当前位置: 仪器信息网 > 行业主题 > >

质谱氮分析

仪器信息网质谱氮分析专题为您提供2024年最新质谱氮分析价格报价、厂家品牌的相关信息, 包括质谱氮分析参数、型号等,不管是国产,还是进口品牌的质谱氮分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱氮分析相关的耗材配件、试剂标物,还有质谱氮分析相关的最新资讯、资料,以及质谱氮分析相关的解决方案。

质谱氮分析相关的资讯

  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p  何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了?/pp  在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。/pp style="TEXT-ALIGN: center"img title="图1_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg"//pp style="TEXT-ALIGN: center" strong图1/strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图/pp  目前,strong非变性质谱技术主要应用在两个方面/strong:一是strong生物制药领域/strong,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为strong研究蛋白质多聚体/strong,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。/pp  现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。/ppspan style="COLOR: #002060"strongOrbitrap超高分辨质谱:非变性质谱研究的理想平台/strong/span/pp  古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。/pp style="TEXT-ALIGN: center"img title="图2_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg"//pp style="TEXT-ALIGN: center"  strong图2/strong Orbitrap质谱平台用于非变性质谱分析/pp  上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。/pp style="TEXT-ALIGN: center"img title="图3_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg"//pp style="TEXT-ALIGN: center" strong 图3/strong Cys-ADC结构示意图/pp style="TEXT-ALIGN: center"  图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。/pp style="TEXT-ALIGN: center"img title="图4_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg"//pp style="TEXT-ALIGN: center"  strong图4 /strong使用非变性质谱平台对Cys-ADC进行完整分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。/pp style="TEXT-ALIGN: center"img title="图5_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg"//pp style="TEXT-ALIGN: center"  strong图5/strong 变性质谱条件下对Cys-ADC进行分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。/pp style="TEXT-ALIGN: center"img title="图6_20170406090915_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件可减少复杂组分间信号重叠/pp style="TEXT-ALIGN: center"img title="非变性2_20170406090518_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件下Lys-ADC完整分子量测量结果/pp style="TEXT-ALIGN: center"  strong图6 /strong使用非变性质谱平台对Lys-ADC进行完整分子量测量。/pp  strong小结/strong/pp  本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见!/pp  参考文献/pp  [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83./pp /p
  • 790万!同济大学蛋白质组学质谱分析系统采购项目
    项目编号:0811-234DSITC0247项目名称:蛋白质组学质谱分析系统预算金额:790.0000000 万元(人民币)最高限价(如有):790.0000000 万元(人民币)采购需求:蛋白质组学质谱分析系统/壹套(项目预算:人民币790万元,可以采购进口产品)合同履行期限:合同签订之日起至合同内容履行完毕止本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月20日 至 2023年02月27日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外)地点:微信公众号“东松投标”方式:关注微信公众号“东松投标”,完成信息注册,即可购买招标文件售价:¥700.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:上海市四平路1239号联系方式:袁老师 021-659856142.采购代理机构信息名称:上海东松医疗科技股份有限公司地址:上海市宁波路1号申华金融大厦11楼联系方式:刘韵、王悦 0086-21-63230480转8606、86273.项目联系方式项目联系人:刘韵、王悦电话:0086-21-63230480转8606、8627
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • Open-pFind助力蛋白质组学分析 显著提高质谱数据解析率
    p style="line-height: 1.5em " 中国科学院计算技术研究所研究员贺思敏及其研究团队设计和实现了新一代开放式搜索算法Open-pFind,可提高质谱数据解析的数量与质量,有望成为蛋白质组学日常数据分析的主力工具。相关成果10月9日在线发表于《自然—生物技术》。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/419b4d61-469e-48e0-baf9-3ef492f7ff8b.jpg" title="2018-10-12_165404.png" alt="2018-10-12_165404.png"//pp style="line-height: 1.5em "  质谱数据的低解析率直接影响着肽段和蛋白质鉴定数目和鉴定精度的提高。质谱数据解析率一直较低,是由于质谱数据中通常有大量存在意外修饰或发生意外酶切的肽段,传统的限定式搜索因搜索空间有限,通常无法对上述肽段进行有效检索。/pp style="line-height: 1.5em "  新一代开放式搜索引擎Open-pFind采用基于序列标签索引的开放式搜索流程,快速扫描蛋白质数据库并对部分高质量谱图进行鉴定。在此过程中,意外修饰、突变、半特异及非特异性酶切肽段均在引擎的搜索空间内。Open-pFind通过基于支持向量机的肽谱匹配重打分算法,挖掘数据中的特征信息,并据此进行第二次精细搜索。同时,Open-pFind集成了前端数据处理的pParse模块,对肽段母离子进行校准,并有效提取混合谱图,进一步提升了谱图解析率。/pp style="line-height: 1.5em "  在四组典型质谱数据集上,Open-pFind解析率均达到了70%~85%,比同类软件鉴定结果多出50.5%~117.0%。对于高质量的串联质谱图,Open-pFind甚至基本实现了完全解析。在搜索空间是常规引擎5个量级的基础上,Open-pFind的速度仍然是常规引擎的2~3倍,是同类开放式引擎的数十倍甚至上百倍。在超大规模人类蛋白质组数据集上,Open-pFind报告了超过12000种蛋白,且准确度远远超过以往常规分析结果。/pp  /ppbr//p
  • ESI Q-TOF质谱分析PEG化蛋白药物方法简介
