当前位置: 仪器信息网 > 行业主题 > >

色谱分离填

仪器信息网色谱分离填专题为您提供2024年最新色谱分离填价格报价、厂家品牌的相关信息, 包括色谱分离填参数、型号等,不管是国产,还是进口品牌的色谱分离填您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱分离填相关的耗材配件、试剂标物,还有色谱分离填相关的最新资讯、资料,以及色谱分离填相关的解决方案。

色谱分离填相关的论坛

  • 迪马科技制备色谱填料完美解决中药提取分离

    迪马科技制备色谱填料完美解决中药提取分离

    随着社会的发展,我国的传统医学正发挥着越来越重要的作用。由于中药成分组成十分复杂且很多有效成分含量很低,甚至为微量或痕量,因此,有效成分的提取与分离纯化是中药研发中的关键因素。为进一步改进中药提取与分离工艺、提高提取物收率、提升目的产物质量,中国高科技产业化研究会与中药工业网于2012年6月29日-7月1日在上海隆重召开“全国中药提取分离新技术、新设备交流研讨会”。 来自各中药生产企业、中医药大学、科研院所、中医医院、中西医结合医院,中医药研发机构等近100人参与了此次盛会。第三军医大学吴力克教授;浙江中医药大学朱承伟教授;江西中医学院郑琴教授;北京理工大学赵之平教授,陶氏化学等专家就中药提取和分离技术进行了全方位的讲解。 迪马科技一直致力于为制药行业提供全方位的技术服务,针对此次中药提取分离新技术、新设备交流研讨会,迪马科技技术应用工程师做了题为《Dikma Prep HPLC 制备色谱填料技术及在药物提纯中的应用》的技术报告。重点介绍了迪马科技多款应用于中药提取分离的制备色谱填料:Ø Diamonsil®: 通用型反相分离填料,优异的分离性能特别适用于中药及天然产物分析;Ø Inspire™:高分辨率,快速分离填料,适合分离酸性/ 中性/ 碱性化合物;Ø Spursil™:填料表面具有极性基团,适合于高水流动相条件下的分离,增强了对亲水性、极性化合物的保留能力;Ø Bio-Bond™: 大孔径300Å填料,多肽,蛋白质,生物大分子的分离制备理想选择;Ø Luster™: 专为追求经济且实用产品的用户设计,而更重要的是它优越的性能,可以提供高分离能力和制备上样量,较长的使用寿命和优良的重现性;Ø EconoSep™: 经济型中低压填料、高性能,合理的价格。 同时分享了来自Amgen Inc、The University of Mississippi等国内外用户使用迪马科技色谱填料所做的多肽和天然产物提纯分离方面的应用实例,从另一方面也验证了迪马科技色谱填料的优异性能。 迪马科技一直重视提升色谱填料科的研发能力:在国内取得了十二五国家科技支撑计划课题--分离材料研发与集成示范(课题编号:2012BAK25B02);在国外,多款迪马自有品牌液相色谱柱(Inspire, Spursil, Endeavorsil, Leapsil, Bio-Bond)成功入选美国药典USP数据库; 迪马科技也一直致力为用户提供全方位的解决方案,更乐于与用户开展广泛的技术合作,共同攻坚克难,用迪马科技的产品为您解决技术难题。

  • 【分享】改变填料颗粒大小和色谱柱的长度对液相色谱分离的影响

    如果填料颗粒大小减半,则理论塔板数加倍(假设柱长不变)。如果填料颗粒大小减半,则柱压增加为原来的四倍。 如果柱长加倍,则理论塔板数加倍。如果柱长加倍,则分析时间加倍。随着柱长增加,柱压也线性地增加。 以下是一个根据上述信息选择色谱柱的示例: 一个装填 10um 填料的长度为 200mm 的色谱柱可生成 6000 块理论塔板,这是在很多情况下能提供比较适当的分离的色谱柱效率。将颗粒大小由 10um 减小到 5um,柱长仍为 200mm,则可生成 12000 块理论塔板。然而,这个色谱柱可生成相当于原来四倍的柱压。通常情况下不需要生成 12000 块塔板,因此柱长可减半至 100mm,结果生成 6000 块塔板,同时分析时间也缩短一半;柱压仅比最初装填 10um 填料的长度为 200mm 的色谱柱高两倍。请大家提出新的见解或不同意见,请指正。

  • Kromasil发布新型大分子分离用反相色谱填料DiC4

    Kromasil发布新型大分子分离用反相色谱填料DiC4

    [img=,685,206]http://ng1.17img.cn/bbsfiles/images/2017/07/201707181343_03_3232745_3.png[/img] 2017年7月17日,Kromasil在全球制备色谱大会上(费城,美国)发布了其新型 300Å DiC4色谱填料,填补了长期以来在大分子分离方法开发中缺乏疏水性介于C4和C18之间的反相色谱填料空白。[img=,240,144]http://ng1.17img.cn/bbsfiles/images/2017/07/201707181343_01_3232745_3.png[/img][img=,512,401]http://ng1.17img.cn/bbsfiles/images/2017/07/201707181343_02_3232745_3.png[/img] Kromasil双C4色谱填料具备原先的C4的分离特性,同时又不仅仅是结合双C4的分离作用机制。其在真正的分离过程中还引入了部分硅羟基和离子交换的特性(PH=7时),使其具备独特的分离机制,为色谱分离提供独一无二的选择特性。[img=,474,305]http://ng1.17img.cn/bbsfiles/images/2017/07/201707181344_01_3232745_3.png[/img][img=,458,173]http://ng1.17img.cn/bbsfiles/images/2017/07/201707181344_02_3232745_3.png[/img]--------------------------------------------------------------------------------------------------------------------------- Kromasil是AkzoNobel集团旗下高效化学品的著名品牌,是全球领先的高性能硅胶基质液相色谱柱填料品牌。Kromasi高性能多孔型硅胶填料可广泛应用于胰岛素及其类似物、比伐卢定、利拉鲁肽、达托霉素、EPO等多肽、小分子、蛋白药物等的高纯度纯化。28年来,Kromasil的经营理念是为制药行业提供以硅胶为基体的性价比高的,用于医药分离纯化的色谱填料和用于分析的色谱柱。如需更多资料,请访问:[url=http://www.kromasil.com][u][color=#0000ff]www.kromasil.com[/color][/u][/url][img=,690,529]http://ng1.17img.cn/bbsfiles/images/2017/07/201707181344_03_3232745_3.png[/img]

  • 求色谱分离柱知识

    氢型,钙型,钾钠,铵型阳离子色谱的分离特性,不同色谱填料的分离效果(文献资料最好)

  • 影响气相色谱分离度的原因

    1、色谱长度色谱长度与分离度通常成正比。色谱柱越长,组分之间分辩效果越好,但色谱柱越长压降越大,而输入的压力是有限的。色谱柱过长会增大进出口压力比,相反会降低分离度。通常采用的柱长2m~4m,内径2mm,毛细管柱长度可达20m~150m,内径为0.2mm。2、色谱柱填料颗粒大小填料的粒子越细,由于表面积增加,分辩效果越好,分离度就越高。但是颗粒极细时可能会增大柱压降,也会起反作用。一般采用惰性、多孔的固体颗粒。多由硅藻土或玻璃珠制成,分析不同极性的微生物化合物,为了获得最适的分离条件,要求有不同固定相的载体。3、柱温气体在液体中的溶解度或在固体表面的吸附程度都随温度增高而降低,在气液色谱分析中,当超过一定温度时,静态的液体通常会从色谱柱中挥发掉,所以选择柱温时应考虑到样品的沸点。一般是略低于样品沸点的平均值。4、载气种类常用的载气有 氮气、氢气等。其中氢气、氦气的分子量较小,有利于提高分析速度,但浓度较高的介质易在其间形成扩散,影响分离度,所以在实际测量中氢气、氦气一般都用在介质浓度较低的区域并提高其流速,减少扩散的影响。5、载气流速介质在固定相上的滞留时间,主要取决于介质自身的特性(挥发性,极性等)和载气的流速。所以流速快慢直接影响分离度。

