当前位置: 仪器信息网 > 行业主题 > >

环境显微镜

仪器信息网环境显微镜专题为您提供2024年最新环境显微镜价格报价、厂家品牌的相关信息, 包括环境显微镜参数、型号等,不管是国产,还是进口品牌的环境显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境显微镜相关的耗材配件、试剂标物,还有环境显微镜相关的最新资讯、资料,以及环境显微镜相关的解决方案。

环境显微镜相关的资讯

  • 张承青电镜实验室环境约稿[7]:谈谈电子显微镜的接地
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之七,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之七 谈谈电子显微镜的接地众所周知电器设备都需要安全接地保护。各种设备的外壳或外露金属部分,都要与大地直接连接,以保证在万一短路漏电时,还能够使外壳或外露金属部分的电压保持在人体能够容忍的范围内(我国现行规定安全电压为不超过24V),以确保人身安全。电子显微镜也不例外,同样需要安全接地保护,万一系统发生漏电时提供一个泄放回路,确保操作人员或维修人员的人身安全。不过另外还有一个特殊的地方就是,电子显微镜的地线同时还是电子显微镜内各个分系统(如探测器、信号处理放大、电子束控制等等)的共同“零电位”端,必须保持电压稳定在“零”。理论上地线端是一个电压为零的参照点,但是实际上,当地线回路上存在电流时(这个电流通常称为漏电流或接地电流,由各用电设备分别产生,其大小为各漏电电流的矢量和),在这个地线回路上的任何一个接地端都有接地电压存在(因为任何地线的接地电阻R尽管很小但不可能为零,根据欧姆定律V=IR,接地电压V在漏电电流I不为零的情况下不会为0),尽管这个接地电压很小以至于我们时常忽略它。但在电子显微镜系统里,这个接地电压使得“零电位”端的电压不能稳定在“零”,这样就会使得电子显微镜不能保持在最好的工作状态下。因为总漏电电流不可能为恒定值,所以接地电压的大小是无规则变化的。即便是一般认为小到微不足道的接地电压,对于经常需要把图像放大几万到一百多万倍的电子显微镜来说,所产生的影响也往往是不可忽视的。接地电压的变化,直接致使SEM模式的图像垂直边缘产生类似磁场和振动干扰的毛刺,严重时还会使图像抖动。解决这个问题的方法很简单,就是专门为电子显微镜设置一个单独的接地回路,我们称之为“独立地线(single earth loop)”。这样就排除了同一供电回路中其它用电设备的漏电流对电子显微镜的干扰。注意,必须从接地体到接地线到接地端子都是独立且不与任何导电体相连接的,这样才能保证该地线的完全独立。必须防止以下几种常见错误:1)没有埋设完全独立的接地体,只是单独布放一根地线联接到公共接地体;2)虽然有单独的接地体但是接地线或接地端子与公共地线或其它用电设备相联接;3)尽量不要接“等电位端子盒”,那玩意儿一般都是接公共地线或者与轻钢龙骨短接的;4)独立地线尽量不要两台或更多的电镜合用(有些有好几台电镜的用户,实在不情愿给每个电镜配一套独立地线啊);5)注意不可以利用现成地下金属导体做独立地线的接地体,像是大楼底梁阀板里的钢筋什么的,那都是公用的;也不要借用弱电系统的接地体,那些都不可靠;6)与电镜信号系统连接的设备(如波谱能谱计算机显示器等,它们的地线必须与公共地线分离,这点实践中经常被疏忽)。电子显微镜对独立地线的接地电阻要求实际不高,前些年某品牌要求是100欧姆以下即可。目前一般各家厂商都只是要求在1~10欧姆即可(小于0.1欧姆的地线成本急剧上升,并且有些土质环境很难做到)。地线制作一般有“深井式”和“浅坑式”两种(参见图一和图二)。注意无论那种方法,都要与地下任何金属物保持四米以上直线距离以防干扰。深井式制作说明(供参考):1.钻深孔:直径约50~100毫米,深度约为3~20米,达到到潮湿土层即可。2.接地体:铜管壁厚2毫米(铜棒亦可,多花些银子就是)直径约30毫米、长约0.5米,由接地线焊牢(三点以上)引出到电子显微镜附近。3.接地线:4~10平方毫米橡胶或塑料多股铜芯线。4.降阻剂:盐、小块木炭各约2~3公斤。5.施工工艺:将接地体吊放到孔的底部,准备一细长工具(钢筋、水管等),将逐渐放入的降阻剂由下而上地捣实,然后继续回填捣紧,特别注意在接地体周围一定要捣实捣紧,同时注意不要把接地线碰断。图一 深井式示意图浅坑式制作说明(供参考):1.挖浅坑:深度约为0.5~2米,达到潮湿土层即可。2.接地体:铜板约0.5×0.5米,厚度2~3毫米,由接地线焊牢(三点以上)引出到电子显微镜附近。3.接地线:4~10平方毫米橡胶或塑料多股铜芯线。4.降阻剂:盐、小块木炭各约2.5~5公斤。5.施工工艺:将铜板垂直放到坑的底部,周围先以降阻剂覆盖,并捣实捣紧,然后继续回填捣紧,注意不要把接地线碰断。 图二 浅坑式示意图 “深井式”适合地面难以开挖或地下水位很深的某些地方。比较而言,“浅坑式”是更为常见的做法。无论是“深井式”或是“浅坑式”,按照此工艺施工,接地电阻都可以达到4~10欧姆(单接地体)。接地线与接地体的连接如果不便焊接的话,也可以钻孔用螺栓连接。注意必须用铜螺栓铜垫圈铜螺母,不要用哪怕是不锈钢的来代替。这不仅是防锈,还是防止产生化学电势、防止产生电腐蚀。特别需要注意,板型接地体或者条带型接地体必须垂直埋下及回填捣实,这很重要的哦!在土壤电阻很大的地方,为降低接地阻抗,还可以将两个以上的接地体连接起来构成一个小型接地系统,此时各接地体间距0.3~0.5米即可(深井式可以使用同一钻孔)。经实测,一般一个接地体接地电阻可达4欧姆左右,两个个接地体接地电阻可达3欧姆左右,三个接地体接地电阻可达2欧姆左右,六到十个接地体接地电阻可达1欧姆以下(视土壤电阻率而定)。因为不会有“跨步电压”的危险,所以不需要参照防雷电格栅式地线网的做法。同时为减少附近地下其它导体的影响,这个小型接地系统也应尽量少占用地下面积。为防止意外短路,接地线进入室内后应直接与电子显微镜的接地线(或电子显微镜内部的地线汇流排)连接,而不要配置一般常见的地线盒或地线端子箱等,不要进入其它等电位端子箱或开关箱,不要与其它汇流排相连。道理很简单,说穿不值钱。不过因为地线属于地下隐蔽工程,做好后很难判断它的独立性究竟好不好。曾经多次碰到磁场好,振动噪声都没问题,电镜本身也是正常的,就是偏偏图像有毛刺,最后临时断开所有接地线毛刺就大为改善,问题所在很清楚了吧。还有市售UPS的接地制式,基本都是不符合单独接地要求的。UPS主机一般共有八个桩头、进出八根线,除两个接电池组外,另有相零地三进三出。要知道:进来的地线桩头在UPS主机内部是与输出的地线桩头完全相通的!UPS厂商工程师按照标准作业规范,把八个头八根线一个一个接好,开机、正常、走人。可是说好的独立地线呢?没啦,在UPS的鼎力相助下,和公共地线网连起来了。呜呜!怎么办?断开就是,两个都断开?显然不对。好,再问,(卖个关子)应该断开哪一个?临时断开地线时必须注意是断开所有的接地线,包括附属设备如能谱波谱拉伸台等等,还包括插在墙上电源插座的显示器,扒拉扒拉一堆呢。包括三个爪子的电源插头,可以拔的都拔掉。如果疏忽漏掉一个没有断开,后面都是做无用功。噢,不,算上误导,就是做负功,不如不做。还有一点需要注意,有时电镜会有循环冷却水箱、空压机、UPS等一大堆附属设备,这些设备也需要接地,但必须和电镜的独立地线分开(有些电镜厂商有明确说明,有些没有),可以使用另一个独立地线,也可以接入公共地线。真空泵由于是从电镜取电(其开启和停止由电镜端控制),一般出厂配置就是用三芯电缆(相、零、地)与电镜相连,曾有人画蛇添足,再给它外壳接个地(说是保险一些),这个地线很自然就接到等电位端子箱、接到公共地线去了。哦噢,独立地线又没有啦!有时图像不好,排查电镜自身原因后,地线就是最可疑的(磁场振动都可以测出来,地线的独立性没法测)。所以,提高对地线的认识,事先与用户(可能还有用户单位电务管理人员)有明确沟通,是很重要的。不幸也是最容易被疏忽的一个方面,唉。2020.11张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 科学家为环境条件下的多维测量定制原子力显微镜
    原子力显微镜(AFM)是一种表面表征方法。AFM中的关键元件是一个锋利的探针尖端,连接在力传感换能器上。在测量产生的相互作用力的同时,尖端相对于样品进行扫描。作为样品位置函数的映射原则上允许对表面结构进行成像。此外,还可以获得许多其他相互作用,如局部化学力和静电力。此外,将不同刺激整合到AFM测量中的能力(例如,温度依赖性、紫外线照射等)使得能够研究不同的实验效果。按时间顺序,AFM操作可分为两种:静态(也称为接触)和动态模式。接触操作模式依赖于探针的直接偏转测量。通过了解力传感换能器(即悬臂)的弹簧常数,可以直接恢复力。因此,接触模式易于操作,结果直观。然而,局部程度是由尖端和样品之间建立的接触面积定义的,该接触面积可以多达数百纳米正方形。此外,还有机械不稳定性,其中吸引的尖端-样品相互作用克服了悬臂的刚度,也称为跳跃接触。引入了动态操作模式来解决接触模式的局限性。动态操作模式的基本思想依赖于对悬臂的谐波振荡的解调,以控制尖端-样本分离。调幅(AM)是最广泛使用的动态操作模式之一。AM基于振荡的解调以恒定的激励信号驱动悬臂时,激励信号和振荡信号之间的相位差、振幅和/或相位差。仅涉及一个控制回路来控制AM-AFM中恒定激励信号的尖端-样本分离。因此,AM-AFM的使用相对简单。尽管AM-AFM易于实现,但它在机械上受到限制,特别是在真空条件下。更具体地说,振荡幅度的稳定时间与悬臂的质量因子成比例。因此,由于在真空条件下缺乏粘性阻尼,AM调制的使用是不可行的。此外,超出现有AFM硬件能力的机械不稳定性和振幅变化阻碍了传统AM-AFM在真空条件下的使用。AM-AFM的替代品是调频原子力显微镜(FM-AFM),它基于尖端-样品相互作用下悬臂共振频率的解调。FM-AFM消除了AM-AFM的限制;然而,它需要一个相对复杂的控制架构,因为激励信号由于尖端-样本相互作用而变化。FM-AFM通常在真空条件下使用,因为信噪比随着高质量因子的提高而提高;然而,它也可以在环境下甚至在液体环境中使用。FM-AFM能够以高分辨率测量尖端-样本相互作用力,即作用力为皮牛顿,距离为皮米。此外,随着原子工程尖端的最新进展,有可能评估不同原子侧的直接化学表征。除了FM-AFM的精确力和距离控制外,FM-AFM还利用其时间分辨测量的潜力覆盖了AM-AFM,其中尖端-样本相互作用力是作为时间的函数测量的。然而,已经从理论上证明并通过实验验证了基于FM的测量的时间分辨率不受机械限制。在这里,科研人员展示了具有新的硬件和软件集成的商业原子力显微镜系统的定制。尽管最初的设置,VEECO的EnviroScope扫描探针显微镜(SPM)带有NanoScope®IIIa控制器,具有用户友好的功能(例如,易于访问样品和尖端以及样品和/或尖端的温度控制),但它只能进行接触模式和基于AM AFM的形貌测量,并具有原始的力谱能力。我们实现了一个锁相环、一个高压放大器和一个新的显微镜控制器,用于FM-AFM的自动测量。我们用环境条件下的实验来说明我们的定制。更具体地说,我们进行了FM-AFM形貌实验、接触电势差测量、基于FM AFM的力谱测量、时间分辨原子力显微镜测量和跨台阶边缘的二维力谱测量。尽管每个商业系统都有自己的特点(例如,驱动步进电机进行粗略处理,访问所有数据信号以及高压信号的能力,以及用于样本定位的摄像头连接),但许多(商业)系统也可以进行类似的升级/定制。因此,我们相信我们的方法将对其他扫描探针显微镜有用。
  • 环境型原子力显微镜和扫描电镜联用 助力检测橡胶样品
    设备: 日立环境型原子力显微镜 AFM5300E   日立扫描电子显微镜 SU3500背景及目的SEM是检测电子束扫描样品所生成的2次电子,背闪射电子,特征X射线等信号,得出样品结构,成分,结晶特性,元素分布等信息。另一方面,SPM是利用探针和样品表面的相互作用,表征高精度样品形貌及硬度和摩擦力,吸附力等敏感的力学物理特性及电流,电气阻抗,表层电位,压电特性,磁性等电磁物理特性。在这里我们介绍,包含氧化铅和硫磺的橡胶样品的SEM背闪射电子图像和X射线面分布像及利用SPM的形貌像(AFM像)和相位像(Phase像)的观察结果。1) Phase像根据样品表面的硬度和吸附力对比,利用共振悬臂的相位变化成像物理特性的方法。图1 SPM、SEM的检测信息和橡胶样品中的应用2) 观察结果图2 橡胶样品的SEM、SPM观察同一视野结构观察在背闪射电子像(BSE像)里重元素的对比度高,EDX元素分析得知这个区域含有铅元素和氧元素。SPM的Phase像观测中我们选用两类橡胶的弹性有较大差别的冷却温度-10℃,致使微区当中明显区分两种橡胶分布。SEM和SPM联系起来,表面的形貌和元素,结构,各种物理特性(力学特性和电磁特性)的面分析信息相结合,给基础研究,产品研发等提供更多观察及分析手段。 关于日立环境型原子力显微镜 AFM5300E,请点击:http://www.instrument.com.cn/netshow/SH102446/C244320.htm关于日立扫描电子显微镜 SU3500,请点击:http://www.instrument.com.cn/netshow/SH102446/C168115.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 张承青系列约稿[1]:之一 电子显微镜实验室环境调查的必要性
