当前位置: 仪器信息网 > 行业主题 > >

纳米氧化物

仪器信息网纳米氧化物专题为您提供2024年最新纳米氧化物价格报价、厂家品牌的相关信息, 包括纳米氧化物参数、型号等,不管是国产,还是进口品牌的纳米氧化物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米氧化物相关的耗材配件、试剂标物,还有纳米氧化物相关的最新资讯、资料,以及纳米氧化物相关的解决方案。

纳米氧化物相关的论坛

  • 关于掺杂纳米氧化物半导体的HRTEM测试

    首先祝大家圣诞快乐、新年快乐![em24] 我向大家请教的问题是如何用HRTEM表征掺杂纳米氧化物半导体。基体为10nm左右的纳米氧化物,掺杂相为稀土离子,在基体内分布比较均匀,但是无定形的。做HRTEM的目的在于想确定无定形掺杂相在基体中的位置,是间隙掺杂还是取代掺杂。另外,用哪种HRTEM较好,LaB6 HRTEM、FEG HRTEM 还是STEM? 欢迎大家不吝赐教!谢谢先!

  • 【分享】最新研究表明金属氧化物纳米材料对两栖类动物会产生毒性

    美国科学家的一项最新研究表明,某些金属氧化物的纳米材料如氧化锌,二氧化钛,氧化铁和氧化铜会对两栖类动物产生毒性。根据之前的研究,金属氧化物的纳米材料已经表现出了对水生生物的毒性,尤其对微生物和无脊椎动物。迄今为止,很少有研究评估金属氧化物纳米材料对水生脊椎动物的毒性。该项研究发表在《Chemosphere》上。研究结果表明,实验的纳米材料在两栖动物的生长发育过程中可能产生负面的影响。另外,研究表明为了确保人类和环境安全,评估纳米材料对脊椎动物的暴露情况对于日常生活用品中纳米材料的安全生产是非常必要的。

  • 纳米二氧化钛的抗菌原理

    纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带,在水和空气的体系中,纳米二氧化钛在阳光尤其是在紫外线的照射下,当电子能量达到或超过其带隙能时。电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子、空穴对,在电场的作用下,电子与空穴发生分离,迁移到粒子表面的不同位置,发生一系列反应,吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·,生成的超氧化物阴离子自由基与多数有机物反应(氧化) 。同时能与细菌内的有机物反应,生成 CO2和 H2O;而空穴则将吸附在TiO2表面的 OH和H2O氧化成·OH,·OH有很强的氧化能力,攻击有机物的不饱和键或抽取H原子产生新自由基,激发链式反应,最终致使细菌分解。TiO2 的杀菌作用在于它的量子尺寸效应,虽然钛白粉(普通 TiO2)也有光催化作用,也能够产生电子、空穴对,但其到达材料表面的时间在微秒级以上,极易发生复合,很难发挥抗菌效果,而达到纳米级分散程度的TiO2,受光激发的电子、空穴从体内迁移到表面。只需纳秒、皮秒、甚至飞秒的时间,光生电子与空穴的复合则在纳秒量级,能很快迁移到表面,攻击细菌有机体,起到相应的抗菌作用。在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米纳米二氧化钛能净化空气,具有除臭功能。 纳米二氧化钛抗菌特点:对人体安全无毒,对皮肤无刺激性;抗菌能力强,抗菌范围广;无臭味、怪味,气味小;耐水洗,储存期长;热稳定性好,高温下不变色,不分解,不挥发,不变质;即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h;纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂;具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。

  • 【分享】纳米二氧化钛的光催化特性

    一、 研究意义和目的 人类正面临着环境污染的巨大压力。污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO42-还原为Cr3+,来降低它们的毒性;还能将[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]体系中的氮氧化物分解并将有机污染物氧化。如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。 我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。 1.不同结构纳米二氧化钛的制备与性能 以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。高温条件下金红石相二氧化钛纳米晶的生长速度快,高温[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。二氧化钛纳米晶在液相介质中,很难分离和回收。文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。因此,这种介孔并不适合作光催化剂。 我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。 纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。 2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象 苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。 我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。由此可见纳米晶的高催化活性。紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。 铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。 需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。

  • 【转帖】金属氧化物的振动频率

    金属在红外光谱中是没有吸收谱带的,即使是纳米级厚的金属薄膜红外光也无法透射。金属氧化物和非金属氧化物有红外吸收谱带,氧化物的红外吸收谱带通常都在中红外的低频区和远红外区。多数氧化物吸收谱带是宽谱带,但也有些氧化物吸收谱带很尖锐。表8-26列出了一些氧化物的吸收峰位置。来源:《傅里叶变换红外光谱分析》第二版,翁诗甫 编著