    贾伟沃特世科技(上海)有限公司实验中心 PEG修饰蛋白及多肽类药物后,可在不产生毒性、不损害药效的情况下,通过增加蛋白类药物的溶解性、减少免疫原性、增加稳定性、延长体内药物半衰期等功效增强大分子药物的疗效。PEG的这种功效在1970年代后期被发现,到了1990年PEG化修饰的Adagen被美国FDA批准,至今已有若干个PEG修饰的大分子药物上市销售,这些药物在癌症、肝炎、痛风、糖尿病等疾病治疗中为患者带来了福音。 明确PEG修饰位点、确定修饰位点的数量、以及表征PEG的聚合度分布性是PEG化大分子药物运用于临床前以及药品质量监控必须且非常重要的工作。由于PEG的高分子聚合物性质,由PEG修饰后的蛋白及多肽的结构变得极为复杂。在早期对其进行质谱分析,特别是对PEG的聚合度分布性分析方面,多使用MALDI离子源类型的质谱。这是因为MALDI源离子化的样品,所带电荷数较少(单电荷离子居多),因此其质谱图相对简单;而通过ESI源离子化的样品将携带多个电荷,这使离子信号复杂,致使其质谱图谱较难解析。随着LC-ESI技术的发展, 美国Indiana大学的Lihua Huang等学者通过在色谱分析柱后加胺的技术,使样品的ESI离子化时的荷电数适当减少,从而使PEG化样品的ESI图谱得到高效的解析[1]。而MALDI TOF类质谱由于质谱分辨率的限制(目前MALDI TOF分辨率在8万内),面对分子量动辄十几万甚至更高的PEG化蛋白,其可获得的数据质量较差,因而MALDI方法可得到的PEG化蛋白的有效结构信息非常有限。 Lihua Huang等学者进一步开发了ESI Q-TOF分析PEG化蛋白的修饰位点的质谱方法[2]。这种方法包括源内裂解(ISF,In Source Fragmentation)与二级质谱(MS/MS)两个步骤。在第一步ISF过程中,PEG化多肽的PEG部分被裂解而变短;在第二步MS/MS过程中,多肽被打碎产生b、y离子碎片。通过分析携带缩短的PEG链的b、y离子信息,最终得出确切的PEG化修饰位点。ISF与MS/MS为什么可以分别 &ldquo 选择&rdquo 碎裂PEG化多肽的PEG与多肽两个部分呢?推测与PEG化多肽的电荷分布有关。在PEG化多肽的离子化过程中,PEG的醚键附着了大量的H+,并在ISF下完全断裂,而使冗长的P EG链缩短到一两个单位大小。之后的MS/MS过程中,由于缩短的PEG链已无H+附着不再断裂。而多肽在MS/MS中获得了碎裂的机会,并产生携带&ldquo PEG短标签&rdquo 的b、y离子碎片。论文中,研究人员运用此方法成功地分析了IgG4与胰高血糖素的PEG修饰位点。 参考文献(1) Huang L, Gough PC, Defelippis MR. Characterization of Poly(ethylene glycol) and PEGylated Products by LC/MS with Postcolumn Addition of Amines. Anal Chem. 2009, 81, 567-577.(2) Lu X, Gough PC, DeFelippis MR, Huang L. Elucidation of PEGylation site with a combined approach of in-source fragmentation and CID MS/MS. J Am Soc Mass Spectrom. 2010, 21, 810-818
  • 原生环境质谱直接从组织中分析高达145kDa的完整内源性蛋白质组装体
    大家好,本周为大家分享一篇发表在Anal Chem上的文章,Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue [1]。该文章的通讯作者是来自英国伯明翰大学的Helen J. Cooper教授。非变性原位质谱(native ambient mass spectrometry, NAMS)是一种新型的自上而下质谱分析方法。它结合非变性质谱和原位质谱的优势,可直接在蛋白质及其复合物的生理环境中进行对其进行无标记表征。NAMS可提供蛋白质结构、空间及瞬时相互作用的信息,具有直接从组织中分析内源性蛋白质组装体的巨大潜力。但是,目前,NAMS仅成功应用于直接检测低分子量 (20kDa) 或高丰度的蛋白,如血红蛋白四聚体或RidA 同源三聚体。目前应用于组织中蛋白质NAMS分析的技术有液体萃取表面分析(LESA)与纳喷雾解析电喷雾电离 (nano-DESI) [2]。LESA需要对组织底物进行自动微液节点采样,然后进行纳喷雾电离(nanoESI)进行MS分析。nano-DESI则通过探针与流动相形成流动溶剂桥,与样品直接接触,之后进行质谱分析成像。在本研究中,作者采用NAMS对大鼠脑、肾、肝组织切片中的蛋白质组装体进行全面分析。主要通过调整质谱仪中的离子光学和气体压力以改善m/z传输与纳喷雾性能,来实现对较大蛋白质组装体的分析。结果鉴定出八种蛋白质组装体,证明了NAMS的可及分子量高达145kDa,并通过nano-DESI质谱成像在大脑和肾脏中绘制了高达94kDa的蛋白质组装体的空间分布。在脑组织中,作者通过nano-DESI NAMS绘制了大鼠大脑切片中分子量为37.0–66.4kDa的完整蛋白质复合物的空间分布以及对应的质谱图(图1a,b)。实验成功鉴定并成像出大鼠脑组织中三种蛋白质组装体,包括同源三聚体细胞因子巨噬细胞迁移抑制因子 (MIF, 37.0kDa)、同源二聚体磷酸甘油酸变位酶1 (PGAM1, 57.6kDa)和苹果酸脱氢酶2 (MDH2, 66.4kDa)。结果发现,MIF在整个脑组织区域是均匀分布(图1c)。作者通过nano-DESI-HCD MS2分析产生的单体 (5+、4+) 和二聚体 (5+) 亚基和序列离子的谱图,识别出MIF(图1d)。作者还利用nano-DESI-HCD MS2成功识别出PGAM1,并发现PGAM1在大脑皮层区域中显示出高丰度,而在中脑和胼胝体中的丰度较低(图1e,f)。相比之下,MDH2在脑组织中的空间分布基本均匀(图1g,h)。检测到的结果与蛋白在大鼠脑中的实际分布相符合,可信度较高。图 1. 离子图像和 HCD MS2光谱表明大鼠脑中蛋白质复合物的亚基解离。(a) H&E染色的连续组织切片的光学图像。标签:Ce,小脑;C,大脑皮层;CC,胼胝体;F,穹窿;V,侧脑室区;Mb,中脑;Me,髓质和脑桥;H,海马;Th,丘脑;Ht,下丘脑;BG,基底神经节;OR,嗅觉区域。(b) Nano-DESI 全扫描质谱,代表光学图像中标记为“(b)”的像素。(c,d)巨噬细胞抑制因子同源三聚体显示均匀分布。(e,f)PGAM1同型二聚体分布。(g,h)MDH2同型二聚体分布。此外,作者在大鼠肾脏中鉴定了四种同源二聚体蛋白组件(61.2-94.2kDa),包括ω-酰胺酶 (61.2kDa)、MDH2 (66.4kDa)、苹果酸脱氢酶1 (MDH1, 72.8kDa) 和α-烯醇化酶 (94.2kDa),并将其成像(图2)。其中观察到的α-烯醇化酶为金属结合形式,每个亚基上结合了2个Mg 2+离子。图 2. (a)大鼠肾脏的H&E染色连续切片显示皮质(C)和髓质(M)组织。(b)在MSI期间获得的大鼠肾皮质组织中单个nano-DESI 像素的示例全扫描质谱。(c, d)α-烯醇化酶同型二聚体。(e, f)苹果酸脱氢酶1。(g, h) MDH2同型二聚体。(i, j) ω-酰胺酶。研究还从大鼠肝组织中鉴定出同型三聚体鸟氨酸转氨甲酰酶(OTC,108.8kDa)和同型四聚体乳酸脱氢酶A(LDHA,145.4kDa)(图3)。其中,在全扫描模式下,nano-DESI可以检测到145.4kDa的LDHA的较弱信号。通过nano-DESI-PTCR MS2的进一步确认,检测到的物质确实为LDHA。图3. (a) 直接来自大鼠肝组织的完整OTC同源三聚体的nano-DESI-PTCR MS 2。(b) 完整OTC同源三聚体的nano-DESI-HCD MS 2显示亚基质量为36.2kDa。(c)完整LDHA同源四聚体 (145.4kDa)的nanoESI-PTCR MS2。(d)完整LDHA 同源四聚体的nanoESI-HCD MS2。在此研究中,作者成功利用NAMS质谱分析方法,直接从组织中检测并鉴定出内源性蛋白质组装体,分子范围为37.0-145.4kDa,包括二聚体、三聚体以及四聚体。其中检测到的上限(145.4kDa)超出LESA MS报道的质量上限的两倍,比nano-DESI 报道过的质量上限高出100kDa。通过调整离子光学和高m /z的气体压力,或者后续仪器和方法的开发,NAMS有可能进一步突破145.4kDa的上限,检测到分子量更大的蛋白组装体。[1]Hale OJ, Hughes JW, Sisley EK, Cooper HJ. Native Ambient Mass Spectrometry Enables Analysis of Intact Endogenous Protein Assemblies up to 145 kDa Directly from Tissue. Anal Chem. 2022 Apr 12 94(14):5608-5614.[2]Hale OJ, Cooper HJ. Native Mass Spectrometry Imaging and In Situ Top-Down Identification of Intact Proteins Directly from Tissue. J Am Soc Mass Spectrom. 2020 Dec 2 31(12):2531-2537.
  • 复旦大学预算500万元购买1套超高分辨质谱测量分析系统
    4月14日,复旦大学公开招标购买1套超高分辨质谱测量分析系统,预算500万元。  项目编号:0705-2140*****811  项目名称:复旦大学超高分辨质谱测量分析系统采购国际招标  采购需求:  1、招标条件  项目概况:超高分辨质谱测量分析系统采购  资金到位或资金来源落实情况:本次招标所需的资金来源已经落实  项目已具备招标条件的说明:已具备招标条件  2、招标内容:  招标项目编号:0705-2140*****811  招标项目名称:超高分辨质谱测量分析系统采购  项目实施地点:中国上海市  招标产品列表(主要设备):序号产品名称数量简要技术规格备注1超高分辨质谱测量分析系统1套仪器分辨率不小于:400,000 FWHM预算金额:人民币500万元 合同履行期限:签订合同后3个月内  合同履行期限:签订合同后3个月内  本项目( 不接受 )联合体投标。  开标时间:2021-05-07 10:30(北京时间)
  • 1300万!国科大杭州高等研究院蛋白质组质谱离子淌度分析系统采购项目
