材料主要是在原子水平上进行设计,而太赫兹频谱则位于红外线与微波之间。通过超材料的研发以及被称为电子转移微光固化的技术,研究人员设计出一种微型棱镜状的隐形结构,大小小于10毫米。而电子转移微光固化技术则是研究人员一组数据投影到液体聚合物的图像上,然后将光线由液态层转换成薄固体层。  而每个棱镜的220层都有一个微小的孔,这个小孔比太赫兹波长要来得更小,这就意味着这些小孔能改变光的折射系数,这样就可以使得光线从棱镜上部穿透下来时,由于这些小孔的作用,而改变了光线的行为,使得处于棱镜底部的物体变得可以隐身。最后,这些被改变行为的光线,会被另一个平台所反射掉。  根据孙助理教授认为:这个研究的目的并不是要研发出能对太赫兹波段隐身的工具,例如斗篷等,而是为了获得一个更好地设计角度去研发一种新的材料,可以跟好的操纵光线的传播。通过这个研究试验,说明了从这个研究方向发展下去,我们可以自由的设计各种材料,可以改变不同波段上光线的折射率,这样就可以在传统意义上对光线的传播路径进行人为地操纵。  该项研究中涉及的重要试验对象,太赫兹波段在研究历史上一直被忽略,这是因为它的频率比电子高出太多。但是,科学家也发现,有许多有机物的共振频率处于太赫兹的水平上,这就意味着我们可以通过针对太赫兹水平的扫描仪对有机化合物进行检测。孙助理教授的关于太赫兹光学上的探索可以对生物医学研究产生影响,这个影响主要体现在两个方面:第一,我们可以研制针对某种癌症的快速且安全的检测方法,第二,使用太赫兹扫描仪可以加强机场的安全保障效能。  此研究的下一步计划是向另一个方向发展,即研制太赫兹镜头。但是孙助理教授并没有立即实行这个计划,扩展材料对更长波段上的光线改变行为的能力,达到这样的能力与目前的研究还相距甚远,目前主要集中在一个特定的频率范围之内,确保材料在特定的频谱上具有稳定的工作性质。
  • 第三届近红外光谱学术会议大会报告集锦(一)
    仪器信息网讯 2010年10月13-16日,由中国仪器仪表学会分析仪器分会近红外光谱专业委员会主办,华东理工大学结构可控先进功能材料及其制备教育部重点实验室、上海分析测试协会协办的第三届全国近红外光谱学术会议在上海航空酒店召开。来自近红外光谱相关领域的专家学者、仪器用户等200多人参加了会议。  本届会议全部采用大会报告形式,不设分会场,大会报告主题主要围绕近红外光谱分析理论、近红外光谱分析中的化学计量学、近红外光谱仪器和成像技术、近红外光谱应用等内容。  江苏大学食品与生物工程学院 陈斌教授  报告题目:近红外光谱仪器及应用的现状和展望  陈斌教授主要介绍了近红外光谱仪器的基本要求、近红外光谱仪器的演变、对发展国产近红外光谱仪器的探讨等内容。  近红外光谱技术不是中红外光谱分析技术的扩展,该技术涉及到分析化学、仪器仪表、应用数学、计算机应用、物理光学、数字信号分析等多方面的知识,是多种学科交叉、渗透交融的实用性技术。稳定性是近红外光谱仪器最基本的要求、丰富的附件是近红外光谱仪器的翅膀、简单方便的软件是仪器的一部分。  近红外光谱仪器的发展主要是色散方法、单色光源的应用、近红外光谱仪器探测器件的发展。色散方法的发展经历了棱镜、光栅、傅立叶变换到目前的声光可调、微机电技术、偏振干涉等技术。单色光源从卤钨灯+滤光片、LED(+滤光片)、半导体激光光源(LD)。探测器的发展从单通道到现在的多通道。  对发展国产光谱仪器的发展,陈斌教授提出了以下几点建议:研究型的仪器要求高,建议研发时要慎重 需要考虑实用、可靠、价格等问题,价格不能偏离行业的特点和能力 小型化、专用化、便携化应该是发展方向,国产基于MEMS技术的NIR仪器已经出现,但性能的提高、能达到真正意义上的实用化还需要走很长路 智能化、网络化、数据共享化是仪器未来的发展要求。  北京油料研究所 田高友博士  报告题目:外场用近红外光谱仪器的发展技术探讨  田高友博士主要介绍了外场用近红外光谱仪器的要求、近红外光谱技术实际使用中存在的问题及未来近红外光谱技术需要攻关的技术。  外场专用燃料近红外光谱仪不仅对仪器的基本性能指标有特殊要求,还附加有其他要求如:仪器尺寸和重量大小、基本光学性能、仪器电源、长期储存稳定性、用户操作可行性等18个方面,需要从光学设计、材料选购、光学部件加工、分析技术选用、软件开发等方面进行全新设计。  近红外光谱技术是一种“售前成本低,售后维护成本高”的技术,其发展的瓶颈具体体现在:仪器的一致性问题、仪器的长期稳定性问题、模型的更新和维护问题。  