  • 【资料】氧化物半导体材料的禁带宽度实验研究

    摘要:通过对氧化物半导体样品的特性测试和分析,首先用可见-紫外光分光光度方法测量了掺杂不同杂质的二氧化钛的的透射(或吸收)谱,并利用这些谱确定样品的光学禁带宽度。随后又用热激活方法测量数种不同氧化物半导体的阻-温特性关系,即研究了温度变化对掺杂Nb2O5的二氧化钛电阻性能的影响,并进一步利用这些关系推导出样品的激活能。在实验过程中,我们还进行了二氧化钛镀膜样品的制作和氧化锌压片样品的制备并为其镀上电极。1 引言 纳米材料是20世纪80年代末、90年代初才逐步发展起来的一类新型材料。这一概念形成后,引起世人的密切关注,它所具有的独特性质,使人们充分意识到它的广阔发展前景。随着纳米氧化物材料制备技术的不断发展和成熟,人们已经可以方便地制备出不同粒径、不同组分、不同结构的各种类型的纳米氧化物。这些研究成果为我们进一步研究纳米氧化物材料的微观结构、特殊性质奠定了坚实的基础。2000年美国政府启动了纳米科技发展计划,我国也将纳米材料和纳米技术列为科技发展的优势领域,近年来,纳米材料的开发和应用已成为各国科技工作者的研究热点,纳米材料在涂料中的应用也是研究热点之一。纳米二氧化钛是其中最重要的一类无机功能材料之一。它除了具有一般纳米粒子所特有的特性外,还具有高光催化效应、强紫外线屏蔽能力以及能产生奇特颜色效应等许多特殊性能,广泛应用在生产和生活的各个方面,其制备及应用研究受到世界各国的高度重视。1)氧化钛用于电极基体。一般需将金属氧化物电极附载于某种具有电催化活性的基体表面。由于钛具有良好的导电性和耐蚀性,因此目前大多采用高耐蚀性的钛作为电极的基体。2)抗菌性。在阳光,尤其是紫外光的照射下,在水和空气中,纳米氧化物能自行分解出自由移动的带负电的电子,同时留下带正电的空穴。这种空穴可以激活空气中的氧变为活性氧,具有极强的化学活性,能与多种有机物发生氧化反应(包括细菌内的有机物),从而把大多数病毒和病菌杀死。3)涂料。紫外线能量很高,足以破坏高分子之间的化学键,可直接导致涂料老化。实验研究证明,纳米TiO2对波长在400nm~750nm的可见光具有透过作用,能够屏蔽日光中的紫外线。将经过处理的纳米氧化物用于涂料中,可有效保护涂料中的有机分子免受紫外线的侵害,长久保持良好的性能。2 原理概述 二氧化钛由于具有高活性、安全无毒、化学性质稳定及成本低等优点,被广泛应用于环境保护、太阳能转化、化妆品、纺织、涂料、橡胶等领域。在一些领域二氧化钛大规模的生产应用受到二氧化钛量子效率低和禁带宽度宽对太阳能利用率低的缺陷的限制。 根据定义,半导体具有由价带所构成的带隙,价带由一系列填满电子的轨道所构成,而导带是由一系列未填充电子的轨道所构成。当半导体近表面在受到能量大于其带隙能量的光辐射时,价带中的电子会受到激发跃迁到导带。一个半导体必须要具有合适的禁带宽度和导带电位,首先是禁带宽度必须位于光源的能量范围之内,当受到光照时,才能吸收光能形成禁带激发,导致产生光氧化还原反应所必须的电子空穴对。  大多数氧化物电极都是半导体材料,因而具有许多半导体的性质。同金属电极相比,氧化物半导体中载流子的密度是较低的常数。因此要提高它们的导电性,首先要提高氧化物半导体中载流子的数目。电催化氧化要求阳极具有良好的导电性,而钛表面的钝化膜导电性极差,由于该膜的成分主要是TiO 2,它属n型半导体,禁带宽度为3.0eV。在众多半导体中,它的禁带宽度是较宽的,也就是说它的载流子难于激发出来,这就是其导电性不好的原因。掺杂离子可降低TiO2的禁带宽度,由于杂质离子半径与Ti不同,所以可造成TiO 2晶体发生扭曲,甚至造成缺陷。这些扭曲和缺陷使TiO2的能级发生分裂,在规整的能级中形成新的缺陷能级,使得价带中电子很容易进入一些缺陷能级中。因而载流子密度升高,导电性提高。同时有些掺杂杂质作为施主加入形成施主能级,这些能级中的电子很容易受激发进入导带,大大提高地载流子密度,使半导体导电性大幅提高。受上述理论分析的启发,人们在制备钛氧化物电极时都要寻找合适的掺杂物去提高TiO 2氧化物的导电性。 我们在上述理论的基础上,在实验中对已经掺杂杂质的TiO2样品进行测试与分析,得到其禁带宽度与不同掺杂浓度,不同掺杂离子的关系,以及其阻温特性。

  • 易氧化纳米粉末如何制样

    极细纳米金属粉末,约十纳米,极易氧化,在手套箱里用真空转移设备装样后还是氧化,据说是因为透射初始真空只有负三mbar,而本人估计粉末要求至少负五mbar, 请问有什么办法可以制样不被氧化。谢谢!

