当前位置: 仪器信息网 > 行业主题 > >

金属工艺液

仪器信息网金属工艺液专题为您提供2024年最新金属工艺液价格报价、厂家品牌的相关信息, 包括金属工艺液参数、型号等,不管是国产,还是进口品牌的金属工艺液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属工艺液相关的耗材配件、试剂标物,还有金属工艺液相关的最新资讯、资料,以及金属工艺液相关的解决方案。

金属工艺液相关的资讯

  • 第二届中国车用铝、镁金属制造工艺与应用论坛圆满结束
    为了应对全球气候变暖的迫切状况和能源危机,节能减排、低碳时代,已经成为全球汽车产业的共同课题。汽车轻量化是降低燃油消耗及减少碳排放的最有效措施之一。研究数字显示,若汽车的整车重量降低10%,燃油效率可提高6%-8%,而铝镁对汽车轻量化的有效作用早已引起全世界汽车工程师们的高度关注。 在此前提下,利曼中国于2013年3月27、28日应邀参加在重庆举办的《第二届中国车用铝、镁金属工艺与应用论坛》,为国内外的整车厂、零部件、合金加工、金属原材料等企业推荐了来自德国的高品质Bruker直读光谱仪,它能高效准确的分析原材料中的铝镁等元素含量,从而达到质量控制的目的。 会议期间,利曼中国还为各汽车生产商及汽车零配件供货商介绍了新品&mdash &mdash Q4 MOBILE便携式直读光谱仪。它为金属分类、牌号鉴别、含量分析提供了快速的解决方案,Q4M延续布鲁克直读光谱的高端性能,结合传统专利光学系统、光源发生器、垂直等离子体观测、强大的谱图解析技术,将便携式直读光谱提高到真正实验室仪器级别,并可准确分析C、S、N等紫外区元素的含量。
  • 工信部发布《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》
    中华人民共和国工业和信息化部公告2021年第25号为贯彻落实《中华人民共和国固体废物污染环境防治法》,加快淘汰产生严重污染环境的工业固体废物的落后生产工艺、设备,持续提高工业绿色发展水平,现将《限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录》予以公告,自2022年1月1日起施行。附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录.pdf工业和信息化部2021年9月23日附件:限期淘汰产生严重污染环境的工业固体废物的落后生产工艺设备名录条目后括号内年份为淘汰期限,淘汰期限为2023年12月31日是指应于2023年12月31日前淘汰,其余类推;未标淘汰期限的条目为国家产业政策已明令淘汰或立即淘汰。一、石化化工1. 废旧橡胶和塑料土法炼油工艺;2. 间歇焦炭法二硫化碳工艺;3. 高汞催化剂生产设备(氯化汞含量6.5%以上);4. 使用高汞催化剂的乙炔法聚氯乙烯生产装置;5. 有钙焙烧铬化合物生产装置;6. 使用汞或汞化合物的甲醇钠、甲醇钾、乙醇钠、乙醇钾、聚氨酯、乙醛、烧碱、农药生产装置。二、钢铁1. 土法炼焦(含改良焦炉);2. 预应力钢材生产消除应力处理的铅淬火工艺;3. 采用重铬酸盐钝化技术的电解锰工艺设备(2023年12月31日);4. 钢铁行业用一段式固定煤气发生炉(不含粉煤气化炉)。三、有色金属1. 采用马弗炉、马槽炉、横罐等进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或生产氧化锌工艺装备;2. 竖罐炼锌工艺和设备(2025年12月31日);3. 采用铁锅和土灶、蒸馏罐、坩埚炉及简易冷凝收尘设施等落后方式炼汞;4. 