近红外光谱未来的发展需要解决以下问题:对于仪器厂家而言,必须“重研发,重创新,严把质量关”,解决仪器一致性和长期稳定性问题,从硬件上解决模型问题,实现模型的硬拷贝。对于科研工作者而言,需要革新近红外光谱分析技术,降低技术的维护成本。在仪器研制单位、生产单位和用户三者之间,建立起符合行业特点的维护组织体系。此外,借助网络技术,建立物联网体系,实现远程模型更新和维护或者远程检测。  吉林大学仪器科学与电气工程学院 刘杰博士  报告题目:基于ARM的便携式近红外光谱仪研制  刘杰博士介绍了吉林大学仪器科学与电气工程学院近红外光谱仪器研究室研制的采用基于ARM S3C2410的嵌入式测控分析系统,设计了基于ARM的便携式近红外光谱仪PISA-ARM。其光源系统为卤钨灯+调制器、分光系统为光栅扫描、取样器为积分球。  仪器设计了A/D采集模块、步进电机驱动模块、NAND Flash接口、LCD和触摸屏接口模块以及键盘、USB等外设接口。基于ARM-Linux软件开发平台,选用vivi系统启动代码、Linux2.4.18内核和cramfs文件系统构建嵌入式软件平台,开发了键盘、A/D、步进电机、USB等设备驱动程序。利用QT用户图形库设计便携式近红外光谱分析仪的用户应用界面,满足了仪器测量控制与分析一体化的要求。  桂林电子科技大学 杨辉华教授  报告题目:CloudChem:基于云计算的化学计量学软件服务  传统的化学计量学软件目前存在着版本升级困难、数据和模型未有效管理和共享、串行计算速度慢并导致性能优化困难等缺点。  云计算是一种网络应用模式,通过网络以按需、易扩展的方式获取所需要资源和服务。其具有超大规模、虚拟化、可靠安全等独特特性。使用云计算可大幅降低硬件成本、大幅降低人力资源成本、快速部署、对用户端的硬件要求低、可扩展性好。  为了解决传统化学计量学软件的缺点,杨辉华教授课题组提出了CloudChem——一种基于云计算技术的完全不同的化学计量学软件模式,将化学计量学算法部署在分布式集群云计算平台上。CloudChem系统由工作流层、业务层、核心计算层、数据层组成。  杨辉华教授指出CloudChem目前面临的主要问题有:研发人力不足、计算资源投入问题、平台推广问题、平台成员参与问题、私有数据安全保障等。  华东理工大学 倪力军教授  报告题目:近红外模型的建立、评价与维护  近红外光谱技术的成功应用在于针对具体问题建立一个科学、合理与适用的近红外定量或定性模型,并且应适当了解所建模型的适应周期、及时进行模型的维护与更新。近红外模型的性能受到多种因素的影响,如:建模样本、近红外光谱(X)的质量、基础数据(Y)的质量、建模方法及模型参数。  倪力军教授结合大量实例阐述了建立一个好的近红外光谱模型应遵守的准则。如根据连续重复测试同一样品近红外光谱的标准方差谱(SVSRS)评价近红外光谱质量的统计方法,演示了利用SVSRS选择合适的样品前处理方法、选择最佳近红外测试模式、选择信号最为稳定、光谱质量最佳的近红外区间建模等方面的应用。对于近红外定量模型的评价不宜片面追求小的RSMEC、RSMEV,应参考参比方法的测试误差确定评价指标的阈值 无论是定量还是定性模型,都应对模型集合进行评估。  倪力军教授介绍了自己的一点心得体会:建模时应重视样本筛选与构造,使其具有良好的代表性与覆盖面 能反映样品实际情况的样本集合、高质量的光谱与基础数据是建立一个好近红外模型的基石 充分利用统计指标SVSRS提高光谱质量 应加强对近红外模型维护的研究。  南开大学化学学院 卞希慧博士  报告题目:奇异点检测的一种新方法  化学计量学已广泛应用于各种领域,特别是在近红外光谱定量分析中发挥了重要作用。在利用化学计量学建立一个定量模型时一般要经过以下步骤:奇异样本的检测,光谱预处理,波长选择后再进行多元校正模型的建立。  奇异样本的检测是模型建立前的第一步,它的去除与稳健是建立一个高质量模型的前提。同时,多元校正方法尤其是偏最小二乘,因其简单、快速而得到了广泛应用,但是这些传统建模方法采用单一模型,在样本数较少时稳定性及预测精度往往不好。  卞希慧博士介绍在研究多模型建模时候发现了一种聚类现象,通过对这种聚类分析的原因进行分析、验证,发展出了一种新的奇异样本检测的方法。通过寻找其原因,发现是某些奇异点导致,并根据这个聚类现象找到了一种奇异点检测的新方法。在整个研究中最关键的一步,是在于发现了聚类现象这个问题。卞希慧博士还向大家介绍了自己做化学计量学的一点心得,即善于分析过程、善于发现问题。
