当前位置: 仪器信息网 > 行业主题 > >

天然高分子

仪器信息网天然高分子专题为您提供2024年最新天然高分子价格报价、厂家品牌的相关信息, 包括天然高分子参数、型号等,不管是国产,还是进口品牌的天然高分子您都可以在这里找到。 除此之外,仪器信息网还免费为您整合天然高分子相关的耗材配件、试剂标物,还有天然高分子相关的最新资讯、资料,以及天然高分子相关的解决方案。

天然高分子相关的论坛

  • 高分子材料常见的有什么

    [font=&][size=18px]高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂所构成的材料。那么高分子材料有哪些呢?[/size][/font][font=&][size=18px]?[/size][/font][font=&][size=18px]  首先,高分子材料按来源分可分为天然高分子材料和合成高分子材料。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑料、合成橡胶和合成纤维三大合成材料。[/size][/font][font=&][size=18px]?[/size][/font][font=&][size=18px]  其次,高分子材料按特性分可分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。[/size][/font][font=&][size=18px]?[/size][/font][font=&][size=18px]  最后,按照材料应用功能分类,高分子材料分为通用高分子材料、特种高分子材料和功能高分子材料三大类[/size][/font]

  • 天然高分子水凝胶神经修复的医用研究

    【序号】:3【作者】:刘延浩王路王振宇【题名】:天然高分子水凝胶神经修复的医用研究【期刊】:卫生研究. 【年、卷、期、起止页码】:2021,50(03)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELF5HiQdARC8eS-mkpRPLp2Wv0WvqtlbjJ0QO7jjDXC1K7VJ6JK3eq8TDtB_HQwkTJRdxnouEmNgpPzfY3Q0E-I-gjk3j5hev8c8hLc8jHAhoj5UxaUZKrDF2MZ2wr4fO0daCwSoPhrsBw==&uniplatform=NZKPT&language=CHS