采用土坑炉或坩埚炉焙烧、简易冷凝设施收尘等落后方式炼制氧化砷或金属砷工艺装备;5. 铝自焙电解槽及160kA以下预焙槽;6. 鼓风炉、电炉、反射炉炼铜工艺及设备;7. 再生有色金属生产中采用直接燃煤的反射炉;8. 采用地坑炉、坩埚炉、赫氏炉等落后方式炼锑;9. 采用烧结锅、烧结盘、简易高炉等落后方式炼铅工艺及设备;10. 利用坩埚炉熔炼再生铝合金、再生铅的工艺及设备;11. 烧结-鼓风炉炼铅工艺;12. 离子型稀土矿堆浸和池浸工艺;13. 有色金属行业用一段式固定煤气发生炉。四、黄金1. 混汞提金工艺;2. 小氰化池浸工艺、土法冶炼工艺;3. 无环保措施提取线路板中金、银、钯等贵重金属工艺。五、医药1. 铁粉还原工艺生产咖啡因;2. 铁粉还原工艺生产对乙酰氨基酚。六、机械1. 加热温度≤1000℃的热处理氯化钡盐浴炉;2. 钻采工具接头螺纹磷化处理工艺(2023年12月31日);3. 使用汞生产开关和继电器的工艺;4. 使用汞生产气压计、湿度计、压力表、温度计(体温计除外)等非电子测量仪器的工艺(无法获得适当无汞替代品、安装在大型设备中或用于高精度测量的非电子测量设备除外)。七、船舶废旧船舶滩涂拆解工艺。八、轻工1. 脂肪酸法制叔胺工艺 2. 发烟硫酸磺化工艺 3. 铅蓄电池生产用开放式熔铅锅、开口式铅粉机 4. 管式铅蓄电池干式灌粉工艺 5. 铅蓄电池生产中铸板、制粉、输粉、灌粉、和膏、涂板、刷板、配酸灌酸、外化成、称板、包板等人工作业工艺(新建、改扩建项目禁止使用)。
  • 液态金属催化剂或撼动百年化工工艺
    据科技日报(记者张梦然)报道,液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然纳米技术》上的一项创新研究,摆脱了由固体材料制成的旧式能源密集型催化剂。催化剂是一种在不参与反应的情况下使化学反应更快、更容易发生的物质。固体催化剂,通常是固体金属或固体金属化合物,通常用于化学工业中制造塑料、化肥、燃料和原料。然而,使用固体工艺的化学生产是能源密集型的,需要高达1000℃的高温。 新工艺改为使用液态金属,在这种情况下溶解锡和镍,这赋予它们独特的流动性,使它们能够迁移到液态金属的表面并与输入分子,例如菜籽油发生反应,这导致菜籽油分子旋转、破碎和重新组装成更小的有机链,包括对许多行业至关重要的高能燃料丙烯。液态金属中的原子比固体中的原子排列更加随机,并且具有更大的运动自由度。这使得它们很容易接触并参与化学反应。在新研究中,研究人员将高熔点镍和锡溶解在熔点仅为30℃的镓基液态金属中。通过将镍溶解在液态镓中,研究人员在非常低的温度下获得了液态镍,并将之充当“超级催化剂”。相比之下,固体镍的熔点为1455℃。液态镓中的锡金属也会受到相同的影响,但程度较轻。金属以原子水平分散在液态金属溶剂中,单原子具有最高的催化表面积,这就为化学工业提供了显著的优势。这一方法还可用于其他化学反应。研究人员表示,其为化学工业降低能耗和绿色化学反应提供了可能性。 在化学反应中,催化剂往往扮演着“四两拨千斤”的角色。对化学工业而言,它更是对生产流程是否绿色、节能、高效起着举足轻重的作用。因此,催化剂是科学研究的重要领域,相关科研成果层出不穷。上述研究便是其中一个典型案例。
  • 河南省有色金属行业协会发布《金刚石复合体与钢钎焊工艺规范》等7项团体标准