  • 求色谱分离柱知识

    氢型,钙型,钾钠,铵型阳离子色谱的分离特性,不同色谱填料的分离效果(文献资料最好)

  • 离子色谱仪的分离原理

    离子色谱仪的分离原理有高效离子交换色谱、离子排斥色谱和离子对色谱3种,离子交换色谱用低容量的离子交换树脂,离子排斥色谱用高容量的树脂,离子对色谱用不含离子交换基团的多孔树脂。 高效离子交换色谱应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡,离子交换树脂耐酸碱可在任何pH范围内使用。 离子排斥色谱主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料以稀盐酸为淋洗液。 离子对色谱的固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也有用C8硅胶或CN,固定相流动相由含有所谓对离子试剂和含适量有机溶剂的水溶液组成,对离子是指其电荷与待测离子相反,并能与之生成疏水性离子,对化合物的表面活性剂离子,用于阴离子分离的对离子是烷基胺类如氢氧化四丁基铵氢氧化十六烷基三甲烷等,用于阳离子分离的对离子是烷基磺酸类。

  • [资料]赛分色谱柱与色谱分离

    美国赛分科技(Sepax Technologies Inc. )致力于开发生产化学与生物分离科学、生物表面科学和蛋白质组学研究(proteomics)领域的产品,包括高分辩率的高效液相仪器、色谱柱、配件和用于DNA测序和蛋白质分离的新型毛细管涂布材料与毛细管电泳仪,以及为微芯片分离和DNA、蛋白质微序列提供最好的表面技术与分离技术。 Sepax Technologies Inc.创新的尺寸排阻色谱柱(凝胶色谱柱)的填料是以刚性的高纯度球型硅胶为基质,利用独特的表面修饰技术在表面通过共价化学键合亲水性基团而成,该固定相具有亲水性并且是中性的,可以消除与生物大分子(特别是蛋白质)的非特异性相互作用,Sepax Nanofilm SEC系列尺寸排阻色谱柱具有分离的高效率与高选择性。pH适用范围为2-8.5,可使用与水完全互溶的有机溶剂,如乙腈、丙酮、甲醇或乙醇等。Sepax Nanofilm SEC系列尺寸排阻色谱柱适用于分离蛋白质和多肽类生物大分子样品以及天然与合成高分子物质。Sepax CNT SEC尺寸排阻色谱柱可以用于分离制备纳米物质,如碳钠米管、钠米棒。流动相不仅可以用缓冲溶液,也可以使用有机溶剂,如乙腈、甲醇、四氢呋喃等。 Sepax Proteomix系列离子交换色谱柱的填料是以刚性、球形、化学和机械性能都非常优异的高度交联的聚苯乙烯-二乙烯基苯(PS/DVB)聚合物为基质、树脂表面涂覆一层纳米厚度的中性的亲水性聚合物薄膜、在亲水性薄层的表面通过共价化学键合致密且均匀的离子交换功能基团而成。亲水性的薄层完全覆盖疏水的树脂表面,可以消除与生物分子之间的非特异性结合作用,从而达到高效分离,并且可以获得非常高的回收率。PS/DVB 树脂分为无孔与有孔两种。Sepax Proteomix离子交换固定相有键合磺酸根的强阳离子交换(SCX)、羧酸根的弱阳离子交换(WCX)、季胺的强阴离子交换(SAX)、叔胺的弱阴离子交换(WAX)四种。Sepax Proteomix系列离子交换色谱柱可以耐受高温(80℃)与高压(4,000psi),其pH适用范围为2-12,适用于分离蛋白质、低聚核苷酸和多肽类生物样品。流动相的选择范围广,可以是水,也可以是乙腈、甲醇等有机溶剂,还可以是缓冲盐溶液,如磷酸盐、tris、醋酸盐等。 Sepax Technologies Inc.已开发出独特的表面涂布技术,使聚合反应仅在表面上发生,可用于涂布目前市场上最细的毛细管柱(直径小于5μm)。此独特的技术能够在毛细管的内表面均一涂布厚度可控(1~50nm)的中性、阳性或阴性聚合物薄层。这些涂布的毛细管柱具有可控或可逆转的EOF,在毛细管电泳中是一高度可靠和高效率的分离工具,它已广泛应用于高通量分析中,如蛋白质组学研究。 在生物化学分离领域,Sepax Technologies Inc.也为小分子分离提供完整系列的、高质量的正相与反相HPLC柱,包括C18、C8、C4、C2、苯基柱、腈基柱、氨基柱、硅胶柱、混合型的离子交换柱HP-SCX与SAX以及宽pH范围的聚合物填料(poly-PS/DVB)柱等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=19417]产品资料[/url]

  • 离子色谱的分离方式

    根据三种不同分离机理,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]可分为高效离子交换色谱(HPIC),离子排斥色谱(HPIEC)和离子对色谱(MPIC)。用于三种分离方式的柱填料的树脂骨架基本上都是苯乙烯-二乙烯基苯的共聚物。HPIC用低容量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。[em21]

  • 氕氘在气相色谱中的分离?

    大家好,请教一个问题,实验室用的是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]填充柱,规格是TDX-01 2m*3mm,检测器是TCD,请问可以分离氕氘混合气体吗?氘气在色谱中会出峰吗?谢谢了。

  • 液相色谱柱分离的原理

    [font=arial, helvetica, sans-serif][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]柱购买网站:www.hplcs.cn[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](Liquid Chromatography, LC)是一种用液体作为流动相的色谱技术,它以化学分子在移动相与定相之间的相互作用力不同而分离化合物。在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]柱分离中,样品通过液体载流剂(流动相)在拥有化学成分不同的柱填充剂(定相)中分离。柱填充剂可以选择性地吸附特定成分,或者在某些情况下,通过反应改变样品分子的表面性质,以分离成分。[/font][font=arial, helvetica, sans-serif]具体来说,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]柱分离的原理是样品分子在流动相和定相之间发生不同的相互作用力。这些相互作用力包括静电作用、疏水作用、亲水作用、氢键作用、离子键作用、金属络合作用等。在柱填充剂中,这些样品分子会与柱填充剂中的固定相发生相互作用,被吸附或排斥,使得化合物在柱中的滞留时间不同。因此,化合物分离时,需要根据样品分子的特性和柱填充剂之间的相互作用选择不同的流动相和柱填充剂。[/font][font=arial, helvetica, sans-serif]总体而言,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]柱分离是一种在流动相和定相之间通过吸附、反应或其他相互作用力将样品分离的技术。这种分离方法主要用于药物分析、天然产物分析、食品化学分析、石油化学分析等各种领域。[/font][img=空柱管柱筛板5]https://www.hplcs.cn/uploads/4ec892851.jpg[/img]

  • 【转帖】第五课 气相色谱仪-分离系统

    第五课 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]-分离系统 色谱柱是色谱仪的分离系统。试样中各组分的分离在色谱 柱中进行,因此,色 谱柱是色谱仪的核心部分。色谱往 主要有两类:填充柱和毛细管柱,现分别叙述如下: 1.填充柱 填充柱由柱管和固定相组成,柱管材料为不锈钢或玻璃, 内径为2—4毫米,长为1—3米。往内装有固定相,固定相 又包括固体固定相和液体固定相两种。 2.毛细管往 毛细管柱又叫空心柱,空心柱分涂壁空心柱,多孔层空 心柱和涂载体空心柱。 涂壁空心柱是将固定液均匀地涂 在内径0.1—0.5毫米的毛钢管内壁而成。毛细管的材 料可以是不锈钢、玻璃或石英。这种色谱柱具有渗透性 好、传质阻力小等特点,因此柱子可以做得很长(一般 几十米,最长可到三百米)。和填充柱相比,其分离效率 高,分析速度快,样品用量小。其缺点是样品负荷量小, 因此经常需要采用分流技术。柱的制备方法也比较复杂; 多孔层空心柱是在毛细管内壁适当沉积上一层多孔性物 质,然后涂上固定液。这种柱容量比较大,渗透性好, 故有稳定、高效、决速等优点。