  • 【技术@创新】我国科学家首次发现氧化铁纳米颗粒模拟酶

    [font=黑体]简介:中国科学院生物物理研究所阎锡蕴研究小组的《氧化铁纳米颗粒具有过氧化物酶活性》一文,日前在9月份出版的《自然—纳米技术》杂志上发表。该刊物同时配发的评论文章《氧化铁纳米颗粒:蕴藏的功能》[/font]我国科学院生物物理研究所阎锡蕴研究小组的《氧化铁纳米颗粒具有过氧化物酶活性》一文,日前在9月份出版的《自然—纳米技术》杂志上发表。该刊物同时配发的评论文章《氧化铁纳米颗粒:蕴藏的功能》称:“阎锡蕴、柯沙和同事们首次发现氧化铁纳米颗粒具有类似过氧化物酶的催化活性,并提出了氧化铁纳米颗粒模拟酶的概念。这一发现不仅为惰性金属材料在纳米尺度具有催化活性的学说提供了新的论据,而且拓展了磁性纳米颗粒的应用。虽然如何在生物技术和医疗领域更好地利用纳米材料的催化活性还有待探索,但氧化铁纳米颗粒催化活性的发现,无疑将使人们对此产生更多的关注。” 据评论文章介绍,在纳米医学研究中,氧化铁纳米颗粒作为一种理想材料,可用于疾病诊断、控制药物释放和体内分子成像。氧化铁纳米颗粒通常用于分离和纯化蛋白质、DNA、病毒和细胞。这主要利用氧化铁纳米颗粒的磁性,如果将其表面连接抗体—— 一种能够特异识别生物分子的蛋白质,它便具有靶向识别和磁性分离的双重功能。在医学应用中,传统的检测方法是将纳米颗粒的磁分离作用与酶标记的抗体免疫反应结合起来,后者通过酶催化底物显色显示生物分子的存在并进行定量。

