当前位置: 仪器信息网 > 行业主题 > >

质谱峰分析

仪器信息网质谱峰分析专题为您提供2024年最新质谱峰分析价格报价、厂家品牌的相关信息, 包括质谱峰分析参数、型号等,不管是国产,还是进口品牌的质谱峰分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱峰分析相关的耗材配件、试剂标物,还有质谱峰分析相关的最新资讯、资料,以及质谱峰分析相关的解决方案。

质谱峰分析相关的资讯

  • MALDI质谱成像分析——杀虫剂到底对蜜蜂有何影响?
    巴西圣保罗州立大学的研究人员进行了一项研究,利用基质辅助激光解吸电离(MALDI)质谱成像(MSI)分析了工蜂大脑中蛋白质表达和分布的可能变化,该工蜂曾暴露于亚致死浓度的吡虫啉(LC50/100或1%的LC50)下。 在世界范围内使用杀虫剂进行作物生产已经非常普遍,其中一个相当令人关注的问题是,这些杀虫剂不仅对害虫有害,对于在作物授粉过程中起重要作用的昆虫也是有害的。由于杀虫剂的使用,在蜜蜂中报告了许多亚致死效应,包括对发育、觅食方式、喂养行为、学习表现和神经生理学的影响。所以,评估农药对蜜蜂可能产生的有害影响的毒理学研究很重要,可以帮助制定保护和传粉媒介保持策略。 图片来源于Pixabay研究旨在评估暴露于亚致死浓度吡虫啉(LC50/100: 0.014651 ng 吡虫啉 μL?1 饮食)对蜜蜂的大脑中某些蛋白质分布的影响。研究人员通过MALDI-MSI方法对这些蛋白质进行了鉴定。MALDI-MSI技术通过监测特定脑神经在特定时间发生的生物化学过程的时空动态来实现组织原位蛋白质组学分析。为此,研究人员将觅食蜜蜂暴露在含有亚致死浓度吡虫啉的饮食中8天,然后,在暴露的第8天搜集蜜蜂,并使用蛋白质密度图分析它们的大脑。 图:参与学习和记忆获取的酶的MALDI质谱成像结果。(a)蛋白激酶C;(b)14-3-3 Leonardo蛋白;(c)肌动蛋白-5C;和(d)转铁蛋白。 结果表明,吡虫啉的暴露导致了蜜蜂大脑的一系列生化变化,包括突触调节、凋亡调节和氧化应激的改变,这些变化可能对这些蜂群的生理产生不利影响。 最早的质谱成像技术是MALDI质谱分子成像技术,是由范德堡大学(Vanderbilt University)的Richard Caprioli等在1997年提出的。如今,作为质谱最年轻的应用,质谱成像技术已经在医学研究(如癌症病理)、生物学研究(如上述研究所示)、药物研究(如药物代谢)等诸多领域显示了巨大的价值,并得到飞速发展,成为质谱研究的一大热点。基于新一代宽谱定量飞行时间质谱平台QuanTOF,融智生物于2017年推出了QuanTOF质谱成像系统,该系统拥有强大的5,000Hz长寿命半导体激光器,以及自主开发的数据采集软件。2018年7月,融智生物宣布实现可达500像素/秒的成像速率,提升传统MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,在5-10微米的高空间分辨率下仍然保持极灵敏度。QuanTOF质谱成像系统使得质谱成像真正可用于临床病理分析、术中分析等领域,为广大人民造福。
  • 造成色相色谱峰拖尾的原因分析
    气相色谱仪(GC)和气相色谱质谱联用仪分析化合物时,有时候会遇到色谱峰拖尾的问题,不但严重影响定量精度,甚至使分析工作无法进行。那么什么原因会造成色相色谱峰拖尾呢?  进样口的问题  1、进样口的温度不合适  样品使用气相色谱仪分离时,首先进入进样口,在里面进行气化,所以要求进样口的温度要高于待测化合物的沸点,使化合物在进样口处充分气化。如果进样口的温度低于待测化合物的沸点,那么化合物就会气化不充分,也会导致色谱峰拖尾。并且,没有气化的化合物就会残留在进样口,污染进样隔垫和衬管,也可能响到其它化合物的峰形。高温有利用样品的气化,同时,也要考虑到样品的热稳定性,要保证样品在高温下不改变化学性质。  使用气相色谱仪分离化合物,利用新的隔垫、衬管和柱子时,化合物的分离度和峰形都很好。使用一段时间后,化合物的峰形明显拖尾,这种情况下的主要原因就是进样口和色谱柱有污染。  2、隔垫和衬管被污染  进样口很容易被污染的两个部位就是隔垫和衬管。隔垫和衬管被污染后,化合物有可能与污染物结合或者发生反应,也会导致峰拖尾。这时候更换新的隔垫和衬管就会解决峰拖尾的问题。针对很容易拖尾的化合物,可以选择使用超惰性的衬管,不容易与化合物发生反应,有利于化合物的分离分析。必要时,还可以清洗一下衬管下面的分流平板。  样品的问题  1、样品浓度太高  样品浓度太高时,样品的色谱峰就会有明显的拖尾,这种情况下可以稀释样品,或者把样品进样的模式由不分流进样改为分流进样,或者把分流进样的分流比调高一些,例如之前设置进样分流比为10:1,根据样品的实际浓度可以设置为100:1等。  2、样品的性质问题  ①化合物极性太强  分析极性化合物或活性化合物时,其活性位点容易与流经途中的位点吸附而呈现出拖尾,这种情况下要求样品分析系统具有良好的惰性,例如使用超惰的衬管、干净的分流平板和惰性好的低流失色谱柱。  ②化合物的沸点太低  早流出的组分一般是挥发性强、沸点低的组分,这类化合物拖尾严重时,主要原因在于化合物的沸点太低,可能在于溶剂聚焦效应不够,溶剂没有完全冷凝、有部分气化时,样品就进入了色谱柱,这样沸点低的化合物也就先进入色谱柱进行分析了,导致色谱峰拖尾。这种情况下可以降低进样口的温度、调整程序升温的初始温度在溶剂沸点10-25℃以下,让所有的化合物都在冷凝的情况下,整齐划一地进入色谱柱。  ③化合物的沸点太高晚流出的色谱峰一般是低挥发性、沸点高的组分,这类化合物的拖尾现象随着保留时间的增加而严重,主要原因在于化合物的沸点太高,在进样口气化不完全,或者色谱柱和传输线的温度偏低,引起样品在分析的过程中有部分冷凝,进而导致色谱峰拖尾。这种情况下,应该注意化合物的沸点,可以适当地提高进样口、色谱柱、传输线等处的温度可以改善拖尾现象。
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙沃特世科技(上海)有限公司实验中心氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。参考文献(1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875(2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61(3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554(4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933.(5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27(6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217(7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22.(8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506(9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167(10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speedand high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820(11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414(12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40(13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52.(14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132(15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem.2011, 3, 172-177(16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 罗氏全自动质谱方案最新解读|2024准备好进入质谱分析新维度了吗?
    距离上一年度罗氏的半年报中公布了比较多的临床质谱方案细节后,又过去了半年时间,按其规划,2024年底将会在欧洲率先上市。  随着上市时间的临近,按着新品上市的一般推进流程,罗氏公司也不断对外公布了一些最新细节,使得其质谱方案的神秘面纱也一层一层的逐渐揭开。  在临床质谱火热之际,我们之所以如此关注罗氏公司的质谱项目,还是基于业界对罗氏公司全自动质谱方案的高度期望,尤其在科学仪器巨头赛默飞世尔(Thermo Fisher)公司全自动质谱一体机Cascadion项目以失败告终之后,我们更期待IVD巨头的解决方案。  看从IVD企业的方向是否可以走通,彻底解决临床质谱自动化,推进临床质谱进入临床检测科室,完成临床质谱普及的最后一公里路。  本文仅为分享临床质谱相关知识、探讨质谱自动化方案,以期质谱技术在临床端的进一步发展。质谱技术的普及,需要各级别企业的共同努力,有大象起舞,也有蚂蚁雄兵。文中内容仅为技术探讨,是对公开信息的进一步学习、推测和探讨,如有理解偏差、不准确的地方,请仅以罗氏公司未来官方资料及解释为准。我们敬重头部企业罗氏这么有创新的技术尝试且需保护相应的专属设计,也期待各家质谱相关公司凭借独立的创新精神取得各自的突破。  上市计划进展  简言之,如期推进!  落地时间与之前公布的信息没有变化,侧面证明在欧美地区的注册工作顺利、项目的研发按期望进展。  2024年1月9日,在第42届摩根大通医疗健康大会(JPM 2024)上,罗氏公司CFO Alan Hippe 以Entering the next growth cycle(进入下一个增长周期) 为题汇报了罗氏公司的一些主要进展,其中有两页提到了诊断部的质谱项目,确定其对未来增长的重要性,并再次提到其上市计划,2024年底CE欧盟区域落地,2025年预计美国FDA获批。  2024年2月初发布的2023年财报中,在诊断部CEO Matt Sause的报告部分,也看到他把i601全自动质谱系统在2024年CE落地作为他的首条关键任务。    我们还注意到,2023年5月,在意大利罗马举行的第25届国际临床化学与检验医学大会(IFCC WORLDLAB)暨第25届欧洲临床化学与检验医学大会(EUROMEDLAB)上,罗氏也将其质谱系统进行了揭幕,为欧洲市场的上市预热。  关于中国的上市时间,按业内推测及罗氏新产品在中国上市的规划传统,预计在2026年争取拿到国内上市资质。  值得提及的一件事情,在2023年12月国家卫健委临检中心第二届临床质谱的培训班上,很高兴的看到罗氏公司RA注册部相关人员也来学习质谱相关内容。  质谱技术对于罗氏公司也是一项新技术、新方法,为了做好相关注册工作、确保注册进度,相关人员主动学习相关知识,值得认可肯定!  设备整体结构  从左到右依次为进出样单元(含STAT急诊端口)、加样及磁珠前处理部分、色谱质谱部分。总体的尺寸并没有相关资料公布,但参照图片里其他模块的尺寸(e801及进样模块尺寸),按比例可大致估算,整体的设备长度约3.8米(含进样单元)。  其中色谱质谱部分从图中可以看出比e801(含MSB样本缓冲区)尺寸略短一些,我们姑且按1.4米算。  关于重量,我们也做个大概估算:考虑到色谱质谱部分有泵单元、分子涡轮泵、质量分析器等重量较大组件,整体重量应大于等于e801的730公斤,所以三者相加(190+730+730)整体重量应在1.7吨上下。  设备的整体结构,可以理解为进样单元,加上e801系统(含MSB样本缓冲区、无ECL电化学发光的检测系统),后面再加一个液相色谱及质谱分析仪部分。  此系统的e801部分,负责样品的进出样,传输,样品的加入,试剂的加入,基于磁珠的前处理等的流程,最后转移至液相色谱部分,进行液质分析相关步骤。  质谱试剂产线  在公布了质谱系统的型号i601之后,质谱的试剂盒也有了它的名称:Ionify(已注册商标),并形成Ionify® reagent line。很显然,这个词来自于离子的词根,这也正是质谱的工作原理,使物质离子化,测量待检物的质荷比M/Z。  至此,我们又可以大胆的猜测i601质谱系统这个cobas i系列的命名起源,那就是也是源于Ion离子这个词,与其免疫系统的e来自Electro ChemiLuminescence (ECL) elecsys电化学发光系统、临床生化的c来自Clinical Chemistry形成家族化命名逻辑,共同组成cobas中心实验室的主力机型系列。  试剂盒形式沿用cobas生化、免疫系统的cassettes式设计,即试剂多联包形式,从截图可看出也为3组分、尺寸与免疫e green package一致,这也使得其能兼容使用免疫系统e801的试剂处理单元,享用在线装卸载试剂功能。  若如猜测与e pack green试剂盒大小一致且试剂仓一致,则单模块也可以放置48个试剂。  我们可以对比下罗氏的质谱试剂与赛默飞世尔的Cascadion质谱系统的试剂,从临床使用角度,罗氏的即开即用、成分整合、可高度自动化的试剂更符合临床工作人员的喜好。  样本前处理工作流程  质谱检测与生化免疫等其他间接检测(检测器隔检测杯读值、非直接接触待检物)不同,其待检物质是被吞进检测单元的,是直接读取待检物M/Z质荷比的一种技术,无需标记物。  但血清中的成分非常复杂,有大量的磷脂、蛋白等基质杂质成分,待检成分只是非常少的一些物质,所以质谱检测是需要进行样本纯化后才能进样的,尽可能纯的待检物质可降低基质干扰,提升检测的灵敏度和准确性。样本前处理工作由于步骤复杂,目前是临床质谱分析的一个难点和重点,也是各家临床质谱自动化方案主要需解决的关键步骤。在众多的前处理方法中,磁珠法(或称萃取磁珠法)是最有希望实现高通量、自动化、标准化的,国内也有很多公司在这个方向下取得了卓有成效的进展。  这里我们看到罗氏采用的是磁珠法的方案,其过程简要整理如下:  此部分用到的各类试剂应主要来自Ionify的试剂包部分,从图中可大致判断罗氏的磁珠方案为正向抓取待检物的模式,磁珠依靠binder正向结合、抓取待检物质,最后洗脱下待检物质与内标物,进行后续检测。  这里稍微补充一句,磁珠法其实也能做除杂的方式,即沉降基质等成分,用上清部分作为为后续待检样品。  色谱质谱部分  前处理纯化后的样本转移到色谱部分,经过色谱柱,再到质谱检测器进行检测,得到信号。  为了提高检测通量,罗氏方案中设计了8个色谱柱单元,柱子放在cartridge中,这是一种特殊盛放色谱柱的弹夹式结构的装置,它还具有RFID标签。  此种设计与Cascadion的Quick Connect Cartridge有相似的设计理念,都是为了使其安装更换更加便捷,易于临床客户上手。  我们在上一次解读中提及到其设计检测通量可达到100个样品/小时,有过质谱使用经验的都知道,若按传统的单线程标准过色谱柱模式,要实现此速度非常困难。  罗氏采用了多线程模式,即有8根色谱柱可供样本通过,后面将顺序出锋而陆续进入质谱检测。  为便于理解整个实验流程,附简易功能模块示意图。  布局仅为推测,最终布局请以官方公布为准。  还有个非常重要的细节我们从图中可以看出,8个色谱柱单元长短并不一样,其中5个短柱子,3个长(常规)柱子区域。  从如此高的检测通量设计来推测,短柱子是做单项目(或小组合)测试的,这类柱子应与常规的色谱柱不同,是为这些快速检测项目而设计的,如激素类单项。  在结果界面的截图中,我们看到睾酮的色谱图里,单个测试是36秒的检测时间(注:色谱质谱系统里,30秒处为保留时间或出峰时间),按此检测模式恰好可以达到标称的100标本/小时(3600秒/36秒)的速度。  而对于长柱子(相对于短柱子的称呼),应该与传统色谱系统中的常规柱子更接近,预估是做一些联检类的项目,会有较长的检测时间来处理套餐类的项目组合。具体哪些是组合项目和色谱柱具体工作模式,还请大家静待罗氏公司的最终公布吧。  在设备的下方,则应是流动相溶剂等液体耗材部分及质谱仪部分(右侧)。  分析软件  检测流程的最后一部分,将会对数据进行自动处理,软件应用复杂的算法对结果进行验证,然后传输至LIS系统。这相比于传统的质谱分析软件有很大的改善,减少了很多人为参与、调整、确认结果的过程。  在软件界面我们可以看到峰型整合和结果验证的细节,如这个睾酮结果的界面中,分别显示了内标物与待检物质的响应值与峰型情况,依靠峰面积得出待检物的浓度。  在这个过程中,将自动完成待检物质与内标物的峰型质量检查、质谱仪与色谱仪的状态确认、整合与定标质量的确认、结果确认。  项目菜单  检测菜单也是质谱项目是否能成功的重要因素,罗氏公司一直以规划检测项目见长,这次在项目规划上也进行了大量的前期调研和顾问工作。  按规划i601将有一个超过60多个项目、全面的试剂套餐组合,分两批上市。  项目大类为以下5类:类固醇类激素类、维生素D类、TDM药物浓度检测、免疫抑制剂药物检测、滥用药物类检测。  未来质谱模块的灵活配置  模块化的设计一直是罗氏诊断产品的特点,从最早的Modular时代开始,到cobas 6000/8000。  作为cobas Pro的一个模块,罗氏的质谱方案同样拥有灵活的配置形式,在以下图片中我们可以看到i601可以进行双模块的拼接,以便进一步的扩展检测通量和项目数。  当然,还有几种与cobas Pro里其他模块的联机,与免疫模块e801的连接、与生化模块c503的连接,及与生化、免疫混合模块的连接 同样在今年落地的高速生化分析模块c703作为cobas Pro方案里的一员,未来也应可以参与到质谱模块的灵活配置中。  但请注意,在官网的标注中,明确的告知:在上市初期,将仅以单模块形式提供,所有其他的包括生化、免疫的配置将会在随后的日期提供。  一个有意思的探讨: 一套i601质谱系统算几个模块?  我的猜测是算2个,那么一个线体分支就最多可连接2个i601(4个模块),为什么?  视频里的2个i601联机展示图可作为依据吗? 不是仅仅从这里。  我的考量如下:通量的需求、设备长度、系统的复杂度、人员动线、通讯的限制、标本周转时间等等。  但需要进一步的官方消息确认,仅作猜测探讨。  补充知识:罗氏的多模块联机方案中,cobas 8000及Pro系列的模块连接数量,最多可扩展至4个。  我们再看一下罗氏公司的一个整体规划图,这是一套CCM2.0的流水线系统,颇为壮观,从图中可以看出P系列前处理+后处理、日立的轨道系统与生化、免疫、质谱、分子、尿机、血球、凝血组成的强大多学科布局,i601质谱系统作为一个新学科模块,占据着极为重要的战略意义位置。  写在最后  近些年,临床质谱一直是热门赛道,资本方、客户端、企业端,一直期待这一技术在精准医学中大展拳脚,但其发展速度一直不如预期,这里面有很多的因素限制。  我们非常期待有更多的企业在解决诸多困难中取得实质性突破,带我们进入临床质谱的新维度、新时代。  如罗氏官网中质谱项目的标题:Are you ready to enter a new dimension in mass spectrometry?  你准备好进入质谱分析的新维度了吗?  作为相关从业者中的一员,也意识到,临床质谱的普及除了产品维度外,还需要更多的质谱相关知识的推广,让大家理解这一检测利器,最终懂它、用它,真正发挥其作用。  希望今天的分享能起到一点点的作用。作者:IVD崔哥
  • 厦门千人质谱大会圆满闭幕 中国质谱分析“快马加鞭”
