当前位置: 仪器信息网 > 行业主题 > >

纳米催化剂

仪器信息网纳米催化剂专题为您提供2024年最新纳米催化剂价格报价、厂家品牌的相关信息, 包括纳米催化剂参数、型号等,不管是国产,还是进口品牌的纳米催化剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米催化剂相关的耗材配件、试剂标物,还有纳米催化剂相关的最新资讯、资料,以及纳米催化剂相关的解决方案。

纳米催化剂相关的论坛

  • 【讨论】纳米级催化剂的过滤

    最近在做饮用水处理,选用的催化剂为纳米级的TiO2,文献中有选用Millipore或Whatman的过滤器来去除颗粒,求助各位大侠是否可行,或有其他什么方法?还有就是过滤器的价格如何,谢!!![em09505]

  • 【讨论】水体中纳米级催化剂颗粒的去除

    最近在做饮用水处理,选用的催化剂为纳米级的TiO2,文献中有选用Millipore或Whatman的过滤器来去除颗粒,求助各位大侠是否可行,或有其他什么方法?还有就是过滤器的价格如何,谢!!![em09505]

  • 甲壳素微球负载纳米钯催化剂的构建及应用

    【序号】:8【作者】: 裴响林【题名】:甲壳素微球负载纳米钯催化剂的构建及应用【期刊】:武汉大学【年、卷、期、起止页码】:2018【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2020&filename=1018201070.nh&uniplatform=NZKPT&v=tR__wEIh_WPLpyzWa7tnEzHSv-xc-qcqK7orwtX7PDRKqA-7fF8VbBbIKTgRV3Re[/url]

  • 【分享】纳米二氧化钛的光催化特性

    一、 研究意义和目的 人类正面临着环境污染的巨大压力。污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO42-还原为Cr3+,来降低它们的毒性;还能将[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]体系中的氮氧化物分解并将有机污染物氧化。如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。 我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。 1.不同结构纳米二氧化钛的制备与性能 以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。高温条件下金红石相二氧化钛纳米晶的生长速度快,高温[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。二氧化钛纳米晶在液相介质中,很难分离和回收。文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。因此,这种介孔并不适合作光催化剂。 我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。 纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。 2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象 苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。 我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。由此可见纳米晶的高催化活性。紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。 铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。 需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。

  • 国外在抑制金红石型纳米二氧化钛的光催化的文献有哪些

    如题,我找了很多的文献,只要是纳米二氧化钛的,几乎都是要提高它在可见光区的光催化,而不是抑制光催化,二氧化钛除了是光催化剂外也是白色颜料,我研究的是抑制它作为颜料时的光催化性能,使之更具有耐候性。请大家帮忙找找,要国外的哦

  • 南京大学李剑、夏兴华教授团队:用于催化研究的纳米红外技术

    [align=center][img]https://img1.17img.cn/17img/images/202404/uepic/e561bd32-24b4-411a-ada9-a8bf3c25d9f4.jpg[/img][/align]红外光谱是研究催化过程的有力工具,能够识别与催化剂性能和催化环境相关的化学物质,有助于深入理解催化机理。然而,传统红外光学显微镜受制于衍射极限,仅能提供微米级的空间分辨率。对于具有纳米级空间异质性的催化剂,传统红外技术无法有效地解析其构效关系。基于原子力显微镜(AFM)的纳米红外技术(nano-IR)能够克服光学衍射极限,利用金属AFM针尖聚焦红外光,实现纳米尺度的电磁场增强,在针尖水平上测量光-质相互作用,进而研究微观水平的催化过程。这些技术包括测量光学信号的散射型扫描近场光学显微镜(s-SNOM)和测量光生力信号的光热诱导共振显微镜(PTIR)、光诱导力显微镜(PiFM)以及峰值力红外显微镜(PFIR)。[align=center][img=,500,399]https://img1.17img.cn/17img/images/202404/noimg/0aa2960d-716e-4521-bec0-739cac819456.gif[/img][/align]尽管已经有一些开创性的工作,AFM-IR技术仍未充分应用于催化过程的研究中。催化过程是动态的变化过程,涉及复杂的传质、物质转化、电子转移和能量交换。亚单层水平的活性物质在不同形状、尺寸、晶面和多相组分的催化剂上通常表现出不同的行为。这些行为又进一步受到如温度、气体/液体环境(包括pH、溶剂和溶剂化物浓度、载体等)、电场和磁场、光和机械力等因素的调控。AFM-IR提供的纳米红外成像和纳米红外光谱对分析催化剂异质性和特定位点方面具有独特优势,而催化过程的复杂性对AFM-IR技术的灵敏度、时间和空间分辨率又提出了挑战。近期发表在The Journal of Physical Chemistry Letters上的“Atomic Force Microscopy-Based Nanoscale Infrared Techniques for Catalysis” 回顾了近年来应用纳米红外开展的催化过程研究,并总结了将纳米红外技术用于研究催化过程所面临的挑战以及发展方向。该论文第一作者为李剑博士,通讯作者为夏兴华教授。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 中国科学技术大学纳米催化表面物理化学研究组招聘博士后