  • 高分子吸附剂及其在天然产物提取分离中的应用

    中草药是我国宝贵的医药资源,在提高人民生活质量,保证人民生活健康中发挥了极大的作用。然而中药成分的复杂性和不可知性影响了它的进一步应用,中药现代化成为了中药发展的迫切要求。而中药现代化的关键技术之一就是有效成分或有效部位的提取分离。溶剂萃取分离技术是天然产物分离的经典技术,但溶剂消耗量大,分离效率低,操作安全性差,一般仅适用于实验室小量样品的制备,而不宜用于工业生产。柱色谱分离法采用一定的色谱填料作为固定相,当中药提取液通过色谱柱时,不同的成分即可得到分离。该方法操作简单,适宜于工业生产。尤其是随着高分子产品的出现和发展,色谱填料的种类越来越多,其中以离子交换树脂、大孔吸附树脂和聚酰胺为主。一、离子交换树脂及其在天然产物提取分离中的应用1、离子交换树脂的结构和分类离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。根据树脂所带的可交换离子性质,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂。阳离子交换树脂是一类骨架上结合有磺酸(-SO3H)和羧酸(-COOH)等酸性功能基的聚合物。根据酸性功能基在水中的电离性质,可分为强酸性离子交换树脂和弱酸性离子交换树脂。阴离子交换树脂是一类在骨架上结合有季铵基、伯胺基、仲胺基、叔胺基的聚合物。根据胺基的碱性强弱,可分为强碱性离子交换树脂和弱碱性离子交换树脂。根据骨架结构的不同,离子交换树脂可分为凝胶型和大孔型树脂两类。凝胶型树脂是一种呈透明状态的无孔聚合体。在水溶液中,树脂吸水溶胀,树脂相内产生微孔,反离子可扩散进微孔内进行离子交换,树脂的交联度越低,吸水量越大,溶胀也大,产生的微孔也较大。大孔离子交换树脂在整个树脂内部无论干、湿或收缩、溶胀都存在着比一般凝胶型树脂更多、更大的孔道,因而比表面极大,在离子交换过程中,离子容易迁移扩散,交换速度较快。2、离子交换树脂的作用原理离子交换反应是可逆反应,这种反应是在固态的树脂和水溶液接触的界面间发生的。在水溶液中,连接在离子交换树脂骨架上的功能基能离解出可交换的离子B+,该离子在较大范围内可以自由移动并能扩散到溶液中。同时,溶液中的同类型离子A+也能扩散到整个树脂结构内部,这两种离子之间的浓度差推动着它们之间的交换。其浓度差越大,交换速度就越快。另外,离子交换树脂对不同的离子表现出了不同的交换亲和吸附性能,这种选择性与树脂本身所带有的功能基、骨架结构、交联度有关,也与溶液中离子的浓度、价数有关。一般情况下,离子价数越高,与树脂功能基的静电吸引力越大,亲和力越大;对同价离子而言,原子序数增加,树脂对其选择性也增加。3、离子交换树脂在天然产物提取分离中的应用自从1935年Adams 和Holms 研究合成了酚醛型离子交换树脂以来,离子交换树脂的应用已经有60多年的发展历史。其应用范围日益扩大,已经由最初的水处理工业发展到当前的化工、电力、电子、环境科学、食品加工、医疗药物等领域中,并且在天然产物的提取分离中的应用逐渐增加。1)离子交换树脂法提取分离氨基酸、蛋白质、多肽和酶氨基酸是一类含有氨基和羧基的两性化合物,在不同的pH条件下能以阳、阴或两性离子的形式存在。因此,应用阳离子交换树脂和阴离子交换树脂均可富集分离氨基酸。同时,因为多肽、蛋白质和酶是由α-氨基酸缩合而成的生物高分子,某些氨基酸残基含有羧基或碱基,使这些生物高分子成为两性物质。因此,在一定的pH条件下,离子交换树脂能够提取、分离和纯化多肽、蛋白质和酶。因为蛋白质和酶在强酸或强碱条件下不稳定,强烈的疏水作用也会使其变性,因此所用的树脂应当是亲水的弱酸树脂或弱碱树脂。2)离子交换树脂法提取分离生物碱生物碱是许多中草药中的重要有效成分,它们在中性或酸性条件下以阳离子形式存在,能用阳离子交换树脂从其提取液中富集分离出来。离子交换树脂吸附总生物碱之后,可根据各生物碱组分的碱性差异,采用分部洗脱或分部提取的方法,将其中的各生物碱组分一一分离。樊振民等对三种常用的分离方法进行总结,并给出工艺流程,可分别得到弱碱性生物碱、中等碱性生物碱和强碱性生物碱。将此三种方法分别用于实际,可分别从麻黄草的稀盐酸浸液中分离麻黄碱和伪麻黄碱,从洋金花的0.1%盐酸浸液中分离莨菪碱和东莨菪碱,从护心胆根的0.5%盐酸浸液中分离紫堇块茎碱、毕扣灵碱和南天竹碱等,均取得良好的分离结果。3)离子交换树脂法提取分离天然酸性有机化合物中草药中含有一些具有药理作用的羧基化合物和酚性化合物,可以用离子交换树脂法分离纯化。甘草酸是甘草的有效成分,以弱碱树脂Duolite A34从甘草水浸液中提取甘草酸,经2%氨水洗脱即得产品。也可用阴离子交换树脂(OH-型)富集甘草酸,以4-6%氨水洗脱后,再用弱酸性阳离子交换树脂(H+)除去铵离子,可得到高纯度的甘草酸。另外,应用阴离子交换树脂可以从动植物中和微生物发酵液中提取分离天然有机酸,如乳酸、柠檬酸等。4)离子交换树脂法分离纯化糖类化合物糖类化合物分子中含有许多醇羟基,只有极弱的酸性,但在中性水溶液中仍能与强碱性阴离子交换树脂(OH-型)发生离子交换作用而被吸附。但是由于许多糖类物质在强碱条件下会发生异构化和分解反应,限制了强碱性阴离子交换树脂在糖类物质分离纯化中的应用。人们根据糖中顺式邻二羟基能与硼酸形成复盐阴离子的特性,采用硼酸性阴离子交换树脂或硼酸溶液作流动相,从而使糖类物质能在阴离子交换树脂上进行分离纯化。Khym等用此法成功地分离了果糖、半乳糖和葡萄糖。同样,此法也适用于多糖的纯化。黄芪用水提取,经Pb(OAC)2沉淀除去蛋白质,加乙醇可使多种糖沉淀出来。粗多糖再溶于水,通过硼酸型DEAE-纤维素柱,以0.01mol/L硼砂溶液洗脱,再用乙醇、丙酮处理,可得黄芪多糖成分AG-1。其它黄芪多糖成分如AH-1和AH-2等也用同样的工艺进行了分离纯化。由于多羟基化合物与钙盐、钡盐有较强的亲和力,由此发展了另一种离子交换树脂法,用于糖类化合物的分离纯化。将磺化聚苯乙烯型阳离子交换树脂转化为钙型用作固定相,可分离葡萄糖和果糖、木糖醇和山梨醇。由以上的应用可以看出,离子交换树脂对中草药有效成分的作用主要是通过其可交换基团的离子来进行的。但是,离子交换树脂骨架的疏水作用、树脂上化学基团与被分离物质基团之间的氢键作用、偶极作用等也对分离起着重要的作用。二、吸附树脂及其在天然产物提取分离中的应用1、吸附树脂的种类吸附树脂又称聚合物吸附剂,它是一类以吸附为特点,对有机物有浓缩分离作用的高分子聚合物。按照树脂的表面性质,吸附树脂一般分为非极性、中极性和极性三类。非极性吸附树脂是由偶极矩很小的单体聚合物制得的不带任何功能基的吸附树脂。典型的例子是苯乙烯-二乙烯苯体系的吸附树脂。中极性吸附树脂指含酯基的吸附树脂,如丙烯酸酯或甲基丙烯酸酯与双甲基丙烯酸酯等交联的一类共聚物。极性吸附树脂是指含酰胺基、腈基、酚羟基等含氮、氧、硫极性功能基的吸附树脂。此外,有时把含氮、氧、硫等配体基团的离子交换树脂称作强极性吸附树脂,强极性吸附树脂与离子交换树脂的界限很难区别。2、吸附作用机制及影响吸附的因素吸附作用是指一种或多种物质分子附着在另一种物质(一般是固体)表面上的过程。吸附剂之所以能够吸附某些物质,主要是因为吸附剂的表面上的原子力场不饱和,有表面能,因而可以吸附某些分子以降低表面能。吸附是一种界面现象,吸附树脂的表面发生吸附作用后,可以使吸附树脂界面上溶质的浓度高于溶剂内溶质的浓度,其结果引起体系内放热和自由能的下降,在给定温度和压力下,吸附都是自动进行的。吸附剂在溶液内能否吸附某种物质,与该物质在溶剂内的表面张力有关,任何能降低溶剂表面张力的溶质都能被吸附剂吸附。水的表面张力能较高,许多溶质能降低其数值,所以在溶液内能被吸附剂吸附。乙醇的表面张力远远低于水,许多溶质降低乙醇表面张力不如降低水表面张力大,故在一般情况下,溶质在水里较在乙醇里被吸附的多,在水里被吸附的物质可以在乙醇里被洗脱。非极性吸附树脂对物质的吸附主要是通过疏水作用进行的,这是因为该类树脂的表面是聚苯乙烯的疏水性结构,在吸附过程中,溶质分子的疏水部分优先被吸附在该疏水聚合物表面,而溶质分子的亲水部分则留在水相中。研究表明,被吸附物质通常并不进入树脂的微球相,而是被吸附在微球相表面。所以吸附和洗脱的过程一般都比较快。中极性吸附树脂由于表面亲水性部分和疏水性部分共存,因此当从水中吸附有机物时,吸附质分子的亲水部分和酯基表面之间以极性键联,而疏水部分和吸附树脂骨架之间以标准范德华力相互作用。极性吸附树脂则主要通过它的功能基团与吸附质之间的静电相互作用和氢键等进行吸附。在实际应用中,对于某一种树脂,应该综合考虑各种可能的作用机制,一般的吸附往往是几种机

  • 【分享】高分子化学、高分子物理和功能高分子课件(同济大学老师做的)

    同济大学老师做的高分子化学、高分子物理和功能高分子课件,还有部分习题精解和一些专题讲座。下载地址:高分子化学:http://mat.tongji.edu.cn/pw/poly03.htm高分子物理:http://mat.tongji.edu.cn/pw/poly03_1.htm功能高分子:http://mat.tongji.edu.cn/pw/poly03_2.htm高分子化学习题:http://mat.tongji.edu.cn/pw/poly04.htm高分子物理习题:http://mat.tongji.edu.cn/pw/poly04_1.htm

  • 天然高分子材料水凝胶应用于软骨缺损修复的研究进展

    【序号】:1【作者】:马晓航1曾林如1罗淦【题名】:天然高分子材料水凝胶应用于软骨缺损修复的研究进展【期刊】:中国医药导报. 【年、卷、期、起止页码】:2023,20(04)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=Eo9-C_M6tLmtLc40YrbROJePcGrSgrkIYXQmynuL86d1E3hYVmKmvF6iVJgImG4dntpY_G_5DK0I9NBiguzSwM0pvzQALWw9tuTnblYTYt-R9v_R-pygKZ5bbovNEDiwG6qDMdfImUijort904nRmg==&uniplatform=NZKPT&language=CHS