    仪器信息网讯2017年12月11日,为期三天的“第三届全国质谱分析学术报告会”在美丽厦门成功闭幕。厦门大学谢素原教授、浙江大学潘远江教授、中科院化学所陈义研究员、清华大学林金明教授、国家自然科学基金委员会分析化学学科庄乾坤教授作大会特邀报告。大会召开闭幕式,为50位青年学者颁发“优秀青年报告奖”及“优秀墙报奖”。应用于团簇分析和嗅探检测的质谱技术厦门大学谢素原教授  金属团簇配合物由较弱配位键、金属键结合在一起,在电离的过程中极易发生解离而得不到所需要的分子离子峰 金属团簇配合物质量较高,金属离子同位素分布复杂,质量分辨要求高,因此建立起针对金属(团簇)配合的成熟质谱方法非常关键。课题组开展DESI质谱探测氢键等系列工作,发现电喷雾离子源是分析金属团簇配合物的合适离子源,飞行时间质量分析器是分析金属团簇配合的理想的质量分析器,在探测较弱相互作用、检测金属物的团簇离子、跟踪团簇反应进程、指导团簇的合成线路设计方面应用前景广阔。质谱中的立体化学效应浙江大学潘远江教授  潘远江教授重点介绍课题组在质谱中立体化学效应研究领域开展的工作。如设计合成一系列酰氯试剂,通过对试剂反应活性及手性选择性的筛选得出N-苯磺酰基-2-吡咯酰氯为手性探针,以此探针实现了对手性氨基化合物的定性识别,克服基质效应的干扰,实现同时在有机溶剂体系和动物血浆中的测定氨基酸的对映体过量面。课题组还设计合成了一对具有反应动力学差异的质谱手性识别试剂,应用对探针实现对氨基酸、多肽氨基酸残基绝对构型的高通量测量,不需要与标准品进行比对。闲话电迁移谱中科院化学所陈义研究员  电泳的发现可上溯至1807年Ruess对黏土随电迁移的观测,而质谱则多溯源至1886年Goldtein发明的阴极射线管。前些年,课题组对电泳开展理论推演,结果显示理想电泳行为与真空质谱颇为类似,并无天壤之别,因此推算不依靠介质筛分,电泳亦能测量分子质量。为证实可行,课题组搭装置、测样品、绘谱图,获得了预期的离子迁移谱,具有质量谱图精致、装置易搭、成本甚低、操作简便、可测质量似无上限等特点。预测电迁移谱不仅能用于物质与环境作用之真实信息的提取与研究,还可发展成大颗粒物质质量测量的一种精密方法。对于该方法及其应用前景,陈义研究员用“研今举步兮吾鼓劲,前途未卜兮吾无忧”来形容。微流控芯片质谱联用细胞分析方法研究与应用清华大学林金明教授  多通道微流控芯片质谱联用细胞分析系统由细胞培养基注入系统、芯片的细胞培养及代谢物提取单元、代谢物富集分离系统、质谱检测器构成,具有“多通道芯片与质谱联用 细胞共培养 细胞形态观察”三大难点。为加强仪器的通用性,课题组设计了一个六通道芯片,在芯片进/出口尺寸确定的条件下,可任意改变细胞培养腔和微流控通道的结构与功能。通过与岛津中国质谱研发中心开展合作,课题组已开发出第一代多通道微流控芯片-质谱联用(Chip-MS)装置,并在细胞共培养研究、细胞的药物代谢研究有逐步应用。系统预计明年初正式发售。中国分析化学与质谱分析现状国家自然科学基金委员会分析化学学科庄乾坤教授  2017年,我国AnalyticalChemistry发表论文数量达501篇,首次超过美国。AC近3年论文单篇平均引用率中国学者位居第一,近3年各国发表论文(不包括23篇综述)中国高被引篇数也是第一。当前,中国分析化学已经通过跟踪,部分学科方向与世界先进水平实现并行,下一阶段需瞄准目标,力争登上“国际领跑”新台阶。  但庄乾坤教授指出,中国分析化学在新形势下也呈现出缺乏创新,研究工作趋同性、研究思路同质化,学科方向趋同,研究对象太浅入、难以产生重大影响、热点研究没特色、解决能力不足等问题。基于以上现状,分析化学发展在如何开展创新研究、如何坚持科学研究特色、如何进行有效学术交流等方面仍需深入思考。此外,报告还重点介绍了杰出、优青、重点、仪器项目评审过程,解读2018年国家自然科学基金委化学科学部申请代码调整。中国化学会质谱分析专业委员会副主任/副秘书长杭纬主持闭幕式中国化学会质谱分析专业委员会副主任/秘书长林金明介绍会议情况  时隔两年,第三届全国质谱分析学术报告会在美丽厦门再次召开。本次会议共邀请18名报告专家、30名主题报告专家、56名邀请报告专家、53名口头报告专家,安排23名优秀青年报告和400多篇墙报论文,参会人数规模达1568人。参会代表专心致志,汇报内容处处创新。大会成功发挥总结我国质谱分析领域最新研究成果,推动质谱分析研究创新发展作用。  大会还宣布了“优秀青年报告奖”及“优秀墙报奖”获奖名单。奖项分别由安捷伦、布鲁克、赛默飞、沃特世等仪器企业赞助。优秀墙报奖获奖人名单序号姓名单位1高晋君北京大学2宗兆运清华大学3SarjuAdhikar清华大学4董瀚阳天津医科大学5徐婧中国医学科学院6吴梅北京大学7井红宇北京蛋白质组研究中心8张晓勤复旦大学9韩京吉林大学10续红妹南京大学11曾珺集美大学12赵秀秀南京师范大学13赵雪清华大学14许旭上海应用技术大学15罗晓彤武汉大学16王李原延边大学17赵晓勇浙江大学18毛家维中科院大连化物所19占铃鹏中科院化学研究所20曾文锋中科院计算技术研究院21王佳清华大学22刘新玮清华大学23李海方清华大学24王岩北京师范大学25张权青复旦大学26叶似剑中国计量科学研究院27赵旭清华大学28程肖玲厦门大学29汪伟西北核技术研究所30郑亚婧清华大学31郭建影清华大学32刘蓉厦门大学33薛晋娟中科院化学研究所34秦姗姗上海科技大学35高校飞东华理工大学36马格浙江大学37傅弦中科院成都生物研究所38张华吉林大学39任天坤中国医学科学院40肖开捷同济大学“优秀墙报奖”颁奖仪式优秀青年报告奖获奖人名单序号姓名单位1曹婷复旦大学2王博弘中科院大连化物所3毛思锋清华大学4周智伟中科院上海有机所5喻佳俊暨南大学6徐福兴复旦大学7申小涛中科院上海有机所8刘迎亚华东理工大学9孟一凡厦门大学10张婉玲清华大学“优秀青年报告奖”颁奖仪式中国化学会质谱分析专业委员会主任陈洪渊院士致辞  陈洪渊院士为大会致闭幕辞。下届全国质谱学术会议将更名为“2018年全国质谱学术大会”,由中国广州分析测试中心与中山大学承办,时间初步定于2018年12月下旬。  本次大会的成功召开,离不开志愿者辛勤付出与奉献。会议接近尾声时,他们也合影留念,留下珍贵瞬间。
  • 临床质谱会议丨仪真分析关注临床质谱发展
    2023年3月11日,2022-2023中国国际临床质谱暨分子诊断高峰论坛于上海星河湾酒店圆满落幕。本次大会由临床质谱网和分子诊断网共同主办,聚焦于质谱和分子诊断等前沿创新检验技术领域,国内外各大医院、高校及企业界的知名专家、教授、学者及行业管理者皆聚于此,围绕相关技术临床应用、行业标准、人才培养、产业融合等议题展开深入探讨和互动交流,共同推动行业健康有序发展。近年来,临床质谱凭借高特异性、高灵敏度、多指标检测等优势,逐渐展露成为精准医疗领域下的黄金赛道之一。仪真分析积极响应,携荷兰Spark UHPLC超高压液相色谱系统出席本次会议。 展会现场,仪真分析专业团队为与会嘉宾展示产品,介绍答疑,提供业务咨询服务。 为助力临床质谱的快速发展,仪真分析还可为质谱前端提供下列自动化方案和OEM服务。
  • 沃特世出席第三届全国质谱分析学术报告会,展示最新质谱技术
    由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的第三届全国质谱分析学术报告会于12月8日至11日在厦门成功召开。本次会议以“高速发展中的中国质谱分析”为主题,吸引了来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加。该会议旨在促进中国质谱分析技术的快速发展,展示中国在该领域取得的成绩及增进同行间的学术交流,全国质谱分析学术报告会已成功举办两届,本次的会议内容包括:新仪器新技术、离子源、蛋白与代谢组学、质谱在精准医学中的应用、环境与食品安全分析、无机质谱、质谱成像、有机/生物质谱新方法、青年论坛。作为深耕质谱技术几十载的行业领导者,沃特世公司全方位参与了此次会议,并展示了一系列质谱分析技术领域的最新成果,包括三重四极杆质谱、高分辨质谱以及离子淌度技术等,引起了众多参会者的高度关注和浓厚兴趣。其中,作为Xevo家族最新成员的Xevo TQ-XS,以其极高的灵敏度和整体创新设计已先后荣获ACCSI“2016科学仪器行业优秀新产品”和分析测试百科AnTop奖殊荣。Waters Xevo TQ-XS三重四极杆质谱仪值得一提的是,今年恰逢沃特世推出全球第一台行波离子淌度质谱(IMS)10周年、全球第一台商品化QTof 20周年。从第一台淌度质谱SYNAPT HDMS,到新型淌度质谱VION IMS QTof,淌度质谱已不再神秘,可以应用到每一个实验室的常规分析中,帮助研究人员更有把握地进行分析物的探索、鉴定和定量。会议现场,沃特世公司特意设置了离子淌度知识答题活动,吸引了众多与会者踊跃参与。沃特世展台现场人头攒动,离子淌度答题活动气氛热烈在分会报告上,沃特世公司应用科学家殷薛飞博士作了题为“原位电离质谱技术及其在生物分析中的应用”的报告,详细介绍了沃特世独有的REIMS技术及无损的DESI技术在生物分析中的应用,包括微生物鉴定、质谱成像、药物分布等。原位电离质谱技术是近年来发展迅速的质谱离子化技术,因其无需复杂样品前处理即可实时进行样品分析的优点被广泛应用于快速检测。REIMS技术及无损的DESI技术是两类非常有用的原位电离质谱技术,已被广泛应用于生物科学、食品、制药等行业。沃特世公司应用科学家殷薛飞博士报告现场此外,为了鼓励和表彰本次会议的青年论坛优秀报告和墙报,会议特设“优秀青年报告奖”和“优秀墙报奖”。沃特世公司质谱产品市场发展总监舒放先生为获得“优秀墙报奖”的诸位作者颁奖,并表示:“沃特世非常荣幸能够赞助此次优秀墙报评选活动。作为质谱分析领域的领导者,沃特世将在未来继续大力支持中国质谱领域的创新发展和各项工作,加大与业内专家学者的学术交流,共同促进中国质谱事业的发展。”“优秀墙报奖”颁奖现场(左二为沃特世公司质谱产品市场发展总监舒放先生)关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 质谱分类里程碑!中国分析测试协会《质谱仪器分类与代码》团标发布!
    由中国分析测试协会和中关村材料试验技术联盟发布的团体标准《质谱仪器分类与代码》于于2024年1月5日发布,标准将于4月5日开始实施。  质谱仪器作为质谱技术作为一种高灵敏、高分辨的分析技术,越来越受到关注和重视,其在食品、环境、制药、医疗以及学术研究等行业的应用也日益广泛。而在中国质谱界,对于日渐丰富的质谱仪器品类,如何更好的分类质谱仪器势在必行,于是本标准也在业内专家大力支持下应运而生。  《质谱仪器分类与代码》标准的分类原是按仪器结构和原理对质谱仪器进行分类,具体按照联用技术、离子化技术、质量分析器三个维度划分。分类方法采用分面分类法,包括按照联用技术划分、按照离子化技术划分、按照质量分析器类型划分。  分类方法  采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。  分面一:按照联用技术划分  根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳 6 个类目 各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀 3 个类目。  1) 直接离子化分析   2) 色谱联用划分为:  a) 液相色谱包括:  —液相色谱   —高效液相色谱   —超高效液相色谱   —多维液相色谱   b) 气相色谱包括:  —气相色谱   —全二维气相色谱   c) 离子色谱   d) 超临界流体色谱   e) 薄层色谱   f) 毛细管电泳   3) 常见非色谱联用划分为:  a) 热解吸   b) 流式细胞术   c) 激光烧蚀。  4) 其他。  分面二:按照离子化技术划分  根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。  1)轰击离子化包括:  a) 电子轰击离子化   10T/CAIA/YQ 008—2024/T/CSTM 01082—2024  b) 快速原子轰击离子化   c) 二次离子化   2) 电喷雾离子化包括:  a) 电喷雾离子化   b) 解吸附电喷雾离子化   c) 纳升电喷雾离子化   d) 脉冲直流电喷雾离子化   e) 电喷雾萃取离子化   f) 电喷雾辅助激光解吸离子化   g) 极性反转电喷雾离子化   3) 化学离子化包括:  a) 化学离子化   b) 大气压化学离子化   c) 质子转移反应   4) 光致离子化包括:  a) 基质辅助激光解吸离子化   b) 单光子离子化   c) 多光子离子化   d) 激光解吸离子化   5) 放电离子化包括:  a) 介质阻挡放电离子化   b) 辉光放电离子化   c) 低温等离子体离子化   d) 电晕放电离子化   e) 解吸电晕束离子化   f) 火花放电离子化   g) 电感耦合等离子体离子化   6) 热离子化   7) 场致离子化包括:  a) 场解吸离子化   b) 场离子化   8) 其他。  分面三:按照质量分析器类型划分  根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。  1) 四极杆质量分析器   2) 飞行时间质量分析器包括:  a) 直线飞行时间质量分析器   b) 单次反射飞行时间质量分析器   c) 多次反射飞行时间质量分析器   3) 离子阱质量分析器包括:  11T/CAIA/YQ 008—2024/T/CSTM 01082—2024  a) 二维离子阱质量分析器   b) 三维离子阱质量分析器   4) 磁质量分析器包括:  a) 单聚焦质量分析器   b) 双聚焦质量分析器   5) 傅里叶变换质量分析器包括:  a) 静电阱质量分析器   b) 离子回旋共振质量分析器   6) 其他。  本文件起草单位:广东省麦思科学仪器创新研究院、广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院。本文件主要起草人:朱芷欣、刘丹、周振、黄正旭、罗德耀、周志恒、丁传凡、丁力、黄泽建、陈江韩、徐牛生、俞晓峰、姚继军、闻路红、周向东、程文播、王世立、韩娜、刘召贵、沈学静、张小华、高俊海、景叶松、朱颖新、王海鉴、朱敏、潘晨松、洪义、李磊、陈政阁、黎彦、刘虎威、李志明、沈小攀。附件:TCAIAYQ 008—2024TCSTM 01082—2024《质谱仪器分类与代码》.pdf
  • 色质谱分析及其新技术在石化中的应用
    石油化工行业在国民经济发展中具有重要意义,是我国的支柱产业之一。而石油化工产品的品质如何,就需要分析检测技术来把关。因此,分析检测技术成为石油化工行业高质量发展的重要支撑。石油、化工相关的产品种类丰富,各类指标参数复杂,涉及到名目繁多的检测方法,如色谱法、质谱法、光谱法等。因此,在即将召开的第七届石油化工分析技术及应用新进展网络会议,特别邀请了多位嘉宾分享色质谱分析及其新技术在石化中的应用。部分报告预告如下:中国石油大学(北京)教授 韩晔华报告题目:《面向石油分子工程的石油组学分析》点击报名韩晔华,教授,博士生导师。毕业于北京大学分析化学专业,美国加州大学伯克利分校联合培养博士。现就职于中国石油大学(北京)化学工程与环境学院,重质油国家重点实验室,校青年拔尖人才、青年骨干教师。专业领域为质谱分析、石油分子工程。作为负责人主持9项国家级、省部级自然科学基金。在分析化学、能源化学领域的国际知名期刊发表学术论文45篇,包括多篇TOP期刊论文及封面论文,撰写英文专著篇章2部,担任《Separation Science Plus》副主编、《石油科学通报》 副主编、《Petroleum Science》青年编委。报告摘要:本报告分析石油组学研究所遇到的研究瓶颈,并介绍通过分析方法的创新将石油化学、催化化学、地球化学在分子层面进行有效链接并获得新发现、新认知。石油组学的本质是分子表征与构效关系研究,报告人通过质谱离子化方法的创新,使得更多未知的重组分“被看见”;利用石油分子的序列性,创新性的提出复杂体系中分子结构的集总表征;开发多种数据统计及可视化模型,建立与反应网络的关联。在此基础上,报告人在不同成熟度及海、陆相原油中发现了新型生物标志物,为地质演化及油藏勘探提供新视角;依托新建立的分子表征方法设计分子离子反应、研究实际工艺体系的反应路径,揭示了石油催化加氢脱硫反应机理、催化剂失活机理等,为油品清洁生产及定向转化提供指导。中海油化工与新材料科学研究院高级工程师 黄少凯报告题目:《重油中杂原子化合物分子组成分析方法研究》点击报名黄少凯,博士,高级工程师,现任中海油化工与新材料科学研究院分析表征首席工程师,主要研究领域为原油分子水平表征、原油评价、重油组成与结构分析、重油结构与加工性能研究以及高酸原油腐蚀特性等。2005年3月至2017年1月,在中石化石油化工科学研究院第一研究室工作,历任工程师、高级工程师及课题组组长;2017年1月2022年6月,任中海油炼油化工科学研究院分析表征首席工程师;2022年7月至今,任中海油化工与新材料科学研究院分析表征首席工程师。工作期间,主持2项集团公司级科研项目、12项地级科研项目,参与2项国家自然科学基金科研项目、2项集团公司项目;发表论文12篇,获得软件著作权3项,参与1项石化行业标准(排名第5)和1项炼化公司标准制定等。报告摘要:介绍工作内容。采用酸/碱改性固相萃取柱分离重油中含氧、氮(中性氮与碱性氮)化合物,采用甲基衍生化方法将硫化物转化为强极性的甲基锍盐分离重油中含硫化合物;然后采用超高分辨率的傅里叶离子回旋共振质谱(FT-ICR MS)结合电喷雾电离源(ESI)得到杂原子化合物的精确分子量,进而获得化合物的分子式,由化合物的质谱峰强度归一化计算得到相对含量。试验结果表明,采用样品预处理技术结合超高分辨率的FT-ICR MS可以得到重油中杂原子化合物的分子组成数据;采用上述分离方法对含氧、氮和硫化合物进行分离富集,其回收率分别为90%以上、80%以上和80%以上;FT-CRT MS测试含氧、氮和硫化合物的相对标准差小于5%。中国石油石油化工研究院工程师 郑方报告题目:《基于色谱质谱技术的石油卟啉形态研究》点击报名郑方,工学博士、理学博士;中国石油石油化工研究院工程师;致力于从分子水平认识石油,尤其是重质油的分子组成,研究石油分子在分离过程中的走向及化学加工过程中的转化规律。在Fuel、Energy & Fuels、Petroleum Science、《燃料化学学报》等期刊发表论文10余篇。报告摘要: 全面认识石油中金属卟啉类化合物的结构形态可以为完善石油加工工艺提供科学依据,有助于认识石油沥青质的分子组成,也可以通过解析石油卟啉的演化过程更加深入了解石油成因等地球化学信息。岛津企业管理(中国)有限公司系统气相专员 李学伟报告题目:《岛津色谱特色技术助力石化高效分析》点击报名李学伟,岛津企业管理(中国)有限公司 系统气相专员,从事气相色谱相关工作十余年,在石油化工领域系统气相定制方案上有着丰富的工作经验。现主要负责岛津系统气相产品线技术支持和应用方案推广工作。报告摘要:主要介绍岛津气相色谱自动进样系统、检测器系统、数据处理软件等特色技术在石油化工领域的应用,以及超临界流体色谱(SFC)和GC-FID联用技术,实现各种油品中烃族组分的高效分析。北京莱伯泰科仪器股份有限公司应用工程师 刘石磊报告题目:《热裂解在石油化工分析中的应用》点击报名刘石磊,北京莱伯泰科仪器股份有限公司应用工程师,主要负责莱伯泰科旗下品牌CDS热裂解产品线的应用研究与技术支持。 从事分析仪器应用等相关工作15年,工作经历主要围绕GC、GCMS的应用支持。报告摘要: 主要介绍热裂解仪在石油化工材料分析中应用,和热裂解仪在石油化工催化裂解中应用。SCIEX中国首席应用专家 李立军报告题目:《SCIEX 液质技术在石油化工行业有效成分分析与表征的典型应用案例分享》点击报名李立军,毕业于北京大学医学部,作为国内最早一批技术专家进入质谱分析行业,在食品、环境、药物及法医毒物市场等小分子领域拥有超过35年应用技术工作经验。报告摘要:主要介绍SCIEX液质技术在石油化工行业有效成分分析与表征的典型应用: 1、SCIEX QTOF液质技术靶向、半靶向、非靶向化合物鉴定流程介绍;2、油田开采过程中钻井液聚合物有效成分的分析;3、石油钻井液样本中表面活性剂分析;4、PET(聚对苯二甲酸二乙醇酯)解聚反应产物定性分析。第七届石油化工分析技术及应用新进展网络会议为促进石油、化工企事业单位高质量发展,推动分析检测技术进步,促进科技成果转化,同时也给石油化工相关工作者提供一个学习交流的平台,仪器信息网将于2023年5月31日-6月1日举行第七届石油化工分析技术及应用新进展网络会议,力争把最新的政府决策、最前沿的行业信息、最新的技术进展与研究成果呈现给大家。会议主办方:仪器信息网参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/petrochemical2023)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年6月1日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 向质谱分析领域专家学者们致敬