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之一,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之一 电子显微镜实验室环境调查的必要性电子显微镜是一种高精密仪器设备。电子显微镜能良好成像正常工作的必要条件除了电镜设备本身质量过硬之外,磁场震动声波独立地线房间设置等周边环境也是一个重要条件(当然当然,还必须有良好的制样和正确的操作)。但是环境因素往往是动态变化的,每天不同时刻、每周不同日期等,都会有所不同,所以可能被忽视或者误判。因为除了声波是可以感觉到的以外,磁场是看不见摸不着,低频震动(1~20Hz)也是人类难以觉察到的。但是因为这些环境因素造成成像质量差、图片分辨率和清晰度等问题,可能会误导我们查找原因的方向,或者产生无谓的纠纷。中国电镜界以前一般把“site survey”翻译成:“场地测试”,这是不对的,还是称为“环境调查”比较贴切。“survey”的原意也并不仅限于“测试”和“测量”,还有“调查”和“整体调研”的意思。小小一个翻译偏差,造成工作方向大大不同。虽然环境调查中很重要的一环就是场地测试,但是不能用场地测试来代替环境调查。这不是咬文嚼字,真的是大有区别呢。环境调查需要综合考察了解多项信息,需要全面考察场地周围具体情况,如周边及上下楼层输送和使用电力情况、楼房(厂房)结构、运输通道、电梯承重及开门大小、附近是否有产生较大振动的设备(可能是间歇工作)、安装中或即将安装(包括近、中、远各期规划)的设备、甚至周边区域的输电线给配电设施隧道地铁等环境干扰因素,然后进行综合性的考量。场地环境调查还包括对电镜及其配套设施设备的安装布局进行合理规划。如环境不达安装标准还需要和用户充分沟通后期可能出现的问题以及解决方案(包括预见到整改所需投入的人力物力时间等资源)。电镜安装前的环境调查可以前瞻性地预先采取适当措施,减少以至避免周边环境的干扰;电镜安装后的环境调查可以协助判断图像质量不好的原因,缩小问题查找范围(环境是动态变化的,一段时间后变差是大概率事件)。实例如武汉某电子公司所使用的电镜,因为用户没有按照要求配置独立地线,以及事先没有做好前瞻性的环境调查和场地规划,导致电镜没有专用的独立地线而只能使用公共地线代替。且由于变压器和UPS距离镜筒的距离过近,这些设备产生的AC磁场不能有效衰减至不影响成像的程度,后来的检测还发现周围环境(楼上附近区域有强电磁干扰源)也是磁场超标的重要原因之一,这些因素叠加致使电镜成像极差。由于用户对于安装环境的重要性没有足够的认知造成不理解和不认可,误认为是电镜厂家掩饰设备质量问题,原本很简单的技术问题升级为用户和厂商的纠纷。环境对电子显微镜的干扰和影响,正日益受到各电镜厂商的重视。针对具体场地的需要,针对不同类型的干扰,采取不同的方法,选用性价比最优的解决方案,这些目前在技术上都已经相当成熟,各种配套解决方案也已经在大量实践中得到验证和确认。然而如何选择各种整改措施,还是依赖于对场地环境全面的调查了解。场地环境调查实际上就是:借助专业技术人员,使用专用精密测试仪器,以不同品牌型号的设备安装要求为依据,依靠专业理论和实践经验,对电镜安装场地的现状及可预见的将来做出科学合理的解释和预判,尽量避免不必要的麻烦,取得事半功倍的效果。反过来另一方面也值得注意:各个品牌的电镜对环境的具体要求,是按照其最高指标的要求。也就是说,如果某些环境指标不达标,并不会因此造成电镜故障或者损坏,只是不能达到该电镜的最佳指标而已。如果基本用不到电镜的高精度指标的话,对环境的要求可以适当有所降低(有时可以省好几十万呢)。但这必须与用户有充分的沟通,本人刚入行时没有经验,有过切身经验教训呢(咳,不提了)。所以电镜的环境调查工作,绝不是可有可无,需要由有经验、有认真负责精神的、全面性、前瞻性、切实与用户沟通的人去做。近年来我国经济高速发展,电镜配置随之日益普及,老用户升级换代,新用户也不断涌现,电镜环境调查这个“老生常谈”看来还得继续谈下去。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 高真空可控环境型原子力显微镜 AFM5300E
    产品介绍AFM5300E配置专业的真空腔体,可在环境控制条件下原位对样品微观尺度的形貌及物性进行观测分析。真空环境下可大幅降低氧化、水膜吸附等对样品真实情况的影响;真实测量特殊条件下材料的性能。让研究达到常规原子力显微镜无法企及的高度和深度。产品特点1、环境控制:具备常温大气,高真空、高低温、气氛、液相、湿度等环境功能;2、多功能配置:接触式,轻敲式,SIS(样品智能扫描)等工作模式,能进行三维形貌,电磁及机械力学性能观察分析,独有的极高分辨的SNDM(扫描非线性介电显微镜);3、操作便捷:激光器/样品移动螺杆置于真空腔外;触点式控温台/扫描器设计;4、真空转移:一体化提供离子研磨仪、高分辨扫描电镜、可控环境原子力显微镜,使用真空转移盒可保护样品在各个设备间转移测量,避免大气暴露; 5、高分辨:真空下极高的相位及磁畴分辨能力。 公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 高校与日立、牛津仪器等开发新型显微镜:可极端高温高压环境工作
    p 【据北卡罗来纳州立大学2018年7月9日报道】一种新的显微镜技术可让研究人员实时跟踪材料的微观结构变化,即使材料在极端高温和高压的服役环境中也能实现。最近,研究人员发现了一种名为“合金709”的不锈钢合金具有在如核反应堆结构等更高温度服役环境下应用的潜力。br//pp  此项发明论文的作者、北卡罗来纳州立大学机械和航空航天工程系的教授Afsaneh Rabiei表示,合金709具有极高的强度,并且在长时间在高温环境下工作时能够抵抗损坏,这使其成为可用于下一代核电站的潜在材料。/pp  但是,合金709是一种全新材料,其在高温和高压下的性能人们还尚未全面了解。要想使用这种合金,美国能源部需要更好地了解其热机械性能和结构特性,以确定其在核反应堆中的可行性。/pp  为了解决美国能源部的问题,Rabiei找到了一种全新的解决方案。她与三家公司——日立、牛津仪器和Kammrath& Weiss GmbH ——开展合作,开发了一种新技术,使她实验室具有对材料试样施加极高的热量和载荷的情况下能够实时使用扫描电子显微镜(SEM)的能力。/pp  “这意味着我们可以在热机械测试过程中观察到材料的裂纹扩展、损伤成核和微观结构变化,这些变化与所有主体材料有关——不仅仅是合金709。”Rabiei表示,“这种显微镜可以帮助我们了解材料在从室温到1000摄氏度,以及从0到2千兆帕的应力等各类条件下失效的位置和原因。”/pp  Rabiei的团队与英国伯明翰大学合作,评估合金709在高温和高载荷条件下的机械和微观结构特性。/pp  研究人员将厚度为1毫米的合金709样品放置在高达950摄氏度的温度下,直到材料“失效”,这意味着材料主体结构已经损毁。/pp  “合金709的性能优于316不锈钢,而316不锈钢是目前在核反应堆中主要使用的。”Rabiei表示,“研究表明,合金709的强度在所有温度下均高于316不锈钢,这意味着合金709在失效前,可比316不锈钢承受更大的压力。例如,合金709可以在950℃的服役环境下承受尽可能多的载荷,而316不锈钢只能在538℃的条件下实现相同的效果。/pp  Rabiei表示,最新的显微镜技术可以使人们能够在整个温度和压力变化过程中,监测材料的孔洞成核和裂纹扩展以及微观结构的所有变化。/pp  这是一项很有前景的发现,但目前仍有很多工作需要完成。Rabiei表示,该工作的下一步是研究合金709在高温环境下,施加周期性载荷或重复应力时如何发挥作用。”/pp  相关论文“不同温度下合金709的拉伸性能研究”目前已发表在“材料科学与工程”杂志中。该论文的第一作者是前北卡罗来纳州立大学研究生Swathi Upadhayay。该论文由伯明翰大学的Hangyue Li和Paul Bowen共同撰写。这项工作得到了能源部的资助,编号为2015-1877/DE-NE0008451,英国研究与创新奖项号为EP/N016351/1。(中国航空工业发展研究中心 陈济桁)/p
  • ECHO REVOLVE显微镜在环境镉、细菌和宿主相互作用研究中的应用
    前言环境镉的膳食摄入量高,生物半衰期长,直接或通过肠道微生物群损害生理功能,是一种严重的健康风险。然而,环境镉对微生物和宿主系统的毒性机制尚不清楚。中科院营养代谢与食品安全重点实验室和上海交通大学医学院的科学家在《Hazardous Materials》杂志联合发表了一篇名为《Cadmium accelerates bacterial oleic acid production to promote fat accumulation in Caenorhabditis elegans》的文章,本研究建立了三个线虫和大肠杆菌培养系统,以研究微生物在镉诱导的脂质毒性中的重要作用,阐明了镉通过细菌代谢物在体内诱导脂质积累的机制,并揭示了环境镉、微生物和宿主之间的相互作用。本研究使用ECHO REVOLVE正倒置一体荧光显微镜(RVL-100-G,Discover ECHO,US)检测VS29蠕虫的GFP荧光。激发和检测波长分别为470–495 nm和510–550 nm。使用图像处理和分析软件对荧光图像进行分析,计算其平均荧光密度。图A ECHO REVOLVE正倒置一体荧光显微镜拍摄转基因VS29蠕虫中GFP:dgat-2表达的代表性图像(左图)和相对定量(右图)(n≥ 15) 在成年期的第1、3、5和7天。比例尺:210µm。研究表明,镉暴露导致细菌代谢物的组成存在显著差异。油酸被确定为表达差异最大的代谢物。镉暴露显著增加了油酸的含量,表明镉具有特定的诱导效应。通过在正常和代谢失活系统中直接添加到秀丽隐杆线虫,进一步证实了油酸对体脂积累的影响。因此,研究发现镉诱导的复合差异(尤其是油酸的增加)而不是数量变化介导了镉对宿主的影响。除了油酸的产生外,还发现低剂量镉暴露可提高细菌中油酸合成相关基因(fabA、fabB、fabD、fabG、fabH、fabI、fabZ和accA)的表达。并且添加油酸增加了秀丽隐杆线虫的脂质合成和代谢相关基因(fat-5、fat-7、acs-11和sbp-1)的表达,这与镉暴露线虫中的现象相似。值得注意的是,与镉暴露不同,油酸对秀丽隐杆线虫体内脂质积累的影响是直接且独立于培养系统的,这表明升高的细菌油酸是环境镉促进宿主体内脂质积累的效应器。综上所述,本研究提出了一个模型来说明环境镉、细菌和线虫之间的相互作用。本研究首先集中于环境中低剂量镉引起的细菌代谢产物改变及其对镉暴露与宿主毒性之间关系的影响。本研究还探究了维生素D3在镉诱导的脂肪积累中的作用。补充维生素D3可显著降低低剂量镉加速的秀丽隐杆线虫体内的脂肪含量,表明补充维生素D3有可能防止环境镉暴露引起的脂肪异常积累。研究亮点:▶ 本研究发现在有活细菌系统中的线虫,镉提高了细菌代谢产物油酸的产生,并提高了其合成基因的表达。从而进一步促进了线虫脂肪代谢相关基因的表达和脂肪沉积。▶ 本研究发现了维生素D3的潜在保护作用,可以显著防止镉或油酸诱导的脂肪沉积,可以降低环境镉的脂质毒性,这些发现为镉引起的健康风险和毒理学机制提供了深入的见解。原文:https://doi.org/10.1016/j.jhazmat.2021.126723Revolve Gen 2正倒置一体电动荧光显微镜新一代Revolve Gen 2正倒置一体电动荧光显微镜,拥有流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字处理功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。
  • 349万!卡尔蔡司中标华中科技大学环境扫描电子显微镜采购项目
    一、项目编号:WHCSIMC2022-1308734ZF(H),HW20220593(招标文件编号:WHCSIMC2022-1308734ZF(H))二、项目名称:华中科技大学环境扫描电子显微镜采购项目三、中标(成交)信息供应商名称:广东省中科进出口有限公司供应商地址:广州市越秀区先烈中路100号大院9号102房自编A一楼(仅限办公)中标(成交)金额:349.7000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 广东省中科进出口有限公司 环境扫描电子显微镜 卡尔蔡司 ZEISSEVO 15 一台 3497000
  • 350万!华中科技大学环境扫描电子显微镜采购项目
    项目编号:WHCSIMC2022-1308734ZF(H),HW20220593项目名称:华中科技大学环境扫描电子显微镜采购项目预算金额:350.0000000 万元(人民币)最高限价(如有):350.0000000 万元(人民币)采购需求:1.本次公开招标共分1个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。(1) 项目包编号:1(2) 项目包名称:环境扫描电子显微镜(3) 类别:货物(4) 数量:一台(5) 简要技术要求:详见招标文件第三章内容。(6) 采购预算:350万元人民币(7)其他:本项目接受进口设备投标合同履行期限:交货期: 六个月以内到货,到货后一个月内完成安装调试。质保期:整机及所有第三方厂商软、硬件提供五年的原厂免费保修,保修期内设备的零备件费用、人工费用和差旅费用(耗材费用除外)均由卖方承担,保修期内提供软件、数据库等免费升级服务,保修期自验收合格签字之日起计算。本项目( 不接受 )联合体投标。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • 110万!中国科学院生态环境研究中心高分辨原子力显微镜采购项目
