当前位置: 仪器信息网 > 行业主题 > >

质谱分子泵

仪器信息网质谱分子泵专题为您提供2024年最新质谱分子泵价格报价、厂家品牌的相关信息, 包括质谱分子泵参数、型号等,不管是国产,还是进口品牌的质谱分子泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱分子泵相关的耗材配件、试剂标物,还有质谱分子泵相关的最新资讯、资料,以及质谱分子泵相关的解决方案。

质谱分子泵相关的资讯

  • 阿蛋学仪器 | 质谱的分子涡轮泵坏了怎么办?
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦! 阿蛋学渣,毕业于某大学化学院。屌丝男一枚,无才无貌,不文艺也不爱运动,五音不全,唯一的爱好是LOL。 百草阿蛋的师姐,学霸。标准白富美,善良、有爱心。娇滴滴的外表下有着一颗女汉子的心。质谱的分子涡轮泵坏了怎么办?阿蛋是个标准的学渣,走的后门才找到的某出入境的检测工作。老板让他管理API4000三重四极杆液质联用仪 (老板心真大) 。阿蛋看到这台大家伙也惊到了,“太高大上了,这东西即使在一线城市也可以换套房啦,装逼神器啊,够我玩好几年拉!”老板眼一瞪:“认真点,以后别整天就撸啊撸的,跟着你百草师姐好好学!”阿蛋赶脚这是要走上人生巅峰的节奏啊,“老板,我一定跟师̷̷姐好好学!”阿蛋拿起了天天撸的劲头,努力学习《仪器人的自我修养》,24小时不停的操机,结果........几个月后仪器基本没有维护挂了!仪器无法启动??!!!阿蛋彻底懵逼,赶紧找师姐救命,师姐也很紧张,“你也太会玩了,挑这么贵的坏,先找一下AB维修工程师看一下能否修好,一定要尽力减少损失,咱们单位是要做成本核算的,仪器坏了要扣你工资的!”“What?扣工资?要扣我几年吗?”“你算错了,就你那点工资,扣到你退休都不够”阿蛋顿时胸口浪潮翻涌,当场吐血三升!联系上了AB的王工程师,上门一通检测后.....“这仪器十几年了,可以考虑换新的了!” 阿蛋再吐血̷̷“让我去屎吧”好在师姐见过世面 “王̷哥̷,您再看看,您是我见过的技术最牛掰的工程师啦,您一定能修的好嘛!人家都没钱买化妆品拉,L”王工 “那是,你王哥修不好就没人能修好了,质谱没有坏,问题是出在分子涡轮泵负荷过热,泵油也没及时更换,烧坏了,我们厂家是不修泵的,消耗件而已,你只要买个新的就行啦,很便宜的!”(据说因为离子源设计导致AB的真空负荷相比其他品牌更大,AB的分子泵相对其他品牌更容易坏!)“那得多少钱呢?”“分子泵18万不打折,安装调试费3万,一共21万,货期6周”师姐:“那比整台仪器还是便宜很多,谢谢王哥,我先跟老板商量一下,到时再给你消息!”听到这里阿蛋又活过来了:“师姐,那我们赶紧跟老板申请费用吧”师姐小声回复“不要捉急,我听朋友说广州绿百草公司能修分子泵,就是做色谱耗材和仪器很知名的那家。”“广州绿百草吗?和你名字好像哦,师姐,不会是你开的吧?”“滚粗̷̷”阿蛋马上联系上广州绿百草公司,内外兼修的技术专家了解情况后给了两个方案“方案一、换新泵,这个分子泵型号是Varian TV801NAV,现在属于Agilent公司,我们打完折12万,包安装调试费。方案二、修泵,如果没有配件更换,维修费3万即可,1-2周搞定,质保期一年,如果需要更换配件,按照实际配件价格收费,大概5千-2万不等。”阿蛋把几个方案详细情况汇报给了老板,经过爱抠鼻和抠门的老板再三思虑后决定:“让广州绿百草修吧,跟他们耗材仪器合作的挺好的,售后一直很靠谱。”阿蛋主动要求将功折罪,陪同监督修理,作为随行记者,做了记录,并拍了照片。拆卸过程:分子泵标准维修项目:*超声波全面清洗转/定子叶片及腔体 并烘干 *马达线圈阻值测量,转子定子间隙测量*更换全套原装进口陶瓷轴承,密封件等损耗品 *6000-39000rpm/分钟全速动平衡分析及校准*根据ISO1940/1& ANSI S2.19,调整测试动平衡至G0.16标准*测试极限真空值1.0*10-7mbar*测试0-39000rpm速启动时间5分钟 *持续模拟生产现场测试24小时 *氦质谱检漏仪检漏,保证分子泵渗漏率小于2.0*10-9mbar*L/S*0-20KHz震动频谱加速度分析安装方式为:垂直90度异常更换部件:无分子泵TV801 SN:207962真空度5.40*10-7mbar隔膜泵测试分子泵对应电流为917mA分子泵渗漏率为9.0*10-10mbar*1/s结论:分子泵TV801 SN:207962,启动时间,分子泵电流,分子泵0-20KHz振动频谱,极限真空值等都在标准范围;维修测试项目全部通过,特批准出厂。最终,阿蛋在广州绿百草公司的帮助下花了3万元修好了质谱,他又可以开心的玩耍了!想知道阿蛋好不容易修好仪器后又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 电镜/质谱核心部件企业「昆泰磁悬浮」完成A轮融资:用于分子泵研发
    近日,昆泰磁悬浮宣布完成A轮融资,本轮融资由蓝驰创投领投,静雅创投、杭州金懿投资跟投。本轮融资将主要用于磁悬浮分子泵的研发及产能建设。杭州昆泰磁悬浮技术有限公司成立于2022年,是微特磁悬浮技术应用方案提供商。公司专注于系列化超高速磁悬浮电机的研发及应用,独有的微特磁悬浮技术平台历经核心技术团队十余年钻研打磨,解决了小型化、量产化、低成本三个限制磁悬浮广泛应用的关键障碍。公司已开发磁悬浮分子泵、磁悬浮氢气循环泵、磁悬浮厨电风机、磁悬浮纺机电机等系列磁悬浮产品,广泛应用于半导体、工业、精密仪器、氢能源、科研、家电等多个领域。昆泰磁悬浮系列化磁悬浮分子泵产品应用磁悬浮分子泵是半导体芯片制造、光学真空镀膜、质谱仪、电镜等精密仪器设备的核心零部件,随着半导体产业国产化进程不断推进,第三代半导体产业逆向超车、5G基站等新基建配套不断完善和新能源锂电池、光伏设备需求增长,国内磁悬浮分子泵已成为“百亿赛道”。但国内磁悬浮分子泵市场基本由国外五大品牌垄断,国产化率不足5%,属于我国经济安全的“卡脖子”问题。昆泰磁悬浮研制的具有完全知识产权的“超高真空磁悬浮复合分子泵”的“破坏性”技术创新特点具有无油、高效率、低成本、低噪声、低振动、大抽速等,颠覆了当前技术方案,可平替国外产品,拥有广阔的市场空间。昆泰磁悬浮创始人张寅表示:“昆泰团队经过十多年的磁悬浮技术研发及创新,成功研制出系列化磁悬浮分子泵、燃料电池氢气循环泵等多元化磁悬浮产品,随着我国产业转型升级的逐步推进,磁悬浮技术具有广阔的应用空间,磁悬浮技术的核心是一个没有接触的运动方式,没有磨损,意味着其生命周期更长、后期维护成本更低、能效更高,在整个中国产业对于能效要求越来越高的背景下,磁悬浮这一实用技术迎来了发展的好时机,可以推动整个产业的升级。”蓝驰创投表示:“磁悬浮技术作为新质生产力的典型代表,是世界各国争相研发的领域。昆泰磁悬浮团队既有多学科多领域的技术融合聚变能力,又有产品层面的工程化能力。作为A轮领投方,蓝驰创投非常看好昆泰磁悬浮团队,相信团队能够通过他们的产品推进磁悬浮技术走向更大规模的应用。”昆泰磁悬浮作为全球领先的微特磁悬浮技术提供商,在国家能源结构改革和绿色低碳高质量发展中将发挥重要作用,未来也将成为国家实现“双碳”战略的重要技术支撑,切实为中国经济高质量发展贡献力量。
  • 脂润滑复合分子泵研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="113"p style="line-height: 1.75em "成果名称/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "FF-63/70、FF-100/300脂润滑复合分子泵/p/td/trtrtd width="113"p style="line-height: 1.75em "单位名称/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "北京中科科仪股份有限公司/p/td/trtrtd width="113"p style="line-height: 1.75em "联系人/p/tdtd width="246"p style="line-height: 1.75em "朱国精/p/tdtd width="102"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "zhugj@kyky.com.cn/p/td/trtrtd width="113"p style="line-height: 1.75em "成果成熟度/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="113"p style="line-height: 1.75em "合作方式/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "□技术转让 □技术入股 □合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strong /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/06315faf-eb67-4064-9558-b88c09c9e90c.jpg" title="分子泵.jpg" width="350" height="243" border="0" hspace="0" vspace="0" style="width: 350px height: 243px "//pp style="line-height: 1.75em " 本项目产品为基于分析仪器行业应用的小型脂润滑复合分子泵,包括FF-63/70、FF-100/300两个型号。所涉及的关键技术主要有: br/ 1)涡轮级叶片、牵引级圆盘型螺旋槽气体输运特性分析; br/ 2)整体式涡轮转子的强度校核及高速铣削加工工艺; br/ 3)高速转子轴系动力学特性分析及减振结构设计; br/ 4)高速直流电机及驱动控制系统设计; br/ 其中,整体式涡轮转子高速铣削加工、高速直流电机及驱动技术达到国际一流水平。 br/ 项目产品主要应用于各类质谱分析仪器,为仪器正常工作提供必要的高真空环境,产品主要创新点如下: br/ 1)分子泵体积小、转速高,对氦气、氢气等小分子气体有较高的压缩比; br/ 2)采用整体复合型涡轮转子,并通过HSM600高速铣加工中心规模化生产,提高产品一致性和可靠性,同时较好的控制成本; br/ 3)对高速轴系设计轴向、径向相结合的复合减振方案,保证高速转子稳定运行。 br/ 产品主要性能指标如下 br/ strongFF-63/70 FF-100/300/strongbr/ 抽速 60 L/s 250 L/sbr/ 极限压力 5E-5 Pa 3E-5 Pabr/ 转速 ≥ 50700 转/分钟 ≥ 42000 转/分钟 br/ 振动值 0.1um 0.1um/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 项目产品为脂润滑复合型涡轮分子泵,主要为各类仪器和真空平台提供所需洁净的高真空环境,产品主要应用于质谱分析、表面科学、激光、薄膜沉积、实验室科研等领域。 br/ 据统计,2010年我国进口分子泵8000多台,其中40%用于各类分析仪器,并以每年20%的速度增长,而该领域分子泵长期被国外厂家垄断。本项目产品目前已实现销售27台,其中部分应用实现了对国外产品的替换。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 本项目产品完全自主研发,拥有完全自主知识产权。 br/ 暂无申请专利。/p/td/tr/tbody/tablepbr//p
  • 普发真空推出紧凑且性能强劲的新型涡轮分子泵 HiPace 300 H
    完美适用于高真空和超高真空 针对小分子气体的极高压缩比 残余气体谱极低2016 年 6 月可靠的高真空或超高真空在研发、分析仪器以及工业领域的大量应用中必不可少。普发真空推向市场的新型涡轮分子泵 HiPace 300 H 是目前抽速级别为 300 l/s 的分子泵中压缩比最高的。高达 107 的氢气压缩比使其适用于高真空和超高真空的获取。 腔体中的残余气体谱因该涡轮分子泵的高压缩比而变得极低,所以适用于例如质谱法应用。除了其他众多应用之外,HiPace 300 H 也特别适合用于粒子加速器。此外,还可选择带有外部电子设备的抗辐射版真空泵。得益于精密的转子设计,HiPace 300 H 具有高达 30 hPa 的前级泵兼容性。因此,在预真空压力较高的运行中,例如连接隔膜泵时,也能达到超高真空。HiPace 300 H 具有“间歇运行”功能,只有当预真空压力不够时,才接通前级泵。这使得整个真空系统的能耗降低了百分之九十。 HiPace 300 H 搭载了复合轴承。预真空端的陶瓷球轴承与高真空端的永磁径向轴承组合是十分牢固的轴承方案。这进而实现了更高的可靠性和更长的使用寿命。同时,启动时间也大大提速。因此,能使设备更为快速地准备好运行。远程控制功能和传感功能实现了对例如温度等泵运行数据的评估。
  • 中科科仪携分子泵新品亮相BCEIA 2017