    中国科学技术大学纳米催化表面物理化学研究组招聘博士后中国科学技术大学纳米催化表面物理化学研究组目前承担了国家科技部重大科学研究计划、中国科学院、国家自然科学基金、MPG-CAS伙伴小组等项目,因科研需要,诚招有相关科研经验的博士后。研究组组长黄伟新教授是中国科学院“百人计划”入选者(2005-2008年),已在国内外学术期刊上发表SCI收录论文80余篇,被引用700余次。2005年在中国科学技术大学独立工作以来在JACS, AngewChemIntEd, JCatal, JPC等刊物发表学术论文60余篇。曾获得第13届国际催化大会“青年科学家奖”(2004年)、亚历山大洪堡基金会洪堡学者(2004年)、中国真空学会 “中国真空青年科技创新奖”(2008年)和中国化学会“青年化学奖”(2009年),曾担任“先进催化材料结构-性能关系:试验与理论”教育部创新团队带头人。目前为“多相催化模型体系的结构-性能关系”中国科学院-德国马普学会伙伴小组组长和中国化学会催化委员会委员。详细信息请访问研究组主页http://staff.ustc.edu.cn/~huangwx/ 一、研究方向(1)模型催化体系基于表面分析仪器研究催化反应过程中的基元化学反应步骤,从中了解催化反应的具体路径,探讨催化剂表面的构效关系。(2)纳米催化研究利用各种纳米材料的制备方法合成纳米催化剂,并通过样品表征技术来研究催化剂的组成、结构和催化性能之间的联系 二、招聘条件申请者应具有相关专业的博士学位(或即将毕业),身体健康,品学兼优,有敬业精神,具有相关课题经验和科研经历,以及独立的科研工作能力,有责任心和团队精神。 三、待遇享受中国科学技术大学规定的博士后工作和生活待遇,学校提供生活设施齐全的博士后公寓一套。优秀者将有机会获得学校青年科学基金(10-20万元)资助和额外生活补贴。 四、应聘材料(1)个人简历(2)曾参加或承担的主要科研工作简介,成果业绩(3)博士/硕士/本科论文的主要内容(4)发表(含录用)论文清单 五、联系方式请将申请函寄至信箱:huangwx@ustc.edu.cn

