当前位置: 仪器信息网 > 行业主题 > >

组织芯片仪

仪器信息网组织芯片仪专题为您提供2024年最新组织芯片仪价格报价、厂家品牌的相关信息, 包括组织芯片仪参数、型号等,不管是国产,还是进口品牌的组织芯片仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合组织芯片仪相关的耗材配件、试剂标物,还有组织芯片仪相关的最新资讯、资料,以及组织芯片仪相关的解决方案。

组织芯片仪相关的资讯

  • 中国团队建立仿生芯片:探明新冠感染损伤人体肠道组织的机制
    记者24日从中科院昆明动物研究所获悉,该所郑永唐团队中科院大连化学物理研究所秦建华团队合作,建立了一种仿生肠芯片感染模型,为新冠病毒致病机理、传播途径研究和快速药物评价等提供了新的思路和方法。研究成果发表在著名国际期刊《科学通报》上。  人体内肠道具有消化、吸收和分泌等功能,也是人体最大的免疫器官。新冠病毒感染病人主要以呼吸道症状为主,但仍有20%~50%的患者具有明显胃肠道症状,包括腹痛、腹泻、便血,甚至肠道穿孔等。在新冠肺炎患者的粪便样本中,还可发现病毒RNA,这意味着肠道有可能是新冠病毒攻击的另一主要靶器官。但此前,鲜有针对新冠病毒诱发肠道感染的研究,感染机制也不清楚。  研究团队从人体肠道结构和功能特点出发,仿生建立了一种多层设计的可灌注肠芯片装置,模拟包含多种人源肠细胞、组织界面、3D细胞基质和机械流体等复杂因素的肠组织微环境。在昆明动物研究所BSL-3实验室,他们利用这组装置开展了相关研究。  研究发现,当肠芯片装置暴露于新冠病毒后,在人肠上皮细胞内可见大量病毒复制,同时出现绒毛破坏,粘液分泌细胞分布异常,钙粘蛋白表达水平降低等多种肠组织屏障损伤改变。此外,病毒感染还可导致血管内皮细胞损伤,细胞数量明显减少以及细胞间连接蛋白表达降低等改变。此外,病毒感染可诱发人肠上皮细胞和血管内皮细胞异常响应。  研究团队还首次尝试利用微流控仿生肠芯片装置,探究新冠病毒诱发的肠道感染,发现新冠病毒可导致人肠组织屏障功能障碍、内皮细胞损伤和炎症反应等一系列病理过程,反映了基于组织水平的肠器官生理特点,以及对新冠病毒的病理响应。整套装置具有建模周期短、耗费低和易于动态观测等优势。  “下一步还可结合人体多种肠道免疫细胞和肠道微生物等因素,在芯片上建立更加复杂的肠道免疫微环境,这对深入研究肠道病原体与宿主间相互作用,以及病毒传播途径等具有重要意义。”郑永唐研究员说。
  • 打压中国芯片产业,美国憋新招?中方:美方举措阻止不了中国科技进步
    彭博社6月11日援引知情人士的话称,拜登政府正在考虑进一步限制中国获取用于人工智能的芯片技术,特指一项名为全环绕栅极(GAA)的芯片架构技术。报道称,美国商务部下属机构工业和安全局最近向一个技术咨询委员会提交了一份GAA规则草案。该委员会由行业专家组成,就具体技术参数提供建议。彭博社称,这证明该草案已经走到了监管流程的最后一步。不过,知情人士透露,由于行业官员批评第一版内容过于宽泛,该规则尚未最终敲定。此外,目前尚不清楚规则到底是限制中国自己开发GAA芯片的能力,还是进一步阻止海外公司(尤其是美国半导体制造商)向中国出售相关产品。GAA可以增强半导体性能并降低功耗。据彭博社报道,英伟达、英特尔和超威半导体等公司正计划明年开始批量生产采用GAA技术的半导体。另有知情人士表示,新的措施不会完全禁止GAA芯片出口,而是限制制造这些芯片所需的技术能力。路透社援引美国前商务部官员沃尔夫的话称,新的GAA管制措施是美国及其盟友各自实施管控措施的一部分,几年前,他们在“瓦森纳安排”多边机制会议上同意了这些管控措施,但是最终未获通过。今年3月,英国开始对全栅极场效应晶体管(GAAFET)结构的集成电路技术实施管制,4月,日本将GAA技术列为新的出口管制对象。“预计美国和其他盟友将在今年夏天实施GAA相关和其他先前商定的管制措施。”中关村信息消费联盟理事长项立刚12日对《环球时报》记者表示,美国正在世界挑起“科技纷争”,施展各种手段打压中国芯片产业的崛起,尤其是在GAA这种新技术上。虽然GAA目前并未得到广泛应用,但下一代芯片将会更多采用这种技术以提高效率和性能。不过,项立刚说,技术并不是专利,很难被限制,美国无法阻止中国自主探索新技术。美国已对向中国出售先进半导体和半导体制造仪器实施了多项限制。美国商务部长雷蒙多曾多次宣称,美国将根据需要增加这些措施,以防止最先进的人工智能技术落入中国,并称这可能会给中国军事带来优势。中国已多次就美国的打压行为表示反对。12日,中国外交部发言人林剑在例行记者会上表示,在人工智能领域,美方一边表示希望同中方开展对话,一边酝酿打压中国人工智能技术发展,暴露出美方说一套、做一套的虚伪嘴脸。“美方举措阻止不了中国科技进步,只会激励中国企业自立自强。中方将密切关注有关动向,坚决维护自身合法权益。”
  • DNA测试芯片暴利拆解:芯片成本不足20美元
    新创公司InSilixa开发出一款新的DNA测试芯片,据称可在1小时内以不到20美元的成本完成高准确度的DNA测试 相形之下,现有以手持读取器进行测试的成本高达250美元左右。   这款名为Hydra-1K的芯片可大幅削减现有疾病检测方法所需的时间与费用,为重点照护(pointofcare)带来分子级的诊断准确度。不过,这款设计目前才刚开始进行为期18-24个月的实地测试。   我们已经隐密地开发二年半了,这是我们第一次展示这项成果,"InSilixa创办人兼CEOArjangHassibi在日前举行的HotChips大会上表示。   InSilixa声称所采取的测试途径不仅成本更低,而且比现有的分子诊断更迅速,但完全不影响准确度。   InSilixa最近还向世界卫生组织(WHO)会员国展示其芯片成功检测结核的结果。   该公司目前正致力于为该芯片开发一项疾病的商业应用。该公司的目标在于使其芯片成为一款开放的平台,让医疗从业人员与研究人员可用于瞄准一系列的广泛测试,这比该公司能够自行开发的应用还更多更有意义。"但我们自已也将保留几项应用领域,"Hassibi说。   相较于其他的实验室上芯片(lab-on-a-chip),InSilixia的设计是针对像在芯片上进行化学键合的实时分析。Hassibi说,目前有些设计利用必须以化学药剂清洗芯片表面的合成途径,但这些化学药剂中可能含有降低测试准确度的杂质。   该公司主要的秘密武器就在于用来进行检测的化学物质。除此之外,"我们有一半的研发都用于使该系统可用于不懂编程的医生和化学家,"他说。   该公司正致力于寻求美国FDA510(k)的批准,预计需时约六个月。   原理:如何运作?    InSilixa的DNA测试芯片采用IBM250nm制程制造,成本约30-50美元。它利用每个分子传感器约100um的32x32数组。制造该芯片的挑战之处在于多级芯片封装制程。  光传感器在每一数组点进行化学键合实时检测   个别的数组元素由光电二极管和加热器组成,以刺激化学反应。该芯片利用5W功率加热   芯片与电路板   LVDS接口提供数据,绘制时间和温度的2D数组影像   Hydra-1K读取器芯片是一款独立的FPGA板
  • 小芯片,大突破!艾玮得深度参与的太空器官芯片研究在中国空间站完成
    近日,江苏艾玮得生物科技有限公司与东南大学苏州医疗器械研究院、中国航天员科研训练中心、数字医学工程全国重点实验室一起,共同研发制作的太空血管组织芯片(Taikonaut-Blood-Vessels-on-a-Chip, Taikonaut),在中国空间站完成了国内首例太空器官芯片在长期微重力条件下的培养实验,也是国际上首例人工血管组织芯片研究。这次研究主要针对航天员长期空间飞行后导致的身体反应,对于通过药物防护等方法帮助航天员保持身体机能,重新适应地球重力环境具有重要意义。中国航天员科研训练中心副研究员王春艳:这个芯片是咱们国家独立自主研制的,神舟十五号任务中是国家第一次在轨实施了器官芯片项目,也是国际首次在轨开展的人工血管芯片的研究。它也标志着咱们国家成为世界上第2个具备在轨开展器官芯片研究能力的国家。 太空血管组织芯片研究针对空间飞行导致的立位耐力不良的细胞学机制研究需求,聚焦微重力对血管氧化应激水平的变化和血管结构与功能的影响,研究长期空间飞行导致的立位耐力下降的细胞学机制,以及在空间环境下某些化合物对抗航天员立位耐力不良防护机制,为发展有效的对抗防护措施提供理论和实验依据。研究人员在实验室用原代细胞构建具有功能性的人工血管,并将其安装至自主研发的太空血管芯片中,进行微流体培养以确保血管的稳定性。同时,结合影像学分析方法,对实时观察并采集到的血管形态变化进行分析。该实验基于失重导致的立位耐力不良、运动能力降低、血管结构及功能重塑等长期航天飞行导致心血管系统功能失调的问题。研究导致血管结构和功能变化的细胞学机制,并测试保护性药物对避免预期问题的有效性。 值得一提的是,包括与神州十五号一起返回的太空血管组织芯片在内,艾玮得生物已在器官芯片研发与应用中取得多个“第一”的好成绩。 艾玮得生物深度参与器官芯片相关国家标准的撰写。目前国内第一个器官芯片技术标准已立项公示。国内第一个使用器官芯片数据获批IND的新药江苏艾玮得生物科技有限公司(AVATARGET)是一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,其核心技术转化于东南大学器官芯片科研团队,技术成果已成功应用在新药研发、精准医疗、疾病建模、美妆安全性评价等科研场景中。目前,艾玮得已与恒瑞、先声、齐鲁、美国哥伦比亚大学、江苏省人民医院等国内外知名药企,多所医院、研究机构及高校达成深度合作,持续推动器官芯片在更多高端医疗器械领域的应用,助力生命科学快速发展。
  • 即插即用可定制 多器官芯片演绎人体原理
    美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。研究人员创造的这种即插即用的多器官芯片,大小与显微镜载玻片相当,可为患者定制。由于疾病进展和对治疗的反应因人而异,因此这种芯片最终将为每位患者提供个性化的治疗。这项研究刊载于4月27日出版的《自然生物医学工程》杂志上。灵感来自人体工程组织已成为疾病建模和在人体环境中测试药物疗效和安全性的关键组成部分。研究人员面临的一个主要挑战,是如何使用多种可进行生理交流的工程组织来模拟身体功能和全身性疾病,就像它们在体内所做的那样。然而,必须为每个工程组织提供自己的环境,以便特定的组织表型可维持数周至数月,符合生物学和生物医学研究的要求。使挑战变得更为复杂的是,必须将组织模块连接在一起以促进它们的生理交流,这是对涉及多个器官系统的建模所必需的。从人体的工作原理中汲取灵感,研究团队构建了一个人体组织芯片系统,在该系统中,他们通过循环血管流动将成熟的心脏、肝脏、骨骼和皮肤组织模块连接起来,让相互依赖的器官能够像在人类的身体里。研究人员之所以选择这些组织,是因为它们具有明显不同的胚胎起源、结构和功能特性,并且受到癌症治疗药物的影响。“在保持其个体表型的同时提供组织之间的交流一直是一项重大挑战,”该研究的主要作者、哥伦比亚大学干细胞和组织工程实验室副研究科学家凯西罗纳德森-博查得说,“因为我们专注于使用源自患者的组织模型,我们必须单独使每个组织成熟,以便它以模仿患者身上的反应方式发挥作用,我们不想在连接多个组织时牺牲这种先进的功能。在体内,每个器官都维持着自己的环境,同时通过携带循环细胞和生物活性因子的血管流动,与其他器官相互作用。因此,我们选择通过血管循环连接组织,同时保留维持其生物保真度所必需的每个单独的组织生态位,模仿我们的器官在体内连接的方式。”组织模块可维持一个月以上研究团队创建了组织模块,每个模块都在优化的环境中,并通过选择性渗透的内皮屏障将它们与常见的血管流分开。个体组织环境能够跨越内皮屏障并通过血管循环进行交流。研究人员还将产生巨噬细胞的单核细胞引入血管循环,因为它们在指导组织对损伤、疾病疗效的反应方面发挥着重要作用。所有组织均来自同一系人类诱导多能干细胞,从少量血液样本中获得,以证明个体化、患者特异性研究的能力。而且,为了证明该模型可用于长期研究,该团队将已经生长和成熟4到6周的组织在通过血管灌注连接后又维持了4周。研究人员还证明了该模型如何用于研究人类环境中的重要疾病,并检查抗癌药物的副作用。他们研究了多柔比星(一种广泛使用的抗癌药物)对心脏、肝脏、骨骼、皮肤和脉管系统的影响。他们表明,测试效果概括了使用相同药物进行癌症治疗的临床研究报告的效果。使用该模型研究抗癌药物该团队同时开发了一种新的多器官芯片计算模型,用于对药物的吸收、分布、代谢和分泌进行数学模拟。该模型正确地预测了阿霉素代谢成阿霉素醇并扩散到芯片中。在未来其他药物的药代动力学和药效学研究中,多器官芯片与计算方法的结合为临床前到临床外推提供了改进的基础,同时改进了药物开发流程。研究人员称,新技术能识别出一些心脏毒性的早期分子标志物,这是限制药物广泛使用的主要因素。最值得注意的是,多器官芯片准确地预测了心脏毒性和心肌病,这通常需要临床医生减少阿霉素的治疗剂量,甚至停止治疗。研究小组目前正在使用这种芯片的变体进行研究,所有这些都在个体化的患者特定环境中进行。如乳腺癌转移、前列腺癌转移、白血病、辐射对人体组织的影响、新冠病毒对多器官的影响、缺血对心脏和大脑的影响,以及药物的安全性和有效性。研究团队还在为学术和临床实验室开发一种用户友好的标准化芯片,以帮助充分利用其推进生物和医学研究的潜力。研究人员说:“我们对这种方法的潜力感到兴奋。它专为研究与损伤或疾病相关的全身性疾病而设计,将使我们能够保持工程人体组织的生物学特性及其交流。一次一个病人,从炎症到癌症。”
  • 芯片上的患者—多器官串联芯片应用于精准医疗