  • 色谱小知识——色谱分离三要素

    液相色谱中死时间几种测定方法1:有响应的溶剂出峰时间为死时间。2:进样后的阀切换峰,对应的时间为死时间。3:工作站中输入色谱柱的空余体积或孔隙率,自动计算。(对于C18柱,也可以用硝酸钠或硫脲等在色谱柱上完全不保留组分的出峰时间来测定死时间。)影响分离度的因素有三个因素控制两个色谱峰之间的分离度——容量因子,选择性,柱效容量因子反映样品分子和固定相及流动相之间的作用力,选择性是说明色谱系统区分两个或多个色谱峰的能力,柱效与色谱峰的宽度有关,很明显要达到一定的分离度,宽色谱峰要比窄色谱峰需要更大的分离度选择性。理论塔板数越高柱效越高,柱效的高低受柱内效应和柱外效应的影响。选择性是固定相区分两个被分离样品组分的能力,用容量因子之比进行计算,它是两个被分离色谱峰顶点距离的量度,如果选择性是Ⅰ,则两个组分完全不能分离。选择性数值越高,分离越好。由于选择性取决于被分离物的物理和化学结构,流动相和固定相,流动相组成,PH,色谱柱温度,流动相添加剂,因此,尽量优化实验条件提高选择性以降低成本。容量因子为物质的特性,当分析条件一定时,容量因子为固定值。溶剂的洗脱强度与其极性有关:反相色谱:溶剂的极性越强,洗脱强度越弱。正相色谱:溶剂的极性越强,洗脱能力越强。(注意:不可以使用纯水作为正想色谱的流动相)一般样品分析要求:容量因子大于2小于5

  • 气相色谱分离条件的选择

    一.载气及流速1. 载气对柱效的影响:主要表现在组分在载气中的扩散系数D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有较小的D m(g) 。根据速率方程:(1)涡流扩散项与载气流速无关;(2)当载气流速 u 小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如 N2、Ar,可使组分的扩散系数 D m(g)较小,从而减小分子扩散的影响,提高柱效;(3)当载气流速 u 较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如 H2、He 作载气可以减小气相传质阻力,提高柱效。 2. 流速(u)对柱效的影响:从速率方程可知,分子扩散项与流速成反比,传质阻力项与流速成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。对于选定的色谱柱,在不同载气流速下测定塔板高度,作 H-u 图。由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间,选用的载气流速稍高于最佳流速。二. 固定液的配比 又称为液担比。 从速率方程式可知,固定液的配比主要影响Csu,降低df,可使Csu减小从而提高柱效。但固定液用量太少,易存在活性中心,致使峰形拖尾;且会引起柱容量下降,进样量减少。在填充柱色谱中,液担比一般为 5%~25%。三. 柱温的选择 重要操作参数,主要影响来自于K、k、D m(g)、Ds(l);从而直接影响分离效能和分析速度。柱温与 R和 t 密切相关。提高 t,可以改善 Cu,有利于提高 R,缩短 t。但是提高柱温又会增加B/u 导致 R 降低,r21变小。但降低 t 又会使分析时间增长。 在实际分析中应兼顾这几方面因素,选择原则是在是在难分离物质对能得到良好的分离,分析时间适宜且峰形不托尾的前提下,尽可能采用较低的柱温。同时,选用的柱温不能高于色谱柱中固定液的最高使用温度(通常低20-50℃)。 对于沸程宽的多组分混合物可采用“程序升温法”,可以使混合物中低沸点和高沸点的组分都能获得良好的分离。四. 气化温度的选择 气化温度的选择主要取决于待测试样的挥发性、沸点范围。稳定性等因素。气化温度一般选在组分的沸点或稍高于其沸点,以保证试样完全气化。对于热稳定性较差的试样,气化温度不能过高,以防试样分解。五. 色谱柱长和内径的选择 能使待测组分达到预期的分离效果,尽可能使用较短的色谱柱。一般常用的填充柱为l~3m。填充色谱柱内径为3~4mm。六.进样时间和进样量的选择 1. 进样迅速(塞子状)——防止色谱峰扩张; 2. 进样量要适当:在检测器灵敏度允许下,尽可能少的进样量:液体样0.1~10ul,气体试样为0.1~10ml

  • 新型色谱分离材料在分离分析中的应用

    新型色谱分离材料在分离分析中的应用

    [align=left][font='times new roman'][size=16px]新型色谱分离材料[/size][/font][font='times new roman'][size=16px]在分离分析中的应用[/size][/font][/align]随着分离科学研究从传统的单一领域转向复杂样品的分离分析,这对高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的分离选择性提出了更高的要求。近年来,针对待分离样品的结构特征,通过专一设计不同结构特性的高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]固定相,可实现不同的分离分析目的,完成不同的分离分析任务。因此,制备高性能、高选择性的新型色谱分离材料成为分离科学的重点研究领域之一。Qiu等以溴化1-乙烯基-3-十八烷基咪唑([C[font='times new roman'][sub][size=16px]18[/size][/sub][/font]VIm]Br)离子液体及其衍生的碳点(ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]CDs)为功能单体,分别接枝到二氧化硅表面,制备了Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]固定相和Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]CDs固定相。此外,将两种功能单体共接枝到二氧化硅表面,制备了Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs固定相。与填充Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]和Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]CDs色谱柱相比,填充Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs色谱柱在反相色谱模式中对四环/三环多环芳烃(PAH)异构体和丁基苯异构体的分离具有更高的选择性。与商品化C18色谱柱相比,Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs色谱柱对烷基苯、多环芳烃、芳香胺和酚类化合物的分离效果较好。作者进一步将Sil-ImC[font='times new roman'][sub][size=16px]18[/size][/sub][/font]/CDs色谱柱应用于黄芪提取物中毛蕊异黄酮苷、芒柄花苷、毛蕊异黄酮和刺芒柄花素的定量测定,四种黄酮化合物的含量依次为0.25 mg/mL、0.15 mg/mL、0.13 mg/mL和0.30 mg/mL,显示了良好的应用潜能。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162153412574_4489_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px] ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]CDs[/size][size=13px]、[/size][size=13px]Sil-ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]、[/size][size=13px]Sil-ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]/CDs[/size][size=13px]和[/size][size=13px]Sil-ImC[/size][font='times new roman'][sub][size=13px]18[/size][/sub][/font][size=13px]CDs[/size][size=13px]的制备示意图[/size][/align][align=center][/align]Qiu等以乙烯基吡咯烷酮(NVP)和十一烯酸(UA)为功能单体,采用原位聚合的方式将其固定在二氧化硅微球表面,制备了Sil@NVPUA色谱固定相。填充Sil@NVPUA色谱柱表现为典型的RPLC/亲水作用色谱(HILIC)混合模式保留机制,并可对五种模型分析物实现分离,包括多环芳烃、烷基苯、核苷/核酸碱基、人参皂苷和恶唑烷酮。Sil@NVPUA固定相合成过程不需要硅烷化试剂,可直接在二氧化硅表面原位聚合而成,此外,长链UA结合短链NVP使得Sil@NVPUA色谱柱性能显著提高。Qiao等采用硫醇-烯烃点击反应首次制备了苯乙烯-马来酸酐共聚物包覆二氧化硅核壳型色谱固定相,进一步通过L-半胱氨酸盐酸盐或十二醇进行后修饰,通过亲核开环反应成功制备了具有RPLC/HILIC/离子交换(IE)混合模式保留特性的Sil-SMA-氨基酸和Sil-SMA-十二醇固定相。两种色谱柱对疏水和亲水性化合物表现出不同的分离选择性,相比于Sil-SMA-十二醇柱,Sil-SMA-氨基酸色谱柱的效果更好,能够实现对不同类别和不同种类磷脂混合物的双重分离,并对胃癌细胞膜脂提取物等复杂样品具有一定分离潜力。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162153427577_1428_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px] Sil-SMA[/size][size=13px]衍生物色谱固定相的合成[/size][/align][align=center][/align]Guo等利用物理包覆和化学包覆相结合的方法对二氧化硅表面进行水凝胶涂层,并进一步在二氧化硅水凝胶表面引入正十八烯功能基团,制备了双水凝胶包覆介孔二氧化硅色谱固定相([color=#000000]DL-hydrogel@SiO[/color][font='times new roman'][sub][size=16px][color=#000000]2[/color][/size][/sub][/font])。填充[color=#000000]DL-hydrogel@SiO[/color][font='times new roman'][sub][size=16px][color=#000000]2[/color][/size][/sub][/font]色谱柱具有一定的温敏响应性,而十八烯的引入提高了色谱柱对多种亲水性分析物的分离选择性,可实现核苷/核酸碱基类、苯甲酸类、磺胺类、氨基酸类和碳水化合物的分离分析,其中对苯二甲酸的柱效高达139,000 N/m。进一步将DL-hydrogel@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]色谱柱用于柏树叶提取样品的分离分析,结果显示至少有10个成分被成功分离,这为柏树叶中活性提取成分的鉴定提供了初步的依据。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211162153431743_3135_5389809_3.png[/img][/align][align=center][size=13px]图[/size][size=13px] DL-hydrogel@SiO[/size][font='times new roman'][sub][size=13px]2[/size][/sub][/font][size=13px]固定相的合成图和色谱分离图[/size][/align]Bai等将N-甲基咪唑接枝到氯丙基功能化的二氧化硅表面,制备了N-甲基咪唑修饰的硅胶固定相(SilprMim)。填充SilprMim色谱柱显示了RPLC/IE混合模式色谱保留机制,SilprMim色谱柱可以将8种酸性蛋白质分离。SilprMim色谱柱与商品化的C4色谱柱相比,其对酸性蛋白质具有更好的分离选择性和拆分能力。进一步将SilprMim色谱柱和C4色谱柱用于牛血清白蛋白(BSA)裂解样品的分离,C4色谱柱可得到20多个色谱峰,而SilprMim色谱柱只得到6个色谱峰,实验结果表明C4色谱柱不能选择性将酸性和碱性蛋白质及多肽进行分离,而使用SilprMim色谱柱得到的6个色谱峰对应的组分均为酸性蛋白。因此SilprMim色谱柱在复杂样品中酸性蛋白的分离与分析中具有广阔的应用前景。