  • 三元催化剂的制备和原料选择

    [align=center][b]三元催化剂的制备和原料选择[/b][/align]稀土催化材料在汽车尾气净化中的作用 目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的, 目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NOx 。该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd),开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。 人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意的净化效果。 稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。二氧化铈还在贵金属气氛中起稳定作用,以保持催化剂较高的催化活性。所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。 稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。 稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。 稀土在TWC中的应用 稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。稀土在催化剂中的作用主要有以下几方面。 1.汽车尾气净化催化剂活性成分 汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。 Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。因此,可用稀土氧化物完全或部分代替贵金属来担当催化剂的活性组分,催化还原Co、HC和No。2提高催化剂的抗中毒能力机动车尾气含有的Pb、S、P等是易使贵金属三效催化剂中毒的物质,这些物质在催化剂的表面活性位置上产生化学吸附,阻碍了反应的进行,使催化剂失去了催化活性。 稀上具有抗硫化物中毒能力是因为这些有毒物与其生成稳定相,如Ce203与硫化物反应生成稳定的C02(S04)3。在还原气氛中,这些硫化物又被释放出来并在Pt和Rh催化剂上转化成H2S,同尾气一起排出(产生有臭味的H2S)。稀上对硫化物的转化作用使含稀土的催化剂具有较强的抗中毒能力。 研究表明Ce02对尾气中S02组分有一定的储硫作用。汽车发动机在贫燃条件下工作时发生如下反应:6 Ce02+3S02一Ce2(S04)3+2C0203,在富燃条件下储存的硫会被释放,从而增强了催化剂的抗S中毒能力。 3提高催化剂的热稳定和机械强度 通常构成活化涂层的丫-A1203在800℃以上会转变成a-A1203,使密度增加,表面积减少,造成孔隙结构坍塌。并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。 加入Ce02能稳定丫-A1203晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。氧化铈在还原或中性气氛下,在1473 K处理数小时后仍能保持60 m2g.1表面积,说明主要以Ce A1203存在的Ce3+阻碍了晶体生长和氧化铝的转变。 4. 自动调节空气燃料比(储氧能力提高催化剂的活性) (围绕汽车发动机工作时的理论空燃比,汽车废气的组成是会呈周期地发生变化.利用选种特性,把废气中的氧能可逆的进行吸附和放出的物质叫做氧的存储物质,CeO 有这种作用。) 许多研究发现,氧化铈等稀土氧化物具有储放氧能力。Ce02在贫氧区放出02,氧化C0和HC,在富氧区储存02,从而控制贵金属附近的气氛波动,使空燃比A/F稳定在化学计量平衡附近,起到扩大空燃比窗口的作用,保持催化剂的催化活性。 Ce02中的Ce能改变氧化态(Ce4+与Ce3+之间的转化),具有极好的储氧效应和释放氧能力,在贫燃/富燃条件下可以储存/释放氧气,从而可以提高催化剂对CO、HC、NO的转化率。 (当发动机瞬时富油而造成废气瞬时缺氧时,四价Cc (CeO2)可变成三价Ce(Ce2O3),释放出O2.当发动机瞬时贫油而造成废气瞬时富氧时, Ce2O3又结合O2而转化成CeO2,这就是所谓的氧的储备作用。 其反应方程式如下:2 CeO2-- Ce2O3+1/2O2.) 5.助催剂的作用 汽车尾气中含有约l0%的水蒸气,Ce02可以促进水气转移反应产生还原性气体,可以在缺氧时提高CO的净化率,同时H2可用在NO的还原中,提高NO在富燃区的净化率。CO+H2O- -CO2+H2 为了弥补富Pd及全Pd催化剂中Pd在催化还原NO方面的能力不足,在Pd内加入La203,这种Pd-La催化剂在性能上完全可以和Pt.Rh催化剂媲美。 6.提高活性涂层的催化活性 加入CeO2 使活性涂层中贵金属颗粒保持分散, 避免因烧结而导致催化格点减少, 使活性受损。在Pt/γ2Al2O3 中添加CeO2 , 由于CeO2 能在γ2Al2O3 上单层分散( 最大单层分散量为01035 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]eO2Pgγ2Al2O3 ) , 改变了γ2Al2O3 的表面性质, 从而提高了Pt 的分散度。当CeO2 含量等于或接近于分散阈值时, Pt 的分散度达到最高。CeO2 的分散阈值即为它的最佳添加用量。Rh 在600 ℃以上氧化气氛中, 因高温氧化生成的Rh2O3 与Al2O3形成固溶体而失去活化作用。CeO2 的存在将减弱Rh与Al2O3 之间的反应, 保持Rh的活化作用。La2O3也能防止Pt 超微细粒长大。将CeO2 和La2O3 添加到PdPγ2Al2O3 后发现, CeO2 的加入促进了Pd 在载体上的分散, 并且产生一种协同还原作用。Pd 的高度分散及其与CeO2 在Pd/γ2Al2O3 上的相互作用是催化剂具有高活性的关键。 CeO2 还是一种有效的烃类氧化催化剂。在考察Pt/ CeO2 上CO 氧化时发现Pt 和CeO2 界面处的晶格氧起着重要作用。在真空或还原气氛中CeO2表面可以产生低价铈和氧缺陷, 具有优异的氧化还原催化性能和气敏功能, 特别是具有与吸附分子交换电荷、交换物种的功能。CeO2 在氢作用下易产生低价铈和氧空位。Pt/ CeO2 可吸收[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]氢并再释放出来。在常温下部分还原的CeO2 上吸附氧形成分子离子氧物种。氧物种可部分脱附, 高于170 ℃时均可转化为晶格氧 。另外, CeO2 对γ2Al2O3 载体的改性, 有利于钯催化剂上表面氧物种的脱附和氧化再恢复, 从而促进Pd/ CeO22γ2Al2O3催化剂的氧化作用。催化剂的制备工艺非常复杂,从配方的粉体原材料选择:催化剂粉体主要的材料是三氧化二铝、铝胶、稀土材料(氧化镧、氧化铈、氧化锆等)进行工艺混合,再由不同比例的贵金属活性组分添加,通过800度的高温制备而成。整个制备的工艺是一个科技含量非常高和严谨的流程。三元催化转化器的结构三元催化转化器主要由外壳、隔热保护罩、中间段、入口和出口锥段、弹性夹紧材料、防直通密封催化剂等几部份组成, 其中催化剂作为三元催化转化器的技术核心包括载体、涂层两部分。2.1 载体 基本材料为陶瓷(MgO2, Al2O3,SiO2)。目的是提供承载催化剂涂层的惰性物理结构。为了在较小的体积内有较大的催化表面,载体表面制成为蜂窝状。2.2 涂层在载体表面涂敷有一层极松散的活性层,它以金属氧化物γ-AL2O3 为主。由于表面十分粗糙,这使壁面的实际面积增大了约7000 倍,大大的增加了三元催化转化器的活性表面和储存氧的能力。在活性层外部涂敷有含锆Zr 和铈Ce 等元素的助催剂,含有铑Rh、钯Pd、铂Pt 等贵金属的主催化剂。市场现状(2)— 国内催化剂生产量估算[table][tr][td][b]厂 家[/b][/td][td][b]年产量(万升)[/b][/td][/tr][tr][td]昆明贵研催化剂有限责任公司[/td][td]300[/td][/tr][tr][td]无锡威孚力达[/td][td]60(剂)+20(封装)[/td][/tr][tr][td]天津化工研究设计院[/td][td]50[/td][/tr][tr][td]天津卡达克[/td][td]50(封装)[/td][/tr][tr][td]其他[/td][td]30[/td][/tr][tr][td]合计:[/td][td]500[/td][/tr][/table][img=,499,267]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD7D.tmp.jpg[/img][img=,480,361]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD8E.tmp.jpg[/img]三元催化剂的制备过程,提高催化效率,关键在于选用合适的催化剂。催化剂要求粒径小,大比表面积,同时要求高分散性,要求分散吸附性能强。市场上主流的效果最好的纳米氧化铈生产厂家有:杭州九朋新材料有限责任公司,其生产的纳米氧化铈比表高达200-300平,且分散性好,价格合理,同时还生产纳米氧化铝,纳米氧化铝溶胶,铂铑钯催化剂。另一家是山东加华,外资企业,主要生产氧化铈,出口为主,价格较高。要更换新的三元催化如何选择呢? 1、原厂件:4s如果你依然信任他,而且你也能够承担高出好几倍的价格,那么可以选择,关键是三元催化原厂件厂家一般都没有质保,原因很简单,因为新车的时候都很难质保。 2、品牌件:这个选择的难度就比较大了,因为今天中国的三元催化市场太吓人,从100元的三元催化到1万元的都有,一家三口人都可以在家里生产三元催化,这个市场是乱的把外星人都吓跑了,这么一个高科技含量的配件今天在中国变成家庭作坊都可以生产,这也难怪为什么主机厂基本在中国放弃了在用车市场,因为实在无法竞争。那我们消费者选择起来可就更难了,外行根本看不懂啊。其实方法还是有的。再乱的市场也有正规做事情的企业。