    芯片上的患者—多器官串联芯片Multi-Organ-on-Chip应用于精准医疗北京佰司特科技有限责任公司An Individual Patient's "Body" on Chips – How Organismoid Theory Can Translate Into Your Personal Precision Therapy ApproachFrontiers in Medicine, 2021, Vol. 8Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM类有机体的概念在12年前就被提出来,当时被称为“芯片上的人体human-on-a-chip”或“芯片上的身体body-on-a-chip”,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,将多个类器官串联起来培养。微生理系统MPS成为体外在生物学上可接受的最小尺度模拟人体生理和形态的技术平台,因此,微生理系统能够以前所未有的精度为每个患者筛选出个性化治疗方案。与此同时,第一个人类类器官——干细胞衍生的复杂三维器官模型,可以在体外扩增和自我组织——已经证明,只要给人类干细胞提供相应诱导分化及生长环境,就可以在体外自我组装成人体类器官。这些早期的类器官可以精确地反映出人体中对应器官的一系列独特的生理状态和病理特征。我们现在把过去的“芯片上的人体human-on-a-chip”的概念发展成“类有机体Organismoid”的理论。首先,我们提出了“类有机体”的概念,即通过体外的自我组装的过程,模仿个体从卵细胞到性成熟的发生过程,培养出的——微小的、无思维、无情感的体外的人体等效物。随后,我们提出了类有机体的分化和培养方法,使其能在体外长时间维持正常功能,以及通过自然或人工诱发疾病干扰类有机体来模拟个体疾病过程。最后,我们讨论了如何使用这一系列健康和疾病模型的类有机体来代替病人,测试药物疗效或药物剂量,即个体化精准医疗。 图1 |每个人个体命运的类有机体。(A)个体发育(黄色)从卵细胞受精开始,随后出生,并在18 ~ 20年后性成熟,发育出功能完整的大脑和成年骨骼。然后,成人的身体会经历一个持续数十年的功能和结构相对稳定的阶段。随着身体年龄的增长,这个成年期会被不断延长的生病和康复期打断(粉色)。情感和意识——人类的灵魂和思想——从童年开始连续发展,并贯穿一生。(B)根据类有机体理论,个性化的类有机体可以通过持续几个月的体外培养(黄色)来建立。由此产生的成体类有机体可以模拟健康人类成年几周(S-短期)、几个月(M-中期)或几年(L-长期)的阶段。然后,这些可以用来模拟急性、亚慢性和慢性疾病时期(粉色)和个体在相应的时间框架内的治疗后恢复。大量相同的类有机体还可以提供足够数量的生物学重复和对照,确保了数据的准确性,真实性,可重复性。此外,这些健康的类有机体在预防医学的评估方面很有用,比如为各自的个体接种疫苗。 类有机体理论人的个体寿命的特征是人体的生理和形态的发育阶段(发育期)和功能维持阶段(成年期),以及个体与社会在灵魂和思想上的双向交流,如图1A所示。社会起源本质上与人的大脑的大小和结构有关——大脑由大约860亿个神经元以及数量大致相等的非神经元细胞(2)组成,这些细胞高度连接,聚集在一起处理、整合和协调它从感觉器官接收到的信息(3)—以及它与身体其他部分的相互联系。成熟的人体生理遵循一个简单的进化,即选择性结构计划,也就是组成遵循功能。早在2007年,我们就注意到这样一个事实:“……几乎所有的器官和系统都是由多个相同的、功能独立的结构单元组建成的,从几个细胞层到几毫米组织。由于其独特的功能性、高度的自立性和这些结构单元在各自器官中的多样性,它们对药物和生物制剂的反应模式几乎代表了整个器官。大自然创造了这些微小但复杂的结构单元,以实现器官和系统最主要的功能。在一个特定的器官内,这些结构的重复是天然的风险管理工具,以防止器官局部损伤时功能完全丧失。然而,从进化的角度来看,这一概念使得器官的大小和形状可以很容易地调整到特定物种的需要(例如,小鼠和人类的肝脏使用几乎相同的结构单元)(4)。这一理论,结合微生理系统(MPS)的发展,为在生物芯片上以生物学上可接受的最小尺度模拟人体的器官提供了理论基础(5-7)。2012年,我们引入了“芯片上的人体”(man-on-a-chip)的概念,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,即将多个类器官(比体内缩小10万倍)串联起来培养。我们举例说明了人体主要器官的功能单位,并简要描述了减小尺寸的原理(5)。这是发展一种理论的起点,即建立一种微小的、无思维、无情感的体外的人体等效物,我们现在称之为organismoids类有机体。不同的术语,如芯片上的人体,芯片上的身体,或通用的生理模板,在过去已经被用于代表有机体。在MPS领域中已经使用过这个概念,通过培养10个人的主要器官的等效物(类器官)来实现完整的体内平衡:循环,内分泌,胃肠道,免疫,皮肤,肌肉骨骼,神经,生殖,呼吸和泌尿系统。类有机体的理论基于两个按时间顺序相互关联的概念,每个概念有三个实施原则。类有机体的体外发育依赖于(i)(诱导多能)干细胞为基础的体外早期类器官形成;(ii)以生理学为基础,通过血液灌流和神经分布,应用于芯片上的MPS,将此类早期器官的比例/数量整合为早期自我维持的类有机体;以及(iii)通过类器官在芯片上的串联培养加速刺激个体发育,完成体外个体发育成为健康成熟的类有机体(模拟成年期)的转变。因此,利用芯片上的类有机体模拟病人的疾病和治愈过程的概念遵循以下原则:(一)通过自然疾病过程或通过来自病人的病原体或病变组织的传播在生物体中诱发疾病;(ii)通过对同一个患者来源的健康和病变类有机体进行相同数量的试验来模拟对大量患者进行的人体临床试验;以及(iii)为每个患者精确选择正确的药物或疗法和最有效的用药方案。在这篇文章中,我们带你通过类有机体理论的概念和原则,用实际结果阐述它对我们的医疗保健系统的颠覆性创新的潜力,并提供一个可行性方法的展望。 微流控培养系统——早期类器官形成类有机体的关键类器官已被证明是模拟不同器官特异性特的有力工具。然而,如上所述,标记物表达和功能往往在早期就停止了。我们从1912年就知道,体外培养的环境决定了它们的生存能力和功能(100)。驱动类器官自组装和分化的各向微环境因子在传统培养条件下相当均匀地覆盖类器官或广泛的表面积,阻碍了由功能驱动的空间定向和成熟。但这些源自相互作用的组织并导致细胞重排的时空线索,是发育成熟器官功能的关键。但这些源自相互作用的组织并导致细胞重排的时空因子,是成熟器官功能发育的关键。特别是内皮组织相互作用及其对器官发生过程中局部信号传导的影响已被广泛研究(101-103)。 例如,发育中的中枢神经系统的血管化是大脑发育中至关重要的一步,确保快速分裂的神经前体细胞的氧气和营养供应。外周神经系统的神经结构已被证明以明显的与血管同步的方式发展。此外,内皮细胞对于维持产生小脑细胞的中枢神经系统胚层的重要性也得到了证明(104)。在过去的二十年中,通过将器官模型引入MPS来改善器官模型培养条件已经做出了大量的努力。利用原代和细胞系为基础的模型已经建立了MPS中的数十种人体类器官,并已进行了非常详细的综述(105 - 111)。有充分的证据表明,器官功能的成熟可以通过密切模拟有关生化、物理或电刺激的器官型微环境来实现(106)。看来,神经支配、血管化、淋巴管、微生物群和胆汁产物的肠-肝脏循环模拟是满足多器官MPS中类器官的简单物理结合和生物体中真正的组织相互作用和稳态之间的鸿沟不可或缺的先决条件。后者需要至少10个人类系统(如引言中强调的那样)的主要类器官的串联组合,以及它们通过血管系统、神经支配和淋巴管的生物互联。关于建立包含至少10个技术上可相互连接的器官培养区隔的MPS的两项早期尝试已经发表。这些主要的例子包括康奈尔大学舒勒实验室(Shuler Lab)的13个器官培养系统(170个)和麻省理工学院格里菲斯实验室的10个器官培养PhysioMimix系统(171)。这两种系统都已成功地在培养室中使用生物材料运行了7天或更长时间。然而,两者都缺乏生物血管互连、淋巴管和器官神经支配。 生物体可能会传递什么给我们的医疗系统根据有机体模型理论,有机体模型是活体人体在体外的生物复制品,只是尽可能缩小了规模。它们是由系统创造的整合:生理学上把人体主要器官的功能单位整合成一个有机的、自我维持的模板,反映人体的系统组织干细胞衍生器官等价物在芯片上的快速分化,源于它们之间的相互串扰和生理上的相互依赖。规模的极端缩小,是由于产生个体的生物体样体的大量重复的目标。大量这种相同的、微小的、无脑的、无情绪的生理体外有机体的成熟可以在很长一段时间内保持自我维持的功能性健康内稳态。它们容易受到干扰,导致自然或人为地诱发疾病。患病的生物体被假设以精确地模拟各自病人疾病的病理生理学。反过来,这可能使预测性的患者特异性有机体样研究的表现,以确定最有效的个性化治疗患者有关。类似于对患者队列的临床研究,然后可以产生统计验证的预测,其优势是可以在生理和病理生理条件下比较基因相同的患者有机体样体重复。由此可以推导出两种主要的使用场景。一种是与现实世界中个体患者个人治疗的前沿改进有关 另一种则有可能在临床试验层面改变药物开发范式,节省大量时间和资本支出。关于第一种方案,生物体模型可以用于预测地选择、安排和给药,根据患者的疾病进展准确地选择个性化治疗或药物。通过早期发现不成功的治疗方案,这可以显著降低对每个患者的潜在风险。图5更详细地总结了将有机体应用于个性化精准医疗的优势。该图说明了有机体体方法的概念和原理,以选择最适合您的个性化疾病应用的精准医疗。作为一个假设的例子,癌症被选择为疾病。你的生命周期可能最终包括危及生命的疾病时期,例如,癌症生长(上:蓝色边框的箭头)。从你的健康细胞中建立一个多能干细胞库。随后,在几个月内就会产生大量相同的健康生物体(黄色三角形)。目前有各种治疗癌症的选择,因此,相关的试验组被创建,包括安慰剂治疗、其他治疗组和健康恢复对照组(在黑边箭头中)。在这个假设的例子中,在几周内,CAR-T细胞疗法与检查点抑制剂相结合,会被证明是你最快最有效的治愈方法。因此,这种疗法立即得到了成功的应用。根据生物体形态理论,一个人的干细胞库可以在健康时创建,也可以在疾病发生时从健康的器官中创建。预防性干细胞库(例如,从脐带血中提取)已经在使用中,并将成为未来的选择,因为这需要时间。接近人类的理论提供了精确的试验结果,这是动物试验在患者来源的异种移植模型或人类患者来源的类器官无法实现的。异种移植模型在系统发育上是遥远的,因此不能提供足够的肿瘤生长。此外,它们没有病人的免疫背景来对抗癌症。病人来源的类器官也没有嵌入到病人的免疫系统中,缺乏与有机体的系统性互动。对于第二种情况,数十年来,候选药物进入临床试验成为获批药物的平均成功率一直低于20%;这种将任何原型转化为上市产品的低效率,其他任何行业都承受不起。使用实验动物的候选药物的临床前安全性和疗效评估程序的预测性差是造成这种低效率的主要原因。其后果是平均13.5年的漫长临床试验,以及一种新药获得批准所需的累计成本高达25亿美元(106)。与此同时,在过去30年里,一场基于生物学的治疗策略出现了——利用人体自身的工具来对抗疾病。近年来,药物的生物复杂性不断扩大,从人工合成的小分子药物,到人类单克隆抗体蛋白,最后是针对患者的自体细胞疗法,极大地增加了患者治愈的机会。然而,这一趋势同样显著地降低了通过应用临床前的实验室动物试验来预测这类疗法的安全性和有效性的机会,原因是这类先进治疗药物的人类起源越来越多(172)有机体有可能通过改变药物开发的模式来打破这种成本螺旋上升。2016年,MPS相关报告已经预计,一旦基于MPS的类似于生物体的临床试验研究能够准确预测任何新药物或疗法的疗效、安全性、剂量和时间安排,在用于人类试验和替代动物试验以及1、2期临床试验之前,累积药物开发成本将降低5倍,药物开发时间将减少一半。2018年,毒理学研究领导人论坛(10)草拟了一份高级路线图,以确定“临床试验”预测精度(图6),在与临床试验相对应的芯片研究中运行精细的个性化的“人体”等效物(有机体)。为了实现这一点,套健康的和有病的代表患者疾病状态和健康内稳态的有机体样体将允许一个人进行基于临床前系列药物和先进的有机体样体测试。图5 |说明有机体理论如何应用于个性化医疗的假设例子。 图6 |在芯片上潜在的“临床试验”背景下的“人体”等效物(10)。 图7 |一个假设的例子,说明有机体理论如何可以用来模拟临床试验。 健康的内稳态将允许一个人在大型试验特定患者中模拟临床试验的环境中进行基于有机体的药物和先进疗法的临床前系列试验。与患者队列试验相比,以有机体为基础的试验具有许多关键的优势。图7详细说明了这些优势,并举例说明了利用基于有机体的试验模拟一种假想的新型钠-葡萄糖转运体2(SGLT2)抑制剂治疗2型糖尿病的临床试验。最突出的优势是,在药物开发历史上,基于芯片的有机体试验将首次包括患者身体和同一个体健康身体状态的统计相关的人体自体生物重复。由于缺乏对单个患者的任何生物重复,以及对他们在健康内稳态下的个体生物状态的了解,临床试验传统上需要大量的患者队列。因此,试验被分为1、2和3期,不幸的是,只能近似一个患者个体的病理生物学和他们的完全治愈恢复状态。这两个方面使得传统的临床试验过程成为一种漫长的、成本高得令人难以置信的、低效的药物和先进疗法的开发方式。在含有健康和患病生物体的芯片上进行“临床试验”,消除了这两个障碍。一方面,它们允许近亲繁殖的实验室动物试验的一致性由于基因而得到匹配,每个试验“参与者”在个体有机体水平上的身份,但其背景完全是人类。另一方面,各种不同个体的生物样体的使用反映了临床试验中患者队列的异质性,但具有每个个体患者的生物样体在统计上相关的生物重复的优势。有机体体方法的另一个明显优势是,在进行此类试验时,其独立性不受患者招募和医院使用的影响。鉴于大型PSC库的存在反映了基因倾向、性别和与试验相关的其他类别,基于有机体模型的试验可以在世界任何时间、任何地点进行。关于上面的假设例子,根据糖尿病易感性选择供体,比较遗传祖先和平等的性别分布可能是有趣的干细胞瓶选择策略。第三个优点是试验规模的灵活性。理论上可以产生的患病生物体(通常被称为芯片上的“病人”)的数量是无限的。这使得药代动力学方面的整合,在同一个基于有机体的试验中发现新的化学或生物实体的有效剂量和综合安全性和有效性评估成为可能。目前在实验室动物、健康志愿者和患者的单独临床前和临床试验中产生的数据,如毒性特征、未观察到的副作用水平、吸收和排泄率、代谢物形成、发现有效剂量、持续时间和新药物的时间安排,可以从一项基于生物体的试验中得到。例如,我们治疗2型糖尿病的假设案例研究可以很容易地扩展到更大的剂量范围,并将每天两次剂量的单一口服(这在生物样体中指的是根尖肠的任何给药)进行比较。这将包括对疗效进行剂量依赖的评估,同时观察尿路或生殖道感染的发生和严重程度,以及众所周知的SGLT2抑制剂的副作用。在各自的患者队列中,候选药物使用的治疗窗口的定义来源于这样一项一体化试验,该试验仍处于临床前候选药物开发阶段。关于这两种使用场景,我们设想有机体将对从个人数据库收集的医疗现实世界大数据做出重大贡献。这是因为它能够在每个患者第一次疾病发作(例如,肿瘤生长、病毒复制)的确定位置生成关于微环境破坏的独特可复制数据。有机体和硅芯片的结合将进一步提高对大量患者群体进行精确药物治疗的预测能力,并进一步降低成本。在人们的心目中,复杂的体外细胞培养工作通常与高昂的成本联系在一起。有人可能会猜测,在试验中产生和处理数千个生物体需要天文数字的预算,因为目前可用的MPS在一次性芯片和操作上都很昂贵。在这里,有机体的性质反映了一种自我可持续的人体和规模经济效应开始发挥作用。在现实世界中,一个处于休息状态的人体,每天的蛋白质、碳水化合物和脂肪供应约2000千卡就可以维持。在世界上一些较贫穷的地区,人均几美元就可以实现这一目标。因此,每天喂养10万只生物体的成本也可以达到相同的水平。维持这些生物体的可消耗芯片的价格也预计将下降到1美元的范围,这在计算机芯片和人类基因组测序成本方面已经有过先例。生物机体能够为每一位患者确定最合适的药物,并大幅节约成本和改变药物开发,这种能力的社会经济维度被认为是巨大的。这同样适用于伦理层面。基于MPS的类有机体有可能取代大多数实验室动物试验和在人类志愿者身上进行的第一和第二阶段临床试验。它们将减少三期临床试验患者的多种数量。所有这些都将对全球范围内的患者利益和动物福利产生根本性的积极影响。 