  • 【资料】分子量测定需要了解的《高分子溶液-高分子溶液》

    高分子溶液-正文   指高聚物溶解在溶剂中形成的溶液。在高分子科学发展的早期,由于溶液中高分子的尺寸大小与胶体粒子的大小相似,因此高分子溶液曾一度被错误地认为是一种胶体溶液,后来很多实验证明高分子溶液是处在热力学平衡状态的真溶液,而且是能用热力学函数来描述的分子分散的稳定体系。研究高分子稀溶液的性质可以得到高分子的分子量与分子量分布、高分子在溶液中的形态和尺寸大小以及高分子与溶剂分子间相互作用等重要参数。高分子的极稀溶液的减阻作用在流体力学方面得到实际应用。高分子浓溶液在合成纤维生产中的溶液纺丝、干法纺丝,片基生产中的溶液铸膜,塑料的增塑等都有密切的关系。这方面的研究侧重在高分子溶液的流变性能与成型工艺的关系。高分子溶液的混合热、混合熵和混合自由能等热力学性质的研究和高分子在溶液中的迁移性质(包括高分子溶液的沉降、扩散和粘度)的研究都是高分子溶液基础研究的重要方面。   高聚物的溶解过程 高聚物的溶解比小分子化合物慢得多。溶解过程分为两个阶段:①高聚物的溶胀,由于非晶高聚物的分子链段的堆砌比较松散,分子间的作用力又弱,溶剂分子比较容易渗入非晶高聚物内部,使高聚物体积膨胀;而非极性的结晶高聚物的晶区分子链堆砌紧密,溶剂分子不易渗入,只有将温度升高到结晶的熔点附近,才能使结晶转变为非晶态,溶解过程得以进行。在室温下,极性的结晶高聚物能溶解在极性溶剂中。②高分子分散,即以分子形式分散到溶剂中去形成均匀的高分子溶液。交联高聚物只能溶胀,不能溶解,溶胀度随交联度的增加而减小。   高分子溶液(特别是那些溶剂的溶解能力较差的溶液)在降低温度时往往会发生相分离,分成两相,一相是浓相;另一相为稀相。浓相的粘度较大但仍能流动;稀相比分级前的浓度更低。往高分子溶液中滴加沉淀剂也能产生相分离,高分子的相分离有分子量依赖性,因而可以用逐步沉淀法来对高聚物进行分子量的分级。   高分子在溶剂中溶解度的判定 在一定程度上仍可用极性相近原则来判定高分子的溶解度,即极性大的高聚物溶于极性大的溶剂,反之亦然。更精确一点的方法是通过比较高聚物和溶剂的溶度参数 δ,溶度参数δ 的定义是内聚能密度的平方根,它是物质凝聚态分子间相互作用能的一种量度。当高聚物和溶剂的溶度参数的差值Δδ 较大时(Δδ=|δp-δS|,δp为高聚物的溶度参数,δS为溶剂的溶度参数),高分子就不易溶于溶剂中;如果高聚物与溶剂的溶度参数极为接近,则高分子容易溶于溶剂中。粗略地从目前实验得到的数据来看,对非极性溶剂来说,可以发生溶解的最大允许的Δδ 值约为±0.8,对极性溶剂来说约为±3.4。由于分子间的相互作用和溶解过程比较复杂,因此用溶度参数来判定溶解性能仍有例外情况.

  • 【资料】《水溶性高分子产品手册 》

    推荐一本好书:《水溶性高分子产品手册 》作者:严瑞瑄 唐丽娟 ISBN:9787502548285 出版社:化学工业出版社 出版时间:2003-10-1 纸书定价:35.00元 内容简介:本书为水溶性高分子手册,对天然类高分子、半合成类高分子、合成类高分子、无机高分子、高吸水树脂、特种原料等进行了分类介绍。全书从水溶有机高分子到无机高分子,从合成和半合成水溶高分子到天然的水溶高分子,从水溶的聚合类树脂到水溶缩聚高分子进行了系统举例,列举了近百余种品种。全书内容丰富、翔实,对产品举例丰富,列举了多家生产厂家,并附有厂家通讯目录,方便读者参考阅读。本书适合相关专业大专院校师生、生产科研单位研究技术人员参考使用。[img]http://pic.apabi.com/Image2006%5c24%5cISBN7-5025-4828-9.jpg[/img]

  • 【资料】感光性高分子!

    感光性高分子指某些高分子化合物在光的作用下,能够迅速发生光化学反应,从而引起了物理或化学性质变化,它普遍用于印刷、电子、涂料等工业。感光性高分子也称光敏高分子,它在印刷电路、彩色电视荧光屏的制作上,尤其是在制造大规模集成电路等微型电路上成为不可缺少的材料。大规模集成电路是以微米为单位的精密图案线条,相当于头发丝的几十分之一,不可能采用铜锌板制作,而要使用光敏刻蚀剂(又称光刻胶)。 可用作光敏刻蚀剂的高分子化合物是感光树脂,其中之一是聚乙烯醇肉桂酸酯。将它涂在半导体材料(如硅片)的表面,在上面覆盖一块掩模板(相当于印相时用的照相底片),然后用紫外线对感光树脂(聚乙烯醇肉桂酸酯中含有肉桂酰基,这里聚乙烯醇肉桂酸酯是功能高分子,肉桂酰基就是功能高分子中的功能基团)进行曝光,在紫外线作用下,肉桂酰基会发生二聚反应,生成不溶性的交联高分子。 经过曝光以后,受紫外线照射的部分变成不溶于溶剂或腐蚀液的硬化膜,而未受紫外线照射的聚乙烯醇肉桂酸酯可以用有机溶剂洗去,就可以进一步制造集成电路。