  • 金泰光电推出国内首台自主研发的商用中阶梯光纤光谱仪
    p  strong仪器信息网讯/strong 2017年4月6-8日,中国仪器仪表行业协会主办的“第十五届中国国际科学仪器及实验室装备展览会”(CISILE 2017)在北京· 国家会议中心隆重开幕。北京金泰祁氏光电科技有限公司(简称金泰光电)携最新产品亮相。/pp  金泰光电是一家年轻的公司,2016年6月才刚刚注册成立。公司目前主要从事基于中阶梯的宽光谱、高分辨、高灵敏光纤光谱仪器研发生产及销售。据副总经理武建芬博士介绍,公司推出的中阶梯光纤光谱仪属国内首次自主研发的商用中阶梯光谱仪。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/eb8e85c2-de00-4a0b-8450-6c065ad93349.jpg" title="中阶梯.jpg"//pp style="text-align: center "strongES-3800中阶梯光纤光谱仪/strong/pp  传统Rowland和C-T型光谱仪常常采用刻线密集的光栅或大成像焦距,来提高其光谱分辨率,其结果导致高的成本和庞大的仪器体积,且光谱范围有限。而金泰光电的ES-3800中阶梯光纤光谱仪克服了这一缺点,采用中阶梯光栅、低色散棱镜元件、非球面像差校正聚焦镜、高性能CCD或ICCD探测器件,借由软件分析功能和内置丰富的标准谱线库还原出完整光谱曲线,具有分辨率高、谱线范围宽、动态范围广、检出限低等特点,精密度和稳定性均达到国际领先水平。/pp  ES-3800有两个型号, ES-3800A和ES-3800B。ES-3800A适用于全元素分析,具有超高的分辨率和灵敏度,应用于科研及工业领域的高分辨光谱测量系统,如ICP-AES或者LIBS等。ES-3800B以分辨率略降为代价,但是能够进行全光谱分析,应用于连续光谱高分辨测试领域,如拉曼光谱等。/pp  那么,该系列产品与主要竞争对手、国外品牌的产品相比,表现如何呢?武建芬博士自信的回答到,“我们的产品在性能指标方面与国外品牌接近,可以说达到了国际先进水平。”就在前不久,2017年3月20日,ES-3800A被用于丽江天文观测台的仪器内光学器件的光谱检测。因为天文观测台所用日冕仪采用530.3nm窄带滤波器,通用的光谱仪无法满足超窄的光谱带宽以及极小的波长准确度要求。而ES-3800A则可以稳定提供高达0.01nm的超高光谱分辨率以及小于0.005nm的波长准确度,在高海拔、低温等恶劣环境下完美实现了窄带滤波器的光谱检测。云南丽江天文观测台和长春光机所的工作人员对精确的检测结果表达了一致认可。/pp  不过,目前金泰光电只有中阶梯光纤光谱仪这一款产品,其潜在的客户又以科研单位高校为主,即该产品的市场比较“小众”。并且,多数情况下需要从为客户量身定做的光谱仪入手。面对这种局面,金泰光电对未来是如何规划的呢?武建芬博士谈到,在公司的后续发展规划中,将便携和在线光谱仪器产品作为了新产品目标,开展多元化经营,不断拓展产品的更多领域。具体的发展方向是,在今年年底将研制推出在线、便携的光谱仪器,如紫外可见、近红外光谱仪器 而明年公司的目标是融资,以研制基于中阶梯光栅的ICP-AES和LIBS仪器。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/d2374dc8-0434-419d-97fd-e0f4681e8bf6.jpg" title="武建芬.jpg"//pp style="text-align: center "strong金泰光电副总经理武建芬博士/strong/pp/pp  strong附录:北京金泰祁氏光电科技有限公司/strong/pp  北京金泰祁氏光电科技有限公司致力于光谱仪器领域先进技术的探索和产品开发,公司拥有多项核心自主研发技术,希望竭诚服务于各行业科研单位或仪器设备厂商,并与客户团队通力协作,向客户提供专业的设计支持,定制产品和客户驱动的解决方案。/p
  • 450万!上海交通大学全光谱激发共聚焦显微镜系统采购项目