    项目编号:HSZT2022HG/150项目名称:中国科学院生态环境研究中心高分辨原子力显微镜采购项目预算金额:110.0000000 万元(人民币)最高限价(如有):110.0000000 万元(人民币)采购需求:本项目不分包,遴选1家供应商为采购人提供如下设备采购:序号采购设备名称数量(台/套)最高投标限价(人民币:万元)是否允许采购进口产品1高分辨原子力显微镜1110是 具体内容及要求详见招标文件第三部分“采购内容及要求”。合同履行期限:交货日期:合同生效后6个月内本项目( 不接受 )联合体投标。
  • 600万!上海交通大学环境型扫描电子显微镜采购项目
    项目编号:0773-2341SHHW0018/校内编号:招设2023A00077项目名称:上海交通大学先进结构与功能镁合金创新平台-环境型扫描电子显微镜预算金额:600.0000000 万元(人民币)最高限价(如有):600.0000000 万元(人民币)采购需求:设备名称:环境型扫描电子显微镜数量:1套简要技术参数:*1.1、二次电子分辨率:≤0.7nm@15kV(二次电子成像),≤1.2nm@1kV(非样品台减速模式);其余详见“第八章货物需求一览表及技术规格”。设备用途:该设备可以在扫描电镜中完成原位液氛样品的观察与表征,可以对原位电化学反应过程实时动态记录。该系统应用领域广泛,可面向金属腐蚀、电池动力学、化学催化、环境与矿物学等领域实现原位电化学过程的模拟和观察,还原样品真实服役环境下的原位动态电化学反应过程。交货期:合同签订后11个月内交付地点:上海交通大学用户指定地点合同履行期限:合同签订后11个月内本项目( 不接受 )联合体投标。获取招标文件时间:2023年03月01日 至 2023年03月08日,每天上午9:30至11:30,下午13:30至16:30。(北京时间,法定节假日除外)地点:上海市四平路200号盛泰国际大厦606室方式:(1)投标人报名时须先登录“上海交通大学数字化采购平台(https://pboffice.sjtu.edu.cn/)” 供应商注册进行网上注册并通过实名认证。(2)注册转账之后,请务必发邮件说明。邮件主题包含:投标人名称+项目编号+项目名称,邮件附件包含:网上转账凭证。发送至zjzb2022@126.com售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:上海市闵行区东川路800号        联系方式:招采办经办人:陈老师 86-21-54744366/技术联系人:杨老师 13308894397      2.采购代理机构信息名 称:中金招标有限责任公司            地 址:上海市四平路200号盛泰国际大厦606室            联系方式:宋晓飞、张莹莹、朱杨峰 86-21-66059798*108            3.项目联系方式项目联系人:宋晓飞、张莹莹、朱杨峰电 话:  86-21-66059798*108
  • 超30亿预算!10月发布显微镜(含电子显微镜等)采购意向汇总
    近日,科学仪器行业迎来了前所未有的利好消息。2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。 2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7%(加上此前中央财政贴息2.5个百分点)。这两大重磅政策提供极低利息的贷款给消费端提前进行设备购置和更新改造,推动我国仪器市场迎来新一波仪器采购大潮。仪器信息网注意到,10月7日以来,44所高校院所等单位发布的399项采购意向涉及显微镜(包括电子显微镜等),采购预算总额约33亿元。10月份含显微镜(含电子显微镜等)采购意向汇总序号项目名称预算金额(万元)采购单位发布时间预计采购时间查看1分析测试中心冷冻传输系统和冷冻传输样品杆采购项目320北京理工大学10月26日2022年12月意向原文2分析测试中心原位微区气氛系统采购项目290北京理工大学10月26日2022年12月意向原文3真空转移型高分辨场发射扫描电子显微镜560复旦大学10月26日2022年12月意向原文4原位催化型XPS互联高空间分辨表征系统540复旦大学10月26日2022年12月意向原文5高通量介孔储能材料原位电化学聚光镜单球差透射电镜1900复旦大学10月26日2022年12月意向原文6多功能多气氛环境介孔催化剂评价用图像矫正器透射电镜1300复旦大学10月26日2022年12月意向原文7材料加工-原位加热-结构表征双束多功能综合平台360复旦大学10月26日2022年12月意向原文8复杂结构解析及电热功能原位分析高通量-高分辨表征平台580复旦大学10月26日2022年12月意向原文9高分辨热场发射扫描电子显微镜采购242中山大学10月26日2022年11月意向原文10全自动高分辨快速成像系统采购152中山大学10月26日2022年11月意向原文11激光共聚焦显微镜采购260中山大学10月25日2022年11月意向原文12近红外上转化共聚焦显微镜440华中科技大学10月25日2022年11月意向原文13超高分辨激光共聚焦显微镜420华中科技大学10月25日2022年11月意向原文14智能超灵敏活细胞超分辨显微镜450华中科技大学10月25日2022年11月意向原文15西南交通大学高水平公共测试服务平台建设项目采购2900西南交通大学10月25日2022年11月意向原文16(材料型)原子力显微镜150复旦大学10月25日2022年11月意向原文17超高分辨激光共聚焦显微镜520浙江大学10月25日2022年12月意向原文18原位微纳热力分析型聚焦离子束/电子束扫描电镜836上海交通大学10月25日2022年12月意向原文19中国农业科学院蔬菜花卉研究所国家蔬菜种质资源中期库建设项目122中国农业科学院蔬菜花卉研究所10月24日2022年11月意向原文20西南交通大学复杂环境路面材料耐久性能测试系统采购177西南交通大学10月24日2022年11月意向原文21西南交通大学轨道结构材料响应细微观表征分析平台采购120西南交通大学10月24日2022年11月意向原文22西南交通大学扫描电镜能谱一体机采购140西南交通大学10月24日2022年12月意向原文23共聚焦激光扫描显微镜520浙江大学10月24日2022年11月意向原文24多光子共聚焦显微镜350中国科学院宁波材料技术与工程研究所10月24日2022年12月意向原文25双光子显微镜系统300浙江大学10月24日2022年11月意向原文26先进能源学院 场发射扫描电镜200中山大学10月23日2022年11月意向原文27先进能源学院 扫描电化学显微镜130中山大学10月23日2022年11月意向原文28先进能源学院 原子力显微镜100中山大学10月23日2022年11月意向原文29核科学与技术学院+核材料制备装置120兰州大学10月22日2022年12月意向原文30阜外医院医疗设备购置项目20000中国医学科学院阜外医院10月21日2022年11月意向原文31光发射电子显微镜1500南京大学10月21日2022年12月意向原文32冷冻电镜8000南京大学10月21日2022年12月意向原文33球差矫正透射电子显微镜3000南京大学10月21日2022年12月意向原文34场发射高分辨透射电镜800南京大学10月21日2022年12月意向原文35200kV透射电镜350南京大学10月21日2022年12月意向原文36120kV透射电镜600南京大学10月21日2022年12月意向原文37环境扫描电子显微镜420南京大学10月21日2022年12月意向原文38扫描电子显微镜600南京大学10月21日2022年12月意向原文39透射电镜原位纳米力学测试系统190南京大学10月21日2022年12月意向原文40显微镜操作平台250江南大学10月21日2022年12月意向原文41原子力显微镜200南京大学10月20日2022年12月意向原文42高分辨扫描电子显微镜与阴极荧光系统490南京大学10月20日2022年12月意向原文43显微操作系统、倒置显微镜160山东大学10月20日2022年11月意向原文44自动活细胞成像系统180山东大学10月20日2022年11月意向原文45光片显微成像系统580山东大学10月20日2022年11月意向原文46兰州大学现代化工程训练中心项目建设方案(电工电子基础训练及创新中心)——电子产品装配与检测模块68.22兰州大学10月20日2022年11月意向原文47家畜生物学国家重点实验室培育建设项目2098西北农林科技大学10月20日2022年11月意向原文48未来农业研究院平台建设项目1815西北农林科技大学10月20日2022年11月意向原文49超高分辨率活细胞三维长时程成像系统877.5复旦大学10月20日2022年12月意向原文50转盘式激光共聚焦显微镜675复旦大学10月20日2022年12月意向原文51多功能共聚焦显微拉曼成像系统298北京大学10月20日2022年12月意向原文52CSU转盘式扫描高速共聚焦成像380华南理工大学10月20日2022年11月意向原文53粤港澳中枢神经再生研究院科研设备121.5暨南大学10月20日2022年12月意向原文54快速扫描电子显微镜500上海交通大学10月20日2022年11月意向原文55电子探针系统600中山大学10月19日2022年11月意向原文56低能电子成像系统880中山大学10月19日2022年11月意向原文57场发射扫描电镜350中山大学10月19日2022年11月意向原文58场发射透射电镜1000中山大学10月19日2022年11月意向原文59拉曼-原子力显微镜联用系统200中山大学10月19日2022年11月意向原文60光子技术研究院科研设备987.7暨南大学10月19日2022年12月意向原文61基础医学与公共卫生学院科研设备429暨南大学10月19日2022年12月意向原文62场发射透射电子显微镜800湖南大学10月19日2022年11月意向原文63化学本科实验教学分析表征平台仪器设备购置664兰州大学10月19日2022年11月意向原文64药学实验教学中心升级改革——倒置荧光显微镜27浙江大学10月19日2022年12月意向原文65双球差矫正透射电子显微镜、场发射透射电镜2900北京大学10月19日2022年12月意向原文66材料科学与工程教学实验室规划、改造与建设630华北电力大学10月19日2022年11月意向原文67科研设备更新改造专项-场发射透射电子显微镜900中山大学10月19日2022年12月意向原文68中山医学院荧光显微镜(3台)采购105中山大学10月19日2022年11月意向原文69科研设备更新改造专项-聚焦离子束双束电子显微镜790中山大学10月19日2022年12月意向原文70电能转换与智慧用电教育部工程研究中心实验平台建设1889华北电力大学10月19日2022年12月意向原文71新能源电力系统国家重点实验室仪器设备升级更新项目7242华北电力大学10月19日2022年12月意向原文72国家储能技术产教融合创新平台5000华北电力大学10月19日2022年12月意向原文73新能源发电国家工程研究中心平台建设与设备更新4000华北电力大学10月19日2022年12月意向原文74氢能科学与工程学科及高水平科研平台建设5037华北电力大学10月19日2022年12月意向原文75低碳能源系统功能新材料开发与微纳制造平台4992华北电力大学10月19日2022年12月意向原文76清洁高效燃煤发电关键技术与装备集成攻关大平台4272华北电力大学10月19日2022年12月意向原文77新能源高效转换与特性研究4400华北电力大学10月19日2022年12月意向原文78水利工程学科科学研究706.6华北电力大学10月19日2022年12月意向原文79多维度单分子超分辨表征系统600浙江大学10月19日2022年11月意向原文80白激光共聚焦系统410西安电子科技大学10月19日2022年11月意向原文81化学化工学院高时空分辨显微成像设备采购项目350兰州大学10月19日2022年12月意向原文82材料科学与工程高水平研究平台建设项目2900武汉理工大学10月18日2022年11月意向原文83中南大学资源与安全工程学院新材料/能源环境控制与安全防控技术采购项目1541中南大学10月18日2022年11月意向原文84激光共聚焦显微镜(更正)490清华大学10月18日2022年11月意向原文85材料特征微区原位拉伸形貌分析仪150清华大学10月18日2022年11月意向原文86生物透射电子显微镜440清华大学10月18日2022年11月意向原文87双束三维立体生物成像电子显微镜950清华大学10月18日2022年11月意向原文88高通量切片扫描成像系统206清华大学10月18日2022年11月意向原文89活细胞晶格激光片层扫描显微镜830清华大学10月18日2022年11月意向原文90高分辨率X射线显微镜800清华大学10月18日2022年11月意向原文91快速超高分辨激光共聚焦显微镜450清华大学10月18日2022年11月意向原文92连续光谱激光共聚焦显微镜650清华大学10月18日2022年11月意向原文93多元多相燃料高效清洁混燃研究平台建设665华北电力大学(保定)10月18日2022年12月意向原文94光伏制储氢发电一体化技术研究平台340华北电力大学(保定)10月18日2022年11月意向原文95高分辨率电子显微镜1000南京大学10月18日2022年11月意向原文96多功能可控环境扫描探针显微镜300南京大学10月18日2022年11月意向原文97高倍显微镜260南京大学10月18日2022年11月意向原文98多功能超高分辨荧光分析与激光共聚焦系统970北京理工大学10月18日2022年11月意向原文99原位透射电镜表征系统2156北京理工大学10月18日2022年12月意向原文100功能有机分子