    pstrong仪器信息网讯/strong 2017年10月10日,第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)在北京国家会议中心开幕。中科科仪(KYKY)携四款分子泵亮相BCEIA2017。仪器信息网编辑借此机会对中科科仪区域销售经理进行了采访。/pp  众所周知,我国高端分析仪器市场长期被国外企业所垄断,尤其是质谱分析仪器领域,国内企业起步一般比较晚,而且具备研发能力的分析仪器厂商也往往会采用国外企业提供的关键零部件,比如说分子泵......当然,不具备核心技术就缺少竞争力。长此以往,这将阻碍我们国家的科技水平提升与相关工业产业的发展。/pp  有鉴于此,中科科仪很早就推出了国内首台涡轮分子泵,并且不断革新技术与产品,解决了很多科研中的实际问题。在分析仪器领域,中科科仪目前已经和一批国内先进的质谱分析仪器厂商合作,打破了国外企业对于分子泵的垄断,推动了高端分析仪器的国产化进程。/pp  这次BCEIA展会上中科科仪展出了四款分子泵,最小的抽速是25L/s,最大抽速到300L/s。最小的口径是40mm,最大的口径是100mm。中科科仪分子泵型号分别以这两个参数命名。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/fe05f3b3-3523-4e0c-8904-b98fed685d43.jpg" title="1.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongFF-40/25型仪器专用分子泵/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/35934048-0bc6-4f63-8c1f-2c59ba6bf5e3.jpg" title="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongFF-100/300型仪器专用分子泵/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/28afd8da-2cff-45eb-95dd-d8ed2e35e050.jpg" title="3.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongFF-63/80型仪器专用分子泵/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/68b6e290-7073-4581-a4c9-fb8b1a7f0224.jpg" title="4.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongFF-100/150型仪器专用分子泵/strong/span/pp  据介绍,这四款专用分子泵几乎能够满足国内大多数质谱分析仪器对于真空度的要求。并且根据与国内分析仪器厂商合作的应用实验验证,结果显示:中科科仪仪器分子泵替换某国外品牌后,仪器灵敏度等关键指标均满足要求,目前单台无故障运行已超过两年。综合多家用户反馈数据,平均无故障运行时间(MTBF)已达6万小时。此外最重要的一点,它们在这种极端的情况下还能保持抽速的稳定性。/pp  目前,中科科仪的分子泵已经广泛地应用在科学仪器行业,包括为数不多的国产质谱联用仪,中科科仪也利用FF-40/25型仪器专用分子泵开发了氦质谱检漏仪,FF-63/80型仪器专用分子泵也经常会被设计添加一些新的功能模块,然后应用到很多行业内,比如:半导体镀膜、真空绝热、真空检漏、等离子体清洗等领域。/ppstrong一体化分子泵系列产品简介/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/ebf6954c-30eb-4c75-8ce8-899013d1a2a2.jpg" style="" title="5.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/3e8a6aac-13c8-4a93-ac50-00a1be6780d4.jpg" style="" title="6.jpg"//ppstrong中科科仪分子泵发展历程/strong/pp1977年:研制成功国内第一台立式F-160/450涡轮分子泵,通过科学院鉴定。/pp1983年:研制成功F-100/110涡轮分子泵通过中科院鉴定,首批应用于正负电子对撞机。/pp1986年:研制成功FF-160/500复合型分子泵。/pp1993年:研制成功F-250/1500涡轮分子泵,研制成功F-100/150检漏仪用涡轮分子泵。/pp1999年:研制成功F-400/3500涡轮分子泵,并通过省部级鉴定。/pp2000年:研制成功FF-160/620复合分子泵进入市场。/pp2002年:研制成功FF-200/1200复合分子泵。/pp2005年:研制成功FF-160/700任意角度安装分子泵,并通过国家省部级鉴定。/pp2006年:研制成功FF-200/1300任意角度安装分子泵,并通过省部级鉴定。/pp研制成功FF-250/1600型复合分子泵;研制成功FD-II控制器。/pp2008年:研制成功FF-160/500G型抗冲击专用分子泵;研制成功FF-100/110型任意角度安装分子泵;研制成功FD-II型自动识别控制器;承担国家“02重大专项”——磁悬浮分子泵的研发任务。/pp2010年:研制成功FF-250/1600B型复合分子泵;研制成功FF-250/2000型复合分子泵。/pp2011年:研制成功国家“02重大专项”成果CXF-250/2300型磁悬浮分子泵工程样机,并首次亮相十一五重大科技成果展。/pp2012年:研制成功FF-160/700F、FF-200/1300F、FF-200/1300N型复合分子泵;研制成功FF-200/1200G型抗冲击分子泵。/pp2013年:CXF-200/1400、CXF-250/2300型磁悬浮分子泵实现量产,在第12届国际真空展上正式推出,并进入半导体行业。/pp2015年:国内首家推出FF-40/25、FF-63/80、FF-100/150、FF-100/300系列一体化分子泵,并进入分析仪器行业。/pp2016年:研制成功CXF-320/3000型磁悬浮分子泵。/p
  • 普发真空推出新型涡轮分子泵 HiPace 80 Neo
    2021 年 8月5日,上海——近日,普发真空推出了寿命更长、振动更小、噪声更低的新型 HiPace 80 Neo 涡轮分子泵,同时问世的还有普发真空专为涡轮泵转子开发的 Laser Balancing™ 激光平衡技术。采用这项专利技术的相关真空泵特别适用于包括质谱分析、电子显微术、检漏仪和残余气体分析系统等对振动敏感的应用。 高度可靠的新型涡轮分子泵:安全、耐用、抗老化、体积小巧 在控温方面,HiPace 涡轮分子泵配备集成传感器,集成的转子温度测量功能可确保 HiPace 80 Neo 始终发挥最佳性能,保障其最高运行安全性。 在轴承方面,HiPace 80 Neo 的混合轴承由两部分组成:前级真空侧运用耐温高、转速高且寿命长的油润滑式陶瓷球轴承,而高真空侧则使用灵活、抗压强的永磁径向轴承。坚固耐用的轴承材料让 HiPace 系列涡轮分子泵的具备更高可靠性。 此外,相较于其他涡轮泵,HiPace 80 Neo体型更加小巧紧凑,可集成到各种便携式和移动式应用中。同时,该泵还具备自动配件检测功能的 Micro-USB 接口,在短短几步之内即可投入使用,为用户带来便捷和高效的使用体验。 在润滑方面,HiPace 80 Neo 配备一种新型高性能润滑剂,具备更高的抗老化性、更优化的润滑性能和更强的耐热性,进一步提升真空泵组的安全性能,而且各款 HiPace 80 Neo 泵均可免维护运行 5 年。 普发真空的 HiPace 80 Neo
  • 普发真空推出全新涡轮分子泵 HiPace 350 和 HiPace 450
    p  2020年12月10日,上海——普发真空推出全新 HiPace 350 和 450 涡轮分子泵,该产品特别适用于质谱分析、电子显微术、测量技术、粒子加速和等离子体物理方面的应用。新产品的应用领域十分广泛,除了用于分析、真空工艺和半导体技术外,还可用于真空镀膜、研发以及工业领域。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 400px height: 413px " src="https://img1.17img.cn/17img/images/202012/uepic/fed32ea3-dd7b-4c7d-9d8a-9720ddfe6ae2.jpg" title="图片 1.png" alt="图片 1.png" width="400" height="413" border="0" vspace="0"//pp/pp style="text-align: center "图:普发真空 涡轮分子泵HiPace 450 /pp  HiPace 350 和 450 性能强大、重量轻且占地面积小。凭借由前级真空侧陶瓷球轴承和高真空侧永磁径向轴承所组成的混合轴承,HiPace 系列涡轮分子泵的轴承非常坚固,确保了最佳的可靠性。/pp  创新性的转子结构设计赋予了该涡轮分子泵诸多优点:对小分子气体的抽吸能力更大、前级真空泵兼容性广泛、气流量高以及对小分子气体的压缩比极佳。由于可以安装在任意所需方向,该系列泵具有极佳的性价比和灵活性。/pp  “该系列涡轮分子泵具有理想的尺寸功率比。HiPace 350 和 450 是 300 至 700 l/s 吸力级别中结构紧凑的大功率涡轮分子泵,针对小分子气体具有绝佳的抽吸能力。”普发真空涡轮分子泵产品经理 Florian Henss 说道。/pp  HiPace 内置的驱动电子设备在不增加体积尺寸的情况下,提供了包括 ProfiNet 和 EtherCat 在内的大量通讯接口。通过遥控和传感器元件可以对泵数据进行分析,实现在运行过程中进行理想的工艺监控。它的运行噪音低,气体流量大,为真空行业树立了新的标准。该系列的各款泵均已获得 Semi S2、UL、CSA 和 Nema 12 认证。 /pp  此外,该系列各款泵均可以在客户现场进行轴承维护和轴承更换,并且均可免维护运行 4 年。/p
  • 2011中科科仪(华南)检漏仪及分子泵应用研讨会
    2011年5月25日,中科科仪(华南)检漏仪及分子泵研讨会顺利召开,此次会议得到珠三角广大客户的大力支持。在会上,中科科仪的技术人员就2011年中科科仪的新产品FF250/2000脂润滑分子泵,ZQJ-560氦质谱检漏仪进行了详细介绍,引起到会用户的广泛兴趣,并给予了很好的评价和关注。会场气氛热烈,大家积极讨论交流互动兴致盎然,会后,仍然有不少客户依依不舍,充分进行了沟通。此次会议,取得了很好的效果。同时,也让客户了解到我们在当地建立办事处服务本地化的优势,更加放心的使用我们的产品。
  • 中科科仪磁悬浮分子泵亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,北京中科科仪技术发展有限责任公司研制的磁悬浮分子泵亮相国家“十一五”重大科技成就展。磁悬浮分子泵  该产品属于科技重大专项“磁悬浮分子泵系列产品开发及产业化”的研究成果,由北京中科科仪技术发展有限责任公司负责研制,该项研究成果表明我国的磁力轴承技术已跨入国际先进行列。  关于北京中科科仪技术发展有限责任公司:  北京中科科仪技术发展有限责任公司位于北京市海淀区中关村北,成立于2000年12月28日,地处中关村海淀园腹地,占地40亩,是集科学仪器、真空相关设备研制、开发、生产和经营为一体的综合性高新技术企业。公司前身是中国科学院北京科学仪器研制中心(原中国科学院科学仪器厂),始建于1958年。在数十年的发展历程中,公司以雄厚的综合实力,在电子光学、离子光学和真空物理的技术工程等领域取得了众多科研成果,多次荣获国家、科学院及相关部门奖励。其中,成功研制出我国第一台扫描电子显微镜、第一台商品化氦质谱检漏仪、第一台涡轮分子泵 在“两弹一星”、“正负电子对撞机”等一系列重大国家工程项目研制中做出了突出贡献。
  • 普发真空为法国大型研究机构 GANIL 提供涡轮分子泵