患者类有机体体和芯片上病人特异性T细胞疗法——一个挑战这一理论的完美方案先进的细胞疗法,如自体嵌合抗原受体(CAR) T细胞疗法KymriahTM 和YescartaTM,最近已经证明了它们治愈以前的耐药肿瘤患者的潜力(176,177)。除了这两种在2017年被批准用于治疗血液肿瘤的CART细胞产品外,其他几种CAR-T细胞产品最近也被批准。许多新的细胞治疗方法正在酝酿中,使用CAR或转基因T细胞受体对抗各种各样的肿瘤、感染和自侵略性免疫细胞,或者使用调节性T细胞在显性的不良免疫反应中恢复免疫平衡(178)。到2020年底,全球注册了超过1000项使用免疫细胞产品的临床试验(179)。在这些医疗需求未得到满足的领域,这种前所未有的疗效以标准安全测试程序(180)为代价,增加了监管机构的接受度,该程序需要在治疗批准后的患者随访研究中进行回顾性研究。这符合这样一个事实,即由于患者与患者的系统发育距离、各自的基因型差异和免疫不匹配,患者对个性化细胞治疗的反应无法在临床前的实验室动物模型中模拟。同样,在传统的患者来源的类器官培养中,患者的反应也无法预测,因为它们没有融入到一个系统的有机体安排中。除其他外,模拟t细胞输注到目标部位的静脉输送及其与其他主要器官部位的相互作用,都缺失了模拟T细胞疗法及其疗效(患者衍生类器官的精确度)的关键因素。 如前所述,这里的有机体理论提供了一种克服任何其他障碍的替代解决方案。 什么是有机体不能也不应该做的根据有机体理论,有机体不能也不应该模仿人类个体社会起源的主要部分——同理心或意识(分别是灵魂或思想)。因此,它不能模拟病人的精神疾病。300g的人类心肌或髋部骨折的功能障碍及其愈合依赖于生物物理特性,由于规模和所涉及的物理不匹配,其中一些无法在生物类体上表征。伦理考量对人类社会至关重要,也是人性的基础。有机体理论,由于其性质,引入了一些必须考虑伦理的观点。将人类胚胎发育到几厘米大小是最关键的问题之一。在人工环境下(如体外培养),人类卵子的受精及其随后的胚胎发育在世界上许多地方都是被禁止的。生物体理论的作者想要强调的是,他们的伦理范式超越了这一点。人们不应该使用有机体形态理论的概念和原则来创造人类或杂交胚胎,并进一步发展和区分人类或杂交组织。应该使用其他方法来规避个体发生的这一部分。个人同意捐献组织来创造生物体可能是一个很好的工具,以防止在早期阶段的滥用。 结论这里提出的生物体样体理论声称,有能力在体外人工重现个体身体的个体发生,从捐赠者的干细胞开始,产生一定数量的相同的健康成熟的小型化身体等量物,因此被称为生物体样体。该理论进一步声称,这种供体特定的相同生物体样体反映了该个体健康成年期的某个阶段,可以用来模拟该供体在其生命周期的某一特定时间内相关的疾病和康复阶段。以个性化的患病生物体样方法对个体的疾病进行建模,将提供一个尚未满足的患者病理生物学的现实水平,因此,提供一个前所未有的工具,以精确选择正确的药物、治疗计划和剂量来治愈(患病)个体。大自然的遗传和微环境原则编码了人体器官最小功能单元的自组织和维护,并将它们整合到一个交流通讯和高效互动的血液系统中,灌注和神经器官是在芯片上创造生物体的蓝图。我们设想它们将成为下一个层次的人类生物学模拟,提供与人类相对应的最佳可能的近似。在体外实验中,类有机体organismoids将有机地遵循人类的多个类器官串联,近年来,这已被证明能够在小型化的规模上模拟单个组织和器官的不同功能。利用已从类器官学习到的东西,类器官将通过一个小型化的基于生理的血管和毛细血管网络在芯片上生成的全血的系统神经支配和供应,以每个器官的功能单元。通过内皮细胞层将每个类器官从共同的血液中局部分离,将使不同人体器官功能单元的精确拷贝在芯片上实现单独的器官特异性、遗传编码和微环境驱动的自我组装。反过来,这将使成熟的类器官在生理上产生交流,从而导致有机芯片上的内稳态。一旦建立,生物体将只需要每天用消化的食物等量进食,就可以模拟芯片上的长期、所谓的自我维持的身体功能。我们已经说明,类器官体外培养技术和过去10年生产的单器官芯片为体外类器官的培养提供了大量数据。此外,人类iPSC衍生的多器官串联芯片提供了芯片上加速人工器官个体发生的第一个成果。最后,越来越多的关于人类疾病建模和人体组织芯片治疗测试的科学文献指出,当MPS上完全功能性地建立多器官串联芯片以及人体芯片时,这种微生理平台就有能力精确模拟疾病的病理生物学和药物或治疗的作用模式。进一步发展器官芯片的主要挑战是神经支配和类器官毛细血管化的实现,这也需要细胞,特别是免疫细胞迁移到组织中。 类器官串联芯片培养系统--- HUMIMIC多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不同的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试:配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性;最终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治疗的效果;人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰腺、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨髓以及各自的多器官串联组合方案。德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域.
  • 神奇的生物芯片
    p style=" text-indent: 2em " strong 芯片(Chip) /strong 在电子设备中的使用由来已久。众所周知,这类电子芯片由集成电路组成,通过连线和半导体工艺被撮合在一起,不仅形状小巧,还能快速检测、储存或处理大量的数据,已成为手机、电脑、电视、车载多媒体系统等几乎所有电子设备的核心元件,是人类科技史上最成功的发明之一。 /p p    strong span style=" color: rgb(255, 0, 0) " “生物化”的电子芯片 /span /strong /p p   近年来,在生物学及医学领域,一种更为神奇的生物芯片应运而生(图1)。它们的外表酷似电子芯片,却在普通芯片触及不到的生物学检测及临床治疗方面大显身手。有些种类的芯片甚至可以直接安置在人体内部,收集并检测人体内产生的生理信号,已成为分子生物学研究、疾病预防和治疗过程中常用的利器。美国前总统克林顿曾指出,未来,基因芯片将为我们一生中的疾病预防指点迷津。生物芯片的重要性及其在疾病诊断和治疗方面的地位可见一斑。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0e890c3d-37cf-4e80-a5c0-861372297e57.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图1:形形色色的生物芯片。图片来自网络 /span /p p   那么生物芯片究竟是何方神圣?又是怎样造福于人类的呢?从制造工艺的角度来讲,生物芯片可称为电子芯片“生物化”后的产物。与传统芯片(图2A)相比,生物芯片(图2B)仅保留了与之相同的硅底或玻璃底座部分,但在底座之上却不再是集成电路,而是固定核酸、蛋白质(图2C)等生物大分子,或细胞、组织等生物材料。虽然外形相似,但其功能及用途却发生了翻天覆地的变化。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 453px " src=" https://img1.17img.cn/17img/images/201908/uepic/7e49bfd7-caac-4147-bbbb-9dbe30f6388c.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 453" border=" 0" vspace=" 0" / /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图2:传统芯片与生物芯片的比较。A、用于电子设备的芯片外形。B、生物芯片外形。C、生物芯片结构示意图。其表面以核酸分子构成的称为基因芯片或DNA芯片,其表面以抗体等蛋白大分子构成的称为蛋白芯片。图片来自网络 /span /p p    strong span style=" color: rgb(255, 0, 0) " 最先研发的基因芯片 /span /strong /p p   最早的生物芯片是以核酸片段为原料制作而成的“基因芯片”(Gene chip),又叫“基因微阵列”(Gene microarray),由美国Affymetrix公司于1996年率先研制并首先将其应用在基因测序方面。近几年,随着芯片技术的发展,蛋白芯片、细胞芯片、组织芯片等相继加入了生物芯片阵营。但迄今为止,基因芯片仍是开发最为成功、应用最为广泛的一类生物芯片。 /p p   此类芯片以双链DNA的碱基互补配对属性为工作原理,将大量(通常每平方厘米点阵密度高于400)单链、短片核苷酸(又名探针)固定于支持物上后与样品DNA进行孵育,样品中的DNA一旦与探针形成互补配对,就可以释放出荧光信号,被荧光探测仪所捕捉并转化成电子数据供计算机进一步进行分析。 /p p   虽然基因芯片的原理相对简单,但其强大的检测能力却不容置疑。在生物学家、软件工程师及材料学家的合力优化下,目前单个基因芯片可以同时、快速、准确地分析数以千计基因组信息。如今市场以及临床上应用广泛的基因诊断、癌症筛选均需要借助基因芯片完成。除此之外,基因芯片技术还在药物筛选、分子育种、司法鉴定、食品微生物检测、环境监测、国防、航天等许多领域大显身手,为科学家们从事生物类基础研究、临床上进行疾病诊断、治疗和防治,以及医学界筛选新型药物和进行药物基因组学等重要研究提供了核心技术平台。 /p p    strong span style=" color: rgb(255, 0, 0) " 无可取代的蛋白芯片 /span /strong /p p   与基因芯片相比,蛋白芯片的应用虽不如基因芯片广泛,但在肿瘤标志物检测方面,仍具有无可取代的重要地位。蛋白芯片是以蛋白质(主要指抗体)代替DNA固定于芯片表面作为探针,检测蛋白溶液中可以被抗体探针识别的相应蛋白的技术。根据遗传学规律,基因表达的最终结果是相应蛋白表达。因此,在多数情况下,基因表达量的变化也与蛋白表达量成正相关。与基因芯片相比,这种蛋白芯片可供检测的通量、灵敏度虽然稍逊一筹,但抗体对蛋白识别的特异性却远大于DNA进行互补配对的特异性。因此,在诸如一些重要疾病(包括肿瘤)的鉴定,以及蛋白类靶向药物筛选方面,蛋白芯片由于具有基因芯片无法超越的准确性,其推广程度远大于基因芯片。 /p p    strong span style=" color: rgb(255, 0, 0) " 新奇成员植入式芯片 /span /strong /p p   目前,随着生物科技的发展,以及各式各样的科研及诊疗需求,除了基因及蛋白芯片外,生物芯片家族中相继出现了许多更为新奇的成员,如芯片界的新星——植入式芯片。植入式芯片开发的时期较基因及蛋白芯片稍晚,但这并不妨碍它立刻展现出可以进行身份识别或活体检测的巨大优势,在生物类产品林立的今天仍具有广阔的开发潜力。与基因和蛋白芯片相比,这种植入式芯片的原理及使用方法稍显“惊悚”。植入式芯片,顾名思义,是一类需要通过手术、注射等外科手段将芯片植入人体或活体动物内部工作的设备。其测定对象也不再是从组织中提取出的DNA或蛋白质,而是芯片周围组织的生理情况,如神经元活动、血液指标等。除此之外,为了适应这些新的功能,植入式芯片的外形也发生了极大的改变,除了采集信息的核心部分,成品芯片内还增加了电池、天线及信号发射装置,体积却压缩得更为小巧。 /p p   最早开发的植入式芯片为一类简单的ID芯片,其芯片仅具有向扫描仪发射预先写入的信息、编号等单一功能,又被称为生物芯片转发器(biochip transponder)。这种ID芯片可以通过注射的方式被植入皮下,自1991年开始由世界各地的动物园陆续推广,主要用于标记并区分受保护的野生动物(相当于家畜身上的耳环、烙印或刺青)。由2000年开始,ID芯片的使用变得更加普及,在欧美等地许多国家都规定在宠物许可证上登记的宠物使用该芯片。这种ID芯片的外观是一枚胶囊状的玻璃管,管内分别含有一个带有数字信息的激光身份编码、一个天线和一个作为电容器的硅晶片。芯片可以通过配套的一次性注射器注入,并通过与之兼容的扫描仪激活并识别,通过向扫描仪发射无线电信号传递信息。 /p p   尽管ID芯片在动物中的应用十分普及,但关于ID芯片在人体中的应用仍存有较大争议。事实上,ID芯片技术本身已相当成熟,但在人体植入ID芯片带来的潜在伦理及安全问题是造成ID芯片无法普及的主要障碍。如有人提出在儿童体内植入这种ID芯片,可以方便家人在不慎遗失儿童后快速追踪,但如果此儿童的ID信号被犯罪分子跟踪的话,那么后果将不堪设想。也有人担心,这种提供他人行踪的技术可能会为犯罪分子作案提供便利。 /p p   因此,目前在人体中得到推广的主要是几种与疾病探查、治疗有关的植入式芯片。如对糖尿病患者而言,在餐前饭后刺穿手指采血并测量血糖指数是每个人都要忍受的痛苦(图3A和B)。而近年来,血糖芯片的问世已陆续为这些糖尿病患者带来福音。血糖芯片的个头小巧,可一次性植入皮下并长期、多次检测体液中的糖分变化(图3C)。该芯片仅为0.5× 2.0毫米大小,植入这种芯片既不会让患者感到不舒服,也使患者免除了日日采血的痛苦,是一项造福于人类的伟大发明。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 533px " src=" https://img1.17img.cn/17img/images/201908/uepic/cc2f3353-a961-411e-b356-a12b02bb6ea3.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 533" border=" 0" vspace=" 0" / /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 图3:血糖芯片的工作原理。A和B、传统的穿刺法取血。C、新型血糖芯片的大小。图片来自网络 /span /p p   除血糖芯片外,还有另一类脑机芯片得到了科研人员的格外推崇。这类芯片主要通过植入大脑皮层接受脑电波等神经信号,并将脑电波信号上传至电子计算机设备(即脑机接口技术),是一项具有广阔前景并引发人无限遐想的高科技技术。脑机接口的过程非常复杂,其全套技术至今仍处在开发阶段。2016年,俄亥俄州立大学研究人员为一位24岁的全身瘫痪的男孩Ian Burkhart通过手术在大脑皮层内植入了这种脑机芯片,它们能在大脑内采集运动相关的神经信号,并将数据传输到神经辅助装置进行“解码”。计算机会将“解码”后的指令发送给绑在手臂上的电极,通过刺激肌肉来实现手臂运动。通过训练,Ian Burkhart最终得以实现通过芯片传输控制手的抓举和一些日常动作。 /p p   生物芯片的发展自上世纪90年代开始起步,如今仍属于生物领域的前沿学科。可以预见,在21世纪,生物芯片的应用及新技术的开发仍然将会给整个生物领域持续带来新的变革。可喜的是,在大多数芯片技术应用方面,我国生物芯片技术的发展都紧跟国际前沿,其产业化水平也有大规模提升。虽然目前我们仍面临众多技术难题,但随着我国科研力量的不断增强,以及产业化的深入,生物芯片产业将有希望成为21世纪最大的产业之一。 /p
