当前位置: 仪器信息网 > 行业主题 > >

金属复合材

仪器信息网金属复合材专题为您提供2024年最新金属复合材价格报价、厂家品牌的相关信息, 包括金属复合材参数、型号等,不管是国产,还是进口品牌的金属复合材您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属复合材相关的耗材配件、试剂标物,还有金属复合材相关的最新资讯、资料,以及金属复合材相关的解决方案。

金属复合材相关的资讯

  • 特种环境复合材料技术和金属精密热加工国家级重点实验室通过运行评估
    9月13日至17日,由国家国防科工局会同总装备部联合组织专家组对依托我校建设的特种环境复合材料技术和金属精密热加工两个国家级重点实验室进行了运行评估。校长王树国、副校长韩杰才、科学与工业技术研究院总工程师赵航、相关职能部处负责人及重点实验室相关成员参加了运行评估工作会议。   9月13日和16日,由重点实验室运行评估办公室组织部分专家对实验室提交的评估申报材料进行了审核。王树国对评估组的到来表示欢迎,同时强调这次评估既是对实验室前期工作的一次全方位总结和检验,也是实验室下一步建设工作的新起点,对实验室今后的发展具有十分重要的意义。学校对实验室建设非常重视,集中学校相关优势资源,全力支持实验室发展。希望通过此次运行评估,进一步促进我校国家级实验室建设工作,为下一步基础研究以及高水平人才培养做出更大贡献。   特种环境复合材料技术国家级重点实验室主任韩杰才、金属精密热加工国家级重点实验室主任张凯锋分别向专家组汇报了实验室在评估期内的运行情况和取得的成绩,孟松鹤教授和武高辉教授分别代表两个实验室作了相关专题学术报告。专家组一行听取了汇报并现场考察了实验室,对两个实验室工作状态、研究水平与贡献、可持续发展能力、开放交流与运行管理工作等情况进行了核实。在随后进行的质疑和答辩过程中,实验室的相关人员对专家组提出的问题给予了回答。   17日,在专家组评估意见反馈交流会上,专家组对重点实验室在评估期内取得的创新性成果、学术水平、队伍建设以及实验室运行给予了充分肯定。同时也对重点实验室存在的问题和未来的发展提出了中肯的意见和建议。此次评估工作是新的评估规则发布实施后我校实验室首次参评,对实验室的管理提供了决策依据,促进了实验室的良性健康发展,同时也对其它依托我校建设的国家级实验室评估工作提供了宝贵的经验。         评估会现场      考察特种环境复合材料技术国家级重点实验室
  • 2019年首发!2019金属及复合材料力学测试应用研讨会-西安站
    p span style=" font-size: 14px " 阳春三月,英斯特朗将于2019年3月29日走进古都西安,与您探讨金属与复合材料力学测试的发展趋势,分享英斯特朗丰富的应用案例和深刻的行业洞察,欢迎报名,期待您的莅临。 /span /p p img src=" https://img1.17img.cn/17img/images/201903/uepic/f38530b9-0028-497b-99c4-34a34cd51453.jpg" style=" " title=" 0001.jpg" / /p p img src=" https://img1.17img.cn/17img/images/201903/uepic/54f2efd4-4b90-4957-9228-70f8f3c88742.jpg" title=" 0002.jpg" alt=" 0002.jpg" style=" width: 635px height: 670px " width=" 635" height=" 670" / /p p br/ /p p img src=" https://img1.17img.cn/17img/images/201903/uepic/d73d7374-9185-490a-a3b3-d1e27a31ef77.jpg" title=" 0003.jpg" alt=" 0003.jpg" style=" width: 639px height: 220px " width=" 639" height=" 220" / /p p 如果您有意参加此次研讨会,请发报名信息到英斯特朗市场部wang_di@instron.com,我们将第一时间联系您确认报名信息,欢迎您的到来。 br/ /p p    strong 附:英斯特朗简介 /strong /p p   美国英斯特朗公司成立于1946年,是材料测试行业全球公认的市场领导者。我们的目标是通过提供最优质的产品、专业的技术支持和世界一流的服务,为我们的客户创造最佳的测试体验。 /p p   英斯特朗公司制造的试验机用于测试不同环境中各种材料、部件和结构的物性特性和力学性能。我们也提供用于这些系统的配件和软件,以帮助客户解决不同材料或标准的测试难题。 /p p   英斯特朗公司最大的产品线包括我们的电子万能系统和动态/疲劳检测系统。其它产品线还包括冲击,流变学,热机械和扭转试验系统。我们还生产用于测试整体结构和部件(主要用于汽车制造业)的结构测试系统。 /p
  • 美国CPSC就符合重金属和邻苯二甲酸酯标准的材料征询信息
    美国消费品安全委员会(CPSC)于4月16日公布了一份联邦注册通告,寻求符合重金属和邻苯二甲酸酯标准的材料的信息 该信息将指导CPSC考虑何种材料在将来可能从这些特定标准的第三方测试中豁免。玩具行业协会(TIA)目前正征询来自成员国的信息 成员国还被鼓励在60天的评论期内直接向CPSC作出回应,截至2013年6月17日。   该信息征询(Request for Information,RFI)反应了去年秋季通过的,旨在指导CPSC员工在适当机会发布RFI以减少第三方测试成本的简报。   通过该RFI收集的数据将用于决定何种材料不含有ASTM F963标准规管的八种被禁元素(锑、砷、钡、铬、镉、铅、汞、和/或硒)和/或六种被禁的邻苯二甲酸酯(DBP, BBP, DEHP, DnOP, DINP, 和/或DIDP),并且因此可能授权第三方测试的豁免。欧盟委员会也将收集有关不会/不将会含有浓度超过最大限值的违禁元素或化学物质的材料的数据,如复合木材产品。任何提供的数据应尽可能有以下信息:   • 材料制造中使用的化学品和原材料,及它们的铅、邻苯二甲酸酯或其他重金属浓度   • 使用回收材料时对化学品含量浓度造成的潜在影响程度   • 可能导致化学品浓度产生显著变化的制造工艺和条件   • 不同制造商在材料和制造工艺上的可能的区别   • 如何保证在没有第三方测试情况下合规   • 如何面对证明这一材料不会,或将不会,含有浓度超过最大限制的违禁元素或化学物质的压力   • 其他相关信息。
  • 美国CPSC就符合重金属和邻苯二甲酸酯标准的材料征询信息
    美国消费品安全委员会(CPSC)于4月16日公布了一份联邦注册通告,寻求符合重金属和邻苯二甲酸酯标准的材料的信息 该信息将指导CPSC考虑何种材料在将来可能从这些特定标准的第三方测试中豁免。玩具行业协会(TIA)目前正征询来自成员国的信息 成员国还被鼓励在60天的评论期内直接向CPSC作出回应,截至2013年6月17日。   该信息征询(Request for Information,RFI)反应了去年秋季通过的,旨在指导CPSC员工在适当机会发布RFI以减少第三方测试成本的简报。   通过该RFI收集的数据将用于决定何种材料不含有ASTM F963标准规管的八种被禁元素(锑、砷、钡、铬、镉、铅、汞、和/或硒)和/或六种被禁的邻苯二甲酸酯(DBP, BBP, DEHP, DnOP, DINP, 和/或DIDP),并且因此可能授权第三方测试的豁免。欧盟委员会也将收集有关不会/不将会含有浓度超过最大限值的违禁元素或化学物质的材料的数据,如复合木材产品。任何提供的数据应尽可能有以下信息:   l 材料制造中使用的化学品和原材料,及它们的铅、邻苯二甲酸酯或其他重金属浓度   l 使用回收材料时对化学品含量浓度造成的潜在影响程度   l 可能导致化学品浓度产生显著变化的制造工艺和条件   l 不同制造商在材料和制造工艺上的可能的区别   l 如何保证在没有第三方测试情况下合规   l 如何面对证明这一材料不会,或将不会,含有浓度超过最大限制的违禁元素或化学物质的压力   其他相关信息。   详情参见:   http://www.tid.gov.hk/mobile/english/aboutus/tradecircular/cic/americas/2013/ci2942013.html
  • 新品发布 | 阿美特克特种金属产品事业部发布FASTAL高效三层金属复合板
    辊压金属复合板生产商阿美特克特种金属产品(ametek smp)近日发布了fastal系列高性能三层金属复合板产品,加强其在食品服务设备方面的市场地位。fastal系列三层金属复合板产品专为高性能要求的商业和家用锅具设计,具备卓越的导热性和热分布特性,较短的受热时间和强韧的温度变化使其成为理想的烹饪面层材料。fastal系列由三层组成fastal系列产品由三层组成:不锈钢-铝-不锈钢,从而具备了各种材料的优异性能。不锈钢面层减少了粘性,从而易于清洁和持久耐用。铝材的传热速率是碳钢的5倍,促进了热量在材料表面的均匀分布。另外,不锈钢/铝复合板的密度是碳钢的1/3左右,便于安装和操作使用。ametek smp使用完善的辊压结合工艺达到了冶金结合强度,可根据客户具体要求(包括定制尺寸、较短的交期、小批量等)供应一流品质的产品。所生产的金属复合板可以根据客户产品规范,裁切成小的尺寸后依然保持其结合完整性和优异性能表现。fastal名字的由来ametek smp市场和产品开发主管joe capone评论道:“我们特别开发的辊压结合fastal复合板,满足了锅具市场的需求。fastal展现了均匀热分布、快速升温和冷却以及不锈钢表面特征。我们的团队非常兴奋能够带来这一多层金属复合板产品”。之所以命名为fastal,因其致力于锅具对温度变化的“快速(fast)”反应性能,st代表了”不锈钢(stainless steel)”,al代表了芯材“铝(aluminum)”。 联系我们:https://www.instrument.com.cn/netshow/sh102493/关于ametek smp阿美特克特种金属产品(英文简称:smp)隶属于阿美特克集团,在美国和英国共有五个工厂:ametek smp eighty four、fine tubes、superior tube、hamilton精密金属和ametek smp wallingford。这五家工厂生产的全球领先的冶金产品,可满足众多行业在关键应用上对材料的苛刻要求。ametek land是阿美特克过程与分析部门成员,阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 数显小负荷布式硬度计在有色金属检测中应用广泛
    数显小负荷布式硬度计在有色金属检测中应用广泛山东云唐智能科技有限公司数显小负荷布式硬度计在有色金属检测中确实有广泛的应用。这种仪器适用于铸铁、钢材、有色金属及软合金材料的硬度测定,尤其在黑色金属、有色金属及轴承合金材料的布氏硬度检测中发挥着重要的作用。此外,该设备对飞机、汽车等安全部件进行硬度检测也是非常理想的仪器。具体来说,数显小负荷布式硬度计具有以下特点:测量范围广泛:其测量范围为4~450HBS,4~650HBW,适用于各种硬度的材料测试。自动化程度高:采用LCD液晶显示屏,数字显示,菜单式操作,试验过程自动化,能自动保存每次试验的参数设置,试验过程自动化。精确度高:采用先进的无摩擦主轴系统,保证试验的准确可靠。应用范围广:不仅适用于软金属材料及小型零件的布氏硬度试验,也适用于对黑色金属、有色金属及轴承合金材料的布氏硬度检测。在实际应用中,数显小负荷布式硬度计可以满足不同种类和形状的试样测试,其操作简便、测试准确可靠,为有色金属检测提供了有力支持。数显小负荷布式硬度计在有色金属检测中有广泛的应用,以下是几个具体的应用案例:检测铝、铅、锡等软料硬度:数显小负荷布式硬度计可以用于检测铝、铅、锡等软料的硬度,这些材料在汽车、电子、包装等领域有广泛应用。通过使用数显小负荷布式硬度计,可以快速、准确地检测这些材料的硬度,从而控制产品质量和生产过程。检测轴承合金材料的硬度:轴承合金材料广泛应用于机械、汽车、航空等领域,其硬度是影响轴承性能的重要因素之一。数显小负荷布式硬度计可以用于检测轴承合金材料的硬度,帮助企业控制产品质量和确保设备正常运行。检测有色金属管材的硬度:有色金属管材在石油、化工、食品等领域有广泛应用,其硬度是评价管材质量的重要指标之一。数显小负荷布式硬度计可以用于检测有色金属管材的硬度,帮助企业控制产品质量和确保管道系统的安全可靠性。检测硬质合金材料的硬度:硬质合金材料具有高硬度、高耐磨性和良好的耐热性等特点,广泛应用于刀具、模具等领域。数显小负荷布式硬度计可以用于检测硬质合金材料的硬度,帮助企业控制产品质量和提高生产效率。总之,云唐数显小负荷布式硬度计在有色金属检测中具有广泛的应用价值,可以帮助企业提高产品质量和生产效率,确保设备和人身安全。
  • 重磅新品 禾信公司推出金属有机复合物专用质谱仪(MOC-TOFMS)