    他们在质谱分析领域兢兢业业,掌握最前沿的应用技术,具有丰富理论知识和实践经验,我们都应向他们学习讨教。下面看看都有哪几位质谱分析领域的专家,以及他们的著作:  王光辉:  中国科学院化学研究所质谱中心研究员,中国最早从事质谱研究的专家之一,参与了国内多项质谱仪器的研发工作,有丰富的理论知识、实践经验和培训教学经验。  代表著作: 《有机质谱解析》  苏焕华:  北京石油化工科学研究院高级工程师,70年代初开始有机质谱应用研究,参与了国内质谱仪器的研发工作,组织过多种质谱应用技术培训,有丰富的教学经验。  代表著作:《色谱-质谱联用技术及应用》  李重九:  中国农业大学理学院应用化学系教授,农残分析领域著名质谱专家,在大学主讲色谱、质谱等仪器分析课程。  代表著作:《有机质谱应用:在环境、农业和法庭科学中的应用》  他们的在学术上的深度、钻研的态度值得我们追仿。  本月,大家有机会跟这三位资深的专家学者面对面,探寻质谱在分析领域有何最新进展,快速提升自己现有谱图解析水平,从掌握到精通... 课程题目:第十四期有机质谱谱图解析专题技术培训班时间:2016年5月24-27日地点:北京外国专家大厦授课大纲:
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • 许国旺研究员:代谢组学研究对色谱-质谱分析技术的挑战
    仪器信息网讯,2009年11月7日,由中国质谱学会有机质谱专业委员会与中国分析测试协会联合举办的“2009年中国有机质谱年会”在北京成功召开,会议为期三天,出席会议人数达300人。仪器信息网作为特邀媒体也应邀参加。  此次质谱年会为与会代表准备了丰富的报告内容,内容涉及生命科学、医学、药学、环境科学、食品安全、毒物分析中的质谱应用研究以及质谱仪器研发的新技术、新进展等。仪器信息网将进行系列报道。  中国科学院大连化学物理研究所许国旺研究员的研究关注的是内源性代谢,代谢组学研究就是用一系列分析化学手段,如色谱、质谱、核磁共振、光谱等,将代谢产物进行分离,然后用数据分析方法把有用的信息进行提取,最后对信息进行生物学解析。与基因组学、蛋白质组学相比,代谢组学研究的是已经发生的改变,而前两者研究的是可能发生的改变,因此在这个意义上说,代谢组学更接近于临床。中国科学院大连化学物理研究所许国旺研究员  但是,目前代谢组学研究面临以下挑战:其一,到目前为止,任何一种分析工具都只能分析代谢组中15%的代谢物 其二,代谢物的结构鉴定一直是一个没有解决的问题。许国旺研究员认为,代谢组学研究要取得进展,分析测试平台首先要取得突破,而其中色谱和质谱是最有前途的技术。  依据此思路,许国旺研究员在代谢组学分析手段方面进行了大量的研究,课题组搭建二维色谱-质谱联用仪器,使得代谢产物中亲水化合物与疏水化合物同时分离,并且提高了分辨率,使得以高分辨质谱为核心的集成方法解决代谢组学中未知化合物的定性问题。
  • 东西分析光彩绽放2014北京质谱年会
    由北京理化分析测试技术学会北京质谱学会主办,国家大型科学仪器中心北京质谱中心协办的“2014年度北京质谱年会”于2014年3月 21日在北京拉斐特城堡酒店拉开帷幕,北京东西分析仪器有限公司倾情赞助了本次大会,并给与会者带来了全新的无机质谱技术及最新应用实例。 本次质谱年会的大会报告凸显了“生命科学”主题。主办方邀请到了军事医学科学院张学敏院士、中国科学院化学所万立骏院士、北京大学刘小云、北京生命科学研究所董梦秋、北京大学医药卫生分析中心王京宇等多名业内著名专家,介绍了质谱技术在生命科学方面的应用和创新。会后安排了学术沙龙及质谱知识技巧培训环节,为青年学者提供了极好的交流和学习的机会。Flynn做大会报告 本次质谱年会上,致力于国产分析仪器事业25多年的“东西分析”给人带来了耳目一新的感觉。“东西分析”2013年收购合并了国际著名品牌GBC Scientific Equipment Pty Ltd,会上,GBC公司Optimass 9500 ICP-TOF-MS产品经理Dr. Andrew Flynn Saint详细介绍了全新的飞行时间质谱技术以及应用。 Flynn介绍到,Optimss可以提供比竞争技术快五倍的分析速度,可以对1-260amu范围内的所有离子进行连续扫描,可以可靠的得到完整的数据,并具备半定量、可追溯半定量及指纹图谱功能。在应用方面,Flynn以丰富的应用实例展示了Optimass 9500与氢化物发生、LC和激光烧蚀(LA)等联用在一些全新领域如:刑侦科学(药品/毒品来源地认定,墨水痕迹认定)、考古研究(文物来源地分析,艺术品研究)、地质研究(稀有金属检测,样品局部分析)以及食品、土壤分析等方面的独特应用,引起了与会者的高度关注。在沙龙环节中,Flynn和与会者就无机质谱分析技术进行了深入讨论,详细解答了每位参会者提出的问题,大家对这一新技术表示了极大的兴趣,并充满期待。 Flynn现场解答与会者疑问 关于我们:北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。 “完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 基于质谱成像技术对芦笋的可视化分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "摘 要:/pp style="text-align: justify text-indent: 2em line-height: 1.75em "随着近年来人们对功能性食品的关注度越来越高,芦笋被认为是对抗高血压比较有效的一种食物。芦笋中所含的Asparaptine是抗高血压的有效成分,但是目前还没有其在芦笋内的分布信息的相关研究。我们利用基质辅助激光解吸质谱成像(MALDIMSI)技术阐释了Asparaptine 在芦笋内的分布情况。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 230px " src="https://img1.17img.cn/17img/images/202006/uepic/f446df0a-84bd-404c-a084-cecaa126ce76.jpg" title="1.png" alt="1.png" width="300" height="230" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "1. 背景介绍/pp style="text-align: justify text-indent: 2em line-height: 1.75em "已有研究表明芦笋粗提取物有降低血压的功效。长期以来芦笋的降压功效一直被认为是来源于其中所含有的某些含氮化合span style="text-indent: 2em "物,但近些年来,一些研究认为,芦笋的降压功效应该来源于其中的某些含硫化合物而非含氮化合物。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在这种背景下,2015年的一项研究发现了一种由精氨酸和芦笋酸组成的新物质——Asparaptine1)。这项研究提出,Asparaptine的降血压功效来源于其对血管紧张素转化酶(ACE)的抑制作用。Asparaptine的发现使芦笋作为功能性食品更受欢迎,因而对其也需要进行更加详细的研究。作为研究此物质的一种方法,我们尝试阐释芦笋中Asparaptine的定位信息。近些年来,MALDI-MSI作为一种可直接用肉眼观察到各化合物定位信息的方法而备受关注。这种方法可以通过单次分析实现对大量分子信息的成像,并且由于其具有可区分靶向目标和代谢物的能力,目前已经被广泛应用于诸如神经递质可视化2)和药代动力学成像3)的研究中。此外,除了在医药领域,MALDI-MSI技术也已经被应用于食品领域,涉及食品样品的范围非常广泛,从作为日本的主要粮食的大米4),到土豆5)和草莓6)。提供“可视化”信息,比如功能性化合物的分布信息,可以从增加食品附加值的角度来吸引消费者。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "图1展示了MALDI-MSI的标准操作流程。使用冷冻切片机将冷冻样品切成厚度在10 μm至30 μm之间的切片。将冷冻切片放置span style="text-indent: 2em "在导电板上,例如涂有氧化铟锡(ITO)的载玻片。之后将作为辅助电离试剂的基质涂敷于样品表面,然后进行质谱分析。在MALDI-MSI过程中,我们可以确定被测区域和测量点之间的距离,得到每个测量点的质谱和位置信息。通过选择目标分子在每个测量点的质谱中的质荷比,我们可以从每个测量点的强度数值得到目标分子在样品中的分布信息。在本研究中,我们按照上述流程进行实验,以明确Asparaptine的定位信息。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/38b7a373-f224-416d-96f0-1ca09b8eba71.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "图1 MALDI-MSI的实验流程/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. 实验部分/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.1 样品及样品冷冻方法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "将芦笋按照尖部、中部和下端切成三份,使用切片机(CM1950)将三部分分别制成20μm厚度的切片。芦笋的侧面有三角形的叶片,称为鳞片,其作用是保护枝杆(图2A)。在这项研究中,对这四个部位均进行了成像。目标成分是之前已经描述过的Asparaptine。在MALD-MSI中,样品的冷冻是影响成像结果的一个重要过程。在本研究中,我们将对液氮冷冻法和真空密封袋冷冻法两种方式进行比较(图2B)。前一种冷冻方法是将芦笋包裹在铝箔中,放入液氮中冷冻。后一种方法是将芦笋放入真空袋中,将袋中抽成真空,然后在-80° C的冰箱中慢慢冷冻。为了比较这两种方法,我们使用甲苯胺蓝染色对组织切片进行检查。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.2 基质喷涂/pp style="text-align: justify text-indent: 2em line-height: 1.75em "我们通过喷涂的方式将α-氰基-4-羟基肉桂酸(CHCA)加载于样品表面,基质溶液是10mg/mL的浓度(30%乙腈,10% 2-丙醇,0.1%甲酸)进行配制的。使用喷笔(PS-270)将400 μL基质溶液喷涂于样品切片表面,喷枪的尖端与组织表面之间的距离保持在10 cm。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.3 MSI分析条件/pp style="text-align: justify text-indent: 2em line-height: 1.75em "我们使用iMScope TRIO™ (图3)来进行MALDI-MSI分析。配置355nm Nd:YAG激光光源,激光频率1000 Hz,每点激光照射次数100,每个像素点累积次数为1次。激光光斑直径为25μm,强度为47,样品电压和检测器电压分别设为3.5 kV和2.1 kV。采集模式为正离子模式,采集范围m/z 100-350, 并以Asparaptine的质子加和产物m/z 307.09作为前体离子进行二级质谱分析。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 270px " src="https://img1.17img.cn/17img/images/202006/uepic/35c9f0fd-485f-47e8-8c46-d661f6a0528a.jpg" title="3.png" alt="3.png" width="600" height="270" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 结果与讨论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 样品冷冻方法比较/pp style="text-align: justify text-indent: 2em line-height: 1.75em "将通过液氮冷冻和真空密封袋冷冻两种方式进行冷冻的样品切成20 μm 厚的切片,并将切片用甲苯胺蓝染色,然后使用光学显微镜进行检查(图4)。如图4A 中所示,使用真空袋冷冻的样品制备切片有可能不损害样品形态。另一方面,样品经液氮冷冻后,由于在冷冻过程中会产生裂纹,使得样品切片难以保持其形貌。样品冷冻在真空密封袋里,也同样可以保持组织细胞的形态,而用液氮冷冻的组织细胞会被破坏,可观察到很多包含裂缝的部分(图4B)。真空密封袋冷冻的样品之所以能够保持细胞组织形态,其重要原因是高压冷冻法原理发挥了作用7)。通常情况下,当水结成冰时细胞内就会形成冰晶8)。然而,在高压冻结方法中,通过在冻结过程中对样品施加高压(一般在2000 atm 左右),水的熔点会降低,粘度会增加,所以通过这种方法可以抑制导致细胞组织破坏的冰晶的形成。在本实验中,虽然没有施加2000 atm 的压力,但样品可能在外力的作用下,产生了不同于常压下冻结状态的现象。另一方面,在使用液氮冷冻时,样品本身可能会由于水的膨胀而产生了裂纹。同时,由于样品在液体中沸腾,在样品周围形成一层氮气层。一旦这种现象发生,冷冻效率将被极大降低。此外当使用高压冷冻方法时,水以非晶形态冻结的深度是5 到20 μm,而以液态氮冷冻时,这个深度可达5 到200 μm9)。这种现象在诸如芦笋这样的体积较大且含有大量水分的样本中尤为明显。根据上述原理,真空span style="text-indent: 2em "密封袋冷冻是一种又好又简单的方法,它可以在冷冻植物样品时保持样品组织的形态。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/92efb3ee-ebd0-486c-96dc-c20258228867.jpg" title="4.png" alt="4.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/fedec6ff-3915-4260-816d-5f99173c4594.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 Asparaptine 定位信息的可视化分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在本实验中,首先通过成像质谱来进行Asparaptine定位信息的可视化分析。如图5A所示,代表Asparaptine的m/z 307.09的质谱峰被检测到。然后通过在离子阱中的一级质谱筛选出m/z 307.09的碎片,再通过飞行时间质谱分析二级碎片离子信息,从而确认是否m/z 307.09的碎片来源于靶向物质。图5B所示的质谱图是由二级质谱获得的,我们成功检测到来自一级前体离子m/z 307.09的碎片离子m/z 248.05。由于m/z 248.05是Asparaptine结构可以产生的碎片离子,因此m/z 307.09被认为是Asparaptine的质谱峰。因此,采用m/z 248.05碎片离子对Asparaptine进行成像,结果如图6所示。分析结果表明,Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDIMSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bf3940c1-723a-4252-a89f-9bb061662a51.jpg" title="6.png" alt="6.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/caab745a-1d80-44fb-888a-503a995397e9.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "4. 结 论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在本研究中,我们首次使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。我们还发现冷冻法在植物样品分析中具有重要的意义。通过借助MALDI-MSI 这种有力手段,我们可以通过可视化的定位信息来获得全新的发现,甚至对于那些合成机理和功能尚未明晰的物质也是如此。今后,把MALDI-MSI 应用于植物和食品样品将有助于我们明确样品中成分的定位信息,并有望在功能性食品的高效开发、目标物质合成机理的阐释等方面得到更多应用。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5. 参考文献/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1) R. Nakabayashi et al., J. Nat. Prod., 78, 1179 (2015)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2) Enomoto Y. et al., Anal. Sci., 34(9), 1055 (2018)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3) Ohtsu S. et al., Anal. Sci., 34(9), 991 (2018)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4) N. Zaima et al., Rapid Commun. Mass Spectrom., 24, 2723 (2010)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5) S. Taira et al., Int. J. Biotechnol. Wellness Industry, 1, 61 (2012)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "6) Anna C. Crecelius et al., J. Agric. Food Chem., 65, 3359 (2017)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "7) H. Moor, U. Riehle, Proc. 4th Eur. Reg. Conf. Electron Microsc., 33 (1968)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "8) H. Moor, Cryotechniques in Biological Electron Microscopy, 175 (1987)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "9) Y. Ito, Plant Morphology, 25, 35 (2013)/ppbr//p
  • 中国化学会首届全国质谱分析研讨会召开