  • 【求助】色谱填料的基材对物质的分离会有什么样的影响

    刚遇到了一款填料,名为Cellufine,是纤维素基材的,不知能用在什么地方。突然觉得,填料的基材还真是丰富,硅胶的,聚合物的,葡聚糖的,这次又碰到了个纤维素的。虽说层析的原理相同,但基材不同,想来要分离的物质也应该会不尽相同吧。就好比“桔生淮南为桔,生淮北则为枳”,也好比不同地方产的蔬菜啦,水果啊,口感也会大有不同。所以就像请教一下大家,对于同一层析原理,各种基材的填料的最佳用武之地在哪里?

  • 白酒分析气相色谱仪分离条件的选择

    [align=center][b][size=24px]白酒分析气相色谱仪分离条件的选择[/size][/b][/align][size=18px] 气相色谱仪分析白酒时,除了选择适合的色谱柱和分析方法外,还要选择好分离的蕞佳操作条件,提高色谱柱的分离效能,增大分离度,获得好的分析结果。色谱技术人员根据实际经验总结出白酒分析气相色谱仪分离条件选择,供大家参考。1. 载气及流速、分流比的选择白酒的气相色谱分析,一般使用FID检测器,常用高纯N2做载气,H2做燃烧气,空气作助燃器。若使用一般填充色谱柱,内径在3~4mm,载气的流量在20~100m L/min。对于内径在0.25mm左右的毛细管色谱柱,载气流量在1~2m L/m in。流速太快会降低色谱柱的分离效能,一般高于蕞佳流速10%左右即可,既保证了色谱柱的分离效能,又能获得比较快的分析速度。H2的流速与载气N2流速相当(毛细管色谱柱载气流量+载气分流的流量),实验证明H2流量∶空气流量=1∶10时,FID检测器蕞灵敏。使用毛细管色谱柱时,分流比的选择直接影响到出峰的个数与分离效果。当分流比为30∶1时蕞为恰当,色谱柱分离效能较高,白酒微量成分分离效果好。载气中微量水分、氢气和空气中的微量杂质对色谱柱和检测器影响很大,严重时会使色谱柱失效,基线不稳,噪声增大,检测器灵敏度下降。所以在载气、H2、空气进入色谱仪之前,应当使用分子筛、硅胶等对气体进行净化处理。2. 色谱柱温的选择白酒中的大部分组分沸点都不高,但沸点范围较宽,为了使低沸点的组分有比较好的分离度,一般初始柱温在50℃。程序升温速度不宜过快,否则分离效果变差,程序升温速度太低,出峰时间长,峰形扁平。一般设定在1~8℃/m in,蕞佳程序升温速度在8℃/m in左右,以保证白酒中各组分在相应的温度下得到良好的分离。蕞终温度不能太高,一般不超过250℃,防止色谱柱温过高,引起固定液挥发流失,分离效能变差,出现基线漂移,或导致色谱柱失效。3. 气化室、检测器温度选择白酒的气相色谱分析中,气化室温度一般高于色谱柱温度50~60℃以上,一般控制在120~200℃,以保证进样时白酒试样中所有的组分都能瞬间变成气体。FID检测器的温度通常控制在150~250℃,避免水蒸汽在检测器中凝结,增大噪声而降低检测器的灵敏度,也可以避免出现检测器点火困难的问题。4. 进样量和进样速度的控制使用填充色谱柱时,柱容量比较大,进样量通常在1~5μL,使用10μL或5μL的微量注射器。采用毛细管色谱柱时,柱容量小,进样量通常在0.1~2μL。进样量低不利于使用低含量组分法进行检测,进样量过高则会导致部分组分峰发生重叠,分离不好。进样速度要求比较快,要求1 s内完成,以保证酒样瞬间气化。如果进样速度太慢,就会引起先插进去的针头部分的酒样先气化,导致色谱峰变宽或者异型,峰形不好,分析误差大的问题。每次进样时,应将微量注射器用被测酒样抽洗5次以上并排净气泡,保证待测试样浓度不发生变化,减少进样带来的误差。5. 其他注意事项为了尽可能地减少分析误差,保证分析结果的准确性,要定期老化色谱柱,在高于使用温度20℃,脱开检测器,通以载气10 h以上,让色谱柱中残留的高沸点组分流出,降低仪器噪声,减小高沸点残余物质的干扰。同时还要定期清理色谱柱头和衬管中积累的不挥发物,防止堵塞色谱柱。每进样50次左右就需更换气化室中的硅橡胶垫,保证气化室不漏气,避免出现色谱峰异常现象。在白酒的气相色谱仪分析中,适当地选择分析方法与测定条件,既可以提高色谱分析的分离效能与检测的灵敏度,又可以提高分析结果的准确度。这就需要我们在实际工作中不断探求与创新,找出每种酒样的蕞佳分析条件,做到准确而快速地分析白酒的微量成分,有效地指导白酒的生产、研发和质量监督,保障白酒的食品安全。[/size]

  • 离子交换色谱在分离生物样品的应用

    Sepax Proteomix系列离子交换色谱柱的填料是以刚性、球形、高度交联的聚苯乙烯-二乙烯基苯(PS/DVB)树脂颗粒为基质、树脂表面涂覆一层纳米厚度的中性的亲水性聚合物薄膜、在亲水性薄层的表面通过共价化学键合致密且均匀的离子交换功能基团而成。亲水性的薄层完全覆盖疏水的树脂表面,可以消除与生物分子之间的非特异性结合作用,从而达到高效分离。 Sepax Proteomix系列离子交换色谱柱可以耐受高温(80℃)与高压(4,000psi),其pH适用范围为2-12,适用于分离蛋白质、低聚核苷酸和多肽类生物样品。流动相的选择范围广,可以是水,也可以是乙腈、甲醇等有机溶剂,还可以是缓冲盐溶液,如磷酸盐、tris、醋酸盐等。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=19461]赛分离子交换色谱柱在生物样品分离的应用[/url]