    p   金属有机复合物、自组装超分子化合物、短链双链DNA等,在食品、药物、蛋白质分析等领域都具有极其重要的作用,但是由于这些化合物“热不稳定”,一直是质谱检测的难题,进口仪器也无能为力。 /p p   近日,由广州禾信仪器股份有限公司独立研制开发的具有完全自主知识产权的金属有机复合物高分辨飞行时间质谱仪MOC-TOFMS悄然上市,快速打破行业的寂静。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/58303cb5-664f-4984-992b-09fbe716dd98.jpg" title=" 001.jpg" / /p p span style=" color: rgb(0, 112, 192) " strong   工作原理 /strong /span /p p   液体样品经过电喷雾离子源电离产生离子,在电场牵引下通过低压分子离子反应器MIR,随后离子在射频四极杆RFQ里进一步碰撞冷却聚焦,再经直流四极杆DCQ及离子光学透镜LENS调制后,由高分辨飞行时间质量分析器进行检测分析。 /p p   整套系统采用专利大气压接口,可以同时控制离子束能量分散和离子束与背景气体碰撞能量的大小,是目前全球少数的极柔和离子传输器之一。该技术与垂直引入反射式飞行时间分析器相连,整机性能完全媲美进口冷喷雾电离质谱仪器。 /p p span style=" color: rgb(0, 112, 192) " strong   特点与优势 /strong /span /p p   1) 柔性大气压接口专利技术,有效传输热不稳定分子离子 /p p   2) 三级差分真空系统,极大提高仪器灵敏度 /p p   3) 紧凑式“V”型飞行时间质量分析器,最优尺寸分辨比。 /p p span style=" color: rgb(0, 112, 192) " strong   应用领域 /strong /span /p p   药物研究、生物医学研究、环境与食品安全、功能材料研究、催化机理研究等。 /p p span style=" color: rgb(0, 112, 192) " strong   应用案例 /strong /span /p p    span style=" color: rgb(0, 112, 192) " 分析目的: /span 鉴定金属有机复合物合成产物的分子结构,为合成路线提供数据支撑。 /p p   span style=" color: rgb(0, 112, 192) "  待测样品1: /span /p p   目标化合物分子式:C sub 246 /sub H sub 276 /sub F sub 24 /sub N sub 4 /sub O sub 46 /sub P sub 12 /sub Pt sub 4 /sub /p p   目标化合物结构式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/fae951cf-2cd5-4de3-80c2-57b1601a2b05.jpg" title=" 002.png" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " & nbsp & nbsp strong 分子离子分子式最大丰度质荷比m/z /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/3bf16853-b73c-47ac-85ce-bd489f0f1b31.jpg" title=" 004.png" /   /p p span style=" color: rgb(0, 112, 192) "   分析结果: /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/9bcb5748-33d3-4a9a-91fa-c6d72cd30981.jpg" title=" 005.png" / /p p   span style=" color: rgb(0, 112, 192) "  待测样品2: /span /p p   目标化合物分子式:(Rh sub 8 /sub Ag sub 2 /sub C sub 120 /sub H sub 132 /sub O sub 16 /sub N sub 8 /sub C sub l8 /sub ) sup 6+ /sup (SO sub 3 /sub CF sub 3 /sub ) sub 6 /sub (C sub 6 /sub H sub 4 /sub Br sub 2 /sub ) /p p   目标化合物结构式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/95eef5c7-e06a-4f3c-99ec-e6d0b3aabdab.jpg" title=" 003.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong [M-4OTf] sup 4+ /sup 模拟质谱图[M-3OTf] sup 3+ /sup 模拟质谱图 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/b267942d-cacf-4bfb-9b66-8d2dd100bbc8.jpg" title=" 006.jpg" / /p p    span style=" color: rgb(0, 112, 192) " 分析结果 sup (1) /sup : /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/1df41db8-cc21-4301-9d85-436bb55b0085.jpg" title=" 007.jpg" / /p p   注:(1) Wen-Ying Zhang, et al. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule [J]. J. Am. Chem. Soc., 2016, 138 (33), pp 10700–10707 /p p span style=" color: rgb(0, 112, 192) " strong   小结: /strong /span /p p   测试结果表明,用MOC-TOFMS对金属有机复合物检测有利于产生高价态准分子离子峰,适合热不稳定的金属有机复合物的精确质量检测。 /p p br/ /p
  • 岛津试验机丨夹具世界系列之复合材料测试
    导读随着科技发展的日新月异,汽车、航天、航空等工业对材料性能的要求越来越高,单一材料如金属、陶瓷、高分子材料几乎都难以胜任。若将不同性能特点的单一材料复合起来,取长补短,则能满足现代高新技术的需求。复合材料既能保持组成材料各自的优异特性,又具有组合后的新特性,如比强度和比模量高、抗疲劳和破断安全性良好、高温性能优良等。以汽车工业为例,在车身及主要零部件、汽车结构件、电动汽车高压电池组件等应用中,复合材料可减轻重量实现汽车轻量化,同时减少碳排放。在飞机工业中,以波音777为例,其机体结构中复合材料仅占到约11%,而且主要用于飞机辅件;但到波音787时,复合材料的使用出现了质的飞跃,不仅数量激增,而且开始用于飞机的主要受力件,如今,波音787的复合材料用量已占到结构重量的约50% 。因此对于复合材料的研究,根据不同需求测试评估各种复合材料的力学性能,就显得尤为重要。今天,我们一起来看看岛津试验机在复合材料力学测试方面的夹具与应用。1 ASTM D6641组合载荷压缩测试复合材料不同于以往的均质材料,具有各向异性,在承受载荷的应力主轴方向呈现出拉伸、压缩、弯曲、向内剪切、向外剪切或兼有上述动向的复杂受力情况。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行复合材料试验时,对于分别测量各断裂现象的试验方法的要求越来越高。例如根据标准ASTM D6641的组合载荷压缩(CLC)试验(如下图)是一种具有剪切和端面载荷组合的试验方法,提供了实现强度评估的同时进行弹性模量的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw2 ASTM-D6484 开孔压缩强度测试碳纤维增强塑料(CFRP)以其强度高、重量轻等优点,在航空航天领域得到了广泛的应用。碳纤维具有优良的强度特性和高刚度特性,但在开孔时会损失很大的强度。复合材料零部件实际使用中,常需要开孔与别的部件连接。因此,飞机上使用的复合材料,必须对中心切出一个孔的试样的试验进行评估。我们根据ASTM-D6484对碳纤维塑料进行了开孔压缩试验。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw3 ASTM-D7078 V型切口剪切测试为了减少试制次数,降低新产品开发的成本,计算机辅助工程(CAE)分析被广泛应用。为了提高对所设计产品的性能预测精度,需要采集各种数据,因此,在进行 CFRP 试验时,对于分别测量各断裂现象的试验方法的要求越来越高。评价复合材料的试验方法有多种。其中,作为面内剪切试验方法,以纤维强化复合材料的纤维方向或织物层压材料为目标,在设有缺口的样片上取非对称的 4 个点加载弯曲负荷的Iosipescu法(ASTM D5379),以及在±45&ring 的层压材料上加载拉伸负荷的方法(ISO 14129)最为普及。本次试验使用 V-Notched Rail Shear 法(ASTM D7078),能够稳定进行面内剪切试验。另外,因样片的测量部位较大,可同时适用于无孔样片及短纤维系列 CFRP 层压材料的测量。点击查看视频:https://mp.weixin.qq.com/s/6xI_kByFbXRV7nm8g6MJOw4 其他复合材料测试夹具展示结语岛津标准试验机,试验载荷从 1 N到600KN不等,可适应各种样品,如橡胶、塑料、复合材料、金属、木材、玻璃陶瓷等材料的板、棒、线、绳等样品。本文介绍了岛津试验机在复合材料测试中主要夹具。另外,岛津夹具设计团队还可以根据特殊需求和标准,设计、定制夹具,以满足复合材料行业客户需求,提高复合材料的研究深度和应用广度,同时助推产业结构优化升级,实现绿色发展。撰稿人:杨汉章本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 河南省有色金属行业协会发布《金刚石复合体与钢钎焊工艺规范》等7项团体标准
    各相关单位:根据《河南省有色金属行业协会团体标准管理办法》的有关规定,河南省有色金属行业协会批准发布《金刚石复合体与钢钎焊工艺规范》等7项团体标准(详见附件),自 2023 年4月18日起实施,现予以公告。附件:7项团体标准编号、名称、起草单位一览表 7项团体标准编号、名称、起草单位一览表序号编号标准名称起草单位主要起草人实施日期1T/HNNMIA 30-2023金刚石复合体与钢钎焊工艺规范河南省四方达超硬材料股份有限公司、郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、中南大学、吉林大学、中煤科工西安研究院(集团)有限公司、中机新材研究院(郑州)有限公司裴夤崟、龙伟民、钟素娟、黄成志、赵东鹏、马佳、张冠星、王淼辉、丁天然、张伟、刘宝昌、高华、王传留、于奇、刘全明、李宏利、屈继来、邹伟、刘攀、李宇佳、董宏伟、杨娇、祖家泽2023-4-182T/HNNMIA 31-2023银铜复合带界面结合强度评价方法郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、河南省科学院材料研究所、太原科技大学、太原理工大学、西安中熔电气股份有限公司郝庆乐、程亚芳、王涛、张冠星、侯江涛、潘建军、高翔宇、刘付丽、史荣豪、任忠凯、李培艳、孙逸翔、刘洁、郭艳红、石晓光、张陕南、杨娇、祖家泽2023-4-183T/HNNMIA 32-2023铝合金蜂窝板真空钎焊工艺规范郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、中国机械总院集团哈尔滨焊接研究所有限公司、江苏科技大学、新乡航空工业(集团)有限公司、浙江新锐焊接科技股份有限公司、中航西安飞机工业集团股份有限公司董显、龙伟民、钟素娟、黄俊兰、李秀朋、吕晓春、陈素明、王水庆、浦娟、郭鹏、王博、李云月、刘晓芳、李红涛、丁宗业、宋北、黄森、刘德运2023-4-184T/HNNMIA 33-2023聚晶金刚石复合片与钢钎焊接头质量评价方法河南省四方达超硬材料股份有限公司、郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、中南大学、吉林大学、中煤科工西安研究院(集团)有限公司裴夤崟、黄成志、龙伟民、赵东鹏、钟素娟、张伟、刘宝昌、高华、王传留、刘全明、李宏利、屈继来、黄俊兰、刘攀、邹伟、王蒙、吴奇隆2023-4-185T/HNNMIA 34-2023盾构机刮刀感应钎焊技术导则郑州机械研究所有限公司、中铁工程装备集团有限公司、宁波中机松兰刀具科技有限公司、盾构及掘进技术国家重点实验室、西南交通大学、中铁工程装备集团隧道设备制造有限公司路全彬、龙伟民、钟素娟、郑永光、卢高明、丁天然、王锴、黄俊兰、胡登文、李永、董宏伟、周许升、吴奇隆、董博文、李文彬、朱宏涛2023-4-186T/HNNMIA 35-2023放热熔钎焊接头质量评价方法国网河南省电力公司电力科学研究院、郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、华北水利水电大学、浙江新锐焊接科技股份有限公司、河南职业技术学院沈元勋、耿进锋、崔大田、李秀朋、杜君莉、夏大伟、王琴、郭军华、王水庆、李云月、刘德运、赵明远、姜超、宋昕怡2023-4-187T/HNNMIA 36-2023大尺寸硬质合金串珠钎焊工艺规范郑州机械研究所有限公司、宁波中机松兰刀具科技有限公司、中铁工程装备集团有限公司、盾构及掘进技术国家重点实验室、交通运输部上海打捞局、西南交通大学路全彬、龙伟民、钟素娟、王锴、郑永光、张雷、胡登文、黄成志、李永、李文彬、吴奇隆、卢高明、杨鹏、董博文、周许升、付龙、邹伟、郭艳红、佘春、司浩、董媛媛、井培尧2023-4-18河南省有色金属行业协会2023年4月18日关于发布《金刚石复合体与钢钎焊工艺规范》等7项团体标准的公告.pdf1-团体标准-金刚石复合体与钢钎焊工艺规范.pdf2-团体标准-银铜复合带界面结合强度评价方法.pdf4-团体标准-聚晶金刚石复合片与钢钎焊接头质量评价方法.pdf3-团体标准-铝合金蜂窝板真空钎焊工艺规范.pdf5-团体标准-盾构机刮刀感应钎焊技术导则.pdf6-团体标准-放热熔钎焊接头质量评价方法.pdf7-团体标准-大尺度硬质合金串珠钎焊工艺规范.pdf
  • 铝基复合材料在问天实验舱上成功应用
    作者:沈春蕾 来源:中国科学报7月24日,我国问天实验舱发射任务取得圆满成功。问天实验舱太阳翼柔性展开机构关键部件和多个实验机柜转接件中使用了一种新型铝基复合材料,该材料由中科院金属研究所研究员马宗义团队研制。据了解,问天实验舱配备了目前国内最大的柔性太阳翼,双翼全部展开后可达55米。太阳翼所使用的柔性展开机构某关键部件要求材料兼具轻质、高强、耐磨损、耐疲劳、高尺寸稳定性的特点,并且批量大、批次稳定性要求高。针对这一特殊需求,马宗义团队开发出各向同性碳化硅颗粒增强铝基复合材料中厚板可控塑性变形加工技术,产品批次间性能差异小于5%,解决了太阳翼展开机构关键部件无材可用的困境。问天实验舱实验机柜与实验舱内壁结构采用六点式机械连接,连接件在发射过程中在剧烈震动、摩擦工况下服役,是实验机柜载荷结构设计中受力最苛刻的零部件。针对这一工况要求,该团队研发出高性能碳化硅颗粒增强铝基复合材料锻件,采用该材料替代传统铝、钛等合金,实现了优异的轻量化加工制造,承受住了发射过程中的震动疲劳及磨损等,并使零件减重20%以上。