  • 催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    [align=center][img=https://www.instrument.com.cn/webinar/meetings/catalyst2022/,690,151]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101025467345_9400_3295121_3.jpg!w690x151.jpg[/img][/align][size=24px][color=#ff0000]催化剂表征与评价 主题网络研讨会[/color][/size][size=18px]举办时间:6月28日 14:00[/size][font=&]1、韩一帆(华东理工大学/郑州大学 长江学者、中原学者、教授/博士生导师):Elucidating Active Sites for Syngas to Olefins through F-T Reaction[/font]2、周琰(安东帕(上海)商贸有限公司 产品经理):气体吸附在催化剂表征中的应用3、刘丽萍(大连理工大学 高级工程师):固体多孔材料比表面积和孔结构分析方法应用探讨4、杨军(中国科学院过程工程研究所 研究员):贵金属基异质结构纳米材料及其电催化应用戳链接,[size=18px][color=#ff0000]免费[/color][/size]报名:[url]https://www.instrument.com.cn/webinar/meetings/catalyst2022/[/url]

  • 哪里做纳米二氧化钛的光催化降解实验

    请各位高手指教,我想分析纳米二氧化钛的光催化性能,所以想做个光催化降解实验,因为希望可以发文章,所以得有图表之类的,因此想找个有分光光度计的地方做这个实验,不知道哪里可以做啊谢谢各位啦

  • 催化剂的分类

    催化剂的分类方式有很多种:按聚集状态分类、按化学键分类、按催化剂组成及使用功能分类以及按催化剂工艺和工程特点分类。目前,国内外均以功能划分为主,兼顾市场类型及应用产业。我国尚无统一的工业催化剂分类法,参考一些大型书目和国外分类方法可将工业催化剂分成:石油炼制、无机化工、有机化工、环境保护和其他催化剂5大类。细分情况见图。http://ng1.17img.cn/bbsfiles/images/2017/02/201702061522_01_1241901_3.jpg

  • 【资料】环境保护催化剂简介!

    催化剂工业中的一类产品,用于借助催化作用来消除环境污染的工艺。自20世纪70年代汽车排气催化净化技术商业化以后,此类催化剂与石油炼制催化剂、化工催化剂(包括石油化工催化剂和无机化工催化剂并列为催化剂工业中的三大类产品。环境保护用催化剂通常有较高的催化活性,能将浓度本来很低的污染物经催化转化为无毒物;能承受较高的作业负荷,以节约催化剂用量和治理污染的设备投资;能在室温或不太高的温度下作业,以减少治理污染所需的能耗。被处理的气体,通常含有粉尘、重金属、含硫化合物、含氯化合物、酸雾等,因此要求催化剂的抗毒能力较强,化学稳定性好,具有足够的催化剂寿命。有时,要求有良好的催化剂选择性不致因副反应所生成的产物造成二次污染。在环境治理工程中,由于被污染物的组成、浓度、温度等常有变化,故要求催化剂能在较宽的反应条件下保持其效率,这与典型的化工生产中所用的催化剂是有所不同的。   燃烧催化剂  用完全催化氧化的方法使可燃性污染物质转化为二氧化碳和水的催化剂。广泛用于治理工厂的排气污染,主要是一氧化碳、烃类及其含氧衍生物,如醇、醛、酮、酯等引起的污染。第一次世界大战时曾用CuO和MnOx为催化剂,置于防毒面具中以净化毒气(一氧化碳等),在室温下即有效。催化燃烧技术现在广泛地用于排放有机溶剂废气的行业和排放可燃尾气的化工厂。将直接燃烧和催化燃烧法比较,依据不同的污染物,起燃温度(为保持反应正常进行所需的最低温度)分别为600~800℃和室温至400℃,即用催化法治理污染的起燃温度低,可节约能源。最常用的催化剂是以铂、钯、氧化铜、氧化锰、氧化钴、氧化镍、氧化钒等为活性组分,以氧化铝为载体。含贵金属的催化剂极为活泼,在催化剂中的含量通常为0.3%~0.1%,它们甚至在低于100℃时可使烃类完全转化,铂转化一氧化碳效率优于钯,而对烃类的燃烧活性则反之。以甲烷为例,催化燃烧活性顺序为Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>V2O5>NiO>MoO3>TiO2。非贵金属氧化物催化剂价廉,但起燃温度较高。近年来,在处理大气量的催化燃烧炉中,多采用蜂窝状造型的催化剂,后者为柱状制件,沿柱体的轴向开有许多平行的孔道,形似蜂窝。这种造型的催化剂对气流的阻力比球状催化剂小得多。