化学国家重点实验室+原子力显微镜采购项目250兰州大学10月18日2022年11月意向原文101偏光显微镜60兰州大学10月18日2022年12月意向原文102包裹体测温测压系统80兰州大学10月18日2022年12月意向原文103单分子时间分辨共聚焦荧光显微系统(已有显微镜光谱系统更新)150浙江大学10月18日2022年11月意向原文104全功能扫描光电化学显微镜210浙江大学10月18日2022年11月意向原文105多功能化学成像系统1050浙江大学10月18日2022年11月意向原文106多维度单分子超分辨表征系统1215浙江大学10月18日2022年11月意向原文107表面等离子体共振显微镜300浙江大学10月18日2022年11月意向原文108高分辨多模态近场纳米光学原子力成像系统330山东大学10月18日2022年12月意向原文109超高分辨率场发射扫描电镜400厦门大学10月18日2022年12月意向原文110冷冻切片传输微加工系统585华南理工大学10月18日2022年11月意向原文111双光子激光共聚焦显微镜1000华南理工大学10月18日2022年11月意向原文112广东农工商职业技术学院化学品智能安全管理与实验教学中心设备建设项目372.9广东农工商职业技术学院10月17日2022年11月意向原文113正置荧光显微镜采购项目105北京师范大学10月17日2022年11月意向原文114光片荧光显微镜采购项目580北京师范大学10月17日2022年11月意向原文115中山大学科研设备更新改造专项-活细胞功能分析系统采购190中山大学10月17日2023年6月意向原文116中山大学科研设备更新改造专项-化学发光成像系统采购40中山大学10月17日2023年6月意向原文117中山大学科研设备更新改造专项-切片扫描系统采购168中山大学10月17日2023年6月意向原文118一体化荧光显微成像系统270中山大学10月17日2022年12月意向原文119显微注射系统55中山大学10月17日2022年12月意向原文120中山医学院倒置显微镜(2台)采购100中山大学10月17日2022年11月意向原文121高速双光子显微镜220清华大学10月17日2022年11月意向原文122场发射透射电子显微镜600南京大学10月17日2022年11月意向原文123环境扫描电子显微镜400南京大学10月17日2022年11月意向原文124双球差矫正透射电镜2000南京大学10月17日2022年11月意向原文125微结构加工与成像系统138浙江大学10月17日2022年10月意向原文126tirf全内返荧光显微镜180江南大学10月17日2023年6月意向原文127开尔文探针原子力显微镜220重庆大学10月17日2022年12月意向原文128高通量脑切片成像系统230中国科学院脑科学与智能技术卓越创新中心10月17日2022年11月意向原文129原子力显微镜230北京理工大学10月17日2022年11月意向原文130压电力显微镜180北京理工大学10月17日2022年11月意向原文131高通量低电压透射电子显微镜467北京理工大学10月17日2022年11月意向原文132原子力显微镜350山东大学10月17日2022年11月意向原文133FRET显微镜测定分析系统155山东大学10月17日2022年11月意向原文134微流场测试系统190山东大学10月17日2022年12月意向原文135原子力显微镜390山东大学10月17日2022年11月意向原文136单细胞荧光扫描显微镜120山东大学10月17日2022年12月意向原文137表面共振显微镜400山东大学10月17日2022年11月意向原文138激光扫描共聚焦显微镜195山东大学10月17日2022年12月意向原文139200KV冷冻透射电镜3750山东大学10月17日2022年11月意向原文140显微高速摄像系统190山东大学10月17日2022年12月意向原文141北京大学医学部冷冻电镜系统(一批)采购项目8500北京大学10月17日2022年11月意向原文142北京大学医学部200KV多用途场发射透射电子显微镜采购项目730北京大学10月17日2022年11月意向原文143全自动3D全息无标记活细胞成像系统200江南大学10月17日2022年11月意向原文144材料与能源学院新材料与新能源实验教学平台建设项目-数字显微镜25兰州大学10月17日2022年11月意向原文145材料与能源学院新材料与新能源实验教学平台建设项目-桌面型扫描电镜85兰州大学10月17日2022年11月意向原文146材料与能源学院新材料、新能源科研平台建设项目-原位高分辨显微织构测试系统510兰州大学10月17日2022年11月意向原文147材料与能源学院新材料、新能源科研平台建设项目-激光干涉多物理场传感成像系统480兰州大学10月17日2022年11月意向原文148橡胶类冷冻扫描分析系统520华南理工大学10月17日2022年11月意向原文149冷冻切片传输微加工系统585华南理工大学10月17日2022年11月意向原文150原子力显微镜220华南理工大学10月17日2022年11月意向原文151中南大学湘雅医学院冷冻电子显微镜平台采购项目8000中南大学10月16日2022年11月意向原文152中南大学湘雅医学院形态学平台科研设备采购项目18053中南大学10月16日2022年11月意向原文153中南大学湘雅医学院分子生物学平台采购项目15407中南大学10月16日2022年11月意向原文154中山医学院荧光显微镜(2台)采购150中山大学10月16日2022年11月意向原文155超高分辨率激光共聚焦显微镜500中山大学10月16日2022年11月意向原文156中山医学院激光共聚焦显微镜(全光谱)采购415中山大学10月16日2022年11月意向原文157中山医学院双束扫描电子显微镜采购800中山大学10月16日2022年11月意向原文158中山医学院多维活细胞灌流成像系统采购120中山大学10月16日2022年11月意向原文159原位透射电镜样品杆420复旦大学10月15日2022年11月意向原文160液相原子力显微镜350复旦大学10月15日2022年11月意向原文161聚焦离子束场发射扫描电子显微镜800华南理工大学10月15日2022年11月意向原文162台式扫描电子显微镜150华南理工大学10月15日2022年11月意向原文163中南大学高水平公共卫生学院建设采购项目6600中南大学10月15日2022年11月意向原文164中南大学医学精准诊断实验平台、高端医学影像实验平台、医学智能计算实验平台建设采购项目3000中南大学10月15日2022年11月意向原文165透射电子显微镜520吉林大学10月15日2022年12月意向原文166超高分辨激光共聚焦显微镜315吉林大学10月15日2022年11月意向原文167全自动数字玻片扫描系统280吉林大学10月15日2022年11月意向原文168倒置荧光显微成像及显微操作系统200吉林大学10月15日2022年11月意向原文169活细胞工作站320吉林大学10月15日2022年11月意向原文170高光谱显微镜--显微平台220南京农业大学10月14日2022年11月意向原文171膜蛋白结晶工作站150中山大学10月14日2022年12月意向原文172X射线显微镜900中山大学10月14日2022年11月意向原文173超分辨率显微镜650中山大学10月14日2022年12月意向原文174高通量分子相互作用分析仪0.03中山大学10月14日2022年12月意向原文175自动换液成像培养设备680中山大学10月14日2022年12月意向原文176高分辨率激光共聚焦显微镜580中山大学10月14日2022年12月意向原文177细胞无损实时监测系统100中山大学10月14日2022年12月意向原文178激光共聚焦显微镜260中山大学10月14日2022年12月意向原文179荧光斑点分析仪ELISPOT85中山大学10月14日2022年12月意向原文180高内涵成像分析系统400中山大学10月14日2022年12月意向原文181全自动外泌体提取纯化系统60中山大学10月14日2022年12月意向原文182多功能激光成像仪220中山大学10月14日2022年12月意向原文183液体闪烁计数器90中山大学10月14日2022年12月意向原文184理学院聚焦离子束-电子束系统采购项目925中山大学10月14日2022年11月意向原文185全自动活细胞荧光成像系统75中山大学10月14日2022年12月意向原文186原子力显微镜450中山大学10月14日2022年12月意向原文187化学学院多功能显微发光光谱测试系统采购项目150中山大学10月14日2022年12月意向原文188明场玻片扫描系统50中山大学10月14日2023年6月意向原文189脑片膜片钳系统(含钙成像)195中山大学10月14日2023年6月意向原文190显微注射系统85中山大学10月14日2023年6月意向原文191全光谱成像及组织微环境定量分析系统440中山大学10月14日2023年6月意向原文192细胞荧光成像系统90中山大学10月14日2023年6月意向原文193多普勒干涉原子力显微镜550中山大学10月14日2022年11月意向原文194包裹体测温测压系统80兰州大学10月14日2022年12月意向原文195双目镜3.5兰州大学10月14日2022年12月意向原文196偏光显微镜60兰州大学10月14日2022年12月意向原文197物理科学与技术学院/基于物理学科的基础学科拔尖人才培养实践教学平台建设71兰州大学10月14日2022年12月意向原文198化学学院扫描俄歇纳米探针采购项目750中山大学10月14日2022年11月意向原文199昆虫自动监测系统采购120中山大学10月14日2022年11月意向原文200化学学院形状测量激光显微系统采购项目120中山大学10月14日2023年2月意向原文201显微成像光谱系统150武汉大学10月14日2022年12月意向原文202中山医学院高通量共聚焦活细胞成像系统采购490中山大学10月14日2022年11月意向原文203中山医学院在体双光子显微成像系统采购600中山大学10月14日2022年11月意向原文204中山医学院实时无标记电阻细胞分析仪采购250中山大学10月14日2022年11月意向原文205中山医学院晶格层光显微成像系统采购800中山大学10月14日2022年11月意向原文206中山医学院荧光显微镜采购150中山大学10月14日2022年11月意向原文207化学学院 STM扫描隧道显微镜 项目150中山大学10月14日2022年12月意向原文208seahorse细胞能量代谢分析仪255中山大学10月14日2022年12月意向原文209中山医学院超分辨率显微镜采购720中山大学10月14日2022年11月意向原文210化学学院压电力显微镜采购项目300中山大学10月14日2022年12月意向原文211全自动细胞荧光显微成像90中山大学10月14日2022年12月意向原文212珠海校区高分辨共聚焦拉曼成像系统采购项目476.9北京师范大学10月14日2022年12月意向原文213多功能高分辨磁光克尔显微成像系统109吉林大学10月14日2022年12月意向原文214视频级生物型原子力显微镜330吉林大学10月14日2022年11月意向原文215场发射透射电子显微镜950吉林大学10月14日2022年11月意向原文216电镜拉曼一体化显微镜联用分析系统647.9吉林大学10月14日2022年12月意向原文217激光差动共焦显微镜120吉林大学10月14日2022年11月意向原文218超分辨共聚焦扫描显微镜368吉林大学10月14日2022年11月意向原文219超高分辨率激光共聚焦显微镜360吉林大学10月14日2022年11月意向原文220资源环境学院 