  • 先进结构与复合材料重点专项2022项目申报指南征求意见
    近日,科技部发布“十四五”国家重点研发计划“先进结构与复合材料”重点专项2022年度项目申报指南(征求意见稿),向社会征求意见和建议。根据征求意见稿,本专项2022年度拟支持项目及“揭榜挂帅”榜单如下:1. 高性能高分子材料及其复合材料1.1 大丝束碳纤维及复合材料低成本高效制备技术(典型应用示范)1.2 特种工程塑料薄膜制备技术开发与产业化(共性关键技术)1.3 耐苛刻使役环境合成橡胶制备技术及其产业化(共性关键技术)1.4 生物基弹性体的制备与规模化应用(典型应用示范)1.5 聚乳酸的规模化制备技术及关键单体丙交酯的一步法产业示范(典型应用示范)2. 高温与特种金属结构材料2.1 铸造高温合金返回料再利用技术与应用(共性关键技术) 2.2 高温合金大铸锭低偏析熔铸及大型构件整体制备技术(典型应用示范)2.3 强疲劳载荷环境用超高强度钢(共性关键技术)2.4 超低温工程装备用高强高韧特种合金研制及应用(典型应用示范)2.5 耐超高温抗蠕变难熔金属材料及复杂构件制备技术(共性关键技术)2.6 特种合金环形锻件控形控性一体化技术与应用示范(典型应用示范,江苏部省联动任务)3. 轻质高强金属及其复合材料3.1 钛合金返回料利用及高效短流程制备关键技术(共性关键技术)3.2 空间装备用新型超高强韧及耐损伤铝合金(共性关键技术)3.3 青海盐湖新型镁基材料及前端制造技术(共性关键技术,定向择优项目)3.4 大尺寸高模量及超高模量铝基复合材料(共性关键技术)3.5 抗辐射、耐腐蚀的金属结构复合材料研制及应用(典型应用示范)4. 先进结构陶瓷与复合材料4.1 大尺寸透明陶瓷部件制备关键技术与应用示范(典型应用示范)4.2 高安全性耐中子辐照陶瓷基复合材料构件研制(共性关键技术)4.3 超高尺寸稳定性蜂窝结构C/C复合材料构件设计与制备关键技术(共性关键技术)4.4 高耐压陶瓷部件制备关键技术与应用(共性关键技术)4.5 基于3D打印技术的精密陶瓷部件研制(典型应用示范)5. 先进工程结构材料5.1 高原复杂环境高性能桥梁钢板制造关键技术及应用(典型应用示范)5.2 海洋工程用热塑性复合材料筋材及其应用技术研究(典型应用示范)5.3 特深井科学钻探机具关键复合材料及应用技术研究(共性关键技术)5.4 超大跨缆索承重桥梁用关键材料研发与示范应用(典型应用示范)6. 结构材料制备加工与评价新技术6.1 大型复杂薄壁高端金属构件智能液态精密铸造成型技术与应用(共性关键技术)6.2 关键金属构件智能锻造成形技术开发及应用(共性关键技术)6.3 高性能轻合金大型复杂构件成形技术(共性关键技术)6.4 高效承载-热控一体化金属构件增材制造技术(共性关键技术)6.5 极端工况下金属结构件及关键部件表面涂层技术(共性关键技术)6.6 增材制造过程及极端服役环境下金属构件的多尺度实时表征与评价(共性关键技术)6.7 先进能源结构性能劣化多维原位表征与评价技术及工程应用(典型应用示范)7. 基于材料基因工程的结构与复合材料7.1 关键结构材料集成计算设计方法与应用(共性关键技术)7.2 高强韧轻金属基复合材料近净形高效制备与应用 (共性关键技术)7.3 基于数据技术的新型高强韧高耐蚀钢研发(共性关键技术)7.4 先进能源反应堆堆芯关键材料快速设计与评价技术(共性关键技术)7.5 陶瓷基复合材料的界面相高通量研究及示范应用(典型应用示范)7.6 基于智能化设计与制备的树脂基复合材料研发(共性关键技术)8. 青年科学家项目8.1 高性能芳杂环聚合物结构设计与纤维成型新方法8.2 高耐磨聚四氟乙烯专用料及其在轴承领域应用8.3 第三代镍基单晶高温合金高纯净度、高晶界缺陷容限制备技术8.4 抗疲劳高止裂非均质组织风电用钢研究8.5 紧固件丝材用 1500 兆帕级超高强高韧钛合金研制8.6 高性能金属增强镁基复合材料及制备加工技术8.7 新一代先进能源系统用碳化硅堆芯构件8.8 空间应用领域新型高熵陶瓷涂层材料与部件8.9 高原复杂环境低热水泥混凝土性能劣化机理与耐久性评价技术8.10 细径硬质合金棒材形性精确控制近终形制备技术8.11 数据驱动的高强韧金属基复合材料集成设计8.12 超高强钢服役过程跨尺度计算和高通量评价技术9. 揭榜挂帅项目9.1 超高韧碳纤维复合材料及应用(典型应用示范)9.2 主承力复合材料构件高效自动化液体成型技术研究(典型应用示范)附件:“十四五”国家重点研发计划“先进结构与复合材料”重点专项2022年度项目申报指南(征求意见稿).pdf
  • 5G时代,同英斯特朗一起见证复合材料C位出道
    在今年的世界互联网大会上,5G再次成为高频热词,一再被提及。5G远程医疗、5G人机交互、5G救援、5G VR视频等应用被一一展示。三大运营商都将5G通信网络使用体验作为展示重点。最近几年通讯发展迅速,短短几年我们就见证了2G、3G、4G的跨越式发展。宽带中国、光纤到户,见证了铜缆到光纤。而从有线到无线,万物互联,大数据,虚拟现实,智能城市,需要更新的技术提供支撑。5G具有速度快,容量大的特点。通讯技术分为两种途径:有线和无线。有线从铜缆到光纤,速度和容量提升幅度巨大。而5G就是着力解决空中传播即无线部分。从中学课本中我们了解到,信号在空中传播通过电磁波。随着1G、2G、3G、4G的发展,使用的频率是越来越高的,为什么呢?因为频率越高,速度越快,频段越宽。频段就相当于路的宽度,越宽容纳的车子越多,路就越通畅,跑的越快。常见的复合材料,在5G通讯基建中实现有广泛的应用。传统的基站都是笨重高大的铁塔,5G的基站体积比较小,可以实现美观化、多样化。相对于传统高大的铁塔式基站,这些小型的基站可以利用复合材料制造。这种小型基站的外壳,类似于电器柜,放置于室外,需要经受风吹雨打、光照低温,而复合材料能满足这些耐候性要求。MIMO(Multiple-Input Multiple-Output),即多输入多输出,是指一个基站内可以装多个天线,而这些天线的尺寸很小,需要天线罩。天线罩具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境。室外天线通常置于露天工作,直接受到自然界中暴风雨、冰雪、沙尘以及太阳辐射等侵袭,致使天线精度降低、寿命缩短和工作可靠性差。复合材料天线外罩能起到绝缘防腐、防雷、抗干扰、经久耐用等作用,而且透波效果非常好。GFRP和KFRP在光缆中的应用5G分有线和无线,有线部分离不开光纤光缆。GFRP是玻纤复合材料,KFRP是芳纶复合材料,两种材料都是通过典型的复合材料工艺——拉挤工作制成连续的圆柱状复合材料,基体树脂多采用热固性树脂如不饱和树脂、环氧树脂等,有报道研究有热塑性材料做基体树脂但应用不多。GFRP/KFRP在光缆中经常作为加强芯使用。加强芯经历了钢丝加强芯、GFRP、KFRP三个阶段。GFRP/KFRP加强芯具有以下的优点:非金属材料 对电击不敏感,适用于多雷电、多雨等气候环境地区;使用FRP加强芯的光缆可紧挨着电源线和电源装置安装,不会受电源线或电源装置产生的感应电流干扰;与金属芯相比,GFRP/KFRP不会产生因金属与油膏化学反应产生的气体而影响光纤传输指标;与金属芯想比,FRP具有拉伸强度高、重量轻的优点,防弹、防齿咬、防蚁。通讯高高耸立的通讯塔大都是钢结构,但腐蚀是个大问题,复合材料可以解决这个问题。复合材料比较轻,使用无扣件连接技术,塔结构的各个独立部件可以快速组装,在装配过程中不需要金属螺栓,安装方便,还减轻了整个塔体的重量。●●●英斯特朗能够提供全面的复合材料和部件测试解决方案,如拉伸、压缩、剪切、扭转、平面双轴、冲击和流变性能等测试实验,几乎可以覆盖所有行业的复合材料或结构的测试。除了高质量的硬件设备以外,英斯特朗还提供验证和校准服务,全方位助力复合材料在5G时代C位出道!
  • “先进结构与复合材料”重点专项2021申报指南:拟安排6.32亿元启动37个项目
    5月13日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南。指南中明确:2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷与陶瓷基复合材料、先进工程结构材料、结构材料制备加工与评价新技术、基于材料基因工程的结构与复合材料7个技术方向。按照“基础前沿技术、共性关键技术、示范应用”三个层面,拟启动37个项目,拟安排国拨经费6.32亿元。其中,拟部署9个青年科学家项目,拟安排国拨经费3600万元,每个项目400万元。1. 高性能高分子材料及其复合材料1.1 高性能全芳香族纤维系列化与规模化制备关键技术(共性关键技术)研究内容:针对航空航天、武器装备等亟需的高强高韧结构材料应用需求,开展高性能全芳香族纤维制备关键技术及其应用研究。揭示大分子刚性链结构、纤维纺丝成型、凝聚态及其性能之间的内在规律,攻克全芳香族纤维制备共性科学问题;研究高强/高模芳纶纤维成型和热处理工艺,突破制备关键制备技术及成套装备;研究高伸长耐高温芳纶III纤维、芳纶纸及其蜂窝应用技术;探讨高性能液晶纺丝聚芳酯聚合物结构设计、固态缩聚反应动力学和纤维冷却成型机理,攻克聚芳酯纤维制备关键技术。1.2 面向高端应用的阻燃高分子材料关键技术开发(共性关键技术)研究内容:面向5G通讯和轨道交通等高端制造业的需求,形成一批具有国际领先水平和自主知识产权的合成树脂材料及应用技术。重点开发PCB的无卤高阻燃、高Tg、低介电性能的环氧树脂;高阻燃耐老化热塑性弹性体TPE和聚脲弹性体无卤阻燃技术及应用;研发本征阻燃高温炭化不熔滴聚酯和低热释放本征阻燃聚碳酸酯合成技术;本征阻燃尼龙66工程化制备及其应用,完成万吨级规模化生产与应用示范。1.3 低成本生物基工程塑料的制备与产业化(共性关键技术)研究内容:面向生物基高分子材料成本高和高性能工程塑料牌号少的问题,集中开发低成本生物基呋喃二甲酸(FDCA)、异山梨糖醇的制备技术;开发1,4-环己烷二甲醇(CHDM)和2,2,4,4-四甲基环丁二醇(CBDO)的国产化制备技术,基于生物基单体和新型单体开发PEF、PCF、PIF和PETG等生物基聚酯以及PIC、PCIC等生物基聚碳酸酯,从单体、聚合物到后端应用全链条研究。精细调控产品结构,研究产品的耐温性能、力学性能、阻隔性能等,开发不低于8种高性能聚酯和聚碳酸酯产品,并在包装领域得到应用。2. 高温与特种金属结构材料2.1 高温合金纯净化与难变形薄壁异形锻件制备技术(共性关键技术)研究内容:针对国产高温合金冶金质量差、材料综合利用率低、力学性能波动大等问题,研究镍基高温合金纯净熔炼、返回料处理和再利用技术,返回料与全新料混合重熔工艺;开发难变形高温合金成分优化及纯净熔炼、铸锭均匀化热处理、合金铸锭均质开坯、棒料细晶锻制、大型薄壁异形环形件整体制备等工艺技术,建立合金工艺与成分、组织和性能的影响关系,实现高温合金棒材和锻件组织均匀性和性能一致性的优化控制,完成合金制备工艺、材料与构件质量评估及在先进能源动力装备的考核验证。2.2 高品质TiAl合金粉末制备及3D打印关键技术(共性关键技术)研究内容:针对电子束3D打印所需的低氧含量球形TiAl合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl合金粉末和工业化TiAl构件增材制造关键技术;开展增材制造TiAl合金的材料—工艺—组织—缺陷—性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。2.3 光热发电用耐高温熔盐特种合金研制与应用(示范应用)研究内容:针对太阳能光热发电产业低成本高效发电可持续发展需求,以下一代低成本高效超临界二氧化碳光热发电系统中耐高温氯化物混合熔盐特种金属材料及其制造技术为研究对象,研究耐高温不锈钢、高温合金板材及其焊接界面在高温氯化物、硝酸盐中的腐蚀机理和服役寿命预测技术,研究满足氯化物和硝酸盐熔盐发电系统用的耐高温不锈钢、高温合金板材成分和组织设计及其批量制造技术,开发耐高温熔盐不锈钢、高温合金成型和焊接行为及其先进制备技术,发展高温合金长寿命高吸收率吸热涂层,实现高性能不锈钢、高温合金产品开发及应用示范。2.4 海洋工程及船用高端铜合金材料(共性关键技术)研究内容:针对舰船和海洋装备泵体、管路及阀门等耐蚀性差、服役寿命短、高端材料依靠进口的问题,研究海洋工程及船用新型高性能铜合金材料设计、成分—组织—工艺内禀关系、腐蚀行为及耐蚀机理,开发耐高流速海水冲刷型铜合金承压铸件制备、超大口径耐蚀铜合金管材加工及管附件成形、海洋油气开采用高耐磨高耐蚀铜合金管棒材加工及热处理组织性能调控等高质量低成本工业化制造技术,开展产品应用技术研究,实现高端铜合金典型产品示范应用。3. 轻质高强金属及其复合材料3.1 苛刻环境能源井钻采用高性能钛合金管材研究开发及应用(示范应用)研究内容:针对我国油气、可燃冰等能源钻采高耐蚀和轻量化的紧迫需求,研究苛刻环境下高强韧耐蚀钛合金多相组织强韧化、抗疲劳机理,以及高温、高压、腐蚀、疲劳等服役环境下材料损伤及失效机理;建立服役环境适应性材料设计方法及油气井钻采用钛合金钻杆、油套管服役性能适用性评价方法;开发高性能大规格钛合金无缝管材成套工艺技术及关键应用技术;制定专用标准规范,开展苛刻服役条件下应用研究,实现工业化规模稳定生产,在典型应用场景实现示范应用。3.2 先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对汽车、飞行器以及船舶等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。3.3 高性能镁合金大型铸/锻件成形与应用(共性关键技术)研究内容:针对商用车、高速列车、航空航天等领域的轻量化紧迫需求,探索热—力耦合条件下大容积镁合金凝固与形变过程中成分—组织—性能演变规律与调控技术,开发适合于大型铸/锻件的高性能镁合金材料;研究大型镁合金铸/锻件组织均匀化与缺陷调控机理,开发高致密度铸造成形技术、大体积熔体清洁传输及半连续铸造技术、挤锻复合一体成形技术;开展大型承载件的结构设计、产品制造、腐蚀防护及使役性能评价等技术研究,并实现示范验证与规模化应用。3.4 新型结构功能一体化镁合金变形加工材制造技术(共性关键技术)研究内容:针对航空航天、轨道交通、能源采掘、电子通信等重大装备升级换代的紧迫需求,研究新型强化相对镁合金力学性能与功能特性的协同调控机理,发展新型结构功能一体化镁合金材料与新型非对称加工技术,开发大规格高强阻尼镁合金环件、宽幅阻燃镁合金型材、高强可溶镁合金管材、高强电磁屏蔽/高导热镁合金板材的工业化制造成套技术及关键应用技术,并实现典型示范应用。