    一、项目基本情况 1.项目编号:ZJ-2362483 项目名称:国科大杭州高等研究院蛋白质组质谱离子淌度分析系统 预算金额(元):8000000 最高限价(元):8000000 采购需求: 标项名称: 蛋白质组质谱离子淌度分析系统 数量: 不限 预算金额(元): 8000000 简要规格描述或项目基本概况介绍、用途:蛋白质组质谱离子淌度分析系统1套。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 1,按照招标文件要求 本项目(是)接受联合体投标。 2.项目编号:0625-23218D89 项目名称:国科大杭州高等研究院高效液相色谱-三重四级杆串联质谱联用分析系统 预算金额(元):5000000 最高限价(元):/ 采购需求: 标项名称: 高效液相色谱-三重四级杆串联质谱联用分析系统 数量: 3 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:详见招标文件 备注: 合同履约期限:标项 1,详见招标文件 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2023年11月10日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台(https://www.zcygov.cn/) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:国科大杭州高等研究院 地 址:杭州市西湖区转塘街道象山支弄1号 传 真:/ 项目联系人(询问):宋老师 项目联系方式(询问):18321712725 质疑联系人:沈老师 质疑联系方式:0571-86080792 2.采购代理机构信息 名 称:浙江国际招投标有限公司 地 址:杭州市文三路90号东部软件园1号楼3楼317室 传 真:/ 项目联系人(询问):沈建平(18005883302)、倪樟如 项目联系方式(询问):0571-81061840,0571-81061802 质疑联系人:董福利 质疑联系方式:0571-81061818        3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处 /浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真:/ 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453
  • 质谱技术在靶向蛋白组学及脂质结构分析研究进展
    p style="text-align: justify "  美国威斯康星大学麦迪逊分校的李灵军教授在《美国质谱学会杂志》上发表了题为" Faces of Mass Spectrometry”的文章。/pp style="text-align: justify text-indent: 2em "strong进展1:/strong/pp  本月,李教授的团队在分析化学杂志上发表了一篇文章“HOTMAQ: A Multiplexed Absolute Quantification Method for Targeted Proteomics”。/pp style="text-align: center "img title="1111111.webp.jpg" alt="1111111.webp.jpg" src="https://img1.17img.cn/17img/images/201902/uepic/04527389-10d7-4d2c-9392-40078abb0c71.jpg"//pp style="text-align: justify "  靶向蛋白组学中的绝对定量研究由于复杂背景下的低特异性、有限的分析通量及广泛的动态范围等诸多因素而具有挑战性。为解决这些问题,其课题组开发了一个混合offset-triggered多路复用绝对量化(HOTMAQ)方法。此方法结合了具有成本效益的质量差异和等压标签,能够在MS1前体扫描中同步构建内部标准曲线,在MS2水平上实时识别多肽,并在同步前体选择(SPS)-MS3光谱中对目标蛋白进行质量偏移触发的精确定量。这种方法将目标定量蛋白质组学的分析通量提高了12倍。采用HOTMAQ策略对临床前阿尔茨海默病候选蛋白生物标志物进行高精度验证。HOTMAQ的高通量和定量性能,加上样品的灵活性,使其广泛应用于靶向肽组学、蛋白质组学和磷蛋白组学的研究中。/pp style="text-align: justify text-indent: 2em "strong进展2:/strong/pp style="text-align: justify "  清华大学欧阳证和瑕瑜教授与普渡大学学者共同在《自然通讯》上发表“Online photochemical derivatization enables comprehensive mass spectrometric analyses of unsaturated phospholipid isomers” 文章。/pp style="text-align: center "img width="600" height="304" title="22222222.webp.jpg" style="width: 600px height: 304px " alt="22222222.webp.jpg" src="https://img1.17img.cn/17img/images/201902/uepic/f219c925-a096-478e-a956-d221f5b56fbd.jpg" border="0" vspace="0"//pp style="text-align: justify "  质谱技术是脂质结构分析的主要工具,但如何在不饱和脂质中有效定位碳碳双键(C=C)以区分C=C位异构体仍是一个难题。本文通过Paterno-Buchi反应与液相色谱-串联质谱联用在线C=C衍生化,开发了大型的脂质分析平台。这为脂质C=C位异构体提供了丰富的信息,揭示了牛肝脏中200多种不饱和甘油磷脂的C=C位,鉴定出55组C=C位异构体。通过对乳腺癌患者和2型糖尿病患者血浆样本的分析,其课题组发现C=C同分异构体的比例受个体丰度的影响较小,这说明同分异构体比例可能用于脂类生物标志物的发现。/pp /p
  • 320万!华东师范大学单颗粒飞行时间质谱分析系统采购项目
    项目编号:2051-224211040082/ 2022-0082-mg项目名称:单颗粒飞行时间质谱分析系统预算金额:320.0000000 万元(人民币)最高限价(如有):320.0000000 万元(人民币)采购需求:序号/ No.货物名称Name of the goods数量/Quantity简要技术规格/Main Technical Data1单颗粒飞行时间质谱分析系统Single Particle Time-of-Flight Mass Spectrometry System11、 ICP-TOF-MS主机1套;2、预装软件的计算机工作站1台,显示器2台;如主机是进口设备,计算机工作站需与主机同时进口办理免税。3、冷却循环水装置 1套;4、单颗粒样品引入系统 合同履行期限:合同签订后至履行完成合同约定的全部工作本项目( 不接受 )联合体投标。
  • 320万!华东师范大学单颗粒飞行时间质谱分析系统采购项目
    项目编号:2051-224211040082/ 2022-0082-mg项目名称:单颗粒飞行时间质谱分析系统预算金额:320.0000000 万元(人民币)最高限价(如有):320.0000000 万元(人民币)采购需求:序号/ No.货物名称Name of the goods数量/Quantity简要技术规格/Main Technical Data1单颗粒飞行时间质谱分析系统Single Particle Time-of-Flight Mass Spectrometry System11、 ICP-TOF-MS主机1套;2、预装软件的计算机工作站1台,显示器2台;如主机是进口设备,计算机工作站需与主机同时进口办理免税。3、冷却循环水装置 1套;4、单颗粒样品引入系统 合同履行期限:合同签订后至履行完成合同约定的全部工作内容。本项目( 不接受 )联合体投标。
  • 我司承担中国医学科学院《定量质谱成像分析系统》开发
    近日,受中国医学科学院/北京协和医学院药物研究所国家药物及代谢产物分析研究中心(简称研究中心)委托,科迈恩(北京)科技有限公司(简称科迈恩)承担了《定量质谱成像分析系统》软件的研制开发任务。在此之前,双方已合作完成了《质谱成像及代谢组学数据处理软件系统》研发工作,建立的先进质谱成像系统工作站广受好评。  质谱成像技术是质谱领域的前沿技术,因其巨大的应用潜力,受到了众多仪器生产商和科研院所的关注。作为我国质谱成像及代谢组学研究领域的领军人物,再帕尔阿不力孜教授及其课题组从2006年起深入开展了质谱成像相关技术的研究和开发,并取得如成像原位代谢组学、定量质谱成像技术与方法、创新药物研发和肿瘤分子病理诊断应用等引领国际的原创性成果。  此次双方旨在前期合作基础之上,开发一套定量质谱成像分析系统,以实现对生物组织中的药物或生物标志物的定量可视化功能。该系统拟采用创新性的校正方法,以使定量质谱成像分析操作过程更简单,定量结果更准确,在新药研发、重大疾病早期诊断和精准医学等领域具有很好的应用前景。  合作协议签订期间,科迈恩(北京)科技有限公司技术团队前往研究中心进行了业务交流。质谱成像技术负责人贺玖明副研究员向科迈恩一行介绍了软件开发具体内容和技术要求,并就开发关键点进行了深入交流与讨论,科迈恩技术负责人表示将不负重托,尽快推出高质量的软件产品。
  • 603万!北京大学医学部蛋白质组学质谱分析系统采购项目
    项目编号:0873-2201HW5L0268项目名称:北京大学医学部蛋白质组学质谱分析系统采购项目预算金额:603.0000000 万元(人民币)采购需求:采购蛋白质组学质谱分析系统1套,用于科研。接受进口产品投标,详见附件合同履行期限:合同签订后120天(国内供货)或者L/C后120天(进口免税)本项目( 不接受 )联合体投标。
  • 十年耕耘蛋白糖基化质谱分析技术——对话北京大学分析测试中心,质谱实验室高级工程师,周文
    蛋白质的糖基化修饰是一种重要的蛋白翻译后修饰。对于蛋白糖基化修饰的深入表征将有助于加深糖基化作用机制的理解,为相关疾病药物、疫苗的研发提供理论基础,然而糖基化修饰的类型和结构非常复杂,给分析检测带来了非常大的难度。过去10年间,北京大学分析测试中心高级工程师周文和多个课题组深入合作,致力于针对不同种类的糖基化发展相应的质谱分析检测新方法。北京大学分析测试中心高级工程师周文在过去的20年里,糖基化修饰领域在仪器方面有了很多进展,如从传统的碰撞解离到现在的电子转移解离(ETD)的碎裂方式,同时还可以将不同的碎裂方式进行组合。周文形容到,ETD就像闪电一样,它的碎裂过程非常的快,更便于我们进行糖基化的分析。周文表示,希望让更多人关注分析测试领域,也给分析测试人员更多的展示自己的舞台,相信将来一定会有更多的优秀人才加入到我们当中来!