  • 四川大学华西医院260.00万元采购微流控芯片,生物芯片
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 四川省-成都市 状态:公告 更新时间: 2023-03-20 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 2023年03月20日 16:15 公告信息: 采购项目名称 四川大学华西医院组织芯片扫描仪采购项目(第二次) 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 四川大学华西医院 行政区域 四川省 公告时间 2023年03月20日 16:15 获取招标文件时间 2023年03月21日至2023年03月28日每日上午:9:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 http://sale.scbid.net 开标时间 2023年04月11日 10:30 开标地点 四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 预算金额 ¥260.000000万元(人民币) 联系人及联系方式: 项目联系人 张女士、熊女士 项目联系电话 028-87797107,13281460462,13111881728 采购单位 四川大学华西医院 采购单位地址 成都国学巷37号 采购单位联系方式 张老师028-85423272 代理机构名称 四川国际招标有限责任公司 代理机构地址 中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 代理机构联系方式 张女士028-87797107 附件: 附件1 采购需求.docx 项目概况 四川大学华西医院组织芯片扫描仪采购项目(第二次) 招标项目的潜在投标人应在http://sale.scbid.net获取招标文件,并于2023年04月11日 10点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SCIT-ZG(Z)-2023020006L1 项目名称:四川大学华西医院组织芯片扫描仪采购项目(第二次) 预算金额:260.0000000 万元(人民币) 最高限价(如有):180.0000000 万元(人民币) 采购需求: 本项目一个包,采购组织芯片扫描仪(具体详见附件) 合同履行期限:合同签订后,收到采购人正式通知的1个月内。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求: 2.1本项目专门面向中小企业采购(监狱企业、残疾人福利性单位均视同小微企业,符合中小企业划分标准的个体工商户视同中小企业),非中小企业参与的将视为无效投标。 3.本项目的特定资格要求:3.1截至递交投标文件截止日,供应商未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 三、获取招标文件 时间:2023年03月21日 至 2023年03月28日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:http://sale.scbid.net 方式:招标文件自2023年3月21日至2023年3月28日每天9:00-17:00(北京时间,法定节假日除外)在我司指定网站(http://sale.scbid.net)获取,具体获取流程详见该网站的“标书领取操作手册”。 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年04月11日 10点30分(北京时间) 开标时间:2023年04月11日 10点30分(北京时间) 地点:四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:四川大学华西医院 地址:成都国学巷37号 联系方式:张老师028-85423272 2.采购代理机构信息 名 称:四川国际招标有限责任公司 地 址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 联系方式:张女士028-87797107 3.项目联系方式 项目联系人:张女士、熊女士 电 话: 028-87797107,13281460462,13111881728 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:微流控芯片,生物芯片 开标时间:2023-04-11 10:30 预算金额:260.00万元 采购单位:四川大学华西医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:四川国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 四川省-成都市 状态:公告 更新时间: 2023-03-20 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 2023年03月20日 16:15 公告信息: 采购项目名称 四川大学华西医院组织芯片扫描仪采购项目(第二次) 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 四川大学华西医院 行政区域四川省 公告时间 2023年03月20日 16:15 获取招标文件时间 2023年03月21日至2023年03月28日每日上午:9:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 http://sale.scbid.net 开标时间 2023年04月11日 10:30 开标地点 四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 预算金额 ¥260.000000万元(人民币) 联系人及联系方式: 项目联系人 张女士、熊女士 项目联系电话 028-87797107,13281460462,13111881728 采购单位 四川大学华西医院 采购单位地址 成都国学巷37号 采购单位联系方式 张老师028-85423272 代理机构名称 四川国际招标有限责任公司 代理机构地址 中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 代理机构联系方式 张女士028-87797107 附件: 附件1 采购需求.docx 项目概况 四川大学华西医院组织芯片扫描仪采购项目(第二次) 招标项目的潜在投标人应在http://sale.scbid.net获取招标文件,并于2023年04月11日 10点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SCIT-ZG(Z)-2023020006L1 项目名称:四川大学华西医院组织芯片扫描仪采购项目(第二次) 预算金额:260.0000000 万元(人民币) 最高限价(如有):180.0000000 万元(人民币) 采购需求: 本项目一个包,采购组织芯片扫描仪(具体详见附件) 合同履行期限:合同签订后,收到采购人正式通知的1个月内。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 2.1本项目专门面向中小企业采购(监狱企业、残疾人福利性单位均视同小微企业,符合中小企业划分标准的个体工商户视同中小企业),非中小企业参与的将视为无效投标。 3.本项目的特定资格要求:3.1截至递交投标文件截止日,供应商未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 三、获取招标文件 时间:2023年03月21日 至 2023年03月28日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:http://sale.scbid.net 方式:招标文件自2023年3月21日至2023年3月28日每天9:00-17:00(北京时间,法定节假日除外)在我司指定网站(http://sale.scbid.net)获取,具体获取流程详见该网站的“标书领取操作手册”。 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年04月11日 10点30分(北京时间) 开标时间:2023年04月11日 10点30分(北京时间) 地点:四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:四川大学华西医院 地址:成都国学巷37号 联系方式:张老师028-85423272 2.采购代理机构信息 名 称:四川国际招标有限责任公司 地 址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 联系方式:张女士028-87797107 3.项目联系方式 项目联系人:张女士、熊女士 电 话: 028-87797107,13281460462,13111881728
  • 生物芯片、生物医学仪器等项目取得进展
    863计划生物和医药技术领域生物芯片、生物医学关键仪器和试剂重点项目取得阶段性进展   2009年5月13日,生物中心在京组织召开了“十一五”863计划生物芯片、生物医学关键仪器和试剂重点项目管理工作研讨会。生物芯片、生物医学关键仪器和生物医学关键试剂重点项目课题负责人、863领域专家、特邀专家和863计划管理相关人员近50人参加了会议。生物中心王宏广主任、863联办有关同志出席会议并讲话。   会议总结交流了生物芯片、生物医学关键仪器和生物医学关键试剂三个重点项目的主要进展和任务完成情况,分析探讨了当前生物芯片、医学仪器和试剂发展的形势和机遇,初步提出了进一步做好生物芯片、医学仪器和试剂研究与产业化开发的方向和政策建议。   会上,王宏广主任指出,课题实施只剩下不到两年的时间,尤其是面对科技进步支撑经济发展、应对全球金融危机的背景下,生物和医药技术领域重点项目的实施应该更多地关注既符合民生需求、又具有市场空间的高技术生物医学关键仪器和试剂的开发,在“十一五”末期,要以拉动需求、促进GDP增长作为一项重要的验收考核指标。同时,王主任对各课题承担单位提出要求,严格按照合同完成既定的任务和指标,并依据当前和未来一个阶段的市场需求,着手为“十二五”相关领域的研究工作做好战略研究和前期铺垫。863联办有关同志介绍了863计划近期相关的工作部署,指出做好“十一五”项目的评估和“十二五”战略研究工作的重要性。   生物芯片、生物医学仪器和试剂三个重点项目“十一五”立项突出以研究开发国内急需的产品为主要目标。截止到目前,三个重点项目已获得上市产品13个,销售17252万元,申请专利206项,获得专利59项,发表论文232篇,预计能按立项要求完成“十一五”预定的目标任务。
  • 加拿大将投资1.2亿加元建设国家芯片网络
    加拿大将在五年内投资1.2亿加元(合8820万美元)建设全国性芯片网络,目前要求加拿大政府采取更多措施提振其落后的半导体行业的呼声日益高涨。加拿大工业部长Franç ois-Philippe Champagne周四宣布了“联邦战略创新基金”的支出。这项投资支持了一个2.2亿加元的项目,该项目由非营利组织CMC Microsystems牵头,旨在帮助加拿大初创企业将新技术商业化。据报道,这个名为“互联网边缘(Fabric)网络集成组件制造”的项目将资助原型产品的生产,并为参与者提供更便宜的工具、软件和培训。Fabric还为半导体、超导体、智能传感器和光子学的硬件开发提供高达1000万加元的资金。CMC总裁Gordon Harling在一份声明中表示:“对Fabric的支持确保了加拿大在半导体和先进制造业的未来。”今年4月,IBM宣布与加拿大和魁北克省政府联合投资1.87亿加元,以扩大IBM加拿大公司位于蒙特利尔以东约50英里的Bromont的芯片封装工厂。虽然一些人预示着加拿大芯片行业的复兴,但也有人表示,加拿大总理Justin Trudeau的政府在跟上全球竞争方面做得还不够,尤其是在2022年美国芯片法案出台之后——该法案拨出390亿美元的直接拨款,加上价值750亿美元的贷款和贷款担保,以激励美国的半导体生产。相比之下,Trudeau政府承诺提供数十亿美元的补贴,以配合美国《通胀削减法案》中的激励措施,以吸引全球汽车制造商在加拿大生产电动汽车电池。自芯片法案宣布以来,美国已经开展了50多个半导体项目。加拿大半导体委员会主任Paul Slaby最近抱怨说,加拿大缺乏芯片行业的产业战略。Slaby今年6月在蒙特利尔举行的美洲国际经济论坛上说,Trudeau政府最近才开始为该行业组建一支专门的团队。他建议加拿大寻求通过控制供应链的一个利基环节来确立自己在国际贸易中的地位,就像荷兰对其光刻机制造商阿斯麦所做的那样。
  • 聚焦器官芯片|Revvity & Emulate器官芯片高内涵成像应用手册正式发布
    作者:Revvity & Emulate器官芯片(Organ-On-a-Chip, OOC)是一种多通道3D微流控细胞培养芯片,可以模拟器官或生物体组织层面的行为、机械力和生理反应,是可以重现人体重要生理特征的人工微组织模型,是重要的体外生物研究新工具。该模型由于其极高的生理相关性,被主要应用在高通量药物筛选、药效评估、药物的吸收代谢、药物毒理、药物递送、药物相互作用、疾病生理微环境模拟、疾病基础机制、细胞间相互作用等研究中,更有望减少药物开发中对动物的需求。全球器官芯片的佼佼者Emulate一直致力于开发高度模拟人体生理特征的器官芯片技术和不同类型的创新应用,以全面了解疾病发生规律和帮助评估药物的真实反应,改善人类健康。其芯片可忠实再现原生组织的复杂三维结构和组织内部复杂的功能交互,而这些精妙的生物学过程均可采用多种成像分析手段进行精准监测和表征。有助于更深入理解复杂细胞学机理和互作,并获得精准定量信息。因而器官芯片不仅为体外表型筛选提供了一个完整丰富的迷你生物平台,更可以结合多标记,多靶点,多参数的高内涵分析筛选技术,实现高通量的表型分析工作,极大缩短药物发现试验周期,增加了预测的准确性。在此,瑞孚迪(Revvity)高内涵联合Emulate器官芯片,针对器官芯片的高通量成像及分析技术联合推出了器官芯片高内涵成像应用手册。该手册涵盖了:“高内涵成像助力器官芯片中的免疫细胞招募“及”利用Emulate肝芯片进行高通量大规模盲法毒性预测研究”两个经典案例介绍,同时为大家总了Emulate器官芯片高内涵成像的工作流。