拔尖创新人才培养平台建设15兰州大学10月14日2022年11月意向原文221中国科学院大学物理科学学院原子力显微镜采购项目198中国科学院大学10月14日2022年10月意向原文222超声波扫描显微镜采购项目141中山大学10月14日2022年11月意向原文223场发射电子显微镜采购项目440中山大学10月14日2022年11月意向原文224西南交通大学聚焦离子束扫描电子显微镜和场发射扫描电子显微镜购置项目1500西南交通大学10月14日2022年11月意向原文225生物医学科学与工程学院-超高分辨率倒置荧光显微镜320华南理工大学10月14日2022年11月意向原文226双转盘激光共聚焦高内涵系统550华南理工大学10月14日2022年11月意向原文227中山医学院高分辨率激光共聚焦显微镜(倒置型)采购480中山大学10月13日2022年11月意向原文228中山医学院全自动玻片扫描系统采购250中山大学10月13日2022年11月意向原文229中山医学院大组织样本光片显微镜采购435中山大学10月13日2022年11月意向原文230化学学院压电力显微镜采购项目300中山大学10月13日2023年3月意向原文231中山医学院高通量活细胞功能分析系统采购200中山大学10月13日2022年11月意向原文232中山医学院数控剪切流活细胞自动分析系统采购240中山大学10月13日2022年11月意向原文233中山医学院透射电子显微镜采购495中山大学10月13日2022年11月意向原文234飞秒激光-聚焦离子束三束电子显微镜采购800中山大学10月13日2022年11月意向原文235肖特基场发射扫描电子显微镜采购193中山大学10月13日2022年11月意向原文236中山医学院激光共聚焦显微镜(正置型)采购420中山大学10月13日2022年11月意向原文237超景深视频显微镜70中山大学10月13日2022年12月意向原文238中山医学院高分辨率荧光成像系统(倒置型)采购120中山大学10月13日2022年11月意向原文239中山医学院转盘共聚焦显微镜(倒置型)采购495中山大学10月13日2022年11月意向原文240中山医学院数字化组织原位多组学分析系统采购450中山大学10月13日2022年11月意向原文241双球差校正透射电子显微镜采购4300中山大学10月13日2022年11月意向原文242共聚焦显微镜采购182中山大学10月13日2022年11月意向原文243中山医学院多光谱组织成像分析系统采购400中山大学10月13日2022年11月意向原文244激光共聚焦显微镜700中山大学10月13日2022年11月意向原文245中山医学院激光共聚焦显微镜(正置型)采购320中山大学10月13日2022年11月意向原文246中山医学院高分辨率场发射扫描电子显微镜采购495中山大学10月13日2022年11月意向原文247中山医学院高分辨率激光共聚焦显微镜(正置型)采购480中山大学10月13日2022年11月意向原文248中山医学院高分辨率荧光成像系统(正置型)采购120中山大学10月13日2022年11月意向原文249高通量低电压透射电子显微镜467北京理工大学10月13日2022年11月意向原文250压电力显微镜180北京理工大学10月13日2022年11月意向原文251中国药科大学共聚焦显微镜项目500中国药科大学10月13日2022年11月意向原文252低压超快原子分辨透射电镜2600吉林大学10月13日2022年11月意向原文253多用途场发射透射电镜720吉林大学10月13日2022年11月意向原文254生命科学学院全自动数字玻片扫描系统采购项目210中山大学10月13日2022年11月意向原文255生命科学学院晶格层光显微镜采购项目980中山大学10月13日2022年11月意向原文256线扫描激光共聚焦显微镜450浙江大学10月13日2022年11月意向原文257球差校正电子显微镜3146吉林大学10月13日2022年11月意向原文258双球差校正透射电子显微镜3000吉林大学10月13日2022年11月意向原文259双束拉曼一体化显微镜联用分析系统647.9吉林大学10月13日2022年12月意向原文260微纳光学成像工作站557华南理工大学10月13日2022年11月意向原文261球差矫正透射电子显微镜5000华南理工大学10月13日2022年11月意向原文262超高分辨率原位动态显微成像系统575华南理工大学10月13日2022年11月意向原文263双光子激光共聚焦显微镜1000华南理工大学10月13日2022年11月意向原文264生物医学科学与工程学院-扫描探针及激光共聚焦成像系统600华南理工大学10月13日2022年11月意向原文265测试中心原子力显微镜(AFM)采购项目500中山大学10月12日2022年11月意向原文266测试中心生物型原子力显微镜采购项目443中山大学10月12日2022年11月意向原文267测试中心原子力显微镜-红外光谱联用采购项目795中山大学10月12日2022年11月意向原文268生态学院倒置荧光显微镜设备采购项目22兰州大学10月12日2022年11月意向原文269生物医学工程学院透射电子显微镜(120kV)采购项目440中山大学10月12日2022年11月意向原文270生物医学工程学院激光共聚焦显微镜(正置型)采购项目275中山大学10月12日2022年11月意向原文271生物医学工程学院桌面型扫描电镜采购项目110中山大学10月12日2022年11月意向原文272测试中心显微微区荧光寿命成像系统采购项目98中山大学10月12日2022年11月意向原文273基于高通量成像筛选设备150清华大学10月12日2022年11月意向原文274高分辨率光片系统470清华大学10月12日2022年11月意向原文275原位冷冻超分辨激光共聚焦系统400清华大学10月12日2022年11月意向原文276高分辨在体双光子激光扫描共聚焦成像系统680清华大学10月12日2022年11月意向原文277智能超灵敏活细胞超分辨显微镜480清华大学10月12日2022年11月意向原文278超高分辨三维(3View)扫描电子显微镜870四川大学华西医院10月12日2022年11月意向原文279草业科学国家级实验教学示范中心一流草学人才培养平台建设项目43兰州大学10月12日2022年11月意向原文280生命科学学院生物学野外实习科教一体化平台-农作物生长箱等设备采购项目85兰州大学10月12日2022年11月意向原文281生命科学学院细胞、免疫及显微技术科教一体化平台-荧光相差显微成像系统采购项目126兰州大学10月12日2022年11月意向原文282医学实验中心十人共览显微镜采购项目28兰州大学10月12日2022年11月意向原文283数字病理切片扫描仪120四川大学华西医院10月12日2022年11月意向原文284惰性气氛下锂电池界面表征用布鲁克原子力显微镜350华北电力大学10月12日2022年11月意向原文285超高分辨场发射扫描电子显微镜360华北电力大学10月12日2022年10月意向原文286200kV冷场发射透射电镜1600华南理工大学10月12日2022年11月意向原文287聚焦离子束场发射扫描电子显微镜800华南理工大学10月12日2022年11月意向原文288环境扫描电子显微镜400山东大学10月11日2022年11月意向原文289眼科手术显微镜20南京农业大学10月11日2022年11月意向原文290高级正置显微镜(含成像系统)5南京农业大学10月11日2022年11月意向原文291显微镜5南京农业大学10月11日2022年11月意向原文292耳科显微镜100四川大学华西医院10月11日2022年11月意向原文293微纳米尺度红外光谱成像系统725华南理工大学10月11日2022年11月意向原文294扫描隧道显微镜185华南理工大学10月11日2022年11月意向原文295四川大学华西第二医院11-12月专业设备采购4391四川大学华西第二医院10月11日2022年11月意向原文296大组织样本激光片层扫描显微镜430清华大学10月11日2022年11月意向原文297高分辨率激光片层扫描显微成像系统490清华大学10月11日2022年11月意向原文298高通量快速转盘共聚焦成像分析系统350清华大学10月11日2022年11月意向原文299公共卫生学院+核酸鉴定平台150兰州大学10月11日2022年12月意向原文300公共卫生学院+蛋白鉴定平台180兰州大学10月11日2022年12月意向原文301化学化工学院针尖增强拉曼光谱成像系统采购项目450兰州大学10月10日2022年11月意向原文302化学化工学院受激拉曼散射显微成像系统采购项目500兰州大学10月10日2022年12月意向原文303化学化工学院/分析测试中心成像质谱显微镜设备采购项目850兰州大学10月10日2022年10月意向原文304化学化工学院高效型激光共聚焦显微镜350兰州大学10月10日2022年11月意向原文305基础医学院双光子激光共聚焦成像系统设备采购项目500兰州大学10月10日2022年11月意向原文306护理学基础研究平台采购项目160兰州大学10月10日2022年12月意向原文307医学实验中心倒置荧光显微镜采购项目204兰州大学10月10日2022年11月意向原文308医学实验中心激光共聚焦采购项目330兰州大学10月10日2022年11月意向原文309医学实验中心360度全息无标记3D荧光显微镜采购项目98兰州大学10月10日2022年11月意向原文310电子增益探测正置光学显微系统160华南理工大学10月10日2022年11月意向原文3113D单分子定位显微镜260华南理工大学10月10日2022年11月意向原文312双光子激光微纳加工系统480华南理工大学10月10日2022年11月意向原文313超快高分辨原子力显微镜560华南理工大学10月10日2022年11月意向原文314超快激子扩散四维成像显微镜1050华南理工大学10月10日2022年11月意向原文315研究级倒置显微镜系统100华南理工大学10月10日2022年11月意向原文316冷冻场发射(生物)扫描电子显微镜450清华大学10月10日2022年11月意向原文317先进能源学院荧光显微镜采购项目120中山大学10月10日2022年11月意向原文318集成电路学院场发射扫描电镜(SEM)采购391.7中山大学10月10日2022年11月意向原文319集成电路学院高精度光学显微镜采购84中山大学10月10日2022年11月意向原文320集成电路学院原子力显微镜采购228中山大学10月10日2022年11月意向原文321集成电路学院金相显微镜采购80中山大学10月10日2022年11月意向原文322集成电路学院操作显微镜采购12中山大学10月10日2022年11月意向原文323高分辨场发射透射电镜2500哈尔滨工业大学10月10日2022年11月意向原文324离子/电子双束系统1400哈尔滨工业大学10月10日2022年11月意向原文325多场耦合原位微纳米力学可视化测试系统1350哈尔滨工业大学10月10日2022年11月意向原文326高分辨场发射扫描电子显微镜590哈尔滨工业大学10月10日2022年11月意向原文327高分辨镓离子双束电镜-二次离子质谱一体化系统1210哈尔滨工业大学10月10日2022年11月意向原文328扫描电镜原位高通量荧光纳米力学测试装置605哈尔滨工业大学10月10日2022年11月意向原文329西南交通大学分析测试中心测试能力提升建设项目采购120西南交通大学10月10日2022年10月意向原文330兰州大学中长期贷款项目投资估算表-拔尖创新人才培养平台60兰州大学10月10日2022年11月意向原文331兰州大学药学院荧光光学倒置显微镜采购项目45兰州大学10月10日2022年11月意向原文332兰州大学药学院荧光正置显微镜及成像系统采购项目60兰州大学10月10日2022年11月意向原文333基础医学院显微数码互动教学实验室采购项目144兰州大学10月10日2022年11月意向原文334基础医学院显微数码互动教学实验室采购项目192兰州大学10月10日2022年11月意向原文335开办费实验室设备购置第二包322.2中国医学科学院病原生物学研究所10月9日2022年11月意向原文336单分子成像和捕获系统530华南理工大学10月9日2022年11月意向原文337多势阱光镊操控系统190华南理工大学10月9日2022年11月意向原文338STED超分辨成像系统620华南理工大学10月9日2022年11月意向原文339北京大学人民医院国家创伤医学中心经费项目购转盘共聚焦显微镜185北京大学人民医院10月9日2022年11月意向原文340兰州大学生命科学学院荧光相差显微成像系统采购项目126兰州大学10月9日2022年11月意向原文341兰州大学生命科学学院红外相机等采购19.48兰州大学10月9日2022年11月意向原文342兰州大学生命科学学院激光聚焦扫描显微镜采购项目240兰州大学10月9日2022年11月意向原文343傅里叶红外光谱/红外显微镜400哈尔滨工程大学10月9日2022年11月意向原文344超快超高压原子级扫描透射电子显微镜3600哈尔滨工程大学10月9日2022年11月意向原文345氦离子束显微镜1100哈尔滨工程大学10月9日2022年11月意向原文346单光子计数共聚焦显微镜1500哈尔滨工程大学10月9日2022年11月意向原文347全通道激光共聚焦显微镜800哈尔滨工程大学10月9日2022年12月意向原文348口岸检疫查验能力提升项目20.5中华人民共和国济南机场海关10月9日2022年11月意向原文349兰州大学生命科学学院超高分辨率显微成像系统设备采购项目730兰州大学10月9日2022年10月意向原文350兰州大学生命科学学院全自动电动荧光显微镜设备采购项目68兰州大学10月9日2022年10月意向原文351物理学院/量子钻石原子力显微镜设备350兰州大学10月9日2022年11月意向原文352兰州大学生命科学学院双光子显微成像系统设备采购项目450兰州大学10月9日2022年10月意向原文353兰州大学生命科学学院激光共聚焦显微镜设备采购项目480兰州大学10月9日2022年10月意向原文354兰州大学生命科学学院高速转盘式共聚焦成像显微镜设备采购项目350兰州大学10月9日2022年10月意向原文355兰州大学生命科学学院激光片层扫描成像系统设备采购项目570兰州大学10月9日2022年10月意向原文356生命科学学院植物生理实训平台采购项目45南京农业大学10月9日2022年11月意向原文357生态学院研究级正置显微镜设备采购项目35兰州大学10月8日2022年11月意向原文358生态学院共聚焦扫描成像显微镜采购项目130兰州大学10月8日2022年11月意向原文359生态学院基因编辑与显微注射平台设备采购项目38.6兰州大学10月8日2022年11月意向原文360药学院激光共聚焦显微镜233.7中山大学10月8日2022年11月意向原文361数字PCR、多通道全自动扫描成像系统、石英晶体微天平、全自动活细胞荧光显微镜成像系统690中国医学科学院肿瘤医院10月8日2022年11月意向原文362双光子激光共聚焦显微镜680南京农业大学10月8日2022年11月意向原文363激光片层扫描显微系统410南京农业大学10月8日2022年11月意向原文364免疫荧光显微系统60南京农业大学10月8日2022年11月意向原文365Spinning