  • 【原创大赛】如何表征纳米氧化物水性分散体的分散性,稳定性和粒径

    【原创大赛】如何表征纳米氧化物水性分散体的分散性,稳定性和粒径

    [align=left][font='宋体'][size=16px][color=#333333]如何[/color][/size][/font][font='宋体'][size=16px][color=#333333]表征[/color][/size][/font][font='宋体'][size=16px][color=#333333]纳米氧化物水性分散体的[/color][/size][/font][font='宋体'][size=16px][color=#333333]分散性,稳定性和粒径[/color][/size][/font][/align][align=left][/align][align=left][font='宋体'][size=16px][color=#333333]纳米[/color][/size][/font][font='宋体'][size=16px][color=#333333]氧化物(如[/color][/size][/font][font='宋体'][size=16px][color=#000000]纳米Al[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]O[/color][/size][/font][font='宋体'][size=16px][color=#000000]3[/color][/size][/font][font='宋体'][size=16px][color=#000000]、纳米TiO[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]和纳米[/color][/size][/font][font='宋体'][size=16px][color=#000000]ZnO[/color][/size][/font][font='宋体'][size=16px][color=#000000]等)[/color][/size][/font][font='宋体'][size=16px][color=#333333]水性分散体是纳米氧化[/color][/size][/font][font='宋体'][size=16px][color=#333333]物粒子[/color][/size][/font][font='宋体'][size=16px][color=#333333]在水中的分散体。在多数情况下,纳米氧化[/color][/size][/font][font='宋体'][size=16px][color=#333333]物粒子[/color][/size][/font][font='宋体'][size=16px][color=#333333]的成功使用强烈地依赖于把纳米粒子[/color][/size][/font][font='宋体'][size=16px][color=#333333]分散于液相中[/color][/size][/font][font='宋体'][size=16px][color=#333333]的能力。像这样特殊应用的领域如化妆品、涂料、纺织、抛光和催化等领域都需要粒子很好地分散并且稳定地存在,如不能出现团聚等现象,才能很好地展示纳米粒子的活性。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#333333]本文简述了如何用L[/color][/size][/font][font='宋体'][size=16px][color=#333333]UM[/color][/size][/font][font='宋体'][size=16px][color=#333333]分散体分析仪[/color][/size][/font][font='宋体'][size=16px][color=#333333]L[/color][/size][/font][font='宋体'][size=16px][color=#333333]UM[/color][/size][/font][font='宋体'][size=16px][color=#333333]iSize[/color][/size][/font][font='宋体'][size=16px][color=#333333]r[/color][/size][/font][font='宋体'][size=16px][/size][/font][font='宋体'][size=16px][color=#333333]对[/color][/size][/font][font='宋体'][size=16px][color=#333333]纳米氧化[/color][/size][/font][font='宋体'][size=16px][color=#333333]物粒子在液相中的分散性和稳定性进行快速表征[/color][/size][/font][font='宋体'][size=16px][color=#333333],并同时展示粒径分布的结果。[/color][/size][/font][/align][align=left][/align][align=left][font='宋体'][size=16px][back=#ffffff]1, [/back][/size][/font][font='宋体'][size=16px][color=#000000]纳米粒子材料[/color][/size][/font][font='宋体'][size=16px][color=#000000]:[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#333333][url=https://insevent.instrument.com.cn/t/Mp]气相[/url]法工艺制得的纳米三氧化二铝([/color][/size][/font][font='宋体'][size=16px][color=#000000]Al[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]O[/color][/size][/font][font='宋体'][size=16px][color=#000000]3[/color][/size][/font][font='宋体'][size=16px][color=#333333])[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]具有颗粒细、纯度高、良好的可分散性和表面带正电的特性[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]广泛应用于荧光节能灯,像片打印纸和粉末涂料等领域。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][back=#ffffff]2, [/back][/size][/font][font='宋体'][size=16px][color=#333333]研究分散强度对纳米氧化物水性分散体的影响[/color][/size][/font][font='宋体'][size=16px][color=#333333]:[/color][/size][/font][/align][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000],1-[/color][/size][/font][font='宋体'][size=16px][back=#ffffff]仪器和测试条件:[/back][/size][/font][font='宋体'][size=16px]仪器型号:[/size][/font][font='宋体'][size=16px]LUMiS[/size][/font][font='宋体'][size=16px]izer[/size][/font][font='宋体'][size=16px][/size][/font][font='宋体'][size=16px]分散体分析仪(加速型,12通道)[/size][/font][font='宋体'][size=16px]测试条件:[/size][/font][font='宋体'][size=16px]2300g,20[/size][/font][font='宋体'][size=16px]℃[/size][/font][font='宋体'][size=16px],2[/size][/font][font='宋体'][size=16px]550s[/size][/font][font='宋体'][size=16px]测试原理[/size][/font][font='宋体'][size=16px]:[/size][/font][font='宋体'][size=16px]使用[/size][/font][font='宋体'][size=16px]近红外[/size][/font][font='宋体'][size=16px]光源[/size][/font][font='宋体'][size=16px](或多光源系统)不断[/size][/font][font='宋体'][size=16px]照射[/size][/font][font='宋体'][size=16px]整个[/size][/font][font='宋体'][size=16px]样品,[/size][/font][font='宋体'][size=16px]与之平行的检测器随时间连续监测[/size][/font][font='宋体'][size=16px]并反应[/size][/font][font='宋体'][size=16px]样品的透光率变化,从而形成样品分离过程的空间和时间透光率图谱。[/size][/font][align=left][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000],[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]-样品准备:[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#000000]10%[/color][/size][/font][font='宋体'][size=16px][color=#000000]纳米[/color][/size][/font][font='宋体'][size=16px][color=#000000]Al[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]O[/color][/size][/font][font='宋体'][size=16px][color=#000000]3[/color][/size][/font][font='宋体'][size=16px][color=#333333]水性分散体[/color][/size][/font][font='宋体'][size=16px][color=#333333],分别用1min涡旋,15min超声水浴,1min超声,3min超声,10min超声等条件进行[/color][/size][/font][font='宋体'][size=16px][color=#333333]分散,[/color][/size][/font][font='宋体'][size=16px][color=#333333]得到不同强度分散的[/color][/size][/font][font='宋体'][size=16px][color=#000000]纳米[/color][/size][/font][font='宋体'][size=16px][color=#000000]Al[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]O[/color][/size][/font][font='宋体'][size=16px][color=#000000]3[/color][/size][/font][font='宋体'][size=16px][color=#333333]水性分散体。