    p   2020 年 5 月 13 日,上海——普发真空宣布,从法国大型研究机构 GANIL (国家大型重离子加速器) 获得了涡轮分子泵与特制真空腔室的大批量供货订单。/pp  位于诺曼底的法国国家研究中心 GANIL自1983年开始投入运行。与德国GSI亥姆霍兹重离子研究中心一样,它也是全球最大的重离子加速器研究机构之一。GANIL广泛开展了诸多国际合作,特别是与位于达姆施塔特的GSI共同开发的德国FAIR项目和法国SPIRAL2-DESIR项目。/pp  位于该研究中心的粒子加速器可产生大范围的离子束,专用于生成超重原子核。这些奇异核由高能粒子的碰撞而产生,在正常的自然条件下不会出现。加速器中生成的离子束用于聚变研究、天体物理学、材料科学、放射治疗、放射生物学以及原子和核物理领域内的基础性研究。/pp  DESIR设施将生成的离子束引导到各个试验中,这种离子束引导需要使用静电导向器和四极杆。为了使加速粒子能够在束流引导管 (beam lines) 中尽可能自由地移动,纯净的超高真空 (UHV) 必不可少。保持这种低压环境则必须依靠极其强大而可靠的真空获得技术。/pp  GANIL最终决定采用普发真空的 HiPace 700 M涡轮分子泵和真空腔体。普发真空科研市场经理Dirk Budelmann博士表示:“GANIL在未来研究计划中选择了我们的尖端技术,我们为此深感自豪。我们的涡轮分子泵将与特制真空腔体一起应用于 SPIRAL2-DESIR 新式直线加速器。”/pp  此次项目中所采用的HiPace M涡轮分子泵具有结构紧凑、高气流量和低能耗的突出特点。其磁悬浮轴承也被称为“主动式电磁轴承”,因为转子位置一直处在持续监控和实时调整之下。同时,自动不平衡补偿功能确保转子保持连续稳定的无磨损和低振动运行。此外,采用可靠的轴承技术,无需维护或油润滑。随着粒子加速器技术要求的不断提高,涡轮分子泵也得到了不间断的开发,从而使得各类应用都可找到与之匹配的普发真空定制产品型号。/pp/pp style="text-align: center " img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/c551fa41-f520-4a91-8778-f306fd1fbec0.jpg" title="图片 1.png" alt="图片 1.png"//pp style="text-align: center "图片说明:/pp style="text-align: center "SPIRAL2:GANIL 超导直线加速器 (© P.Stroppa/CEA)/p
  • 安捷伦推出新型智能连接涡轮分子泵
    p style="line-height: 1.5em text-align: justify "  近日,安捷伦推出两款新型的创新的的涡轮分子泵——TwisTorr 305 FS和TwisTorr 305 IC,它们均具有更紧凑的设计和更智能的功能。/pp style="line-height: 1.5em text-align: justify "  新款分子泵都具有智能连接功能,这是安捷伦涡轮分子泵的新功能。可以在手机上安装的名为Vacuum Link的应用程序使用户可以与泵进行远程通信,因此用户可以通过手机快速键入命令以及修改参数来控制泵。/pp style="line-height: 1.5em text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 450px " src="https://img1.17img.cn/17img/images/202002/uepic/74dbac4d-83df-424c-9b83-6d2b41dd9170.jpg" title="TwisTorr_305_FS_Turbo_Pump_1600px.jpg" alt="TwisTorr_305_FS_Turbo_Pump_1600px.jpg" width="450" height="450" border="0" vspace="0"//pp style="line-height: 1.5em text-align: justify "  TwisTorr 305 FS泵是独立设备,带有一个外部遥控器。TwisTorr 305 IC泵具有集成控制器,并且占地面积更小,因此适合原始设备制造商以及其他需要将泵集成到仪器中的用户。这些泵的紧凑设计意味着它们可以安装在较小的空间中并可以安装在任何位置。/pp style="line-height: 1.5em text-align: justify "  同时,新的产品具有一项高级功能,使用户可以提取日志文件,以便他们更便捷地共享泵的运行数据,还可以与安捷伦服务和支持团队进行快速沟通,从而缩短公司的响应时间。/pp style="line-height: 1.5em text-align: justify "  “将智能连接纳入这一新系列的涡轮泵是一个非常独特的创新,这意味着用户可以随时关注他们的实验,这些泵将为实验室数字化提供支持。”安捷伦真空产品部副总裁兼总经理Giampaolo Levi说。/pp /p
  • 安捷伦科技公司推出紧凑、可靠、高性能的真空泵换代产品 TwisTorr 84 FS 涡轮分子泵不仅满足大负载需求,且最大程度减小振动和噪音
    安捷伦科技公司推出紧凑、可靠、高性能的真空泵换代产品 TwisTorr 84 FS 涡轮分子泵不仅满足大负载需求,且最大程度减小振动和噪音 2015 年 3 月 26 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布推出一款小抽速涡轮分子泵的换代型号TwisTorr84FS。 TwisTorr 84 FS 融合一系列技术创新,显著提升性能表现和可靠性,尤其适合于更加严苛的学术应用和产业应用,诸如对振动要求苛刻的高分辨电子显微镜以及气载负荷有更高要求的气相色谱/质谱系统等一系列科学仪器。 这款全新涡轮分子泵的关键创新点之一是采用TwisTorr拖动级,使氢气和氦气等小质量气体的抽速和压缩比均有显著提升;同时也使分子泵可以实现高气体通量、高前级耐压、低功耗以及低运行温度。 此款分子泵的另一创新之处是采用全新的阻尼悬浮轴承技术,可在提升轴承可靠性、延长分子泵使用寿命的同时最大程度减小振动和噪声。这一全新轴承技术的突破性进展不但能够造就TwisTorr84FS分子泵卓越的可靠性,而且也树立了低振动的行业新标杆,因此亦可作为扫描电子显微镜等相关应用的不二选择。 安捷伦公司副总裁、真空产品部总经理 Giampaolo Levi 先生满怀信心地向业界宣布:“世界级的仪器需要高度可靠、高效节能的创新型高性能真空设备,而 TwisTorr 系列高真空涡轮分子泵恰恰能够满足这些要求。” 全新的TwisTorr 84 FS 分子泵将同时应用于安捷伦TPS-Compact以及Mini-Task分子泵机组中。 有关安捷伦真空产品的更多动态和解决方案,请访问真空产品门户网站:http://www.vacuum-choice.com 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • “黑科技”加持!安捷伦推出全新一代高真空涡轮分子泵 TwisTorr 704FS
    p  近日,安捷伦发布了全新一代高真空涡轮分子泵 TwisTorr 704FS。作为一款加持了诸多“黑科技”的全新产品,TwisTorr 704 FS 高真空涡轮分子泵在具有高性能、高可靠性的同时,还能做到更经济。/pp span style="color: rgb(0, 112, 192) " strong首先,高真空涡轮分子泵是什么?/strong/span/pp  涡轮分子泵是一种用来获取高真空的真空span style="color: rgb(0, 112, 192) "/span泵,典型的工作压力是 0.0001Pa、0.00001Pa,但在极限状态下,可以通过它实现 0.00000001Pa(大气压的十万亿分之一)的超高真空。涡轮分子泵可以用于各类质谱仪(比如 GC/MS、LC/MS、ICP/MS、TOF)、镀膜机、电子显微镜(SEM、TEM)、聚焦离子束系统(FIB)、表面分析仪器,高能物理实验装置、粒子加速器、高真空实验装置等诸多应用。/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201801/insimg/5cf204ae-44d7-41a5-8c28-e1b39ec0a091.jpg"//pp  高真空涡轮分子泵内有一个高速旋转(每分钟几万转)的转子,转子上有涡轮和拖动级进行抽气。随着技术的不断进步,市场不仅对泵性能的要求越来越高,更对其小型化、高可靠性、维护方便性及灵活易用性等都提出了更高的要求。下面就来看看,为了满足这些要求,安捷伦最新的高真空涡轮分子泵都“加持”了哪些“黑科技”吧。/ppspan style="color: rgb(0, 112, 192) " strong “黑科技” No.1 TwisTorr 拖动技术/strong/span/pp style="text-align: center "img title="002.png" src="http://img1.17img.cn/17img/images/201801/insimg/3d0d4557-01c6-4d6c-962c-ba1f517321e6.jpg"//pp  通常的分子泵拖动级采用圆柱螺旋形的沟槽,而安捷伦 TwisTorr 技术把拖动级放在了薄薄的圆盘上,这样就可以在有限的空间内集成多对拖动级转子盘和定子盘,节省空间的同时又能提高效率和性能。/pp  采用该技术的分子泵尺寸会更紧凑,并且有更高的压缩比和前级耐压。更高的压缩比(特别是对小分子气体的高压缩比)可以带来更好的极限真空,而更高的前级耐压允许使用更小的前级泵,从而降低了整个真空系统的成本和尺寸。/pp strong span style="color: rgb(0, 112, 192) "“黑科技” No.2 AFS 安捷伦悬浮轴承技术/span/strong/pp  一般的涡轮分子泵的设计,泵的轴承是通过过盈配合与转子及泵体轴承座紧密连接的,一旦泵体有振动或冲击,这些振动就会传递到轴承,并且通过轴承传递到转子。由于涡轮分子泵的轴承和转子都在高速转动,对振动特别敏感,传递到轴承的振动会影响轴承的寿命,传递到转子的振动会造成转子发生位移,甚至会与泵体或定子接触。而一旦高速转动的转子与其它静止的部分接触,巨大的冲击力会立即造成转子叶片的破碎,整泵也随之报废。/pp style="text-align: center "img title="003.png" src="http://img1.17img.cn/17img/images/201801/insimg/2f765696-2dde-49f1-8545-db3da932f3ae.jpg"//pp  安捷伦 AFS 悬浮轴承系统,采用特殊的弹性材料隔离转子与泵体,避免转子和轴承受到从泵体传来的冲击 并且由于弹性材料的阻尼效应,可以吸收各种振动的能量,降低整泵的噪音和振动,保证最佳的轴承工作条件,从而能延长工作寿命,最大程度减少系统停机时间,确保长时间工作的稳定性。/pp span style="color: rgb(0, 112, 192) "strong “黑科技” No.3 特殊润滑剂永久润滑轴承/strong/span/pp  使用涡轮分子泵的高真空环境对润滑油或润滑脂非常敏感,因为在高真空环境下,润滑油或润滑脂非常容易汽化。一方面,这些油脂类的蒸气会形成一种气源,影响系统的真空度和纯净度 另一方面,这些蒸气进入到真空腔体后,会冷凝附着在其它零件上,影响高真空系统内相关设备的工作。/pp style="text-align: center "img title="004.png" src="http://img1.17img.cn/17img/images/201801/insimg/b09d5b2c-57ba-4769-bc01-8eb95b90c17c.jpg"//pp  TwisTorr 704 FS 采用安捷伦与轴承厂家合作研发的特制轴承,能够任意方向安装 并且,由于其使用的特殊润滑剂饱和蒸汽压极低,正常使用时几乎没有损耗,使得该泵在整个寿命周期内都无需进行加注润滑脂、更换油棉等维护。/pp span style="color: rgb(0, 112, 192) "strong “黑科技” No.4 分子泵控制器 “3D” 控制软件/strong/span/pp  早期的分子泵控制器又叫分子泵电源,其最重要的功能是向分子泵供电 后来,改进型的控制器具备了一定的保护功能,可以监控分子泵的功率和温度,相当于为分子泵的工作状态设置了一条红线,分子泵只能在这条线以下工作(2D),若超过这条线控制器就会报警停机。/pp style="text-align: center "img title="005.png" src="http://img1.17img.cn/17img/images/201801/insimg/89e6022e-5292-4b51-853e-d51b24d18729.jpg"//pp  与 704FS 配合工作的安捷伦新一代分子泵控制器,变被动保护为主动调整,可以根据不同的工艺条件,自动调整输出功率和转速,使泵在保证自身安全的同时,始终工作在一个达到最优性能的曲面上(3D),达到最佳的气载量和压缩比。同时因为避免了分子泵超负荷运行,可以延长其使用寿命。/pp  与 704FS 同时发布的还有 804FS 和 404FS,加上之前的 84FS 和 304FS,形成了一个完整的系列。/pp style="text-align: center "img title="006.png" src="http://img1.17img.cn/17img/images/201801/insimg/60488220-3a68-4e89-be10-6dc30b3ebf90.jpg"//p
  • 生产1000余台样泵用于测试 安捷伦新型分子泵测试方法大揭秘