  • 将质谱用于膜蛋白分析 英皇家学会院士Carol Robinson做客上海交大
    p  近日,英国皇家学会院士、美国科学院外籍院士、英国皇家化学会候任主席、牛津大学Doctor Lee冠名教授Carol Robinson教授在上海交通大学做客第95期大师讲坛,为交大师生带来题为“Mass spectrometry-from folding proteins to rotating motors”的精彩报告。/pp style="text-align: center "img width="350" height="473" title="001.jpg" style="width: 350px height: 473px " src="http://img1.17img.cn/17img/images/201711/insimg/9c5b334e-bdec-4b44-ae4d-2e6ca2dbdf7e.jpg" border="0" vspace="0" hspace="0"//pp  质谱分析是目前蛋白质研究的最重要工具之一。Carol Robinson教授介绍了质谱的原理和自己探寻质谱研究的历程,阐述了她领导的团队在strong质谱技术优化和应用质谱分析百万道尔顿级膜蛋白研究方面的进展/strong。关于质谱在生物领域的应用,她介绍了2002年诺贝尔化学奖获得者J. B. Fenn和K. Tanaka做出的贡献。在蛋白质的结构研究方面,她强调了对受体膜蛋白性质的研究在药物设计和研发领域的重要地位。/pp  strongCarol Robinson教授介绍,她的研究团队将膜蛋白溶入洗涤剂溶液,并通过毫微电喷雾电离汽化质谱技术对膜蛋白与脂类小分子之间的相互作用及计量性质和其自身在小分子稳定作用下的折叠过程进行了探索和研究。/strong在结合诸如离子淌度法、核磁共振法等其它技术后,进一步提取出更多关于折叠膜蛋白的拓扑结构信息和性质。Carol Robinson教授团队从1993年开始应用质谱分析证实了蛋白质折叠与伴侣分子稳定效果的关系,并于2008年使用质谱分析研究疏水膜蛋白并取得突破。最近,她的团队对螺旋低聚膜蛋白在界面脂分子作用下的稳定效果进行量化,取得的成果发表在Nature及Science系列期刊上。她展示了原始的质谱分析例图,讲解了如何使用图谱判断样品蛋白是否折叠,并讲解了在旋转马达ATP合成膜蛋白内部的亚单位相互作用及折叠机制。/pp  Carol Robinson教授总结,质谱分析对膜蛋白方面的研究意义重大,具有独特性和创新性。她指出,自己在最初决定进行这方面研究时遇到了很大困难和阻力,并因此鼓励年轻人不必拘泥形式,要敢于设计实验。/pp  在提问环节中,Carol Robinson教授回答了研究中遇到的困难、质谱与冷冻电镜等分析方法在生物结构研究方面的应用和蛋白质在真空中折叠的机理与现实环境中的区别等问题。Carol Robinson教授还和同学们探讨了如何平衡家庭和学术事业等话题。/pp  大师讲坛学生组委会向 Carol Robinson教授赠送了精心制作的泥塑人像作为纪念品,以表达交大学子对她到访由的衷感谢和诚挚祝福。/pp  【嘉宾介绍】/pp  Carol Robinson,英国皇家学会院士、美国科学院外籍院士、英国皇家化学会候任主席。现担任牛津大学化学系Doctor Lee冠名教授,牛津大学埃克塞特学院教授会员。她1982于剑桥大学获得博士学位,先后在基尔大学、牛津大学、剑桥大学工作。她2001年晋升为剑桥大学历史上第一位女教授,2011年被英国皇家学会授予跨领域奖,2013年在新年授勋中被授予大英帝国爵级司令勋章,2015年获得世界杰出女科学家成就奖。/pp  【背景介绍】/pp  质谱是一种通过ESI和MALDI等方法电离分子并根据其质荷比进行记录的分析方法,在化学及结构生物领域有着广泛的应用。使用质谱法分析膜蛋白质要求电离蛋白质分子,同时不破坏其分子结构。/pp  Carol Robinson教授长期从事质谱相关领域的研究。她在对生物高分子配合物进行汽化以用于质谱法分析领域进行了大量突破性研究,并在使用质谱研究例如膜蛋白等大配合物结构方面做出了杰出贡献。Carol Robinson教授以第一作者或通讯作者在Nature和Science等杂志上发表了一系列文章,是质谱在化学、生物等领域研究方面的权威学者。/pp /p
  • 药典委首次制定蛋白质组学分析标准,涉及色质谱、凝胶电泳等多种技术
    蛋白质组学是指在大规模水平上以蛋白质的生物多样性为基础,研究细胞、组织或生物体蛋白质组成及其变化规律、蛋白质翻译后修饰以及蛋白与蛋白之间相互作用等,从而揭示疾病发生、发展和药物治疗相关的规律与机制。随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布公示稿(详见附件)并征求意见。该指导原则适用于蛋白质组学在蛋白质组成及其变化规律、蛋白质翻译后修饰以及蛋白与蛋白之间相互作用方面的分析研究,规范蛋白质组学分析方法建立,分析过程质量控制和数据分析,确保蛋白质组学分析结果的重复性与可靠性。蛋白质组学分析方法需要具备实用性强、多肽和蛋白的检测特性好以及合适的质控过程,保证分析结果的可靠性。同时蛋白质组学在操作过程中能够处理大量样品。蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。分离和富集技术:凝胶电泳和色谱技术分析与鉴定技术:质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术附件: 蛋白质组学分析方法及应用指导原则草案公示稿(第一次).pdf
  • 粒粒皆信息:什么是单颗粒物/单细胞ICP-MS质谱分析法?
    在使用电感耦合等离子质谱法(ICP-MS)进行分析之前,对含有颗粒状残留物的液体样品进行适当的酸消解仍是标准前处理步骤。采用此类或类似样品前处理后,所记录的ICP-MS数据也跟整体粒子数量以及种类连在一起,对需要分析要求更加精细的应用不完全满足需求。2003年,Degueldre首次证明了ICP-MS质谱法可以定量检测单个颗粒物,并引入了单颗粒物(single particle-sp)ICP-MS质谱分析的概念[1]。spICP-MS质谱分析法可以测量单个颗粒内含所有元素的质量以及总颗粒物数浓度,并且提供比其他分析技术好得多的检测极限(微克/千克)。如果有颗粒物的密度和形状信息,还可以根据spICP-MS记录的质量估算单个粒子的直径大小。单颗粒物产生的ICP-MS信号的持续时间非常短(几分之一毫秒)。如果使用扫描型质量分析仪(如四极杆或扇形场等),在毫秒尺度的瞬态信号时长内无法持续记录所有元素信息,通常只能提前选择颗粒物内的一个或两个元素进行数据采集,可能错失其他或关键信息,同时也需要耗时耗力多次重复实验来得到完整的原始数据库。而飞行时间(TOF)质量分析仪可以瞬时测量所有元素(及其同位素),从而能够测量粒子的完整多元素组分信息。如今,spICP-MS质谱分析法最常用于表征无机纳米粒子以及研究其与环境样品[2]和生物系统[3]的暴露影响。spICP-MS质谱并非仅仅限于上述这些领域。另一个引起业内关注的应用是使用spICP-MS质谱仪在线分析大气环境气溶胶中的单个微米/纳米颗粒物[4]。 单颗粒物ICP-MS质谱仪是如何工作的?单颗粒物ICP-MS质谱分析具有以下两个主要要求: 样品中的颗粒物数浓度非常低,以降低将多个颗粒物同时引入ICP-MS质谱仪的可能性 质谱质量分析仪以不到2毫秒的驻留/积累时间不间断运行,以观察持续的单颗粒物事件在实践中,我们可以将任何液体样品导入ICP质谱系统,当中一些液体样品在颗粒物传输和电离方面比其他相对更加高效。取决于采用ICP质谱仪的硬件配置,颗粒物悬浮液通常被稀释到10万-100万个颗粒物/毫升的浓度。当液体样品中的颗粒物数量足够少时,单位时间将只有一个颗粒物进入ICP系统。进入等离子系统,颗粒物将被气化、雾化和电离,形成元素离子。所生成的离子将通过多级差分压强接口从前端ICP系统导向下游质量分析仪,该减压接口用于调节ICP大气压进样口与低压(如10-6毫巴)质量分析仪之间的压力差。逐步减压过程中,系统内置离子光学元件将离子最大效率地传输到质量分析仪。质量分析仪利用电场和/或磁场在离子撞击检测器之前根据其质荷比(m/Q)对元素离子(同位素,或氧化物等)进行有效分离。所生成的质谱图显示在每个质荷比下记录的离子数量。质荷比可用于定性元素(或干扰物)类别,而信号强度则用来定量元素浓度。经ICP源后单颗粒物离子事件产生非常快速的瞬态信号(信号尖状突起),总持续时间一般只有几分之一毫秒。因此,质量分析仪的响应速度需要适配或者更快,从而完整的记录多种离子信号。如前所述,扫描型质量分析仪通常仅针对一种或两种元素,而TOF质量分析仪则能够瞬时记录单颗粒对应的整张质谱(所有质荷比),同时也包含了元素同位素和可能的氧化杂质信息。对于所记录的任何元素(基于质荷比),在瞬态单颗粒物事件持续时间内观察到的总离子信号与单颗粒物中该元素的质量成正比。ICP-MS质谱仪检测到的单颗粒物事件(瞬态信号尖峰)频率则与引入液体样品中的颗粒物数浓度成正比。值得注意的是,不包含信号尖峰的连续平滑信号区域(类似于信号时序图中的背景信号)则代表溶解在液体样品中的相应浓度信息。 为确保所记录的质谱数据包含,且只包含来自单个颗粒物的信号,质量分析仪必须以较快的数据采集效率运行[5]。随着数据采集所需时间的增加,包含两个或多个连续颗粒物信号的事件数量将会相应增加,这会导致后续结果的分析和解读产生偏差。此外,通过在高瞬时分辨率下采集数据,还可以提高信噪比(SNR):与粒子共同单位时间内噪声(对应无颗粒物事件)越少,谱图信噪比将越高,空间检测限则越好。使用spICP-MS质谱仪可实现的空间检测限与特定的元素和其同位素相关,通常在10纳米至数百纳米范围内。无论是将所记录的信号强度转换为元素质量,还是将颗粒物事件频率转换为粒子数浓度,均需要对仪器进行适当的校准。通常,基于参考颗粒物进行校准是最直接的方式,但由于缺乏这些标准颗粒物,这种方式并不直接适用。因此,Pace等 [6]提出了一种替代校准程序,即使用元素标准溶液,同时利用标准程序确定颗粒物传输效率和检测效率。许多分析实验室都在使用这种方法,但其他不同的校准概念在相关文献中也有报道 [7]。超纯水是与ICP-MS质谱仪最兼容的单颗粒物分析溶剂,提供最佳的检测限,但其并不适用于所有系统。此外,在适当样品稀释或颗粒物提取成后,也可以在更复杂的样品基质中进行单颗粒物分析[8],[9]。单颗粒物多元素ICP-MS质谱仪使用由四极杆或扇形场质量分析仪为主的ICP-MS系统进行单颗粒物分析仅限于信息相对简单的样品(比如单元素金属或个别氧化物粒子),因为这类质量分析仪只能在瞬时单颗粒物事件持续时长内记录一种或两种元素信号。相比之下,飞行时间质量分析仪(比如TOFWERK icpTOF系统)则可以记录每个单颗粒物内所有元素及其同位素信号。因此,除了报告元素质量和数量浓度外,基于飞行时间(TOF)的质谱仪还可以精准表征粒子的多元素组分,排除可能的杂质干扰。这种独特的功能对于快速增长的复合纳米粒子分析应用潜力巨大。此外,初始的简单粒子在暴露于复杂环境后经常会发生组分变化,这也使它们的特性和相互作用途径发生变化。单颗粒物多元素ICP-MS系统可以提供有效的方法用于研究这些过程。随着纳米颗粒物在日常产品应用范围和生产规模的持续增加,人们越来越担心其对环境和生命系统(包括人类)可能造成的潜在负面影响。与类似的天然源颗粒物相比,释放到环境中的工程纳米材料的浓度仍然非常低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要。可以想象,要在复杂的环境背景中准确识别出低浓度颗粒物非常具有挑战性。最近,相关研究人员提出使用多元素spICP-MS质谱分析法对单颗粒物进行指纹识别,提供了解决该问题的一种可能解决方法。举例来说,业界已成功运用该方法在含有天然铈粒子的复杂背景下追踪土壤中的二氧化铈(CeO2)工程纳米颗粒物[2]。延伸阅读1. Degueldre, C. and P.Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf., A, 2003. 217(1-3): p. 137-142.2. Praetorius, A., et al., Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci.: Nano, 2017. 4(2): p. 307-314.3. Scanlan, L.D., et al., Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. ACS Nano, 2013. 7(12): p. 10681-10694.4. Suzuki, Y., et al., Real-time monitoring and determination of Pb in a single airborne nanoparticle. Journal of Analytical Atomic Spectrometry, 2010. 25(7): p. 947-949.5. Hineman, A. and C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. Journal of Analytical Atomic Spectrometry, 2014. 29(7): p. 1252-1257.6. Pace, H.E., et al., Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011. 83(24): p. 9361-9369.7. Gschwind, S., et al., Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. Journal of Analytical Atomic Spectrometry, 2011. 26(6): p. 1166-1174.8. Peters, R.B., et al., Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry, 2014. 406(16): p. 3875-3885.9. Mitrano, D.M., et al., Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environmental Toxicology and Chemistry, 2012. 31(1): p. 115-121.