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#333333]2[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]3[/color][/size][/font][font='宋体'][size=16px][color=#333333]-[/color][/size][/font][font='宋体'][size=16px][color=#333333]图谱结果:[/color][/size][/font][/align][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111026218839_4435_3433167_3.png[/img][align=left][font='宋体'][size=16px][color=#333333]2[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]4[/color][/size][/font][font='宋体'][size=16px][color=#333333]-[/color][/size][/font][font='宋体'][size=16px][color=#333333]粒径分布结果:[/color][/size][/font][/align][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111026220128_5966_3433167_3.png[/img][font='宋体'][size=16px][color=#333333]2[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]5[/color][/size][/font][font='宋体'][size=16px][color=#333333]-[/color][/size][/font][font='宋体'][size=16px][color=#333333]小结:[/color][/size][/font][font='宋体'][size=16px][color=#333333]分散强度对纳米氧化物水性分散体[/color][/size][/font][font='宋体'][size=16px][color=#333333]的分散性[/color][/size][/font][font='宋体'][size=16px][color=#333333],稳定性,粒径的影响都较大,可以用[/color][/size][/font][font='宋体'][size=16px]LUMiS[/size][/font][font='宋体'][size=16px]izer[/size][/font][font='宋体'][size=16px][/size][/font][font='宋体'][size=16px]进行快速的比较,从而进行优化。[/size][/font][align=left][font='宋体'][size=16px][back=#ffffff]3, [/back][/size][/font][font='宋体'][size=16px][color=#333333]研究[/color][/size][/font][font='宋体'][size=16px][color=#333333]电解质浓度[/color][/size][/font][font='宋体'][size=16px][color=#333333]对纳米氧化物水性分散体的影响:[/color][/size][/font][/align][color=#000000][back=#ffffff]3[/back][/color][font='宋体'][size=16px][color=#000000],1-[/color][/size][/font][font='宋体'][size=16px][back=#ffffff]仪器和测试条件:[/back][/size][/font][font='宋体'][size=16px]仪器型号:[/size][/font][font='宋体'][size=16px]LUMiS[/size][/font][font='宋体'][size=16px]izer[/size][/font][font='宋体'][size=16px][/size][/font][font='宋体'][size=16px]分散体分析仪(加速型,12通道)[/size][/font][font='宋体'][size=16px]测试条件:[/size][/font][font='宋体'][size=16px]328[/size][/font][font='宋体'][size=16px]g,20[/size][/font][font='宋体'][size=16px]℃[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]15h[/size][/font][align=left][font='宋体'][size=16px][color=#000000]3,[/color][/size][/font][font='宋体'][size=16px][color=#000000]2-[/color][/size][/font][font='宋体'][size=16px][color=#000000]样品准备:[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#333333]调节[/color][/size][/font][font='宋体'][size=16px][color=#333333]NaCl[/color][/size][/font][font='宋体'][size=16px][color=#333333]得到[/color][/size][/font][font='宋体'][size=16px][color=#333333]0[/color][/size][/font][font='宋体'][size=16px][color=#333333]M[/color][/size][/font][font='宋体'][size=16px][color=#333333],0.01[/color][/size][/font][font='宋体'][size=16px][color=#333333]M[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]0.02[/color][/size][/font][font='宋体'][size=16px][color=#333333]M[/color][/size][/font][font='宋体'][size=16px][color=#333333],0.05[/color][/size][/font][font='宋体'][size=16px][color=#333333]M[/color][/size][/font][font='宋体'][size=16px][color=#333333],0.45[/color][/size][/font][font='宋体'][size=16px][color=#333333]M[/color][/size][/font][font='宋体'][size=16px][color=#333333],1[/color][/size][/font][font='宋体'][size=16px][color=#333333]M[/color][/size][/font][font='宋体'][size=16px][color=#333333]等[/color][/size][/font][font='宋体'][size=16px][color=#333333]不同电解质浓度的[/color][/size][/font][font='宋体'][size=16px][color=#000000]10%[/color][/size][/font][font='宋体'][size=16px][color=#000000]纳米[/color][/size][/font][font='宋体'][size=16px][color=#000000]Al[/color][/size][/font][font='宋体'][size=16px][color=#000000]2[/color][/size][/font][font='宋体'][size=16px][color=#000000]O[/color][/size][/font][font='宋体'][size=16px][color=#000000]3[/color][/size][/font][font='宋体'][size=16px][color=#333333]水性分散体[/color][/size][/font][font='宋体'][size=16px][color=#333333]。[/color][/size][/font][/align][align=left][font='宋体'][size=16px][color=#333333]3[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]3[/color][/size][/font][font='宋体'][size=16px][color=#333333]-[/color][/size][/font][font='宋体'][size=16px][color=#333333]图谱结果:[/color][/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111026221535_6490_3433167_3.png[/img][/align][align=left][font='宋体'][size=16px][color=#333333]3[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]4[/color][/size][/font][font='宋体'][size=16px][color=#333333]-[/color][/size][/font][font='宋体'][size=16px][color=#333333]粒径分布结果:[/color][/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111026222687_4830_3433167_3.png[/img][/align][font='宋体'][size=16px][color=#333333]3[/color][/size][/font][font='宋体'][size=16px][color=#333333],[/color][/size][/font][font='宋体'][size=16px][color=#333333]5[/color][/size][/font][font='宋体'][size=16px][color=#333333]-[/color][/size][/font][font='宋体'][size=16px][color=#333333]小结:[/color][/size][/font][font='宋体'][size=16px][color=#333333]电解质浓度[/color][/size][/font][font='宋体'][size=16px][color=#333333]对纳米氧化物水性分散体[/color][/size][/font][font='宋体'][size=16px][color=#333333]的分散性,稳定性,粒径的影响都较大,可以用[/color][/size][/font][font='宋体'][size=16px]LUMiS[/size][/font][font='宋体'][size=16px]izer[/size][/font][font='宋体'][size=16px][/size][/font][font='宋体'][size=16px]进行快速的比较,从而进行优化。[/size][/font]