  • 【转帖】钱保功——我国高分子研究新领域的开拓者

    【转帖】钱保功——我国高分子研究新领域的开拓者

    钱保功——我国高分子研究新领域的开拓者[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707081258_57536_1634962_3.jpg[/img]钱保功,高分子化学和高分子物理学家,他为开创我国高分子科学研究新领域,开发中国自行研究的合成橡胶和辐射高分子材料,培养科技人才,付出了全部精力。他善于拓展具有发展前途的学科,提出高聚物固体反应的“点—链—片—体”模式,发表了一批具有影响的论著。钱保功,曾用名钱乐华,1916年3月18日出生于江苏省江阴县。   1935年至1940年,钱保功先后在上海交通大学、武汉大学化学系学习,获理学学士学位。此后,分别任重庆动力油料厂研究生、助理工程师,重庆兴华油脂公司涪陵炼油厂工程师。1947年在美国纽约布鲁科林多科理工学院高分子研究生院学习,获化学硕士学位。1949年回国后,曾任上海化工厂、沈阳化工局研究室工程师。1951年任中国科学院长春应用化学研究所研究员,先后担任合成橡胶研究室、高分子辐射化学研究室、高分子物理研究室主任、研究员,1961年任该所副所长。1981年后历任中国科学院武汉分院副院长、院长,波谱与原子分子物理国家重点实验室顾问,兼湖北省化学研究所所长、名誉所长,上海交通大学、武汉大学、吉林大学、深圳大学等校兼职教授,国务院学位委员会首批批准的博士生导师,美国《应用高聚物》杂志编辑顾问,《高分子学报》副主编,《中国科学》《科学通报》《应用化学》《高分子材料与工程》等杂志的编委。钱保功是第三届至第五届全国人民代表大会代表、第三届至第七届全国政治协商会议委员,1980年加入中国共产党,同年11月当选为中国科学院化学部学部委员。   钱保功早在读书时期就受党的教育参加学生进步活动,“七七”事变后进一步投身革命,北上延安于抗日军政大学学习。在美国留学期间,他积极参加我地下党组织的进步学生组织及其活动。中华人民共和国成立前夕,为了动员部分留美学生回国参加祖国建设,他作为发起人之一组织了进步学生团体“留美中国学生科协”、“新文化学会”,并积极传递进步刊物《中国留美学生通讯》,为其编辑稿件,募集经费等,做了大量工作。   1940年,钱保功开始从事科学技术工作时,正值抗日战争的相持阶段,大后方缺乏石油资源,他从事以植物油为原料热裂解制备汽油、煤油、柴油等动力油料的试验,负责中共地下党经营的工厂土法炼油技术的改造,采用分馏法提高油品质量,在同行中居领先地位。1947年钱保功赴美留学,当时高分子学科正属初创时期,他作为高分子学科的奠基人之一H.马克(Mark)教授创建的第一个高分子研究所的中国研究生,在弹性高分子的动力学研究上有独到见解,获得导师的好评并被列为研究方向。1949年正当国民党政府溃败前夕,他谢绝了导师的热情挽留,抱着报效祖国的赤子之心,登上了第一艘载有回国留学生的轮船,几经周折回到中华人民共和国的怀抱。从此,钱保功投身于创建我国高分子学科研究的洪流之中。   钱保功从1950年开始,着手开始合成橡胶的研究,1951年,他带着丁苯橡胶实验室研究成果来到了长春,参与并组织了中国科学院长春应用化学研究所合成橡胶的研究课题。当时,我国天然橡胶资源十分缺乏,各类橡胶完全依靠进口,作为高分子三大材料的合成橡胶,无论是科学研究还是工业生产,在国内属于空白领域。钱保功带领高分子合成室的科技人员,在国内率先开展一步法酒精制备丁二烯及乙苯脱氢制备苯乙烯的研究,丁苯橡胶小试成功。随后,又在长春应用化学研究所的中间工厂进行了扩试,奠定了国内合成橡胶研究的基础。在第一个五年计划期间,苏联帮助我国在兰州兴建丁苯橡胶厂,由酒精一步法试制丁二烯的催化剂全部由苏联进口,并作为绝密技术对我国封锁。中苏关系恶化时,苏方不仅从兰州撤走专家,收回图纸资料,而且连催化剂屑粒也未剩留。在这关键时刻,长春应用化学研究所和工厂合作,自力更生,攻克了催化剂这一难关,并将该厂依靠苏联专家生产的质量较差的“硬丁苯”加以改进,用新的聚合体系制造出性能良好的“软丁苯”。   60年代,钱保功在长春应用化学研究所组织领导了顺丁橡胶的研究,经过100种催化聚合配方的筛选(包括聚合条件、结构和性能测定及加工工艺条件的选择等多学科联合攻关),在小试的基础上,推出了镍催化体系,合成橡胶的性能达到国际先进水平。1966年长春应用化学研究所与石油部锦州炼油厂合作开展中试,从250立升单釜聚合直到建成年产千吨的连续聚合装置,在中试中解决了一系列科技问题。最为突出的挂胶问题,经与兰州化工研究院合作终于得到解决。1969年,化工部在锦州召开第一座年产万吨级顺丁橡胶厂的设计审查会议,随后经化工部第一设计院等单位设计及施工,陆续在北京燕山石化总公司和其他各地建成了6个年产万吨级的顺丁橡胶厂,从而开创了我国第一个自行研究、设计和生产的通用合成橡胶品种。这项成就不仅满足了国内大品种合成橡胶的急需,而且部分产品出口。长春应用化学研究所与上述单位合作开发的镍系顺丁橡胶聚合新技术,与兰州化学物理研究所丁烷脱氢制备丁二烯新技术相互配套,获得国家科技进步奖特等奖。

  • 【资料】无机高分子材料简介!

    [size=4]一 无机高分子物质的特点 无机高分子物质也称为无机大分子物质,它与一般低分子无机物质相比具有如下特点:(1) 由多个"结构单元"组成 (2) 相对分子质量大(3) 相对分子质量有"多分散性" (4) 分子链的几何形状复杂 无机高分子物质的分子则可由其他多种元素的原子构成主链.完全由同一种元素构成的主链叫做"均链",由不同种元素的原子构成的主链叫做杂链.原子间主要靠共价键(包括配位键)互相结合. 二 构成无机高分子物质的元素 原子间主要靠共价键(包括配位键)互相结合. 键能越大,形成的键就越稳定,靠这种键就有可能形成长链的分子. 元素的电负性之和是判断元素之间能否生成高分子物质的重要依据之一. 一般来说,两元素电负性之和在5~6之间可以发生聚合,电负性之和小于5,不能发生聚合. 生成无机高分子物质的元素 H B C N O F Al Si P S Cl Ge As Se Sn Sb Te 上面列出了能生成无机高分子物质的元素在周期表中的位置.表中所有的元素都能生成杂链无机高分子物质,[/size]

  • 【分享】高分子化合物

    所谓高分子化合物,是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。   定义:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机[url=http://baike.baidu.com/view/63037.htm]化合物[/url]。   是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、[url=http://baike.baidu.com/view/183139.htm]大分子[/url]等。一般把相对分子质量高于10000的分子称为高分子。高分子通常由103~105个原子以共价键连接而成。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或[url=http://baike.baidu.com/view/328669.htm]高聚物[/url],用于聚合的小分子则被称为“单体”。

  • 高分子样品预消解

    高分子化合物聚维酮K90,分子量达到了100-300W,开发方法时肯定是会需要预消解,目前草拟的是8ml硝酸140℃预消解冷却后加2ml双氧水后进行微波消解,那么想问一下,这类高分子有机物预消解和消解最好是加什么酸体系和温度时间之类有什么注意的?