  • 【原创大赛】趣谈凝胶渗透色谱GPC/SEC – 分离篇

    【原创大赛】趣谈凝胶渗透色谱GPC/SEC – 分离篇

    辉博士辉博士参加工作后有缘接触了凝胶渗透色谱GPC/SEC这个技术,一干11年,从一个呱呱的色谱菜鸟到逐渐积累了很多经验。人生中很多第一次就交给了这个可爱又可恨的仪器。第一次做实验看到结果是惊叹的,哇塞,分子量还能测得这么准;第一次装机是兴奋的,哈哈,几十个部件连在一起工作了,关键是还出数了,标样一次通过;第一次色谱柱堵了是沮丧的,明明溶解的很好,可是咋就能堵柱子呢;第一次色谱怎么也泵不出溶剂是绝望的,好像哪里也没漏啊;第一次样品结果没有重复性…;第一次用混合溶剂得到客户的认可…;很多第一次……仪器和实验是枯燥的,但是好还辉博士周围有一群给力的兄弟,工作中总充满了乐趣;安装和培训是辛苦的,还好看到了客户笑容,值得;很多应用是绝望的,但是抱着一线希望去挑战绝望终于还是成就了一些成功的案例。最近辉博士终于有时间坐下来,喘口气,回想一下,和大家一起聊聊这门应用广泛技术,以及这些年自己累积的一点点见解。错别字会有的,博士语文水平一般,谬误之处可能会有,还请多多谅解,各位大咖不吝赐教。[b]第一聊:GPC/SEC之分离篇[/b][align=left]凝胶渗透色谱技术是一种按照分子大小进行分离和检测的技术,其实是一个还不小的技术范畴,从应用角度讲有纯化级色谱,还有分析级色谱,而这里我们只聊聊分析级设备。从温度控制角度,有常温GPC和高温GPC。从检测角度而言,主要有四种检测器应用于GPC的信号检测,分别是示差折光RI,紫外UV,光散射(静态光散射哦,不是蒸发光)还有在线粘度检测器。红外检测器是个特例,因为基本只应用于高温GPC,这里也就不多说了,感兴趣的朋友直接上Polychar的官网详细了解。[/align][align=left] GPC设备无论出自那个厂家,基本都分为两个部分,前面的分离模块和后面的检测模块。分离模块包含基本的色谱泵,进样器,脱气机,柱温箱,色谱柱,起到的作用就是把高分子按照其大小进行分离,分子体机大的先流出,而分子体积小的后流出。检测器模块检测对各个被分离的组分的物理性质做出响应,给出不同的分子信息,如分子量,分子量分布,分子大小,分子支化程度,分子链的刚性柔性,共聚物组成等等。[/align][align=left]先谈谈分离吧,对于GPC测试而言,前端分离是根本,好的分离效果可以(可能)带来好的检测效果,不好的分离效果一定会影响检测的准确性、重复性和客观性。[/align][align=left]GPC色谱的操作原理是利用分子的流体力学半径(Rh)或流体力学体积(Vh)进行分离,而非利用分子量的差异。分离过程在GPC色谱柱中进行,其柱填充物通常是多孔聚苯乙烯、丙烯酸酯微球、玻璃粉或硅胶等多孔物质。由于分子大小的差异,较大的分子扩散进入凝胶色谱填料中的微孔比较困难,能更快的从色谱柱中被洗脱。上图阐释了GPC分离的机理。当样品从色谱柱被洗脱后,它将被一个或多个检测器进行检测,其结果最终被电脑的数据处理系统进行分析。[/align][align=left]凝胶色谱的分离机理是一种基于分子大小的物理分离方式,应最大程度的避免样品分子和色谱柱填料之间的化学相互作用。[/align][img=,690,399]https://ng1.17img.cn/bbsfiles/images/2019/08/201908151724165824_3312_3200617_3.png!w690x399.jpg[/img][color=#072e67] [/color][b][/b][align=left][b]色谱柱[/b][/align][align=left]对于GPC而言选择适合的色谱柱对于检测非常重要,良好的分离效果是准确检测大分子分子量的基础。了解色谱柱说明书中的参数可以更好地挑选色谱柱以达到预想的分离性能。色谱柱主要参数包括填料颗粒粒径(Particle Size),理论塔板数(Theoretical Plate Number),分子量排阻上限(Exclusion Limit Mw),最大孔径(Max. Pore Size),色谱柱的溶剂兼容性。GPC色谱填料的大体范围在5um-20um之间,填料颗粒粒径越小,意味着在一根色谱柱中装填的色谱柱填料数量越多,达到更高的理论塔板数。分子量排阻上限通常专指应对于某一种标准样品,比如聚苯乙烯PS或者聚乙二醇PEO,只是给与使用者一个参考数值,而不是一个泛指的参数。色谱柱填料颗粒越小,意味着在转换不同极性溶剂过程中,色谱柱中填料的整体膨胀/收缩率越大,溶剂兼容性越差。[/align][align=left]从溶剂类型分,色谱柱主要包括有机相色谱柱,水相色谱柱和蛋白质色谱柱。从填料孔径分布分类可分为单孔径柱(Single Pore),混合柱(Mixed Bed)和线性混合柱(Linear Mixed Bed)。[/align][align=left]最常用的有机相色谱柱的常用填料基质是由聚苯乙烯和二乙烯基苯交联而成的多孔小球。普通水性色谱柱的常用填料由多孔丙烯酸酯组成,不但可以检测低电荷含量的水性样品,还可以耐受DMF溶剂。对于带电较多的聚电解质样品,对应可以选择阴离子型色谱柱以检测带负电基团较多的高分子,以及阳离子型色谱柱以检测带正电基团较多的高分子。蛋白柱的填料主要分为两种,即氧化硅和纤维素凝胶。氧化硅基质的填料的优点是硬度较高,分辨率较高,耐压性较好,可以使用较高流速使用。纤维素凝胶填料的优点是用途广泛,甚者可以同时分离蛋白和某些高分子的混合物,如PEG和蛋白,但是硬度较低,流出物较多,建议在低流速下使用。[/align]一个负责任的色谱柱生产厂家出具的色谱柱说明书一定会包含大量的信息,如色谱填料材质,填料大小,理论塔板数,孔径,排阻上限等等,比如:[img=,690,491]https://ng1.17img.cn/bbsfiles/images/2019/08/201908151725176201_2855_3200617_3.png!w690x491.jpg[/img][align=left] 看参数其实是一件令人头痛的事情,对了,其实最有用的是说明书中的校正曲线:[/align][img=,690,377]https://ng1.17img.cn/bbsfiles/images/2019/08/201908151725588782_6652_3200617_3.png!w690x377.jpg[/img][align=left]色谱柱的最佳分离范围在其校正曲线斜率较小对应的分子量范围。因为斜率越小意味着分子同样的尺寸差下可以得到更好的分离,也就是更大的流出体机差值。[/align][b]流动相[/b][align=left]流动相的选择对于GPC检测非常重要。很多种类的高分子可以在不止一种溶剂中溶解,例如聚苯乙烯可以在THF、DMF、甲苯、三氯苯中溶解,聚甲基丙烯酸甲酯PMMA可以在DMF、氯仿、NMP等等溶剂中溶解。GPC检测的一个误区是,如果高分子可以在一个溶剂下溶解,就可以在这个溶剂的流动相检测。我们挑选溶剂时需要考虑以下几点:[/align][list][*][align=left]高分子在所选溶剂中是否和色谱柱有化学相互作用,即吸附效应。如果有化学相互作用,即高分子不再按照体积大小进行流出,则会造成检测结果误差。一个例子是很多种类的硅油和硅橡胶在THF中有较好的溶解性,但是在GPC测试过程中由于和色谱柱之间的化学相互作用,导致色谱峰脱尾,重复性不好,甚至色谱流出峰消失。大多数情况下,改用甲苯作为溶剂和流动相,问题得到解决。[/align][*][align=left]样品溶液的dn/dc。dn/dc即折光指数随浓度增量,是一种高分子溶解在某种溶剂中的固定光学参数,在RI检测器部分会详细介绍其概念。由于多个检测器的检出信号响应强度与dn/dc相关,如RI检测器信号正比于dn/dc,光散射检测器信号正比于(dn/dc)^2,所以选择一种dn/dc较高的溶剂有利于得到较高的检测器信号,进而得到更加可靠、具有重复性的检测结果。[/align][*][align=left]使高分子达到较高Mark-Houwink α值的溶剂。Mark-Houwink α值(可参看粘度检测器原理部分)反映高分子线团的溶解状态,α值越高,线团构象越趋向于展开,而展开的构象可以提高色谱的分离效率,即在同样的分子量差别下,构象越舒展,体积差别越大,大分子流出时间间隔越大。[/align][/list][align=left] [/align][align=left]看到这的朋友相信眼睛一定已经疲劳了,讲几个小故事吧。[/align][align=left] [/align][align=left]故事1. 博士的第一次装机[/align][align=left]那是2010年,秋高气爽的日子,首堵北京,某大学。博士和一位资深工程师一起出动,装机艰辛过程略去一万字,总之是装好了,THF相。用户的某一个样品正是硅氧烷,THF溶解良好,第一针出峰似乎正常,我们正在沾沾自喜中,然而第二针来了,第二针的结果和第一针不重复!抓狂!于是重新做标样,标样正常,再进样,还是不重复!好在用户其他样品都是正常的,最终接受了仪器。几年之后,一个机会终于了解到,有些硅氧烷在THF中是和柱子有化学相互作用的,说白了就是吸附了。好吧,人生还要继续……[/align][align=left] [/align][align=left]故事2. HA样品[/align][align=left]HA有好几个名字,透明质酸,玻尿酸等等,一般是以钠盐的形式作为产品。HA作为一种添加剂可以用于化妆品,药物,日化用品行业,可以增稠,保湿,增加铺展性。倒退20年,那可是相当的高大上。为啥,看看当年欧莱雅晚霜的广告就知道了,晚上抹一抹,皱纹去无踪。得益于国内产量的激增(一种细菌发酵提取工艺),最近几年HA逐渐平民化了,就连眼药水和洗发水里也是经常添加。[/align][align=left]废话说多了,话说当时博士和另一个博士兄弟拿到几个透明质酸样品,分子量挺高,100 -200万吧,串了两根水性混合柱,排阻上限(当然是对标准样品而言的)2000万!浓度配的相当低了,也就零点几mg/ml吧。出峰挺好的,可是一看PD值,分布只有1.05-1.1,分布窄的快赶上标样了。然并卵,这不科学!为啥?这是天然多糖呀!这是百万级的天然多糖呀!都知道不会是窄分布!折腾了大半天后,问题通过换上两根最大牌号的线型柱解决了,换上后测得分布1.6-1.9之间。结论是,虽然混合柱中存在一些大的孔径,分子量分离范围也比较宽,可以对于分子量高的样品进行一定分离,但是分离度不够。像HA这样刚性的分子,在溶液中舒展度比较大,也就造成了分子体机较大,混合柱还是会有极强的排阻效应,说白了就是大分子小分子一起出来了,造成分布较窄。而牌号较大的线性柱中有足够多的大孔径填料,问题得以解决。[/align] [align=left]用户趣问1. 我的样品GPC出峰为啥不是正态分布的呀[/align][align=left]其实,很多种类的高分子样品的出峰都不一定是正态分布,如聚丙烯,很多种嵌段共聚物,很多天然多糖。[/align][align=left] [/align]用户趣问2. 我的色谱柱堵了,能反冲吗[align=left]这个还真不好说。因为GPC色谱柱填料在装填的过程中是比较规则的排列,而色谱柱中其实是存在一些空间而不是100%装填满的,反冲会导致排列的改变。如果反冲后柱压降下来了,而走标样峰形正常,分布正常,那么恭喜您,这死马被医活了。不过死马大部分时候还是死马。[/align][align=left] [/align][align=left]用户趣问3. 一根柱子分离度不好,加了一根一样牌号的只好了一点点,这和想想中不一样啊[/align][align=left]同样牌号的柱子串联,理论塔板数会加倍,但分辨率是和理论塔板数开根号成正比的,也就是从 1变到1.414,可没增长两倍哦。有时候不同牌号的线型柱串联,也许会达到明显的分辨率提高。[/align][align=left] [/align][align=left]用户趣问4. 柱子说明书上说这柱子耐受很多中溶剂,那我到底能不能换啊[/align][align=left]话虽如此,最好还是溶剂专柱专用。不同的流动相极性不一样,每一次换溶剂填料不是收缩就是膨胀,您说老是收缩膨胀,这柱子能用多久啊[/align][align=left] [/align][align=left]好了,先聊这么多,祝大家工作愉快,身体健康![/align]