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "安捷伦真空最近推出了一款全新涡轮分子泵 TwisTorr 305,它在继承了安捷伦TwisTorr 系列分子泵超高真空、高压缩比、全无油润滑等优点。同时,TwisTorr 305 还是安捷伦采用全新设计和制造方法所推出的第一款真空产品。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "strongspan style="color: rgb(0, 112, 192) "产品生命周期设计方法/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "传统的产品设计和开发过程,常被当作是研制产品的一个步骤,因为产品的设计者不可能对上市时间、质量与可靠性、生产成本、售后及易维护性等全盘掌握,使用传统过程设计的产品在投入生产时不可避免的需要进行反复的修改。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "产品生命周期设计方法通过提议、调查、实验室原型、生产原型、试运行和量产六个步骤来推动和追踪设计过程,而在这些设计过程推进时,采用各种各样的测试和多个部门参与的交互式讨论和分析来决定产品设计方案和方向,而这其中的关键就是各种测试。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "span style="color: rgb(0, 112, 192) "strong1000余台样泵/strong/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "为了验证各种不同的设计,安捷伦执行了远超行业标准的大量测试,在量产之前陆续生产了多达1000 余台样泵,对各项结构和功能参数进行测试和分析,最终产品定型时,仅选用了结果最佳的结构和方案。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 306px " src="https://img1.17img.cn/17img/images/202004/uepic/0f95cc93-ad5c-41e5-adee-39ecdd364486.jpg" title="1. 安捷伦.png" alt="1. 安捷伦.png" width="600" height="306" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "strongspan style="color: rgb(0, 112, 192) "真空泵常规性能参数测试/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "抽速、压缩比等性能参数是分子泵设计之初就要首先考虑的,也是各项设计调整优化的重要目标。最终产品定型时安捷伦对外发布的各项参数和曲线,比如下图的抽速和压缩比曲线,都来自于这些测试的结果。这些测试都有相关的国际标准,在此不再展开描述。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 275px " src="https://img1.17img.cn/17img/images/202004/uepic/da9f499c-6658-44a2-8162-5cbeb09d12e5.jpg" title="2 安捷伦.png" alt="2 安捷伦.png" width="600" height="275" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "strongspan style="color: rgb(0, 112, 192) "扩展测试/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong寿命测试/strong span style="text-indent: 2em "在通过对有统计学意义数量的泵进行加速寿命测试(长时间暴露于加速损坏的条件下),对泵的可靠性进行验证。该测试可确保泵无故障运行的平均时间超过五年。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong冲击测试/strong span style="text-indent: 2em "对一批泵在运行和非运行条件下进行一系列测试,证明泵的抗冲击性。每个泵受到 30–120 g 的加速度,相当于从82 厘米/32 英寸高跌落(处于非运行状态的泵)和从 15 厘米/6 英寸高跌落(处于运行状态的泵)。在泵处于垂直、水平和倒立状态时,各进行 6 次冲击测试。所测试的泵在 24 次跌落后无任何问题(不发生转子机械接触,泵运行状态不变)。在每次跌落后验证泵的不平衡性,结果表明变化极小,远低于阈值。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong抗振动测试 /strongspan style="text-indent: 2em "通过对一批泵(处于运行和非运行条件下)进行一系列测试,证明对外部源产生振动的耐受性。在 105 分钟的振动周期中,全转速和不运行的每个泵在垂、水平、倒立方向上受到 0.5–2 g 加速度水平的振动。该测试证实了泵的稳定性以及耐振性,因为未观察到转子机械接触或泵运行状态的改变,且泵不平衡性仍然远低于阈值。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong温度测试 /strongspan style="text-indent: 2em "将泵置于 –40 ° C 至 +70 ° C(处于非运行状态)以及 0 ° C至 40 ° C(处于运行状态)下暴露 86 小时。对每个泵的不平衡性和是否可正常操作验证 11 次,结果显示仅存在极小的变异,远低于阈值。温度测试证实了泵在各种预期运行和非运行温度条件下的稳定性。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong傅立叶振动分析/strong span style="text-indent: 2em "在制造过程中以及泵运输前的最后测试中,对每台泵的振动频谱进行验证。全速下的平均最大振动水平:0.4 m/s2。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong噪音测试 /strongspan style="text-indent: 2em "通过在以下 12 种不同运行状态和方向下对一批泵进行一系列测试,来验证泵噪音:垂直、水平和翻转位置;高温和低温;全速和低速。在正常运行状态下,168 次测量得到的平均噪音为 41 dB(A)+/-3σ。/span/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "strong包装测试 /strongspan style="text-indent: 2em "通过对带包装的泵进行测试来验证包装性能,在测试时,使带包装的泵从 96 厘米/37.8 英寸的高度以各种角度跌落 18 次。装有 TwisTorr 305 的包装箱可承受 30 g 的加速度,以确保在运输过程中不会因跌落或暴力运输而损坏。/span/pscript src="https://p.bokecc.com/player?vid=4124B2ADECC6F6FD9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=700&height=550&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/script
  • 安捷伦科技推出涡轮分子真空泵系列
    安捷伦科技推出涡轮分子真空泵系列 2010 年 8 月 26 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日宣布推出全新的涡轮分子高真空泵系列,特别适合需要对氢气有极高压缩比的超高真空(ultra-high vacuum,UHV)应用。 使用已获专利的 TwisTorr 分子拖动技术,安捷伦已经开发出 Turbo-V 750 TwisTorr、Turbo-V 850 TwisTorr 和 Turbo-V 2300 TwisTorr。新型涡轮分子泵体积非常紧凑,同时极大地提高了抽气效果,显著改善了性能。涡轮分子泵可用于多种应用,包括分析仪器、薄膜沉积、空间模拟、核聚变研究、粒子加速器和同步辐射光源,以及其它工业应用。 &ldquo TwisTorr 技术的诞生代表复合式涡轮分子泵的发展向前迈进了一大步,&rdquo 安捷伦真空产品部副总裁兼总经理 Giampaolo Levi 说,&ldquo 安捷伦致力于提供创新的真空解决方案,在最紧凑的体积范围内,呈现无与伦比的性能和高压缩比。&rdquo 创新的 TwisTorr 技术通过非常紧凑的转子设计获得高抽速,降低了能耗和节省了空间。较高的前级压力耐受使 TwisTorr 系统可以使用更小巧、成本更低的前级泵,进一步减小了系统体积。TwisTorr 泵的特点还在于采用了独一无二的轴承和干式润滑悬挂系统,无需维护,消除了润滑油带来的污染风险,并且可以安装在任何方向。 此外,Turbo-V 2300 TwisTorr 泵具有专用的机架控制装置,使其成为加速器和同步加速器光源以及其它放射性应用的理想选择。 Turbo-V 750 TwisTorr 和 Turbo-V 850 TwisTorr 配有全内置48V 直流控制器,因而自成独立的抽气系统,也可以是配备通用电压机架控制装置的独立泵。Turbo-V 750 TwisTorr 和 Turbo-V 850 TwisTorr 的高性能使其应用范围非常广泛。需要系统集成的 OEM 客户可以通过内置式的控制器把真空泵集成到系统中,诸如分析仪器、薄膜沉积和表面分析。需要手动操作的研究机构和大学实验室可以使用全机架控制器解决方案。 TwisTorr 系列将于九月面世。关于安捷伦科技公司 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2009财政年度的业务净收入为45亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 质谱成像:沃特世全谱图分子影像系统介绍
    pstrong  span style="color: rgb(84, 141, 212) "全谱图分子影像/span/strong  /pp  全谱图分子影像系统将多种分析技术整合至同一仪器平台并进行了优化,能够更好地了解细胞功能和生理机能,或监测整个组织或器官中的药物化合物分布情况。它可以结合多种成像技术获得全面分析结果。 /pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/222f22ae-9fa8-40b9-a478-bfe553697df5.jpg"//pp style="text-align: center "strong小脑中三种脂质离子的特定分布叠加图像/strong/pp  沃特世全谱图分子影像系统通过将MALDI™ 、DESI、离子淌度质谱技术和信息学工作流程整合入单个系统,可以带来其它任何单一影像技术都无法企及的详细分子信息。全谱图分子影像系统可用于:/pp  发现、识别并测定目标分子的空间分布;/pp  有效研究各种大分子和小分子;/pp  无需标记探针即可进行成像研究;/pp  可从单个样品获取尽可能多的信息;/pp style="text-align: left "  获得关键化合物的最终分子分布。 /pp  全谱图分子影像功能能够帮助用户更加深入地了解癌症潜在机制,并能够通过测定细胞和组织中的分子转运发现心血管疾病以及神经退行性疾病。在其它研究中,全谱图分子影像系统可根据分子组成对不同的组织类型进行鉴定,也可以区分病变和正常组织。 /ppstrong  span style="color: rgb(84, 141, 212) "全谱图分子影像技术/span/strong/pp  全谱图分子影像系统可用于Xevo G2-XS或SYNAPT G2-Si质谱平台。如有需要,上述全谱图分子影像系统完全可作为标准ESI-TOF仪器用于除分子成像之外的其它应用。/pp  全谱图分子影像系统与质谱技术结合后非常适用于分析特定类型的分子(多肽、脂质、小分子代谢物和糖类等等),这两项技术相互补充,可为质谱成像提供最全面的信息。 /pp  strong全谱图分子影像系统可采用的技术包括:/strong/pp  strong基质辅助激光解吸电离(MALDI)成像/strong/pp  MALDI成像技术利用激光直接电离法分析化学基质包被样品中的分子。MALDI成像技术是公认的质谱成像应用标准技术。/pp  利用MALDI质谱成像技术直接生成组织截面的图谱是一种直接从生物学基质研究其大、小分子空间分布的强大工具。