  • 【资料】试剂介绍-催化剂

    [size=4]定义  [/size][b][size=4] [/size][/b][size=4] [/size][size=4]又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为[/size][size=4]催化作用[/size][size=4]。涉及催化剂的反应为催化反应。[/size][size=4][/size][size=4]  催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为[/size][size=4]触媒[/size][size=4]。[/size][size=4]  催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性(或专一性)。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰在[/size][size=4]氯酸钾[/size][size=4]受热分解中起催化作用,加快[/size][size=4]化学反应速率[/size][size=4],但对其他的化学反应就不一定有催化作用。某些化学反应并非只有唯一的催化剂,例如氯酸钾受热分解中能起催化作用的还有[/size][size=4]氧化镁[/size][size=4]、[/size][size=4]氧化铁[/size][size=4]和氧化铜等等。[/size][size=4]  初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。[/size][size=4]  也有一种说法,催化剂先与反应物中的一种反应,然后两者的生成物继续在原有条件下进行新的化学反应,而催化剂反应的生成物的反应条件较原有反应物的反应条件有所改变。催化剂原先因发生化学反应而生成的物质会在之后进一步的反应中重新生成原有催化剂,即上面提到的质量和化学性质在反应前后都没有发生变化。[/size]

  • 北化院BHL催化剂完成首次工业应用试验

    [color=#000000]近日,[b]北京化工研究院自主研发的新型BHL催化剂[/b]在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。[/color][color=#000000]道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。[/color][color=#000000]BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。[/color][来源:中国石化报][align=right][/align]

  • 【求助】催化剂的检测项目

    最近公司新上一项目,需要检测催化剂方面的东西,但是还不知道要检测什么。领导只是说按照催化裂化装置的检验项目进行检测就行。那请问一下大家,都需要检测什么项目,需要什么仪器啊。

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 【求助】有机催化反应后,要测定催化剂的流失,如何处理样品?

    本人是作催化的,公司新买了ICP,但没有人会用。有2个问题想向各位请教一下。用钯/活性炭 作为催化剂,催化苯乙酮加氢还原,得到苯乙醇。1、想测定催化反应循环过程中,每次催化剂的流失。如何处理样品?(注* 催化剂颗粒很小,即使用高速离心机处理,产物相还是有点黑,也就是还有少量催化剂在里面)2、想测定钯/活性炭 催化剂中 钯的量。样品又如何处理?谢谢各位啦!!

  • 【转帖】相转移催化剂效率大小规律

    相转移催化剂效率大小规律1 较大的季铵离子比较小的季铵离子有效。2 催化剂的效率随季铵离子中最长链的长度增加而增强。3 比较对称的离子比只含一个长链的离子有效。要使催化剂溶于有机介质中并发挥作用,对季铵离子烃基的碳原子数有一个最低要求。较好的催化剂应具备最基本的亲脂性,而且在代正电的季杂原子周围具有较大的基团。四丁基铵的催化作用比十六烷基三甲铵强得多,虽然后者的碳原子总数比前者多三个。当季原子所受的位阻比其电荷所遭的掩盖少时,相关联的阴离子或许与季阳离子形成比较紧密的离子对。4 季膦离子比相应的季铵离子催化剂更有效,热力学上也更稳定。5 较有效的催化剂是被烷基取代而不是被芳基取代的季离子。

  • 化工催化剂检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-38856.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]随着负载型双组份催化剂的发展,催化剂表征方法的建立使人们对催化剂中组分、活性以及存在状态具备综合分析的依据,能够对于所制备的催化剂的反应行为给予更合理的解释。如应用TPR及H2和O2化学吸附等方法对PtSn/Al2O3催化剂中的锡组分存在状态的表征,应用电镜和XRD对催化剂结构进行表征,通过ICP及XRF对催化剂进行定性及定量分析,另外对催化剂的积碳失活的检测有助于催化剂表面再生行为的研究,运用TPO、TG及STA等手段对催化剂表面积碳行为。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]平台基础配套设施齐全,配备催化剂表征所具备的材料物化分析检测仪器设备,主要包括STA、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、FT-IR、ICP、XRD、XRF等以及催化剂原位表征,包括化学吸附-质谱联用、吡啶透射红外、原位XRD、原位漫反射红外等。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]化工产品/催化剂[/td][td]比表面积[/td][td]GB/T 19587-2017[/td][/tr][/table]

  • 纳米材料的应用是怎样的?

    现如今借助于纳米材料的各种特殊性质,科学家们在各个研究领域都取得了性的突破,这同时也促进了纳米材料应用的越来越广泛化。催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒子作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2(优~锆~纳~米),粒径非常小,而且不团聚,分散性能好,没有任何沉淀,不含任何添加剂(香精),催化活性高,可以迅速的捕捉并分解室内的甲醛,苯,氨等有害气体,除味效果好,可以说其既有较高的光催化活性,又能耐酸碱,对光稳定,无毒。

  • 【资料】室内微污染有机废气的纳米光催化处理

    摘 要 室内装修产生的污染严重影响人们的身体健康,纳米和光催化技术是国际上新出现并普遍认为是最有应用化前景的高新技术,介绍了应用TiO2 纳米光催化技术治理室内空气污染的方法,能在常温下高效、稳定地分解污染物,其处理效果明显,无二次污染,适合室内空气中有害污染物净化。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=94382]室内微污染有机废气的纳米光催化处理[/url]