  • 【原创大赛】盘点液相色谱填料及色谱柱新进展

    近几年,液相色谱仪器在硬件方面最大了突破就是推出了UHPLC或UPLC系统;但在色谱柱填料及形式方面也还是有一些新的技术,我收集了相关资料,简单回顾一下此方面相关的新技术。  一、色谱柱填料新技术  1、亚2微米填料  首当其冲就是很热门的亚2微米填料。根据色谱速率理论,粒径越小,柱效越高,而且当粒径小到亚2微米左右时,线速度的提高,其分离度就不再降低,而亚2微米填料的优势也正在与此。这个理论很早就有,但是为什么UPLC或UHPLC直到2004年才出现呢?原因主要是粒径减小,柱压的急剧升高,因此亚2微米填料对系统的耐压性能要求很高,长久以来,材料及工艺不能满足亚2微米填料对系统的要求。  随着材料及技术的进步,2004年沃特世推出了首款商品化地UPLC系统及配套的亚2微米填料的色谱柱。如今已有沃特世、安捷伦、赛默飞(戴安)、岛津、日立、珀金埃尔默等10余家公司推出UHPLC系统;国内上海伍丰也推出了国内首台UHPLC系统。但在填料方面,相比于常规的液相色谱填料,能够生产亚2微米色谱柱的公司还不是很多,色谱柱的种类也偏少。但毫无疑问,UPLC或UHPLC、亚2微米填料是液相色谱发展的主流。沃特世公司首席科学官Thomas E.Wheat先生认为,“未来10-15年,UPLC有可能完全取代HPLC。”  2、核壳型填料  最近,多家公司推出了一种新型液相色谱填料——核壳型填料。这种填料的优势在于,其可以缩短分析时间,提高柱效,但是对系统压力的增加却不是很多。换句话说,可以部分实现亚2微米填料的优势,但是由于对系统耐压要求不高,其可以在常规的HPLC上运行,可视为UPLC/UHPLC好的替代品。  核壳型填料就是在坚实的硅胶核心上生成一个均匀的多孔外壳。由于核心硅球是实心的,这样样品在通过色谱柱时,只需要花费少量的时间便能扩散出硅球表面的颗粒孔中,在较短时间完成扩散,更快地传质,因此分析速度及柱效都较原来普通的色谱柱有很大提高。目前,生产和供应核壳型填料的厂家有安捷伦、菲罗门、Sigma-Aldriich等。  3、整体柱(monolithic column)  整体住也是近年来液相色谱柱填料研究的又一大方向。整体柱,又称为棒状柱、连续床层、无术塞术,是一种用有机或无机聚合方法在色谱柱内进行原位聚合的连续床固定相。与常规装填的液相色谱柱相比具有更好的多孔性和渗透性,以及具有灌注色谱的特点,即色谱柱中既有流动相的流通孔又有便于溶质进行传质的中孔(几十个纳米),目前多应用于对生物大分子进行快速分离分析,应用还具有一定的局限性。目前,商品化的整体柱产品也不是很多,主要还处于科研阶段。在售的整体柱比较有名的是默克公司的ChromolithTM。  二、色谱柱新形式  1、色谱饼  色谱饼这一说法源自西北大学现代分离科学研究所、现代分离科学陕西省重点实验室耿信笃教授课题组,其与普通的色谱柱最大区别在于,其柱直径远远大于柱长,因而呈现饼的形状,故称为色谱饼。  此种形式的改变带来的好处是,色谱柱的平衡时间、进样、洗脱及色谱柱的平衡时间都显著地缩短,从而实现了快速。当然使用色谱饼的前提是,分离度不能有很大的损失。目前,这一形式的色谱柱在分析蛋白方面有很好地效果。  2、固定相优化液相色谱(Phase Optinized Liquid Chromatography POPLC)  固定相优化色谱产品来自于德国BISCHOFF公司,上海通微是该产品在中国的代理。POPLC改变了我们原来创建分析方法的传统思路,不从改变流动相或更换色谱柱来改善分析效果的角度出发,而是从“优化固定相”的角度出发来摸索分析方法。据悉,目前商品化的固定相种类非常多,如何从中选出适合的固定相是头疼的问题。研发者希望通过固定相的组合能帮助方法开发人员更快更好地找到适合的固定相。  德国BISCHOFF公司开发的POPLC系统由迷你柱管、填装不同填料的可替换短柱芯和分析软件三部分组成。在实验中,先选择几根装有不同填料的短柱芯作为一个实验组,通过单根柱子先做基础实验,然后用配套软件计算可能的柱连接方式(即将各种固定相串联),再预测分离效果,最后做验证实验。实验表明,这种方式可以有效缩短分离时间,相应提高检测灵敏度。