  • 在芯片上造器官,打造千亿级“蓝海”市场
    把人体器官“微缩”进几厘米的透明的芯片中,看着薄膜、导管在其中纵横捭阖……在“芯片”上造“器官”,这一此前在科幻片中才有的情节如今已在生物学领域变成现实。  近日从东南大学传来消息,国内医药企业恒瑞医药研发的一款新药“HRS-1893片”获批开展临床试验。该新药拟用于治疗肥厚型心肌病以及心肌肥厚导致的心力衰竭。这是国内首款使用心脏器官芯片数据获批临床试验的新药。  什么是“器官芯片”?这款新药的研发又与东南大学有何联系?  千亿级的“蓝海”  “简单说,人体器官芯片就是通过干细胞、生物材料、纳米加工等前沿技术的交叉集成,在人体外构建一套器官的微生理系统,用以模拟人体不同组织器官的主要结构功能特征和复杂的器官间联系,从而预测人体对药物或外界不同刺激产生的反应。”接受《中国科学报》采访时,东南大学生物科学与医学工程学院院长顾忠泽介绍说。  作为一项变革性生物医学技术,器官芯片的概念自2010年被提出后,便受到世界各国的广泛关注。美国哈佛大学、强生等诸多研究机构和企业竞相参与研发。  彼时,顾忠泽却正处于职业生涯的一个“瓶颈期”。  “当时,我正在和医疗机构合作,从事生物人工肝的研发。”顾忠泽说,一个偶然机会,他读到一篇关于器官芯片的文章。  顾忠泽眼前一亮。  “从原理上看,生物人工肝和器官芯片的技术有很多相通性。”他解释说,前者要做一个很大的装置,而肝脏芯片只需要做一个小小的“生物人工肝”。器官芯片可用于评价相关药物是否有效以及是否对人体产生毒性,应用场景和产业价值巨大。  “以前生物人工肝只做短期的生命支持,而器官芯片不仅可以针对不同器官进行模型构建并用于药物研发,还可以针对环境中的有毒、有害物质进行评价。这是一个很大的产业。”  事实证明了顾忠泽的预测。  近年来,器官芯片的应用领域变得越来越广,甚至涉及整个生命领域。生命领域中几乎所有研究都避不开动物实验环节,这一环节会花费大量的人力和财力。如果使用器官芯片,便可以大大减少相关成本。  顾忠泽说,在医药研发领域,目前备受关注的人工智能+医药,更多是用于加快药物候选化合物的生成。但后续的实验流程依旧没有改变,仍需动物实验和临床试验,而后两者才是消耗时间和金钱最多的环节。  “如果可以应用器官芯片替代后两个环节,那么成本将大幅降低、效率将大幅提升。”顾忠泽意识到,器官芯片背后有广阔的应用前景,于是开始全力攻关相关技术难题。  2017年初,苏州市高新区、东南大学和江苏省产业技术研究院三方共建的东南大学苏州医疗器械研究院正式成立。在成立之初,该研究院便瞄准了器官芯片这个千亿级的“蓝海”市场,并引入顾忠泽带领的器官芯片项目团队。  经过4年的前沿技术验证和产业化开发后,器官芯片项目顺利完成各项预期研发目标,在高精度跨尺度三维打印、功能性细胞外支架材料、人工智能算法等关键核心技术环节实现了自主可控,研发进展与美国、欧洲相关团队齐头并进,且部分领域居于国际领先水平。  新模式打造新企业  2021年,东南大学苏州医疗器械研究院跨出关键一步。在东南大学、江苏省产业技术研究院及苏州高新区的支持下,器官芯片项目采用“团队+技术”整体转移的模式开展成果转化,成立了江苏艾玮得生物科技有限公司(以下简称艾玮得生物)。  顾忠泽告诉《中国科学报》,研发进入一定阶段后,学校已很难提供合适的产业化环境,成立公司是顺理成章的事。  在他看来,人才培养、科学研究和社会服务是高校的三大职能。校内科研人员完成了原始创新并确立了核心技术,但核心技术如何转化成稳定、持续供给的优质产品,这一问题在高校内很难解决。  正如艾玮得生物总经理沙利烽所说:“产业化最根本的是要解决实际问题。器官芯片不仅要有好的技术,还需要和医院、药企等深入合作。闭门造车很难做出真正让市场接受或满意的产品”。  值得一提的是,艾玮得生物是江苏省产业技术研究院和苏州高新区采用“拨投结合”模式成立的一家典型企业。  江苏省产业技术研究院院长刘庆在接受媒体采访时介绍,所谓“拨投结合”,就是依托财政资金支持,先以科技项目立项拨发资金,帮助团队承担早期研发风险,在项目进展到可以进行市场融资时,再将前期的项目资金按市场价格调整为投资。  顾忠泽认为,该模式可以在高校科研成果转化的前期提供巨大支持,“推进引领性科技成果跨越‘死亡之谷’”。  正是在各方政策的支持下,尽管成立仅两年,艾玮得生物已经拥有了器官芯片设计/加工、细胞外支架材料制备、类器官自动化培养、多模态成像及人工智能数据分析等一系列关键核心技术,并成为目前国内唯一一家能够提供全套解决方案的类器官与器官芯片公司。而此次新药“HRS-1893片”获批,正是其研发能力的具体体现。  专业的人做专业的事  从预见应用前景到投入研发,再到成功产业化,顾忠泽的成果转化之路似乎走得十分顺利。然而,当《中国科学报》记者请他介绍经验时,顾忠泽却说,他不太鼓励高校教师直接做产业化这件事。  “术有专攻,业有所长。”他说,绝大部分高校教师并不擅长和市场打交道,遑论进行商业运作。在这方面,更好的方式是让专业化的商业团队来做成果的产业化。  也正因此,作为艾玮得生物首席科学家,顾忠泽并不负责企业的运营。  “2014年,东南大学和江苏省产业技术研究院联合成立了生物材料与医疗器械研究所。这个研究所的主要任务就是将大学的科技成果进行转化应用。”他说。  2017年,研究所落户苏州高新区。从那时起,这支队伍先后孵化了70多家企业,艾玮得生物也是由这支专业队伍孵化成功的。  该公司是长三角国家技术创新中心体系中,首个由体系内研究所从头培育并达到国内领先的创新科技公司。  “江苏省产业技术研究院针对科技成果产业化所建立的模式非常好。”顾忠泽告诉记者,正是因为有这类专门进行科研成果转化的团队和机构,高校科研成果才能更好地进行孵化。“这比高校教师‘单打独斗’强得多。”  “人体器官芯片崛起的动力是生命科学领域快速发展产生的强烈需求,从前期的积累到形成越来越多的应用,这是一个不断发展的过程。相信在不久的将来,越来越多的研究人员会借助器官芯片技术,在药物研发、精准医疗、环境评估、航天航空甚至美容等领域迎来新突破。”顾忠泽说。
  • 兰伯艾克斯|类器官与微流控芯片的“医工结合”
    器官芯片是由光学透明的塑料、玻璃或柔性聚合物等构成的微流控细胞培养设备,包括由活细胞组成的灌注空心微通道,通过体外重建组织器官水平的结构功能,再重现体内器官的生理和病理特征。器官芯片在类器官的基础上,更加有效的模拟药物代谢、器官之间的相互作用。器官芯片完美诠释FDA微生理系统概念 如下图中的肺器官芯片,是目前模拟肺部体外生理功能的最优模型,其上下两层被生物膜所分开。上层为肺细胞,流通的是空气;下层为肺毛细血管细胞,流通的是培养液。两边为真空侧室,通过循环吸力来使得两侧的真空通道进行伸缩,从而带动膜上细胞的收缩,实现传统培养皿不可能实现的呼吸功能。开发新药的研发成本模型 器官芯片的核心技术之一微流控,是指精确控制微量流体,甚至创建浓度梯度,利用微流体技术使营养物质和其它化学信号以可控的方式运动和传递,可构建和模拟人体组织微环境。美国NIH、FDA和国防部曾在2011年牵头推出 “微生理系统” 计划,把器官芯片技术的开发和应用上升到国家战略层面。来源:Vunjak-Novakovic, et al., (2021). Organs-on-a-chip models for biological research. Cell 微流控芯片的常用材料包括PDMS(聚二甲基硅氧烷)、玻璃、硅、PMMA等。PDMS材料无毒透明、成本低廉,但存在非特异性地吸收小分子的问题。玻璃和硅材料可达纳米级加工精度,但成本较高。目前学界已围绕各种热塑性塑料展开相关探索,如聚氨酯、环烯烃聚合物和共聚物等。来源:Organs-on-Chips Market and Technology Landscape 2019✦ 类器官的培养✦ 类器官培养是一种模拟人体器官结构和功能的培养技术,具有广阔的应用前景。然而,类器官培养的过程比较漫长且试剂昂贵,需要借助专业的设备才能实现。 兰伯艾克斯的LAB-MI二氧化碳摇床式培养箱是一种适用于类器官培养的设备,具有独特的优势。该设备采用先进的摇床技术,能够更好地适应类器官3D生长的特性,促进细胞增殖和分化。此外,该设备还具有稳定的二氧化碳环境控制功能,能够为细胞提供更加真实的生长环境。 兰伯艾克斯作为一家研发制造能力强的公司,可以配合微流控、器官芯片、组织工程等应用定制开发,为类器官培养提供更加专业的解决方案。
  • 世界肝炎日,和器官芯片一起拒绝“肝”扰
    药物性肝损伤(DILI)是导致急性和慢性肝病的重要原因。据估计,22%的临床试验失败和32%的治疗药物撤出市场是因为药物的肝毒副作用。肝毒性通常直到临床试验或上市后才被发现,这增加了临床试验参与者的风险以及药物开发的经济负担。许多DILI案例被称为“特异质性”,因为DILI通常与药物使用的剂量和持续时间无关,并且仅在一小部分接受治疗的患者中发展。由于目前有超过 1000 种处方药和 80000 种草药和膳食补充剂 (HDS) 可供在美国使用,药物加性或协同肝毒性的可能性高,而预测能力低。来自密歇根大学的Jonathan Z. Sexton教授团队2023年5月在《JOURNAL OF HEPATOLOGY》(IF:25.7)杂志上以“A human liver organoid screening platform for DILI risk prediction”为题发表文章。他们使用诱导多能干细胞(iPSC)衍生的人肝类器官(HLOs)的方案,分别用于384孔板的高通量药物筛选,以及高生理保真度的肝脏芯片构建,该系统先前用于成功预测phh的物种特异性DILI。1、分散HLO在基于384孔的高内涵筛选和药物聚类中的应用384孔板内培养HLO细胞7天后,通过免疫荧光统计细胞类型,经鉴定与单细胞测序结果一致,确定了384孔板内的细胞类型和比率。通过384孔板筛选了12种化合物,观察到细胞活力的纳摩尔剂量依赖性丧失。在永生化肝细胞癌系Huh12或早期发育阶段获得的分散确定性内胚层上测试物时,其中有7种化合物未观察到明显的细胞毒性。2、器官芯片系统中HLO的生化、表型和转录组学分析 – iPSC肝芯片在双室微流体S1芯片的上部和下部室中培养7天,从而开发出PaDLOC。在孔板中,HLOs每106个细胞能产生10 μg/ml的白蛋白,7天后略有减少,而在PaDLOC中,每106个细胞能产生20-30μg/ml的白蛋白。PaDLOCs也表达CYP450s 1A1, 2D6, 和 3A4,其表达量高于HLOs 3-5倍。通过转录组学对比HLO和PaDLOCs所有细胞之间的差异,显示PaDLOCs中肝脏增殖生物标志物TGFBI(胶原结合)和CCN2表达(细胞粘附)增加。观察到肝细胞标志物TDO2(一种活化的星状细胞标志物)表达增加。其他表达增加的肝脏特异性标志物包括NNMT和IGFBP7。这表明PaDLOCs中细胞结构成分、参与细胞骨架组织的基因和炎症反应元件上调。3、用于DILI风险预测的iPSC肝芯片丙氨酸氨基转移酶(ALT)和天冬氨酸转移酶(AST)和白蛋白表达量的减少对应于肝细胞损伤。APAP和FIAU是已知的肝毒性化合物,臭名昭著的FIAU通过了临床前测定,但仍产生明显的肝毒性。对于所有PaDLOC系,用100μM的APAP处理后,使ALT从第10天低于0U / L的基础水平增加到约20-30 U / L的峰值,而用10μM FIAU处理使ALT和AST急剧增加到80 U / L以上。DILI异质性使新型疗法的风险预测具有挑战性。APAP会导致肝坏死,FIAU引起的弥漫性微泡脂肪变性,伴有肝结构保留。分别用100μM的APAP和10μM的FIAU处理PaDLOCs,对细胞核\细胞区域和脂滴进行染色。图像显示,与对照组相比,APAP处理的PaDLOC显示细胞掩膜的斑片状丢失和细胞萎缩,脂质积累没有增加。相比之下,FIAU处理的PaDLOCs显示出高脂质含量和细胞掩膜染色减少。 4、替诺福韦和伊纳吉韦联合用药的肝毒性建模分别用替诺福韦、伊纳吉韦单药和替诺福韦-伊纳里吉夫联合用药处理384孔板,处理120小时后,为每种处理条件(n = 4孔)拍摄共聚焦图像,以描绘细胞核/细胞区域。替诺福韦伊纳吉韦联合用药组ALT从第4天开始增加到15-25 U / L,第7天增加到25-35 U / L,而AST在第4天增加到20-30U / L,在第7天增加到40-50 U / L。联合治疗也导致白蛋白产量减少,而单药治疗在7天内没有观察到效果。然而,源自iPSC 72.3的PaDLOCs仅在治疗第7天才显示出ALT释放略有增加。在视觉上,用两种组合处理的PaDLOCs表现出与FIAU处理的对照相似的表型,具有局部细胞掩膜染色损失和高脂质积累。 5、替诺福韦-伊纳吉韦、FIAU-和APAP处理的PaDLOCs的转录组学分析尽管替诺福韦-伊纳吉韦诱导的肝毒性与FIAU具有相似的临床特征,但实验结果表明替诺福韦单药治疗和FIAU之间的转录组学相似性更大。火山图显示,与对照组相比,这两种条件都会导致KCNQ10T1的过表达,其上调先前已被证明会降低DILI并抑制RPS10的表达。除联合治疗外,FABP4在所有治疗中均一致表达,这与先前证据表明FABP4在肝细胞癌引起的肝损伤中过度表达相矛盾。在所有治疗中,我们观察到与对照组相比,NDUFA4的减少。在384孔分散HLO测定中,替诺福韦-伊纳吉韦和FIAU-伊纳吉韦联合治疗都可能导致协同毒性,计算出的Bliss协同作用评分分别为17.624和22.964。 总的来说,特异质性(自发的,患者特异性的)药物性肝损伤(DILI)因为缺乏作为人体肝组织功能并适应大规模药物筛选的肝脏模型难以研究。从患者干细胞生长的人肝类器官在高通量和生理“芯片”培养系统中对已知的DILI致病药物有反应。这些平台有望让研究人员进入临床试验之前将其用作新药的预测模型,并成为潜在体外诊断工具。 文献索引: https://doi.org/10.1016/j.jhep.2023.01.019 艾玮得生物始终致力于器官芯片及相关智能设备的创新研发,陆续推出用于肝脏毒性测试的系列器官芯片,可覆盖肝脏模型构建、肝类器官培养等实验需求,以及适配高通量筛选的高内涵智能分析系统。肝脏药物毒性检测采用肝脏聚集体模型、肝脏类器官、肝脏多细胞模型等进行药物肝脏毒性检测。 1、肝脏聚集体模型构建采用自主研发的抗粘附U型板完成3D培养肝细胞系,形成肝脏聚集体模型,具有比传统2D模型更仿真的优势。2、肝脏类器官培养使用肝脏癌旁组织培养的人源肝脏类器官,在组织学和转录组特征方面与原代组织高度一致。 3、肝脏多细胞模型构建包含间质细胞,在一定程度上模拟组织微环境,具有细胞间相互作用,形成更加仿生的肝脏模型。
  • 新芯片实验室技术让单细胞基因分析更高效