    各相关单位:根据《河南省有色金属行业协会团体标准管理办法》的有关规定,河南省有色金属行业协会批准发布《金刚石复合体与钢钎焊工艺规范》等7项团体标准(详见附件),自 2023 年4月18日起实施,现予以公告。附件:7项团体标准编号、名称、起草单位一览表 7项团体标准编号、名称、起草单位一览表序号编号标准名称起草单位主要起草人实施日期1T/HNNMIA 30-2023金刚石复合体与钢钎焊工艺规范河南省四方达超硬材料股份有限公司、郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、中南大学、吉林大学、中煤科工西安研究院(集团)有限公司、中机新材研究院(郑州)有限公司裴夤崟、龙伟民、钟素娟、黄成志、赵东鹏、马佳、张冠星、王淼辉、丁天然、张伟、刘宝昌、高华、王传留、于奇、刘全明、李宏利、屈继来、邹伟、刘攀、李宇佳、董宏伟、杨娇、祖家泽2023-4-182T/HNNMIA 31-2023银铜复合带界面结合强度评价方法郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、河南省科学院材料研究所、太原科技大学、太原理工大学、西安中熔电气股份有限公司郝庆乐、程亚芳、王涛、张冠星、侯江涛、潘建军、高翔宇、刘付丽、史荣豪、任忠凯、李培艳、孙逸翔、刘洁、郭艳红、石晓光、张陕南、杨娇、祖家泽2023-4-183T/HNNMIA 32-2023铝合金蜂窝板真空钎焊工艺规范郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、中国机械总院集团哈尔滨焊接研究所有限公司、江苏科技大学、新乡航空工业(集团)有限公司、浙江新锐焊接科技股份有限公司、中航西安飞机工业集团股份有限公司董显、龙伟民、钟素娟、黄俊兰、李秀朋、吕晓春、陈素明、王水庆、浦娟、郭鹏、王博、李云月、刘晓芳、李红涛、丁宗业、宋北、黄森、刘德运2023-4-184T/HNNMIA 33-2023聚晶金刚石复合片与钢钎焊接头质量评价方法河南省四方达超硬材料股份有限公司、郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、中南大学、吉林大学、中煤科工西安研究院(集团)有限公司裴夤崟、黄成志、龙伟民、赵东鹏、钟素娟、张伟、刘宝昌、高华、王传留、刘全明、李宏利、屈继来、黄俊兰、刘攀、邹伟、王蒙、吴奇隆2023-4-185T/HNNMIA 34-2023盾构机刮刀感应钎焊技术导则郑州机械研究所有限公司、中铁工程装备集团有限公司、宁波中机松兰刀具科技有限公司、盾构及掘进技术国家重点实验室、西南交通大学、中铁工程装备集团隧道设备制造有限公司路全彬、龙伟民、钟素娟、郑永光、卢高明、丁天然、王锴、黄俊兰、胡登文、李永、董宏伟、周许升、吴奇隆、董博文、李文彬、朱宏涛2023-4-186T/HNNMIA 35-2023放热熔钎焊接头质量评价方法国网河南省电力公司电力科学研究院、郑州机械研究所有限公司、中国机械总院集团宁波智能机床研究院有限公司、华北水利水电大学、浙江新锐焊接科技股份有限公司、河南职业技术学院沈元勋、耿进锋、崔大田、李秀朋、杜君莉、夏大伟、王琴、郭军华、王水庆、李云月、刘德运、赵明远、姜超、宋昕怡2023-4-187T/HNNMIA 36-2023大尺寸硬质合金串珠钎焊工艺规范郑州机械研究所有限公司、宁波中机松兰刀具科技有限公司、中铁工程装备集团有限公司、盾构及掘进技术国家重点实验室、交通运输部上海打捞局、西南交通大学路全彬、龙伟民、钟素娟、王锴、郑永光、张雷、胡登文、黄成志、李永、李文彬、吴奇隆、卢高明、杨鹏、董博文、周许升、付龙、邹伟、郭艳红、佘春、司浩、董媛媛、井培尧2023-4-18河南省有色金属行业协会2023年4月18日关于发布《金刚石复合体与钢钎焊工艺规范》等7项团体标准的公告.pdf1-团体标准-金刚石复合体与钢钎焊工艺规范.pdf2-团体标准-银铜复合带界面结合强度评价方法.pdf4-团体标准-聚晶金刚石复合片与钢钎焊接头质量评价方法.pdf3-团体标准-铝合金蜂窝板真空钎焊工艺规范.pdf5-团体标准-盾构机刮刀感应钎焊技术导则.pdf6-团体标准-放热熔钎焊接头质量评价方法.pdf7-团体标准-大尺度硬质合金串珠钎焊工艺规范.pdf