  • 纳米氧化锆

    请问纳米氧化锆作为QuEChers方法的净化填料主要吸附哪些物质呢?

  • 纳米氧化锆

    请问纳米氧化锆作为QuECher方法的净化填料是吸附哪些物质呢?

  • 纳米氧化锆

    请问纳米氧化锆作为QuEChers方法的净化填料一般是吸收什么物质呢?

  • 纳米氧化锌的基本信息介绍

    [font=&][size=18px]纳米氧化锌(ZnO)具备常规块体材料所不具备的光、电、磁、热、敏感等性能,产品活性高,具有抗红外、紫外和杀菌的功能,已被广泛应用于防晒型化妆品,抗菌防臭和抗紫外线的新型功能纤维、自洁抗菌玻璃、陶瓷、防红外与紫外的屏蔽材料、卫生洁具和污水处理等产品中。氧化锌是橡胶和轮胎工业必不可少的添加剂,也用作天然橡胶、合成橡胶及胶乳的硫化活性剂和补强剂以及着色剂。纳米氧化锌用于橡胶中可以充分发挥硫化促进作用,提高橡胶的性能,其用量仅为普通氧化锌的30%——50%。[/size][/font]

  • 【转帖】纳米氧化铝的晶型及粒度对其红外光谱的影响

    纳米氧化铝的晶型及粒度对其红外光谱的影响作  者:李莉娟 孙凤久 楼丹花 王闯机构地区:东北大学理学院,辽宁沈阳110004 上海宝钢股份有限公司特殊钢分公司,上海200940 出  处:《功能材料》 EI CAS CSCD 2007年第38卷第3期 479-481页,484页,共4页摘  要:利用硫酸铝铵热解法,通过控制焙烧温度,制备了不同晶型和粒度的纳米Al2O3。XRD物相分析表明,焙烧至900℃可得到纯γ-Al2O3,1200℃发生相转变,生成α-Al2O3。用Scherrer公式计算得到了各样品的晶粒度。对所制备的纳米Al2O3的红外光谱进行了详细研究。结果表明,不同晶型的纳米Al2O3具有不同的红外光谱特征,因此,红外光谱可以作为一种定性判断Al2O3是否发生了相转变的辅助手段。实验中发现所制备的纳米Al2O3的红外光谱存在吸收峰的蓝移和宽化,对出现此现象的原因进行了分析讨论。最后,对纳米金属氧化物材料出现谱移现象的原因进行了归纳总结。来源:维普资讯。

  • 【讨论】请教乙醚中的过氧化物问题

    新购乙醚或放置一段时间的乙醚里面会含有过氧化物,一般蒸馏除去。请教大家:1. 会是那些过氧化物,有人做过GCMS吗?2.过氧化物会对柱子,特别是极性柱子有影响吗?3.在用乙醚做溶剂处理样品时,过氧化物对某些易氧化物质,例如醛类有无氧化作用?

  • 有关纳米氧化锌国标的问题

    有关纳米氧化锌国标的问题

    各位大虾们是否根据国标拍摄过纳米氧化锌透射电镜的图片,国标里要求在约10倍时拍摄,选择颗粒明显均匀集中的区域。问题是我拍摄的图片总有颗粒叠在一起,是不是制样的时候制得不好,而且量长径和短径这个必须手工量吗?说的用计算机软件是DigitalMicrograph吗?http://ng1.17img.cn/bbsfiles/images/2013/10/201310271242_473429_2740268_3.jpg