disk激光共聚焦荧光显微镜500南京农业大学10月8日2022年11月意向原文366原子力显微镜350南京农业大学10月8日2022年11月意向原文367光电联用激光共聚焦显微镜400南京农业大学10月8日2022年11月意向原文368受激发射损耗显微镜620南京农业大学10月8日2022年11月意向原文369体视显微镜26南京农业大学10月8日2022年11月意向原文370全内反射荧光显微镜175南京农业大学10月8日2022年11月意向原文371荧光倒置显微镜48南京农业大学10月8日2022年11月意向原文372人文与社会发展学院金相显微镜100南京农业大学10月8日2022年12月意向原文373人文与社会发展学院扫描电子显微镜100南京农业大学10月8日2022年12月意向原文374人文与社会发展学院生物显微镜100南京农业大学10月8日2022年12月意向原文375自旋科技研究院购置激光共聚焦荧光显微镜设备项目380华南理工大学10月8日2022年11月意向原文376自旋科技研究院购置扫描探针显微镜项目294华南理工大学10月8日2022年11月意向原文377自旋科技研究院购置金刚石NV色心扫描显微镜系统项目460华南理工大学10月8日2022年11月意向原文378自旋科技研究院购置电子束曝光系统项目498华南理工大学10月8日2022年11月意向原文379双光子扫描光遗传学显微镜500北京大学10月8日2022年11月意向原文380植物保护学院教学中心仪器设备采购项目680南京农业大学10月8日2022年11月意向原文381教务处、国家级实验教学中心显微互动系统采购项目383.7南京农业大学10月8日2022年11月意向原文382中国药科大学场发射电子探针显微分析仪(SEM)项目600中国药科大学10月8日2022年11月意向原文383中国药科大学扫描电镜项目500中国药科大学10月8日2022年11月意向原文384中国药科大学光片显微成像系统项目600中国药科大学10月8日2022年11月意向原文385中国药科大学超高分辨率激光共聚焦项目560中国药科大学10月8日2022年11月意向原文386动物科技学院显微操作系统等仪器采购项目249.7南京农业大学10月8日2022年11月意向原文387全自动活细胞荧光显微镜成像系统165中国医学科学院肿瘤医院10月8日2022年11月意向原文388动物科技学院显微镜等仪器采购项目248.9南京农业大学10月8日2022年11月意向原文389白激光共聚焦显微镜490清华大学10月8日2022年11月意向原文390高分辨扫描电镜600华南理工大学10月8日2022年11月意向原文391环境电子显微镜及制样设备5200华南理工大学10月8日2022年11月意向原文392超高能量分辨率多功能谱学专用电镜3000华南理工大学10月8日2022年11月意向原文393自旋科技研究院购置自旋电子材料表征设备项目1330华南理工大学10月8日2022年11月意向原文394超高分辨球差矫正磁成像透射电镜4000华南理工大学10月8日2022年11月意向原文395兰州大学草地农业科技学院显微数码互动系统采购108兰州大学10月7日2022年11月意向原文396形状测量激光纤维系统138厦门大学10月7日2022年11月意向原文397场发射扫描电镜360厦门大学10月7日2022年11月意向原文398水生动物疫病专业实验室建设项目734.6华中农业大学10月7日2023年1月意向原文399正置全样品双超分共振快速成像系统350清华大学10月7日2022年11月意向原文
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 4000万!山东魏桥创业集团有限公司聚光镜球差校正环境原位透射电子显微镜采购项目
    项目编号:OITC-G220273089项目名称:山东魏桥创业集团有限公司聚光镜球差校正环境原位透射电子显微镜采购项目采购方式:竞争性磋商预算金额:4000.0000000 万元(人民币)最高限价(如有):4000.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量是否允许采购进口产品1聚光镜球差校正环境原位透射电子显微镜1套是供应商须以包为单位对该包中的全部内容进行响应,不得拆分,不完整的报价将被拒绝。竞争性磋商及评审、推荐成交供应商以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 高端显微镜又添新玩家!熵智科技发布超分辨及共聚焦显微镜新品
    生命科学是从微观层面观察和研究生命过程,从而揭示生命的物质基础和基本现象。显微成像是观察微小物体的重要手段,但其分辨能力受光学成像系统的限制(即衍射极限),无法满足现代生命科学研究要求的更高解析度、更准确的成像需求。熵智科技作为中国原创3D视觉创业公司第一梯队,横跨机器视觉与微纳光学两大领域,深刻认识到微纳光学在生命科学研究领域中的巨大价值。9月23日,熵智科技在西安发布自研的超分辨及共聚焦显微成像分析系统。该系统易用、性价比高,相较于国内外显微成像产品,不仅突破了光学成像系统的限制,轻松实现纳米尺度的2D/3D动态图像解析能力,还将共聚焦+超分辨+后处理分析完美融合,软件结合场景模块化。无论新手用户还是专家用户,只需通过一套界面即可获取一流的超高分辨率图像及分析结果。熵智科技超分辨及共聚焦显微成像分析系统工作原理超分辨显微成像分析系统采用结构光照明显微成像术(英文Structured Illumination Microscopy, 简称SIM),突破传统显微镜的阿贝衍射极限,实现生物组织、细胞、神经元等活动样本的快速超分辨率成像,为生命科学、生物工程等领域提供创新的超分辨率成像技术产品,几乎可集成于任何荧光显微镜。共聚焦显微成像分析系统的软硬件均采用模块化设计,硬件集成SIM超分辨模块、软件支持多种后处理功能,从而提供精确的2D/3D成像,以及动态过程的成像。目前,共聚焦和超分辨光路共用了光源准直部分、物镜部分、聚焦成像部分。主要功能超分辨及共聚焦显微成像分析系统视野超10倍扩展,达1mm,拥有精确的多微细胞结构生物显微影像分析功能,实现双光路同时,宽场、共聚焦、超分辨三种模式自由切换。大视野拼图:多种不同的图像获取方式、可实现500um*500um视场上图片进行拼接。图像增强及处理:可对采集到荧光图像进行增益调节、对比度调节、亮度调节以及色阶调节。反卷积处理:在原有采集到图像基础上,对图像数据做实时清晰度优化,达到消除背景噪声,有用信息表达更精准的作用,处理速度10ms以下,速度快;可进一步结合DNN方法,提高应用场景的鲁棒性。特征统计分析:对于识别出的细胞,对其强度、直径、周长等15个属性做数值量化。特征标记分类:可对细胞的特征进行标记和分类。单细胞定量分析:可以准确分割出相互重叠的细胞,精度更高,在专业单细胞识别的基础上,结合深度学习AI算法,可以精确识别互相挤压重叠的细胞核,而且对于细胞轮廓边界识别更加准确。亚细胞结构分析:可以定位某种蛋白或者某个基因表达产物在细胞的具体存在部位,如细胞核,胞浆内,结合AI图像分析方法,以表格和数据统计输出结果。细胞亚群圈选分析:筛选特定的感兴趣细胞亚群,进行了10余种参数分析。特殊细胞/结构识别:提供特殊细胞如脂肪细胞的识别和数量统计。多重荧光染色:实现细胞核、细胞质、细胞膜的各种形态和染色,精确寻找目的细胞及其结构。细胞寻找及跟踪:实现特定细胞的动态识别和跟踪。核心参数激光共聚焦超分辨显微参数配置普通光纤激光器激光405nm、488nm、561nm、640nm扩展HC-PCF激光器920nm探测器 PMT3个;波长:400-750nm,GaAsP最大拍摄速度8fps@512×512像素;2fps@1024×1024像素;4096×4096最高;更多可配置;扫描方式X-Y, X-Y-Z, X-Y-T分辨率250nm in x, y and 550nm in z 共聚焦120 nm in x, y and 320nm in z (488nm wavelength) 超分辨共焦视场Φ18mm-Φ25mm 内接正方形成像深度100μm灵敏度提升4倍相对信噪比 SNR优良级 50dB显微镜电动显微镜奥林巴斯 倒置IX73显微镜,具备明场、微分干涉、荧光等观察方式物镜奥林巴斯或Mitutoyo平场复消色差物镜(防腐蚀陶瓷表面以及红外色差矫正)选型载物台奥林巴斯 电动IX3-SSU 扫描精度优于0.7μm光学放大1.0X;1.5X;3.2X;20X 适配/转换器共聚焦/超分辨率光路切换(电动)、6位电动物镜转换器荧光装置配荧光光阑*相机(lattice)SCMOS,分辨率2048×2048,100fps@全幅面,位深12bit工作站Windows10 Pro 64 bit;硬盘≥1TB;内存16GB软件控制软件:图像采集及2D/3D/4D处理;共聚焦和超分辨配置;*成像分析:细胞自动识别、单细胞定量分析、亚细胞结构分析、细胞亚群圈选分析等防震台频率范围(5~30Hz):≤30μm/s均方根;频率范围(>30Hz): ≤60μm/s均方根增配双光子成像激光生成组件、高速扫描头、前置补偿单元应用场景超分辨及共聚焦显微成像分析系统可应用于基础生物学、临床医学、病毒学、精准药物筛选等领域,为活细胞超分辨率智能成像提供解决方案。基础生物学:皮肤病例研究、类器官培养观察、微生物形态研究、胚胎发育成像、组织结构三维重构。如通过斑马鱼胚胎发育过程的成像,研究血管疾病和血管药物的新兴模型,从而更好解决人类血管疾病;通过光学切片, 确定其复杂的内部结构与组织功能之间的关系。临床医学:细胞形态结构鉴定、病理显微成像、异常细胞跟踪检测、组织形态学观察。利用计算机进行图像处理, 不仅可观察固定的细胞、组织切片, 还可对活细胞的结构、分子等进行实时动态观察和检测。通过它可以直接观测细胞形态学的组织、细胞之间的相互作用、组织微环境、伤口的愈合等成像,有助于了解病理机制,以开发疾病治疗方法从而促进人体健康有重要的意义。病毒学:植物病毒研究、动物病毒研究、医学病毒研究、环境病毒研究、噬菌体研究。采用超分辨技术,可以实现病毒感染细胞及复制、组装、释放等动态过程的研究。药物筛选:药材显微鉴别、载药微粒结构、药物扩散跟踪、制药成型和释药研究、药理药效研究。通过药物筛选确定干预的潜在治疗方法,加速早期药物的研发和确定疾病的模型。利用显微镜观察植(动)物药材内部的细胞、 组织构造,从而达到鉴定药材的目的。选择合适的药物靶分子,针对高分辨率成像的固定样品及活细胞进行分析,从而满足不同实验的需求。关于熵智科技熵智科技是国家级高新技术企业,拥有底层成像系统和算法开发能力,软硬件一体化,致力于通过高性能的成像技术解决机器人柔性化、微纳级检测与测量等问题。熵智科技自2018年成立至今,先后获得字节跳动、拓金资本、松禾资本、远望资本、华控资本等投资。深圳、武汉、西安三地联合办公,目前研发和工程团队70余人,核心技术人员均硕士及以上学历,博士6人。未来,熵智科技将继续深耕微纳光学领域,以更优的产品与服务回馈广大合作伙伴及客户。
  • 光子力显微镜研制
    成果名称光子力显微镜研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:无接触高空间分辨扫描探测微米尺度物质的几何与力学性质(如刚度、应变、弹性、粘性,作用势,作用力等)一直是科学工作者期望的目标。以光镊束缚和操控的纳米小球为探针,结合高精度的散射光干涉位置探测技术,可构成一种成新型扫描探针显微镜,即光子力显微镜。2009年,北京大学信息科学技术学院叶安培教授申请的&ldquo 光子力显微镜关键技术研究&rdquo 项目获得首届&ldquo 仪器创制与关键技术研发&rdquo 基金支持,通过大量关键部件,如显微镜镜头、光学扫描振镜、光电二极管、数据采集卡等的购置,使得叶安培教授这一国际先进关键技术的前期探索研究得以及时启动和顺利开展。叶安培教授课题组已开展了多项光子力显微镜研制中的关键技术研发,包括:(1)高稳定囚禁探针粒子的激光光源的研制;(2)实时精确测量纳米探针粒子三维位置的高灵敏光电位置探测器的研制;(3)亚皮牛顿(<10-12 N)力的精度测量;(4)对光阱力标定与探针粒子受力的三维图像显示的应用系统软件的开发。应用前景:该技术具有纳米精度的空间分辨,能以亚皮牛量级的作用力解析度和微秒量级的时间解析度进行动态实时观测,探测微环境的二维甚至内部三维结构。该技术仅有欧洲个别实验室刚刚开始研究,尚没有商品化产品,国内类似的研究尚未开始。
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 显微镜连接电脑 摄像头连接到显微镜的安装操作
    显微镜连接电脑 摄像头连接到显微镜的安装操作显微镜可通过USB接口连接电脑和摄像头,用户可以在电脑进行拍照和录像等操作。显微镜摄像头通过高分辨率的CMOS/CCD传感器捕捉显微镜下的图像,然后通过控制器将图像传输到电脑或其他存储设备中。显微镜摄像系统可以用于观察、记录和分析细胞、组织、微生物等样本的结构和特征。它也可以用于医学、生物学、农业等领域的研究和实验中。MHS900显微镜摄像头显微镜摄像头连接到电脑的安装操作如下:1. 准备显微镜、摄像头和电脑,确保它们都是关闭状态。2. 使用相应的接口将数码显微镜与电脑连接起来,通常情况下会使用USB线或HDMI线,显微镜的USB2.0/3.0接口直接插入电脑对应的USB2.0/3.0接口即可,操作比较简单,插好后打开视频软件就可以使用了。3. 打开显微镜的电源,调整显微镜的焦距,使其清晰。(可以先放一张白色的纸张,调节好距焦。)4. 打开电脑,找到对应的驱动程序并安装,通常可以在显微镜摄像头的说明书上找到。5. 安装完成后,打开显微镜摄像头的软件,通常会在电脑的右下角或任务栏中显示。6. 在软件中选择“连接”或“导入”选项,然后选择要连接的数码显微镜品牌/型号。7. 等待软件与显微镜建立连接,连接成功后,可以在软件中看到显微镜中的图像。8. 可以使用软件进行拍照、录像、测量等操作,同时也可以将图像导出到电脑中进行进一步处理和分析。显微镜摄像系统界面显微镜摄像系统:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm显微镜摄像头:https://www.instrument.com.cn/netshow/SH105067/product-C7803-0-0-1.htm如果您的显微镜需要升级拍照功能和安装,请与我们联系。