3.5 极端环境特种服役构件用构型化金属基复合材料(示范应用)研究内容:针对航空航天特种服役构件用耐疲劳高强韧铝基复合材料、耐热高强韧钛基复合材料以及岛礁建设与隧道掘进等重大工程用高耐磨钢铁基复合材料,开发铝、钛基复合材料用合金粉末的低成本制备技术,解决传统制粉技术细粉出粉率低、氧含量高等技术难题,实现高端铝、钛合金粉末规模化制备。探索复合材料体系—复合构型设计—复合技术—宏微观性能耦合机制与协同精确控制机理,开发跨尺度分级复合构型的定位控制、界面效应与组织精确调控、性能及质量稳定性控制、大型结构件塑性加工与热处理、低成本批量制备等产业化关键技术,开展特种服役性能评价、全寿命预测评估与应用技术研究,建立相关标准规范,实现其稳定化生产与应用示范。3.6 高端装备用高强轻质、高强高导金属层状复合材料研制及应用(示范应用)研究内容:针对高速列车、先进飞机、防护车辆等高端装备轻量化、高性能化的迫切需求,研究高性能多层铝合金板材、铜包铝合金等层状复合材料界面结构与复合机理,探索应用人工智能、大数据等前沿技术优化界面调控的理论与方法,阐明铝合金复合板材的叠层结构、复合界面、陶瓷颗粒第二相等在高应变速率下抵抗冲击的作用机理;开发防护车辆、特种装备等用抗冲击多层高强铝合金复合板材的工业化制造成套技术及复合板材的性能评价等关键应用技术;开发高速列车、航空航天、电力电器等高端装备用铜包铝合金复合材料短流程高效工业化生产成套技术及多场景应用关键技术,实现在高端装备上的示范应用。4. 先进结构陶瓷与陶瓷基复合材料4.1 高端合金制造及钢铁冶金用关键结构陶瓷材料开发及应用(示范应用)研究内容:面向冶金产业提升的发展需求,研究高端合金制造及钢铁新技术领域用关键结构陶瓷材料组分设计与制备技术,开发高品质高温合金制备用结构陶瓷材料、冶金领域用高效节能硼化锆陶瓷电极、薄带连铸用结构功能一体化陶瓷材料的规模化生产工艺,开展应用评价技术研究,建立规模化生产线,研制关键生产设备,制定制备及检测标准。4.2 低面密度空间轻量化碳化硅光学—结构一体化构件制备(基础前沿技术)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学—结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度空间轻量化碳化硅光学—结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学—结构一体化构件材料制备。4.3 高性能硅氧基纤维及制品的结构设计与产业化关键技术(示范应用)研究内容:针对高效隔热防护服、高强芯片、高保真通讯电缆等对高性能硅氧基纤维及制品的应用需求,研究硅氧前驱体化学组成、结构重组、多级微纳结构演变对纤维成型的影响规律,攻克硅氧基无机制品高温均匀化熔制拉丝关键技术,开发高强玻璃纤维;研究前驱体分子缩聚和纳米/微米多级孔组装结构演变对孔结构形成的影响规律,突破多孔玻璃纤维常温挤出成型技术,开发低介电、低热导、轻质柔性玻璃纤维;研究模拟月球和火星环境的微重力、高真空环境下玄武岩材料熔制技术及深空环境对纤维成型的作用机制,开发高性能连续玄武岩纤维;开展高性能玻璃纤维及复合制品产业化示范,形成千吨级生产线;开发极端环境的模块化连续玄武岩纤维成型装置,实现微重力下自主成纤中试。5. 先进工程结构材料5.1 海洋建筑结构用耐蚀钢及防护技术(共性关键技术)研究内容:针对海洋建筑结构对长寿命钢铁材料的需求,研究高盐雾、高湿热、强辐射等严酷海洋环境下,钢铁结构材料的失效机理与材料设计准则;防腐涂层的成分设计、制备技术、涂装工艺及腐蚀评价;耐蚀钢板/钢筋的成分设计、制备技术、焊接技术及腐蚀评价;复合钢板的制备技术、焊接技术及腐蚀评价;海洋建筑结构用钢的服役评价、设计规范及示范应用。开展免维护海洋结构用低合金耐蚀钢板及复合钢板的成分设计及制备技术研究;开展防腐涂层设计与制备技术、钢板与涂层耦合耐蚀机理研究;研究低成本耐蚀钢筋母材与覆层协同耐蚀机制与制备技术;开展耐蚀钢连接技术研究;建立复杂海洋环境钢材及构件的服役评价及全寿命周期预测方法。6. 结构材料制备加工与评价新技术6.1 金刚石超硬复合材料制品增材制造技术(示范应用)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用含金刚石的球形复合粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。6.2 高强轻质金属结构材料精密注射成形技术(共性关键技术)研究内容:针对5G基站、消费电子、无人机或机器人等领域对高强轻质结构零件的迫切需求,研究粉末冶金高强轻质金属结构材料及其注射成形工艺过程精确控制原理与方法、小型复杂构件精密成形、低残留粘结剂设计及杂质元素控制、强化烧结致密化及合金的强韧化。重点突破粉末冶金高强轻质钢设计及其粉末制备、低成本近球形钛合金微细粉末制备、可烧结高强粉末冶金铝合金及近球形微细粉末制备、组织性能精确调控等关键技术,实现高强轻质金属复杂形状制品的稳定化宏量生产。6.3 大型复杂薄壁高端金属铸件智能液态精密成型技术与应用(共性关键技术)研究内容:面向大涵道比涡扇航空发动机、新能源汽车等对超大型复杂薄壁高端金属铸件的需求,打破传统“经验+试错法”研发模式,探索基于集成计算材料工程、大数据与人工智能相结合的金属铸件智能液态精密成型关键技术。研究超大型复杂薄壁金属铸件凝固过程的组织演变与缺陷形成机理,建立多物理场耦合作用下铸件组织与缺陷的预测模型,发展数据驱动的材料综合性能与铸造工艺多因素智能化寻优方法,形成金属铸件智能液态精密成型数字孪生模型及系统。6.4 复杂工况下冶金领域关键部件表面工程技术与应用(示范应用)研究内容:针对冶金领域高温、重载、高磨损等复杂工况对关键部件表面防护技术的迫切需求,开展复合增强表面工程材料及涂镀层结构的理性设计,开发高效率、高性能激光熔覆、堆焊、冷喷涂、复合镀等技术及多技术结合的复合表面工程技术,攻克复杂工况下冶金领域关键部件表面耐高温、耐磨损、抗疲劳涂镀层制备的关键技术,开展其服役性能评价和寿命预测,并应用于挤压芯棒、结晶器、除鳞辊等典型部件,在大型钢铁冶金企业得到示范应用。7. 基于材料基因工程的结构与复合材料7.1 结构材料多时空大尺寸跨尺度高通量表征技术(基础前沿技术)研究内容:针对高温合金、轻合金和高性能复合材料等的工程化需求,基于先进电子、离子、光子和中子光源,集成多场原位实验与多平台关联分析技术,研发晶粒、组成相、相界面、化学元素、晶体缺陷与织构的多时空跨尺度高通量表征、智能分析与快速评价技术,研发大尺寸多尺度组织结构和宏微观力学性能高通量表征技术与试验装备,实现典型工程化结构材料制备、加工和服役过程中内部组织结构的动态演化和交互作用规律的高效研究,建立材料成分—组织—性能的多尺度统计映射关系与定量模型,在典型结构材料的改性、工艺优化和服役评价等方面得到实际应用。7.2 金属结构材料服役行为智能化高效评价技术与应用(共性关键技术)研究内容:针对金属结构材料腐蚀、疲劳、蠕变等服役性能评价耗时长、成本高的问题,通过多物理场耦合、宏微观跨尺度损伤建模,融合智能传感、信号处理、机器学习等现代技术,研发材料服役性能物理实验与模拟仿真实时交互和数字孪生的智能化高效评价技术和装置;研究金属结构材料数据虚实映射与数据交互规则,建立数据关联平台,加速材料服役性能数据的积累,形成关键金属结构材料安全评价数据系统;集成结构模型与损伤模型,发展基于大数据技术的金属结构材料服役安全评价和寿命预测的新技术和新方法,并获得实际应用。7.3 基于材料基因工程的新型高温涂层优化设计研发(共性关键技术)研究内容:针对海上动力装备用热端部件及其海洋腐蚀环境,发展高温涂层的高通量制备技术,开展新型高性能高温涂层成分和组织结构的高通量实验筛选和优化研究;研发涂层—基体界面结构和性能多尺度高效模拟设计和预测技术,研发涂层高温力学性能、界面强度、残余应力和高温腐蚀性能等的高通量实验技术,开展涂层与界面性能和工艺优化研究;综合利用材料基因工程关键技术,研发出具有重要工程应用前景的新型超高温、耐腐蚀涂层。7.4 高强韧金属基复合材料高通量近净形制备与应用(共性关键技术)研究内容:针对航空航天领域高强韧金属基复合材料应用需求,围绕非连续增强金属基复合材料强韧性失配及复杂构件成形加工周期长、成本高、材料利用率低的突出问题,结合利用材料基因工程思想和近净形制备技术原理,研发铝基、钛基复合材料高通量近净形制备技术及其高通量表征技术;测试和采集基体/增强相界面物理化学数据,建立基体/增强相界面热力学和动力学物性数据库;研究铝基、钛基复合材料成分—构型—工艺—界面—性能交互关联集成计算技术,实现材料体系与构型及其近净形制备工艺方案与参数的高效同步优化,并在航空航天等领域得到工程示范应用。7.5 先进制造流程生产汽车用钢集成设计与工程应用(示范应用)研究内容:鉴于钢铁工业绿色制造、生态发展对先进制造流程生产高端钢铁材料的迫切需求,基于材料基因工程的思想,针对近终形流程生产汽车用钢,采用多场耦合和跨尺度计算技术,集成材料开发与产品应用的跨尺度计算模型,构建一体化集成计算平台,建立材料基础数据和工艺、产品数据库,开发基于数据挖掘和强化机制的组织性能定量关系模型,实现产品成分—工艺—组织—性能的精准预报;开展在近终形流程生产汽车用钢的示范应用,研制出代表性产品并实现工程应用。7.6 增材制造用高性能高温合金集成设计与制备(共性关键技术)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程所需高温合金精密构件服役特点和增材制造物理冶金特点,应用材料基因工程理念,发展多层次跨尺度计算方法和材料大数据技术,形成增材制造用高性能高温合金的高效计算设计方法、增材制造全流程模拟仿真技术与机器学习技术,结合高通量制备技术和快速表征技术,建立增材制造用高性能高温合金的材料基因工程专用数据库;发展适合高温合金增材制造工艺特性的机器学习、数据挖掘、可视化模拟等技术,开展增材制造用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。7.7 极端服役条件用轻质耐高温部件高通量评价与优化设计(共性关键技术)研究内容:发展基于大数据分析和数据挖掘的高温钛合金、钛铝金属间化合物等轻质耐高温部件组织结构与疲劳、蠕变等关键性能的定量预测模型;研制实时瞬态衍射、原位成像表征装置,发展三维无损检测高效分析技术;研究高温腐蚀环境下组织结构演化和性能退化机理、高温和循环载荷等多因素耦合作用下的损伤累积及高通量评价与寿命预测技术;基于极端环境服役性能需求,利用机器学习和数据挖掘技术,实现轻质耐高温材料的成分、组织、制备工艺、服役性能的高效优化,并在航空、航天、核能等领域实现在极端服役条件下工程示范应用。8. 青年科学家项目8.1 车载复合材料LNG高压气瓶制造基础及应用技术研究内容:针对车载复合材料液化天然气(liquefiednaturalgas,LNG)高压气瓶的制造与应用,研究LNG介质相容的树脂基复合材料体系设计与制备;耐极端环境复合材料LNG气瓶结构设计技术;复合材料LNG高压气瓶抗渗漏、抗漏热和抗振动技术;复合材料LNG高压气瓶制造技术;复合材料LNG高压气瓶的性能评价技术。8.2 新一代结构功能一体化泡沫的制备和应用研究内容:面向结构功能一体化泡沫技术迭代的迫切需求,开发具备负泊松比和高耐火保温等功能的泡沫,主要针对新型多级结构负泊松比结构泡沫材料、耐高温聚酰亚胺泡沫和高温可发泡防火材料等开展攻关,并开展其复合材料研究,在结构支撑、保温隔热等领域得到应用。8.3 单晶高温合金先进定向凝固技术及其精确模拟研究内容:针对当前航空发动机单晶涡轮叶片生产合格率低、冶金缺陷频发的现状,开展单晶高温合金及叶片高温度梯度液态金属冷却(LMC)定向凝固技术研究,突破LMC技术中动态隔热层配置、晶体取向控制、模壳制备、低熔点金属污染控制等关键技术,实现LMC技术的多场耦合、多尺度精确模拟,研究复杂结构单晶叶片在高梯度定向凝固中的缺陷形成、演化机理,发展缺陷控制技术。8.4 海洋油气钻采关键部件用高强高韧合金研究内容:针对海洋油气随钻测量和定向钻井、海底井口设备关键部件主要依靠进口问题,开展时效硬化型高强韧镍基、铁镍基耐蚀合金设计、高纯净低偏析冶金、强韧化机理、应力腐蚀疲劳失效寿命评估理论与方法等基础共性技术和产业化关键技术研究,实现高强韧、大规格、高均质耐蚀合金和超高强度高耐蚀合金稳定批量生产和工程化应用。8.5 基于增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体增材制造用粉体原料的设计与高通量制备技术;开发基于增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。8.6 基于激光技术的材料服役行为多维度检测技术和装备研究内容:针对核电、海工等领域极端条件下结构材料服役性能远程在线、多维度、智能化检测的发展需求,开展基于激光技术的光谱、表面声波、超声或多种方法融合的材料组分、结构特性、力学性能、缺陷特征检测新原理和新方法研究,发展极端条件下结构材料服役行为的实时、原位、无损监检测技术,研制与材料基因工程大数据、人工智能分析算法和机器人技术深度融合的材料多维、多尺度在线监检测原型装置,实现多场耦合极端环境下材料多层次、多维度服役性能原位无损在线测量及示范应用。8.7 超高刚度镁基复合材料的集成计算设计与制备研究内容:以航空、航天或高铁领域为应用场景,针对超高刚度镁基复合材料特点,发展高刚度镁合金集成材料计算软件和镁基复合材料高通量实验技术,开展基于弹性变形抗力提升的镁合金基体成分设计和增强体种类、尺寸和分布形态对镁合金刚度和强韧性影响规律的研究工作,研发多尺度增强体复合构型强化的镁合金材料高效制备与组织调控技术,建立高刚度镁基复合材料及其典型构件的全流程制备技术,并实现在重大工程中的应用验证。8.8 增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分—工艺—结构—性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。8.9 新一代抗低温耐腐蚀高强韧贝氏体轨道钢研究内容:针对低温下贝氏体钢中亚稳残余奥氏体易转变为脆性马氏体,增加贝氏体钢轨道安全服役隐患的问题,研究腐蚀、低温环境下贝氏体轨道钢(含钢轨和辙叉)的失效破坏机制,建立贝氏体轨道钢“夹杂物特性—组织结构—常规性能—服役条件—失效方式及寿命评估”数据库,开发适用于腐蚀、低温环境的新一代高强韧性、长寿命贝氏体轨道钢及其冶金全流程制造关键技术。近期会议推荐:【复合材料性能表征与评价网络研讨会】该网络会议对听众免费,会议日程及报名二维码如下:
  • 原位还原技术: 实现金属在二维材料上的精确沉积!