    据美国物理学家组织网近日报道,最近,加拿大英属哥伦比亚大学与英属哥伦比亚癌症研究所、转化与应用基因组学中心合作,开发出一种硅酮材料的芯片实验室技术,能让每个细胞像弹球机里的球一样各就各位,然后进行基因检测。这种“单细胞基因分析”技术使基因检测更加灵敏迅速,有助于肿瘤分析和临床疾病的诊断。本周出版的《美国国家科学院院刊》对该芯片实验室进行了详细介绍。   这种芯片实验室大小跟一个9伏电池相当,能同时分析300个细胞。研究人员设计了一种路线,用液体载运细胞通过显微管道和一个个小阀门,当细胞挨个进入各自的小空位时,它们的RNA就会被提取出来,经过复制用于进一步分析。   标准基因检测要求使用大量细胞,才能得出由上千万不同细胞平均化以后的“综合图像”,这会掩盖细胞的真实属性和它们之间的相互作用。“这就好比用混合水果慕丝来研究草莓和树莓为什么不一样。”领导该研究的高通量生物中心副教授卡尔汉森介绍说,而单细胞分析正在成为基因研究中的黄金手段,因为即使是从同一肿瘤组织中采集的样本,也包含了正常细胞和多种癌细胞类型,而单细胞分析显出极微小的差异。   此外,这种芯片实验室几乎将所有细胞分析过程整合在了一起,不仅能分离细胞,还能用化学试剂将细胞混合起来,通过检测反应过程中的荧光发射获得它们的基因编码。所有这些都能在芯片上完成,不仅操作简单,而且成本效益高。
  • 瓜分500亿美元!美国芯片法案细节公布
    当地时间9月6日,美国商务部发布了其战略,概述了该部门将如何从拜登总统上个月签署的2022年两党CHIPS法案中分配500亿美元。CHIPS for America计划将由国家标准与技术研究所(NIST)主导,将振兴美国半导体行业并刺激创新,同时在全国各地的社区创造高薪工作。“重建美国在半导体行业的领导地位是我们作为全球领导者未来的首付,”美国商务部长吉娜雷蒙多(Gina Raimondo)说。“美国的CHIPS将确保美国在支撑我们国家安全和经济竞争力的行业中继续保持领先地位。”发布的该战略概述了指导CHIPS美国计划的举措,战略目标和指导方向。该计划的四个主要目标是:⭕在美国建立并扩大国内领先的半导体生产,其中美国目前占世界供应量的0%⭕构建充足稳定的成熟节点半导体供应⭕投资于研发,以确保下一代半导体技术在美国开发和生产。⭕创造数以万计的高薪制造业工作岗位和十多万个建筑业工作岗位。这项工作将确保这些工作的渠道扩大到包括历史上没有机会参与该行业的人,包括妇女,有色人种,退伍军人和生活在农村地区的人。 该计划支持三个不同的举措:⭕对前沿制造业的大规模投资:CHIPS激励计划将针对大约四分之三的激励资金,约280亿美元,用于建立国内领先的逻辑和存储芯片的生产,这些芯片需要当今最先进的制造工艺。这些数额可用于赠款或合作协议,或用于补贴贷款或贷款担保。该部门仍在评估新颁布的先进制造设施投资税收抵免对资本支出的影响,这将产生参与者的大量额外项目投资,并将减少分配给前沿项目的CHIPS激励资金的必要份额。该部门将寻求建造或扩建制造设施的建议,以制造,封装,组装和测试这些关键部件,特别是关注涉及多条高成本生产线和相关供应商生态系统的项目。⭕成熟和最新一代芯片、新技术和特种技术以及半导体行业供应商的新制造能力:CHIPS激励计划将增加国内半导体在一系列节点上的生产,包括用于国防和关键商业领域(如汽车,信息和通信技术以及医疗设备)的芯片。该计划广泛而灵活,鼓励行业参与者制定创意提案。对于这一举措,该部门预计将获得数十个奖项,预计总价值至少为可用CHIPS奖励资金的四分之一,即约100亿美元。这些数额可用于赠款或合作协议,或用于补贴贷款或贷款担保。⭕加强美国在研发领域的领导地位的举措:CHIPS研发计划将投资110亿美元用于国家半导体技术中心,国家先进封装制造计划,多达三个新的美国制造研究所以及NIST计量研发计划。这一系列计划旨在为美国的半导体生态系统创建一个充满活力的新创新网络。实现这一愿景需要与学术界、工业界和相关国家合作,并需要多年的持续投资。该战略还为潜在申请者提供了明确的建议,加强了该部对推进长期战略目标的承诺,并确定了评估申请的标准。标准包括:⭕扩大规模并吸引私人资本:CHIPS激励计划将鼓励吸引相关供应商和劳动力投资的大规模投资。除了投入自己的重要资源外,还鼓励潜在申请人探索创造性的融资结构,以利用各种资本来源。⭕利用合作构建半导体生态系统: CHIPS激励计划将鼓励行业利益相关者,投资者,客户,设计师和供应商以及国际公司之间的合作。这种合作可以包括购买承诺、促成无晶圆厂设计的伙伴关系或供应商与生产商之间的合作。⭕获得额外的财政激励和支持,以建立区域和地方产业集群,以加强社区: CHIPS激励计划要求激励计划的申请人获得州或地方的奖励。该部门预计将优先考虑包括州和地方激励措施的项目,这些项目可以最大限度地提高区域和地方的竞争力,投资于周围的社区,并优先考虑广泛的经济收益,而不是对一家公司提供巨额财政捐助。⭕建立安全且有弹性的半导体供应链: CHIPS激励计划将优先考虑遵守信息安全,数据跟踪和验证标准和指南的项目,并在进一步开发和采用此类标准方面进行合作。⭕扩大劳动力管道以满足增加的国内产能劳动力需求:CHIPS激励计划将创造高薪工作,使所有美国人受益,包括经济上处于不利地位的个人和在行业中代表性不足的人群。该计划将优先考虑劳动力解决方案,使雇主,培训提供者,劳动力发展组织,工会和其他关键利益相关者能够共同努力。目标是创建更多的付费培训和体验式学徒计划,提供全方位服务,优先考虑创造性的招聘策略,并根据他们获得的技能雇用工人。⭕为企业创造包容和广泛共享的机会: CHIPS激励计划将优先考虑积极主动的项目,以确保小企业,少数族裔拥有,退伍军人拥有和妇女拥有的企业以及农村地区的企业从CHIPS计划产生的机会中受益。⭕提供稳健的财务计划:申请人将被要求提供详细的项目特定和公司级财务数据,以确保激励基金符合该计划的经济和国家安全目标,同时保护纳税人的钱。资助文件将为CHIPS美国计划提供具体的应用指导,将于2023年2月初发布。一旦可以负责任地处理、评估和谈判申请,奖励和贷款将以滚动方式进行。
  • 太赫兹成像微芯片可探测物质内部信息
    一位特工正在和时间赛跑,他知道炸弹就在周围。他跑到一个拐角,发现小巷内堆满了可疑的纸箱。他急忙掏出手机,快速地逐个扫描面前的箱子,包装内的物品一一展现。千钧一发之际,手机屏幕上出现了爆炸装置的轮廓,形势瞬间扭转,待爆炸装置运行中止时,他才长出了一口气。   看起来像是电影情节?但这一幕却很有可能成为现实,而这要得益于美国加州理工学院工程师们开发出的一种低成本的微小硅芯片。这种成像芯片能够产生并发射出高频的电磁波,即太赫兹(THz)波。当它处于尚未被完全开发的电磁光谱区域,介于微波和远红外辐射之间,能够渗透多种材料,却不会出现X射线的电离损伤。   在扫描和成像领域应用潜力大   把这种新型微芯片整合进手持设备中,能够应用于国家安全、无线通信、医疗保健甚至非接触式游戏研发等多个方向。未来,这一技术还有望为非侵入式的癌症诊断提供帮助。相关研究报告发表在最新一期的电气电子工程师学会(IEEE)《固态电路杂志》上。   该校的电气工程系教授阿力· 哈基姆瑞说:&ldquo 利用与制造现今手机微芯片同样成本低廉的集成电路技术,我们研发出了比它们运行速度快300倍的硅芯片。这些芯片将为制造下一代十分多能的传感器奠定基础。&rdquo   频率从0.3THz到3THz的太赫兹波,具有在扫描和成像等领域的应用潜力。这些电磁波能轻易渗透包装材料,使得探测材料内部信息成为可能。例如,陶瓷、硬纸板和塑料制品等对太赫兹电磁辐射而言就是透明的,因此太赫兹波可以作为X射线的非电离和相干的互补辐射源,用于机场、车站等地的安全监测,比如探查枪械、生物武器、爆炸物和毒品等隐藏的非法物品。然而现有的太赫兹设备多为笨重而昂贵的激光装置,有时甚至需要处于低温环境。而技术的匮乏,也使太赫兹成像和扫描的发展停滞不前。   为了实现太赫兹波在这一领域的应用,哈基姆瑞和考西克· 森古普塔使用了互补金属氧化物半导体,即通常会被用于电子设备芯片制造中的CMOS技术,来设计具有全面集成功能的、可在太赫兹频率运行的硅芯片,而其尺寸只有指尖大小。研究人员表示,这使太赫兹波成像成为了可能。新芯片能够激发比现有途径强劲1000倍的信号,而发出的太赫兹信号能在特定方向被动态程控,使它们成为世界上第一个集成的太赫兹扫描阵列。借助这种扫描装置,研究人员能够发现藏在塑料制品中的剃须刀片,或者确定动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,以及植物叶片组织的水分含量分布等。而太赫兹成像技术与其他波段的成像技术相比,所得到探测图像的分辨率和景深也均有明显提高。&ldquo 这并不是在谈这项技术的潜能,而是切实地展现出它的实际效用。第一次看到太赫兹扫描图像时,我们都屏住了呼吸。&rdquo 哈基姆瑞说。   新研究克服了诸多技术限制   事实上,研究小组克服了诸多技术限制,才将CMOS技术转变成了可运行的太赫兹芯片。每个晶体管都具有一个截止频率,在这一频率之上信号放大就无法实现,而标准的晶体管亦不能在太赫兹频率放大信号。为了解决截止频率的难题,科学家尝试令多个晶体管一起工作。在正确的频率和时间结合它们的力量,来促进集体信号的强度提升。借助新的晶体管操作方法,可使晶体管保持在截止频率之上40%至50%,并能产生较大的功率。&ldquo 就像一群蚂蚁联合起来,也能做到大象所能做到的事情,而且不止于此。&rdquo 森古普塔解释说。   科研人员还解决了太赫兹信号的发射和传输。在如此高的频率下,无法按常理使用导线,而传统的天线在微芯片尺寸效率也很低下。因此,科学家将整个硅芯片当作天线,集成了芯片上的金属部分,在特定的时间和强度一起发射信号。整个解决方案囊括了集成电路、天线、电磁学和应用科学等多领域的创新,可谓十分全面。此外,IBM公司亦有助于此次的芯片制造。
  • 重磅!美对芯片实施新出口管制
    美国政府7号发布了对华芯片出口的新限制,要求芯片制造商必须获得美国商务部的许可,才能向中国出口先进芯片和芯片制造设备。美方称,最新措施旨在防止美国技术被用于提升中国的军事实力。美国商务部7号发布了针对先进芯片和芯片制造设备对华出口新限制。美国高级政府官员表示,这些规则将要求美国芯片制造商获得商务部的许可,才能对华出口某些用于先进人工智能计算和超级计算的芯片。美国政府此前已经出台了对华芯片及设备的出口限制,最新举措将限制扩大到阻止使用美国技术的外国芯片的对华出口。美方官员称,先进芯片和制造设备是现代武器系统的关键技术,最新出口限制对于“阻止中国利用美国技术,开发新的、最先进的武器,进一步加强监视网络和军事实力”来说,是必要的。美方认为,某些依赖美国芯片、软件、工具和技术的先进计算能力,正在推动中国军事现代化,包括大规模杀伤性武器的发展。美方认定,允许中国及其军方获得最先进的芯片和芯片制造设备对美国“构成严重的国家安全风险”。除了对芯片和芯片设备出口的限制外,美国商务部正在增加对为部分中国芯片制造设施提供支持的美国公民、永久居民和公司的限制,并扩大对已列入美国商务部出口黑名单的28家中国超算实体的限制。美国商务部7号将31家中国企业,添加到其所谓的“未经核实”名单中,这是美国商务部感到担心、但尚未准备好将其添加到黑名单中的一个实体类别。美国商务部还表示,如果外国不合作缓解这些担忧,则可以将这些公司移至黑名单中。美国商务部负责出口管制的助理部长在声明中表示,中国已投入资源发展超级计算能力,并力争到2030年成为人工智能领域的世界领导者。美国半导体行业协会当天表示,正在评估政府新规的影响。协会表示,理解确保国家安全的目标,但希望这些规则能够以一种不会导致“对美国创新造成意外伤害”的方式实施。
  • 瑞士制成首个辉钼芯片
    据美国物理学家组织网12月6日报道,瑞士洛桑联邦理工学院(EPFL)的科学家宣称,他们制成了首个辉钼芯片原型。该芯片在实验中表现良好,证实了其在半导体芯片制造领域内的突出性能。这意味着商用辉钼芯片距离现实又近了一步。   今年年初,该校曾公布了辉钼的潜在性能,引发了人们对这种新材料的关注。研究人员称,用辉钼可以制成尺寸更小、能效更高的芯片。这种材料的性能不但远超过硅,甚至在某些方面比石墨烯更具优势,有望成为下一代半导体材料的有力竞争者。   这一原型芯片是由该校纳米电子与结构实验室(LANES)负责研制的,研究人员通过将2个到6个晶体管进行串联,得到了这个原型芯片。实验结果表明,该原型芯片已经能够进行基本的二进制逻辑运算。   纳米电子与结构实验室主任安德拉斯凯斯说,辉钼是一种极具潜力的新材料,这次实验已经证明了这一点。他说,辉钼的主要优点是它有助于进一步减小晶体管的尺寸,进而制造出体积更小、性能更好的电子设备。对硅而言,制作芯片的极限厚度是2纳米,因为如果厚度再小的话,其表面就容易在环境中发生氧化,影响其电气性能。而由辉钼材料制成的芯片即便在3个原子的厚度上也能正常工作,并且在这一尺度上材料传导性依然稳定可控。   辉钼的另一个优点是其在带隙上的优势,这使由它制成的芯片开关速度更快,能耗更低。此前的实验表明,用单层辉钼制造的晶体管在稳定状态下能耗比传统硅晶体管小10万倍。此外,辉钼矿独特的机械性能也使其具备成为柔性芯片材料的潜力。这种新材料将赋予未来芯片更多有趣的特性,例如,用其制成的柔性计算机或手机甚至可以按照用户脸部的曲线进行弯曲。
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器 芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业 发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及 产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 生物芯片应用研讨会将在哈医大举行
    随着基因组学、蛋白质组学研究的不断深入,生物芯片技术的应用也越来越广泛。生物芯片技术以其显著优势和巨大潜力,成为在医学相关研究领域快速增长的一项重要技术。为了扩大交流,搭建科研与临床应用之间的桥梁,哈尔滨医科大学、生物芯片北京国家工程研究中心将于6月13日在哈医大共同举办“生物芯片技术在医学领域的应用”研讨会。   本次研讨会邀请生物芯片北京国家工程研究中心的微阵列服务部主任孙义民、医学事业部总监韩家峰和生物信息与软件部主任吴今朝3位专家分别作专题报告,将分别就生物芯片在医学研究中的应用、生物芯片在临床和分子诊断领域中的应用及科研及临床数据库管理系统等三大主题进行讨论。   主要内容涉及3个方面:Affymetrix旗下的SNP和CNV检测分析及Cyto 2.7M在遗传疾病中的应用、表达谱及miRNA芯片研究思路及数据分析解决方案、Sequenom质谱平台的定制SNP位点及DNA甲基化检测、Raybiotech系列蛋白质芯片在临床研究中的应用、科研项目的案例进展以及思路和研究方法 生物芯片在出生缺陷领域、重大传染病领域、个体化医疗领域等方面的应用 样本组织库数据管理系统、科研电子病例系统、科研数据管理系统等应用。   参与本次研讨会的各大医院、医学及生命科学院校等单位的专家和技术人员将获得国家医学继续教育学分10分。(许葵)
  • HLA检测的新芯片系统于Invitrogen推出