  • 布鲁克推出 timsTOF Pro质谱仪 可实现更高灵敏度蛋白质组学分析
    p style="text-align: center "img title="IMG_1279.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/053b4ae8-ce11-4330-abec-7a4ed6c2a53a.jpg"//pp  2017年9月18日,在第十六届人类蛋白质组学年度世界大会(HUPO)上,Bruker推出了用于PASEF质谱的timsTOF Pro系统。该质谱采用了专有捕获离子迁移谱(TIMS)技术,能实现更高速度、更高灵敏、更强大的鸟枪法蛋白质组学分析,具有出色的单次肽和蛋白质鉴定性能。/pp  基于TIMS创新技术的四极杆飞行时间质谱仪(QTOF-MS)由MaxQuant / Perseus和PEAKS Studio蛋白质组学分析软件支持,这种timsTOF Pro方法对于定量蛋白质组学工作流程尤其有利。/pp 从较小样品量的识别性能方面,这种独特的前端TIMS分析仪对更高速度的鸟枪法蛋白质组学进行了优化。其独特的双TIMS几何形状允许离子在第一个TIMS部分中并行累积,并且在实时执行额外的TIMS分离步骤之后,离子从第二个TIMS部分释放出来,用于MS / MS碎裂。这可以产生近100%的占空比,使得这种平行堆积和连续碎裂(PASEF)技术在酶促消化产生的蛋白质混合物中,应用可重复纳流LC-MS分析可以具有前所未有的性能。/pp style="text-align: center "img title="timsTOF_Pro nanoELUTE_3D - 副本.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/b2589663-240a-424c-8bb3-77fa0c6b1803.jpg"/  /pp PASEF能力代表了性能的改进,因为它提供更高灵敏度和更高速度的鸟枪法蛋白质组学分析,而不损失质量分辨率。而之前,更高的扫描速度通常导致用于鸟枪法蛋白质组学的基于FT的质谱技术具有较低质量分辨率。这些临界限制可以由PASEF消除,允许以高灵敏度以及接近100%的占空比,同时还可以保持前体和产物离子的超高质量分辨率。双TIMS技术这一重要PASEF功能,有助于科学家们深入研究细胞复杂生物学以及发现重要低水平生物学蛋白。同时,这一功能也有助于蛋白质翻译和临床蛋白质组学研究中的验证和纵向研究。/pp  定量蛋白质组学是蛋白质组学研究的关键领域,双重TIMS供电的PASEF提供了超越传统门控时间串联FT的质谱分析局限性的优势。新的timsTOF Pro提供超过四个数量级的动态范围,低肽负载(100-200ng),这使得它非常适合于研究细胞生物学和临床中经常遇到的小细胞群体和低样品量的蛋白质组学。/pp  德国马丁斯堡的马克斯· 普朗克生物化学研究所蛋白质组学和信号转导系主任马蒂亚斯· 曼(Matthias Mann)表示:“我的实验室与布鲁克合作开发PASEF技术,我们很高兴看到timsTOF Pro实现我们最初设想的鸟枪法蛋白质组学的潜力。这种新技术有可能革新蛋白质组学的几个领域:临床研究,其中速度和定量能力是运行大样本队列的关键 需要增加灵敏度的应用 富含磷酸肽或其中有限数量的细胞可用于分析的样品;并且对于使用等压标记的定量实验,其中使用捕获的离子迁移率的额外分离可以至少部分地消除引起所谓的比例压缩效应导致不可接受的误差的共分裂物质的干扰。我们对技术进一步发展的潜力感到非常兴奋。“/pp  Bruker Daltonics的Omics解决方案副总裁Gary Kruppa表示:“蛋白质组学研究人员总是希望提高速度,灵敏度和定量能力,同时保持高分辨率,准确的质量和高保真度同位素图案,以便更深入地了解蛋白质组。使用PASEF,科学家们现在不需要将扫描速度和敏感度的解决方案进行权衡,它们通过TIMS前体离子选择获得高灵敏度,高扫描速度和无与伦比的特异性这三重效果。这提供了发现低水平生物相关蛋白质的可能性,目前它们是超出了非TIMS质谱仪的性能范围的。“/pp  马丁· 马克斯普朗克生物化学研究所计算系统生物化学小组组长Juergen Cox评论说:“Bruker决定采用开放文件格式,以便我们可以直接使用原始数据,将有利于蛋白质组学研究人员的使用MaxQuant和Perseus软件平台。我们对数据质量特别重视,并期待与Bruker合作,通过最先进的客户支持软件和分析统计查询,我们可以使用PASEF在timsTOF Pro上获取数据。“/pp  关于带有PASEF的timsTOF PRO/pp  专有的timsTOF Pro系统使用通过捕获离子迁移光谱(TIMS)实现的PASEF,为鸟枪法蛋白质组学提供了行业领先的数据采集速度。 timsTOF Pro的独特双TIMS几何结合了TIMS设备中离子包的时间聚焦,意味着PASEF提供的速度优势同时提高了灵敏度和定量。所有这些在速度,灵敏度和定量方面的增益保持了Bruker的高性能QTOF质谱仪的优势,包括高质量分辨率(即使在最高数据采集速率下,分辨率为50,000 FWHM),ppm精确质量和高同位素保真度(True同位素模式或TIPTM)。具有PASEF的强大的timsTOF Pro为科学家提供了深入细胞机器复杂生物学研究、发现低水平生物学重要蛋白质、在蛋白质翻译以及临床蛋白质组学研究中进行验证提供了有力工具。/pp  关于MaxQuant和Perseus软件平台/pp  MaxQuant是猎枪蛋白质组学数据分析的行业标准。 Juergen Cox在过去十年发展起来,已经成为肽,蛋白质和翻译后修饰的鉴定和定量最常用的包装。近期,MaxQuant已经适应于timsTOF数据的分析,管理由保留时间、离子迁移率、质量和信号强度所占据的空间中的4D特征。用于多元数据分析的Perseus软件支持生物和生物医学研究人员解释分子定量,相互作用和蛋白质翻译后修饰数据。 Perseus包含用于高维数据分析的统计工具的综合组合,涵盖归一化,模式识别,时间序列分析,跨学科比较和多重假设检验。/pp  关于PEAKS Studio/pp  生物信息解决方案公司的旗舰软件PEAKS Studio为蛋白质组学研究界提供了创新的质谱数据分析工作流程。自从在二十世纪初期首次亮相以来,PEAKS Studio已被高度认可,其基准测试从头测序算法被集成到所有其他鸟枪法蛋白质组学软件模块中。从头测序与传统数据库检索的结合确保了对原始光谱数据的完整解释,以满足质谱的复杂性和灵敏度,并为蛋白质组学和治疗性蛋白质发现提供了先进的解决方案,如通过肽/蛋白质鉴定和定量,肽图,翻译后修饰和序列变体。/pp  PEAKS Studio提供的独特工作流程以及由timsTOF Pro的第四维离子迁移率引起的令人信服的数据质量促成了生物信息解决方案公司和Bruker的合作。/pp  关于布鲁克公司(纳斯达克股票代码:BRKR)/pp  55多年来,布鲁克已经使科学家们能够突破发现,开发新的应用,提高人类生活质量。 Bruker的高性能科学仪器和高价值分析和诊断解决方案使科学家能够在分子,细胞和微观层面探索生命和材料。/pp  通过与客户的密切合作,Bruker在生命科学分子研究,应用和制药应用以及显微镜,纳米分析和工业应用方面实现了创新,生产力和客户成功。近年来,Bruker也成为细胞生物学,临床前成像,临床表现学和蛋白质组学研究,临床微生物学和分子病理学研究的高性能系统的提供者。/pp /p
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD 裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • 威斯康星大学李灵军自然通讯最新成果:胰腺蛋白质组的质谱定量分析揭示癌症相关特征