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 中国土壤学会公开征求团体标准《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》意见
    根据团体标准制修订计划和标准起草有关规定,经制订《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》标准项目起草组认真研究、讨论,并开展调研,现已完成征求意见稿编制工作。现在网上公开征求意见,请于2024年5月8日前将修改意见填写在《意见反馈表》中,并将反馈表电子版(PDF签字扫描件和word版)发至联系人邮箱。逾期视为无意见。联系人:王艳华联系电话:13991828224联系邮箱:yhwang930@foxmail.com附件下载:附件.zip附件1 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》征求意见稿.pdf附件2 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》编制说明.pdf附件3 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》意见反馈表.docx中国土壤学会2024年4月8日
  • 低温强磁场磁力显微镜与共聚焦显微镜在微结构缺陷研究中的科研成果
    凝聚态物理研究中常会遇到微结构与纳米尺寸的结构。为了研究缺陷与控制缺陷,不仅需要精密测量仪器,同时要求大量精力的投入。德国attocube公司为前沿的研究提供了可行性良好的技术,公司产品既包含成套的测量系统也有精密的组件。下面,您可以发现三个令人兴奋的应用案例,案例展示了结合精密仪器与辛勤奋斗带来的高质量的研究成果。 磁场驱动的磁畴结构变化研究 近,挪威科技大学Erik Folven的课题组使用了德国attocube公司的attoAFM I低温强磁场原子力磁力显微镜研究了闭环低温恒温器attoDRY1000内的拓扑缺陷,该拓扑缺陷研究有助于材料的磁畴状态变化的进一步理解。通过具有原子尺寸与磁化的原子力显微镜探针在薄膜表面的扫描可以测量垂直平面的来源于样品本身的杂散磁场,该技术具有灵敏度高的特点。因此,磁畴壁与磁场缺陷等自旋结构的物理性质都可以被深入研究。在5K低温下测试的MFM(磁力显微镜)图像数据(图1)加深了对于微米尺寸磁畴状态转变的理解,同时测试后的样品依然具有高度稳定性。该成果可能为控制与转变微米甚至纳米磁体打开了一个新的方向。 图1:MFM测试磁畴结构随磁场变化的结果(图片来源:Appl. Phys. Lett. 112, 042401 (2018)) 耦合单个缺陷与纳米线 基于attoDRY1000低温恒温器与attoCFM I(低温强磁场共聚焦显微镜),马里兰大学的EdoWaks成功耦合了单层二硒化钨(WSe2)中的量子发射器与银纳米线的表面等离激元。结果显示量子发射器与银纳米线等离激元的平均耦合效率是26% ± 11%。该展示的实验技术(图2)可以组建结合不同种类等离激元结构与基于各种二维半导体材料中单分子缺陷发射器的耦合系统。 此测量系统可用于超快单光子源等应用方向,为超紧凑等离激元电路的研究铺平了道路。 图2:耦合WSe2中量子发射器与银纳米线中等离激元(图片来源:Nano Lett., 2017, 17 (11), pp 6564–6568) ANPz30位移台在强磁场扫描探针显微镜中的实践来自于荷兰拉德堡德大学强磁场实验室的Benjamin Bryant 与Lisa Rossi与同校的扫描探针显微镜课题组的Alex Khajetoorians合作,成功地创新设计了一套用于液氦温度与超强磁场(38T)的扫描探针显微镜。超强磁场使用了水冷降温的比特磁体:水冷降温会引入使扫描探针显微镜难操作的振动噪音。图3:ANPz30位移台,强磁场兼容原子力显微镜(图片来源: Review of Scientific Instruments 89, 113706 (2018))ANPz30纳米位移台被用于控制原子力显微镜的悬臂初步逼近样品表面。模块化设计的Attocube公司的位移台不仅易于更换,也具有兼容不同悬臂或者样品托的灵活性。由于位移台紧凑与坚固的设计,振动噪音被大大的降低。噪音是比特磁体端环境中扫描探针显微镜起到关键性影响因素。
  • 蔡司显微镜在北京建演示中心
    8月21日,蔡司中国显微镜业务第一家位于北方的演示中心在京开幕。该演示中心提供光学显微镜、电子显微镜和X射线显微镜等全系列各类型尖端产品及成像解决方案,应用领域涵盖生命科学、生物医药、材料科学、能源环境和高科技工业等方面。  隶属蔡司集团的蔡司显微镜事业部是全球唯一能够提供全光源显微成像系统的顶尖制造商。从推进半导体、先进材料等高精尖工业的发展、提供页岩气探测等能源和环境问题的解决方案,到深入研究神经疾病、癌症和传染病的病因和疗法,凭借高清成像、简明智能、高集成度、全面的技术支持网络及快速响应的服务团队四大业内领先优势,蔡司一直以来都是显微成像领域最佳合作伙伴之一。  蔡司中国区总裁兼CEO Maximilian Foerst说,&ldquo 我们非常重视中国显微市场的需求,这个演示中心让我们更贴近客户,一起推动国内科研和技术领域的不断发展。&rdquo   自 1957年进入中国以来,蔡司显微镜事业部不断将最新的技术和产品带到中国,全力支持中国科研和工业发展。目前,蔡司显微镜已与中科院系统、清华大学、上海交大等多所顶尖院校展开合作,为学术研究及教育提供支持与帮助。位于上海的演示中心成立于2010年,此次开幕的北京演示中心是蔡司对中国市场和客户进一步的重要承诺。  &ldquo 我们将在这里提供最先进的光学显微镜、电子显微镜和X射线显微系统的演示、培训和应用等服务。&rdquo 蔡司中国显微镜业务副总裁张育薪介绍,&ldquo 客户可以便捷地在北京演示中心使用当前最先进的显微成像产品、体验最顶尖的成像分析解决方案,并在专业人员的支持下进一步拓展现有设备的应用,实现与全球显微镜行业领先技术的近距离接触。&rdquo
  • 1688万!北京理工大学超精密低噪声测试平台系统、场发射环境扫描电子显微镜等采购项目
    一、项目基本情况1.项目编号:CFTC-BJ01-2311044项目名称:北京理工大学超精密低噪声测试平台系统采购预算金额:490.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述超精密低噪声测试平台系统用于教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。2.项目编号:CFTC-BJ01-2311043项目名称:北京理工大学低温、强磁场、高压显微红外测试系统采购预算金额:306.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述低温、强磁场、高压显微红外测试系统用于教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。3.项目编号:GXTC-A1-23630980项目名称:北京理工大学场发射环境扫描电子显微镜采购预算金额:462.000000 万元(人民币)最高限价(如有):462.000000 万元(人民币)采购需求:序号货物名称主要规格单位数量交货时间交货地点是否接受进口产品投标1北京理工大学场发射环境扫描电子显微镜采购详见附件套1签订合同之日起10个月内货到采购人指定地点并安装调试验收完毕北京理工大学西山实验区是合同履行期限:签订合同之日起10个月内货到采购人指定地点并安装调试验收完毕 。本项目( 不接受 )联合体投标。4.项目编号:CFTC-BJO1-2311045项目名称:北京理工大学红外焦平面探测器综合测试与成像设备采购预算金额:430.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述红外焦平面探测器综合测试与成像设备教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:北京市朝阳区东三环南路甲52号顺迈金钻国际商务中心9层9C方式:现场获取售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:陈老师010-68912384       2.采购代理机构信息名 称:国金招标有限公司            地 址:北京市朝阳区东三环南路甲52号顺迈金钻国际商务中心9层9C            联系方式:杨振豪、刘晓红、孙涛、王树凡、张含勇、王珊珊、边璐、谢丹丹010-53681306/1309(获取采购文件电话:010-53670136)            3.项目联系方式项目联系人:杨振豪、刘晓红、孙涛、王树凡、张含勇、王珊珊、边璐、谢丹丹电 话:  010-53681306/1309(获取采购文件电话:010-53670136)
  • 岛津原子力显微镜技术发展历程
    人类探索极限的脚步从未停止。为了看得更细,看得更清。列文虎克发明了显微镜,成为人类利用工具观察世界的肇始。 从此,光学成为显微镜的支配性规律。自十七世纪到二十世纪初,光学显微镜完成了几乎所有类型的研发、设计和定型。但因为衍射极限的发现,似乎提高观察的分辨率只有改进光源这一种路径。激光的发明成为光学显微镜在分辨率上最后的努力。 十九世纪初电子的发现,以及微观粒子的波粒二象性特性的揭示,成为了电子显微镜的基础。但是电子显微镜实际上可以看做光学显微镜在量子力学下的延伸。用加速电子束替代了传统光源,用磁透镜/静电透镜代替了透明介质透镜,可是几乎所有的理论结构都与光学显微镜一致。二十世纪三十年代电子显微镜被发明至今,其分辨率极致被提高到亚纳米级别,距离原子级分辨似乎只有一步之遥。 但是自然界被物理铁律支配,这一步似乎近在咫尺,但却云崖天隔。二十一世纪的电子显微镜已经进入了和二十世纪光学显微镜同样的境地,只能在不断改进各部件的精度中一丝一毫地改进图像,但无法跨越最后的鸿沟。 量子力学成为了新一代显微镜的理论基础。1981年,隧道扫描显微镜被发明,一种全新的显微镜横空出世。它不同于光学显微镜和电子显微镜,完全摆脱了对检测介质的依赖,以微粒间的作用(电、力)为检测信号,一举突破了原子级别的分辨率。随后在1985年被发明的原子力显微镜,更是将适用对象从金属和半导体拓展到所有的固体。 这是一种全新的显微方法和工具,从二十世纪八十年代末到九十年代初,全球各主要科技强国纷纷开展了扫描探针显微镜的研发。 OUR HISTORY岛津 也正是在这个时期,岛津开始涉足该领域。1991年,基于超高真空环境的隧道扫描显微镜AIS-900面世。 相对于在大气环境下的隧道扫描显微镜,真空环境是其工作环境更为简单,图像分辨率和清晰程度都更高,工作也更稳定。 虽然真空环境带来了分辨率的提高,但是同时也限制了样品的测试和操作的便利性。为此,1993年,岛津开发了兼容多种环境的WET-901,同时可以满足对大气环境、真空环境、特殊气氛、液体环境、电化学环境等不同要求。WET-901和随后的WET-9400代表着岛津敏锐地意识到,随着原子力显微镜的不断完善,微区观测技术必然会对原位分析产生重要的影响。因此,岛津持续不断地改进环境控制舱,应对不同时期科研领域的需求。 紧接着在1995年,岛津推出了成功的SPM-9500系列。二十世纪九十年代中后期是原子力显微镜大发展的时期,各种扫描模式从实验室走向实用。从1995年2001年,岛津SPM-9500系列也历经SPM-9500、SPM-9500J、SPM-9500J2、SPM-9500J3四个型号,不断吸收新的功能模式。同时,该系列具备的自动进针和头部滑动机构也在操作性上领先于其他竞争对手,这些特点使得该系列成为了一个长寿的产品。 随后的SPM-9600(2005年)、SPM-9700(2010年)、SPM-9700HT(2016年)基本都延续了SPM-9500的基本结构,通过不断改进控制器,提高分辨率,增加新功能,改善操作性。 在这个时期,商用原子力显微镜陷入了一个发展瓶颈,功能模式固化,应用领域受限,每个厂家都在不同的方向上尝试新的突破。有的厂商开始匹配半导体工业的需求,有的则在生命科学领域进行研发。 岛津也在思考什么才是原子力显微镜的发展根本? 不识庐山真面目,只缘身在此山中。经过大量的思考和尝试,一切回归本源——分辨率。只有分辨率才是显微镜最核心的技术指标。于是在2014年推出了调频型原子显微镜SPM-8000FM并在2017年升级为SPM-8100FM。该系列最核心的技术是调频控制探针,利用频率对作用力的分辨率和反馈速度远高于振幅的特点,实现了在大气和液体环境中原子/分子级的分辨率。 利用调频模式对作用力的高分辨检测能力,还成功地将原子力显微镜的应用从固体表面观察拓展到固液界面的水合化和溶剂化作用。这项技术有助于电池和摩擦学等领域的前沿研究。 最近的十年,随着原子力显微镜对不同应用领域的拓展,新的技术和新的需求也在不断涌现。 岛津原子力显微镜将会如何应对新变化?又会开发什么新技术呢? 一切尽在5月18日14:00由宏入微 顺手随心岛津SPM-Nanoa原子力显微镜在线发布会敬请期待!