    【研究背景】二维材料是材料科学领域的重要研究方向,因其在催化、传感、电子和光子等领域的广泛应用而备受关注。与传统的纳米材料相比,二维材料具有更大的比表面积、更优越的电学性质和良好的机械性能等优点。然而,二维材料的合成和功能化过程中也存在金属分布不均、尺寸控制困难等问题,因此带来了精确调控金属纳米结构的挑战。近日,来自上海师范大学化学与材料科学学院的李辉教授团队在《Nature Synthesis》上发表了一项研究,取得了显著进展。该团队设计了一种基于MXene材料的金属复合材料合成策略,成功实现了在Ti3C2Tx表面通过原位还原生长Au、Pd、Ag、Pt等金属。这一研究利用MXene材料作为还原载体,显著提高了金属的负载能力和结构可控性,成功获取了多种可调结构的金属/MXene复合材料。研究中,该团队总结出了金属在MXene表面沉积的一般性规律,包括氧化还原电位、金属配位环境和晶格匹配度对金属沉积位置和尺寸的影响。这些指导原则为实现金属在MXene材料上的精确调控提供了理论基础。此外,研究表明,Au纳米颗粒可以均匀地沉积在MXene的边缘,这一特性为调控金属异质结构的设计提供了新思路。通过这一原位还原策略,研究人员成功合成了多种结构可控的金属/MXene复合材料,如AgAu-Edge/Ti3C2Tx、Ag@Au-Surface/Ti3C2Tx等。这些新型复合材料在催化、传感和生物技术等领域具有潜在的应用前景,为未来材料的设计和功能化开辟了新的路径。【表征解读】本文通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)等多种先进表征手段,深入探讨了Ti3C2Tx MXene基底上金属和合金的合成过程及其微观结构特征,从而揭示了金属离子在MXene表面和边缘的吸附行为及其对电催化性能的影响。通过这些表征,本文进一步解析了金属与MXene相互作用的微观机理,揭示了不同金属离子在Ti3C2Tx表面吸附位置的差异及其对材料性能的影响。针对不同金属负载的合金材料(如AgAu-Edge/Ti3C2Tx、Ag@Au-Surface/Ti3C2Tx等)表征发现,在MXene的边缘和表面位置加载金属离子会显著改变其电化学性能,提升催化活性。通过XPS分析,进一步确认了金属在MXene表面的化学状态及其与Ti3C2Tx的相互作用。此外,结合TEM和SEM图像,作者观察到金属纳米粒子的分布及形态特征,进而得到MXene基底上形成的独特结构与性能的关系。在此基础上,通过电子显微镜表征(SEM和TEM)、能谱分析(EDX)等多种表征手段,作者得到了各类合金和核壳结构在Ti3C2Tx上的分布特征和组成信息,结果显示,金属粒子的分布密度及其在MXene表面的排列方式对催化活性具有重要影响,特别是在电催化反应中,边缘和表面的金属负载对提高反应活性起到了关键作用。通过XRD分析,作者确认了材料的晶体结构和相信息,进一步探讨了金属与MXene之间的相互作用及其对材料结构稳定性的影响。同时,结合电化学工作站的测试结果,作者发现,经过表征和分析后,所制备的合金材料在电催化反应中展现出了优异的性能,为新型电化学催化材料的开发提供了重要数据支撑。总之,经过综合的表征技术,作者深入分析了Ti3C2Tx MXene基底上金属和合金的合成及其催化特性,进而制备出新型的M/Ti3C2Tx材料,这一新材料的合成与表征不仅推动了MXene及其衍生材料在电化学催化领域的发展,也为未来相关应用提供了理论依据和实践指导。作者的研究结果为设计新型高效催化剂和推动电催化技术的进步奠定了基础。【图文速递】图1. 原位还原过程-成核和生长的初步探索。图2. 原位还原过程中的Ti浸出。图3. Au沉积位点的选择性。图4. Pd的尺寸分布。图5. 原位还原沉积过程概述。【科学启迪】本文的研究揭示了通过原位还原策略合成金属/MXene复合材料的潜力,提供了对金属沉积行为的深刻理解。该研究强调了在金属纳米结构的合成中,精确调控其大小、位置和结构的重要性。这一策略的成功应用,不仅为催化、传感和生物技术等领域带来了新的材料选择,也为作者深入理解金属活性位点的形成机制提供了基础。研究中发现,氧化还原电位、金属配位和晶格失配等因素在金属沉积过程中起着关键作用。通过调节这些参数,研究人员能够控制金属在MXene材料表面的生长,进而实现对复合材料性能的精准调控。这一发现不仅扩展了MXene材料的应用范围,也为其他二维材料的合成提供了新思路。此外,该研究表明,MXene材料作为还原载体的独特性质,使其能够在不需要额外还原剂的情况下实现金属的高效负载。这一进展为设计新型功能性复合材料铺平了道路,激励科研人员在金属/二维材料复合物的开发上进行更深入的探索。参考文献:Zhang, Q., Wang, Ja., Yu, Q. et al. Metal/MXene composites via in situ reduction. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00660-z
  • 深圳三思纵横试验机|复合材料试验机:为材料科学插上腾飞的翅膀
    复合材料试验机是一款专用于测试复合材料性能的重要设备,它在材料科学研究、产品研发以及质量控制等多个环节中发挥着至关重要的作用。该试验机通过模拟实际工作环境和应用条件,对复合材料的各种物理和化学性能进行精确测量和分析,为科研人员和企业提供有力的数据支持。今天深圳三思纵横试验机小编将探讨复合材料的构成和性能、应用意义以及检测标准,大家一起来了解下吧。一、复合材料构成和性能复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,组成具有新性能的材料,由基体相、增强相材料组成;既能保留原有组成材料的主要特点,又通过材料设计使各组分的性能相互补充并彼此关联,从而获得新的优越性能。复合材料并非仅限于金属,其增强相可以是玻璃纤维、碳纤维、陶瓷、纸板、织物、泡沫等材料。而基体相则可以是塑料、树脂、金属、陶瓷等材料。所以,不是所有复合材料都是金属材料。二、复合材料应用意义1、轻质高强复合材料的强度比传统材料高出很多,而且密度很低,因此具有高强度和轻质化的特点。在航空航天、汽车等领域,采用复合材料可以减轻整个系统的重量,提高系统的性能;2、良好的抗腐蚀性能许多金属材料容易受到氧化、腐蚀等环境因素的影响,而复合材料因其大多数是聚合物基质,因此具有很好的抗腐蚀性能;3、调节特殊性能由于复合材料是由两种或两种以上不同性质的材料组成的,因此可以设置不同材料的比例和形状,从而调节其特殊性能,满足特定需求;4、增强机械性能复合材料通常是由增强材料和基体材料制成,增强材料可以提高复合材料的强度、硬度和韧性等机械性能,同时也可以改善其热膨胀系数和导热性能等物理性能;5、材料优化复合材料通过优化铺层设计,可以在保证材料强度和刚度的前提下,减少材料的使用量和制造成本,提高材料使用效率。三、复合材料检测标准复合材料以其卓越的性能、轻盈的重量和出色的耐腐蚀性等特点,在众多领域得到了广泛应用。对于确保复合材料产品质量的关键,检测标准发挥着至关重要的作用。通过严格执行检测标准,我们能够全面掌握保障复合材料质量的具体实践方法,进而确保产品的可靠性与优质性。1、国内标准(1)国家标准-GB;(2)国家军用标准-GJB;(3)航空工业行业标准-HB。2、美国标准:美国复合材料试验和材料协会—简称ASTM(1)ASTM D:塑料、复合材料、胶粘剂;(2)ASTM C:夹层结构。3、其他标准(1)SCAMA先进材料供应商协会;(2)ISO国际标准。目前,全国纤维增强塑料标准化委员会(SAC/TC39)归口制订/颁布了一系列复合材料力学性能测试的国家标准,这一系列标准达到了国际先进水平。综上所述,复合材料试验机是现代工业中不可或缺的重要设备,无论是构成和性能,还是应用应用和检测标准都是不可缺少的。随着科技的不断发展,复合材料试验机将继续发挥着重要作用,为推动科技创新和产业升级做出更大的贡献。
  • “先进结构与复合材料”重点专项2022申报指南:拟启动1项任务
    4月27日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2022年度项目申报指南。指南中明确:2022年度定向指南部署围绕轻质高强金属及其复合材料的技术方向,拟启动1项指南任务,拟安排国拨经费不超过2000万元。项目统一按指南二级标题(1.1)的研究方向申报,实施周期不超过3年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名项目负责人,项目中每个课题设1名课题负责人。1. 轻质高强金属及其复合材料1.1 青海盐湖新型镁基材料及前端制造技术(共性关键技术类)研究内容:针对青海盐湖镁资源现状和氯化镁特点,研究无水氯化镁颗粒熔融与净化一体化装备和能耗控制系统,开发青海盐湖金属镁低能耗电解制备技术;研究电解金属镁熔液合金化原理及工艺,开发冶金短流程合金制造技术;研究盐湖金属镁深度除杂原理及工艺,发展盐湖金属镁低成本纯净化工艺技术,为镁合金结构材料更大规模应用创造条件;发展结合盐湖成分特点和当地产业特点的新型盐湖镁基结构材料,开发具有大规模应用前景的车用镁合金复杂零部件,实现在汽车上的示范应用;研究氧化镁、氢化镁等镁化合物产品,发展新型盐湖镁基耐火材料,实现盐湖镁基耐火材料在冶金领域的示范应用。考核指标:金属镁电解直流电耗12000千瓦时/吨,电流强度大于460千安,电流效率≥92%,实现3种及以上中间合金稳定生产,合金元素含量≥10wt.%,电解金属镁及中间合金产能≥5万吨/年;短流程冶金过程全流程电耗降低值≥850千瓦时/吨,镁合金锭坯、金属镁损耗≤3%,镁合金锭坯不良率≤0.5%,形成年产1万吨高品质镁合金锭坯示范生产线;电解金属纯镁深度纯净化后铁含量≤50ppm、镍含量≤5ppm,生产能力大于1万吨; 发展3种及以上盐湖镁合金结构材料,成本、力学与耐蚀性能和现有AM50(皮江法)相当,并在3种及以上车用复杂或重要构件上示范应用;高纯氧化镁、氢化镁产品的主含量大于99.5wt.%,综合性能与皮江法镁相当;与现有盐湖产品相比,高端镁质耐火材料寿命提高20%,应用新产品钢液中夹杂物量降低15%以上,年生产能力≥1万吨,实现工程示范应用。有关说明:定向择优。由教育部、中科院、青海省科技厅组织推荐,拟支持1项。申报项目中应不少于1个课题由青海省有关单位作为课题牵头单位。
  • “先进结构与复合材料”等重点专项2021申报指南:9项涉及3D打印材料