  • 高分子材料

    高分子材料分析,需要测一二三级结构,需要用到哪些分析仪器

  • 【求助】求测高分子物质粘度的方法

    各位大侠: 我是医学专业的,实验中要测一种高分子物质的粘度(大于112000),(我的目的是通过加入别的增粘剂,把加入高分子物质和不加高分子物质的两种溶液粘度控制成一样的),但现在遇到的问题是我的高分子物质很贵,只有国外实验室的一点赠品,大约30mg,我初步设的浓度为0.1%,我咨询过一些人,我们这现有的粘度计需要的液体量都要几十毫升,这样的话,我的药品就没法做实验了。所以想请教各位有没有别的什么仪器或方法可以用很少的量(几毫升)来测粘度。流变仪与粘度计有什么区别,哪一种适用于我?我们医院有那种测血流变的机器,可以用来测粘度吗?希望得到大家的帮助,谢谢了/

  • 【分享】GPC/SEC在生物和高分子领域应用研讨会邀请函

    [size=6][b][url=http://www.instrument.com.cn/show/news/20100309/039686.shtml]GPC/SEC在生物和高分子领域应用研讨会邀请函[/url][size=4]为了深入研究探索各种高分子和蛋白质的结构与功能的关系及其表征方法,马尔文仪器公司将于2010年4月7日和9日分别在北京及上海举办“多检测器凝胶色谱GPC/SEC在生物和高分子领域应用研讨会”。届时来自马尔文Viscotek美国总部的技术专家将在会议上做精彩报告。 我们诚邀您参加本次应用研讨会,中美两国的马尔文技术专家将与您探讨和分享关于生物高分子,合成高分子和蛋白质等各种大分子的绝对分子量及分布和更多结构参数的测量方法以及最新的凝胶渗透色谱技术等前沿技术原理和应用,并有实用案例分析和现场答疑解惑。 [b]会议日程[/b] 09:00 – 09:15 签到 09:15 – 09:30 欢迎致词 09:30 – 10:20 Viscotek GPC/SEC/DSV/FIPA概览 10:20 – 10:40 茶歇 10:40 – 12:10 三检测器技术原理及最新进展 12:10 – 13:30 工作午餐 13:30 – 14:50 三检测器GPC/SEC在生物和制药领域应用 14:50 – 15:10 茶歇 15:10 –16:30 三检测器GPC/SEC在合成及天然高分子领域应用 16:30 – 17:00 问题解答 [b]日期和地点[/b] 4月7日 周三 北京 德宝饭店 西城区西直门外大街德宝新园22号 4月9日 周五 上海 好望角大酒店 徐汇区肇嘉浜路500号 [/size][size=4][b]要与先锋科技亲密接触, 敬请立即报名,优先预订此次马尔文研讨会限量座席! 报名方式[/b]敬请访问以下马尔文中国网站的本次研讨会专页选择您最方便的报名方式[/size][url=http://www.malvern.com.cn/homechi/news/news2.htm][b][color=#0000ff][size=4]www.malvern.com.cn/homechi/news/news2.htm[/size][/color][/b][/url][/b][/size]

  • 高分子专业英语词汇

    1 高分子 macromolecule, polymer 又称"大分子"。2 超高分子 supra polymer 3 天然高分子 natural polymer 4 无机高分子 inorganic polymer 5 有机高分子 organic polymer 6 无机-有机高分子 inorganic organic polymer 7 金属有机聚合物 organometallic polymer 8 元素高分子 element polymer 9 高聚物 high polymer 10 聚合物 polymer 11 低聚物 oligomer 曾用名"齐聚物"。12 二聚体 dimer 13 三聚体 trimer 14 调聚物 telomer 15 预聚物 prepolymer 16 均聚物 homopolymer 17 无规聚合物 random polymer 18 无规卷曲聚合物 random coiling polymer 19 头-头聚合物 head-to-head polymer 20 头-尾聚合物 head-to-tail polymer 21 尾-尾聚合物 tail-to-tail polymer 22 反式有规聚合物 transtactic polymer 23 顺式有规聚合物 cistactic polymer 24 规整聚合物 regular polymer 25 非规整聚合物 irregular polymer 26 无规立构聚合物 atactic polymer 27 全同立构聚合物 isotactic polymer 又称"等规聚合物"。28 间同立构聚合物 syndiotactic polymer 又称"间规聚合物"。29 杂同立构聚合物 heterotactic polymer 又称"异规聚合物"。30 有规立构聚合物 stereoregular polymer, tactic polymer 又称"有规聚合物"。31 苏型双全同立构聚合物 threo-diisotactic polymer 32 苏型双间同立构聚合物 threo-disyndiotactic polymer 33 赤型双全同立构聚合物 erythro-diisotactic polymer 34 赤型双间同立构聚合物 erythro-disyndiotactic polymer 35 全同间同等量聚合物 equitactic polymer 36 共聚物 copolymer 37 二元共聚物 binary copolymer 38 三元共聚物 terpolymer 39 多元聚合物 multipolymer 40 序列共聚物 sequential copolymer 41 多层共聚物 multilayer copolymer 42 多相聚合物 multiphase polymer 43 统计[结构]共聚物 statistical copolymer 44 无规共聚物 random copolymer 45 交替共聚物 alternating copolymer 46 周期共聚物 periodic copolymer 47 梯度共聚物 gradient copolymer 48 嵌段共聚物 block copolymer 又称"嵌段聚合物(block polymer)" 。49 递变嵌段共聚物 tapered block copolymer 50 两亲嵌段共聚物 amphiphilic block copolymer 51 二嵌段共聚物 diblock copolymer 52 三嵌段共聚物 triblock copolymer 53 多嵌段共聚物 segmented copolymer 54 杂聚物 heteropolymer 55 恒[组]分共聚物 azeotropic copolymer 56 多组分共聚物 multicomponent copolymer 57 单分散聚合物 monodisperse polymer, uniform polymer 58 多分散性聚合物 polydisperse polymer, non-uniform polymer 59 高分子共混物 polyblend, polymer blend 60 聚合物-聚合物配合物 polymer-polymer complex 61 聚合物-金属配合物 polymer-metal complex 62 单股聚合物 single-strand polymer 63 双股聚合物 double-strand polymer 64 多股聚合物 multi-strand polymer 65 链型聚合物 chain polymer 66 碳链聚合物 carbon chain polymer 67 杂链聚合物 heterochain polymer 68 杂环高分子 heterocyclic polymer 69 大环聚合物 macrocyclic polymer 70 直链高分子 straight chain polymer 71 线型聚合物 linear polymer 72 体型聚合物 three-dimensional polymer 又称"网络聚合物(network polymer)" 、交联聚合物(crosslinked polymer)"。73 活[性]高分子 living polymer 74 反应性聚合物 reactive polymer 75 极性聚合物 polar polymer 76 非极性聚合物 non-polar polymer 77 刚性链聚合物 rigid chain polymer 78 半柔性链聚合物 semi- flexible chain polymer 79 柔性链聚合物 flexible chain polymer 80 刚棒高分子 rigid rod polymer 81 棒状高分子 rodlike polymer 82 刚-柔嵌段共聚物 rod coil block copolymer 83 树状高分子 dendrimer, dendritic polymer, tree polymer 84 刷状聚合物 brush polymer 85 线团状聚合物 coilingtype polymer 86 花菜状聚合物 cauliflower polymer 87 螺旋形聚合物 helical polymer 88 锥形共聚物 tapered copolymer 89 梯形聚合物 ladder polymer 90 分段梯形聚合物 step ladder polymer 91 部分梯形聚合物 partial ladder polymer 92 碳环梯形聚合物 carbocyclic ladder polymer 93 梳形聚合物 comb polymer 94 星形聚合物 star polymer 95 遥爪聚合物 telechelic polymer 96 支化聚合物 branched polymer 97 超支化聚合物 hyperbranched polymer 98 接枝聚合物 graft polymer 又称"接枝共聚物(graft copolymer)"。99 核-壳共聚物 core shell copolymer 100 核-壳胶乳聚合物 core shell latex polymer 101 手性高分子 chiral polymer 102 互穿[聚合物]网络 interpenetrating polymer networks, IPN 103 半互穿[聚合物]网络 semi-interpenetrating polymer network(SIPN) 104 异质同晶聚合物 polyallomer 105 多晶形聚合物 polycrystalline polymer 106 缔合聚合物 association polymer 107 共轭聚合物 conjugated polymer 108 螯合聚合物 chelate polymer 109 远螯聚合物 telechelic polymer 110 螯合[型]离子交换剂 chelating ion-exchanger 111 螯合[型]树脂 chelating resin 112 紫胶 shellac 又称"虫胶"。113 蚕丝 [natural] silk 114 骨胶原 collagen 115 凝胶 gel 116 明胶 gelatin 117 黄原胶 xanthate gum 118 琼脂 agar-agar 119 树胶 gum 120 白蛋白 albumin 121 脱氧核糖核酸 deoxyribonucleic acid(DNA) 122 淀粉 amylum,starch 123 直链淀粉 amylose 124 支链淀粉 amylopectin 125 甲壳质 chitin 126 葡聚糖 dextran 又称"右旋糖酐"。127 糊精 dextrin 128 木素 lignin 129 纤维素 cellulose 130 α纤维素 α cellulose 131 β纤维素 β cellulose 132 γ纤维素 γ cellulose 133 硝酸纤维素 cellulose nitrate 又称"硝化纤维素"。134 胺纤维素 amine cellulose 135 乙酸纤维素 cellulose acetate 俗称"醋酸纤维素"。136 甲基纤维素 methyl cellulose 137 羟乙基纤维素 hydroxyethyl cellulose 138 羧甲基纤维素 carboxymethyl cellulose 139 天然橡胶 natural rubber 140 三叶橡胶 Hevea 141 杜仲胶 Eucommea rubber 142 古塔波胶 Gutta percha 143 合成聚合物 synthetic polymer 144 加[成]聚[合]物 addition polymer 145 通用高分子 commodity polymer 146 功能高分子 functional polymer 147 仿生高分子 biomimetic polymer 148 形状记忆高分子 shape-memory polymer 149 类酶高分子 enzyme like polymer 150 生物高分子 biopolymer