    仪器信息网讯 胰腺是人体最重要的器官之一。它产生胰岛素来调节血糖和帮助消化食物。如果胰腺失控,糖尿病、癌症或其他疾病就会威胁生命。然而,关于胰腺如何使人们保持健康以及器官如何衰竭,还有很多未知之处。数以万计的蛋白质控制着胰腺的工作方式:它如何生长和发育,如何产生消化酶以及如何分泌胰岛素。因此,科学家需要进一步了解蛋白质结构如何随时间变化,以帮助开发针对糖尿病或癌症的治疗方法。  基于此,威斯康星大学麦迪逊分校药学院与化学系的李灵军课题组与医学和公共卫生移植外科医生Jon S Odorico合作开展了追踪从出生前到成年后期胰腺蛋白质组(整套蛋白质)变化的相关研究。研究团队还开展了细胞外基质(extracellular matrix,ECM)的研究和分析,该物质能够指导细胞分化、迁移、形态和功能,对于在实验室细胞培养和器官移植过程中生长和支持胰腺细胞至关重要。但在人类胰腺研究中,目前尚未系统研究过不同发育阶段的ECM蛋白质组。该研究中,科学家们应用了基于质谱的定量蛋白质组学策略,并描述了四个年龄组的全蛋白质组和ECM特异性变化:胎儿(妊娠18-20周),青少年(5- 16岁),青年(21-29岁)和老年(50-61岁)。研究团队鉴定了3523种蛋白质,其中包括185种ECM蛋白质,并对其中的117种进行了定量。课题组检测了胰腺发育和成熟过程中以前位置的蛋白质组和基质组的特征。他们还使用免疫荧光染色观察特异性CEM蛋白质,并研究CEM在胰岛和腺泡间的定位变化。该研究全面的蛋白质组学分析有助于深入了解CEM在人类胰腺发育和成熟过程中所起的关键作用。  成果表明,胰腺在人类整个童年时期都会显著重塑其蛋白质,最终在成年阶段稳定。值得一提的是,与癌症相关的蛋白质之间存在明显的年龄特异性变化,这一发现有助于研究人员加深对胰腺癌的了解。  该成果于2月15日发表在《自然通讯》杂志上,论文题目为“Proteome-wide and matrisome-specific alterations during human pancreas development and maturation”。论文链接:https://www.nature.com/articles/s41467-021-21261-w关于研究团队:威斯康星大学麦迪逊分校 李灵军教授    李灵军教授在神经肽和功能性肽组学研究领域取得了开拓性的成果。她所带领的课题组针对神经生物学中的关键性课题,开发了一系列的基于质谱和微分离技术的研究平台,对由分子、细胞水平认识神经肽的功能以及神经退行性疾病生物标志物的发现作出了突出的贡献。据仪器信息网跟踪报道,李灵军教授曾荣获美国质谱学会颁发的Biemann奖章,是世界质谱领域的最高荣誉之一,授予那些长期在质谱学研究领域做出突出贡献的学者。此外,2016年英国分析科学家网站公布了全球50位最具影响力女性分析科学家名单,李灵军教授也荣誉获选。  在以往的采访中,李教授也曾表示:”我最热衷于开发新型分析工具和策略来解决具有挑战性的生物问题。我们很高兴开发一套用于发现神经肽功能的多功能质谱工具,并使用这些技术来提高我们对大脑工作原理的理解。最近,我们正致力于开发用于定量MS分析和系统生物学中高通量测量的新型化学标签。我也热爱培训和指导研究生和博士后,并帮助他们过渡到成功的职业生涯的这个过程。”课题组官网: https://www.lilabs.org/  团队合照
  • 843万!复旦大学高灵敏度药物代谢动力学分析系统和二次离子质谱仪采购项目
    一、项目基本情况1.项目编号:1069-234Z20234494(HW2023111501)项目名称:复旦大学高灵敏度药物代谢动力学分析系统预算金额:413.140000 万元(人民币)最高限价(如有):404.870000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高灵敏度药物代谢动力学分析系统1套本次采购高灵敏度药物代谢动力学分析系统一套,此系统由三重四级杆质谱仪及数据分析工作站和高效液相色谱仪和组成。★扫描速度≥18000amu/sec。预算金额:人民币413.14万元最高限价:人民币404.87万元合同履行期限:交货期:2024年3月31日前交付。合同履行期限:交货期:2024年3月31日前交付。本项目( 不接受 )联合体投标。2.项目编号:1069-234Z20234470(HW2023111401)项目名称:复旦大学二次离子质谱仪设备预算金额:430.000000 万元(人民币)最高限价(如有):421.000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1二次离子质谱仪设备1套应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。预算金额:人民币430万元最高限价:人民币421万元合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月18日 至 2023年11月24日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:中国上海邯郸路220号        联系方式:郭老师 ,021-65645530      2.采购代理机构信息名 称:上海中世建设咨询有限公司            地 址:中国上海市曹杨路528弄35号            联系方式:邢楠、黄梦如、陈豪,021-52555810            3.项目联系方式项目联系人:邢楠、黄梦如、陈豪电 话:  021-52555810
  • 专家访谈︱Ben C Collins:未来5-7年质谱分析继续在蛋白质组学占据主导地位
    本期专家访谈Ben C Collins教授给我们讲述DIA方法的开发和应用,以及对蛋白质组学领域未来发展的看法。  Ben C Collins  英国贝尔法斯特女王大学生物科学学院教授  主要从事定量蛋白质组学研究,研究方向主要集中在三个方面:数据非依赖采集的质谱方法(DIA)开发和应用;蛋白质相互作用网络和蛋白质复合物分析中的方法开发和应用;在宿主-病原体生物学、先天免疫、癌症生物学和药物发现中的应用。  DIA的优势是什么,还有哪些问题亟待解决?  在早期阶段,DIA获得认可面临的挑战之一是软件工作流程的复杂性。幸运的是,随着时间的推移,这一挑战已基本得到解决,DIA 数据分析也变得更加容易。数据采集过程本身变得更加简单,现在的方法也可以得到令人印象深刻的结果。特别是随着仪器的进步和新的分析采集方法的出现,许多基本问题已经得到解决。目前的重点应该是展示DIA的实际应用和优势,这包括进行广泛的基准测试和成功的示例展示。虽然持续的技术发展很有价值,但最紧迫的任务是有效利用现有技术。因此,应高度重视DIA技术的推广应用。DIA 最显著的优势是其已证明的有效性,它已被证明是一种可靠且稳健的蛋白质组学研究方法。在我目前的工作中,我对DIA在规模化蛋白质相互作用研究和化学蛋白质组学中的应用特别感兴趣,并启动了与参与药物发现的制药公司的合作。过去,这些公司在蛋白质组学方面投入了大量资金,但技术还不够先进,无法满足他们的需求。然而,我们现在正处于 DIA 可以为药物发现提供有价值线索的阶段。我们与这些行业合作很有前景,因为可以帮助他们识别有用的化合物、进行筛选并做出明智的决策。这是 DIA 如何为药物发现和其他领域的实际应用做出贡献的一个很好例子。  您如何看待蛋白质组学领域学术界与工业界的关系?  在考察蛋白质组学领域学术界和工业界的关系时,有必要分别考虑供应商和制药公司。从供应商看,我必须说学术研究人员和供应商之间的合作非常成功,双方都需要彼此的专业知识。我们一直与各种供应商合作,开发方法和应用的学术研究人员与开发仪器的供应商之间的协同作用是显而易见的。但与医药行业的关系却有些不同。近年来,药物发现领域发生了转变,开始认识到蛋白质组学可以为其工作带来价值。这种认识的转变在为制药公司提供服务的合同研究组织 (CRO) 数量不断增加中得到体现。