质谱数据图像的描述作为二维图像,允许从视觉上确定其分子的空间分布。不像昂贵耗时的传统空间图谱方法,如放射自显影术、闪烁计数器,它不需要放射标签。/pp  MALDI SYNAPT™ HDMS™ 系统成像设备,为小分子、药物及其代谢产物提供了最佳的特异性和灵敏度。MALDI Q-Tof Premier™ 质谱仪,利用一个能够进行快速数据采集的200赫兹固态激光器,可以方便地提取质量、强度和位置等信息。提取的数据可以输入适当的软件包,如用于图像生成和操控的BioMap(Novartis)。其技术优势为:/pp  卓越的空间分辨率;/pp  适用于分析多种分子类型;/pp  尤其擅长大分子成像。/pp  strong电喷雾解吸电离(DESI)成像/strong/pp  DESI成像技术利用溶剂电离喷雾直接进行成像,此电离技术无需进行样品预处理。沃特世在传统DESI成像技术的基础上强化了其功能性,赋予该创新型成像方法以更好的可用性和性能。使用DESI成像技术的部分优势:/pp  最简单的样品制备过程;/pp  擅长脂质和小分子成像;/pp  可在同一个样品上进行多个成像实验。/pp style="text-align: center "img title="DESI_MaldiWorkflow_White.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/d38df7b4-3558-4637-9e34-f18a3c1bd077.jpg"//pp style="text-align: center "strongDESI-MALDI流程图/strong/pp strong 离子淌度技术的质谱成像/strong/pp  离子淌度可为成像研究增加另一个维度的分子分离,此技术能够根据分子大小和形状对其进行分离分析。离子淌度技术可用于消除干扰或分离目标分子用以通过更加严格的审查,利用更强的分子区分能力来提升成像系统分析性能。离子淌度可用于:/pp  消除图像中的干扰分子;/pp  区分结构极其相似的分子(例如脂质等);/pp  分离特定类型的目标分析物。/pp style="text-align: center " img title="1Triwave_Figure10_lg_700.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/4aeda8b7-4c91-428b-a85a-5c896fac8c01.jpg"//pp style="text-align: center "strong离子淌度分离技术/strong/pp  与UPLC/MS不同,质谱成像在电离前不涉及任何形式的分离。由于观察的详细程度和可能的背景干扰,产生的数据通常非常复杂。SYNAPT HDMS实现了MALDI和DESI成像与离子淌度质谱的强大结合,离子可以按质谱成像实验中的化合物种类和电荷进行气相分离,提供单独的质谱不具备的选择性水平。该技术可以使得到的成像数据更清楚,可以更精确地看到背景存在下的分子分布。/pp style="text-align: center "img title="1DESI-Systems.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/955d4a17-0825-444a-acef-9c6f1de56666.jpg"//pp style="text-align: center "strong全谱图分子影像系统所采用技术/strong/pp  span style="color: rgb(84, 141, 212) "strong全谱图分子影像系统组件/strong/span/pp  strongSYNAPT G2 Si质谱仪/strong/pp  SYNAPT平台是一款功能强大且非常灵活的仪器,可配备各种选件(MALDI、DESI、离子淌度技术)进行成像研究。这款强大的系统可根据具体需要添加任意数量的配置,能够最好地满足几乎任何实验室对分析性能的要求。SYNAPT G2-Si在所有成像模式中均表现出众,是唯一能够将离子淌度功能与成像技术充分结合的系统。基于SYNAPT的全谱图分子影像系统非常适用于蛋白质组学、代谢组学、细胞生物学、生物化学乃至临床研究病理学和组织学应用,是质谱成像研究的终极解决方案。/pp  strongXevo G2-XS QTof质谱仪/strong/pp  Xevo G2-XS QTof是一款高性能、高灵敏度分析平台,专为某些最具挑战性的成像研究而设计。全谱图影像系统借助Xevo G2-XS QTof出色的分析性能并结合DESI成像技术,能够对整个样品和组织中的小分子分布进行研究,尤其适用于脂质组学、代谢组学和药物分布研究。/pp style="text-align: center "img width="200" height="345" title="_1rgp8465_ian2.jpg" style="width: 200px height: 345px " src="http://img1.17img.cn/17img/images/201708/insimg/055e40bb-04f6-471f-8746-0b498bd9c17c.jpg" border="0" vspace="0" hspace="0"/ /pp style="text-align: center "strongXevo G2-XS QTof质谱仪/strong/pp  strongHDI成像软件/strong/pp  这款功能强大且直观的软件包中含有针对复杂成像数据进行高效、快速数据分析时所需的全部数据分析和先进统计工具。HDI软件简单易用且专门为质谱成像而开发,可查询多维度数据,并能够轻松给出丰富详实的图像和统计数据,这些都使得质谱成像技术成为一项极具前景的分析技术。/pp style="text-align: center "img title="1WG_HDI_Software_schematic_950px.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/78843426-0455-43b6-af8d-930c34f8143a.jpg"//pp style="text-align: center "strongHDI成像软件/strong/pp /p
  • 中科科仪国内首台磁悬浮分子泵研制成功
    5月15日至17日,第十二届国际真空展览会在北京国家会议中心举行,中科科仪在展会上首次推出了国内第一台磁悬浮分子泵产品,填补了国内在该领域的空白,被《科技日报》、《人民网》、《新华网》等国内多家主流媒体报导或转载。  以下内容摘自《科技日报》:  5月17日,记者在第十二届国际真空展览会上看到,展览展示了真空科技在机械、电子、冶金、航空、航天、轻工等各个领域中的应用项目以及与真空技术有关的新工艺、新材料和新产品。参展商展示了国内首台具有高洁净、低振动、免维护、转子自动平衡、断电自动保护、任意角度安装等特点的最新型磁悬浮分子泵。
  • 谭蔚泓:基于核酸适体质谱条形码的精准分子分型
    近日,湖南大学谭蔚泓院士团队与浙江大学医学院附属第一医院黄河教授团队开发了一种基于核酸适体的质谱流式技术,用于单细胞的细胞表面蛋白分析,旨在为疾病的精准分子分型提供一个新的平台技术。该方法不仅能够实现培养细胞的分子分型和分类,还能结合机器学习,实现临床样本亚型的分类。该方法极大地扩展了核酸适体的应用领域,并为疾病的分类和诊断提供了新方法。  背景介绍:  高度异质性是恶性肿瘤的重要特征,同一疾病的不同亚型可能对临床治疗有着完全不同的反应。因此,疾病的精准分子分型对其诊疗研究具有重要意义。虽然基因组测序和转录组测序已经成为最常用的分类策略,但它们无法提供蛋白质的表型和功能数据。单细胞水平的膜蛋白分析将为疾病分型提供重要信息。流式细胞术提供了高通量的单细胞测量技术。然而,由于荧光光谱重叠问题,限制了荧光流式细胞术的多元分析能力。质谱流式作为一种先进的替代方法,具有信号重叠小和细胞背景噪声低等优点,已展现出在一次实验中同步测量超过40个细胞参数的能力。尽管质谱流式技术在多路复用单细胞分析中的巨大潜力,但其在肿瘤分类中的潜力受到识别探针种类不足的限制。  核酸适体作为一种新型的识别配体,具有特异性高、合成简单、免疫原性低、修饰方便等优势。此外,以完整的活细胞为筛选对象,可以通过Cell-SELEX(指数富集配体进化技术)获得大量能够特异性识别细胞膜蛋白标志物的核酸适体。  本文亮点:  基于以上研究背景,湖南大学谭蔚泓院士团队联合浙江大学医学院附属第一医院黄河教授团队设计、合成了一种由二乙烯三胺五乙酸(DTPA)基元组成的聚合物,用于螯合多个金属离子。然后,选择了一系列识别不同细胞表面生物标志物的核酸适体,每个适体分别与螯合了不同金属离子的聚合物偶联(Apt-MICP)。最后,评估了基于Apt-MICP的细胞表面蛋白分析在培养细胞和临床样本中用于血液恶性肿瘤(HM)精确分类的潜力(图1)。图1. 基于核酸适体的质谱流式分析技术用于血液恶性肿瘤的分子分型作者首先对聚合物进行了设计与合成,并通过点击化学将其与核酸适体相连(图2a)。利用琼脂糖凝胶电泳和高效液相色谱对产物进行表征,证明了sgc8c-MICP的成功合成(图2b,c)。同时,在核酸适体上修饰上荧光基团,利用荧光流式验证了sgc8c-MICP仍然能够靶向CEM细胞,而不会结合Ramos细胞(图2d,e)。图2. sgc8c-MICP的合成与表征  在证明了该策略的有效性之后,作者挑选了15条相关的核酸适体,将其连接上螯合了不同金属离子的聚合物,得到15条Apt-MICP。将15条核酸适体联用,依次对8种血液恶性肿瘤细胞系进行结合,通过质谱流式进行分析。将得到的结果进行归一化,并用热图进行展示(图3a)。利用viSNE降维分析方法对分型结果进行分析,实现8种细胞的区分(图3b)。结合无监督的主成分分析方法,实现血液恶性肿瘤细胞系更精确的区分(图3c)。图3. 血液恶性肿瘤细胞系的细胞表面特征分析及分类  利用上述合成的15条Apt-MICP,结合五种相关的抗体,实现了31例血液恶性肿瘤临床样本(包括AML、ALL、B淋巴瘤以及CML四种亚型)的分子分型(图4a)。由于临床样本的异质性高,作者利用机器学习的方法进行PLS-DA建模,并成功将四种亚型的样本区分开来(图4b),总体准确率达到了100%(图4c)。图4. 临床样本训练集的分子分型和分类  为了进一步验证该模型的有效性,作者又收集了15例临床样本,得到了分子图谱(图5a)。将分型结果输入到模型当中,实现对每个样本亚型的判定,总体准确率达到了80%(图5b)。图5. 临床样本测试集的分子分型和分类  总结与展望:  综上所述,该研究开发了一个基于核酸适体的质谱流式检测平台,用于精确的癌症分类。作者合成了一系列核酸适体-金属标签探针,并证明了它们在细胞类型特异性结合以及质谱流式检测方面的良好性能。通过用15个核酸适体探针分析细胞表面特征,可以很好地区分8个HM细胞系。此外,通过结合机器学习(PLS-DA),对HM临床样本的四个亚型构建了一个高质量的分类模型,在训练集中分类总准确率为100%,在测试集中分类总准确率为80%。基于这些结果,基于核酸适体的质谱流式平台有望在其他疾病的分类和诊断中得到广泛应用。该工作以Research Article的形式发表在CCS Chemistry。
  • 普发真空推出用于质谱仪系统的大功率真空泵 Hena 50 和 Hena 70
    p  strong仪器信息网 /strong2020年4月17号,上海——近日,普发真空推出全新单级油封式旋片泵Hena 50 和 Hena 70。这两款泵专为质谱仪系统的高要求而设计,根据尺寸和转速的变化,抽速在 32 m³ /h和 59 m³ /h 之间,其集成的油雾分离器可确保排气清洁。泵本身同时配备变频器,能够在全球范围内以单相输入和相同的50和60 Hz额定功率使用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/63eb4489-ba8f-4181-97e9-95e712987da1.jpg" title="图片 1.png" alt="图片 1.png"//pp/pp style="text-align: center "图片说明:Hena 普发真空旋片泵/pp  Hena系列真空泵性能高且极为可靠,这源自于其在目标压力范围内的恒定的高流量、可调节抽速和低末端真空度。另外,泵中的高油量及低油温的运行方式也确保了较长的维护间隔和运行时间。/pp  凭借自身出色的牢固性和可靠性,Hena 50 和 Hena 70 可以提高整体可利用性。同时,由于它们较低的噪声水平和高效的油分离器,也能轻松进行集成。Hena 50 和 Hena 70 已通过 UL(美国保险商试验所) 和 IEC(国际电工委员会) 61010 认证,多个世界化标准组织的认可表明了普发真空Hena 50和Hena 70单级油封式旋片泵的安全与可靠,是各类实验室的理想之选。/p
  • 离子源和涡轮泵的创新——岛津发布高分辨气相色谱质谱联用仪GCMS-QP2020