    项目编号:0705-2240JDSMTXDK/02/招设2022A00210项目名称:上海交通大学全光谱激发共聚焦显微镜系统预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1全光谱激发共聚焦显微镜系统1)脉冲激光器:脉冲白激光器:在485nm-685nm范围内,步进精度≤1nm,自由选择激发谱线进行成像,同时输出脉冲激光谱线≥8条;2)光谱检测装置:高效率棱镜分光系统, 要求配备发射光调节步进1nm或更优, 连续检测荧光波长范围不少于410~850nm或高效率反射光栅分光系统,光子回收系统及不少于34 条通道的内置光谱检测装置;3)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后10个月内合同履行期限:签订合同后10个月内交货本项目( 不接受 )联合体投标。
  • 基于介质多层薄膜的光谱测量元器件
    近日,南京理工大学理学院陈漪恺博士与中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授合作,提出并实现了一种基于介质多层薄膜的光谱测量元器件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。研究成果以“Planar Photonic Chips with Tailored Dispersion Relations for High-Efficiency Spectrographic Detection”为题发表在国际学术期刊ACS Photonics。光谱探测技术被广泛应用在科学研究和工业生产,在材料科学、高灵敏传感、药物诊断、遥感监测等领域具有重要应用价值。近年来,微型光谱仪的研究受到了广泛关注,其优点在于尺寸小,结构紧凑,易于集成、便携,成本低。特别是随着纳米光子学的发展,光谱探测所需的色散元件、超精细滤波元件以及光谱调谐级联元件等,都可以利用超小尺寸的微纳结构来实现。如何兼顾器件的小型化、集成化,与光谱测量分辨率、探测效率一直是该领域的重点和难点之一。截至目前,文献报道的集成化微型光谱仪大多利用线性方程求解完成反演测算,信号模式之间的非简并性(不相似性)决定了重建光谱仪的分辨能力。这种基于逆问题求解的光谱反演技术易于受到噪音的干扰,从而降低微型光谱仪的探测分辨率和效率。近期研究工作表明,通过合理设计结构参数,调控介质多层薄膜的色散曲线,同时借助介质多层薄膜负载的布洛赫表面波极低传输损耗特性,可以实现了光源波长与布洛赫表面波激发角度之间的近似一一对应关系,如图1a,1b所示。它意味着无需方程求解,即可以完成光谱的探测与分析,避免了逆问题求解过程中外界环境噪声对反演过程的干扰,节约了时间成本,提升了探测效率。该介质多层薄膜由高、低折射率介质(氮化硅和二氧化硅)薄膜交替叠加组成,可通过常规镀膜工艺(如等离子体增强化学的气相沉积法)在各种透明衬底上大面积、低成本制备,其制作难度与成本远小于基于微纳结构的光谱测量元件。图1:一种基于介质多层薄膜的光谱探测元件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。作为应用展示,该光谱探测元器件被放置于微型棱镜或者常规反射式光学显微镜上,当满足布洛赫表面波激发条件时,即可实现光谱探测。如图1c,当激光和宽带光源分别入射到介质多层薄膜上时,采集到的反射信号分别为暗线和暗带,其强度积分及对应着光源的光谱(图1d,1e所示)。钠灯的光谱测量实验结果表明,该测量器件能达到的光谱分辨率小于0.6 nm (图1f所示)。不同于常规光谱仪需要在入射端加载狭缝,该方法无需狭缝对被测光源进行限制,从而充分利用信号光源,有效提升了光谱探测的信噪比和对比度,因此器件可以应用于荧光光谱和拉曼散射光谱等极弱光信号的光谱表征,展现出其在物质成分和含量探测上的能力,如图1g,1h所示。介质多层薄膜的平面属性,使得其可以在同一基底上加载不同结构参数的介质多层薄膜,从而实现宽波段、多功能光谱探测器件。该项工作表明,借助于介质多层薄膜负载布洛赫表面波的高色散、低损耗特性,可以实现低成本、高效率、高分辨率的光谱测量,为集成化微型光谱仪的实现提供了新器件。该项工作也拓展了介质多层薄膜的应用领域,有望为薄膜光子学研究带来新的生长点。陈漪恺博士为该论文第一作者,张斗国教授为通讯作者。上述研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、合肥市科技局、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制