    仪器信息网讯 2014年4月26-27日,由中国化学会、国家自然科学基金委员会主办,中国化学会质谱分析专业委员会(以下简称为:质谱分析专业委员会)、清华大学化学系/分析中心承办的&ldquo 中国化学会首届全国质谱分析学术研讨会&rdquo 在北京西郊宾馆召开,来自全国各地79个单位的代表约420人参加了此次会议,汇集了院士、杰青、千人、百人等一批优秀人才。会议现场清华大学林金明教授主持开幕式  研讨会由质谱分析专业委员会秘书长、清华大学林金明教授主持。质谱分析专业委员会主任、南京大学陈洪渊院士,国家自然科学基金委化学部分析化学学科主任庄乾坤教授分别致开幕辞。质谱分析专业委员会主任、南京大学陈洪渊院士国家自然科学基金委化学部 分析化学学科主任庄乾坤教授  据陈洪渊院士介绍,随着质谱的快速发展和普及,中国化学会2013年批准成立质谱分析专业委员会,而此次研讨会是专业委员会成立后举办的首个全国性学术活动。为了迎接本次会议的召开,质谱分析专业委员会与《中国科学· 化学》共同推出了质谱分析专刊,专刊共收录22篇评述报告,集中展示中国学者在质谱分析领域的研究进展。  本次研讨会设大会报告、分会报告、墙报展,并由岛津公司赞助了优秀论文奖,内容涵盖质谱仪器研制与新技术、新方法,以及质谱在环境、食品、生命科学、医药等领域的应用。  从15个大会报告内容来看,生命科学研究仍然是中国学者研究的重点,15个大会报告中8个与生命科学有关,蛋白质组学更是热点,有4个报告涉及此。中科院大连化物所张玉奎院士复旦大学杨芃原教授  据中科院大连化物所张玉奎院士介绍,其所在的中科院分离分析化学重点实验室拥有各类质谱仪器76台套。复旦大学杨芃原教授也在报告中表示,中国用于蛋白质研究的质谱数量很大,如:蛋白质科学基础设施(北京)质谱规模在50台,蛋白质科学基础设施(上海)30台,华大基因(深圳)100台,复旦大学生物医学研究院30台。可见,对于蛋白质组学研究,质谱已经成为不可或缺的工具。军事医学科学院钱小红研究员中科院大连化物所叶明亮研究员  凭借先进高端的质谱设备,蛋白质组学的研究已经有了飞速的发展,目前中国科学家鉴定到的蛋白质数量已达到12000个左右,但专家们也提出,蛋白质组学研究仍然面临巨大挑战。人类蛋白质丰度范围很广,目前可鉴定到的蛋白大多数为高丰度蛋白,对于低丰度蛋白的鉴定还缺乏有效的方法。此外,对于蛋白质大规模、非标记的绝对定量也是难题。在本次研讨会上,张玉奎院士、杨芃原教授、中科院大连化物所叶明亮研究员、军事医学科学院钱小红研究员分别介绍了应对上述挑战的一些新方法和新技术,如改变样品前处理的方式,使用新的富集及分离材料 使用新的质谱数据处理方法,以及搭建集成化的蛋白质质谱分析平台等。中科院高能物理研究所柴之芳院士清华大学张新荣教授安捷伦公司杜伟博士  此外,中科院高能物理研究所柴之芳院士介绍了利用质谱研究金属组学和金属蛋白质组学,并将此方法用于阿尔茨海默病的病因研究。清华大学张新荣教授介绍了&ldquo 单细胞质谱分析&rdquo ,据其介绍,2014年,美国《科学》杂志将单细胞生物学列为值得特别关注的领域,单细胞质谱分析可以给科学家提供许多新的生物学信息,不仅可以验证过去的经典方法的结论,而且可以发现许多未曾意料或被掩盖的规律,质谱工作者应该关注,可以将其作为一个新的研究方向。安捷伦公司杜伟博士介绍了安捷伦在系统生物学中的最新技术及应用。北京大学刘虎威教授中国医学科学院药物研究所再帕尔· 阿不力孜研究员岛津公司端裕树博士中科院化学所陈义研究员  质谱离子化新方法研究则是大会报告中居于第二热度的内容,15个报告中有5个报告与此相关。敞开式离子源(AIM)是2004年才出现的一种新型的离子源,其具有快速、可直接分析等优势,由此也得到了科学家们的亲睐。北京大学刘虎威教授介绍实时直接分析离子源DART离子化的新技术&mdash &mdash 等离子体辅助激光解吸附离子化及敞开式表面辅助解吸附离子化,以提高DART的灵敏度。中国医学科学院药物研究所再帕尔· 阿不力孜研究员介绍了其课题组研制的敞开式质谱分子成像装置及应用,据其介绍,相比于现有的质谱成像技术,空气动力辅助离子化质谱成像技术(AFAI-MSI)可适用于大体积样品,可远距离检测,并可兼容多种质谱仪,可获得更丰富更全面的信息,AFAI-IMS在药物及其代谢物研究方面有很大优势。岛津公司端裕树博士介绍了岛津公司最新研制的敞开式离子源解析电晕束离子源(DCBI)及应用。中科院化学所陈义研究员介绍了其课题组进行的质谱离子化新方法探索,研制了位置可调的双枪离子化方法,并用运载离子化、镀金光子晶体离子化等方法提高测定的灵敏度。中科院生态环境研究中心江桂斌院士  此外,在大会报告环节,中科院生态环境研究中心江桂斌院士介绍了&ldquo 色谱质谱在新污染物发现中的应用&rdquo ,据其介绍目前环境污染物中,PFOS含量在ppt级,并呈下降趋势 PBDEs在ppb级,也呈下降趋势 SCCPs在ppm级,呈现上升趋势。除了现有已知的污染物外,江桂斌课题组还利用MC-ICP-MS、 FT-ICR-MS等技术用于新污染物发现研究。浙江大学潘远江教授  清华大学林金明则介绍了液滴形成与质谱联用,其主要研究了两种不同的液滴混合的方式,并通过质谱分析两种不同种类液滴混合后发生的反应。浙江大学潘远江教授则介绍了电喷雾质谱中苄基迁移反应的机理。现场展示  本次研讨会还设立了仪器展示,岛津、安捷伦、赛默飞、天瑞仪器、威思曼、迪马、瑞达、磐合、兰博、正红塑料等进行了现场展示。  据悉,2015年秋天,中国化学会第二届全国质谱分析学术研讨会将在美丽的杭州召开,由浙江大学承办。(撰稿:杨娟)
  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • 安捷伦研发下一代质谱:智能质谱将改变分析领域
    随着自主技术的全球趋势,质谱领域也不例外。仪器智能的进步,如诊断和故障排除能力,使分析实验室能够简化工作流程,节省时间,提高准确性和再现性,并延长仪器正常运行时间。  在Select Science访谈中,安捷伦科技公司四极杆质谱仪助理研发副总裁Shane Tichy博士讨论了仪器智能的趋势和挑战,以及它们将如何影响食品安全、环境、制药/生物制药、生命科学、临床诊断、法医学等领域的科学家。 Shane Tichy博士,安捷伦科技公司四极杆质谱仪助理研发副总裁  质谱专长  在安捷伦科技公司,Tichy领导着一支由化学家、科学家、项目经理、电气工程师、软件程序员和机械工程师组成的的团队,这些才华横溢的人员在做质谱创新的前沿工作。在过去十年中,该小组开发并引进了十种新型四极杆质谱仪。“我很幸运能在安捷伦从事多个最先进的项目。” Tichy分享道。  在此期间,他最喜欢的部分项目包括灵敏的6495C三重四极杆LC/MS、紧凑且功能强大的Ultivo三重四极杆液质联用LC/MS(LC/TQ)以及为方便使用而设计的InfinityLab LC/MSD iQ。这些仪器结合了推进分析应用的关键技术和特点。Tichy强调,“6495C三重四极杆LC/MS系统在灵敏度、可靠性和准确性方面处于领先地位,是许多应用的完美选择,包括肽定量、食品安全、环境测试、临床研究和法医学。”Ultivo和LC/MSD iQ同时为分析实验室提供了一个紧凑但功能强大的解决方案,并结合了多项创新技术和智能功能。Tichy说:“它们提供了适用的、简单的、强健的LC/MS分析,而且相比于同类更高性能的产品,尺寸要小得多。”  结合智能功能  该团队的最新项目旨在进一步改变分析领域。Tichy分享道:“我们最近一直在研究新一代LC/MS三重四极杆,它可以进一步提高灵敏度、精度和仪器智能。”  新系统将集成可编程智能芯片,实现高级监控和反馈。Tichy充满热情道,“我们很高兴将智能芯片纳入我们的质谱仪,因为它提供了更高的精度、重复性和长期稳定性。同时,它可以减少重新校准的频率,通过故障自诊断降低维护成本,以及存储调谐和校准数据的能力,这些数据可以在下次校准期间进行评估。”  这些智能功能将有助于满足所有市场质谱仪用户的需求。Tichy解释道:“除了提高精度和灵敏度外,他们还需要反馈,‘嘿,我的仪器是在最高水平上运行的。而且,当分析性能下降时,系统出了什么问题?’这就是仪器智能真正发挥作用的地方。”  仪器智能化趋势  “过去几年来,围绕仪器智能的讨论相当热烈。”Tichy分享道:“不管你信不信,30多年前出现了第一台智能仪器。”  虽然昂贵的可编程芯片最初阻碍了分析仪器行业的发展,但自那时以来,随着功率的增加,成本也在下降。Tichy解释道:“我们看到的是,这些设备的价格大幅下降,而其功率却有所增加,使得智能设备和传统设备之间的成本差异相对较小。”  将智能芯片纳入质谱仪的能力为用户提供了丰富的优势,从物理上更小的仪器和快速双向数字通信,到仪器自校准。这将提高在不同环境条件下的测量精度,以及仪器自我诊断,同时可以指示系统的健康状况,并提醒操作员测量质量的变化和潜在问题。  质谱仪将更易使用  采用质谱仪的一个关键挑战是,缺乏经验的用户往往将质谱仪视为复杂的仪器,难以操作和维护。 “一些操作人员努力手动优化仪器调谐或源参数,以达到最高的性能水平。”Tichy解释道:“另一个挑战是对仪器进行故障排除。当系统性能下降时,客户不知道该去哪里查找。是柱吗?是脏污吗?是否有透镜污染?可能与机械或电气组件有关?对于这些原因,即使质谱是解决其挑战的最佳分析工具,他们也会怯于使用该系统。”  在这里,仪器智能有助于克服这些挑战,并增加质谱的可及性。通过在安捷伦科技公司的系统中使用智能芯片,Tichy和他的团队增强了自动调谐和校准算法,使他们能够始终如一地设置最佳仪器参数。通过早期维护反馈跟踪系统的健康状况,最大限度地减少了停机时间,同时,自我感知即插即用技术也避免了使用新系统进行质谱检测的冗长学习时间。  Tichy强调:“仪器智能化使质谱分析变得更简单,并帮助我们的客户克服威胁因素。它从本质上将高度复杂的质谱仪转变为易于使用的质量检测设备。”。  未来趋势  展望未来,Tichy预计仪器智能将在实验室和未来仪器发展中发挥关键作用。Tichy总结道:“我会保持简单。我看到了一种更自主、更复杂的技术趋势,它让人们在实验室的工作更容易。质谱也不例外。我们将继续创新,让我们的客户保持在未来趋势的领先地位。”
  • 核磁、质谱等多种分析技术在中药质量控制中的应用
    p style="margin-top: 10px line-height: 1.5em text-indent: 2em "中药发展几千年,如今已在世界各地广泛使用。近年来,随着人们用药安全意识的普遍提升,中药质量标准不一致、临床安全性及有效性的不稳定性和不确定性越来越受到被行业内外诟病。而各种分析技术的快速发展,极大的推动了中药质量控制的进步。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 479px height: 319px " src="https://img1.17img.cn/17img/images/201906/uepic/4911cd41-6d52-40c3-9a89-e2bfe9cd7bdd.jpg" title="微信截图_20190604225110.png" alt="微信截图_20190604225110.png" width="479" height="319" border="0" vspace="0"//pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "在上一篇文章a href="https://www.instrument.com.cn/news/20190531/486312.shtml" target="_self"《中药质量控制中的科学仪器——色谱、光谱篇》/a中,小编对中药质量控制中应用到的色谱和光谱技术及相关仪器进行了梳理盘点,本文中,将从核磁共振波谱技术、质谱及其联用技术和DNA分子标记技术等几种重要分析技术进行梳理。/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "中药质量控制之核磁共振波谱/span/strong/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "核磁共振最主要的应用是通过物理方法测定化合物的分子结构,而中药有效性的物质基础研究是中药质量控制中的重要环节。利用核磁共振技术能够获得中药中有效成分的化学结构。/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "除单独利用核磁共振技术,HPLC-NMR联用技术也被应用到中药质量控制中。通过该联用技术,能够实现色谱分离和波谱结构鉴定连续进行,避免了传统分析方法中,先分离纯化再进行鉴定从而浪费时间及人力物力的问题。/ptable border="0" cellspacing="0" cellpadding="0" width="556" style="border-collapse:collapse"tbodytr style=" height:35px" class="firstRow"td width="100" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="35"p style="text-align:center vertical-align:middle"strongspan style="font-size:15px font-family:宋体 color:black"技术类型/span/strongstrong/strong/p/tdtd width="140" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="35"p style="text-align:center vertical-align:middle"strongspan style="font-size:15px font-family:宋体 color:black"技术原理/span/strongstrong/strong/p/tdtd width="100" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="35"p style="text-align:center vertical-align:middle"strongspan style="font-size:15px font-family:宋体 color:black"应用方向/span/strongstrong/strong/p/tdtd width="215" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="35"p style="text-align:center vertical-align:middle"strongspan style="font-size:15px font-family:宋体 color:black"应用举例/span/strongstrong/strong/p/td/trtr style=" height:144px"td width="100" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="144"p style="text-align:center vertical-align:middle"a href="https://www.instrument.com.cn/zc/43.html" target="_self"span style="font-size: 15px font-family: 宋体, SimSun "NMR技术/span/a/p/tdtd width="140" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="144"p style="text-align:left vertical-align:middle"span style="font-family: 宋体, SimSun "span style="font-size: 15px font-family: 宋体 "通过化学位移值、谱峰多重性/span span style="font-family: 宋体, SimSun font-size: 15px "、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式 、空间的相对取向等定性的结构信息。/span/span/p/tdtd width="100" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="144"p style="text-align:left vertical-align:middle"span style="font-size:15px font-family:宋体"(span1/span)结合其他分析手段如质谱对化合物进行定性分析spanbr/ /span(span2/span)span1H /span核磁共振波谱适用于定量分析/span/p/tdtd width="215" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="144"p style="text-align:left vertical-align:middle"span style="font-size:15px font-family:宋体"(span1/span)崖藤生物碱的碳谱和氢谱全归属spanbr/ /span(span2/span)预测青蒿素分子的核磁共振碳谱和氢谱spanbr/ /span(span3/span)根据有无原小檗碱型生物碱的特征峰,鉴别黄连与黄连伪品/span/p/td/tr/tbody/tablep style="margin-top: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(255, 0, 0) "strong中药质量控制之质谱及其联用技术/strong/span/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "质谱主要用于分析鉴定天然产物中提取的化合物,有机质谱能够给出有机化合物的分子量、分子式及碎片离子裂解方式和有机分子结构类型规律等信息。因质谱及其联用技术在物质化学结构鉴方面功能强大,被广泛应用于多种中药材的质量控制中。/ptable border="0" cellspacing="0" cellpadding="0" width="556" style="border-collapse:collapse"tbodytr style=" height:36px" class="firstRow"td width="96" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:宋体 color:black"联用技术类型/span/strongstrong/strong/p/tdtd width="236" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:宋体 color:black"技术简介/span/strongstrong/strong/p/tdtd width="224" nowrap="" style="background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:center vertical-align:middle"strongspan style="font-size:13px font-family:宋体 color:black"应用举例/span/strongstrong/strong/p/td/trtr style=" height:124px"td width="96" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="124"p style="text-align:center vertical-align:middle"span style="font-size: 13px font-family: 宋体, SimSun "质谱/span/p/tdtd width="236" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="124"p style="text-align:center vertical-align:middle"span style="font-family: 宋体, SimSun "span style="font-size: 13px font-family: 宋体 "质谱法可提供分子质量和结构的信息/span span style="font-family: 宋体, SimSun font-size: 13px ",定量测定可采用内标法或外标法/span/span/p/tdtd width="224" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="124"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"(span1/span)确定朝鲜淫羊藿分离组分的化学成分spanbr/ /span(span2/span)通过比较炮制乌头与乌头质谱智文峰的差异,作为乌头类中药是否经炮制的判断/span/p/td/trtr style=" height:95px"td width="96" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center