    岛津制作所(SSI)宣布发布新型高分辨气相色谱质谱联用仪GCMS-QP2020。该仪器的创新之处在于配备了专用多功能离子源、专利高速扫描控制和新超快分子涡轮泵。集这些创新点与综合数据库、多功能样品进样装置于一体的整体系统能够为环境、食品和法医等领域的实验室提供卓越的仪器性能和量身定做的配置需求。  GCMS-QP2020的质谱配备的新型大容量分子涡轮泵能实现更高效的抽真空功能。这一特点显著提升氦气、氢气、甚至是氮气作为载气时的仪器性能。泵的微分排气系统能在使用任何载气时实现分别排空离子源和四极杆系统以达到最佳仪器条件。  专利离子源技术使得GCMS-QP2020获得了稳定的高灵敏度分析能力。此技术为离子产生提供了稳定的空间,防止离子源交互带来的污染,并能够在不卸真空的情况下实现离子源模式切换。操作人员可在不浪费卸真空和换源时间的情况下做快速化学源分析(Quick-CI)。Quick-CI 功能使操作者在使用EI源时可通过引入试剂气体找到分子离子。另外,智能SIM(选择离子监测)功能可自动生成高灵敏度的多组分交互SIM分析程序。  “此系统的创新为研究者们带来了更多方便。在智能SIM功能提高了灵敏度的同时,Quick-CI给操作者带来了更长的运行时间。” 岛津制作所市场副总裁Terry Adams说。“系统不仅具有智能SIM、节能模式等特点,还结合有能配合各类载气的强劲新型分子涡轮泵、卓越的系统稳定性。用户可以通过使用此系统有效的节省资金并提高实验室效率。”  改进后的GCMS解决方案软件为GCMS-QP2020提供了更加直观的操控系统。专业并可供选择的数据库能够为大多数的色谱柱提供附加的保留指数。这些保留指数能够支持高精度的定性分析、定量方法开发和筛查。用户可根据需要选择进样设备来满足特定的分析需求。  编译:郭浩楠
  • 质谱新应用:“窃听”微生物分子之间的“交谈”
    除了一张跑步机办公桌,皮特德利斯特恩(Pieter Dorrestein)在加利福尼亚大学圣迭戈分校(UCSD)的办公室并没有什么特别:一张圆形工作台周围摆满了椅子,书架上满是期刊、论文和书籍,还有许多表彰他个人及其工作的奖章。  但一旦他开始给来访者演示他的工作,一切突然就变得神奇了起来。他在电脑上打开一份3D的空间展示画面:画面中有四个人围坐在桌子旁,其中一个就是德利斯特恩本人——他们看起来就像是被溅上了颜色鲜亮的油漆。为了制作这个画面,研究人员将房间的每个平面,甚至包括屋子里的人用棉签擦拭了几百次,然后用质谱技术分析棉签来鉴定其中的化学物质。皮特德利斯特恩的方法能够揭示微生物在复杂群落中的作用与功能  这幅画面揭示了许多关于这个空间和空间里的人的信息。德利斯特恩的两名同事是重度咖啡饮者:在他们的手上和脸上检测到了咖啡因的斑点,同时在地板上也有相当大的一块斑点,那是一片之前残留的咖啡渍。德利斯特恩不喝咖啡,但也在四处留下了踪迹——既有个人护理用品,也有他根本都不记得自己用过的普通甜味剂。他很惊讶,他触碰过的许多地方甚至发现了驱虫剂避蚊胺(DEET),但他至少六个月没有用过这种化学物质了。  画面里也有办公室其他生物的踪迹,比如寄居在人体皮肤上的微生物。德利斯特恩曾用质谱技术观察过这些微生物产生的小分子代谢产物,得到了关于微生物如何形成群落并与其他微生物、人类寄主以及它们寄居的环境互相作用的详细图象。  他分析了来自植物、海水、偏远部落以及人类患病肺部等的微生物群落,想要发现这些化学物质之间的交流方式:它们是怎样告知彼此某个地方是否适合寄居,又是如何为了领地而战斗的呢?这项工作可以鉴定出先前未知的微生物及它们产生的有用物质,比如说抗生素。  “这项研究的应用十分广泛,”加利福尼亚大学旧金山分校(UCSD)格莱斯顿研究所的比较基因组学专家凯蒂波拉德(Katie Pollard)评论道。由于许多微生物都无法直接培养和研究,所以这些原位(in situ)检测方式的出现影响重大。”同时,上个月美国白宫科学技术政策办公室公布的,投资5.21亿美元的国家微生物组计划(National Microbiome Initiative)中的部分研究目标,也可通过这项技术直接实现。该计划公布时,德利斯特恩也在现场。  在这个快速发展的领域,德利斯特恩仍旧潜心于构建实用工具,以及进行富有成效的合作,这使他分外引人注目。“皮特是真的对此感兴趣,并且非常具有创造性。”西北太平洋国家实验室的生物科学主管珍妮特扬松(Janet Jansson)说道。她曾于今年四月到访UCSD,当时德利斯特恩问她,能否擦拭她的一只手用以实验研究。“我说,‘太好了!可以的!我想要参与到这项研究中来!’”扬松回忆道,“他的研究既有趣又激动人心,所有人都非常愿意参与进来。”  攀岩时做出的人生选择  德利斯特恩成长于新西兰。16岁时他到美国亚利桑那州的图森走亲戚,在那里迷上了攀岩这项运动。由于自己家乡地形平坦,根本没有攀岩的场地,他申请到位于弗拉格斯塔夫的北亚利桑那大学读书——这里位于亚利桑那、新墨西哥、科罗拉多和犹他四州的交界处,有大量的石山可以攀登。他的专业是地理和化学,可他仍一心扑在攀岩上。但1998年大学毕业后,攀爬加利福尼亚州约塞米蒂国家公园中一面900米高的岩壁的经历令他开始重新思考人生规划。  当时他的最高一处固定点距离顶端的岩石只有50米,他意识到如果自己这时没抓稳,就会飞速往下掉落100米,直到安全绳索绷紧,把他狠狠砸在花岗岩上。他说,自己当时感到的不是害怕,而宁可说是他的无畏困扰着他。“我当时想,如果我继续攀岩事业,可能不会有什么好结果,”他回忆道,“所以我用绳索降了下去。”  那天,他开车回到位于弗拉格斯塔夫的家,开始填写申请研究生的表格。最后他来到了康奈尔大学研究微生物产生小分子物质(比如维生素B1)的机理。就是在这里,他第一次接触到质谱(mass spectrometry)技术。  通俗地说,质谱技术就是将复杂的分子破碎分离,使其离子化并且测量出碎片分子的质量,从而计算样品分子组成成分的技术。德利斯特恩就是利用这种像条形码一样的质谱技术,为样品中的每种化学物质创造出各自特异的标记。  德利斯特恩对这项技术深感兴趣,因此毕业后来到伊利诺伊大学香槟分校的化学生物学家尼尔凯莱赫(Neil Kelleher)的实验室继续博士后工作。凯莱赫倡导使用“自上而下”的质谱技术,即采用完整的而不是消解过的蛋白质直接放入仪器检测。利用这种方式,研究人员可以鉴定出蛋白质上的微小修饰,但是过程却很耗时。德利斯特恩在刚来到伊利诺伊的前两个月里就发展出一种快捷方式,可以系统地检验相当大分子量的酶。“我们将原本以年计数的工作量压缩到了几十天内完成。”德利斯特恩说道。他在博士后工作的两年内最终联名发表了17篇论文。“皮特不仅具有创造性,同时又干劲十足,而且能够用难以置信的能力来完成课题,这简直太难得了。”凯莱赫评价道。目前凯莱赫在西北大学任职。 两位健康人身上的400处采样揭示了皮肤上的化学物质及微生物名录  2006年,德利斯特恩加入UCSD任职——不过,当该校药理学院院长帕尔梅泰勒(Palmer Taylor)签署了能让他来做质谱成像的MALDI-TOF-MS(基质辅助激光解吸电离飞行时间质谱仪)的采购单时,一切才是真正的开始。“这改变了我的整个世界。”他说。  看到微生物间的“军备竞赛”  质谱成像技术不仅能鉴定样品中分子物质,同时还能提供空间信息。MALDI-TOF利用激光来加热并电离分子物质,研究人员用激光束扫描2D样品,可以捕获样品中不同分子精确位置信息的“图像”。这项技术可应用于鉴定并定位肿瘤切片中的生物标记物,但德利斯特恩感兴趣的是微生物,他想要知道能否直接扫描在皮氏培养皿中培养的微生物菌落并鉴定它们的代谢产物。  没有人做过这种尝试。德利斯特恩觉得这可能是因为大家都担心这会污染昂贵的质谱仪——“但是把微生物直接放到仪器里进行检测也一样会污染仪器。”所以他做了一个简单的实验,让一名本科生萨拉魏茨(Sara Weitz)来扫描芽孢杆菌菌落。  这次实验产生的图像不是最漂亮的,但是他们发现这种流程是可行的。他将图像结果发送给了保罗斯特雷特(Paul Straight),一名刚刚入职得州农工大学的微生物学家。“他当时完全目瞪口呆。”德利斯特恩说道。两组科研团队合作采用质谱成像技术检测了紧邻生长的枯草芽孢杆菌(Bacillus subtilis)和天蓝色链霉菌(Streptomyces coelicolor)的菌落。通过探索两种菌落交界处的空间信息,他们鉴定到了这两种微生物彼此相互竞争所用的分子物质。  德利斯特恩表示,将这场微生物的军备竞赛可视化的过程,令他回想起1928年亚历山大弗莱明(Alexander Fleming)从可以杀死细菌的霉菌中分离出青霉素的故事。质谱成像技术可以快速鉴定到这种互作的化学物质,很有可能加速新型抗生素的筛选。  德利斯特恩决定转移实验室的工作重心,几乎专门来研究这些技术方法。他那是还是一名青年研究员,他认识的所有人都不建议他冒这个险。但院长泰勒鼓励他马上申请终身教职。“皮特在分析和计算领域潜力非常突出,经常能够摆脱思维局限性,”泰勒说,“他之前的研究项目都发展得十分迅速。”  观测不纯净样本的问题在于,其产生的数据会十分混乱。扫描微生物菌落会产生数以千计的条形码,但是其中大部分都不知道与什么有关,相当于一堆没有注释的信息。“这就好像在昏暗的路灯下看东西,”德利斯特恩说,“人们只能‘看到’之前鉴定过的分子物质,但是绝大多数分子都是未知的。”扬松也认为这是这一领域目前的一个大挑战:“用质谱仪来分析特征是可行的,但仅凭这些特征仍很难鉴定分子物质是什么。”  为了分析这些庞大的数据,德利斯特恩与UCSD的计算生物学家努诺班代拉(Nuno Bandeira)合作,根据样品分子与已知分子的关系将条形码和分子物质分类,这使得研究人员开始从计算分析的角度预测上千种代谢物的结构和功能。但是目前依然有大量的数据没有得到注释:尽管世界范围内有数千人从事质谱研究工作,但大部分人只对他们感兴趣的几个分子进行了注释。  因此,2014年起,德利斯特恩与班代拉实验室的研究生王明迅(音,Mingxun Wang)开始尝试众包注释。他们建立了一个网站,取名为“全球天然产物分子互作网络”作为数据库和数据分析工具,使得研究人员们能够揭示相关分子物质的关系、将相似分子归类并比较数据库。“他建立的这个网站给这一领域的发展带来了巨大帮助。”扬松说道。  团队合作  德利斯特恩成功的关键因素之一就是他的合作精神。微生物组DNA及RNA测序专家罗布奈特(Rob Knight)就和德利斯特恩在同一栋建筑里工作,他们将测序与质谱技术相结合来进行研究。去年,德利斯特恩实验室的一位博士后阿米娜布斯利玛尼(Amina Bouslimani)在一位男性志愿者和一位女性志愿者身上选取400个点进行采样,并将实验重复了两次。一组样品送往奈特实验室进行微生物测序,另一组样品则通过质谱仪来鉴定与微生物共存的天然及人工的化学物质。  实验要求志愿者在采样前三天禁止洗澡或使用化妆品,可样品中仍有上百种微生物的化学特征被美容产品和卫生用品中的化学物质遮盖掉了。不过研究人员仍旧发现了微生物群落与局部化学物质之间的一致性:比如说,女性阴道部位的细菌就与炎症分子有关。德利斯特恩表示,这样的联系可用来判断微生物-寄主互作的假说。  布斯利玛尼目前正在分析来自志愿者手部及手机等个人用品上的样品。这项目前还未发表的工作显示,人们会在接触过的物体上留下独特而恒久的化学标记——就像德利斯特恩办公室的那副图像一样。  阿米娜和德利斯特恩认为,这一发现可以在司法科学上有所应用。采自嫌疑人皮肤的样品可用来分析其化学特征是否与犯罪现场相符。在缺乏DNA或指纹证据的情况下,罪犯留下的化学物质也可以提供生活档案:他们用过的物品以及身上携带的微生物都可以合成画像。“或许这些化学特征能够帮助调查者缩小搜查范围。”布斯利玛尼说道。  去年,德利斯特恩与纽约大学的微生物学家玛利亚多明戈斯-贝略(Maria Dominguez-Bello)等人合作,想要了解人类在不穿戴服饰的情况下皮肤情况及其微生物多样性。他们从巴西玛瑙斯、坦桑尼亚哈扎等偏远部落的居民身上采集了样品,并将其与采集地点附近非部落居民的样品相比较。利用德利斯特恩的质谱技术,他们发现部落居民的微生物群落及皮肤化学物质的多样性要高于生活方式较为现代的非部落居民。德利斯特恩说,目前正在进行的工作也有一些惊人的结果:巴西某一村庄的居民皮肤上具有多种药物分子,这说明他们与外来者的接触要比之前预测的多。  德利斯特恩表示,这项技术也可以应用于改善海洋生态环境,或者提高农业效率,以减少温室气体排放。提到这些想法时,他整个人身体前倾,表现得十分激动。但问及他下一步将选择什么样的研究课题时,他首先提到的还是人类健康。“对我们而言,这是显而易见又直截了当的——我们首先还是想要帮助病人。”他说。  德利斯特恩与奈特,还有UCSD的成人囊性纤维化门诊主任道格康拉德(Doug Conrad)等人合作发展了快速微生物诊断测试手段。囊性纤维化会引起肺部粘液的堆积,从而受到细菌周期性的感染。这种感染需要抗生素的积极治疗——但有时候细菌会产生抗药性。德利斯特恩及其同事通过分析来自囊性纤维化患者的粘液样品得到的质谱结果数据,鉴定到了未被标准医药技术发现过的微生物群落。  今年刚刚加入德利斯特恩实验室的博士后路易斯-菲利克斯(Louis-Félix Nothias-Scaglia)目前正在分析牛皮癣患者的皮肤,而牛皮癣通常被认为是免疫系统过度活跃引起的。如果能够在患者皮肤上发现健康皮肤中不存在的某种细菌产生的分子物质,路易斯-菲利克斯解释道,那么就有可能用于开发治疗或者甚至预防牛皮癣的药物。这样的话,利用微生物的改变来预测牛皮癣的发生,就能令患者减少免疫抑制药物的使用。  将这种数据密集型的技术应用到标准的实验室测试中又将是一个挑战。“肯定会有人说这太复杂了,不可能推广开来。”康拉德说。“在某种程度上,我能理解这种看法。但我们现在的发展势头不错,继续按照目前的方法做下去或许就能得到不错的结果。”  但德利斯特恩想要的不仅仅是维持现状继续做下去,他想要改变目前的状况,尤其是正在蓬勃发展的微生物组学研究领域。他认为学科发展就是要经历不同的阶段:第一阶段注重于微生物的鉴定,而第二阶段就是利用质谱等技术探明这些微生物究竟在干什么。  是什么驱动着微生物群落的建立?它们采用怎样的代谢方式?微生物之间、微生物与寄主之间又是如何互相作用的?“如果你能从根本上理解了这些问题,”德利斯特恩说,“那么你就可以开始控制它了。”他认为,第三阶段就是控制微生物。通过操纵微生物群落,是不是就能添加必需成分来改变人体健康、情绪和运动表现了呢?德利斯特恩认为这些问题的答案就摆在他面前,而他只需进一步探索。