  • 华中师范大学158.38万元采购高压灭菌器,生物显微镜,数码显微镜,荧光显微镜
    详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1 化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师 027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:高压灭菌器,生物显微镜,数码显微镜,荧光显微镜 开标时间:null 预算金额:158.38万元 采购单位:华中师范大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中经国际招标集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-05-24 招标文件: 附件1 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目竞争性磋商公告 项目概况 华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购项目的潜在供应商应在线上获取获取采购文件,并于2022年06月07日 14点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:ZJZB-ZC-202205-146 项目名称:华中师范大学化学发光成像系统、数码显微镜、研究级倒置荧光显微镜等设备项目 采购方式:竞争性磋商 预算金额:158.3800000 万元(人民币) 最高限价(如有):158.3800000 万元(人民币) 采购需求: 序号 设备名称 数量/单位 1 化学发光成像系统 1套 2 数码显微镜 32台 3 研究级倒置荧光显微镜 1台 4 生物显微镜 32台 5 激光拉针仪 1台 6 立式压力蒸汽灭菌器 2台 (详见采购文件第三章“项目采购需求”) (1)类别:货物 (2)质量标准:达到国家或行业颁布的其他现行各项技术标准和验收规范规定 (3)其他:供应商参加竞标的报价超过该包采购最高限价的,该包竞标无效;供应商报价须包含该采购需求的全部内容。 合同履行期限:交货期:合同签订后,90日历天内供货并安装调试到位;质保期/保修期:验收合格之日起质保1年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目整体非专门面向中小企业,即小微企业参与本项目可享受政府采购中小企业扶持政策,本项目企业划分标准所属行业为“批发业”。 3.本项目的特定资格要求:/ 三、获取采购文件 时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:30至17:00。(北京时间,法定节假日除外) 地点:线上获取 方式:线上获取:因疫情原因,采取网上获取文件的方式,请各供应商将以下附件资料加盖公章扫描后传至2102252595@qq.com【邮件主题名称必须按照如下格式,否则不予受理。项目名称及包号(如有)+公司全称+授权委托人姓名及联系方式】,以邮箱显示收到的时间为准,各供应商递交资料后请耐心等待代理机构工作人员后台确认,资料确认无误的,工作人员会及时联系支付采购文件费用,并发送采购文件。采购文件售后不退,不办理邮寄; 售价:¥400.0 元(人民币) 四、响应文件提交 截止时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室 五、开启 时间:2022年06月07日 14点30分(北京时间) 地点:武昌区中北路岳家嘴立交山河企业大厦4806室,凡是购买了磋商文件且已回复确定参加竞标的潜在供应商,于竞标当日临时放弃竞标的,应及时以电话告知形式通知采购代理机构。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.本项目资金性质为:财政资金 2.供应商如需查询技术要求可到我处查阅采购文件第三章相关内容。 3.本项目将在以下网站发布所有信息,请参加本项目竞标的供应商密切关注。 (1)《中国政府采购网》(网址:http://www.ccgp.gov.cn/) (2)《华中师范大学招标信息网》(网址:http://zb.ccnu.edu.cn/) 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:华中师范大学 地址:湖北省武汉市珞喻路152号 联系方式:邱老师 027-67862087 2.采购代理机构信息 名 称:中经国际招标集团有限公司 地 址:武昌区中北路岳家嘴立交山河企业大厦48楼4805、4806室 联系方式:张梦、彭盼明 027-87820788 3.项目联系方式 项目联系人:张梦、彭盼明 电 话: 027-87820788 2022报名材料附件.docx
  • 电镜厂商泰思肯进军光学显微镜市场
    泰思肯(TESCAN) 位于欧洲电子光学研发和制造基地捷克布尔诺市,主要研发和生产扫描电子显微镜,其前身是世界电子光学设备制造的领航者TESLA,有超过60年电子显微镜的研发制造历史。  一直以来,泰思肯在电子显微镜领域深耕细作,然而就在不久前,泰思肯推出了一台全息显微镜Q-Phase,开始进军光学显微镜市场。目前这款产品已在中国上市。为何泰思肯会选择推出光学显微镜产品,这款产品又有着怎样的特点和竞争优势呢?仪器信息网编辑采访了泰思肯的相关负责人。  Instrument:作为一家电镜厂商,泰思肯为何选择推出光学显微镜产品?  泰思肯:TESCAN Brno在欧洲一直是一个开放性实验室,与很多大学和科研院所保持紧密的合作。捷克的布尔诺技术大学的Radim Chmelí k教授团队一直从事全息显微镜的研究,并且在2011年之后,就进入TESCAN接续进行研发。由于双方有非常好的合作关系,并共同申请了专利。TESCAN本身也具有极强的研发和制造能力,于是成功的将全息显微镜进行了商品化。  Instrument:新推出的Q-Phase全息显微镜有什么样的特点?  泰思肯:Q-Phase利用全息干涉法以及相干门控技术,具备多种成像模式,有定量相位成像、荧光成像、模拟DIC成像和明场成像。其中定量相位成像可以提供式样的立体形态、以及细胞干重的定量信息,细胞干重精确度可到pg/um2。  此外,Q-Phase还可以选配恒温箱等附件,可以对显微镜环境(如温度、湿度、气氛等)进行精确控制,可根据用户需要,进行细胞的培养或处理,同时实时观测。  Instrument:与同类产品相比,Q-Phase有哪些技术优势?  泰思肯:和目前已有的常规技术相比,Q-Phase具有众多优势:首先,不需要进行染色处理;其次,Q-Phase所需要的光强要比一般的全息显微镜低7个数量级,对样品的损伤更小,有利于长期观察;再次,可以做到细胞干重的定量测试;然后,Q-phase具有更好的空间分辨率,没有图像失真、渐晕、伪影等;还有,Q-phase具有超出同类方法很多的扫描速度,非常适合做原位观察。  另外,Q-Phase可以在散射介质中对细胞进行直接的观察,而且依然有非常优秀的衬度。这在传统的相衬技术中是难以实现的。  Instrument:Q-Phase全息显微镜适用于哪些应用领域?  泰思肯:Q-Phase主要用于生物与生物成像领域,以及活细胞的动态成像观察。比如:细胞的分裂和繁殖、干重测试、细胞运动、生命周期的观察;癌细胞的研究,药物的测试、组织切片等领域。
  • 1142万!石景山区生态环境局土壤特色站能力建设仪器设备和武汉大学扫描电子显微镜采购项目
    一、项目一(一)项目基本情况项目编号:11010724210200011097-XM001项目名称:石景山区生态环境局监测站标准化建设项目-土壤特色站能力建设仪器设备采购项目预算金额:642.185 万元(人民币)采购需求:序号标的名称单位数量1电感耦合等离子体质谱仪套12气相色谱质谱联用仪套13便携式紫外烟气综合分析仪套24流动注射分析仪套25全自动固相萃取仪套16加压流体萃取仪套17全自动平行浓缩仪套18真空平行浓缩仪套19真空冷冻干燥机套110全自动石墨消解仪套111全自动高锰酸盐指数分析仪套112微生物检测读数仪套113紫外可见光分光光度计套114超纯水机套115纯水机套116防腐蚀真空抽滤系统套117磁力搅拌水浴锅套118医用冷藏冷冻箱套119气相色谱质谱配件套装套120便携式挥发性有机气体分析仪套1简要技术需求或服务要求:采购要求:设备、仪器无损坏,能够正常运行使用。完善生态环境监测指标。提供更全面的生态环境监测技术服务。具体参数详见采购需求。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。项目编号:2441STC62608合同履行期限:自合同签订之日起90个自然日内完成供货,将全部仪器交付到采购人指定现场。本项目不接受联合体投标。(二)获取招标文件时间:2024-07-10 至 2024-07-16 ,每天上午09:00至12:00,下午12:00至17:00(北京时间,法定节假日除外)地点:北京市政府采购电子交易平台方式:供应商使用CA数字证书或电子营业执照登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。售价:¥0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京市石景山区生态环境局本级     地址:北京市石景山区老山西街3号院1号楼        联系方式:李老师,68876190      2.采购代理机构信息名 称:中钢招标有限责任公司            地 址:北京市海淀区海淀大街8号中钢国际广场16层            联系方式:张晋豫、刘晴、刘姗姗、尹皓,联系方式详见采购公告其他补充事宜            3.项目联系方式项目联系人:张晋豫、刘晴、刘姗姗、尹皓电 话:  联系方式详见采购公告其他补充事宜二、项目二(一)项目基本情况项目编号:THCX-HW-2024-042项目名称:武汉大学扫描电子显微镜采购项目预算金额:500.000000 万元(人民币)最高限价(如有):500.000000 万元(人民币)采购需求:本次采购共分/个项目包,具体需求如下:(1)项目编号:THCX-HW-2024-042(2)项目名称:武汉大学扫描电子显微镜采购(3)类别(货物/工程/服务):货物(4)用途:扫描电子显微镜采购(5)数量(数量及单位):一批(6)简要技术要求:详见招标文件(7)采购预算:500万元(8)期限(交货期):合同签订后720日内,供应商应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。(9)质保期:本项目免费质量保证期要求1年,免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。(10)其他:本项目接受进口产品投标合同履行期限:交货期:合同签订后720日内,供应商应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。质保期:本项目免费质量保证期要求1年,免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年07月09日 至 2024年07月15日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:武汉市江汉区新华西路大武汉1911写字楼A座16楼1-6号方式:现场领取或网络获取或邮寄。符合要求的申请人应当在获取时间内,提供以下材料获取采购文件:申请人为法人或者其他组织的,需提供单位介绍信(或法人授权委托书)、经办人身份证明;申请人为自然人的只需提供本人身份证明。采购文件如需网络获取或邮寄的,申请人应将获取采购文件所需提交的完整资料扫描件发至邮箱whthcx001@163.com,并在邮件中注明申请人名称、联系人及电话、申请项目名称及包段号。采购人、采购代理机构对邮寄、电子文本传输过程中发生的迟交或遗失均不承担责任,申请人获取采购文件的时效性以申请人提交的完整资料的时间为准。售价:¥300.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:武汉大学     地址:武汉市武昌珞珈山        联系方式:吴老师,027-68754589      2.采购代理机构信息名 称:武汉天汇诚信工程项目管理有限公司            地 址:武汉市江汉区新华西路大武汉1911写字楼A座16楼1-6号            联系方式:尤丽容、李艳青、张怡、陈思云、熊邦琴、陈洋、戴险峰、胡雯、张少兵 027-65610396-817            3.项目联系方式项目联系人:尤丽容、李艳青、张怡、陈思云、熊邦琴、陈洋、戴险峰、胡雯、张少兵、秦昌电 话:  027-65610396-817
  • 引进德国技术,所有显微镜均可升级到三维超景深显微镜
    上海江文国际贸易有限公司公司引进德国技术和组件,结合自主研发的三维超景深显微镜软件,推出三维超景深显微镜升级方案UMS300-3D,可将几乎所有类型的光学显微镜升级为三维超景深显微镜。UMS300-3D 三维超景深显微镜升级方案是超景深三维显微镜的最新一代产品。UMS300-3D 三维超景深显微镜升级方案三维引进德国进口高性能三维超景深显微镜组件和技术,结合本公司的三维超景深软件,可将显微镜的景深提高几百倍,UMS300-3D 三维超景深显微镜升级方案可获得样品的三维形貌,可进行三维重构和测量。UMS300-3D 三维超景深显微镜升级方案是三维光学数码显微镜的最新代表。UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可获得样品的三维形貌,并可进行三维重构和测量,可应用于半导体、微纳米器件、机械制造、材料研究等领域的实验研究;如微芯片三维形貌分析,刻蚀试样三维形貌,封装材料,二元光学器件数据分析,机械、光学、镀膜、热处理等表面精确测量、材料显微压痕的三维测量分析、磨损表面质量评定、薄膜厚度测量、材料断口分析、金属材料和复合材料、生物材料研究等。UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,满足材料表面形貌的观察,平面或三维测量,可以用于材料实验室或生产现场观测;用于金属材料断口、裂纹,磨损,腐蚀情况的三维超景深金观测, 青铜器, 陶瓷,织物,木材,纤维,古字画,壁画等方面的研究.。UMS300-3D 三维超景深显微镜升级方案可以将现有的显微镜,升级为三维超景深显微镜,可大大降低样品制样的要求,多数样品无须制样即可以获得三维超景深的三维观察,三维拍照,三维分析效果。对于颗粒赝品的三维超景深显微图像的颗粒三维分析,粉末三维超景深图像和三维分析都可以获得良好的三维超景深显微镜效果。UMS300-3D 三维超景深显微镜升级方案还可以大大降低客户购买三维超景深显微镜的成本,使用UMS300-3D 三维超景深显微镜升级方案的成本,大约为新购买进口三维超景深显微镜成本的10%。UMS300-3D 三维超景深显微镜升级方案还具备以下强大的显微测量功能:1、 组织成分分析、相含量测量自动识别组织成分、自动测量相含量、最后得出分析报告。常用于岩石、金相、孔隙分析、夹杂分析等。例如:成分分析,根据相含量的分布,给出三角统计图形,根据三角形分布判别种类。2、 全自动颗粒分析与统计提供功能强大的颗粒分析、统计工具。自动识别颗粒、自动测量颗粒面积、粒度、圆度、最大卡规直径、形态特征等大量参数。按照参数进行分类统计,给出统计柱状图和报告。3、 强大的辅助探测工具提供强大的颗粒探测工具(包括魔术棒和颜色吸管),方便用户进行手动识别颗粒,观察局部特征颗粒等应用。 能根据外形、颜色等特征,识别测量颗粒与组织。
  • 让微观变得直观——岛津原子力显微镜
    对极限微观的不断探索源于人们原始的求知欲。国际度量衡制度的确立为我们指引了探索的方向。从米到毫米,从毫米到微米,从微米到纳米。当物质被我们不断地“劈碎”。越来越多新性质,新现象,新功能被发现。人们对自然的认识越来越深刻,对物质的操纵也越来越得心应手。 从二十世纪末开始,人类对微观的探索延伸到了纳米领域。在这个从仅比原子高一个层级的尺度范围内,物质展现了一种和宏观截然不同的状态和性质。表面效应、小尺寸效应和宏观量子隧道效应带来的是超高强度、超高导电性、超流动性、超高催化活性等等无与伦比的属性。 碳纳米管作为第一种人工合成的纳米材料,甫一问世,其超高强度就惊艳世人。它的质量是相同体积钢的六分之一,强度却是铁的10倍。 单壁碳纳米管高度(直径)测量在碳纳米管被研制出来以后,双壁碳纳米管、掺杂碳纳米管、复合碳纳米管等多种材料被源源不断制作出来。极小的尺度和样品多样性,迫切需要一种合适的检测工具。 在纳米尺度下,光学显微镜的分辨率早已鞭长莫及,电子显微镜则因为严格复杂的制样过程使测试门槛令人高不可攀,激光粒度仪对长径比过大的样品测试误差极大也不适合。这时,较合适的观测工具就是原子力显微镜。 原子力显微镜作为专门的纳米材料表征工具,天然具有高分辨率、高环境兼容性、多属性分析种种优势。 原子力显微镜观察的不同碳纳米管形态在生产中,因工艺不同,会产生长短粗细不同的碳纤维。如何有效对这些样品进行归类分析是个大问题。 不同工艺下碳纳米管分散状态借助岛津原子力显微镜配备的颗粒分析软件,则可以自动分析筛选,并对纤维的各种尺度进行统计分析。 极长和极短碳纳米管的自动分类统计同样,对于常见到的纳米材料——纳米颗粒而言,也可以依靠该软件进行统计分析。 纳米颗粒的粒径统计而且,利用原子力显微镜,还可以有效观察同样粒径下颗粒的不同形貌。例如以下两个颗粒,粒径均在100nm左右,如果用激光粒度仪测试,会被归为一类。但是用原子力显微观察,则可以发现很大的不同。 粒径近似的纳米颗粒聚集形态左侧的颗粒是单个粒子,二右侧的则是多个颗粒聚集形成的,在原子力显微镜的小范围观察图像中可以清晰分辨二者的不同。 但是,通常的原子力显微镜很难兼顾大视野和高分辨。要想同时观察统计大量颗粒,就需要用大范围观察,这样一来每个颗粒的细节分辨就难以看清。如果聚焦到一个颗粒上细致观察,则无法从整体上评估样品。 解决的办法就是提高原子力显微镜图像的分辨率。岛津推出了8192*8192点阵的高扫描能力。可以在大范围观察的同时又看清每一个小细节。 兼顾大视野和小细节的超大点阵扫描图像原子力显微镜作为人类眼睛的延伸,像一个精细的触手,细致地捕获纳米材料的形貌、机械性能、电磁学性能等等属性,使这个微乎其微的领域直观地展现在我们眼前,为我们更深更广地认识纳米材料提供了有力帮助。 文中相关仪器介绍详见以下链接:https://www.shimadzu.com.cn/an/surface/spm/index.html 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制