vertical-align:middle"a href="https://www.instrument.com.cn/zc/290.html" target="_self"span style="font-size:13px font-family:宋体"气质联用/span/a/p/tdtd width="236" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"具有高灵敏度和强抗干扰能力,是分析鉴定具有挥发性成分的首选/span/p/tdtd width="224" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"(span1/span)冬虫夏草中挥发性成分鉴定spanbr/ /span(span2/span)比较不同来源莪术中莪术醇等物质的含量/span/p/td/trtr style=" height:92px"td width="96" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="92"p style="text-align:center vertical-align:middle"a href="https://www.instrument.com.cn/zc/51.html" target="_self"span style="font-size:13px font-family:宋体"液质联用/span/a/p/tdtd width="236" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="92"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"同事进行多成分检测,可通过保留时间、分子量和碎片等信息用于目标化合物鉴别/span/p/tdtd width="224" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="92"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"(span1)/span判断东北红豆杉及其伤愈组织粗提物中紫杉醇色谱峰归属spanbr/ /span(span2/span)鉴定八味地黄方与人参汤共煎时产生的毒性物质/span/p/td/trtr style=" height:56px"td width="96" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="56"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"毛细管电泳span-/span质朴联用/span/p/tdtd width="236" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="56"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"多数毛细管电泳操作模式可与质谱联用。选择接口时/span span style="font-size: 13px ",span style="font-size: 13px font-family: 宋体, SimSun "应注意毛细管电泳的低流速特点并使用挥发性缓冲液/span/span/p/tdtd width="224" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="56"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"粉防己甲醇提取物中的生物碱分离鉴定/span/p/td/trtr style=" height:81px"td width="96" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="81"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family:宋体"超临界流体色谱/spanspan style="font-size:13px font-family:' Times New Roman' ,serif"-/spanspan style="font-size: 13px font-family: 宋体, SimSun "质谱联用/span/p/tdtd width="236" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="81"p style=" vertical-align:middle"span style="font-size:13px font-family:宋体"主要采用大气压化学离子化或电喷雾离子化接口。色谱流出物通过一个位于柱子和离子源之间的加热限/spanspan style="font-size: 13px font-family: 宋体, SimSun "流器转变为气态,进入质谱仪分析/span/p/tdtd width="224" nowrap="" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="81"p style="text-align:center vertical-align:middle"span style="font-size:13px font-family: 宋体"//span/p/td/tr/tbody/tablep style="margin-top: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(255, 0, 0) "strong中药质量控制之DNA分子标记技术/strong/span/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "DNA分子标记技术可用来比较药材间DNA分子遗传多样性差异,从而鉴别药材基源、确定学明的方法。DNA指纹图谱技术在药材鉴别、GAP实施、道地药材研究、遗传育种和种植资源研究以及中成药质量控制等领域有重要价值和广阔的应用前景。/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "目前已有研究人员利用DNA分子标记技术对不同地区的三七进行DNA指纹图谱的鉴别研究,根据其遗传特征的不同,鉴别不同地域的三七药材。此外,有研究人员利用此技术建立起了中药材鹿鞭的分子分类学鉴定试剂盒。/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "除上述技术方法外,近年来有更多先进的分析方法也在被不断被发展应用,如超高效液相色谱、二维液相色谱、联合在线鉴定技术等等,在中药材真伪鉴别、成分分离鉴定、毒性物质检出等等方面,发挥重大作用。/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "随着科学技术不断提升,相应的仪器设备更加精密、高效,色谱、质谱、光谱、核磁共振波谱及DNA分子标记等多种分离、分析、检测技术共同推动中药质量控制的发展,确保中药更好的履行维护人类健康的使命。/pp style="margin-top: 10px text-indent: 2em line-height: normal "span style="font-size: 14px "注:本文部分内容引自/span/pp style="margin-top: 10px text-indent: 2em line-height: normal "span style="font-size: 14px "1. 蒋庆峰, 金松子, 蔡振华,等. 现代分析技术在中药质量控制中的应用[J]. 现代仪器与医疗, 2007, 13(3):1-8./span/pp style="margin-top: 10px text-indent: 2em line-height: normal "span style="font-size: 14px "2. 马艳芹, 张蓉蓉, 房吉祥, et al. 现代分析技术在中药质量控制中的应用进展[J]. 首都医药, 2013(16):14-15./span/p
  • 聚浪成潮 以待花开|质谱国产替代之路有多长?——皖仪分析事业部总经理程小卫
    1.质谱应用广泛成长性高 科研分析仪器是生命科学及医药医疗产业的重要基石,其中质谱仪是市场占比最大,均价最贵,技术壁垒最高的主要领域之一。质谱仪作为高端的检测仪器,在环境监测、食品安全、工业过程分析等领域有着广泛的应用,同时这些下游应用需求带动上游质谱仪市场迅速成长。2021 年全球质谱市场大约450 亿元,预计 2026 年全球质谱仪市场规模可达700亿元。2021年国内质谱仪市场大约150 亿元,占全球市场的30%,年复合增长率高达 20%左右,国产化率大约10%。 2.质谱成为国产替代的首要阵地 在精准医学发展的大趋势下,质谱检验以其高通量、高灵敏度、高精度、高分辨率等诸多优势,在生命科学、生物医药、临床诊断、半导体、环保、食品安全等多领域的检测应用中发挥着越来越重要的作用,但目前国内的市场被赛默飞、SCIEX(丹纳赫)、布鲁克、安捷伦、沃特世、岛津等国外巨头垄断,2020年我国进口质谱规模为105.3亿元,国外厂商在中国质谱市场占有率为74.05%。中美贸易冲突以来,进口质谱的技术限制风险加大,国家陆续出台多项政策支持高端科学仪器的国产化,“十四五”、科技部、工信部相关政策均指出供应链设备需要稳定可控的重要方针,并明确仪器的硬性国产采购比例,同时随着一批国内企业在某些质谱仪产品性能上逐渐达到国际水平,加速了开启国产质谱进口替代的进程。根据海关进口数据,我国质谱的进口依赖度由2014年的94.7%降至2020年的74.05%。 3.质谱应用多元渗透,市场空间可观 美国科研端和生物医药医疗端质谱市场占比约70%,国内对标领域由于下游行业标准及市场空间存在客观差距,应用端渗透仍有较大空间,叠加半导体、环保领域的存量市场,未来国产质谱的市场份额可期。随着生物制药、医疗检测、临床诊断、科研院所的质谱应用多元化渗透,2026年对应质谱仪市场有望达到135亿元,叠加其它赛道国内质谱市场有望达到240亿元。质谱流式细胞仪等新兴领域有望带来质谱市场更大增量空间。表 1:质谱的应用领域广阔 4.质谱仪技术原理介绍 质谱仪是一种通过分析待测物质量获取其结构信息的仪器,基本原理为将分析 样品(气体、液体、固相)电离为带电离子,这些离子被检测器检测后即可得到质荷比与相对强度的质谱图,进而推算出分析物中分子的质量。通过质谱图及分子量测量可以对分析物进行定性分析,利用检测到的离子强度可以进行精确的定量分析。质谱仪器主要由五部分组成:样品导入系统、离子源、质量分析器、检测器、数据处理系统。样品导入系统通过合适的进样装置将样品引入并气化,气化后的样品引入到离子源,在离子源的作用下被转换为气态的阳离子(带正电)或阴离子(带负电),电离后的离子通过适量的加速后进入质量分析器,在质量分析器里磁场与电场的共同作用下,会产生不同的运动轨迹,按不同的质荷比分离,到达检测器上,进而由检测器将其转换为不同的电信号,再由计算机将信号转换为质谱图,质谱图为离子信号与质荷比的函数曲线图,对其进行分析,获得结果。质谱仪器中重要的两个部分是离子源和质量分析器。图 1:质谱仪系统结构示意图4.1离子源随着各种离子化方法不断发展,质谱分析技术广泛地应用于许多领域。多种离子化方法在分析应用价值上各具独特之处,比较常用的离子源有与GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光致电离(APPI),以及基质辅助光解吸离子化(MALDI)等等技术,还包括新型的这些技术除了有宽广的样品适用范围与高灵敏度,还可与色谱仪联用以降低干扰。使用者可根据样品与被分析物的物理化学特性选用适当的离子化方法。表 2:不同离子源原理对比4.2质量分析器不同的质量分析器均有其不同特性,质量分析器分为磁场式与电场式。磁场式分析器有扇形磁场质量分析器与傅里叶变换离子回旋共振质量分析器,电场式分析器有飞行时间、四极杆、轨道阱等质量分析器,每种质量分析器都具有不同的特性与功能。表 3:不同质量分析器原理对比 5.质谱组合方式——串联质谱 串联质谱(MS/MS)通常是指两个以上的质谱分析器借由空间或时间上联结在 一起所组成的分析方式,常以英文缩写 MS/MS 表示。在常见的串联质谱技术 中,第一个质量分析器的功能通常为选择与分离前体离子,分离出的前体离子 碎裂可产生离子群,传送至串接的第二个质量分析器中进行分析,这些产物离子的质荷比信号在第二个质量分析器中被扫描检测后,即可获得串联质谱图以进一步分析。目前串联质谱技术有两大主流应用,其一为应用于蛋白质组学中以自下而上的方式对酶水解后的多肽进行氨基酸的序列分析。另一主要应用在于对特定化合物进行定量分析。 一般而言,串联质谱分析法有两种不同的串联方式:一种为连接两个实体的不同的质量分析器,为空间上的串联方式,另一种则是在同一子储存装置内进行一系列的离子选择、裂解与质量分析步骤,依时间先后顺序进行不同分析步骤,为时间上的串联。• 空间串联质谱:三重四极杆质谱仪(QqQ)是目前最广泛使用的空间串联质谱仪,由三重四极杆质量分析器组成。其中第一与第三重四极杆质量分析器具有质量分析功能, 第二重四极杆作为碰撞室,仅以射频电位方式操作。 由于三重四极杆的碰撞室中的气体压力十倍高于磁场分析器的碰撞室中的气体压力,在三重四极杆中离子束与中性气体分子具有较高的碰撞次数,用于定量分析具有较高灵敏度,因此这是目前串联质谱最广泛使用的形式。另一种常用的是飞行时间串联质谱仪(TOF/TOF),具有为高能量碰撞解离的优点。• 时间串联质谱:串联质谱法也能在某些具离子储存功能的质量分析器上进行时间串联,其离子在不同时间点可分别进行前体离子选择后储存、离子活化、产物离子分离、扫描后排出等模式,反复进行离子选择、储存与解离的步骤,即可在此类具有离子储存功能的串联质谱仪上得到不同阶段的MS结果。目前具有离子储存及活化解离功能的质谱仪,以傅里叶变换离子回旋共振分析器与离子阱为主。• 杂合质谱仪:在串联质谱仪中,如果不同种类的质量分析器串接,则称为杂合质谱仪。杂合的主要目的是撷取各式不同质量分析器的特点,经组合后可获得更佳的串联质 谱分析结果。 四极杆飞行时间杂合质谱仪(Q-TOF)是杂合质谱仪的主流形式,因为其结合了四极杆分析器具有较高碰撞裂解效率的特点,以及飞行时间分析器具有高质荷比分辨率、非扫描式及高灵敏等优势,具有高解析与高灵敏度的优点,被广 泛应用于蛋白质组定性分析。此外还有离子阱飞行时间(IT-TOF)杂合质谱仪等各类杂合类型。 6.三重四极杆质谱仪(QqQ)知多少?目前主流质谱仪品类已实现商业化,包括单四极杆、离子阱、飞行时间质谱,并能实现三重四极杆的自主可控生产,对应市场端覆盖率超过80%。2019年7月,国家重大科学仪器设备开发专项 2011年首批启动项目——“三重四极杆串联质谱系统的研制及其在痕量有机物分析中的应用(2011YQ060084)”完成综合 验收。该专项围绕国家“十二五”科学和技术发展规划,针对复杂体系中痕量有 机物高通量、高灵敏度和自动化检测需求,研制三重四极杆串联质谱系统产品和配套自动化前处理装置及其它关键部件,开发基于三重四极杆串联质谱系统的痕 量有机物分析平台,在蛋白组学、代谢组学、环境及生态毒理学、食品安全等领域开展分析技术研究与应用示范,实现三重四极杆串联质谱系统的国产化和产业化。当前中国每年10,000台的质谱销量中,无论是台套数还是金额,占比最大的就是液相色谱串联四极杆联用仪(LC-QqQ),每年销量达3000台。随着农兽药残留、药典等新国标的出台,气质联用仪也将会更多地被GC-QqQ取代。LC-QqQ同样也是临床质谱最受关注的技术。据预测,2030年,我国的质谱年市场销量将达到20,000台,LC-QqQ将达到6000-8000台,随着优秀的国产厂商加入,未来将有2000台的新增国产LC-QqQ。这其中包括两大利好因素,首先是政策释放老市场:随着国产设备的稳定性和可用性提高, 2~3年内会出现市场选择和政府扶植的双重增长,年增长率约50%。其次是专用设备的新市场:低竞争、高毛利,配合国内高检测量、实时在线、政府监管的需求,将产生一批过亿的细分市场。因此,国产质谱的未来都是光明的。6.1四极杆质谱仪的几个关键指标解读• 分辨率是指分开两个峰的能力,刚刚分开时两峰之间的质量距离是DM,分辨率英文的原义是Resolution,常用简写R表示,计算公式:R=M/DM,M可理解为两个刚刚分开的峰的平均质量。最严格的分辨率定义是磁质谱的,要求相邻两峰10%峰谷分开才算真正分开,磁质谱的分辨率(即M/DM)不随质量变化,所以磁质谱都用R=M/DM来表示分辨率,磁质谱中,R不变,DM是变化的,质量M越大,DM越大。所以,磁质谱表示分辨率都用R,常常可以见到R=10,000的说法。今天我们讨论的四极杆质谱,都是要求50%峰谷刚刚分开就算分开,这个定义没有磁质谱严格。同时,这个分辨率R随质量变化,而DM不变,即M越小,R越大。所以有机质谱并不用R来表示分辨率,而用DM表示。因为实际工作中很难找到恰好在50%峰谷分开的峰,所以又简化为用单峰法表示,即测定一个峰的半峰高处的全峰宽Full width half Maximum(简写为FWHM),FWHM应近似等于DM。由于采用原始定义,即R=M/DM,DM 不变,M在变,所以R在变,为方便起见还可以用R表示,所以又简化为用FWHM的倒数表示R,R=1/DM。若采用单峰法,则认为R=1/FWHM。这个值也不变化。我们一般称FWHM=0.5为单位质量分辨率;定义宽松一点时,认为FWHM=0.7称单位分辨率;严格一些时,说FWHM=0.4为单位分辨率。反正,不管是0.7、0.5、0.4,一般都认为是指单位质量分辨率。换算下来,R=2M或R=2.5M也都指单位质量分辨率。这些都是我们常见的分辨率的表示方法。所以,我们又常常看到有机质谱用FWHM来表示,比如FWHM=0.25。• 质量准确度是非常重要的指标,代表质量是否准确称量,测定值和理论值之间的误差。随着质谱的长期使用,室温的变化、灰尘的累积、电子元件的老化……这些因素均会导致电学参数发生变化,进而影响到仪器正常运行。四极杆质谱因为其独有的筛选机制 — 固定的RF与DC电压能允许固定质荷比的离子通过,故微小的电压偏差就可能造成质量轴的偏移。由于质荷比大的离子需要较高的RF与DC电压方可通过四极杆,会将漂移的结果放大。同为0.1%的漂移,可能只会造成100 Da的离子峰出现在99.9 Da处,但2000 Da的离子峰则可能会出现在1998 Da处。因此对于大分子分析来说,保证质量准确性就变得更加重要。当质量轴发生明显漂移时,对于使用Scan模式的定性分析,会出现目标峰与理论值偏差增大;对于使用SIR/MRM的定量分析,则是MS1/MS2放行的质荷比与实际离子的质荷比不匹配,导致离子通过率减小,灵敏度下降。所以,我们建议您每隔3~6个月使用已知的标准品进样,质谱通过Scan模式采集信号,检查标准品m/z与实际采集到质谱峰的峰顶处m/z的偏差,如果超过0.2 Da,就需要考虑进行质量轴校正了。如果仪器使用的环境发生较大变化,如一场秋雨让室温从夏天的25度降到秋天的18度,最好立刻检查质量轴漂移情况。• 灵敏度/信噪比。常用的信噪比计算方法有两种:均方根(RMS),峰峰比(S/N)。均方根(RMS)计算方法信噪比最高,峰峰比方法信噪比最低。均方根(RMS)计算方法信噪比最高,对质谱公司的宣传有利;峰峰比方法信噪比最低,对满足用户的要求不利• 滞留时间。Duty Cycle中的两部分Scan1和ISD(恢复原有状态)两部分组成;Dwell time滞留时间,指Scan 1和ISD两部分时间。Dwell Time越长,Duty Cycle越少,扫描越慢,灵敏度越高,数据点越少,分辨率越低!反之依然!• 扫描型仪器(QqQ/Ion Trap)性能制约的黄金三角规则:提高分辨率就会降低扫描速度和灵敏度;提高灵敏度就会降低分辨率和扫描速度;提高扫描速度就会降低灵敏度和分辨率。但,非扫描型仪器(TOF)性能不受黄金三角规则制约,可以同时提高分辨率、扫描速度、灵敏度。6.2三重四极杆质谱仪的几种工作模式解读三重四极杆质谱仪作为目前最灵敏的MS定量技术,可用结构标志物进行选择性测定 ,比如母离子扫描、子离子扫描、中性丢失扫描等。• Q1 MS 全扫描Q1 全扫描 (开始 – 停止),Q1 永远 作为单级 MS 分析器,主要用来鉴定母离子 ,Q1 采用RF-only模式。Q1 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses• Q3 MS 全扫描Q3 全扫描 (开始 – 停止):Q3 永远 作为单级 MS 分析器,主要用来鉴定母离子或用做IDA, Q3 采用RF-only模式。Q3 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses。• MS/MS – 子离子扫描: 选择特定化合物鉴定碎片离子。Q-1设定 , Q-2碰撞活化 , Q-3扫描• MS/MS – 母离子扫描: 发现能产生特定子离子的所有母离子。Q-1扫描 ,Q-2碰撞活化 , Q-3设定(寻找特征离子的来源),应用于化合物筛选,代谢产物鉴定,蛋白质修饰分析。• MS/MS – 中性丢失扫描:发现能丢失中性分子的所有母离子。Q-1扫描,Q-2碰撞活化, Q-3扫描,同时保持Q-1和 Q-3的差值不变 (丢失同一质量的中性碎片),应用于检测失去H2O,H3PO4,HCl,NO2,CO2,SO3,糖分子等的离子。• MS/MS – MRM多反应监测:快速筛查(定性)和定量。Q-1设定,Q-2碰撞活化, Q-3设定(常用于定量)综上所述,三重四极杆质量仪具有超高的 NCI灵敏度;超高的MRM MS/MS 灵敏度;同时检测更多的 MRM离子对(100);工作模式丰富包括SIM、NCI/SIM、NCI/MS/MS、LC/MS/MS、PI,PR,NL,MRM。(未完待续)