  • 异丙醚中过氧化物的检测方法

    异丙醚中过氧化物的检测方法

    [align=left] 我也不知道把这个放在哪个分类,勉强放这里把~~[/align][align=left] 这是第一次原创,关于异丙醚中过氧化物的检测,最近有时间进行了一次试验,可以用比色法简单的定量(仅定出范围)。[/align][align=left] 主要是在反应过程中用来简单的中控,此方法相对快捷简便,但并非精密检测,如果有什么问题欢迎指点。[/align][align=left][font='微软雅黑','sans-serif'][size=18px][b] [size=16px] 异丙醚中过氧化物的检测方法(硫氰化铁)[/size][/b][/size][/font][/align][align=left][b]提出的检测要求:[/b]快捷简单,能够直接判断过氧化物的大致量。[/align][align=left][b]方法查询:[/b][/align][align=left] 1、淀粉碘化钾试纸:[font='Microsoft YaHei',Arial,Helvetica][color=#000000]最常用的是用淀粉碘化钾试纸来检测过氧化物,但是经测试,低浓度的过氧化物无法显色,因此试纸无法用来检测溶剂中的过氧化物。[/color][/font][/align][align=left][font='Microsoft YaHei',Arial,Helvetica][color=#000000] 2、淀粉碘化钾溶液:不同浓度的过氧化物,使用淀粉碘化钾溶液显色后,颜色非常接近,难以肉眼判断深浅,只能用来定性。[/color][/font][/align][align=left][font='Microsoft YaHei',Arial,Helvetica][color=#000000] 3、硫氰化钾与氯化铁溶液:未有关于这方面的详细介绍,自己进行测试。[/color][/font][/align][align=left][b]方法原理:硫氰化钾和氯化铁被氧化形成硫氰化铁,呈红色。[/b][/align][align=left] Fe2+过氧化物→Fe3+[/align][align=left] Fe3+硫氰化钾→Fe(SCN)3(血红色)[/align][align=left][font='微软雅黑','sans-serif'][color=black][b]异丙醚中过氧化物的质量分数限度要求(以H2O2计)%[/b][/color][/font][/align][align=left][font='微软雅黑','sans-serif'][color=black][b] [img=,501,173]https://ng1.17img.cn/bbsfiles/images/2020/03/202003181233226782_8146_3116636_3.jpg!w501x173.jpg[/img][/b][/color][/font][/align][align=left][color=black][b][font='微软雅黑','sans-serif'][back=white]试剂[/back][/font][/b][font='微软雅黑','sans-serif'][color=black] 30%[/color][/font][font=&][back=white]过氧化氢 分析纯[/back][/font][color=black][back=white] 硫氰化钾 化学纯[/back][/color][color=black] 氯化亚铁 [back=white]化学纯[/back][/color][back=white] 亚硫酸氢钠 化学纯[/back][/color][back=white] 纯化水 /[/back][b][back=white]溶液配制(此处以30%的过氧化氢作为标准液测试)[/back][/b][font='微软雅黑','sans-serif'][back=&] 0.003%[/back][/font][font='微软雅黑','sans-serif']过氧化氢溶液:用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]吸取1ml30%过氧化氢于100ml容量瓶,用纯化水稀释定容,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]吸取稀释后过氧化氢溶液1ml至100ml容量瓶,用纯化水稀释定容,混匀备用,所得过氧化氢质量分数为0.003%。[/font][font='微软雅黑','sans-serif'][back=&] 0.005%[/back][/font][font='微软雅黑','sans-serif']过氧化氢溶液:用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]吸取0.167ml30%过氧化氢于10ml容量瓶,用纯化水稀释定容,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]吸取稀释后过氧化氢溶液1ml至100ml容量瓶,用纯化水稀释定容,混匀备用,所得过氧化氢质量分数约为0.005%。[/font][font='微软雅黑','sans-serif'][back=&] 0.01%[/back][/font][font='微软雅黑','sans-serif']过氧化氢溶液:用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]吸取0.333ml30%过氧化氢于10ml容量瓶,用纯化水稀释定容,再用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]吸取稀释后过氧化氢溶液1ml至100ml容量瓶,用纯化水稀释定容,混匀备用,所得过氧化氢质量分数约为0.001%。[/font][font='微软雅黑','sans-serif'][back=&] 0.5%[/back][/font][font='微软雅黑','sans-serif']氯化亚铁溶液:称取0.5g氯化亚铁固体于100ml容量瓶中,用水溶解并定容,混匀,所得氯化亚铁溶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量分数为0.5%。[/font][font='微软雅黑','sans-serif'][back=&] 0.5%[/back][/font][font='微软雅黑','sans-serif']硫氰化钾溶液:称取0.5g硫氰化钾固体于100ml容量瓶中,用水溶解并定容,混匀,所得硫氰化钾溶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量分数为0.5%。[/font][back=white] 显色溶液:量取适量0.5%氯化亚铁溶液与0.5%硫氰化钾溶液,按1:1混匀备用。[/back][back=white] 亚硫酸氢钠溶液(100g/L): 取适量亚硫酸氢钠,配制成100g/L备用。[/back][b][back=white]测定方法[/back][/b] 空白对照:取异丙醚4ml,加入2ml亚硫酸氢钠溶液,振摇2min,加水4ml振摇,静置分层后取异丙醚层1ml,加入1ml显色溶液,摇晃混匀后倒入比色管,放置5min。 标准比对溶液:分别取不同质量分数的过氧化氢溶液1ml,加入1ml显色溶液,摇晃混匀后倒入比色管,放置5min。 样品溶液:取待测异丙醚1ml,加入1ml显色溶液,摇晃混匀后倒入比色管,放置五分钟。[font='微软雅黑','sans-serif'] 沿比色管轴线方向观测所得血红色不得深于标准比对溶液的颜色。[/font][font='微软雅黑','sans-serif'][color=#990000] (注:此处为了更加精准因而用比色管,且加入的量相对精准,但是经测试,无需非常精准,也无需比色管,用简单的冷冻管,试管等透明的容器都可以,在本实验本身误差下,由容器,量取方面带来的误差结果不明显,只需要对照溶液相互之间加入的量一致就可以。)[/color][/font][font='微软雅黑','sans-serif'][b][font='微软雅黑','sans-serif']结果分析[/font][/b][color=black] 分析纯异丙醚:样品溶液不得深于0.003%质量分数的标准比对溶液。[/color][color=black] 化学纯异丙醚:样品溶液不得深于0.005%质量分数的标准比对溶液。[/color][color=#000000] 工业级异丙醚:样品溶液不得深于0.01%质量分数的标准比对溶液。[/color][/font][b]此方法中,不同浓度的颜色相差很明显,肉眼即可辨别。以下为用冷冻管作为容器的图:[/b][img=,364,397]https://ng1.17img.cn/bbsfiles/images/2020/03/202003181241397051_3470_3116636_3.jpg!w364x397.jpg[/img][img=,143,405]https://ng1.17img.cn/bbsfiles/images/2020/03/202003181243017681_4750_3116636_3.jpg!w143x405.jpg[/img][b]上图可以清晰的辨别不同浓度之间的颜色,可以简单的定量0.003—0.001mol/L之间的过氧化物范围,如果需要更精准,则可以配制浓度差异更小的过氧化物进行测试,但此处未曾测试过,因为以上几种颜色已足够我们实验使用。以下附图为用淀粉碘化钾进行测试的颜色图一使用的冷冻管,颜色非常不明显,基本无法辨别。[img=,252,199]https://ng1.17img.cn/bbsfiles/images/2020/03/202003181248434297_5877_3116636_3.jpg!w252x199.jpg[/img]图二更换为了比色管,稀释了一下,颜色相对更为清晰,虽然图内能够勉强辨认,但是其实现实中肉眼是难以看出色差的。[img=,311,286]https://ng1.17img.cn/bbsfiles/images/2020/03/202003181249241813_8832_3116636_3.jpg!w311x286.jpg[/img]以上便是我自己的测试方法,如果大家有更好的也可以提出来,进行改进。不过我自己做完了倒是有几个疑问:1、为什么基本检测过氧化物的方法都是用淀粉碘化钾,滴定定量时也是用此试药来判断终点。淀粉碘化钾最大的优势是在哪里?2、我看过很多方法写的都是淀粉碘化钾溶液变蓝色即为有过氧化物,而我做的都是偏紫色,最蓝的一次也不过是蓝紫色,是做错了什么步骤?3、洗脱过氧化物的方法,主要以亚硫酸钠为主,但是我做了实验,亚硫酸钠的洗脱效果还不如亚硫酸氢钠,而亚硫酸氢钠更是远不如硫酸亚铁,那么为什么更多方法中使用的是亚硫酸钠呢?[/b][/align][align=left][/align]