    2月4日,科技部发布关于对“十四五”国家重点研发计划“氢能技术”等18个重点专项2021年度项目申报指南征求意见的通知。其中,“先进结构与复合材料”、“高端功能与智能材料”两个重点专项均涉及增材制造(3D打印)先进材料及相关技术,共计9项,详情如下:“先进结构与复合材料”重点专项2021年度项目申报指南(征求意见稿)2.3 高品质TiAl 合金粉末制备及增材制造关键技术(共性关键技术)研究内容:针对电子束增材制造所需的低氧含量球形TiAl 合金粉末,研究铝元素挥发、粉末球形度差、空心粉高问题,突破工业化生产球形TiAl 合金粉末和工业化TiAl 构件增材制造关键技术;开展增材制造TiAl 合金的材料-工艺-- 7 -组织-缺陷-性能一体化系统研究及典型服役性能测试,突破构件增材制造工艺及性能控制关键技术,掌握包括材料、工艺、组织调控、性能特征及典型应用,为新一代航空发动机高温关键构件制造及工业化应用提供技术支撑。考核指标:粉末指标:粉末粒度45μm~105μm,收得率≥40%,粉末氧含量≤0.075wt%,粉末流动性≤35s/50g;成形件指标:室温抗拉强度≥600MPa、延伸率≥1.5%,650℃抗拉强度≥500MPa,650℃高周疲劳强度(σ-1,Kt=1,N=1×107)≥300MPa,650℃持久强度(σ100h)≥250MPa。3.3 先进铝合金高效加工及高综合性能研究(共性关键技术)研究内容:针对飞行器、船舶以及汽车等提速减重、绿色制造的迫切需求,开展以铸代锻、整体成型、短流程、低排放的高效加工技术研究,研发高综合性能的先进铝合金材料;开展先进铝合金材料综合性能评价及加工技术效能评价,形成铸锻一体成型的新型高综合性能铝合金高效加工技术,将铸造、增材制造等铝合金提升到变形铝合金强度水平。考核指标:铸锻一体成型高强铝合金屈服强度>350MPa、延伸率>6%、碳排放比A356 合金减少10%,建设10000 吨/年生产线,示范应用于汽车、通讯等;高强传动连接铝合金材料,抗拉强度≥450MPa、屈服强度≥400MPa、延伸率≥8%、疲劳强度≥300MPa、焊接系数达到0.85、满足高强传动连接部件需求、建设10000 吨/年生产线、示范应用于汽车等;核电超高强铝合金管材外径150mm、壁厚3.5mm、抗拉强度≥650MPa、满足应用要求;高强铝合金增材制造产品屈服强度≥400MPa、延伸率≥6%、疲劳强度≥200MPa、建立1000 吨/年生产线。4.4 低面密度空间轻量化碳化硅光学-结构一体化构件制备(基础研究)研究内容:针对空间遥感光学系统的应用需求,研究低面密度空间轻量化碳化硅光学-结构一体化构件的结构拓扑设计,开展复杂形状碳化硅构件的增材制造等新技术、新工艺研究,开发低面密度复杂形状碳化硅构件的近净尺寸成型与致密化烧结技术,开展低面密度碳化硅空间轻量化碳化硅光学-结构一体化构件的光学加工与环境模拟试验研究,实现满足空间遥感光学成像要求的低面密度碳化硅光学-结构一体化构件材料制备。考核指标:碳化硅陶瓷材料开口气孔率≤0.5%,弹性模量≥350GPa,弯曲强度≥350MPa,热膨胀系数2.1±0.15-6/K(@-50~50℃),热导率≥160 W/(mK);光学-结构一体化构件尺寸≥500mm,面密度≤25kg/m2,表面粗糙度Ra≤1nm,面形精度RMS≤λ/40(λ=632.8nm),500~800nm 可见光波段平均反射率≥96%,3~5μm 和8~12μm 红外波段平均反射率≥97%;通过空间成像光学系统环境模拟试验考核(包含时效稳定性、热真空、力学振动等试验,面形精度RMS≤λ/40)。6.1 金刚石超硬复合材料制品增材制造技术与应用示范(典型应用示范)研究内容:围绕深海/深井勘探与页岩气开采、高端芯片制造等国家重大工程对长寿命、高速、高精度超硬材料制品的需求,开展高性能金刚石刀具、磨具和钻具等结构设计和增材制造技术研究,结合新型金刚石超硬复合材料工具宏观外形和微观异质结构的理论设计和数值模拟,重点突破增材制造用超硬复合材料金属粉体关键制备技术和含超硬颗粒的多材料增材制造关键技术,完成典型工况条件下服役性能的评价。技术指标:切/磨削类制品在典型工况条件下磨耗比降低70%以上,耐热性达到800℃以上,使用寿命是现有加工材料的2 倍以上;钻具类制品抗弯强度2000MPa,冲击韧性≥4J/cm2,努氏硬度(压痕)达到50GPa,使用寿命达到YG15(WC-15Co) 类硬质合金的5 倍以上;形成年产百万件的工业化生产能力,实现2~3 种产品的规模应用。7.6增材制造专用高性能高温合金集成设计与制备(基础研究)研究内容:针对航空发动机、高超声速飞行器、重载火箭等国家大型工程等所需高温合金精密构件服役特点和增材制造物理冶金特点,融合多层次跨尺度计算方法、并行算法和数据传递技术,发展增材制造专用高性能高温合金的高效计算设计方法与增材制造全流程模拟仿真技术,结合高通量制备技术和快速表征技术,建立增材制造专用高性能高温合金的材料基因工程专用数据库;结合机器学习、数据挖掘、可视化模拟等技术,开展增材制造专用高温合金高效设计与全流程工艺优化的研究工作,实现先进高温合金高端精密构件的组织与尺寸精密化控制,并在航空航天等领域得到工程示范应用。考核指标:针对国家大型工程等所需高温合金精密构件特点,研制出3~5 种增材制造专用高温合金,研发周期缩减40%以上、研发成本降低40%以上;发展高端增材制造装备和工艺配套的高温合金材料和技术体系,实现国产化规模应用,综合性能平均提升20%以上,产品成本降低30%以上,核心性能指标、批次稳定性达到国际先进水平;申请发明专利或软件著作权10 件以上。8.5 基于激光增材制造技术的超轻型碳化硅复合材料光学部件制造研究内容:面向空间光学系统轻量化的发展需求,研究新型超轻型碳化硅复合材料光学部件预制体激光增材制造用粉体原料的设计与高效制备技术;开发基于激光增材制造技术的碳化硅复合材料光学部件基体成型与致密化技术;开发基于激光增材制造技术的碳化硅复合材料光学部件表面致密层制备技术;开展超轻型碳化硅复合材料光学部件的加工验证研究。考核指标:碳化硅复合材料弯曲强度≥200MPa,弹性模量≥200GPa,热导率≥100W/(mK),热膨胀系数≤3×10-6/K;碳化硅复合材料光学部件口径≥350mm,轻量化率≥80%,面密度≤25kg/m2;研制出350mm 以上口径碳化硅复合材料光学部件, 表面粗糙度Ra≤1nm , 面形精度RMS≤λ/40(λ=632.8nm),500-800nm 波段平均反射率≥96%。8.8 增材制造先进金属材料的实时表征技术及应用研究内容:研发基于同步辐射光源的原位表征技术与装备,动态捕捉增材制造过程中高温下微秒级时间尺度和微米级局域空间内的相变和开裂;通过高通量的样品设计和多参量综合表征手段,揭示动态非平衡制备过程中材料组织结构的演化和交互作用规律。面向典型高性能结构材料,揭示增材制造快速熔化凝固超常冶金过程对稳定相、材料组织结构和最终性能产生影响的因素,快速建立材料成分-工艺-结构-性能间量化关系数据库;结合材料信息学方法,发展增材制造工艺和材料性能高效优化软件,在典型增材制造材料的设计与优化中得到应用。考核指标:发展基于同步辐射光源的增材制造原位表征技术与装备,在多个尺度上实时追踪增材制造过程中材料组织演变、裂纹生长和化学反应的动态过程。实现单点表征区域>200μm,空间分辨率≤10μm,时间分辨率≤5μs,表征通量>103 样品空间成份点的原位无损分析;构建高温合金、不锈钢、钛合金、铝镁合金等高性能结构材料成分-工艺-结构-性能数据库,开发增材制造工艺优化专用软件,应用于三种增材制造材料的设计与优化。申请发明专利3~5 项,软件著作权2~3 项。“高端功能与智能材料”重点专项2021年度项目申报指南(征求意见稿)2.2 骨组织精准适配功能材料及关键技术(共性关键技术)研究内容:面向因骨质疏松、骨肿瘤、感染等导致的人体骨组织缺损疾病治疗的需求,研发对骨组织功能重建具有生物适配功能的高端再生修复材料,开发融合生物材料、医学影像、计算机模拟、增材制造、人工智能的先进骨组织修复与再生成套技术,发展外场驱动的非侵入性材料,促进无生命材料向具有健全功能组织的转化。考核指标:获得3~5 种基于类骨无机粉体的新材料,阐明材料和组织相互作用机制及细胞信号通路;研发4~6 种外场驱动的新材料;突破大尺寸类骨无机材料3D 打印关键技术,骨修复体连通气孔率大于50%,孔径在100 μm-600 μm之间可控调节,压缩强度大于40 MPa,实现大尺寸骨缺损的再生修复;建立术前组织三维重建与手术模型制备、术中手术定位导板与精准修复再生修复材料构建、术后康复材料设计的围手术期骨精准再生修复成套技术;完成骨再生精准修复材料的临床前研究,开展临床试验20 例以上。4.4 声学超构材料及集成器件(共性关键技术)研究内容:面向高端技术装备振动与噪声控制的重大需求,开发声学超材料设计技术,发展基于3D 打印等先进制造手段的声学超材料制备方法,研发具备宽带、低频、全向等优异吸声、隔声特性的声结构功能材料和基于拓扑声学的全固态集成声学器件,实现基于超材料的低频声波定向传输;开发有效提高超声穿透性能并实现高分辨颅脑超声成像的双负参数声学超材料。考核指标:声学超构材料的工作频带范围20~800 Hz,厚度≤30 mm,其中吸声超材料实现设计带宽内吸声系数≥0.85、平均值≥0.95,隔声超材料实现设计带宽内插入损失≥20 dB、平均值≥30 dB。中频超构声学器件的工作频率≥100MHz,室温品质因子Q≥104,高频超构器件的工作频率≥3GHz,室温品质因子Q≥5×103,滤波器带宽的可设计范围优于0~3%,带外抑制≥40 dB,插入损耗≤5 dB。以上征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱。联系方式:重点专项名称邮箱地址先进结构与复合材料gxs_clc@most.cn高端功能与智能材料1.“十四五”国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南(征求意见稿).pdf2.“十四五”国家重点研发计划“高端功能与智能材料”重点专项2021年度项目申报指南(征求意见稿).pdf
  • 复合纤维材料开启高端微波化学仪器的新时空
    复合材料一般泛指由两种或两种以上不同物质以不同方式组合而成的材料,在性能上互相取长补短,产生协同效应,使材料的综合性能优于原组成材料而满足各种不同的要求。复合纤维材料的出现堪称材料史上的一次革命。由于复合纤维材料具有高强质轻、耐高温、耐疲劳、优良的减振性、耐化学腐蚀和热膨胀系数小等特点,广泛应用于航空航天、现代工业、体育器材等领域,如神舟7号、嫦娥探月工程以及C919大飞机等重大项目中均见其身影。 目前,微波化学仪器已成为分析化学、材料科学等应用领域中一种高效的样品前处理和制备设备,然而反应容器的材质直接决定仪器承受高温、高压的性能。市场上流行的微波消解仪通常采用PTFE、PFA以及TFM加工成消解内罐,高端产品更青睐于TFM材质用作消解内罐(最高耐温315℃,最大承受压力12MPa),因此消解外罐的各项性能成为仪器发展和技术创新的&ldquo 瓶颈&rdquo 。早期的聚砜(PSF)或聚苯硫醚(PPS)消解外罐普遍用在普及型和低端微波消解仪上,但在使用过程中因反应条件或机械损伤很容易造成消解罐发生酸腐蚀、变形、产生裂缝,甚至爆裂,现在中高端微波消解仪中已很难见到了。大约在2005年初,国内一代微波消解系统逐渐采用耐高温、高压,尺寸稳定性以及良好耐化学性的聚醚醚酮(PEEK)设计制造压力反应罐外罐,其使用寿命和安全性得到大幅提高。随着用户对微波反应的要求越高(反应温度高于250℃,反应压力高达4MPa,反应罐体耐压能力超过6MPa),PEEK材料的外罐存在如此高温下易熔易燃,且易受高压损伤等缺陷;特别是高温硫酸蒸汽对其的影响而导致罐体开裂,从而大大降低了仪器设备的安全性能和提升了运行维护的成本。 上海新仪公司对目前市场上已有的国外高端产品经过长时间的市场调研和咨询国内先进材料专家,凝聚公司科研技术人员克服多重难关,引进并自主开发出全封闭防腐超强复合纤维材料,在2008奥运年一举攻克外罐材料的&ldquo 瓶颈&rdquo ,奠定开发高端微波化学仪器的技术基础。新型复合纤维材料外罐采用纤维一体化缠绕并外裹PFA材料工艺制作而成,强度高(80MPa)、耐高温(400℃)、质量轻巧和极低的热膨胀系数,耐受各种酸碱、有机溶剂,由于全封闭防腐技术的应用克服了国外同类现有产品的怕水或水蒸气浸蚀、不耐腐蚀等缺点。复合纤维材料的抗疲劳强度为其抗拉强度的60%左右,即使因疲劳断裂也是从基体开始,逐渐扩展到纤维和基体的界面上。因此,具备破坏前的预兆,可以及时检查发现,材料寿命比一般金属的长数倍。同时,复合纤维材料的基体中有成千上万根独立的纤维,当用这种材料制成的外罐即便因反应产生爆炸也能在极短时间内将载荷重新分配并传递到未破坏的纤维上,故整个外罐不至于在短时间内丧失承载能力,其安全性能超越目前已知的所有高分子工程塑料。经实际产品测验结果表明,爆不破炸不裂撕不碎的复合纤维材料外罐完全消除横向炸裂的可能,安全系数大大超过目前市场通用的有机改性PEEK材料,耐用性能为PEEK材质的20~100倍。 MDS-10高通量密闭微波消解· 萃取· 合成工作站和MASTER 40罐高通量密闭微波消解/萃取工作站均采用超高强度的复合纤维材料制成的外罐,同时配合专利的垂直爆破泄压结构,从真正意义上实现了&ldquo 垂直爆破&rdquo 理论,杜绝了由于反应罐的横向破裂造成仪器和人员伤害,极大限度地提高了操作人员的安全性,开启了微波化学超高温高压的新时空。有关仪器详情请浏览我公司网站:www.sineo.cn.