  • 色谱分离新材料研究进展

    [align=center][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]色谱[/size][/font][font='times new roman'][size=16px]分离新[/size][/font][font='times new roman'][size=16px]材料[/size][/font][font='times new roman'][size=16px]研究进展[/size][/font][/align] 共价有机骨架(COF)是通过共价连接刚性有机结构单元而构建的结晶多孔材料,具有比表面积大、丰富的杂原子位点、高度有序的π-共轭体系以及优异的热稳定性和化学稳定性等特点。灵活地选择结构单元可以使COF具良好的分离分析性能,在色谱固定相开发领域具有广阔的应用潜能。Zheng等使用具有规则形状和微米尺寸的单晶共价有机骨架(COF-300)材料直接装填的色谱柱用于高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离,实现了硝基苯胺、二氯苯、二溴苯、二碘苯、氯硝基苯、溴硝基苯等位置异构体的基线分离,并具有较高的柱效和满意的重现性,显著优于商品化色谱柱。 金属有机骨架(MOF)是通过金属离子/团簇自组装和有机配体通过配位键桥接而成的新型有机-无机多孔晶体材料,由于其具有大比表面积、可调的孔径和高孔隙率等优点,近年来也被广泛用于开发新型的色谱固定相材料。例如,Yan等将MIL-53(Fe)材料直接装填作为一种新型固定相,在优化的条件下,实现了二甲苯、二氯苯、氯甲苯和硝基苯胺异构体的快速基线分离,其分离性能优于MIL-53(Al,Cr)、C8和C18填充柱。 最初研究者大多是将COFs、MOFs材料直接作为色谱柱填料使用,虽然取得了一定的分离效果,但是存在柱压大,色谱峰宽和拖尾、柱效低、选择性差、制备过程复杂等问题。多孔硅胶材料具有稳定的理化性质、可调控的孔径、良好的热稳定性和比表面积大等优点[font='times new roman'][sup][size=16px][21[/size][/sup][/font][font='times new roman'][sup][size=16px]-[/size][/sup][/font][font='times new roman'][sup][size=16px]22][/size][/sup][/font],是目前色谱固定相最常用的载体[font='times new roman'][sup][size=16px][23][/size][/sup][/font]。近年来,以多孔硅胶材料为基质,将MOFs、COFs等新材料通过涂覆、键合或嵌入多孔硅胶材料内部或表面进而制备改性色谱固定相的策略备受关注。例如,Xu等通过在多孔硅胶表面原位生长富含醛基和氨基反应位点的COFs材料(LZU1),制备了一种新型复合色谱固定相材料SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@rLZU1。SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@rLZU1不仅保留了多孔二氧化硅球的大比表面积和良好的机械强度,而且保留了COFs的多孔结构和优异的稳定性,有效地改善了色谱保留能力、选择性和重现性等性能。 Rehman等通过H[font='times new roman'][sub][size=16px]2[/size][/sub][/font]O[font='times new roman'][sub][size=16px]2[/size][/sub][/font]刻蚀UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]微球,成功地合成了HP-UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]核壳微球,其孔径最大可达9 nm,有利于高效的分离传质。进一步将所制备的HP-UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]核壳微球作为固定相,成功分离了非极性烷基苯同系物、极性芳香醇同系物和二甲苯异构体,与UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]色谱柱相比,均可实现基线分离,并且峰宽较窄,分离度较高。此外,HP-UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]色谱柱对芴的最大理论塔板数达到134,459 N/m,且具有良好的重现性。 [align=center] [/align] Si等使用介孔MOF材料,并将其设计成缺陷型,有效减小了传质阻抗,然后将其与聚丙烯酰胺结合在二氧化硅球表面进行改性制备了d-MOF-818/PAM@silica混合模式固定相。色谱性能测试表明其对于亲水性和疏水性分析物的良好选择性和保留,实现了9个核苷和核碱基,8个生物碱,6个抗生素,和5个烷基苯的有效分离。 共轭微孔聚合物(CMP)是一种将永久微孔与π-共轭骨架结合在一起,并具有三维网络结构的交联型聚合物多孔材料,具有优异的孔隙率、高比表面积、较强的疏水性。此外,与传统的MOF和COF材料相比,CMP通常具有优异的化学和热稳定性。近年来,常被应用于制备色谱固定相。Sun等将吡啶基偶联共轭微孔聚合物(P-CMP)通过齐齐巴宾反应逐层组装到氨基二氧化硅表面,合成了具有核壳结构的SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@P-CMP材料(图1)。填充SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@P-CMP色谱柱具有π-π堆积作用、疏水作用和氢键作用等作用机制,并且随着二氧化硅表面P-CMP层数的增加而增强。其中,具有四层P-CMP包覆的SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@PCMP色谱柱具有良好的分离性能和良好的重现性。与C18柱相比,SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@P-CMP色谱柱对多环芳烃类物质具有更好的分离选择性。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191731522006_7113_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px]1 SiO[/size][font='times new roman'][sub][size=13px]2[/size][/sub][/font][size=13px]@P-CMP[/size][size=13px]核壳材料制备示意图[/size][/align][align=center] [/align] 此外,多功能复合材料也已开发用于制备新型色谱固定相。Zhang等首次尝试了在硅胶基质上构建MOFs@COFs复合材料,开发了SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@NH[font='times new roman'][sub][size=16px]2[/size][/sub][/font]-UiO-66@CTF色谱固定相。因MOFs材料中金属离子与有机配体的相互作用较弱,会产生柱压高、柱效低和峰形差等问题,而COFs中富含氮和氧的有机基团可以将金属离子固定在MOFs骨架中,从而增加了MOFs的物理化学稳定性。因此,在MOFs和COFs的协同作用下,色谱柱的性能得到了极大的改善,SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@NH[font='times new roman'][sub][size=16px]2[/size][/sub][/font]-UiO-66@CTF色谱柱表现出了良好的疏水性和芳香选择性,同时具有极高的分子形状选择性,[font='segoe ui'][back=#ffffff]在分离杂原子污染物方面显示出[/back][/font][font='segoe ui'][back=#ffffff]良[/back][/font][font='segoe ui'][back=#ffffff]好的应用前景。[/back][/font][back=#ffffff]Zhang[/back][back=#ffffff]等以丙烯酰胺和海藻酸钠为水凝胶单体,以[/back][back=#ffffff]UiO-66-NH[/back][font='times new roman'][sub][size=16px][back=#ffffff]2[/back][/size][/sub][/font][back=#ffffff]为纳米填料,制备了[/back][back=#ffffff]T-Sil@PAM[/back][back=#ffffff]/SA/UiO-66-NH[/back][font='times new roman'][sub][size=16px][back=#ffffff]2[/back][/size][/sub][/font][back=#ffffff]固定相[/back][back=#ffffff]材料。[/back][back=#ffffff]将[/back][back=#ffffff]MOFs[/back][back=#ffffff]材料加入到水凝胶聚合网络中,不仅解决[/back][back=#ffffff]了柱压不稳定[/back][back=#ffffff]的缺点,还提供了额外的相互作[/back]用位点,提高了分离选择性。该固定相可以用于混合模式色谱分离分析,实现了生物碱、糖类和多环芳烃类化合物的分离分析,并具有良好的稳定性。

  • 液相色谱分析中如何才能提高分离度?