这些 CRO 正在扩大并展示其对制药行业的作用。此外,有一种趋势是基于蛋白质组学技术建立药物研发公司。此类公司从风投获得大量资金的例子有很多。这些公司认为,他们独特的蛋白质组学技术可以显著帮助确定化合物的优先级、进行化合物筛选以及推进药物开发的各个阶段。这一趋势表明蛋白质组学技术在行业中变得越来越有价值。然而,在促进学术机构和制药公司之间的关系方面还有改进的空间。例如制药专业人士较少参与会议上的演讲报告。我们这样的组织提供了弥合鸿沟的机会,召开化学工程、蛋白质组学和药物发现领域的研讨会和活动等举措有助于提高知名度,加强学术界和制药界之间的联系。这种积极主动的方法可以进一步推动蛋白质组学技术与药物发现过程的整合。  应该如何看待 AlphaFold 和 ChatGPT 等人工智能工具?蛋白质组学和人工智能如何共同激发更大的进步?  从根本上讲,人工智能已经在质谱数据处理、信号预测、物理化学性质预测和分类任务等任务中展示了其实用性,这些应用已经显示出巨大的前景,并且已经为蛋白质组学领域做出了贡献。这种趋势可能会持续并扩大,进一步增强我们的数据分析和解释能力。然而,当涉及到揭示生物学机制等更复杂的问题时,人工智能的应用仍然是一个悬而未决的问题。例如,AlphaFold 在预测蛋白质结构方面的成功是一项重大成就,但将人工智能模型应用于深入理解生物学机制是一项更具挑战性的工作。一个关键挑战在于人工智能模型的“可理解性”。无论是在生物学还是在一般的人工智能应用中,了解人工智能系统如何得出结论和预测都是至关重要的。“可理解的智能”一词强调了这种需求。能够解释人工智能生成的见解背后的推理非常重要,尤其是在涉及复杂的生物系统时。从本质上讲,人工智能在蛋白质组学和生物学中具有多个层面的适用性。它已经在数据驱动的任务中证明了自己的价值,并且可能进一步扩展到预测药物敏感性或进行生物学预测等领域。然而,从人工智能模型中获得机械理解和真正的生物学见解是一项更具挑战性的工作。它需要解决与模型透明度和可解释性相关的问题。随着我们的前进,科学界应该将人工智能视为一种强大的工具,并共同努力,利用其潜力获得更深入的生物学见解。尽管还有一些挑战需要克服,但人工智能有能力在未来几十年内推动蛋白质组学和生物学的重大进步。  您认为全球蛋白质组学研究人员应该如何合作实现“π-HuB”计划的目标?  “π-HuB”计划无疑是一项具有全球影响力的开创性举措,科学界也渴望共同努力,为该项目做出积极的贡献。目前,该项目还处在讨论制定具体的合作机制和形式阶段。为了推进这种合作,科学家必须与政策制定者和政府联络沟通以获得必要的支持和资源。“π-HuB”计划国际合作将通过持续的讨论和规划继续完善。从本质上讲,虽然具体的合作结构尚未完全确定,但中国和国际科学界的共同承诺,使实现“π-HuB” 计划宏伟目标变得更有希望。  您对蛋白质组学领域未来5-10年的发展有何预测?  预测科学的未来总是充满挑战,但我可以对未来 5-10 年蛋白质组学领域的潜在发展提供一些见解。令人感兴趣的领域之一是基于质谱的方法和非质谱方法之间的平衡。我们正在见证基于亲和力的方法、纳米孔测序和单分子方法等技术的进步。关于哪种方法进展更快并有可能主导该领域的争论仍在继续。然而,重要的是不要教条地选择自己喜欢的方法,而是让数据来决定。在未来 5-7 年中,质谱分析可能会继续占据主导地位,但除此之外,其他方法也可能会占据主导地位,每项新技术都应根据其优点和缺点进行评估。另一个有进步空间的领域是研究蛋白质复合物和翻译后修饰的无偏性方法。目前,这方面的大规模检测方法还比较有限,需要进行创新。此外,蛋白质组学还有更广泛应用的潜力,特别是在药物发现和开发方面。在这方面,蛋白质组学可以成为宝贵的资源,并且其应用还有显著增长的空间。制药行业越来越认识到蛋白质组学在决策过程中的效用。在临床应用方面,蛋白质组学在发现工作方面具有巨大的潜力。然而,关于是否在临床环境中使用质谱或选择其他平台的争论仍将继续。这两种方法都应该探索,并根据实用性和有效性选择最合适的一种,常规且简单的技术可能更适合临床检测。值得注意的是,长期以来人们一直希望将高分辨率质谱技术整合到临床环境中。虽然这一目标过去设定为 10 年,但事实证明实现这一目标具有挑战性。供应商和研究人员一直在努力实现这一目标,但在临床实践中广泛采用的时间表仍不确定。总之,蛋白质组学领域是动态且不断发展的。未来 5-10 年,技术、应用领域和方法可能会取得进步, 灵活性、数据驱动的决策和创新对于塑造蛋白质组学研究的未来至关重要。
  • 全球质谱市场分析及前景预测
    质谱是一种被用于鉴别样品中各种化学成分的分析技术,同时也被用于样品中特定化学组分的定量。目前,质谱已成为分析实验室中研究化合物生物和化学性质的一种很常用技术,其中在生命科学领域,质谱主要用于蛋白质的测序和表征,如鉴定疾病中的关键蛋白并定量、改变表型及识别诊断标志物以便于治疗。  得益于临床诊断的广泛应用,MALDI-TOF发展最快  根据技术划分,目前的质谱技术包括气相色谱-质谱(GC-MS)、液相色谱-质谱(LC-MS)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)、三重四极杆液相色谱-质谱,四极杆飞行时间液相色谱-质谱、电感耦合等离子体质谱等。其中,MALDI-TOF是全球质谱市场中发展速度最快的细分市场,这主要得益于该技术在临床诊断领域中日益广泛的应用。  使用频繁&成本降低,制药成为质谱最大应用领域  按照应用划分,质谱的应用领域包括制药、环境监测、食品和饮料检测、生物技术、工业化学等。其中,制药行业是全球质谱市场中最大的应用市场,这是因为质谱在药物安全方面使用日益频繁,同时还降低了药物发现相关过程中的成本。  北美市场规模最大,亚洲市场增速最快  从地理区域角度来看,北美地区占据了全球质谱市场的主导地位,这是因为该地区的生物技术和生物医学领域的政府投资不断增加,而且蛋白质组学领域研发力度加大也推动了该地区质谱技术的发展,美国是该地区最大的质谱技术市场,加拿大其次。法国、德国、意大利、西班牙和英国占据了欧洲地区的主要市场份额。然而,亚洲市场在未来五年预计将成为全球质谱市场中增速最高的地区,因为很多企业在该地区设立生产工厂和研究中心,并且质谱制造商为促进质谱技术参与发起的展会日渐增多,这也为亚洲质谱市场的快速发展做出了贡献;日本、中国和印度预计将成为亚洲地区增长最快的质谱市场。  剖析:全球质谱市场中驱动力、制约因素  近来,全球质谱市场的主要驱动力包括生命科学研究领域的政府投入加大、医药行业的研发投入提升,同时人们对食品和饮料安全问题的日益关注也推动了全球质谱市场的增长。此外,质谱技术不断进步也刺激了终端用户的采用。  然而,仪器的高成本成为了全球质谱市场增长的关键制约因素,同时质谱操作技术人员的缺失也妨碍了全球质谱市场的增速。  主流制造商兼并整合成全球质谱市场发展趋势  全球质谱市场中的主要参与者包括丹纳赫、安捷伦、沃特世、赛默飞、布鲁克、珀金埃尔默、岛津、日本电子、日本理学、Bio-Rad等,这些主流质谱制造商之间的兼并整合日渐频繁,这将成为全球质谱市场的主要发展趋势。编译:刘玉兰
  • 1193万!布鲁克中标复旦大学超高灵敏质谱分析仪采购项目
    一、项目编号:0808-2241GJF32071(招标文件编号:0808-2241GJF32071)二、项目名称:超高灵敏质谱分析仪三、中标(成交)信息供应商名称:世威国际物流有限公司供应商地址:香港九龙通莱街1A/1L号威达商业大厦15楼8室中标(成交)金额:1193.9000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 世威国际物流有限公司 超高灵敏质谱分析仪 Bruke TimsTOFSCP 1套 11939000元人民币
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • BCEIA 新品奖,原位电离助力前沿质谱分析!