  • 纳米氧化亚铜的傅立叶红外光谱

    [color=#444444]求助各位谁可以分享一下纳米氧化亚铜的红外光谱。近期做了一些样品,打了红外,想对照一下纳米氧化亚铜的光谱看看。求指教[/color]

  • 纳米氧化亚铜的傅立叶红外光谱

    [color=#444444]求助各位谁可以分享一下纳米氧化亚铜的红外光谱。近期做了一些样品,打了红外,想对照一下纳米氧化亚铜的光谱看看。求指教[/color]

  • 【求助】请行家看看我的二氧化钛纳米颗粒照片,我第一次拍。

    【求助】请行家看看我的二氧化钛纳米颗粒照片,我第一次拍。

    这是我用锐钛矿二氧化钛纳米颗粒在水中的悬浊液滴在铜网上拍摄的,没有加分散剂,自然风干,团聚的颗粒周围白色的轮廓是怎么回事?还有,可以放大看到有很多似断非断的类似颗粒的物质在一起,可以判断是单个纳米颗粒吗?给的颗粒物粒径范围是20-80个纳米。我不知道什么样的是单个的?我用的透射电镜是120k伏的,不是很高,所以效果差些。[img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704061913_48168_1767848_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704061914_48169_1767848_3.jpg[/img]

  • 【求助】金属与非金属氧化物?

    金属与非金属氧化物的全部知识点,分别要一个完整的归纳和总结,越详细越好!!! 急!!!!!! 注:我需要的是 金属与非金属氧化物 的全部知识点 其余的不要

  • 国外在抑制金红石型纳米二氧化钛的光催化的文献有哪些

    如题,我找了很多的文献,只要是纳米二氧化钛的,几乎都是要提高它在可见光区的光催化,而不是抑制光催化,二氧化钛除了是光催化剂外也是白色颜料,我研究的是抑制它作为颜料时的光催化性能,使之更具有耐候性。请大家帮忙找找,要国外的哦

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制