  • SYNAPT G2-S为质谱分析开启新篇章
    1996年Waters公司推出了世界上首台商业化Q-TOF质谱,从那时起Waters就成为引领Q-TOF质谱发展的旗手。2007年Waters创造性地将行波离子淌度(T-Wave)嵌入质谱中,推出SYNAPT HDMS&mdash 一举获得了当年PITTCON金奖。从此质谱不仅可提供质量信息,而且可以根据离子的形态进行分离、分辨。加之在液相领域至今所向披靡的UPLC技术,Waters为使用者呈现出了一个由质量、形态、色谱构成的多维分析空间。SYNAPT已帮助科学家在蛋白质复合体四级结构、蛋白单体变化及聚合物分析等领域,在Cell、Nature等期刊发表诸多论文。 SYNAPT没有止步,它带来了越来越多的惊喜。首先是T-Wave与前后两个碰撞池结合的TriWave技术。这个巧妙的设计使Q-TOF质谱具备了三级质谱性能。更令人兴奋的是,此三级远非常见的三级方法:母离子在第一个碰撞池产生的碎片,可在之后的T-Wave迁移腔中根据形态分离,因此当碎片离子按照形态顺序依次进入第二个碰撞室后,最终产生的三级碎片不仅包含质量信息,而且蕴含了结构信息。这种被称为时间排列平行碎裂(TAP,TimeAligned Parallel Fragmentation)的三级质谱技术,在糖肽结构分析中,可巧妙地分别采集糖链及多肽的碎片信息,为蛋白质糖基化及其它化合物分析提供了全新的策略。 T-Wave还可以提高质谱信号强度,提升信噪比!使用两个T-Wave组成的离轴迁移腔被命名为Step-Wave。它在使分析离子&ldquo 上一个台阶&rdquo 进入质谱分析器的同时,让中性干扰物&ldquo 下一个台阶&rdquo 而远离质量分析器。因此采用Step-Wave的SYNAPT G2-S对痕量物质的分析具有了前所未有的分析能力。较前代产品,SYNAPT G2-S的信号检测强度提高了约30倍,信噪比提高了5-6倍,最低检测限也下探了一个数量级。灵敏度的显著提高、无与伦比的选择性和分析能力、以及离子淌度分离等多重优势,使SYNAPT G2-S能够以在低于任何其它高分辨率质谱仪的分析浓度条件下定性、定量分析物。HDMSE是T-Wave技术的又一创新应用,它使沃特世独有的MSE专利技术进一步升华。MSE通过碰撞池在低、高能量匀速高频切换,分别得到全部母离子与所有碎片离子信息。之后通过母离子与其碎片具有一致色谱行为的性质,进行碎片离子归属,从而得到所有母离子的二级碎片信息。MSE的优势在于它不仅采集了最全的离子信息,而且&ldquo 完美&rdquo 地记录了色谱数据。这对于分析物的定性和定量堪称绝佳的解决方案。 HDMSE技术的推出,进一步对色谱行为相近的分析物通过离子淌度区分,极大地改善了数据的信噪比,使定性结果更加准确(图2左)。使用MSE以及HDMSE采集多肽GVIFYESHGK二级图谱的对比实验中可以看到,在MSE数据中有多达254个碎片信号,其中大部分是干扰信号,如果这些信号都被用来检索,将可能影响鉴定的准确性;而通过HDMSE得到的潜在产物离子碎片仅有35个,也就是说绝大多数干扰信号都被去除了,这极大地提升了最终的鉴定可信度(图2右上)。更让人兴奋的是,HDMSE技术在对复杂体系蛋白鉴定的数量上,较MSE也有了近一倍的提升(图2右下),产生了质的飞跃。配备MALDI离子源的SYNAPT G2-S还可进行MALDI Imaging实验。较常规的MALDI Imaging技术,通过T-Wave技术的使用,科学家可以得到更加丰富、可信的实验数据,因此得到了广泛的应用。此外,ETD(电子传递解离)等丰富的研究手段都可在SYNAPT G2-S上实现。SYNAPT G2-S还具有最广泛的离子源,包括:电喷雾(ESI)、大气压化学电离(APCI)、双电喷雾和APCi(ASCi)、大气压电离(APPI)、常压气相色谱法(APGC)、NanoFlowR(ESI)、基质辅助激光解吸(MALDI)、大气固体分析探头(ASAP)和微控UPLC(T RIZAIC UPLC)等。它还可与包括DESI(Prosalia)、DART(IonSense)、LDTD(Phytronix)和TriVersa nano Mate(Advion)源在内的诸多第三方离子源兼容。SYNAPT G2-S质谱作为2011年Waters最新发布的尖端质谱,正在融入生命、材料、环境、食品、农业、中药等领域的研究与实践应用中。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 高速发展中的中国质谱分析——第三届全国质谱分析学术报告会厦门开幕
    p  strong仪器信息网讯 /strong2017年12月9日,由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的“第三届全国质谱分析学术报告会”在厦门翔鹭国际大酒店隆重开幕。来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加了本次会议,会议规模相比往届再攀新高。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d9a64a36-0110-403a-8e4d-c17705f4d45b.jpg" title="IMG_1740.jpg"//pp style="text-align: center "第三届全国质谱分析学术报告会/pp  本届会议为期3天(12月9日-11日),邀请18个大会报告并开设主题为新仪器新技术、蛋白组学与代谢组学、新型离子源、质谱在医药研究中的应用、有机/生物质谱新方法、无机质谱、环境与食品安全分析的七个分会场报告。会议同期还设置了青年论坛专场和学术墙报展示,以促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流,/pp  9日的大会开幕式由中国化学会质谱分析专业委员会秘书长林金明主持。中国化学会质谱分析专业委员会主任陈洪渊、国家自然科学基金委化学部常务副主任陈拥军、厦门大学教授江云宝为大会致开幕词。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/64cc686a-1abe-40a4-b241-421ca43984b3.jpg" title="IMG_4693.jpg"//pp style="text-align: center "清华大学 林金明教授/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/cfc5d196-b624-46e8-bc47-842eb6c24f28.jpg" title="IMG_4696.jpg"//pp style="text-align: center "南京大学 陈洪渊院士/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/00ed94fa-6461-42aa-8820-bede16497eb9.jpg" title="IMG_4701.jpg"//pp style="text-align: center "国家自然科学基金委化学部常务副主任 陈拥军研究员/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/9145234d-2e40-4e8a-8e83-f982526ade6f.jpg" title="IMG_4707.jpg"//pp style="text-align: center "厦门大学 江云宝教授/pp  恰逢两年一届的质谱盛会,仪器信息网联合主办方——中国化学会质谱分析专业委员会,完成“快速发展中的中国质谱分析”系列专题采访,全景展现中国质谱发展现状。/pscript src="https://p.bokecc.com/player?vid=F974830A9FF69D9C9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptpbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/24fccf78-7c02-4e30-beeb-8d3097f7f774.jpg" title="IMG_1735_副本.jpg"//pp  开幕式后是特邀大会报告环节,陈拥军、陈洪渊、张玉奎、柴之芳、王海舟、张新荣、刘虎威、杨芃原、李灵军、再帕尔· 阿不力孜、许国旺、蔡宗苇、Kaveh Kahen等13位重量级质谱专家将在9日当天分享前沿成果。更多详实内容,敬请关注仪器信息网从会场发回的报道。/pp  此外,本次会议还得到珀金埃尔默、布鲁克、安捷伦、岛津、赛默飞、SCIEX、日立、沃特世、麦特绘谱、美资力可、霍尼韦尔、华质泰科等近20家仪器厂商的鼎力支持,并带来他们最新技术及产品展示。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/1cee4ccf-d637-45f1-82b2-a20f030dab4f.jpg" title="珀金埃尔默.jpg"//pp style="text-align: center "珀金埃尔默/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/133fe7c3-290a-4664-8281-83442e79bb54.jpg" title="布鲁克.jpg"//pp style="text-align: center "布鲁克/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/ff6b4dc4-b538-4c5e-8a04-3709aac172a0.jpg" title="安捷伦.jpg"//pp style="text-align: center "安捷伦/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/eaa111d2-a298-4885-ae22-204ad19c806c.jpg" title="岛津.jpg"//pp style="text-align: center "岛津/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d7e8d230-676e-4b9b-989a-02fe461997c9.jpg" title="赛默飞.jpg"//pp style="text-align: center "赛默飞/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a4fc5124-5edc-4b50-8640-edf0bb05f9a0.jpg" title="SCIEX.jpg"//pp style="text-align: center "SCIEX/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/bc6ab755-b510-46e0-a157-4595d1599a34.jpg" title="日立高新.jpg"//pp style="text-align: center "日立高新/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/64c7d50d-a324-4241-a881-1d52aca37338.jpg" title="沃特世.jpg"//pp style="text-align: center "沃特世/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/9d540869-0754-4a25-8716-7284c867d6fa.jpg" title="麦特绘谱.jpg"//pp style="text-align: center "麦特绘谱/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/4a3d0c97-9279-45f4-9717-dc9a38ab83a1.jpg" title="美资力可.jpg"//pp style="text-align: center "美资力可/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/dc142b22-36d8-4318-afc1-4c385aa12ff9.jpg" title="霍尼韦尔.jpg"//pp style="text-align: center "霍尼韦尔/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/e5c0a50d-c90f-4e34-8c1a-94b6b9090cee.jpg" title="华质泰科.jpg"//pp style="text-align: center "华质泰科/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d3cf8e17-cfb0-452b-9c23-ede2d775cae6.jpg" title="毕克气体.jpg"//pp style="text-align: center "毕克气体/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/546b6c1c-acc6-453f-ba67-a9cfcd0707c3.jpg" title="上海基泰.jpg"//pp style="text-align: center "上海基泰/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/fa13d125-74e0-4232-b8cb-893847f120a7.jpg" title="东宇电机.jpg"//pp style="text-align: center "东宇电机/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a01c0adf-02d6-4a6f-bb54-aceab68ee778.jpg" title="上海科哲.jpg"//pp style="text-align: center "上海科哲/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/0263b49f-f9b7-4d2a-81bf-77102d306c1b.jpg" title="复华质芯.jpg"//pp style="text-align: center "复华质芯/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/39b94826-6200-4a34-98bd-94ad72ae2216.jpg" title="华仪宁创.jpg"//pp style="text-align: center "华仪宁创/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a526eae6-dc02-4d4c-9bdf-9e9d3cada53e.jpg" title="上海康昱盛.jpg"//pp style="text-align: center "上海康昱盛/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/1065c844-e2d2-4ff6-b85c-eb5a51202802.jpg" title="仪器信息网.jpg"//pp style="text-align: center "仪器信息网/p
  • 环境领域多项最新标准发布!涉及色谱、质谱、光谱等多类仪器分析方法
    近日,为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,国家生态环境部连续发布多项环境领域标准,包括环境空气领域:环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法 (HJ 1271—2022);环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法。水质领域:水质6种苯氧羧酸类除草剂和麦草畏的测定高效液相色谱法(HJ 1267—2022);水质甲基汞和乙基汞的测定液相色谱-原子荧光法(HJ 1268—2022)。土壤领域:土壤和沉积物甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)。仪器信息网摘录部分要点如下:1.环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 (HJ 1271—2022)本标准规定了测定环境空气颗粒物中甲酸、乙酸和乙二酸的离子色谱法,适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。其方法原理为环境空气颗粒物样品中的甲酸、乙酸和乙二酸经水超声提取、离子色谱柱分离后,用抑制型电导检测器检测。根据保留时间定性,峰面积或峰高定量。其中涉及到的仪器及设备包括:环境空气颗粒物采样器:性能和技术指标应符合 HJ 93 和 HJ/T 374 的规定;离子色谱仪:具有电导检测器、阴离子抑制器。若使用氢氧根淋洗液,需配有淋洗液在线发生装置或二元以上梯度泵;色谱柱:阴离子分析柱和保护柱,能实现对甲酸、乙酸和乙二酸的分离;滤膜盒:聚苯乙烯(PS)或聚四氟乙烯(PTFE)材质;样品管:聚乙烯(PE)、聚丙烯(PP)或聚四氟乙烯(PTFE)材质,容积≥100 ml,具螺旋盖;超声波清洗器:功率 400 W 以上,频率 40 kHz~60 kHz;注射器:1 ml~10 ml;水系微孔滤膜针筒过滤器:孔径 0.45 μm;以及一般实验室常用仪器和设备等。2. 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法 (HJ 1270—2022)本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE207和BDE 209 共 26 种多溴二苯醚的测定。其中涉及到的仪器及设备包括:高分辨气相色谱仪,需要配置低流失石英毛细管柱,一根为耐高温柱,柱长 15 m,内径0.25 mm,膜厚0.10μm;另一根柱长 30 m,内径 0.25 mm,膜厚 0.10 μm。固定相为 5%苯基 95%二甲基聚硅氧烷,或其他等效的低流失色谱柱;高分辨质谱仪,要求静态分辨率大于 8000,动态分辨率大于 6000;前处理装置等。3. 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 (HJ 1267—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中 6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法,适用于地表水、地下水、生活污水、工业废水和海水中麦草畏(3,6-二氯-2-甲氧基苯甲酸)、2,4-滴(2,4-二氯苯氧乙酸)、2-甲-4-氯(2-甲基-4-氯苯氧乙酸)、2,4-滴丙酸(2-(2,4-二氯苯氧基)-丙酸)、2,4,5-涕(2,4,5-三氯苯氧乙酸)、2,4-滴丁酸(4-(2,4-二氯苯氧基)-丁酸)和2,4,5-涕丙酸(2-(2,4,5-三氯苯氧基)-丙酸)等 7 种除草剂的测定。其中涉及到的仪器及设备包括:高效液相色谱仪,要求耐压≥60 MPa,具紫外检测器或二极管阵列检测;器。色谱柱,要求填料粒径 2.7 µm,柱长 15 cm,内径 4.6 mm 的 C8反相色谱柱,或其他适用于酸性条件的等效色谱柱;浓缩装置;固相萃取装置;pH计等。4. 水质 甲基汞和乙基汞的测定 液相色谱-原子荧光法 (HJ 1268—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的液相色谱-原子荧光法,适用于于地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:液相色谱-原子荧光联用仪,由液相色谱系统、在线紫外消解装置及原子荧光光谱仪组成;色谱柱,要求填料粒径为 5 μm,柱长 15 cm,内径 4.6 mm 的 C18反相色谱柱,或其他等效色谱柱;汞空心阴极灯;分液漏斗等。5. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法,适用于土壤和沉积物中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:全自动烷基汞分析仪,要求包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪;真空冷冻干燥仪,要求空载真空度达13Pa以下;离心机,要求转速可调;恒温振荡器;涡旋振荡器;尼龙筛;离心管;进样瓶等。