  • 【原创大赛】单原子催化剂的介绍及其相关研究

    【原创大赛】单原子催化剂的介绍及其相关研究

    [align=center][font=微软雅黑]单原子催化剂的介绍及其相关研究[/font][/align][b][font=微软雅黑][font=微软雅黑]钱冠求[/font] [/font][/b][align=center][font=微软雅黑]([/font][font=微软雅黑]北京[/font][font=微软雅黑]化工[/font][font=微软雅黑]大学化学学院[/font][font=微软雅黑] [/font][font=微软雅黑]北京[/font][font=微软雅黑] [/font][font=微软雅黑])[/font][/align][font=微软雅黑][font=微软雅黑]摘[/font] 要:[/font][font=微软雅黑][font=微软雅黑]近年来,单原子催化剂以其优异的催化性能、极大的比表面积与较好的稳定性成为了催化领域炙手可热的研究方向,已被广泛应用于各种催化领域的研究。本文通过整理大量文献,简明地阐述了单原子催化剂的发展情况以及制备方式,并以部分文献中的实验过程和表征结果为基础简要地提出了一些理论上可行的改进方法,以期能为之后单原子催化剂的合理设计与可控合成实验提供新思路。除此之外,单原子催化剂在表征与测试方面优异的表现,更证实了其在电催化、[/font]CO优先氧化等领域上有着良好的应用前景。[/font][font=微软雅黑] [/font][font=微软雅黑]关键词:单原子,催化剂,贵金属,非贵金属[/font][font=微软雅黑]一、研究背景[/font][font=微软雅黑]单[/font][font=微软雅黑]原子催化剂,是指通过一系列手段阻止载体上的金属原子团聚,使之以单个原子的形态均匀分散在载体上的一系列催化剂的总称。其具有高反应活性、高稳定性、高选择性的特点,同时,原子的高程度分散,也使得原子利用率得到极大提高,从而节省了催化剂原子的浪费与经济支出,具有明确的现实经济意义。[/font][font=微软雅黑][font=微软雅黑]将催化剂单原子化概念的产生,可以追溯到上个世纪,早在[/font]1[/font][font=微软雅黑]997[/font][font=微软雅黑]年,[/font][font=微软雅黑]Haruta[/font][sup][font=微软雅黑][font=微软雅黑][1][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等人就在文章中写道,贵金属[/font]Au的催化活性往往不尽如人意,但是当其高度分散到直径5nm以下时,低温下的催化活性高于Pt与Pd。他的另一项研究[/font][sup][font=微软雅黑][font=微软雅黑][2][/font][/font][/sup][font=微软雅黑][font=微软雅黑]也表明了,[/font]Au催化剂的单位面积活性随Au的粒径减小而增大。2[/font][font=微软雅黑]011[/font][font=微软雅黑][font=微软雅黑]年,[/font]Qiao[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑]等人利用[/font][font=微软雅黑]P[/font][font=微软雅黑]t原子与Fe/[/font][font=微软雅黑]O[/font][font=微软雅黑]x的相互作用,合成了高分散度、高活性与稳定性的单原子催化剂Pt[/font][font=微软雅黑]1/F[/font][font=微软雅黑]e[/font][font=微软雅黑]O[/font][font=微软雅黑]x,掀起了对单原子催化剂的合成热潮。[/font][font=微软雅黑][font=微软雅黑]多相催化反应的发生需要经历三个过程,即反应物的吸附[/font]-反应-脱附过程[/font][sup][font=微软雅黑][font=微软雅黑][4][/font][/font][/sup][font=微软雅黑][font=微软雅黑],就反应步来说,具有高催化活性的原子往往是贵金属,其高昂的成本限制了其工业化的大规模应用。除此之外,[/font]Pt的中毒等现象也令其实用性受到了极大阻碍。[/font][font=微软雅黑][font=微软雅黑]于是,人们自然而然的将目光投向了贵金属催化剂的改性以及用[/font]Fe、Cu、Co等廉价金属替代贵金属的研究上,[/font][font=微软雅黑]Liang[/font][sup][font=微软雅黑][font=微软雅黑][5][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等以维生素[/font]B[/font][sub][font=微软雅黑][font=微软雅黑]12[/font][/font][/sub][font=微软雅黑][font=微软雅黑]与聚苯胺铁络合物为前体,制备出了高活性的非贵金属[/font]Fe-[/font][font=微软雅黑]N-C[/font][font=微软雅黑]催化剂。随[/font][font=微软雅黑][font=微软雅黑]后,[/font]Co[/font][sup][font=微软雅黑][font=微软雅黑][6][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]N[/font][font=微软雅黑]i[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]C[/font][font=微软雅黑]u[/font][sup][font=微软雅黑][font=微软雅黑][8][/font][/font][/sup][font=微软雅黑]等高性能催化剂也[/font][font=微软雅黑]被相继研发出来。单原子催化剂可以广泛应用于电催化[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][sup][font=微软雅黑][font=微软雅黑][10][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]C[/font][font=微软雅黑]O[/font][font=微软雅黑]的优先氧化[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑]、硝基芳烃还原[/font][sup][font=微软雅黑][font=微软雅黑][6][/font][/font][/sup][font=微软雅黑]、葡萄糖的催化氧化[/font][sup][font=微软雅黑][font=微软雅黑][11][/font][/font][/sup][font=微软雅黑]等研究领域。[/font][font=微软雅黑]二、[/font][font=微软雅黑]制备方法[/font][font=微软雅黑]1.