  • 【分享】X中国著名高分子化学家-徐僖

    徐僖1921年1月16日出生于江苏省南京市。在兄弟4人中,排行第四。父亲学徒出身,靠勤劳起家。母亲心地善良。徐僖继承了父亲奋发倔强的个性,自幼勤奋好学,成绩优异,又继承了母亲善良的美德,对劳动人民的苦难充满同情。1933年徐僖离家到上海,寄居姐姐家。姐夫张祖培曾是“五卅”惨案时期圣约翰大学反帝斗争的一位学生领袖,满怀为民族争气的爱国主义精神和正义感,给予他很大的影响。1937年徐僖初中毕业后从上海回到南京,就读金陵大学附属中学。1937年12月南京沦陷前3天随父母逃难到四川,就读于内迁到四川万县的金陵大学附属中学。1938年夏徐僖考人重庆南开中学,1940年夏毕业,考入当时内迁贵州的浙江大学化工系。南开中学“允公允能”和浙江大学“求是”的校训,教育徐僖无私无我,苦干实干,追求真理,实事求是,使他在青年时代就具有这些鲜明的个性。   1944年,徐僖毕业于浙江大学化工系,获工学士学位,同时考取本校研究生,在染料专家侯毓汾的指导下研究五棓子染料。1944年12月,日本侵略军攻进贵州,学校被迫停课,徐僖随侯毓汾到内迁四川永川县的唐山交通大学矿冶系担任化学基础课程助教。在日本帝国主义者侵华战争期间,徐僖颠沛流离、辗转东西,阅尽祖国山河破碎、民不聊生的惨景,使他把自己的未来和祖国的命运紧密地联系在一起。抗战胜利后,徐僖回到上海。1947年初,中华教育基金董事会招考留美学生5名,其中化学专业1名。徐僖一举考中,于1947年9月到美国宾州李海大学化工系攻读硕士学位。他用从国内带去的五棓子在实验室首次试制成功五棓子塑料,1948年获得硕士学位。之后,他为丰富实践经验,放弃了继续攻读博士学位的机会,到美国柯达公司精细药品车间实习。中华人民共和国成立前夕,他与黄子卿、黄涉清等人于1949年5月同乘美国“威尔逊号”轮船回国。途经香港时,受到刁难和阻挠,幸得侯德榜和中华教育基金董事会董事长任鸿隽帮助,最后舍弃所有行李,随身只带一小箱笔记资料及一台小打字机飞赴重庆,投奔父兄。1949年冬重庆解放时,由宋庆龄主办的《中国建设》杂志曾向海内外报导了徐僖回国的消息。   1949年冬,徐僖受聘为重庆大学化工系副教授。1951年他在重庆大学任教的同时受命筹建重庆棓酸塑料厂(后更名为重庆合成化工厂)。该厂1953年投产,徐僖任副厂长兼总工程师。同年他被评为重庆市甲等劳动模范。1953年徐僖受命在原四川化工学院(1953年并人成都工学院,现名成都科技大学)筹建我国高等学校第一个塑料专业。   1957年以后,徐僖在政治上多次遭受冲击,在工作中也遇到重重阻力,但丝毫没有动摇他为振兴中华而奋斗的决心。他始终倡导和坚持实事求是的作风,将全部精力投入高分子材料学科的建设和教学工作。1959年徐僖开始招收研究生。1960年,他在下放劳动期间,编著出版了我国高等学校第1本高分子教科书《高分子化学原理》。“文化大革命”中,徐僖被扣上“反动学术权威”的帽子,饱受折磨,右眼因此成疾,且因得不到妥善治疗而失明,但他仍然没有动摇自己的信念。1970年,在他还没有获得重返实验大楼搞科研的权利时,重庆等地的一些军工单位陆续派人来请他前往协助解决重要技术问题。他十分珍视这些联系实际、为生产建设服务的机会,不辞辛劳,立即深入工厂、车间、实验室及野外试验现场,同技术人员、工人一起研究试制新产品,搞技术革新。到1976年,这些单位在徐僖主持或指导下,取得了多项重要成果,其中“高分子固体润滑剂”和“金属冷挤压工艺的应用”于1978年获得全国科学大会奖,徐僖还应邀出席了大会。“枪弹底火壳无铬钝化新工艺”获得1981年国防科委重大成果奖和1983年国家发明奖。1985年国防科工委和国家计委、经委、科委联合授予徐僖“国防军工协作先进个人”称号。这几年间,繁重的工作和各种压力进一步损害了徐僖的健康,他经常带病工作。1980年5月,徐僖因咯血不止,住院治疗,切除了左下肺。2个月后,他不顾医生劝阻,提前重返工作岗位。在科学的春天里,他更加意气风发,积极从事教学工作,以及进一步深入开展高分子成型理论、高分子力化学等方面的基础研究,在高分子降解和共聚、高分子氢键复合、高分子共混材料的形态和性能等领域作出了突出的贡献。与此同时,徐僖十分重视理论联系实际,注意使教育工作与科研工作面向经济建设,主动为生产建设服务,开展了油田高分子材料的应用开发以及扎根石油化工企业的工作。1981年,石油部在他负责的成都科技大学高分子研究所建立了油田高分子材料研究室。80年代,徐僖和他的学生走遍了国内大部分油田,深入现场调查研究,与油田职工合作,取得了堵水、防垢、降凝、减阻等多项研究成果。1991年,这个研究室获得了中国石油天然气总公司(原石油部)重奖,徐僖受聘为该公司“八五”攻关项目“三次采油新技术”课题的学术指导人。多年来,徐僖还先后走访了齐鲁、大庆、燕山、扬子、兰州等石油化工公司的生产现场和研究院,与石化企业建立了密切联系。中国石油化工总公司和齐鲁石油化工公司相继于1985年和1987年与徐僖签订合同,分别在成都科技大学高分子研究所建立了高分子复合材料研究室和高分子材料研究开发站,以促进科研成果转化为现实生产力,加速发展高分子材料工业。 在40多年科研与教学工作中,徐僖先后发表论文160余篇,出版专著、译著4部,获准专利2项,获国家级、省部级重大科技成果奖10多项,其中包括国家自然科学奖二等奖1项,国家发明奖1项。先后受聘兼任国家教委科技委员会委员,国务院学位委员会非金属材料学科评议组召集人,国家自然科学基金委员会有机高分子材料学科评议组召集人;被选为中国化工学会多届理事和第35届副理事长,第3、5、6、7、8届全国人民代表会代表。