    Invitrogen(现属于生命科技公司)近日推出最新的自动化芯片系统,用于免疫遗传学检测,包括人白细胞抗原(HLA)的研究。Prodigy™ 系统是一种高级的DNA和蛋白分析工具,能简化并加速组织相容性研究、疫苗和药物开发,以及疾病相关的研究。      Prodigy™ 系统是第一个高通量、序列特异性的寡核苷酸探针系统,能简化HLA检测的复杂性。HLA标志物是细胞表面蛋白,在人类免疫系统中起了重要的调节作用。当身体受到外源蛋白或分子如细菌、病原体和病毒的侵袭时,它们充当了警报的角色。   与市场上的其他系统相比,Prodigy系统有着一些独特的技术改进。它的密度是目前磁珠分析的5倍,而且支持一键式的无人值守自动化,使研究人员能将宝贵的时间花在数据处理或制备更多样品上。Prodigy的内在可扩展性使它能够对500多个分析物进行多重分析,同时提供高分辨率和无以伦比的可靠性。   它的通量也是行业领先的,能在9小时内获得约290个基因型,并包含了集成软件,能简化数据分析和说明。由于具有500多个分析物的分析能力,Prodigy系统还能在未来容纳新的基因型,使它能够与现有设备轻松整合。   Prodigy的工作流程只是简单的5步:(1) 生成工作表 (2) PCR准备与扩增 (3) 将扩增物和试剂加入仪器,按下开始的按钮,然后离开 (4) 仪器自动运行分析,对芯片成像并处理数据 (5) Prodigy HLA分析软件将数据转化成基因型。   Prodigy系统的特征:   用户友好的触摸屏,用于仪器的设定   集成照相机对芯片进行快照,并转移到软件分析   芯片的容量是目前磁珠的5倍   条形码阅读器能识别胶条的批号,便于追踪   每次能运行1-12个胶条,8-96个样品   所有基因座的相同1.5小时扩增策略   体型小巧,占地面积少
  • 拜登政府巨资投入,补救美国芯片人才缺口
    7月3日外媒最新消息指出,美国芯片产业正深陷人才短缺的困境,为应对这一危机,美国政府迅速推出了一项旨在培养本土芯片领域劳动力的宏大计划——“劳动力伙伴联盟”。该计划将依托新成立的国家半导体技术中心(NSTC)的50亿美元联邦资金,为美国半导体行业的未来发展奠定坚实的人才基础。据悉,NSTC计划首批资助多达10个劳动力发展项目,每个项目将获得50万美元至200万美元不等的资金支持。此外,该中心还将在未来数月内启动更多申请程序,以全面评估并确定资金的整体分配方案。这一系列举措均源自2022年通过的《芯片与科学法案》,该法案不仅为美国芯片制造业提供了390亿美元的巨额拨款,还额外设立了110亿美元用于半导体研发领域。然而,行业与政府官员均发出警告称,若缺乏在劳动力方面的有效投资,新建芯片工厂的发展速度将受到严重制约。美国已设定雄心勃勃的目标,即到2030年实现生产全球至少五分之一的最先进芯片,但据估计,届时该行业将面临高达9万人的技术人才缺口。面对这一严峻挑战,非营利组织Natcast的劳动力发展项目高级经理迈克尔巴恩斯强调,构建国内半导体劳动力生态系统对于支撑整个行业的持续增长至关重要。自《芯片法案》签署以来,美国已有超过50所社区大学积极响应,纷纷宣布将新设或扩大半导体相关专业项目,以加速培养所需人才。值得注意的是,美国四大芯片制造业巨头——英特尔、台积电、三星电子和美光科技均成为《芯片法案》制造业拨款的主要受益者,每个项目均获得了数千万美元的专用劳动力发展资金,以支持其在国内的产能扩张和人才队伍建设。这一系列举措无疑为美国芯片产业的未来发展注入了强劲的动力。
  • 用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官
    用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官我们知道,器官芯片(Organ-on-Chips, OOC)一般是多层或者多个腔室的结构,例如皮肤芯片、肺芯片。但这次要和你分享的是一种悬滴式的器官芯片,也就是把微组织放在一滴悬着的培养液里培养,这滴培养液可以晃来晃去,但又不会掉下来,也就是你看到的封面图那样,看起来就像是在一滴悬着的水里养了个小器官。左图是胰岛微组织,右图是在悬滴器官芯片里培养微组织的示意图。这可不是什么不靠谱的设计,这项研究由苏黎世联邦理工学院的帕特里克博士(Dr. Patrick Misun)和瑞士InSphero公司布尔卡克博士(Dr. Burcak Yesildag)一同完成,文献链接放在了文末。左为帕特里克博士(Dr. Patrick Misun),右为布尔卡克博士(Dr. Burcak Yesildag)。这个芯片设计简单但很独特,你看下图,它就一个入口一个出口,再加一个半球形的培养区,芯片底部那滴培养液直接正对着显微镜——这根本就不是在一个密闭腔室里面做实验,是一个十分大胆但又很有创意的设计,它看起来好像不稳定,但这种设计又打破现有芯片设计壁垒,谁说芯片一定要设计成密封好的样子?悬滴器官芯片图示,研究人员使用此芯片能让微组织持续保持在悬滴中。帕特里克说,在这种悬滴里做微组织的药物测试,已经被证实是绝对可靠的,并且是可重复的。在他们的实验里,胰腺微组织会“跑”到那滴培养液和空气的交界处,这时往芯片里灌注少量液体,为微组织提供营养的同时,也将其暴露于药物环境中,然后用处于胰腺微组织正下方的显微镜记录数据。咱再来看看实验数据。当胰腺微组织刚开始暴露在高浓度葡萄糖环境中时,胰岛素的分泌会出现一次爆发性增长,然后在之后的几分钟,分泌的胰岛素会稍降低一些,处于一个持续震荡的状态。这和咱们正常人的调节机制是一致的,而糖尿病患者的这些反应机制是受损的。胰岛微组织在不同血糖浓度下的胰岛素分泌情况,先出现一次爆发增长,随后处于震荡状态。现在利用这个悬滴器官芯片平台,可以在高时间分辨率下观察到这些反应细节,这非常有利于研究糖尿病背后的潜在生物学机制。这分辨率有多高呢?帕特里克说,到目前,他们的平台提供了前所未有的高时间分辨率(2020年)。帕特里克:悬滴已被证明为微组织药物测试提供了绝对可靠和可重复的环境。我们将单个微组织放置在单个液滴中,它们在液滴底部的水-空气界面处沉淀(见图 2)。我们直接通过这些悬滴灌注少量液体,为组织提供营养并将其暴露于药物中。与封闭室中的流动相比,悬滴内的流动液体具有独特的流动模式。我们利用这种特定的流动模式来获得高时间分辨率的分泌曲线。你可能有疑问,他们用的微组织从哪来的?是否能反应人体真实情况呢?事实上,他们使用了真正的胰腺微组织。InSphero公司的布尔卡克博士(Dr. Burcak Yesildag),专门负责从供体器官中制备胰腺微组织,分离胰岛(是分泌激素的微器官,比如胰岛素),并把它们拆分为不同大小和成分的胰岛,再重新组装成标准化3D微组织,这样就保留了胰岛微组织对各种刺激的自然反应,从而保证获得真正有生理意义和可重复的数据。帕特里克说,这些微组织样本越规则,实验结果可重复性就越高。这个研究公开后,很快就有人就关心“能否商用”的话题。布尔卡克回答,这个平台很容易和InSphero其他项目达成合作。帕特里克也表示,现在做的虽只是一个平台原型,但已经实现对单个胰岛的高灵敏测量。不管是学术交流还是工业合作,他们都十分愿意一同优化现有平台,希望这项技术进展能帮助糖尿病研究人员找到新药,并更深入地了解胰岛生物学。下一步研究,帕特里克他们暂定了两个目标:一个是提高实验吞吐量,这也是复合测试(Compound testing)的关键要求之一;另一个是降低实验复杂度,让更多人实验人员也能完成此项实验。测试平台,该平台将帮助糖尿病研究人员找到新药并更深入地了解潜在的生物学机制。带有悬滴的器官芯片平台图示模型图——该芯片使研究人员能够将样本组织保持在悬滴中。您在芯片上使用人体细胞?帕特里克:没错。我们建立了在尽可能类似于活体器官的条件下在体外测试药物的平台。我们的目标是获得生理上有意义和可重复的数据。在这种特殊情况下,我们研究了胰腺微组织随时间的胰岛素分泌。对人体胰岛组织和悬滴内的组织进行采样图 2(左)人类胰岛组织样本。(右)悬滴内的组织。营养物质和药物顺利通过悬滴。样本组织来自哪里?Patrick: 这是我在 InSphero 的同事 Burcak 的问题。对于这个项目,我们进行了出色的合作,其中苏黎世联邦理工学院负责芯片上器官测试的工程部分,InSphero 负责制备微组织。Burcak:确实,我们的互补技能会派上用场。在 InSphero,我们从供体器官制备胰腺微组织。我们获得了分离的人类供体胰岛,它们是胰腺中分泌激素(如胰岛素)的微器官,可调节我们体内的血糖水平。我们拆解不同大小和成分的胰岛,并将它们重新组装成标准化的 3D 微组织。样本组织越规则,这些组织的实验结果就越具有可重复性。这些制造的微组织仍然是天然的吗?布尔卡克:我们的胰腺微组织密切模仿原始人类胰岛的结构,并保持其对各种刺激的自然反应。当暴露于高浓度的葡萄糖时,它们会显示出胰岛素分泌的第一次瞬时爆发。几分钟后,随之而来的是强度稍低但持续良好的胰岛素振荡释放(见图 3)。在糖尿病的情况下,这些反应受损,并且有多种策略旨在恢复健康的胰岛素分泌。研究人员希望以高时间分辨率观察这些细节,以便他们能够更好地了解糖尿病的潜在机制并开发用于治疗的化合物。据我们所知,功能强大的胰岛微组织与 Patrick 的悬滴平台相结合,提供了前所未有的时间分辨率。图表显示随时间推移的胰岛素分泌和相应的葡萄糖水平图 3 微组织在暴露于升高的血糖水平时分泌胰岛素。胰岛素分泌遵循一个非常典型的模式:第一次爆发,然后是脉动的第二阶段。最后一个问题:器官芯片平台是否可以商用?Burcak:微组织很容易用于与 InSphero 的合作项目。帕特里克:目前我们有工作平台原型,我们愿意与学术和工业合作伙伴合作以优化我们的平台。我们的原型使我们能够对单个胰岛进行非常灵敏的测量。我们希望这项技术进步将帮助糖尿病研究人员找到新药并更深入地了解胰岛生物学。在下一步中,我们希望提高实验吞吐量,因为这是复合测试的关键要求之一。此外,我们正在进一步降低操作复杂性,目标是使该系统可供不同实验室的研究人员使用。文献链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900291
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。   光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。   科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。   在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。   魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。   魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 皮肤器官芯片,化妆品安全评价创新研究趋势
    化妆品质量评价主要是关注其安全性和功效性,在过去通常是采用动物实验进行毒性、刺激性等测试方法进行。自《人道实验技术法则》中提出的3R理论(Reduction, Replacement, Refinement)在全球推行后,更多科学方法被开发和采用,以减少或替代动物实验,如体外测试、细胞培养等。2013年3月,欧盟委员会下令全面禁止在动物身上进行化妆品成分测试。美国环境保护总署提出在2035年前将停止在环境评测技术和产品中使用哺乳类动物进行评估。随着我国《化妆品监督管理条例》、《化妆品功效宣称评价规范》及《化妆品安全评估技术导则》等法律法规的逐步施行,不仅与国际化妆品的检测标准进一步接轨,而且强调了按照风险程度对化妆品和化妆品原料实行分类管理,并同时要求对化妆品的功效宣称进行评价的原则。因此开发动物替代的体外重组皮肤模型,应用于化妆品的皮肤刺激性、腐蚀性、渗透性等安全和功效评估的重要性和迫切性凸显。皮肤器官芯片是一种新兴的组织/器官模型构建的颠覆性技术。与传统静态皮肤模型相比,基于器官芯片技术的皮肤芯片可改善皮肤模型的功能,并实现自动化和模块化的构建或检测。艾玮得生物器官芯片团队与东南大学苏州医疗器械研究院、中国食品药品检定研究院一起,共同开发了一种高仿真的皮肤器官芯片,可进行化妆品的刺激性或非刺激性的准确预测。表皮芯片结构及表皮形成示意图艾玮得生物研发人员设计了一种可培养和分化原代人角质形成细胞的微流控芯片(iEOC),经过气液培养,表皮芯片上形成的表皮模型表现出类似于在人正常表皮中观察到的组织学特征:增殖的基底层和分化的棘层、颗粒层、角化层。特别是 TEER 值可达到 3 kΩ cm2,由于增强的屏障功能,可阻止超过 99% 的低分子量荧光染料渗透。进一步的免疫荧光分析还显示了典型的角蛋白特征表达,包括角蛋白-14、角蛋白-10、兜甲蛋白、内批蛋白和丝聚蛋白。相关表征预示该构建的表皮芯片具有人正常表皮的屏障和生物学功能。构建的表皮结构与人正常皮肤结构对比(a)表皮芯片(b)示意图(c)人正常表皮(d)人正常全层皮肤随后,使用iEOC进行化学品的刺激性检测,根据OECD 439提供的检测方法,通过 MTT 法对10种已知刺激性的化学品进行了检测,结果显示iEOC可以准确区分化学品的刺激性与非刺激性。由于皮肤刺激性是一种复杂的生理机制,研究进一步检测了炎症因子的释放和屏障功能的变化,结果显示刺激性化学品接触会导致IL-6 and TNF-α等炎症因子的表达量增高,TEER值的下降以及紧密连接蛋白ZO-1的表达下降。刺激反应的初步检测显示可以区分不同物质的刺激性,也提示具有真皮、血管等结构的复杂皮肤模型的构建需求。非刺激性物质异丙醇与刺激性物质作用于iEOC的刺激反应利用体外重组表皮模型进行皮肤刺激性和腐蚀性预测在国际上已通过欧盟验证并被OECD认可载入指南439和431,国内由中国食品药品检定研究院牵头,进行化妆品替代方法的研究和验证,多家机构联合进行相关标准的验证和制定,艾玮得生物积极参与其中,目前艾玮得皮肤芯片技术作为中国器官芯片模型标准,已获得国家标准化管理委员会立项,为我国器官芯片技术和评估标准的确立打下基础。作为化妆品功能性与安全性评估的一部分,使用皮肤器官芯片可控制临床试验风险,又符合伦理道德规范,可应用于皮肤美白检测服务、皮肤刺激性检测服务、皮肤光毒性检测等广泛层面。艾玮得皮肤芯片作为一种体外皮肤刺激性评估模型,也可为化学品、制药、医疗器械等多种应用方向的高通量检测提供创新研究方法。江苏艾玮得生物科技有限公司(AVATARGET)成立于2021年,是一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司。艾玮得核心技术转化于东南大学器官芯片科研团队,技术成果已成功应用在新药研发、精准医疗、疾病建模、美妆安全性评价等科研场景中。目前,艾玮得与国内外知名药企,多所医院、研究机构及高校等40余家单位达成深度合作,包括恒瑞、先声、齐鲁、美国哥伦比亚大学、江苏省人民医院、江苏运动健康研究院、鼓楼医院、上海第六人民医院、军区总院、颐华医药等,持续推动器官芯片在更多高端医疗器械领域的应用,助力生命科学快速发展。文献来源:Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. Lab Chip, 2021, 21, 3804.