原子层沉积法[/font][font=微软雅黑]将反应物交替释放到体系中,以此精确控制沉积层数,随着循环次数增加,催化剂的质量也均匀上升,故而该法可控性强。但当载体表面官能团过少时易成核生长或难以均匀成膜。产量低、不利于大规模生产。[/font][align=center][img=,367,207]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056027180_7399_3237657_3.png!w367x207.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]1.原子层沉积法示意图[/font][/align][font=微软雅黑]2.液相还原法[/font][font=微软雅黑]利用还原性物质在液相中将前体还原,和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]还原法相比,液相还原所需的温度更低,可以有效避免金属离子的聚集、保护载体不被高温破坏,受到还原剂、温度、金属阳离子种类的影响可能造成颗粒过大或使用大量表面活性剂,难以去除。[/font][font=微软雅黑]3.沉积-沉淀法[/font][font=微软雅黑][font=微软雅黑]通过在有金属盐与载体的溶液中缓慢加入弱碱,使金属盐沉淀在载体空隙中温度过高可能引起大量快速沉淀,[/font]pH的局部过浓或过稀也会影响沉淀的形貌。不利于制造催化原子含量高的催化剂。催化剂金颗粒尺寸分布比较均匀、操作简单。[/font][font=微软雅黑]4.高温裂解法[/font][font=微软雅黑][font=微软雅黑]过高温将含有[/font]C、N有机配位配体的金属前驱体分解在载体上,来制备催化剂的手段,直接高温裂解法后得到的N-C结构可能包含大量无序结构,且会造成金属离子团聚,采用MOF骨架可以使催化剂活性位点被锁在分子笼中,耐久度高,活性位点密度大。[/font][align=center][img=,437,132]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056204036_2347_3237657_3.png!w437x132.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]2.高温裂解法示意图[/font][/align][font=微软雅黑]三、[/font][font=微软雅黑][font=微软雅黑]实例分析:单原子[/font]Fe-Nx-C作为锌空气电池的高效电催化剂[/font][font=微软雅黑]1.制备[/font][align=center][img=,385,244]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056513914_4988_3237657_3.jpg!w385x244.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]3.制备流程示意图[/font][/align][font=微软雅黑]如图[/font][font=微软雅黑]3[/font][font=微软雅黑][font=微软雅黑]所示,首先通过[/font]Fe[/font][sup][font=微软雅黑][font=微软雅黑] 2+[/font][/font][/sup][font=微软雅黑][font=微软雅黑]离子与[/font]1,10-菲咯啉(Phen)配合形成Fe-Phen复合物,接着通过Zn[/font][sup][font=微软雅黑][font=微软雅黑] 2+[/font][/font][/sup][font=微软雅黑][font=微软雅黑]和[/font]2-甲基咪唑(2-MI)的组装,将Fe-Phen复合物原位封装在沸石咪唑酯骨架(ZIF-8)的笼子中,获得的样品称为Fe-Phen @ ZIF-8。[/font][font=微软雅黑][font=微软雅黑]最后在氩气氛下于[/font]900°C的温度下热解后,Fe-Phen @ ZIF-8在氮掺杂碳骨架(Fe-N x - C)上转化为孤立的单原子铁。[/font][font=微软雅黑]2.表征[/font][align=center][img=,497,349]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161057058977_5382_3237657_3.jpg!w497x349.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]4.各表征谱图[/font][/align][font=微软雅黑]对图[/font][font=微软雅黑]4[/font][font=微软雅黑]阐述分析:[/font][font=微软雅黑][font=微软雅黑]图[/font]a:Fe-Phen @ ZIF-8的X射线衍射(XRD)图与纯ZIF-8的X射线衍射图非常匹配,表明其高结晶度和类似的沸石型结构。图b-d:扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像显示,热处理后Fe‐Nx‐C保持其初始十二面体形状,而表面变得更粗糙。图e:高分辨率透射电子显微镜(HRTEM)图像中,石墨碳层的晶向间距为0.34nm。图f:选择区域电子衍射(SAED)图像示出了环,指示整个碳骨架的结晶性差,在900℃热处理过程中形成无结晶的铁。(g,h在Fe - Nx - C的红圈区域,经过像差校正的HAADF‐STEM图像和EELS点谱)。图g:显示出单个的铁原子。图h:表明Fe和N以Fe‐Nx形式共存。之后XPS结果一致,证实了分散良好的Fe原子与N配位。图i:Fe‐Nx ‐C的拉曼光谱在1347和1572 cm [/font][sup][font=微软雅黑][font=微软雅黑]-1[/font][/font][/sup][font=微软雅黑][font=微软雅黑]处显示两个峰,其[/font]I D / I G值为2.51,低于N‐C(I D/ I G = 1.86)。D峰表示晶格的缺陷。该结果表明,在碳骨架中引入铁原子诱导了碳基质的缺陷位点的形成,据报道该缺陷位点是氧电极的活性位点。[/font][font=微软雅黑]四、总结与展望[/font][font=微软雅黑]单[/font][font=微软雅黑][font=微软雅黑]原子催化剂的发展,是科技进步的结果,它的诞生,为科学家们寻找高效的[/font]Pt[/font][font=微软雅黑]/C[/font][font=微软雅黑]催化剂替代品提供了可行的思路。