  • 第三届全国质谱分析学术报告会征文通知
    p style="text-align: center "span style="color: rgb(192, 80, 77) "  (2017年12月8-11日,厦门)/span/pp style="text-align: center "  span style="color: rgb(36, 64, 97) "第一轮通知/span/pp  为促进我国质谱分析技术的快速发展,展示我国在该领域取得的成绩及增进同行间的学术交流,由中国化学会质谱分析专业委员会主办,厦门大学承办,中国质谱学会和中国分析测试协会协办的“第三届全国质谱分析学术报告会”拟定于2017年12月8-11日在厦门召开。大会由陈洪渊院士担任会议主席,林金明教授、杭纬教授担任正、副秘书长。本次会议将邀请从事质谱分析国内外知名学者作大会报告和主题报告,并设有口头报告、技术报告和报展,交流在质谱分析研究领域取得的最新进展。会议热诚邀全国从事质谱分析、仪器应用、仪器研发与制造等领域的广大学者、研究生、相关单位代表及相关仪器厂商参会。/pp  本届学术报告会将印刷会议论文集,有意参会代表请在网上在线投稿、注册。有关会议注册、投稿要求、论文格式等,请登录会议网址(http://www.ms-china.org/),按照提示在线注册并提交会议摘要。/pp strong 一、会议主题和征文内容/strong/pp  会议主题:高速发展中的中国质谱分析/pp  征文内容:1)生命分析,2)环境分析,3)医药卫生, 4)食品分析,4)石油化工, 6)公共安全,7)天然物及烟草,8)裂解机理、方法,9)新材料、新能源,10)样品前处理方法,11)仪器研制与新技术,12)企业新产品新技术,13)其他/pp  strong二、来稿要求:/strong/pp  凡未在刊物上发表和未在学术会议上宣读过的反映近期质谱分析相关的基础研究,新技术、新方法、新应用的发展,以及在各个领域的分析应用论文或综述均可投稿。论文请务必提供稿件联系人、电话、通讯地址和Email,并于2017年9月30日前在线投稿(网址:http://www.ms-china.org/)/ppstrong  三、联系人:/strong/pp  杭纬(学术),电话:0592-2184618,E-mail: weihang@xmu.edu.cn/pp  窦相南(投稿),电话:010-62798615,E-mail: douxn001@mail.tsinghua.edu.cn/pp  林海锋(赞助,广告),电话:010-62798615,E-mail: hflin91@163.com/pp  有关会议的详细介绍、组织机构、征文格式、日程安排、宾馆住宿等相关信息,请登录会议网址(a href="http://www.ms-china.org/"http://www.ms-china.org//a)查询。敬请关注!/pp style="text-align: right "  中国化学会质谱分析专业委员会/pp style="text-align: right "  2017年4月10日/pp /p
  • 珀金埃尔默质谱直接分析系统DAS亮相ASMS 2012
    2012年5月20-24日,第60届美国质谱会(ASMS 2012) 在加拿大温哥华召开,专注于提高人类及其生存环境安全的全球领先公司 PerkinElmer在此次会议上展示创新性的质谱解决方案,该方案是通过减少样品前处理步骤实现了分析时间从25分钟减少到25秒。  AxION 直接样品分析系统(DAS)  AxION 直接样品分析系统(DAS)是为实现与AxION 2飞行时间质谱仪进行无缝链接而设计制造的。该技术的突破性在于可以消除对前端气相和液相分离的需求,使科学家可以在几秒内获得质谱分析结果。使用这套系统,样品分析时间可以减少近99%,并可显著节约成本,由于无需色谱分析过程,在快速获得结果的同时加快了实验室工作流程。  AxION eDoor™ 开放式读取软件  为了进一步精简实验室操作,PerkinElmer还发布易用的、基于网络的AxION eDoor™ 开放式读取软件。AxION eDoor™ 兼容所有类型LC/MS实验室的工作流程,为样品的引入提供一个“(访问路径)Walk up access”,可以管理和控制包含多家质谱仪器厂商和用户的整个网络。该系统的特点是:有一个现代化和直观的界面,支持通过网页、email和任一PDA快速、便捷的得到访问结果。  “虽然质谱技术可以提供样品最本质的性质,但是各实验室面临着样品前处理时间长和软件操作系统复杂等问题,而这些都是比较耗时并且需要熟练的人员进行操作。”PerkinElmer质谱副总裁Silverio (Sal) Iacono说到,“除了减少样品前处理步骤和无需前端色谱分离外,我们的新质谱解决方案还易于使用,操作人员只需要经过简单培训或者无需培训。在ASMS上,我们将会演示这些创新方案如何简化实验室工作流程和控制,并且同时确保好的质谱数据和结果。”  加入PerkinElmer,你会了解更多关于公司的质谱产品及其在细分市场间的广泛用途。5月21日~23日,上午8:00至下午11:00(PDT),PerkinElmer公司的分析仪器、软件和服务产品会在110号接待室展示。除上述产品外,PerkinElmer还将展出以下产品及服务:  AxION 2飞行时间质谱硬件和软件平台、Flexar™ FX-15 UHPLC超高压液相色谱系统、Clarus SQ 8 GC/MS气相色谱/质谱仪、NexION 300 ICP-MS、OneSource实验室服务。
  • 2017中国(广州)分析测试论坛召开 色谱质谱技术“炙手可热”
    仪器信息网讯 2017年2月21日,CHINA LAB 2017广州国际分析测试及实验室设备展览会暨技术研讨会在广州保利世贸博览馆如约举行。由中国广州分析测试中心、广东省科技合作研究促进中心(原广东省对外科技交流中心)、国药励展展览有限责任公司联合主办的“2017中国(广州)分析测试论坛”同期召开。下午的“色谱质谱”分会场中,5位来自科研院校、仪器厂商的专家带来最新技术及应用分享。会议现场座无虚席,色谱质谱分析技术依然“炙手可热”。“色谱质谱分析技术分会场”现场《细颗粒污染物的表征与溯源》中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室刘倩研究员  围绕“细颗粒污染物的表征与溯源”主题,刘倩研究员带来“色谱质谱”分会场首个报告。在明确纳米颗粒物在PM2.5毒性健康效应中具有的关键作用后,刘倩研究员就如何对复杂样品中的纳米颗粒物进行快速鉴定和表征、如何甄别复杂环境介质中纳米颗粒物的来源、如何利用天然稳定同位素对PM2.5溯源等问题,介绍了团队建立的CE-ICP-MS鉴定表征复杂样品中的纳米颗粒等新型分析方法,探讨了北京地区PM2.5的来源和生成机制。《固相微萃取/气相色谱-质谱联用鉴别沉香真伪方法研究》中国广州分析测试中心,广东省测试分析研究所吴惠勤研究员  针对传统和现有沉香鉴别方法中所存在的缺乏科学数据和量化数据、取样时易损坏收藏品等问题,吴惠勤研究员介绍了团队建立的一种新型鉴别沉香真伪方法。通过采用固相微萃取(SPME)富集沉香香气成分,GC-MS测定沉香的化学组成;通过研究不同产地沉香及假沉香的香气成分,确定天然沉香的6种特征成分;通过天然沉香的GC-MS指纹图谱以及特征成分对比,即可判断沉香样品的真伪。该方法具有样品用量小、操作简便快速、检测灵敏度高、特征性强、结果准确可靠等特点,已成功用于沉香药材及其收藏品的真伪鉴别。《如何根据应用正确用水》赛多利斯中国张燕芬  赛多利斯中国产品经理张燕芬带来题为《如何根据应用正确用水》的报告,与到场观众一同探讨了GB国标对实验室用水的要求、纯水等级划分制备方法、如何在分配环节保证纯水水质等问题。通过比较现有纯水设备的技术及指标性能,介绍赛多利斯在实验室纯水领域提供的 系列代表性产品。《微生物降解多环芳烃的代谢机制》中山大学生命科学学院栾天罡教授  多环芳烃(PAHs)具有“三致效应”,来源于自然和人类生活,在环境中具有普遍性,微生物降解则是环境中PAHs的重要去除方式。基于上述考虑,栾天罡教授团队以珠江口红树林湿地生态系统为研究对象,通过采取SPME-GC-MS等分析方法,深入探讨PAHs的细菌降解途径与机理,揭示菌-菌、菌-藻可协作参与PAHs的降解并提高对PAHs的去除效率;复合微生物降解体系可用于PAHs的去除和污染修复;PAHs污染能导致抗生素耐药基因污染等关联机制。《固相微萃取探针研制与活体检测》中山大学化学与化学工程学院环境化学研究所欧阳钢锋教授  固相微萃取(SPME)作为一项快速简便的国际前沿绿色采样及样品前处理技术,自上世纪70年代诞生以来,已被列入1990-2000年分析化学领域六个“GREAT IDEAS”之一,广泛应用于环境、食品、香料、生物、药物分析等领域。欧阳钢锋教授团队将重点放在固相微萃取探针的研制和活体检测上,在基于有机金属框架材料、碳材料和高分子材料等系列SPME探针的研制和表征方面取得的进展,并利用SPME技术对动植物活体中的有机污染物进行采样分析和跟踪检测。
  • 气溶胶质谱在线分析北京雾霾成分
    16日夜间开始,北京经历今年来持续时间最长、程度最重的雾和霾天气过程。北京南部部分站点空气质量指数爆表,天地间一片昏暗。此时,网络上、朋友圈里各类关于空气质量的言论开始流传,其中人们最为关注的是“这次雾霾里主要是含硫酸铵,̷̷原来伦敦有次硫酸铵超标,有好多人没有防护而死亡”。  网络流传硫酸铵会致命。  此次重污染天气过程中,我们呼吸的空气里这到底包含什么物质?和之前的重污染天气相比有何不同?硫酸铵会直接导致死亡吗?为此,中国天气网记者采访了中国气象科学研究院大气成分所副研究员张养梅。  北京的霾里到底有哪些成分?  中国气象科学研究院位于北京市海淀区中国气象局大院内,在气科院大楼的楼顶,气溶胶质谱仪一直默默值守,在线采集、分析北京亚微米气溶胶的成分。张养梅介绍道,所谓亚微米气溶胶是指直径在1微米以下的粒子。大家熟悉的PM2.5其实是一个总称,包括空气中直径小于或等于2.5微米的固体颗粒或液滴。研究显示,直径1微米及以下的粒子占PM2.5的60%左右,因此质谱仪采集的数据对于分析大气成分是具有代表性的。  各类颗粒在采样颗粒中所占比重。绿色代表有机气溶胶,橙色为硫酸盐、蓝色为硝酸盐,粉色为氯化物,浅橙色为铵盐。有机气溶胶所占比重最大,硝酸盐次之。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过仪器采集数据及分析,12月5日至20日采集到的1微米及以下的粒子,主要包括有机气溶胶、硝酸盐、硫酸盐等构成。有机气溶胶是一个总称概念,具体的组成目前还没有完全研究清楚,大家经常听说的多环芳烃就是有机气溶胶的一种。硫酸盐主要来自燃煤,燃煤排放的二氧化硫发生一系列氧化反应,成为硫酸铵。硝酸盐主要来自燃煤和机动车排放,氯化物的主要来源包括垃圾焚烧、燃煤以及燃放烟花爆竹等。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过对12月16日至20日对北京的采样颗粒进行分析后,结果显示有机气溶胶是其中占比最大的颗粒,高达45% 硝酸盐颗粒占比24%排第二,主要来自燃煤和机动车排放等 硫酸盐占比15%,主要来自燃煤等 铵盐占比12%,氯化物占比4%。  北京霾和伦敦烟雾一样吗?有致命成分?  就在北京空气质量持续恶化之时,网络谣言也开始流传。针对网上流传的硫酸铵会致命,张养梅表示这是不可能的。空气质量好时,空气中也存在有机气溶胶、硫酸盐等颗粒,只是浓度较低、颗粒物较小。霾天气时,仪器不会观测到硫酸铵,观测到的是硫酸、铵两个离子,他们结合成硫酸铵的可能性很大,空气重污染时浓度更高一些。空气中含有硫酸铵并不是政府发布红色预警的必要条件。  硫酸铵是颗粒物,和二氧化硫气体有明显区别,颗粒物对人体健康的影响程度没有气体迅速。如果空气中二氧化硫气体浓度很高的话,相当于人在“吸毒气”,对人体有致命影响。当年的伦敦烟雾在短短几天内造成数千人死亡,就是因为空气中酸性气体浓度太高。监测显示,12月5日以来,北京硫酸盐的浓度峰值出现在20日,达40-50微克/立方米,远远低于伦敦烟雾事件时的浓度。  当然,硫酸铵等颗粒物也会影响人体健康。它们会随着呼吸进入人体肺部,引发心脑血管和呼吸道的疾病。另外,北京的空气污染物中,含有一定比例的铵,会和硫酸、硝酸发生中和形成颗粒,和酸性气体相比,颗粒的危害性相对轻一些。  污染物浓度日间变化明显 夜间高白天低  分析还表明,空气中各种污染物的浓度整体呈现白天低、夜间高的变化规律。分析时,将12月5日至20日每天同一时次颗粒浓度做分类平均统计,显示颗粒物夜间浓度明显偏高,白天下降明显。  各类颗粒的浓度白天下降明显,夜间明显上升。  张养梅表示,浓度变化主要受排放量和气象条件两个因素影响。在排放量相同的情况下,从气象条件来说,夜间湿度增大,可以吸附更多污染物。同时,冬季夜间气温较低,大气边界层下压。在气体容量不变的情况下,体积变小,空气污染物浓度升高。白天,大气边界层抬升,体积增大,污染物浓度降低。  和2008年相比硫酸盐浓度下降  总体来说,和之前相比,北京空气中的颗粒种类的浓度分布排位没有太大变化,有机气溶胶的浓度一直是最大。但是分析显示,今年12月和2008年1月相比,硫酸盐在不同颗粒物比重的排位下降。  从图中可见,今年12月5日至20日,硝酸盐(蓝色)在颗粒物组成中浓度上升,基本都排在第二位,硫酸盐下降排在第三位 而2008年1月5日至2月2日,硫酸盐浓度排第二位,硝酸盐排第三位。张养梅表示,这一数据的变化也可以说明,政府对二氧化硫排放的监管和控制,比如煤改气措施、工厂加装脱硫设备等发挥了作用。硝酸盐浓度的上升,则与燃煤、机动车排放增加有一定关系。  北京的雾霾将在明天减弱消散,但在近几年中,霾仍将在秋冬季反复出现。张养梅提醒大家,虽然霾天气对人体的危害没有那么“激烈”,但仍需防护,尽量减少在户外活动的时间,外出时戴口罩。在室内时,也可启动空气净化器等设备,营造相对安全的空气环境。
  • “发展前沿技术,解决分析疑难问题”- 布鲁克质谱高层谈质谱新技术与市场发展
    p  strong仪器信息网讯/strong span style="font-family: times new roman "2016年9月10日-12日,布鲁克作为高端质谱生产制造商参加了在青海西宁举办的第34届中国质谱学会学术年会。继去年推出用于完整的组织成像的rapifleX MALDI tissuetyper之后,布鲁克在今年的美国质谱年会(ASMS 2016)发布了全新的质谱技术平台捕集型离子淌度QTOF( timsTOF)和rapilfeX TOF/TOF。仪器信息网编辑在西宁会议现场就布鲁克质谱的最新技术与市场情况采访了布鲁克质谱中国区高级商业总监王克非与全国销售经理鲁静。/span/pp style="text-align: center "span style="font-family: times new roman "img title="布鲁克道尔顿中国区高级商业总监王克非与全国销售经理鲁静.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/97e1da20-fbb8-4bc1-be16-50fd7b344b15.jpg"//span/pp style="text-align: center "span style="color: rgb(0, 112, 192) font-family: times new roman font-size: 14px "strong布鲁克道尔顿中国区高级商业总监王克非与全国销售经理鲁静在布鲁克展位合影/strong/span/ppspan style="font-family: times new roman "  timsTOF是一款将布鲁克专利TIMS(Trapped Ion Mobility Spectrometry)技术与ESI-QTOF质谱联用的布鲁克最新技术。王克非博士在本届质谱会质谱检测新方法的研究分会场详细介绍了timsTOF捕集离子淌度高分辨质谱原理及应用,到场听众对该技术表现出浓厚的兴趣。/span/pp style="text-align: center "img title="质谱检测新方法的研究分会场.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/15fd8de7-94ec-405c-b7bc-9e888fe6786a.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) font-family: times new roman font-size: 14px "strong质谱检测新方法的研究分会场/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) font-family: times new roman font-size: 14px "strongimg title="王克非博士.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/b5809cd5-a6eb-493f-94b6-1daf12d41e27.jpg"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) font-family: times new roman font-size: 14px "strong王克非博士在质谱检测新方法的研究分会场介绍timsTOF捕集离子淌度高分辨质谱原理及应用/strong/span/ppspan style="font-family: times new roman "  在报告之后,仪器信息网编辑针对timsTOF的原理与技术创新采访了王克非博士。据王克非介绍,捕集型离子淌度技术(Trapped Ion Mobility)是近几年新发展的离子淌度新技术,布鲁克成功将这一技术用在了液质Q-TOF产品中。其离子淌度分析部分包含离子漏斗和淌度分析器,能够捕获聚集离子以达到更高的分析效率。与传统离子淌度的载气与离子同方向流动不同,tims的分析是载气与离子在电场作用下反方向流动,较大离子因淌度较小而先流出进入质谱分析。/span/ppspan style="font-family: times new roman "  timsTOF能够提供高分辨的淌度和质谱分析。据介绍,该系统的离子淌度分辨率R超过了200。