  • 爱德华真空发布EDWARDS涡轮分子泵nEXT 730 & 930新品
    nEXT 730 和nEXT 930是EDWARDS全球销量超过8万台的明星产品——涡轮分子泵nEXT系列的新成员。nEXT 730和nEXT 930将为您带来如下收益:- 更高抽速(氮气)——730 l/s、925 l/s- 360° 任意角度安装- TIC 控制器可同时控制分子泵和三路真空规管- 维护间隔长,用户可自主维护- 设计灵活,满足OEM定制需求更多信息请见下:抽速:尺寸:创新点:更高抽速:730 L/s、925 L/s (N2)可360° 任意角度安装TIC控制器可同时控制分子泵和三路真空规管EDWARDS涡轮分子泵nEXT 730 & 930
  • 生命科学|当“核酸”遇上“质谱”——多重分子诊断技术的下一站
    引言新冠病毒肺炎疫情的爆发,推动了国内分子诊断技术的高速发展,同时也使得“核酸”成为大家耳熟能详的词汇。当前的核酸分析技术,主要是基于荧光定量PCR(qPCR)的原理,虽然具有灵敏、准确、便捷的优势,但却通常只能对少于5个的靶标进行分析。不过这样相对有限的检测靶标数目,虽然在新冠检测等特定应用场景已经足够有效(即判断是否感染新冠),却难以应对一些复杂疾病的检测,如肿瘤、出生遗传缺陷、精-准用药的检测等。因为这些疾病通常都涉及到更多的基因变异情况,需要有具备更广泛的检测能力的技术。而核酸质谱技术,就是一个非常好的进行多重核酸分析的分子诊断平台。核酸质谱原理说到质谱的技术,领域内的人应该并不是完全陌生。顾名思义,质谱就是对“质量”进行精-确检测的精密设备,也是临床诊断领域快速发展的未来平台之一。质谱可以用来检测蛋白质和代谢物,也可以用来检测核酸。生命的遗传物质DNA分子是由4种碱基——ATCG所构成的,每种碱基的分子质量不同。核酸质谱犹如一把高精度的天平,可区分单个碱基的质量差异(GATC)(图1)。当核酸发生变异的时候,不论是碱基的替换还是修饰,都会改变DNA的分子质量,核酸质谱通过对这种质量变化的精确分析,就能够对其进行精-准的识别。通过这种方式,核酸质谱既可以检测基因的多态性和基因的突变,也可以检测核酸的化学修饰,还能够对拷贝数变异和修饰水平等进行定量的分析。图1 DNA分子碱基组成核酸质谱的优势相比传统的qPCR等分子诊断手段,核酸质谱拥有多重、准确、高通量的优势。这是由核酸质谱的检测原理和技术路线所决定的。首先,核酸质谱直接依据分子量的差异来进行检测,只要待测靶标扩增后的分子量不同,就可以相互区别开来,不会像传统的qPCR一样受到荧光通道数的限制。因此,核酸质谱通常能够实现30-50重乃至更多靶标的分析,而传统的qPCR方法单次检测通常小于5重。其次,由于采用了两步扩增反应,再加上对质量直接进行检测,因此核酸质谱具有极强的准确性和特异性,抗干扰能力强,适合于复杂背景下的低丰度靶标分析。最-后,核酸质谱检测速度极快,每个样本在质谱检测环节仅需数秒的时间,适合于大批量的样本的分析(图2)图2 集合PCR、芯片、质谱三大技术优势核酸质谱的应用核酸质谱的优势决定了它特别适合于复杂的、多靶标疾病的分子诊断。主要包括出生遗传缺陷、肿瘤、药物基因组、病原体多联检和耐药检测等。详见如下表: FPI得益于本身的优良性能和广阔的应用前景,核酸质谱受到了行业内越来越多的关注,可谓是分子诊断的“明日之星”。然而当前,国内的核酸质谱仍主要被进口品牌及其OEM厂商所垄断。由于其技术难度较大、产品功能复杂,国内能够布局该平台并掌握核心技术的厂家仍是寥寥。在这种情势下,聚光科技集团下属的聚致生物,已经完成开发了原生的、具有独立自主知识产权的核酸质谱系统,并同国内一些知名的分子诊断试剂研发企业进行合作,开拓这一极富前景的新领域,为健康事业做出新的贡献。
  • 新算法助力质谱数据准确高效预测小分子 助力新药研发
    卡内基梅隆大学和俄罗斯圣彼得堡国立大学的研究人员提出一种算法——MolDiscovery,提高了小分子识别的效率和准确性。该算法使用分子的质谱数据来预测未知物质的「身份」,在研究早期告诉科学家他们是偶然发现了新事物,还是仅仅重新发现了已知事物,可节省发现新的天然医药产品的时间和金钱。  该研究于6月17日以「MolDiscovery: learning mass spectrometry fragmentation of small molecules」为题发表在《自然通讯》(Nature Communications)杂志上。 MS 是一种电离化学物质并根据其质荷比(质量-电荷比)对其进行排序的分析技术。广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物。  质谱图是小分子的指纹,可以用一组质量峰表示,但与指纹不同的是,没有庞大的数据库来匹配它们。尽管已经发现了数十万种天然分子,但科学家们无法获得他们的质谱数据。  目前,已经出现了包含数万个小分子注释质谱的谱库,为开发基于机器学习的方法来提高计算机数据库搜索的灵敏度和特异性铺平了道路。然而,现有方法对于超小分子( 400 Da)表现不佳,并且对于「重」小分子(1000 Da)在计算上不足。  现在,该研究团队提出一种质谱数据库搜索方法—— MolDiscovery,通过学习概率模型来将小分子与其质谱相匹配,大大提高了小分子识别的准确性,同时使搜索效率提高了一个数量级。  从全球天然产物社会分子网络(GNPS;http://gnps.ucsd.edu) 搜索了 800 万个串联质谱后,MolDiscovery 以 0% 的错误发现率 (FDR) 鉴定了 3185 个独特的小分子,与现有方法相比,增加了 6 倍。在具有已知基因组的 GNPS 存储库的一个子集上,MolDiscovery 正确地将 19 个已知和三个假定的生物合成基因簇与其分子产物联系起来。  MolDiscovery 框架  MolDiscovery 框架主要分两个过程:训练过程和评分过程。具体步骤:  从构建代谢物图和生成碎片图开始。对于后者,MolDiscovery 使用一种新的高效算法来查找代谢物图中的桥接和 2-cuts;  MolDiscovery 继续学习匹配碎裂图和质谱的概率模型;  对小分子光谱对进行评分,计算 FDR。基准测试  MolDiscovery 与其他五种最先进的方法进行了比较,数据库搜索结果显示,MolDiscovery识别效果最好,平均可以正确识别测试 GNPS 和 MoNA 数据中的 43.3% 和 64.3% 的小分子。所有测试方法的最高 K = 1、3、5 和 10 准确度。(来源:论文) MolDiscovery 也是针对 DNP 搜索 GNPS 的最快和最节省内存的方法之一。在预处理阶段,MolDiscovery 比其中一种方法快 300 倍以上。  还根据正确分子匹配的质量范围评估了运行时间。对于质量 1000 Da 的分子光谱,相同质量范围内,MolDiscovery 平均只需 6 分钟和 24 秒。  注释 8 倍多的光谱,识别出 6倍多的独特化合物  从GNPS 搜索了 800 万个串联质谱,在严格的 0% FDR 水平下,MolDiscovery 注释了 8 倍多的光谱,并识别出比 Dereplicator+ (一种从MS中识别小分子的数据库搜索复制器)多6倍的独特化合物。  MolDiscovery 搜索在 10 个线程上花费了 34 天,与单线程上的预测 329 天非常接近。值得注意的是,在搜索如此大规模的光谱数据集时,MolDiscovery 比其他方法要高效得多,只需要对分子数据库进行一次预处理,可以有效地搜索未来的光谱。  节省新药研发时间、成本  「科学家们浪费了大量时间来分离已知的分子。」研究团队成员 Hosein Mohimani 说。「早期检测分子是否已知,可以节省时间和数百万美元,并有望使制药公司和研究人员更好地寻找可能用于新药开发的新型天然产品。」  Mohimani 解释说:「例如,科学家检测出一种在海洋或土壤样本中有望成为潜在药物的分子后,可能需要一年或更长时间才能识别出这种分子,而不能保证该物质是新的。MolDiscovery 使用质谱测量和预测机器学习模型快速准确地识别分子,且无需依赖质谱数据库进行匹配。」  该团队希望 MolDiscovery 将成为实验室发现新型天然产物的有用工具。MolDiscovery 可以与 Mohimani 实验室开发的机器学习平台 NRPminer 协同工作,帮助科学家分离天然产物。
  • 年产10000台磁悬浮分子泵,中科科仪苏州项目预计明年投用
    据苏州科技城官微消息,目前,苏州中科科仪半导体核心装备领域专用磁悬浮分子泵项目成果转化平台已实现主体结构全面封顶,预计2024年正式投入使用。《苏州新闻》消息显示,高新区中科科仪半导体核心装备项目作为先进制造业装备领域项目,今年同时入选了江苏省重大项目和苏州市重点项目,产业园一期总共有6栋大楼,目前已全部完成封顶,正在进行幕墙建设。中科科仪前身是始建于1958年的中国科学院科学仪器厂,经过60多年的发展,已成为国内电子光学和真空技术领军企业。2019年,他们在苏州高新区成立全资子公司,目前建设中的产业园一期项目,投资约5亿元,主要用于生产磁悬浮分子泵。据悉,该项目达产后具备年产10000台磁悬浮分子泵、100台检漏工程装备以及500台检漏仪能力,通过产业化发挥规模经济效益,打造长三角地区又一具有鲜明特色、创新要素汇聚融合的产业高地,以高水平的技术供给支撑区域高质量发展。临时厂房使用传统制造工艺,而搬到新产业园后将引进5条自动化产线,2025年达产后,预计年销售收入可达5亿元以上。
  • 测量单分子质量纳米秤问世 或为质谱敞开大门
    一个纳米量级的振动梁能够测量单个分子的质量。图片来源:Scott Kelber、Michael Roukes、Mehmet Selim Hanay  就像浴室里的一台小磅秤一样,一个物理研究小组如今报告说,他们的一个摇摆的小发明已经能够测量单个分子的质量。新的装置为质谱学敞开了一扇新的大门——这是一种通过测量分子质量从而确定它们是什么的科学。然而,对于这项技术的最终效用依然是众说纷纭。  并未参与此项研究的美国马里兰州盖瑟斯堡国家标准与技术研究所的生物物理学家John Kasianowicz表示:“如何将其运用到广义质谱学中去,时间会告诉我们一切。但我认为这是一项巨大的进步。”  传统质谱学利用一个磁场来弯曲带电分子的路径。它们的路径弯曲的程度揭示了它们的质量。但这项技术对于巨大的生物分子——其质量大约是一个质子的100万倍——并不理想。例如,这些巨大的分子移动得异常缓慢,因此并不会触发位于磁场另一端的传统粒子探测器。因此科学家一直在探索其他的替代方法。10多年来,帕萨迪纳市加利福尼亚理工学院(Caltech)的Michael Roukes及其研究小组尝试了能够切割出物质——例如硅——的微小振动梁。测量约一万亿分之一克的重量,可使振动梁在每秒周期内产生数以百万计的从一侧到另一侧的振动。  原则上,这样一种装置能够测量一个分子的质量。当一个分子黏附在这样一个振动梁上时(这一过程被称为物理吸附),其额外的质量促使振动梁以一种低频产生振动。因此如果想要测量分子的质量,研究人员只须测量频移便可。  然而这里也有一个问题。这种频移同时还取决于分子在振动梁上落脚的位置,因为一个较轻的分子停留在振动梁中间所产生的频移,同一个较重的分子落在振动梁一端所产生的频移是相同的。  如今,Roukes与他的博士后Mehmet Selim Hanay,及其在Caltech和法国原子能委员会的同事终于找到了一种解决办法。关键就在于同时以两个不同的频率摇晃振动梁。研究人员在8月份出版的《自然—纳米技术》上报告了这一研究成果。
  • 超高真空大抽速磁悬浮复合分子泵重大仪器专项启动