  • 罗姆发布罗姆胶粘及复合材料分析仪LUMiFrac新品
    关于德国LUM德国LUM公司是一家生产分散体系分析及表征仪器的行业领先者。基于常年在流体力学,流变学及胶体化学领域的知识与经验,Lerche 教授于1994年创立了LUM公司并研发了STEP-Technology® 工艺,为不同产品的分析表征提供了技术平台。我们的测试仪器用于高速,可靠和全面表征分散体系的分离行为以及用于测试复合材料内聚强度和粘结强度。这些新型仪器已成为化工,食品,化妆品,涂料及制药等工业领域国际领先公司实验室里的标准配置。最近我们扩大了应用领域,给您一个创新的方法来衡量材料的粘着性和粘结性能。在对研发费用的不断投资下,LUM提供了新方法来提升您的知识和目标的。我们的总部设在德国柏林。我们的美国分公司负责加拿大的北美市场、美国和墨西哥,地址就位于Boulder,科罗拉多。中国分公司[罗姆(常州)仪器有限公司]负责中国市场以及整个亚太地区,位于中国常州市。此外,还有在法国巴黎、法国的分支机构和应用实验室,支持我们的地区客户。请联系我们,看看我们如何能帮助你达到你的宗旨和目标。谢谢您的考虑,我们期待与您的合作。关于LUMiFracLUMiFrac是测定胶粘剂拉伸强度的新基准(获得柏林勃兰登堡2012创新奖)。它利用离心力在同一时间对样品施加多倍重力,从而获得粘结强度、拉伸强度,同时还有剪切强度的绝对物理值(N/mm2).LUMiFrac通过一个递增的离心力直接施加到被测试的试样。它在高转速下测试样品断裂瞬间的力,所有的数据被发送到知名的SEPView® 操作软件,该软件可自动计算并显示实时临界力/断裂失效力。此外,它可以同时分析多达8个样品,比较和计算统计,并得出结论。而作为断裂测试的相关数据,也会考虑在内。测试样品定位,像标记1-2-3一样简单,但是对样品进行特殊的预防措施是必要的。只需将8个样本放到标记的转子位置,然后就可以开始了。采用多重采样法同时分析这8个样品而得到的测试结果的准确性是独特、无可比拟的,并且还减少了85%的测量时间。整个发展从一个简单省时的粘合性能的测定想法开始,到取得了多项测试技术专利,到现在附着力测试、复合材料分析的新技术(甚至可以使用多层膜来测试),一系列过程使它在很多领域具有很好的发展前景。LUMiFrac是研究和质量控制工具,专为胶粘剂配方和表面处理行业而准备;漆涂料,联合木制品,汽车和飞机工业,胶带复合材料、多层铝箔包装或金属薄膜塑料光学基板,如眼镜、镜子等。不同的测试基座可覆盖足够多的材料组合,应用范围广泛。为方便样品制备而专门设计的工具已经完善,结合您所了解的东西,把它放在一个功能中,它能得出准确而重复性好的数据。LUMiFrac – 粘接力[和]内构强度的测试标准。应用领域为质量控制而设置的标准化的快速测量粘结接头拉伸剪切强度测试:- 氰基丙烯酸酯、环氧胶粘剂、聚氨酯、胶带、密封… 涂料粘合强度的测定:- 防腐蚀涂料、装饰涂料、金属化聚合物、光学涂层… 复合材料:- 多种物质化合物,相互关联,轻质结构… 表面处理长期疲劳试验:- 交变载荷,不同温度产品优势. 待测样品准备简单. 可同时测8个样品 . 无需固定样品 - 放入仪器即可开始. 测试速度可调节. 可变实验负荷力. 宽负荷力范围(0.1N 到 6500N). 测定试验样品的拉伸强度和剪切强度. 各种温度下的测试. 可多次使用的实验基座,节约成本. 符合ISO 4624和DIN EN 15870产品规格转子转速/负载范围100–13,000 rpm 0.1 N – 6.5 kN抗拉强度高达80 MPa测量时间1分钟到99小时;或根据任务和目标符合标准ISO 4624 JIS K 5600-5-7 DIN EN 15870 DIN EN 14869-2样品数最多同时8个样品最大样品尺寸30 x 30 x 1 mm3 粘接面积直径7毫米,10毫米或定制测试粘结面材料金属和非金属测试粘结面重量4.1克- 38.7克(瓦特/铜约58克)重量56 kg温度控制-11°C 到 + 40°C数据接口USB尺寸 (WxHxD)380 x 296 x 640 mm3电源100 V / 120 V / 230 V, 50/60 Hz功率max. 1050 W详细信息请电话咨询或到我公司网站了解创新点:UMiFrac通过一个递增的离心力直接施加到被测试的试样。它在高转速下测试样品断裂瞬间的力,所有的数据被发送到知名的SEPView® 操作软件,该软件可自动计算并显示实时临界力/断裂失效力。 罗姆胶粘及复合材料分析仪LUMiFrac
  • 贝斯特科技亮相第十届商用飞机复合材料应用国际论坛
    2016年(第十届)商用飞机复合材料应用国际论坛于9月8-9日在中国商飞上海飞机设计研究院会议中心举行。本次论坛集中展示中国科技人员在商业大飞机复合材料领域前沿技术。论坛的亮点是突出商用飞机用复合材料结构的安全性和经济性,美国波音商用飞机公司,澳大利亚PTY 公司,意大利阿莱尼亚宇航公司等国际知名企业和机构的复合材料专家受邀出席并作大会报告。 贝斯特科技作为材料疲劳测试的专业品牌,携带动态疲劳试验机、热机械疲劳试验机、双轴疲劳试验系统等方面的最新技术进展与成果,积极的参与了此次盛会,吸引了众多参会者的眼球。贝斯特科技BISS产品不仅服务于航空材料,更是针对了不同应用领域: ? 金属和复合材料的应力 - 应变特性要求的设计,质量保证和认证的目的? 金属和复合材料在不同负载和环境条件下的耐久性、强度和断裂测试? 橡胶、聚合物和高分子材料制成的产品的动态性能和弹性性能测试? 悬架组件的性能和耐久性测试,如减震器、支柱,空气垫和静音托架? 铆接机身面板的残余裂纹疲劳和扩展寿命? 热电厂管道材料的蠕变疲劳和蠕变裂纹扩展性能? 组织工程、生物材料和再生医学领域的用户提供解决方案
  • “先进结构与复合材料”重点专项2021项目预评审专家名单公布
    根据2021年度国家重点研发计划重点专项评审工作安排,科技部高技术研究发展中心于2021年8月2日至8月9日组织开展了“十四五”“先进结构与复合材料”重点专项项目预评审。此次评审采用网络评审方式,评审专家按照国家科技计划项目评审专家选取和使用的统一要求,从国家科技专家库中产生,共42人。根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发〔2014〕11号)和中共中央办公厅、国务院办公厅印发《关于深化项目评审、人才评价、机构评估改革的意见》(中办发〔2018〕37号)等文件精神,现将预评审专家名单予以公布,公示期为8月12日至8月16日。专项管理办公室联系方式:010-68104778组1:3.2 先进铝合金高效加工及高综合性能研究序号专家姓名单位名称1窦 睿江南大学2赵志星首钢集团有限公司3陆德平江西省科学院4郭 斌武汉钢铁(集团)公司5曲迎东沈阳工业大学6路贵民华东理工大学7赵鸿金江西理工大学组2: 6.1 金刚石超硬复合材料制品增材制造技术序号专家姓名单位名称1乔冠军江苏大学2宗文俊哈尔滨工业大学3李刘合北京航空航天大学4谭国龙武汉理工大学5陈玉峰中国建筑材料科学研究总院有限公司6王 霖北京高压科学研究中心7李红霞中钢集团洛阳耐火材料研究院有限公司组3: 6.4 复杂工况下冶金领域关键部件表面工程技术与应用序号专家姓名单位名称1黄明宇南通大学2张敬国有研科技集团有限公司3刘庆宾重庆材料研究院有限公司4毛 勇云南大学5唐 历攀钢集团攀枝花钢铁研究院有限公司6郎兴友吉林大学7李树丰西安理工大学组4:7.2 金属结构材料服役行为智能化高效评价技术与应用序号专家姓名单位名称1王 强东北大学2汤爱涛重庆大学3陆亚林中国科学技术大学4李 能武汉理工大学5张景贤中国科学院上海硅酸盐研究所6李锡武有研工程技术研究院有限公司7张绪虎航天材料及工艺研究所组5: 8.1 车载复合材料LNG高压气瓶制造基础及应用技术序号专家姓名单位名称1戴礼兴苏州大学2徐世爱青海大学3马传国桂林电子科技大学4范星河北京大学5周志平江苏大学6胡云楚中南林业科技大学7郑玉婴福州大学组6:8.6 基于激光技术的材料服役行为多维度检测技术和装备序号专家姓名单位名称1黄培彦华南理工大学2周清跃中国铁道科学研究院集团有限公司3郑 磊北京科技大学4刘会杰哈尔滨工业大学5黄再满中材科技风电叶片股份有限公司6孙 宇天津钢管集团股份有限公司7庞碧涛洛阳LYC轴承有限公司科技部高技术研究发展中心2021-08-12
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 纳米纤维素表面处理对PMMA 复合材料的性能影响研究
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.纳米纤维素表面处理对PMMA 复合材料的性能影响研究【1.濮阳职业技术学院;2、河南大学濮阳工学院 冯婷婷】纳米纤维素表面处理对PMMA 复合材料的性能影响研究纳米纤维素表面处理对PMMA 复合材料的性能影响研究上海和晟 HS-TGA-101 热重分析仪
  • 中国科大实现飞秒激光复合材料加工多关节微机械
    近年来,飞秒激光双光子聚合技术作为一种具有纳米精度的真三维加工方式已被广泛应用于制造各种功能微结构,这些微结构在微纳光学,微传感器和微机器系统等领域展现出广阔的应用前景。然而,如何利用飞秒激光实现复合多材料加工,并进一步构建具有多模态的微纳机械仍极具挑战。鉴于此,中国科学技术大学微纳米工程实验室吴东教授团队提出了一种飞秒激光二合一写入多材料的加工策略,制造了由温敏水凝胶和金属纳米颗粒组成的微机械关节,随后开发出具有多种变形模式(10)的多关节人形微机械。该工作于7月17日以“Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing”为题发表于Nature Communications。 图1. 受人类多关节变形启发,利用飞秒激光二合一多材料加工策略构建多关节人形微机械。   飞秒激光二合一加工策略包括使用不对称双光子聚合构建水凝胶关节以及在关节局部区域激光还原沉积银纳米颗粒(Ag NPs)(图1)。其中,非对称光聚合技术使水凝胶微关节局部区域的交联密度产生各向异性,最终使其可以实现方向和角度可控的弯曲变形。原位激光还原沉积可以在水凝胶关节上精确加工银纳米颗粒,这些银纳米颗粒具有很强的光热转换效应,使多关节微机械的模态切换表现出超短响应时间(30 ms)和超低驱动功率( 图3. 通过设计微关节的位置和变形方向,双关节微机械臂能够收集不同位置和方向的多个微货物。   辛晨博士和任中国博士为该工作的共同第一作者,通讯作者为吴东教授。论文的合作者还包括中科大的褚家如教授、胡衍雷教授、李家文副教授、香港中文大学的张立教授等。该项研究工作得到了国家自然科学基金、科技部国家重点研发计划等基金的支持。
  • 2022年度“复合材料性能表征与评价”网络会议将召开,日程公布
    复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。为进一步促进全国各地高校、科研院所、企业等相关从业人员进行技术交流,仪器信息网将于2022年7月8日举办“复合材料性能表征与评价”网络会议,邀请领域内杰出专家和业内人士围绕复合材料物理性能的表征与评价带来精彩报告。会议日程2022年7月8日“复合材料性能表征与评价”网络会议报告时间报告题目报告嘉宾09:30--10:00聚合物基复合材料压缩性能试验方法陈新文 中国航发北京航空材料研究院 高级工程师10:00--10:30复合材料拉伸试验应变测量方法比较王斌 力试(上海)科学仪器有限公司 总经理10:30--11:00柔性压阻适变复合材料的研究黄培 重庆大学 副教授11:00--11:30易用、稳定、多元————引伸计的发展及未来趋势岳洋 天氏欧森测试设备(上海)有限公司 高级工程师11:30--12:00考虑局部效应的复合材料层合板界面参数表征与界面裂纹扩展研究白瑞祥 大连理工大学 教授/博导报告嘉宾及报告内容陈新文,中国航发北京航空材料研究院检测研究中心高级工程师,非金属及复合材料力学性能专业团队负责人,从事复合材料层合板、夹层结构、陶瓷基复合材料、有机玻璃、橡胶、胶黏剂等航空材料的力学性能表征和测试技术研究工作20多年。曾负责多项重点型号任务,为航空各型飞机非金属及复合材料结构研制、强度设计、定寿等提供了试验技术和力学性能数据支持。曾获奖和立功多次,发表文章近20篇,参与书籍《航空材料的力学行为》、《航空材料力学检测》、《先进复合材料技术导论》等的编写,制定企业标准15项,国家级标准6项。报告题目:《聚合物基复合材料压缩性能试验方法》报告摘要:压缩性能试验是聚合物基复合材料所有材料级力学试验中技术难度最大、标准方法数量最多的一种试验。本报告系统介绍了影响复合材料压缩试验结果的关键因素、现有试验方法的优缺点,经过标准技术内容的比较分析,给出工程上选择压缩试验标准的指南,最后对聚合物基复合材料压缩试验标准发展方向提出了建议。王斌,力试(上海)科学仪器有限公司 总经理&企业法人, 企业创始人。二十余年试验机行业从业经验,对试验机和试验技术有深入的研究与独特见解,在市场开发,试验技术发展方向,客户需求方面有深入的了解和经验。拥有多项发明专利。职业履历:美特斯(MTS)工业系统(中国)有限公司 技术总监;上海新三思计量仪器制造有限公司 总经理;力试(上海)科学仪器有限公司 总经理。报告题目:《复合材料拉伸试验应变测量方法比较》报告摘要:从测试标准对应变测量的要求出发,对粘贴应变片、夹持引伸计、全自动引伸计和视频引伸计及DIC等各种应变测量方法的精度、成本、操作难易程度等进行了比较,对各种方法测量得到的弹性模量的离散性进行了分析。黄培,重庆大学航空航天学院副教授,主要从事纳米材料、复合材料和传感器等方面的研究。主持国家自然基金项目2项,横向合作项目2项,发表SCI论文40余篇,其中以第一或通讯作者在Journal of Materials Chemistry A、ACS Applied Materials & Interfaces、Carbon、ChemSusChem、Nanoscale等期刊发表论文20篇。报告题目:《柔性压阻适变复合材料的研究》报告摘要:柔性压阻复合材料在医疗、环境保护、工业等领域有非常广泛的需求,然而目前柔性压阻复合材料的有效应力测试范围较窄,难以满足对人体运动的监测。考虑到压阻复合材料的有效应力测量范围主要受其力学性能决定, 因此我们制备了一系列机械性能适变的压阻复合材料,并研究了其有效应力测试范围的变化规律。岳洋,Tinius Olsen(天氏欧森)高级工程师,英国伯明翰大学和华中科技大学双工学学士,美国德州大学工学硕士。2016年加入Tinius Olsen,拥有美国A2L2校准资质,能够为客户提供完善的应用技术解决方案、产品校准,以及产品和软件相关的培训。报告题目:《易用、稳定、多元————引伸计的发展及未来趋势》报告摘要:经过130多年的发展,引伸计在材料试验中持续发挥着重要作用。从机械式引伸计到光学引伸计,从单方向、单视野到多方向、多视野的测试,设备的易用性和多功能性已经显著提高。选择合适的技术取决于许多因素,包括成本、准确性和易用性,以及材料和所进行试验的具体性质。白瑞祥,大连理工大学工程力学系教授,博士生导师,工业装备结构分析国家重点实验室固定人员。中国复合材料学会第六届、第七届理事,入选辽宁省百千万人才工程。主要研究方向包括先进材料的细观力学分析和设计,含损伤工程结构物的损伤和承载能力,复合材料结构动力学与故障诊断,复合材料工程结构分析与数值仿真,含损伤工程结构物修复和强化机理。承担和参与国家973课题、国家变革性技术课题、国家自然科学基金重点项目及面上项目多项,近年来负责国家大飞机和探月等航空航天工程中复合材料结构的失效行为检测和数值仿真课题二十余项。发表学术论文190余篇,SCI 检索论文50余篇。报告题目:《考虑局部效应的复合材料层合板界面参数表征与界面裂纹扩展研究》报告摘要:连续碳纤维增强树脂基复合材料是飞机结构设计中常用的材料,界面是其力学性能的薄弱环节。在外荷载作用下,界面应力较大的部位容易引起层间分层或胶层脱粘,导致裂纹扩展和结构早期失效。本研究对纤维/树脂界面、考虑邻近铺层纤维方向和裂纹尖端的桥联行为等局部效应的层合板界面破坏行为进行了探讨。运用修正梁理论(MBT)数据减缩方案对不同铺层界面的I型断裂韧性进行了表征,基于扩展断裂过程出现的“跳跃”现象对R曲线散点进行了过滤,应用Foote模型和最小二乘法对R曲线进行拟合,得到一套考虑不同铺层界面的断裂参数。采用基于有限元法的三线性牵引-分离准则的内聚区模型(CZM)预测了不同铺层界面的I型断裂行为,表征了有效的层间界面参数。基于双线性CZM模型表征了II型分层界面的牵引-分离关系,在ABAQUS中重现了不同铺层界面的II型分层断裂过程。建立了含圆形嵌入分层层合板轴压下分层扩展有限元模型,利用3D-DIC技术测量并重构了加载过程中试件表面位移场的变化规律,验证了模型和算法的有效性。参会方式(手机电脑均可听会)1、官网报名(点击此处链接或扫描下方二维码,免费报名听会);2、报名成功,通过审核后您将收到通知;3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。扫一扫,免费报名听会