目前,科学家们正致力于提高催化剂的比表面积与催化活性,为此开发出了许多新奇的催化剂结构[/font][font=微软雅黑];[/font][font=微软雅黑]同时,不同的催化载体也被开发出来,从胶体[/font][sup][font=微软雅黑][font=微软雅黑][11][/font][/font][/sup][font=微软雅黑]到负载,从金属氧化物[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑][font=微软雅黑]到[/font]M[/font][font=微软雅黑]OF[/font][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][font=微软雅黑][font=微软雅黑],合成的方法越来越简便。此外,也有一些使我们感到新颖的合成思路,比如[/font]Yin[/font][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等人利用[/font]Zn占位来控制Co的间隔,以及用外加电势[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][font=微软雅黑][font=微软雅黑]的方法活化[/font]N[/font][font=微软雅黑]i[/font][font=微软雅黑]-[/font][font=微软雅黑]C[/font][font=微软雅黑]催化剂等。[/font][font=微软雅黑]但是,在催化剂的制备领域还有许多亟待解决的问题。如诸多的合成方式都存在一定的缺陷,在合成的可控性上还有提升的空间。以及从我在网上浏览的资[/font][font=微软雅黑]料来看,似乎部分催化剂的载体和催化原子很廉价,但是其余的合成试剂甚至是实验所需的催化剂原子的特定形态价格昂贵,我想这也是单原子目前还停留在实验室阶段的重要原因之一。想要将合成的成本降下来,可以从以更廉价的方式合成载体及反应所需催化剂原子特定形态入手,也可以尝试从一些含目标原子的其他化合物入手,通过调控合成步骤达到与昂贵反应试剂近似的效果。[/font][b][font=微软雅黑][font=微软雅黑]参考文献[/font]:[/font][/b][font=微软雅黑][1] Haruta M. Size-and support-dependency in the catalysis of gold[J]. 1997, 36(1): 153-166.[/font][font=微软雅黑][font=微软雅黑][2] Sakurai H, Haruta M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides[J]. Catalysis Today, 1996, 29(1/4): p. 361-365.[/font] [/font][font=微软雅黑][3] Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-41.[/font][font=微软雅黑][4] Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: a concise review[J]. Science China Materials, 2020, 63(06): 903-920.[/font][font=微软雅黑][5] Liang H W, Wei W, Wu Z S, et al. Mesoporous Metal-Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005.[/font][font=微软雅黑][6] Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science, 2016, 7: 5758-5764.[/font][font=微软雅黑][7] Fan L, Liu P, Yan X, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis[J]. Nature communications, 2016, 7: 10667[/font][font=微软雅黑][8] 王兵, 曲雅男, 安灏, 王金凯, 郭振美, 吕志果. 高性能纳米Cu/SiO[/font][sub][font=微软雅黑][font=微软雅黑]2[/font][/font][/sub][font=微软雅黑][font=微软雅黑]催化剂制备及其催化芳酮加氢性能[/font][J]. 青岛科技大学学报(自然科学版), 2020, 41(03): 48-55.[/font][font=微软雅黑][9][/font][font=微软雅黑] [/font][font=微软雅黑]Yin P, Yao T, Wu Y, et al. [/font][font=微软雅黑]Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts[J]. [/font][font=微软雅黑]Angewandte Chemie, 2016, 55: 10800-10805.[/font][font=微软雅黑][10] Deng J, Li H, Wang S, et al. [/font][font=微软雅黑]Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. [/font][font=微软雅黑]Nat Commun, 2017, 8: 14430.[/font][font=微软雅黑][11] Zhang H, Kawashima K, Okumura M, et al. [/font][font=微软雅黑]Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33): 13498.[/font][font=微软雅黑] [/font][font=微软雅黑] [/font]

  • 含硅催化剂溶解

    我想测一催化剂中硅,铝,钴的含量,催化剂载体为氧化铝和氧化硅复合物,浸渍负载钴,请问大家怎么溶解样品效果好?

  • 蛋白测定的催化剂

    请问大家做蛋白时用什么做催化剂硒片还是用硫酸铜硫酸钾,还有用其他的吗用不同的催化剂消化时间和结果有差异吗还有硒片在哪买的到啊

  • 催化剂手册

    催化剂手册 按元素分类[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15009]催化剂手册 按元素分类[/url]

  • 含钼的催化剂是什么?

    最近我收到一个绿色含钼50%多叫催化剂的东西,厂方叫拿氧化钼方法做,MO为29%+残渣补正21%,我用钼精矿方法MO59%+残渣0.2%,用氨水溶MO59%+残渣0.005%,希望知道和了解的告诉我,含V,0.5%

  • 【求助】求助:催化剂的前处理方法

    求助各位有经验的老师:现有样品催化剂,用ICP测贵金属含量。催化剂基体:三氧化二铝和二氧化硅 2:5组成前处理一直做不好,都有不溶物,碱融法也试过,还是有大量沉淀。各位是否有好的办法? 先谢谢了!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制