    下式为分离度计算公式http://www.dikma.com.cn/Public/Uploads/images/R.JPGN:柱效(Efficiency)反映色谱柱性能,柱效越高,分离度越好。在其他条件恒定的情况下,塔板数增加一倍,分离度仅提高40%。操作中,可通过下面两种方式增加塔板数进而提高分离度:其一,使用长柱或双柱串联,但也会使分离时间大大延长;其二,使用细粒径填料的色谱柱,但这需要耐更高压力的液相色谱系统。相比之下后者更为可取。α:选择性(selectivity)是指色谱柱-流动相体系分离两个化合物的能力。选择性主要与固定相、流动相组成以及柱温等因素有关,与保留值也密切相关,其中固定相和流动相组成影响较大。以最常见的反相模式为例,反相柱(包括C18、C8、PH等)是以分配作用对化合物进行保留的,不同化合物的分离是基于它们在键合相与流动相中分配系数的差异,如果两种化合物的水溶性、在烷烃-水体系的分配系数等方面存在明显差异,那么这些化合物通常是能够利用反相柱达到分离;PH柱对具有苯环的化合物具有特殊保留。正相模式下,硅胶柱、胺基柱、氰基柱与带有极性基团的化合物之间存在极性相互作用,对化合物的基团具有选择性,常常用于结构类似物、异构体化合物的分离。流动相方面,降低流动相的洗脱强度通常可以增大分离度;而有机溶剂类型也会影响分离,比如反相条件下,乙腈和甲醇的选择性就存在很大差异,这种差异需要在实践中摸索,但无论如何,多种溶剂类型带给我们更多的实现分离的可能。k:随着容量因子k的增大,分离度也随之增加,这种影响在k值较低时非常明显,当k值大于10时,k值增加对分离度的影响就不再显著,这就告诫无原则地提高k值以增大分离度是没有意义的。增加键合相密度能够提高k值;另外改变键合基团类型也能改变k值,比如在反相色谱中,随着键合相碳链长度的增加,k值逐渐增大。

  • 【资料】木糖与阿拉伯糖以及相应糖醇的色谱分离和色谱行为

    木糖与阿拉伯糖以及相应糖醇的色谱分离和色谱行为提要: 采用SM 219 阳离子交换树脂, 通过优化色谱分离条件, 实现木糖与阿拉伯糖、木糖醇与阿拉伯糖醇的有效分离. 通过半经验AM 1 方法研究木糖与阿拉伯糖、木糖醇与阿拉伯糖醇的分子结构, 并在此基础上对各化合物的色谱行为进行理论解释.木糖醇属多元醇, 是一种新型甜味剂. 食用木糖醇不易产生龋齿, 也不会增加血糖, 因而作为甜味剂[1~ 3 ]被大量用于食品行业, 并作为糖尿病和肝炎患者的临床营养剂和治疗剂[3~ 5 ]. 另外它还是重要的化工原料, 广泛用于国防、皮革、塑料、涂料等方面. 有关木糖醇的理论研究也非常活跃[5~ 7 ].在食品与医药方面的应用, 对木糖醇的质量提出了较高的要求, 国际标准为98. 5% , 但在木糖醇的生产过程中, 常含有10% 左右的杂醇, 主要是阿拉伯糖醇, 该糖醇对人体有副作用, 必须除去. 在目前的结晶生产工艺中, 有大量的母液被废弃, 经[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析, 母液中含40% 左右的木糖醇和30%左右的阿拉伯糖醇 净化液(未氢化的木糖溶液) 中含70% 的木糖和20% 的阿拉伯糖. 因此研究这两种糖、糖醇的分离具有较高的理论与应用价值. 我们采用SM 219 阳离子树脂作为固定相, 蒸馏水为洗脱液, 对工业生产的木糖醇母液及净化液进行分离研究, 并对其色谱行为进行理论解释.本文摘自[URL=http://blog.sina.com.cn/jiangxuetangfangfa]降血糖方法[/URL]博客http://blog.sina.com.cn/jiangxuetangfangfa[~171954~]

  • 离子色谱分离方式和检测方式的选择浅谈

    分析者对待测离子应有一些一般信息,首先应了解待测化合物的分子结构和性质以及样品的基体情况,如无机还是有机离子,离子的电荷数,是酸还是碱,亲水还是疏水,是否为表面活性化合物等。待测离子的疏水性和水合能是决定选用何种分离方式的主要因素。水合能高和疏水性弱的离子,如Cl-或K,最好用HPIC分离。水合能低和疏水性强的离子,如高氯酸(ClO4-)或四丁基铵,最好用亲水性强的离子交换分离柱或MPIC分离。有一定疏水性也有明显水合能的pKa值在1与7之间的离子,如乙酸盐或丙酸盐,最好用HPICE分离。有些离子,既可用阴离子交换分离,也可用阳离子交换分离,如氨基酸,生物碱和过渡金属等。  很多离子可用多种检测方式。例如测定过渡金属时,可用单柱法直接用电导或脉冲安培检测器,也可用柱后衍生反应,使金属离子与PAR或其它显色剂作用,再用UV/VIS检测。一般的规律是:对无紫外或可见吸收以及强离解的酸和碱,最好用电导检测器;具有电化学活性和弱离解的离子,最好用安培检测器;对离子本身或通过柱后反应后生成的络合物在紫外可见有吸收或能产生荧光的离子和化合物,最好用UV/VIS或荧光检测器。若对所要解决的问题有几种方案可选择,分析方案的确定主要由基体的类型、选择性、过程的复杂程度以及是否经济来决定。表1和2总结了对各种类型离子可选用的分离方式和检测方式。  离子色谱柱填料的发展推动了离子色谱应用的快速发展,对多种离子分析方法的开发提供了多种可能性。特别应提出的是在pH0-14的水溶液和100%有机溶剂(反相高效液相色谱用有机溶剂)中稳定的亲水性高效高容量柱填料的商品化,使得离子交换分离的应用范围更加扩大。常见的在水溶液中以离子形态存在的离子,包括无机和有机离子,以弱酸的盐(Na2CO3/NaHCO3,KOH、NaOH)或强酸(H2SO4、甲基磺酸、HNO3、HCl)为流动相,阴离子交换或阳离子交换分离,电导检测,已是成熟的方法,有成熟的色谱条件可参照。对近中性的水可溶的有机“大”分子(相对常见的小分子而言),若待测化合物为弱酸,则由于弱酸在强碱性溶液中会以阴离子形态存在,因此选用较强的碱为流动相,阴离子交换分离;若待测化合物为弱碱,则由于在强酸性溶液中会以阳离子形态存在,选用较强的酸作流动相,阳离子交换分离;若待测离子的疏水性较强,由于与固定相之间的吸附作用而使保留时间较长或峰拖尾,则可在流动相中加入适量有机溶剂,减弱吸附,缩短保留时间、改善峰形和选择性。对该类化合物的分离也可选用离子对色谱分离,但流动相中一般含有较复杂的离子对试剂。此外,对弱保留离子可选用高容量柱和弱淋洗液以增强保留,对强保留离子则反之。离子色谱中常用的两种主要检测器:电化学检测器(包括电导和安培)和光学检测器。在水溶液中以离子形态存在的离子,即较强的酸或碱,应选用电导检测。具有对紫外或可见光有吸收基团或经柱后衍生反应后(IC中较少用柱前衍生)生成有吸光基团的化合物,选用光学检测器。具有在外加电压下可发生氧化或还原反应基团的化合物,可选用直流安培或脉冲安培检测。对一些复杂样品,为了一次进样得到较多的信息,可将两种或三种检测器串联使用。(中国分析仪器网)

  • 色谱分离问题

    各位有色谱方法开发经验的前辈:现有两个问题需请教1.对于高浓度主峰,峰宽很宽,有6分钟样子,在紧随其后有1杂质峰,与主峰分离度只有0.8,色谱条件除了色谱柱可以更换外,其他条件均不能改变,那么用何种色谱柱可以提高两者的分离度为1.5以上;2.哪类色谱柱更适合于分析高浓度化合物;谢谢各位赐教,不胜感激!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制