  • 【求助】高分子的内耗

    书上说 在频率很低的时候,高分子链段的运动跟的上外力的变化,内耗就小,本人的疑惑是内耗小是由于内摩擦小的原因,我想问高手,频率低和摩擦小有没有关系为什么?谢谢!!!!!!!!!!!

  • 【求助】高分子物质分子量的测定

    新合成了一种富勒烯的氨基高分子衍生物,可完全溶于水,分子量约在17000-20000之间,但去做过质谱无法离子化做不出来。请问各位大虾还有其他什么方法能够测定其分子量的么?北京有哪些测试中心可以做?给个联系方式就行,非常感谢!

  • 关于合成高分子化合物的介绍

    1、加聚反应制得的高分子化合物  加聚反应制得的高分子化合物,其命名习惯上是在原料名称之前,加一个“聚”字。如,氯乙烯的聚合物,称为聚氯乙烯;四氟乙烯的聚合物,称为聚四氟乙烯;甲基丙烯酸甲酯的聚合物,称为聚甲基丙烯酸甲酯。  2、缩聚反应制得的高分子化合物  缩聚反应制得的高分子化合物,其命名习惯上是在原料名称之后,加“树脂”二字。如,酚醛树脂、环氧树脂、脲醛树脂等。事实上,加聚产物在未制成成品之前也常以“树脂”称之。如,聚乙烯树脂、聚丙烯树脂等。  3、聚酰胺类高分子化合物  聚酰胺类高分子化合物,其命名是在聚酰胺后面加上数字,该数字表示单体中碳原子的个数。例如,由己二胺和己二酸缩聚而成的高分子化合物,称为聚酰胺-66;由癸二胺和癸二酸缩聚而成的高分子化合物,称为聚酰胺-1010。  4、合成橡胶类高分子化合物  合成橡胶类高分子化合物,其命名是在橡胶二字的前面加上能代表单体名称的几个字。如1,3-丁二烯与苯乙烯的聚合物称为丁苯橡胶;2-氯-1,3-丁二烯的聚合物称为氯丁橡胶;1,3-丁二烯与丙烯腈的聚合物称为丁腈橡胶;异戊二烯的聚合物称为异戊橡胶,依此类推。  5、商品名称  商业上为了方便,常给某些合成纤维以商品名称,称为“某纶”。  (1)锦纶(或尼龙)聚酰胺类合成纤维,它的商品名称叫“锦纶”或“尼龙”,如,锦纶-6、锦纶-66,尼龙-610等。  凡是后面有两个或两个以上数字的,表示这种聚酰胺纤维是由二元胺和二元酸两种单体缩聚而成的。前面的数字是二元胺的碳原子数,后面的数字是二元酸的碳原子数。如,尼龙-610是由己二胺和癸二酸缩聚而成的。  凡是后面只有一个数字的,表示这种聚酰胺纤维是由某碳原子个数的内酰胺聚合而成的。如,锦纶-6是由己内酰胺聚合而成的。  (2)涤纶  聚酯纤维是指纤维分子中各个链节,都是以酯基相连接形成的高分子化合物,商品名称叫“涤纶”。目前,工业生产中产量最大的涤纶是聚对苯二甲酸乙二酯,俗称“的确良”。  另外,还有一些常见的高分子化合物的商品名称,如,“腈纶”、“丙纶”、“氯纶”、“维尼纶”,等等。  “腈纶”——聚丙烯腈纤维;  “丙纶”——聚丙烯纤维;  “氯纶”——聚氯乙烯纤维;  “维尼纶” ——聚乙烯醇缩甲醛纤维。

  • 求教:高分子方面的分析

    请问各位,哪位有高分子方面的分析资料,主要是树脂方面的,本人不是太了解这方面,请有经验的帮帮忙!,在此谢过了!