    1月16日,由北航仪器光电学院刘刚教授作为项目负责人的国家重大科学仪器设备开发专项“超高真空大抽速磁悬浮复合分子泵研制与应用示范”项目启动会在北航召开。科技部条财司吴学梯副司长、孙增奇处长、工信部科技司技术创新处范书建处长、王锐主管等领导出席会议,项目专家组中国计量院张钟华院士、中国仪器仪表行业协会专职副理事长李跃光、中科院光电所周维虎研究员、中国建筑材料科学研究总院“千人计划”特聘专家汪洪博士、中科院高能物理所董海义研究员等莅临启动会。会议由范书建处长主持,吴学梯副司长在产品应用及产业化、成果落地及加强与企业合作、承担单位切实落实好法人职责以及经费管理等方面作了重要指示。项目牵头单位北航张军副校长代表学校致欢迎词,感谢科技部和工信部对该项目给予的支持、指导和帮助,指出学校将全力保障项目的顺利实施。北航唐文忠校长助理、仪器光电学院房建成院长、发展规划处樊尚春处长、实验室及设备处赵罡处长、工研院蔡茂林副院长和各参研单位及应用单位代表50余人也出席了本次启动会。   该项目由北航牵头,北京中科科仪股份有限公司作为项目产业化单位,合作研发单位包括北京北仪创新真空技术有限责任公司、北京海斯德电机技术有限公司,应用示范单位包括中国计量院、中科院半导体所、北京北方微电子基地设备工艺研究中心、中科院电子学所、中航工业618所、航天三院33所等6家单位。本项目以北航2007年国家技术发明一等奖的核心技术,以及国家重大科技成果转化项目突破的系列化高速磁悬浮永磁电机技术为基础,利用北京中科科仪、北京北仪创新真空的机械分子泵的技术积累,依靠自主创新,研制国际先进水平的大、中、小三类超高真空磁悬浮分子泵,填补国内空白,提升我国高端科学仪器及工艺设备的技术水平。  会上,刘刚教授介绍了项目研究的必要性、拟解决的关键技术问题、主要研究内容、任务指标以及项目的组织实施和管理模式等。其他参研及应用示范单位就各自承担课题的研究内容、实施方案等作了详细汇报。与会领导和专家充分肯定了该项目研究的重要性以及各参研单位优势互补、高效合理的组织管理模式,并就仪器研制工作以及项目实施过程中可能遇到的困难展开了深入的交流与讨论,为下一步项目的顺利实施和组织管理提出了很好的建议。
  • 样品前处理技术及其小分子化合物的液相色谱-质谱分析
    Tutorial 1: 样品前处理技术及其小分子化合物的液相色谱-质谱分析——2010年慕尼黑上海分析生化展同期论坛  时间:2010年9月17日  地点:上海新国际博览中心W2号馆,W2-M2会议室  主办单位:德国慕尼黑大学医疗中心医疗化学研究所生物分离实验室  演讲嘉宾:Dr. Karl-Siegfried Boos, Dr. Rosa Morello  参会方式:免费注册参会  会议网址:http://www.a-c.cn/ac/0126_2.html  该课程主要针对方法开发技术人员、化学分析师、实验室主管和生物、制药以及治疗等领域的科学家。课程包括复杂体液处理仪器介绍、操作程序和应用准则等。 其中主题之一为液态分离(SPE)与耦合串联质谱LC系统的整合应用。参加者将能了解多维度SPE在高度选择性样本清理中的应用和原则。课程将就详细介绍各类SPE材料(如限制查阅材料、RAM、分子印记聚合物、MIP、混合模式材料等)的特性和表现以及SPE-LC的产出提高方式与小型化手段。除尿液和离子样本直接注入和在线SPE分析外,课程还将介绍全血直接注入和整体处理。 我们还将讨论干血点(DBS)样本制备和分析的优缺点。课程将就LC-MS/MS生物分析离子抑制/基质效应的理解和监控做简要介绍,主要关注通过样本预处理和分离消除离子抑制的方法。在此背景下,我们将重点介绍优化液相色谱(POPLC)工具,以及该方法在各种生物分析中的广泛应用,如治疗药物监测、生理监测、环境和医疗化学分析。课程将在开放和交互的氛围中进行。  2010年慕尼黑上海分析生化展(analytica China 2010)  时间:2010年9月15日-17日  地点:上海新国际博览中心 (上海市浦东新区龙阳路2345号), W1-W2馆  更多同期活动:  第五届上海国际分析化学研讨会  “蛋白质组学与疾病”专题研讨会  色谱技术中德论坛:复杂样品的分离分析  FDA/EU认证:实验室质量控制  样品前处理技术及其小分子化合物的液相色谱-质谱分析  代谢组学在生物技术和生命科学上的进展  展商技术交流会  主办方联系方式:  慕尼黑展览(上海)有限公司  赵晨光 洪燕  电话:86-21-2020 5500  传真:86-21 2020 5688  邮箱:zhao.chenguang@mmi-shanghai.com hong.yan@mmi-shanghai.com  网站:www.a-c.cn
  • 扬子石化杨金城:我的质谱仪维护人生
    自从九六年我当上仪表生产主任之后,就和质谱仪结下了不解之缘。因为质谱仪的故障率高,是需要关注最多的仪器。质谱仪是监测乙二醇装置环氧反应器工作中极其重要的仪表,它可以实时快速分析多个测量组份的数据,通过对分析数据的监测可以保障催化剂的活性处于高理想的状态并使催化剂的选择性处于最好状态,从而生产出合格的高附加值的产品,并控制环氧反应器生产处于安全的状态,避免爆炸事故的发生。 质谱仪是一种高度精密的大型在线分析仪器,价格昂贵,世界上能生产在线质谱仪的公司不多。扬子的第一代质谱仪采用的是美国著名的仪器生产商珀金埃尔默公司的产品,80年代初的质谱仪产品是全集成电路制成的,仪器里面有许多电路板用作测量和控制系统,仪器里面调节的电位器非常之多,要调试成功高精密的质谱仪是非常艰难的工作。通常我和分析班的技术人员一干就是一个星期,还常调试不成功。当时仪器常常数据不准确,工艺抱怨很多。外商为了保证可靠使用,外方采用的双质谱并联运行的方案,效果并不理想。 九八年,英国研究质谱仪的领导者VG公司生产了一款高精度的全数字电路的质谱仪,并配备了计算机工作站,当时此仪器风行整个行业,从此淘汰了模拟电路的产品,开始应用新型产品。在开始应用的十年以内效果非常好,常见的问题是离子源被污染,一旦发生离子源污染,得派人送到北京清洗,维护相当困难。后事真空泵运行效率下降,经常出现过故障。在此台质谱仪在运行到九八年时,故障就特别多了,电路板经常出现问题,为了保障质谱仪的运行,大家就经常研究怎么修好仪器,经过个把月的努力仪器最终都能恢复运行,服务于生产的需要,到一零年以后,仪器运行到了晚期,出现故障后需要两个月左右的维修时间,修好之后勉强保持运行,数据特别不稳定。 2013年,公司批准更新老质谱仪,通过中石化总部的招标系统采购了一台美国著名的仪器制造商A公司的质谱仪,此台质谱仪安装之后不久就出现数据漂移的问题,经过美国维修工程师历时一年多的五次维修,都解决不了问题。遗憾的是,每一次维修需要提前两个月预约,维修时间只有五个工作日,维修人员到来以后不管能不能解决问题,专家在完成了五个工作日的工作之后就得回国。面对一四年大修反应器需要更换催化剂的问题,领导一再要求必须要将质谱仪调试准确稳定,以保障催化剂的活化和驯化工作。进口壳牌公司的催化剂价格极其昂贵,我们装置更换催化剂需要花费一点五亿,如不能确保催化剂的精确的活化和驯化,催化剂将失效或者降低效用,会给公司带来无法估量的损失,也会导致整个公司的运行将处于非常被动的局面。 面对问题,我们主动出击,在确认A公司的产品无法修好之后,我们了解到国内分析仪器的行业领导者,杭州聚光科技已经研发出了与世界同步制造的在线质谱仪,命名为Mars。聚光科技是一家由海归博士创建的一家高科技上市公司,该公司采用与世界同步设计、同步制造、全球化采购先进零部件的水平化制造模式,保持所生产的仪器与世界同步。了解到这些信息之后,我们主动邀请对方来交流,通过深入的了解、交流,并考察研究设计方案、制造过程和样机应用情况、以及考核分析数据稳定性、准确性等各个环节,我们认为该产品可适用于扬子石化乙二醇反应器的工艺监控,在双方的努力下,对方同意提供一台质谱仪在扬子石化应用。在制定应用方案上,经过双方的认真研究,制定了具体的试用方案,决定先开始一个采样点的应用,以避免样气量过大对预处理造成压力,在这个点试用合格三个月之后,再在一四年的大修中完成两个工艺测量点开发。在双方的共同努力下,仪器安装、组态、调试、投用都很顺利,与实验室数据和其他仪器的比对,数据完全准确,为催化剂的活化和驯化工作的顺利进行提供了可靠人保障,也为反应器的长期监控提供了有效的措施,多年以来的难题得到了圆满的解决,我心里非常高兴啊。至今,仪器已经成功使用了十个月,运行非常稳定、数据准确、维护量很少,充分展示了国内仪器的制造水平。 随着国内经济的转型和制造业的崛起,国内高精度的仪器制造水平获得了长足的进步,具有全球化眼光的企业家,为国内的市场提供了优秀的产品,有力的促进了仪器国产化的进程,缩小了中国产品与世界的差距。国内仪器制造商的服务非常好,通常只要提前一天通知,第二天就能进入现场服务,使我们的后顾之忧完全得到了解决。
  • 加州大学为小分子打造搜索引擎,2秒内完成10亿张质谱图的比对
    还记得在初中教科书上学到的“分子在不断做着无规则运动”那句定理吗?很多老师在讲解这一定理时,都会用厨房做菜时飘出的饭香味举例。在饭香味之中,数不清的分子在快速运动着。由于各种分子非常小,无法直接用肉眼观察,因此我们需要借助质谱进行测量。而质谱能以极高的灵敏度测量各类分子,并产生相应的质谱图特征信号。这些质谱图就像人的指纹一样,不同的代谢物会产生特异的质谱图。因此,我们可以像警察利用指纹寻找犯罪嫌疑人一样,通过质谱图来寻找特定的分子。目前,质谱已经被广泛用于测量各类分子,比如生物体内的蛋白质和代谢物、食品中的营养成分、环境样本中的污染物等。在各类公共数据库中,人们已经收集到 68 亿多张不同的质谱图。但是,在这么多的质谱图中寻找感兴趣的小分子就像大海捞针一样充满挑战。为解决这一问题,美国加州大学戴维斯分校团队开发出一种新算法,可以在大量质谱数据中快速找到感兴趣的小分子。本次方法比传统方法快出将近十万倍,相当于可以在五分钟内完成过去一年的数据分析。具体来说,本次开发的新方法可以在 2 秒内对 10 亿张质谱图进行比对,这意味着我们可以在不到 15 秒内在全世界已知的质谱图中找到感兴趣的“嫌疑”分子。换句话说,本次方法就像是小分子的“谷歌”或“百度”,能够快速从各类样品中寻找特异的分子。对于相关论文审稿人表示他们对于不到 2 秒对近 10 亿的谱图进行比对感到印象深刻。也有审稿人认为本次工作为代谢组学领域做出了重要贡献,好比序列比对里的 BLAST 算法一样,有望改变整个代谢组学领域。加州大学戴维斯分校博士后李渊越是本次论文的第一作者,他表示:“我有个朋友在硅谷一家初创公司工作,他已经开始在他们公司内部使用这个算法来寻找生物活性物质。他们公司试图从植物中寻找天然的有生物活性的植物代谢产物,因此利用质谱分析了许多植物,采集了大量植物代谢物的质谱谱图。以后,他们就利用本次算法快速地从海量质谱谱图数据库中寻找感兴趣的生物活性物质。”此外,本次方法也可用于在生物样本中对特定代谢物或环境污染物的追踪,还可以用于在不同食物样品中寻找特定的营养成分等。图 | 李渊越(来源:李渊越)事实上在 2021 年底,李渊越和所在团队就曾在 Nature Methods 上发表了关于新型质谱谱图比对算法的论文,该算法通过熵相似性降低了分子鉴定的错误率,相比传统方法有着显著的改进。2022 年 6 月,李渊越参加在美国明尼阿波利斯举行的美国质谱学会,发现他们的熵相似性算法受到了广泛的好评。他说:“在会议期间,我有幸认识了卡耐基梅隆大学的米希尔蒙吉亚(Mihir Mongia)博士和密歇根大学的 Fengchao Yu 博士。Mongia 博士向我介绍了他们的一种新算法,可以在一小时内比对七亿多个质谱谱图。而 Yu 博士则告诉我他们也开发了一种快速鉴定肽段的方法。”听完他们的介绍之后,李渊越深感质谱学领域对于快速比对质谱谱图的方法有着迫切需求。这使他开始思考如何提高熵相似性算法的运行速度。参加完美国质谱学年会之后,他重新分析了熵相似性算法。尽管这个算法在分析质谱谱图方面表现出色,但其计算过程稍微有些复杂。为此,他开始寻找提高计算速度的可能性。经过对原公式的推导和分析,他发现了一个新的公式来计算熵相似性。新公式与旧公式的结果相同,但在形式上更加优雅,并且在计算上比原来的公式更为简单。接下来,李渊越花费几天时间用 Python 编写了一个原型,并测试了计算时间。结果令人惊喜,新算法的效果非常好,计算速度远超预期,比之前的方法快了近十万倍。最终,相关论文以《利用快速熵搜索算法实时查询质谱文库》(Flash entropy search to query all mass spectrallibrariesin real time)为题发在 Nature Methods[1],李渊越是第一作者,美国加州大学戴维斯分校奥利弗费恩(Oliver Fiehn)教授担任通讯作者。图 | 相关论文(来源:Nature Methods)李渊越表示:“在我们论文发表的前后,还有一些实验室也发表了他们的论文。但经过对各种方法的速度和精确度的比较,我们认为我们的算法仍然处于领先地位。”目前,课题组已经从公共数据库搜集并整理了近十亿张代谢物的质谱谱图。针对这些数据李渊越和同事正在使用本次方法对其进行索引,并打算创建一个类似百度的网站,供大家免费检索。通过这个网站,人们可以查询代谢物究竟在哪些样品中被检测到,或者在哪里出现过。比如,不粘锅的涂层会释放全氟辛酸。而该团队也在很多人类血液的样品中检测到全氟辛酸,因此可以利用本次系统来追踪全氟辛酸在人体不同组织中的分布,从而研究其对人类的影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制