  • 上海硅酸盐所在柔性有机/无机热电复合材料研究中取得进展
    p style=" text-align: justify text-indent: 2em " 柔性热电能量转换技术可将环境或人体温差转化成电能实现电子设备的自供电,在可穿戴等领域具有广阔的应用前景。传统无机热电材料具有优异的热电性能,但不具备柔性功能;而有机热电材料虽具有良好的柔性和弯曲性能,但热电性能极低。 /p p style=" text-align: justify text-indent: 2em " 有机/无机复合热电材料可综合无机材料的热电高性能和有机材料的良好弯曲性能,成为近年来的研究热点。具有一维结构的碳纳米管或金属纳米线可以与有机材料的一维分子链形成紧密连接的导电网络,并沿链网络提供高导电通道,因此常被用于有机/无机复合热电材料的研究。但碳纳米管或金属纳米线极低的泽贝克系数导致复合材料的泽贝克系数难以提高。而无机热电材料虽然具有高泽贝克系数,但是其形状通常为片状或颗粒状,导致复合材料低的电输运性能。因此,如何选择匹配的有机/无机材料从而获得良好的电输运成为有机/无机复合热电材料研究的关键科学问题。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 最近,中国科学院上海硅酸盐研究所研究员史迅、陈立东、副研究员仇鹏飞、瞿三寅等与美国克莱姆森大学教授贺健合作,提出了一种维度匹配的热电复合材料设计新策略,即使用同样具有一维结构的无机半导体材料制备高性能PVDF/Ta4SiTe4有机/无机柔性热电复合薄膜,其原型器件在35.5K温差下归一化最大功率密度为目前已报道的柔性热电器件中的最高值。相关研究成果以Conformal organic–inorganic semiconductor composites for flexible thermoelectrics& nbsp 为题& nbsp ,发表于Energy & amp Environmental Science上。 /span /p p style=" text-align: justify text-indent: 2em " 有机材料聚偏氟乙烯(PVDF)具有一维链状结构,是一种具有优良柔性的绝缘体。基于维度匹配的设计思路,该团队选择了同样具有一维结构的Ta sub 4 /sub SiTe sub 4 /sub 无机材料与PVDF进行复合制备有机/无机柔性复合薄膜。通过化学气相输运反应,得到Ta位掺杂0.5% Mo的Ta sub 4 /sub SiTe sub 4 /sub 一维晶须。然后以N,N-二甲基甲酰胺(DMF)作为分散剂,通过滴涂的方法得到PVDF/Ta sub 4 /sub SiTe sub 4 /sub 复合薄膜。扫描电镜发现Ta sub 4 /sub SiTe sub 4 /sub 晶须均匀分散于PVDF基体之中构成网络状结构。透射电镜表明Ta sub 4 /sub SiTe sub 4 /sub 晶须与PVDF形成紧密结合的两相界面。热电性能表征发现PVDF/50 wt% Ta sub 4 /sub SiTe sub 4 /sub 具有优良电输运性能,在220 K功率因子高达1060 μWm sup -1 /sup K sup -2 /sup 。特别是,在相同的电导率下,PVDF/50 wt% Ta sub 4 /sub SiTe sub 4 /sub 薄膜的泽贝克系数远高于基于碳纳米管或金属纳米线的有机/无机复合薄膜。Ta sub 4 /sub SiTe sub 4 /sub 自身的半导体输运特性和一维结构共同产生了上述的优良电输运性能。 /p p style=" text-align: justify text-indent: 2em " 在实现优良电输运性能的同时,维度匹配的PVDF和Ta sub 4 /sub SiTe sub 4 /sub 所形成的有机/无机复合薄膜也具有良好的柔性。在直径9 mm的曲面上反复弯曲5000次,PVDF/50 wt% Ta sub 4 /sub SiTe sub 4 /sub 薄膜电阻没有明显变化。研究团队初步制备了包含4个PVDF/50 wt% Ta sub 4 /sub SiTe sub 4 /sub 热电单偶的原型热电器件,在温差35.5K时,器件归一化最大功率密度达到0.13 Wm sup -1 /sup ,是现有报道的柔性热电器件的最大值。 /p p style=" text-align: justify text-indent: 2em " 研究工作得到国家重点研发专项、国家自然科学基金、中科院青年创新促进会、上海市青年科技启明星项目等的资助和支持。 /p p style=" text-align: justify text-indent: 2em " a href=" https://pubs.rsc.org/en/content/articlelanding/2020/EE/C9EE03776D#!divAbstract" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 文章链接 /strong /span /a /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/pic/6b411bc8-07d4-4c5e-b683-14cb4ba70432.jpg" / /p p style=" text-align: justify text-indent: 2em " 图a) PVDF/Ta4SiTe4柔性复合薄膜示意图。b) PVDF/Ta4SiTe4复合薄膜与已报道的一维有机-无机复合薄膜热电性能对比。c)PVDF/Ta4SiTe4基原型热电器件与已报道的柔性热电器件的归一化最大功率密度对比。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/webinar/17b432cd-d148-45fa-bf58-e391bf686e5a.jpg!w1920x420.jpg" / /p p style=" text-align: justify text-indent: 2em " 为促进全国各地高校、科研院所、企业等相关从业人员进行复合材料性能表征与检测技术交流, strong 仪器信息网将于2020年6月15日举办“复合材料性能表征与评价”主题网络研讨会 /strong ,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/pic/50354d2d-5cea-442b-80b6-44b14d98eaf9.jpg" / /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/pic/9432a056-9d8f-4709-aa7c-c26f5e53f32b.jpg" / /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " 参会方式(手机电脑均可参会) /span /strong br/ /p p style=" text-align: justify text-indent: 2em " 1、 a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 官网报名 /span /a ,通过审核后您将收到通知;态度敷衍乱填将不予审核。 /p p style=" text-align: justify text-indent: 2em " 2、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。 /p
  • X射线断层扫描揭示SiC复合材料液态硅渗透全过程!
    【研究背景】液体硅渗透(LSI)工艺用于减少SiC/SiC复合材料的残余孔隙,从而提升材料在高温、高真空环境下的性能。SiC/SiC陶瓷基复合材料因其优异的结构、电气和热性能,被广泛应用于航空航天、能源等领域。与传统的金属材料相比,这些复合材料具有低密度、高温稳定性和良好的耐腐蚀性等优点。然而,现有的制造工艺仍然面临在高温条件下孔隙填充不完全的问题,这对材料的性能和使用寿命构成了挑战。最近,来自LCTS实验室的H. Carpentie课题组在液体硅渗透(LSI)工艺研究中取得了重要进展。该团队设计并改进了一种新的X射线断层扫描技术,通过使用完全集成的直流电机代替传统的旋转台,实现了高速度、高分辨率的三维成像。这种改进使得研究人员能够更准确地观察和分析SiC/SiC复合材料中的毛细渗透过程。研究结果表明,熔融硅在粉末基体中的填充经历了两个阶段:首先,硅迅速、不均匀地侵入晶间微孔隙,然后,液体缓慢地填充剩余的孤立区域。最终,液体硅填充了更大的孔隙,如裂缝和纤维内的宏观孔隙。通过这项新技术,研究团队显著提高了对SiC/SiC复合材料填充过程的理解,为未来在高温高真空环境下的材料改进提供了宝贵的数据支持和理论依据。【表征亮点】1. 实验首次使用X射线断层扫描(CT)技术对液体硅渗透(LSI)过程进行三维观察,得到了SiC/SiC复合材料中硅渗透的详细三维数据。此前,研究主要依赖于二维X射线摄影,无法提供关于渗透过程的全面视角。2. 实验通过改进的断层扫描设置,实现了对1500°C高真空下SiC/SiC复合材料的实时三维观测,揭示了两个主要的填充阶段。首先,熔融硅迅速且不均匀地侵入粉末的晶间微孔隙。接着,液体缓慢填充剩余的孤立粉末区域。3. 当SiC基体完全饱和后,液体会填充更大的孔隙,如裂缝和纤维内宏观孔隙。此外,三维分析还展示了SiC基体粉末中不均匀润湿前沿的形成,明确了粉末的可达性对渗透速度的重大影响,并揭示了裂缝网络在填充孤立区域中的关键作用。这些发现有助于更好地理解LSI过程中的液体硅流动机制。【科学启迪】本文通过对SiC/SiC复合材料中液体硅渗透(LSI)过程的三维断层扫描分析,提供了对填充机制的深刻见解。首先,研究表明熔融硅在粉末基体中的渗透分为两个阶段:初期,硅迅速且不均匀地侵入可达的晶间微孔隙;随后,液体缓慢填充剩余的孤立粉末区域。这一过程在SiC基体完全饱和后,液体进一步填充更大的孔隙,如裂缝和纤维内宏观孔隙。此外,通过改进的X射线断层扫描技术,研究揭示了润湿前沿的非均匀性,进一步说明了粉末的可达性和裂缝网络对孤立区域填充的重要性。这些发现不仅提高了对LSI过程的理解,还为优化复合材料的制造工艺提供了宝贵的数据支持。该研究展示了三维成像技术在分析复杂材料工艺中的巨大潜力,并为未来在高温、高真空条件下的材料科学研究提供了新的思路和方法。参考文献:https://doi.org/10.1016/j.actamat.2024.120331
  • 抗断裂且可拉伸,仿生蛋白质创造二维分层复合材料
    科技日报北京7月25日电 据最新一期《美国国家科学院院刊》报道,美国宾夕法尼亚州立大学研究人员利用鱿鱼环齿上的仿生蛋白质创造了一种复合的层状二维材料,这种材料具有抗断裂和很强的弹性。大自然创造出像骨头、贝壳这样的分层材料,正是这种多级结构才确保了骨头具有极高的抗断裂强度,得以支撑庞大的身体。骨头中含有无数空隙,然而,随着生长发育,它对缺陷的敏感度会降低。这意味着即使骨头已经含有诸多“缺陷”,也依然具有较高的强度。宾夕法尼亚州立大学高级纤维技术中心主任、劳埃德和多罗夕福尔哈克仿生材料主席梅利克德米雷尔和多萝西福尔哈克表示:“研究人员很少报告骨头和贝壳的这种界面特性,因为它很难通过实验进行测量。”以此为灵感,新开发的复合二维材料是由像石墨烯或MXene(通常是过渡金属碳化物、氮化物或碳氮化物)这样的原子层厚的硬材料组成的,这些材料之间被一层东西黏合并隔开。虽然大块石墨烯或MXene具有块体性能,但二维复合材料的强度来自界面性质。德米雷尔介绍说,他们使用的是一种界面材料,可通过重复序列加以修改,从而能够微调性质,让它变得灵活而强大。此外,这种材料还具有独特的热传导性质。“这种材料很适合做跑鞋的鞋垫。”德米雷尔说,“它可以给脚部降温,反复弯曲也不会把鞋垫弄坏。”这些二维复合材料还可用于柔性电路板、可穿戴设备和其他需要强度和灵活性的设备。根据德米雷尔的说法,传统的连续介质理论无法解释为什么这些材料既坚固又灵活,但模拟表明,界面很重要。当组成界面的材料比例较高时,当材料受到压力时,界面会发生局部断裂,但作为整体的材料不会断裂。【总编辑圈点】搜索“鱿鱼环齿”,会发现科研人员早已对它摩拳擦掌,开展过多项研究,并尝试在不同领域应用。鱿鱼环齿蛋白质可被加工制成纤维和薄膜,可以替代塑料制品,提升织物的耐磨性,制作可穿戴设备… … 当然,要大规模应用这种仿生材料,需要先制造出仿生蛋白质,毕竟也不能一只只抓住鱿鱼扒拉蛋白质。本文中,科研人员用仿生蛋白质制造出复合层状材料,可以让它又坚固又灵活。从大自然的神奇生物身上,人类获得了很多“外挂”,改造后为自己服务。
  • 多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测
    以碳纤维增强树脂基(Carbon Fiber Reinforced Plastic, CFRP)为代表的先进复合材料,具有高比强度和比刚度、良好的耐疲劳和耐腐蚀、易于大面积成型等优点,正越来越广泛地代替金属材料用作航空/天飞行器主承力构件。受制造工艺复杂、服役环境严苛影响,CFRP容易产生材料退化,甚至分层、纤维褶皱、孔洞等缺陷,威胁结构服役安全。超声无损检测技术是实现制造质量控制和服役性能评估的有效手段,但却面临材料形状复杂、多层结构、弹性各向异性因素共同作用所致超声传播行为复杂的挑战。现有超声检测技术主要是面向声学特性较为简单的各向同性均质材料,直接沿用至CFRP结构时不可避免地存在超声信号混叠、信噪比低、成像质量差等问题。针对以上难题,中国科学院深圳先进技术研究院郭师峰研究员团队开展了系列创新性研究工作,为航空/天复合材料结构无损检测与评估提供了理论和技术支撑,包括:(1)提出了利用相控阵超声和完全非接触激光超声原位测量超声群速度分布的新方法,解决了各向异性复合材料力学性能原位、高精度测量难题,为材料强度及其退化程度定量评估提供技术支撑;(2)建立了定量描述复杂形状、多层结构、弹性各向异性对CFRP声学特性影响规律的理论模型,为复杂超声传播行为理论分析和超声成像算法研究提供可靠的模型基础;(3)提出了基于计算机科学最短路径搜索算法的声线示踪新方法,解决了高分辨率超声成像算法聚焦法则高精度计算难题,大幅提升缺陷检测灵敏度和定位/量精度。上述研究工作为航空/天复合材料结构无损检测与评估提供了理论和技术支撑。2024年9月11-12日,仪器信息网组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,郭师峰研究员团队中的曹欢庆副研究员将作大会报告《多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测》,介绍上述研究工作。本次会议于线上同步直播,欢迎材料、机械、工程、无损检测等相关科研工作者、工程技术人员、科技企业人士等报名,参会交流!关于第三届无损检测技术进展与应用网络会议无损检测,即在不破坏或不影响被检测对象内部组织与使用性能的前提下,利用射线、超声、电磁、红外、热成像等原理并结合仪器对物体进行缺陷、化学、物理参数检测的一种技术手段,被广泛应用于航空航天、交通运输、石油化工、特种设备、矿山机械、核电、冶金、考古、食品等各个领域。为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家参会交流。会议链接:https://www.instrument.com.cn/webinar/meetings/ndt2024
  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制