  • 【原创大赛】高分子材料成分分析解密

    【原创大赛】高分子材料成分分析解密

    文/肖婉艳(华测检测) 以高分子化合物为主、添加各种添加剂而构成的材料叫高分子材料,高分子材料为混合物。高分子材料包括塑料、橡胶、纤维、涂料、胶黏剂等一系列产品,在人们的生产和生活中无处不在。随着人们对高分子材料研究的不断深入,高分子材料将在未来发挥更大的作用。 高分子材料通常由主体树脂和添加剂组成,纯树脂的用途是非常受限的,经过改性才能扩大高分子材料的应用。高分子材料的改性就是设法改变原有的高分子材料的化学组成和结构,改善和提高其性能,从而实现高分子材料从单项性能优良向多项性能及综合性能良好发展。通常来讲,主体树脂决定高分子材料的基本性能,通过添加不同的添加剂改善高分子材料耐老化、阻燃、耐磨、增强等性能。由此可见,了解高分子材料的成分组成是高分子材料的性能研究及改进的基础。 目前,高分子材料已遍及航空航天到家用电器的各个领域,高分子材料的复合化发挥了不同材料的优点,克服了单一材料的缺点和不足,提高经济效益,使高分子材料的应用更为广泛。由于高分子材料本身的特性,为了确保产品的耐久性与高品质,高分子材料成分分析成为生产、研发、品质控制过程中常见的需求。成分分析可以了解未知物质成分,改善产品的性能,为配方分析和产品失效分析提供依据。 高分子材料成分分析是将原料或制品通过多种技术分离,利用高科技分析仪器进行表征,技术人员对检测结果进行逆向推导,最终完成对待检样品未知成分定性、定量分析的过程。由此可见,高分材料成分分析是一种综合分析的技术手段,目前行业内没有统一的关于高分子材料成分分析的标准。 高分子材料成分分析是在以下几个方面建立起来的:一是较为先进的检测设备,这些设备包括FTIR、TGA、DSC、HPLC、核磁、元素分析仪等,每种仪器能实现的目的不一样,熟悉各种仪器的能力范围及局限性是高分子材料成分分析的基础;二是针对性的分离手段,高分子材料通常是由各种化合物共混而成的复合材料,借助萃取、灰化等分离手段可以实现不同组分之间的分离,使得成分分析更加全面细致;三是具有丰富行业知识和理论知识的技术人员,高分子材料成分分析不仅要求技术人员熟悉相关仪器分析和分离手段,同时要求熟悉材料的常见配方及生产工艺。 虽然高分子材料成分分析没有统一的标准,但是经过多年的研究总结,高分子材料成分分析的基本流程如图1所示。高分子材料成分分析首先需要了解样品的基本信息(外观、气味、元素、主材质等),根据以上基本信息制定分离方法和仪器分析手段,最后综合分析所有分离结果和仪器分析结果得到样品的成分列表。下面介绍一些常见的分析仪器和分离手段,可供相关领域人士参考。[img=,608,649]http://ng1.17img.cn/bbsfiles/images/2017/08/201708111418_01_3051334_3.jpg[/img][align=center]图 1[/align][b]1.红外光谱法(FTIR)[/b]红外光谱是借助红外吸收带的波长位置与吸收带的强度和形状来表征分子结构,主要用于鉴定未知物的结构或用于化学基团及化合物的定性鉴定。又因红外吸收带的吸收强度与分子组成或其化学基团的含量有关,故也可用来进行定量分析和化合物纯度鉴定。目前红外检测主要还是用于定性分析,通常将试样的谱图与标准物的谱图或文献上的谱图进行对照,也可采用计算机谱库检索,通过相似度来识别。[b]2.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法(GC-MS)[/b]GC-MS主要用于高分子材料中助剂的分离、定性及定量。一般是将高分子材料中的助剂与树脂分离后,通过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱将不同助剂进行分离,再与质谱中标准谱图对照进行定性,结合标准样品进行定量。[b]3.热重分析法(TGA)[/b]热重分析是在程序控温下,测量样品的重量随温度或时间的变化。高分子材料随着温度升高发生分解、氧化、挥发等,并伴随着质量的变化,通过记录质量与温度的关系结合其他仪器分析结果推断发生质量变化原因,对主要成分、添加剂、填料、炭黑等进行定量。[b]4.差式扫描量热法(DSC)[/b]DSC是程序控温条件下,直接测量样品在升温、降温或恒温过程中所吸收或释放出的能量。高分子材料随着温度升高发生物理变化并伴随着热流的变化,通过记录热流与温度的关系来检测发生的物理变化,如熔点、玻璃化转变温度等,实现对材料的定性。[b]5.元素分析法(XRF)[/b]X-射线激发高分子材料表面元素使其发生能带跃迁,后又回到基态发射荧光,通过检测发出的荧光对高分子材料中的部分元素进行定性及半定量,这种方法简单易操作,可用于高分子材料基本信息的确认。[b]6.灰化[/b]灰化是在高温条件下将有机物分解掉,得到不再分解的无机物。高分子材料通常会添加玻纤、二氧化钛、碳酸钙、滑石粉等无机物来改性,将高分子材料按照规定的条件(温度、时间)进行灼烧,可以将这些无机物分离出来,进一步实现这些化合物的定性定量。[b]7.萃取[/b]萃取是利用[url=http://baike.baidu.com/item/%E7%B3%BB%E7%BB%9F][color=windowtext]系统[/color][/url]中[url=http://baike.baidu.com/item/%E7%BB%84%E5%88%86][color=windowtext]组分[/color][/url]在[url=http://baike.baidu.com/item/%E6%BA%B6%E5%89%82][color=windowtext]溶剂[/color][/url]中不同的[url=http://baike.baidu.com/item/%E6%BA%B6%E8%A7%A3%E5%BA%A6][color=windowtext]溶解度[/color][/url]来[url=http://baike.baidu.com/item/%E5%88%86%E7%A6%BB][color=windowtext]分离[/color][/url][url=http://baike.baidu.com/item/%E6%B7%B7%E5%90%88%E7%89%A9][color=windowtext]混合物[/color][/url]的操作。萃取是高分子材料分离的常用手段,根据目的和萃取形式的差异,萃取通常有超声萃取、回流萃取、索氏萃取、溶解-沉淀等方法。超声萃取是利用超声波的能量将高分子材料中的抗氧剂、润滑剂、增塑剂等提取出来,是一种常见的萃取方法;回流萃取是通过高分子材料与沸腾的溶剂接触,缩短萃取时间,提高萃取效率;索氏萃取是利用溶剂回流和虹吸原理,使高分子材料每一次都能被纯的溶剂萃取,极大的提高萃取效率;溶解-沉淀是选择合适的溶剂将聚合物和有机助剂溶解,将有机物和无机物分离,将上层清液倒出,加入析出溶剂将聚合物析出,从而实现一步分离聚合物、无机助剂和有机助剂。 以上是高分子材料成分分析常见的仪器分析方法和分离方法,除此之外,还有很多设备和分离方法可以采用。具体分析时该运用什么样的方法,与待分析样品的成分体系、设备的配备情况及个人的目的息息相关。华测拥有大批世界顶级的仪器设备和技术资源,可以为客户解决生产、流通和使用过程中遇到的技术问题。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制