    在 BCEIA 盛会上,华质泰科以“原位检测”为主题,携 7 款产品亮相,并有 5 款产品获得“BCEIA2017 新品奖”。先来感受下展会盛况:展出产品现场交流BCEIA 分析测试仪器与 技术评议注重应用开发,搭建原位检测应用平台“我们引进国外先进的质谱技术,通过和国内不同市场的整合,刺激客户的需求。在与客户的不断交流中发现新的问题,从而开发具有中国特色的新部件和下一代产品,迎合一带一路的策略,走向全球各地。”—— 华质泰科总裁兼首席技术官刘博士“我们不只是担任仪器的销售代理,更希望能够从仪器的技术应用到生产制造,都发挥特殊的价值和作用。国家的发展带来了对分析仪器、分析技术的强烈需求,因此我认为新应用平台的搭建大有可为。”—— 华质泰科运营总监汤总前沿原位质谱部件,荣获五项“BCEIA2017 新产品奖”在 BCEIA 的颁奖晚会上,华质泰科有五款产品喜获“BCEIA2017 新产品奖”。这是华质泰科第二次荣获中国分析仪器行业新品奖,原位电离质谱技术能够再次得到专家和同行的肯定,令产品厂商及相关研究人员备受鼓舞。传播前沿质谱理念,共谋实时科学发展,是华质泰科一直坚持不懈的追求。我们致力于引领行业领域中先进的原位质谱技术潮流,为国内质谱行业的发展做出贡献。相关产品信息:HM4 或 Pearl 为第四代“超”高分子量 MALDI 质谱检测系统,基于独特的转换打拿极技术,扩展 MALDI 质谱检测质量上限到 250 万 Da 以上,实现 nM 浓度的超痕量、大分子抗体药物和蛋白质复合物的高灵敏度分析。在诸如蛋白质复合物测定、蛋白质相互作用、抗原抗体相互作用、蛋白质聚集分析、高分子量 MALDI 质谱成像、临床转化医学、生物制药,等领域的应用卓有成效。实时直接分析离子源(DART),兼容各主流质谱厂家的液质(LC-MS)质谱仪,用于快速、无损、原位分析固体、液体、气体、及异型样品中的极性、弱极性甚至非极性有机分子。适于食品、材料、体液、商品、农副产品、水产品、药品、理化、物证、化纤、玩具、临床、环境等等活性成分、功能组分或有毒有害化合物的快速定性、定量分析及快筛和确认。该技术不需要(像 ESI 那样)引入其他溶剂来影响离子的形成过程,真正实现直接、快速或无损、无接触分析。由于溶剂、基质(如蛋白质)、盐类对 DART 离子化过程不产生抑制效应,因而该技术对样品基质不需要进行特殊的前处理。DART 能充分实现几秒钟内的快速、高通量的样品分析,大大提高大批量样品的瞬时定量和定性分析能力。如某地商检用 6545 飞行时间质谱接 DART 源快速筛查并定量鸡蛋中氟虫腈,每个样本检测时间 6 秒(内)。而常规分析接色谱柱至少要 5 分钟才能完成每次检测,该(DART-QTOF)方法极大地提高了效率,真正意义上实现高通量。DESI (解析电喷雾电离) 为常压离子化技术,可直接原位分析固相或凝固相样品,用于药物代谢物分布、肽、脂质、和蛋白质分析,实现分子成像而不需(像 MALDI 那样)采用基质,保持样品的形态和特征无损,快捷获取器官、材料、和组织切片中的关键物质信息及分布信息。其独特的高分辨率成像功能可实现器官组织等基体中关键物质的快速分析,并能在多个质谱厂家(如 Bruker、SCIEX、Thermo、Agilent 和 Waters)的各型质谱仪上使用。flowprobe 流动微萃取探针离子源, 是一种实时的原位动态微萃取技术,是美国橡树岭国家实验室的 Gary Van Berkel 博士发明了静态液滴萃取表面分析(LESA)之后的又一创新发明。该技术基于液相微临界表面取样探针 (LMJ-SSP) 原理,其萃取效率在商品化的原位电离技术中首屈一指,适用于细胞、组织、聚合物等平面类样品的药物分布研究、癌症分析、微生物聚类分析等方面,并与主流质谱兼容(如 Thermo、Bruker 和 SCIEX 等)。多通道纳喷离子源 (TriVersa NanoMate,简称 TVNM) ,是基于芯片的多通道纳升电喷雾离子化 (Chip-based nanoESI) 技术,集液相色谱 (LC)、质谱 (MS)、芯片纳升注射 (Chip-based Infusion)、馏分收集 (Fraction Collection) 和液滴萃取表面分析 (LESA) 等众多优异功能于一身的新型高端质谱产品。LESA 能够实现极小量样品的多次重复测量,准确度高,重复性好,实现生物样品如组织切片、食品、材料表面等的原位、灵敏、直接、和高通量分析,可帮助解决围绕食品中的蛋白质、脂质、抗体、代谢物、药物残留、小分子质谱成像、药物在组织中的分布等生命科学中的问题。LESAPlus 添加了第五种功能 -- 用于液滴萃取表面分析后的进一步分离,对复杂体系、抗体分析、蛋白分析等等添加了新的第四维度的分离。AP-MALDI (常压基质辅助激光解析电离源)基于独特的脉冲动态聚焦技术,采用高效的固态 Nd:YAG 激光器,离子化更加连续稳定。调谐优化简便,可质谱成像,最高成像分辨率达10 μm。与各种质谱分析器相联,适于多肽、蛋白质、核酸、唾液酸神经节苷酯、低聚木糖、表面活性剂、聚合物等大分子以及氨基酸、寡肽、中性寡糖、植物皂苷等小分子化合物的原位、直接分析。
  • 质谱分析法又立功!新的帕金森病诊断尿液蛋白质标记物被发现
    普渡大学和Tymora Analytical Operations的科学家团队通过对尿液胞外囊泡(EVs)蛋白质和磷酸化蛋白质进行质谱分析识别了一组可用于诊断帕金森病的蛋白质标志物。该项工作于本月发表在Communication Medicine,其中详细介绍了研究工作。该研究的部分资助来源于迈克尔J福克斯帕金森研究基金会,该组织的一部分工作就是探究EVs分析是否能识别新型的帕金森病标志物。EVs是由细胞分泌到各种体液中,被认为能反映来源细胞的分子组成。鉴于检测源自癌细胞的外泌体中的蛋白质或核酸比检测患者血液或尿液中自由循环的癌细胞相关核酸或蛋白质可能更容易的想法,胞外囊泡已成为液体活检研究的一个热门领域。同样的思路也适用于神经退行性疾病,尤其是从血液或尿液样本中寻找这些疾病的标志物,血液或尿液相比于脑脊液易于获取,但含有的相关标志物浓度通常较低。总部位于印第安纳州威斯特拉法叶市的Tymora是普渡大学化学生物学和分析化学教授安迪陶(Andy Tao)实验室的衍生企业。Tymora的首席执行官是Communication Medicine论文的通讯作者之一Anton Iliuk。Tymora专注于EVs的蛋白质组学和磷酸化蛋白组学分析,将其作为研究服务出售给外部合作伙伴以及用于其内部生物标志物和诊断方法的开发工作。2018年,该公司及其合作者在Journal of Proteome Research杂志上发表了一项研究,在该研究中,他们在尿液中收集的EVs中鉴定出约860种磷酸化蛋白质和超过2,000种未修饰的蛋白质。迈克尔J福克斯帕金森研究基金会的研究项目副总裁Shalini Padmanabhan是该论文的作者之一,她表示,基金会的研究人员在阅读该研究时“对结果很有兴趣”,因为鉴定到的蛋白中包括几种与帕金森病有关的蛋白质。Padmanabhan指出,当时基金会已经收集了大量来自帕金森病患者的尿液样本,并由Tymora技术看到一个检验新方法(识别帕金森病患者EVs蛋白质特征相对于健康对照组的变化)的机会。研究人员使用Tymora的EVtrap技术从哥伦比亚大学欧文医学中心收集的82个尿液样本中分离出EVs(21个健康对照组,13个携带与帕金森病相关的LRRK2突变但健康的人,28名没有LRRK2突变的帕金森病患者和20名携带LRRK2突变的帕金森病患者)。EVtrap方法使用包被疏水和亲水基团的磁珠来结合EVs的脂质双层膜。该方法可灵敏且可重复地捕获EVs,同时限制高浓度循环蛋白的捕获,这是相对于其他一些EV富集方法的优势。在分离出外泌体后,研究人员在赛默飞Q-Exactive HF-X仪器上进行LC-MS分析其蛋白质。他们识别4,476个独特的蛋白质和2,680个独特的磷酸化蛋白质,从中筛选出48个潜在的标记物,并最终确定了6个最佳标志物。他们发现,这六个标志物组合可以在曲线下面积为0.94的情况下区分健康人群和帕金森病患者。随后,研究人员用两个实验验证了这些表现最佳的蛋白质和与帕金森有关的其它蛋白质。其中一个实验利用靶向质谱技术测定13名健康对照组和23名帕金森病患者的蛋白质,另一个实验使用免疫方法测定10名健康对照组和10名帕金森病患者的蛋白质。Tao 表示,他的实验室继续与哥伦比亚大学的研究小组合作获取更多的样本,并且正在与普渡大学的同事Jean-Christophe Rochet合作研究蛋白质聚集在帕金森病、阿尔茨海默病和Lewy小体痴呆等神经退行性疾病中的作用。Tao 和 Rochet 正在探讨的一个问题是外泌体是否可能成为突触核蛋白α-synuclein(α-syn)的有用来源。在帕金森病患者中,错误折叠的α-syn聚集形成路易氏小体在大脑中积累,被认为会引起神经元损伤,也被认为是潜在的药物靶标和生物标志物。对于帕金森病的诊断,α突触核蛋白种子扩增检测方法前景光明。该方法通过将来自患者的αSyn与正常αSyn孵育并观察其是否产生帕金森病的特征性聚集物。通常,αSyn突触核蛋白样品从患者脑脊液中收集,需要进行脊髓穿刺。这促使研究人员探索通过血液或尿液样品等微创性的方式收集这种蛋白质,其中外泌体是一种潜在的采样途径。Padmanabhan指出,“虽然α-synuclein的分布范围及与帕金森病生物学相关性的全面了解仍不充分,但已有人提出外泌体可能富集有α-synuclein,包括病理性形式。”她补充说,到目前为止,福克斯基金会将外泌体用作αSyn的样本来源的主要工作侧重于在血液中的外泌体,“血液中α Syn的存在已经有研究支持”。然而,她表示该组织“继续探索所有可能的CSF替代方案,以改进临床使用的检测,作为我们持续开展的突触核蛋白生物学研究项目的一部分”。CEO Iliuk表示Tymora不打算继续开发Communication Medicine论文中确定的标记物,但他指出,神经退行性疾病,特别是阿尔茨海默病,已成为Tymora内部生物标志物开发工作和为外部客户工作的重点。Iliuk指出,虽然血浆被广泛认为是临床诊断阿尔茨海默病生物标志物的最切实可行的替代样本,但帕金森病的研究显示了尿液EVs作为神经退行性疾病生物标志物来源的潜力。他说:“我们在血浆方面做了相当多的工作,我认为那是主要关注的地方。但是我们最近一直在研究尿液。现在还处于非常初期的阶段,人们对其作为一种可行的样本还存在很多犹豫,因为它距离大脑太远了,所以并不是一个合情合理的选择。但我认为帕金森病的研究表明神经退行性疾病的标志物可以传播到尿液中并被检测到。”福克斯基金会支持了许多其他在尿液中寻找帕金森病蛋白标记物的努力,包括2021年由马克斯普朗克生物化学研究所蛋白质组学和信号转导部门主任Matthias Mann实验室发表的蛋白质组学研究,该研究确定了几种潜在的帕金森病蛋白标志物。文章链接:https://www.nature.com/articles/s43856-023-00294-w
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制