而独特的离子淌度扩展技术imeX能够调整淌度的分辨能力。用户可以在分辨率与所需求的分析质量数(m/Z)范围之间平衡选择,给科研工作带来了灵活性。timsTOF可应用于同分异构化合物的分析,因为异构体在一般的LC-MS/MS上很难分析。timsTOF还可分离和排除母离子干扰离子,极大程度降低背景噪音,提高二级图谱质量。timsTOF在分析中可以得到准确的( 0.5%) 碰撞截面值(CCS),为复杂物质定性定量分析提供了另一个关键参考信息。/span/ppspan style="font-family: times new roman "  王克非还提到,离子淌度质谱系统的软件是体现系统优越性的重要一环。timsTOF采用开放的数据格式(*.tdf)和开源格式SQLite支持用户定制分析过程与算法。灵活的软件使用户能根据高分辨的离子淌度质谱数据实现在热图、mobilograms和质谱谱图之间的相互分析研究。/span/ppspan style="font-family: times new roman "  布鲁克在离子淌度技术发展方面做出新的技术突破,于今年把捕集离子淌度技术与QTOF的结合带给了用户。对此,王克非感叹说:“匠人匠心,德国先进技术一直在传承,在这背后是对高端质谱技术的坚持和热爱”。和布鲁克其他Q-TOF质谱一样,timsTOF能够获得精确的同位素峰形以及干净的MS/MS谱图,得到真实性更强的同位素分布(TIP)。/span/ppspan style="font-family: times new roman "  除此之外,今年布鲁克先进的MALDI产品家族又添了新成员MALDI TOF/TOF –rapilfeX TOF/TOF,以满足更高应用需求,是科研工作者在生物药和生物仿制药的Top-down测序、糖基化结构分析、二硫键或三硫键定位分析和错配分析、组织成像等方面的最佳选择。/span/ppspan style="font-family: times new roman "  王克非对布鲁克质谱的在中国的销售情况比较乐观。2016年上半年,受欧洲经济疲软的影响,布鲁克质谱在全球的销售业绩出现小幅下滑,但布鲁克质谱在中国的销售额却获得了2位数的增长。他透露,“今年MALDI质谱在中国销售额已经超过了100%的增长。布鲁克MALDI质谱在政府机构、科研、临床及工业微生物市场全面开花。”/span/pp style="text-align: left "span style="font-family: times new roman "  今年7月份,布鲁克质谱对内部进行了重新部署,正式任命原区域销售经理鲁静为全国销售经理。对于布鲁克MALDI质谱在中国的发展情况,鲁静补充说:布鲁克MALDI Biotyper是取得国内医疗器械许可证为数不多的质谱仪器之一,目前在国内医院微生物检验科、食品安全系统、疾病控制等系统得到了用户好评。除此之外,我们也能够为临床医院、科研院所等用户提供用于分子成像、蛋白组学研究等领域的高端研究级MALDI质谱。目前,在微生物鉴定之外的医学领域是我们的高增长区,主要是质谱用于精准医疗的热潮中。MALDI-TOF由于操作便捷易学、图谱简单易解等特点已成为医生和新兴的医疗企业首选的质谱平台,各种围绕着MALDI-TOF的诊断解决方案不断被开发出来。/span/pp style="text-align: center "span style="font-family: times new roman "img title="布鲁克新技术交流会:应用专家潘晨松.jpg" src="http://img1.17img.cn/17img/images/201609/insimg/cdcda811-91ac-4b65-ae6b-44917541eb47.jpg"//span/pp style="text-align: center "span style="color: rgb(0, 112, 192) font-family: times new roman font-size: 14px "strong布鲁克新技术交流会:应用专家潘晨松介绍《基于液相色谱-质谱联用的代谢组学研究中代谢物的结构鉴定进展》/strong/span/pp style="text-align: left "span style="font-family: times new roman "  对于布鲁克独有的傅里叶变换离子回旋共振质谱仪(FTMS),鲁静透露:在继中科院生态环境研究中心和中科院大连化物所之后,石油化工科学研究院将成为国内第三家拥有最高分辨率15T FTMS的研究机构。鲁静对FTMS的应用充满信心,她表示:目前在国内拥有2台和2台以上FTMS的单位逐渐增加,FTMS的应用技术正在不断发展。/span/ppspan style="font-family: times new roman "  在2016年8月的国际质谱大会(IMSC 2016)上,布鲁克发布了最新的FT质谱solariX 2XR。该产品具有7T磁场价格适中,在1秒检测时间内能够达到120万的检测分辨(m/z 200),可以稳定的获得未知小分子化合物的分子式。用户能够利用solariX 2XR质谱获得1千万以上的分辨率,清晰分辨出其他质谱技术无法分辨的质谱峰,可用于进行石油、可溶性有机质、质谱成像、代谢组学及自上而下蛋白质组学等研究领域中的极度复杂样品。/span/pp style="text-align: left "span style="font-family: times new roman "  在问到对今年的最新产品timsTOF的市场前景预估时,鲁静表示,布鲁克的QTOF具有很多优势,如鉴定的重要指标同位素峰型最为接近真实值。再加上timsTOF融入了最新的捕集IMS技术,已经引起了很多用户的关注,截止目前已经产生了订单。她表示,希望timsTOF能够帮助更多的科研工作者解决分析难题。/span/pp style="text-align: right "span style="font-family: times new roman "仪器信息网编辑:郭浩/span楠br//p
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p  何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了?/pp  在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。/pp style="TEXT-ALIGN: center"img title="图1_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg"//pp style="TEXT-ALIGN: center" strong图1/strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图/pp  目前,strong非变性质谱技术主要应用在两个方面/strong:一是strong生物制药领域/strong,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为strong研究蛋白质多聚体/strong,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。/pp  现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。/ppspan style="COLOR: #002060"strongOrbitrap超高分辨质谱:非变性质谱研究的理想平台/strong/span/pp  古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。/pp style="TEXT-ALIGN: center"img title="图2_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg"//pp style="TEXT-ALIGN: center"  strong图2/strong Orbitrap质谱平台用于非变性质谱分析/pp  上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。/pp style="TEXT-ALIGN: center"img title="图3_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg"//pp style="TEXT-ALIGN: center" strong 图3/strong Cys-ADC结构示意图/pp style="TEXT-ALIGN: center"  图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。/pp style="TEXT-ALIGN: center"img title="图4_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg"//pp style="TEXT-ALIGN: center"  strong图4 /strong使用非变性质谱平台对Cys-ADC进行完整分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。/pp style="TEXT-ALIGN: center"img title="图5_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg"//pp style="TEXT-ALIGN: center"  strong图5/strong 变性质谱条件下对Cys-ADC进行分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。/pp style="TEXT-ALIGN: center"img title="图6_20170406090915_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件可减少复杂组分间信号重叠/pp style="TEXT-ALIGN: center"img title="非变性2_20170406090518_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件下Lys-ADC完整分子量测量结果/pp style="TEXT-ALIGN: center"  strong图6 /strong使用非变性质谱平台对Lys-ADC进行完整分子量测量。/pp  strong小结/strong/pp  本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见!/pp  参考文献/pp  [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83./pp /p
  • 赛默飞世尔科技食品环境安全色谱质谱分析技术专辑
    最新赛默飞世尔科技食品环境安全分析应用专辑内容丰富,囊括:赛默飞世尔科技色谱质谱历史发展,色谱质谱产品介绍,色谱质谱用于食品环境安全监测应用文章等等各个方面。现拆分成31个文件,以供广大分析工作者下载参考。感谢您长期以来对赛默飞世尔科技的支持与信赖! 食品环境安全色谱质谱分析技术专辑 -- 1食品环境安全色谱质谱分析技术专辑 -- 2 食品环境安全色谱质谱分析技术专辑 -- 3食品环境安全色谱质谱分析技术专辑 -- 4 食品环境安全色谱质谱分析技术专辑 -- 5 食品环境安全色谱质谱分析技术专辑 -- 6 食品环境安全色谱质谱分析技术专辑 -- 7 食品环境安全色谱质谱分析技术专辑 -- 8 食品环境安全色谱质谱分析技术专辑 -- 9 食品环境安全色谱质谱分析技术专辑 -- 10 食品环境安全色谱质谱分析技术专辑 -- 11 食品环境安全色谱质谱分析技术专辑 -- 12 食品环境安全色谱质谱分析技术专辑 -- 13 食品环境安全色谱质谱分析技术专辑 -- 14 食品环境安全色谱质谱分析技术专辑 -- 15 食品环境安全色谱质谱分析技术专辑 -- 16 食品环境安全色谱质谱分析技术专辑 -- 17 食品环境安全色谱质谱分析技术专辑 -- 18 食品环境安全色谱质谱分析技术专辑 -- 19 食品环境安全色谱质谱分析技术专辑 -- 20 食品环境安全色谱质谱分析技术专辑 -- 21 食品环境安全色谱质谱分析技术专辑 -- 22 食品环境安全色谱质谱分析技术专辑 -- 23 食品环境安全色谱质谱分析技术专辑 -- 24 食品环境安全色谱质谱分析技术专辑 -- 25 食品环境安全色谱质谱分析技术专辑 -- 26 食品环境安全色谱质谱分析技术专辑 -- 27 食品环境安全色谱质谱分析技术专辑 -- 28 食品环境安全色谱质谱分析技术专辑 -- 29 食品环境安全色谱质谱分析技术专辑 -- 30 食品环境安全色谱质谱分析技术专辑 -- 31 关于赛默飞世尔科技(Thermo Fisher Scientific Inc) 赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司网站:www.thermo.com (英文),www.thermo.com.cn (中文)
  • 院士成果在穗转化精典案例:质谱强国 自主研发EIT质量分析器
    科学仪器被称作科学家的“眼睛”。质谱仪作为国际上最尖端的科学仪器之一,是直接测量物质原子量、分子量的唯一手段,被誉称为“科学仪器皇冠上的明珠”。 十多年前,质谱技术在国内基本还是一片空白。海归博士周振把“做中国人的质谱仪器”作为自己的终身奋斗目标。他创办了广州禾信仪器股份有限公司,并带领公司建成了我国第一个质谱仪器正向研发平台,实现了我国高性能飞行时间质谱仪国产化和产业化,使我国成为世界上少数几个掌握飞行时间质谱核心技术的国家之一。 2021年11月,在同一梦想与追求的驱动下,放射化学家、中国科学院院士柴之芳把院士专家工作站设立在禾信仪器。禾信仪器正联合院士团队向质谱仪的关键核心技术发起攻关。他们的目标是自主研制一款超高分辨率、快速分析的EIT质量分析器,质量分析器正是质谱仪的关键核心零部件。打响国产质谱仪“突围战”科学发现往往离不开新工具的发明与使用。相比于天文望远镜与显微镜,大众对于质谱仪却是陌生的。质谱仪便是最精密、最灵敏的科学分析仪器之一,可以准确测定物质的分子量以及根据碎片特征进行化合物的结构分析。 诺贝尔化学奖得主弗朗西斯威廉阿斯顿曾有一句名言:“要做更多仪器,要多加测量。” 阿斯顿便是质谱仪的发明者。质谱仪让阿斯顿在同位素的研究如虎添翼,他先后发现天然存在的287种核素中的212种,提出同位素的普遍存在性,证实“自然界中某元素实际上是该元素的几种同位素的混合体,因此元素的原子量是依据同位素在自然界的占比而得到的平均原子量。” 鉴于质谱技术对引领科学发展的巨大作用,不仅是弗朗西斯威廉阿斯顿,欧内斯特劳伦斯、沃尔夫冈保罗等多位科学家都曾因对质谱技术作出贡献而获得过诺贝尔奖。 高端科研仪器的创新、制造和应用水平,往往考验着国家科技实力和工业实力。质谱仪涉及精密电子、精密机械、高真空、软件工程、自动化控制、电子离子光学等多项技术及学科,研发难度大、周期长、投入大。而中国每年对质谱仪进口额达到上百亿元,这已成为制约我国自主创新能力提升的一个重要因素。 怀抱着质谱强国梦,海归博士周振2004年来到广州创办了中国第一家专业质谱仪器公司一一禾信仪器。“质谱仪是一项对国家科学水平具有标志性意义的尖端技术,中国发展自己质谱仪刻不容缓,这就是我创办禾信的原因。” 周振说。 禾信创立之时,基本没有人相信中国人能造出质谱仪。但是周振带领团队逐步攻克了单颗粒气溶胶在线电离源、双极飞行时间质谱技术、真空紫外光电离源、膜进样系统等核心技术,研发出单颗粒气溶胶飞行时间质谱仪、VOCs在线监测飞行时间质谱仪、微生物鉴定质谱仪等多款产品。禾信已经成为少数掌握高分辨飞行时间质谱核心技术的企业之一。继续向关键核心技术发起冲击经过十余年的研发积累,禾信仪器已经构建了质谱研发、生产、测试、售后服务、品质控制及应用开发的整套技术创新链条,形成了从基础研究成果向产业化应用转化的技术创新能力体系,包括技术顶层设计能力、产品规划设计能力、产品创新优化能力等。质谱强国梦正逐渐照入现实,但是禾信仪器也面临着挑战。目前国内质谱行业上下游产业发展不成熟,精密电子、精密机械、特殊材料等上游产业的支撑能力还不足。沃特世、丹纳赫、布鲁克、安捷伦、赛默飞、岛津、生物梅里埃等巨头依然合计占据了全球质谱仪市场约90%的份额。“我头脑从来没有发热膨胀的时候。” 周振心里深知,禾信仪器只是打破了完全依赖进口的局面,要发展自己的民族品牌,推动国内质谱仪器行业良性发展,还要靠几代人的努力。为了在这场长跑中实现“反超”,周振正带领团队培育与发展整个质谱产业链,打造质谱生态圈。在2019年于广州举办的首届粤港澳大湾区高端科学仪器产业发展论坛上,禾信及国内科学仪器行业有关单位联合发起的广东粤港澳大湾区高端科学仪器产业促进会进入筹备阶段,禾信更宏大的愿景是推动粤港澳大湾区高端科学仪器创新中心的建立。“我们希望创新中心十年内实现每年培育四五十家仪器制造企业,二三十家核心零部件企业。”周振说,这是一条覆盖“政产学研用金”的完整链条。同样是在这场论坛上,包括柴之芳院士在内的一批行业专家与禾信等产业链企业代表一同发起《关于支持高端科学仪器产业发展的建议书》,共同呼吁将高端科学仪器研发列入广东省各级政府“十四五”和中长期科技发展规划的重点发展领域,培育建立完整的高端科学仪器产业链,制定切实有效的国产科学仪器政府采购政策,支持高端科学仪器创新中心建设。2021年8月广东省政府印发了《广东省制造业高质量发展“十四五”规划》,明确提出,支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克相关关键核心技术。攻克高端科学仪器关键核心技术同样一直是柴之芳院士的梦想。在2011年和2017年,禾信曾牵头承担2项国家专项,柴之芳院士担任项目总体组、技术专家组及用户委员会专家,为项目的应用研究及管理提供技术支持。在柴之芳院士看来,没有先进的仪器和方法,是无法做出重大原创性成果的。我国的科学研究高度依赖国外仪器的情况现在虽然正在改变,但仍十分严重,已成为制约我国攀登科学顶峰的一个瓶颈。自主研发EIT质量分析器柴之芳是著名的放射化学和核分析研究专家,曾在2005年摘得国际放射分析化学和核化学领域的最高奖一一乔治冯海维希奖。他将核技术、核分析和放射化学方法应用于一些交叉学科中,在若干重要元素的分子-中子活化分析、铂族元素丰度特征、金属组学、环境毒理学和纳米安全性、核试验快中子谱等方面取得了一批成果。质谱技术起源于同位素的发现,发展初期主要是为了满足核工业领域同位素丰度比值的测定要求,并伴随着物质组分分析技术的发展而逐渐得到完善。随着核工业的兴起和快速发展,质谱技术被应用于核燃料与核材料中杂质分析、核燃料燃耗的测定以及核反应过程中的裂变产额测定等。质谱测量技术的进步推动了核工业的可持续发展,核工业的发展也对质谱技术提出了更新的要求。铀资源勘查、铀矿治、铀同位素分离、同位素应用、核医学、乏燃料后处理和长寿命核素分离嬗变、核保障监督等都离不开先进的质谱测量技术。柴之芳院士专家工作站的研究项目是《超高分辨率、快速分析的静电离子阱质量分析器的研制》。质量分析器是质谱仪的核心,是决定质谱仪检测精度和准度的关键,但高端质量分析器仍被海外龙头企业垄断。而院士专家工作站要自主研发的静电离子阱质量分析器 (EIT质量分析器) 便是一种具备超高质量分辨率、高质量精度、高灵敏度、快速分析等特点的通用型质量分析器。该项目结合柴之芳院士在放射化学、核化学等研究方向中丰富的质谱应用经验,实现EIT质量分析器性能指标达到国际先进水平,并在核物理、放射化学、环境科学等领域的应用。基于该项目的研究成果,可以进一步开发以EIT质量分析器为核心的有超高分辨率、高精度质量分析需求领域的定制产品,也可以开发用于环境监测、食品检测、生物医疗等领域的通用在线超高分辨率大气压电离质谱产品。目前,院士专家工作站已完成EIT质量分析器的原理研究、质谱整机各模块的设计与制造,研制出原理样机,申请发明专利3项,与院士团队联合发表论文1篇。柴之芳院士常教导弟子,有志于科学研究的人要安心,要清净,要踏实。周振率领的禾信同样是一家愿意“十年磨一剑”的科技企业。如今两支有共同梦想的团队聚在一起,正在以共同步调向质谱强国梦继续进发。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制