  • 新型纳米传感器芯片让药物开发提速
    据每日科学网报道,美国斯坦福大学的研究人员开发出一种新型的传感器芯片,可以大大加快药物开发过程。这种由高度敏感的纳米传感器构成的微芯片,可以分析蛋白质如何相互结合,在评估药物的有效性及可能带来的副作用方面迈出了关键一步。   这种新型生物传感器只需要一厘米大小的纳米传感器阵列,就能以高于现有任何传感器数千倍的能力持续不断地监测蛋白质的结合活动。新的传感器可以同时监测成千上万种反应,而且比目前的“金标准”方法敏感性更强,并能更快地提供检测结果。   该纳米传感器阵列有两大重大进步。首先是将磁性纳米标记附着在被研究的蛋白质上,大大地提高了监测的灵敏度。其次,研究人员开发了一种新的分析模型,以监测数据为依据,只要几分钟就能准确地预测结果。而目前其他的技术只能同时监测四种反应,需要长达数小时的时间才能获得结果。   研究人员在数年前就开发出了磁性纳米传感器技术,在检测小鼠血液中癌症相关蛋白的生物标志物时发现,其敏感性远高于其他技术,检测浓度为其他技术检测浓度的千分之一。   研究人员将磁性纳米标记附着在特定的蛋白质上,当其与另一个连接到纳米传感器的蛋白相结合时,磁性纳米标记改变纳米传感器周围的磁场。为了确定蛋白与药物之间的结合强度,研究人员将乳腺癌的蛋白放入纳米传感器阵列,同时将从肝脏、肺、肾脏及其他组织获得的蛋白也放入纳米传感器阵列,然后测量附着了磁性纳米标记的药物与各种蛋白的结合强度。这样可以不通过临床实验,就可以初步断定该药物的副作用。虽然目前的芯片每平方厘米只有1000个传感器,但研究人员表示,同样大小的芯片传感器可以增加到数万个之多。   下一步研究人员将利用这种新型生物传感器微芯片来研究正在开发的药物,研究人员确信这将极大地加快药物开发的进程。
  • 厦门大学附属第一医院196.00万元采购生物芯片
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 微阵列染色体基因芯片检测外送服务 福建省-厦门市-思明区 状态:公告 更新时间: 2024-04-03 招标文件: 附件1 项目基本信息 采购项目编号[350201]GWTZ[GK]2023037 采购人厦门大学附属第一医院 采购代理名称厦门市公物投资管理有限公司 联系人张静 采购方式公开/邀请招标 联系电话18065838316 采购项目公告 项目概况 受厦门大学附属第一医院委托,厦门市公物投资管理有限公司对[350201]GWTZ[GK]2023037、微阵列染色体基因芯片检测外送服务组织公开招标,现欢迎国内合格的供应商前来参加。微阵列染色体基因芯片检测外送服务的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2024年04月24日 09时15分00秒(北京时间)前递交投标文件。 一、项目基本情况 项目编号:[350201]GWTZ[GK]2023037 项目名称:微阵列染色体基因芯片检测外送服务 采购方式:公开招标 预算金额:2,800,000.00元 采购包1(微阵列染色体基因芯片检测): 采购包预算金额:2,800,000.00元 采购包最高限价: 1,960,000.00元 投标保证金: 0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 品目号 品目编码及品目名称 采购标的 数量(单位) 允许进口 简要需求或要求 品目预算(元) 中小企业划分标准所属行业 1-1 C04990000-其他医疗卫生服务 微阵列染色体基因芯片检测 1,100(次) 否 详见附件 2,800,000.00 其他未列明行业 本采购包不接受联合体投标 合同履行期限:自合同签订之日起【365】日 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 采购包1:无 3.本项目的特定资格要求: 采购包1: (1)1、信用信息查询渠道:通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)、“信用厦门”网站(credit.xm.gov.cn)查询所有供应商的信用信息。 2、截止时点:查询供应商截止开标当天前三年内的信用信息。 3、查询记录和证据留存方式:将查询结果网页打印后随采购文件一并存档。 4、信用信息的使用规则:(1)查询结果显示供应商存在不良信用记录(包含列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件)的,其资格审查不合格。(2)因查询渠道网站原因导致查无供应商信息的,不认定供应商资格审查不合格;评审结束后,通过其他渠道发现供应商存在不良信用记录的,不认定为资格审查错误,将依照有关规定进行调查处理。(3)联合体成员存在不良信用记录的,视同联合体存在不良信用记录,联合体资格审查不合格。 5、供应商无需提供信用信息查询结果。若供应商自行提供查询结果的,仍以评标当天查询结果为准。;(2)本项目允许采用“信用承诺制”,根据《厦门市财政局关于进一步减轻供应商参与政府采购活动成本负担的通知》(厦财采〔2021〕5号)规定,投标人提供“资格承诺函”的即可参加采购活动,在投标文件中可不再提供财务状况报告、依法缴纳税收和社会保障资金的相关证明材料。投标人应当遵循诚实信用原则,不得作虚假承诺。投标人承诺不实的,属于提供虚假材料谋取中标,应依法承担相应的法律责任。;(3)投标人必须具备医疗机构资质,执业许可证诊疗科目包含“医学检验;临床细胞分子遗传学专业”,通过医疗机构临床基因扩增检验实验室技术审核。(提供医疗机构执业许可证和通过技术审核证明材料);(4)每年1-6月期间开标的项目,投标人也可提供上上年度的年度财务报告。。 三、采购项目需要落实的政府采购政策 进口产品:本项目不适用。 节能产品:本项目不适用。 环境标志产品:本项目不适用。 四、获取招标文件 时间: 2024-04-03 至 2024-04-18 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费 五、提交投标文件截止时间、开标时间和地点 2024-04-24 09:15:00(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省厦门市湖里区云顶北路842号(市政务服务中心4层)C区开标室5(厦门市公共资源交易中心) 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 / 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:厦门大学附属第一医院 地址:厦门市镇海路55号 联系方式:0592-2137288 2.采购代理机构信息(如有) 名称:厦门市公物投资管理有限公司 地址:厦门市湖滨南路81号光大银行大厦18楼 联系方式:0592-2279859、2279309 3.项目联系方式 项目联系人:张小姐、林小姐 电话:0592-2279859、2279309 网址: zfcg.czt.fujian.gov.cn 开户名:厦门市公物投资管理有限公司 厦门市公物投资管理有限公司 2024年04月03日 相关附件: 微阵列染色体基因芯片检测外送服务-文件集.zip × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:生物芯片 开标时间:2024-04-24 09:15 预算金额:196.00万元 采购单位:厦门大学附属第一医院采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:厦门市公物投资管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 微阵列染色体基因芯片检测外送服务 福建省-厦门市-思明区 状态:公告 更新时间: 2024-04-03 招标文件: 附件1 项目基本信息 采购项目编号[350201]GWTZ[GK]2023037 采购人厦门大学附属第一医院 采购代理名称厦门市公物投资管理有限公司 联系人张静 采购方式公开/邀请招标 联系电话18065838316 采购项目公告 项目概况 受厦门大学附属第一医院委托,厦门市公物投资管理有限公司对[350201]GWTZ[GK]2023037、微阵列染色体基因芯片检测外送服务组织公开招标,现欢迎国内合格的供应商前来参加。微阵列染色体基因芯片检测外送服务的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2024年04月24日 09时15分00秒(北京时间)前递交投标文件。 一、项目基本情况 项目编号:[350201]GWTZ[GK]2023037 项目名称:微阵列染色体基因芯片检测外送服务 采购方式:公开招标 预算金额:2,800,000.00元 采购包1(微阵列染色体基因芯片检测): 采购包预算金额:2,800,000.00元 采购包最高限价: 1,960,000.00元 投标保证金: 0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 品目号 品目编码及品目名称 采购标的 数量(单位) 允许进口 简要需求或要求 品目预算(元) 中小企业划分标准所属行业 1-1 C04990000-其他医疗卫生服务 微阵列染色体基因芯片检测 1,100(次) 否 详见附件 2,800,000.00 其他未列明行业 本采购包不接受联合体投标 合同履行期限:自合同签订之日起【365】日 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求: 采购包1:无 3.本项目的特定资格要求: 采购包1: (1)1、信用信息查询渠道:通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)、“信用厦门”网站(credit.xm.gov.cn)查询所有供应商的信用信息。 2、截止时点:查询供应商截止开标当天前三年内的信用信息。 3、查询记录和证据留存方式:将查询结果网页打印后随采购文件一并存档。 4、信用信息的使用规则:(1)查询结果显示供应商存在不良信用记录(包含列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件)的,其资格审查不合格。(2)因查询渠道网站原因导致查无供应商信息的,不认定供应商资格审查不合格;评审结束后,通过其他渠道发现供应商存在不良信用记录的,不认定为资格审查错误,将依照有关规定进行调查处理。(3)联合体成员存在不良信用记录的,视同联合体存在不良信用记录,联合体资格审查不合格。 5、供应商无需提供信用信息查询结果。若供应商自行提供查询结果的,仍以评标当天查询结果为准。;(2)本项目允许采用“信用承诺制”,根据《厦门市财政局关于进一步减轻供应商参与政府采购活动成本负担的通知》(厦财采〔2021〕5号)规定,投标人提供“资格承诺函”的即可参加采购活动,在投标文件中可不再提供财务状况报告、依法缴纳税收和社会保障资金的相关证明材料。投标人应当遵循诚实信用原则,不得作虚假承诺。投标人承诺不实的,属于提供虚假材料谋取中标,应依法承担相应的法律责任。;(3)投标人必须具备医疗机构资质,执业许可证诊疗科目包含“医学检验;临床细胞分子遗传学专业”,通过医疗机构临床基因扩增检验实验室技术审核。(提供医疗机构执业许可证和通过技术审核证明材料);(4)每年1-6月期间开标的项目,投标人也可提供上上年度的年度财务报告。。 三、采购项目需要落实的政府采购政策 进口产品:本项目不适用。 节能产品:本项目不适用。 环境标志产品:本项目不适用。 四、获取招标文件 时间: 2024-04-03 至 2024-04-18 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2024-04-24 09:15:00(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省厦门市湖里区云顶北路842号(市政务服务中心4层)C区开标室5(厦门市公共资源交易中心) 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 / 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名称:厦门大学附属第一医院 地址:厦门市镇海路55号 联系方式:0592-2137288 2.采购代理机构信息(如有) 名称:厦门市公物投资管理有限公司 地址:厦门市湖滨南路81号光大银行大厦18楼 联系方式:0592-2279859、2279309 3.项目联系方式 项目联系人:张小姐、林小姐 电话:0592-2279859、2279309 网址: zfcg.czt.fujian.gov.cn 开户名:厦门市公物投资管理有限公司 厦门市公物投资管理有限公司 2024年04月03日 相关附件: 微阵列染色体基因芯片检测外送服务-文件集.zip
  • 器官芯片模型在神经免疫系统研究中的新进展
    帕金森病(PD)和阿尔茨海默病(AD)是由基因、环境和家族因素相互作用引起的神经退行性疾病。值得注意的是免疫系统对疾病发展的影响,脑部驻留的小胶质细胞的功能障碍,会导致神经元的丧失和症状加剧。研究人员通过神经免疫系统模型来更深入地了解这些神经退行性疾病的生理和生物学方面以及它们的发展过程。不列颠哥伦比亚大学的Stephanie M. Willerth教授团队和英国诺丁汉特伦特大学的Yvonne Reinwald教授团队于2024 年 1 月 23 日在《Journal of Neuroinflammation》(影响因子:9.3)杂志上发表了题为“Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases”的综述,介绍了神经免疫系统在三维模型和器官芯片系统方面取得的进展,以及模型在准确模拟复杂的体内环境方面的巨大潜力。 研究背景阿尔茨海默病(AD)是老年人中最常见的痴呆类型,与淀粉样斑块和磷酸化Tau蛋白的异常积累有关,虽具体原因尚不完全清楚,但与遗传和环境因素相关,诊断及早干预至关重要。帕金森病(PD)是一种神经系统疾病,主要表现为运动障碍,与聚集的α-突触核蛋白(α-syn)沉积物Lewy小体有关,相关基因变体也与其发病风险增加有关。尽管PD的确切原因尚不清楚,但其发病机制可能涉及多巴胺能神经元功能障碍以及氧化应激、线粒体功能受损、蛋白质代谢异常和神经炎症等多种因素。图1:阿尔茨海默病和帕金森病的病理生理学。 中枢神经系统(CNS)过度炎症的特征包括多种因素共同促进疾病进展,其中包括各种抗炎与促炎细胞因子的失调、CNS内小胶质细胞等免疫细胞的表型转化,以及外周细胞的巨噬细胞和淋巴细胞的招募,这些因素均导致突触丧失,成为随后认知功能障碍的最常见病理相关因素。图2:健康与病理神经免疫系统的比较:在健康的神经免疫系统中(1)小胶质细胞处于稳态和监视状态,(2)外周免疫细胞向中枢神经系统的浸润有限。在病理性神经免疫系统中:(3)小胶质细胞反应性增强,形态改变,(4)吞噬作用增加,(5)炎症标志物增加,(6)外周免疫细胞浸润增加。 研究进展1、目前阿尔茨海默病和帕金森病的治疗和临床试验针对AD,乙酰胆碱酯酶是一个常见的药物靶点,近期研究专注于开发单克隆抗体等药物以减少Aβ负荷,如lecanemab和aducanumab。此外,针对AD的临床试验正在进行中,旨在测试药物、设备和行为以改善患者认知和减缓疾病进展,而对于PD,则主要以药物和深部脑刺激为主要治疗手段,同时也在研究新的免疫调节治疗方法。 2、阿尔茨海默病、帕金森病和免疫系统的体外免疫系统模型癌症免疫系统的研究已经取得了许多成果,其中包括对3D模型的发展,这对于疾病建模和药物筛选至关重要,尤其是针对新的化疗药物和人工组织的开发。一种体外建模方案是使用细胞系,最常用的是SH-SY5Y人类神经母细胞瘤细胞系,模拟未成熟的儿茶酚胺能神经元,并可通过暴露于神经毒素或基因修饰来模拟AD或PD。然而,SH-SY5Y存在缺乏确立的培养维持程序、实验结果不一致和细胞生长的可变性等缺点,且不表现出成熟神经元的电生理和电化学特征。利用诱导多能干细胞(iPSC)创建基因准确的AD和PD模型,成为一个快速发展的研究领域,这些模型可以通过体细胞来源的iPSC诱导后,生成神经元与免疫细胞,用来构建AD和PD模型。图3:神经免疫系统的体内和体外模型的优缺点。 3、器官芯片模型在神经免疫系统研究中的新进展器官芯片平台的出现为建立体外模型提供了增强的设计和控制能力,能够模拟生物、生化、生理和机械现象,在活体器官系统中的发生。从血液-脑脊液屏障微流控模型到脑芯片模型,研究者们不断探索着复杂的生理学建模,为深入分析神经免疫相互作用提供了新的可能。这些模型不仅揭示了神经炎症在神经退行性疾病中的重要性,还为治疗干预提供了潜在途径,为了解AD和PD的潜在机制提供了宝贵的见解。同时,脑芯片模型被广泛应用于研究神经血管相互作用和神经退行性的不同方面。通过模拟神经-胶质-血管相互作用,研究人员发现了柴油排放颗粒等外源因素对AD类疾病病理特征的影响。这些研究不仅强调了神经免疫特异性行为的重要性,还突显了人类细胞模型在理解神经退行性疾病方面的关键作用。然而,尽管研究对细胞间相互作用和人类细胞模型的依赖日益增加,但对于AD和PD潜在机制的理解仍然相对有限。图4:芯片上器官的发展:示意图显示了开发和制造微流控芯片所需的步骤 先进的免疫细胞相互作用在AD和PD病理中至关重要,调节其功能可能为更有效的治疗提供希望;器官芯片模型具有模拟复杂细胞相互作用的优势,有助于深入了解AD和PD疾病机制并发现新的治疗策略。 文献索引:Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ , El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation. 2024 Jan 23 21(1):32. doi: 10.1186/s12974-024-03024-8. PMID: 38263227 PMCID: PMC10807115. 关于艾玮得生物作为一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,艾玮得器官芯片应用全场景解决方案已能够全面覆盖新药研发评价、临床药敏检测、基础科学研究等应用领域,为科研、临床、药企等客户提供一站式解决方案。
  • 重磅!我国又一5nm芯片成功回片!
    近期,联想旗下的鼎道智芯半导体有限公司传来振奋人心的消息,其自主研发的5nm制程芯片已顺利完成回片,这一里程碑事件标志着联想在高端芯片设计与制造领域取得了重大突破,特别是在针对平板电脑优化的AP芯片市场上迈出了坚实的一步。鼎道智芯,这家由联想(上海)有限公司全资控股,并间接隶属于香港联想集团有限公司的新兴半导体企业,自2022年1月成立以来,便承载着联想集团对于自研芯片战略的深厚期望。公司坐落于上海自贸区,注册资本高达3亿元人民币,由联想集团高级副总裁贾朝晖担任法定代表人及执行董事。贾朝晖以其丰富的个人电脑市场成功经验,为鼎道智芯注入了强大的创新动力与领导力。鼎道智芯的业务范围广泛,不仅涵盖半导体科技领域的技术服务、开发、咨询、交流、转让及推广,还深入集成电路设计、销售,以及软硬件开发等多个关键环节。公司定位于智能设备核心部件的软硬件解决方案提供商,旨在通过技术创新,为联想产品带来更强的市场竞争力和更卓越的用户体验。此次5nm芯片的成功回片,是联想集团“端-边-云-网-智”新IT架构战略下,核心技术研发与积累的重要成果。联想集团已明确规划,未来三年内将实现研发投入与研发人才的双倍增长,持续推动技术创新与产业升级。鼎道智芯作为这一战略的关键执行者,正加速推进前沿基础核心技术的研发与应用,为联想智能终端设备的用户体验提升及业务增长贡献力量。值得注意的是,鼎道智芯的快速发展并非孤例。联想集团投资的另一家芯片企业——此芯科技,近期也发布了其首款6nm制程的AI PC芯片P1,进一步丰富了联想的芯片产品矩阵。这款国内首创的AI PC芯片,不仅展现了联想在芯片设计领域的深厚实力,也为联想在全球芯片市场的竞争中增添了新的亮点与优势。随着鼎道智芯5nm芯片及此芯科技P1芯片的相继问世,联想正逐步构建起自主可控的芯片生态体系,为未来的科技竞争奠定坚实的基础。这一系列成就不仅彰显了联想作为PC巨头的战略眼光与执行力,更为整个半导体行业的发展注入了新的活力与希望。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制