  • 中国科协正式发布《高质量科技期刊分级目录总汇》
    为深入贯彻落实习近平总书记关于办好一流学术期刊的重要指示精神,落实《关于深化改革 培育世界一流科技期刊的意见》,推动建设与世界科技强国相适应的科技期刊体系,助力我国科技期刊高质量发展,2019年以来,中国科协指导支持所属全国学会,按照“同行评议、价值导向、同质等效”原则,面向各学科领域国内外科技期刊,试点发布高质量期刊分级目录,为科技工作者发表论文和科研机构开展学术评价提供参考。截至目前,共有50家全国学会参与试点工作,23家学会正式发布首版分级目录。现将各学会已正式发布的分级目录汇总公布,欢迎广大科技工作者、科技期刊出版界积极反馈意见建议,推动此项工作不断改进优化,建立更加科学、合理的评价标准。1.临床医学领域高质量科技期刊分级目录(共547种)2.自动化学科领域高质量科技期刊分级目录(共302种)3.能源电力领域高质量科技期刊分级目录(121种)4.中医药领域高质量科技期刊分级目录(共38种)5.地质学领域高质量科技期刊分级目录(共613种)6.机械工程领域高质量科技期刊分级目录(共49种)7.建筑科学领域高质量科技期刊分级目录(共112种)8.煤炭领域高质量科技期刊分级目录(共59种)9.地理资源领域高质量科技期刊分级目录(共406种)10.航空航天领域高质量科技期刊分级目录(共62种)11.植物科学领域高质量期刊分级目录(共137种)12.有色金属领域高质量科技期刊分级目录(共212种)13.细胞生物学领域高质量科技期刊分级目录(共39种)14.冶金工程技术与金属材料(金属学与金属工艺)领域高质量科技期刊分级目录(共136种)15.材料失效与保护领域高质量科技期刊分级目录(共102种)16.汽车工程领域高质量科技期刊分级目录(共24种)17.铁路运输领域高质量科技期刊分级目录(共90种)18.生态学领域高质量科技期刊分级目录(共177种)19.数学领域高质量科技期刊分级目录(共440种)20. 材料-综合领域高质量科技期刊分级目录(共369种)21.信息通信领域高质量科技期刊分级目录(共72种)22 安全科学领域高质量科技期刊分级目录(共45种)23 中国优秀科普期刊目录(共50种)
  • 一汽/陕汽/比亚迪/中车技术专家齐聚,共探汽车失效分析技术
    汽车零部件失效分析是研究汽车零部件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,目的在于分析零部件失效的原因,提出改进和预防措施,从而提高汽车可靠性和使用寿命。目前,失效分析已成为汽车材料及零部件检测的一个重要环节。汽车零部件的失效分析技术是一项涉及众多学科和工程技术的综合性工程技术。对于金属材料零部件而言,失效的主要类型包括断裂(开裂)、变形、磨损和腐蚀,而失效分析技术则涉及物理及化学学科、金属材料及金属工艺学、材料和工程力学,以及各种汽车工程技术等各门类学科何技术,同时也包括实践认知和逻辑推理等思维形式。为进一步加强汽车零部件失效分析技术和方法的交流,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造,仪器信息网将于2023年3月15-17日举办第五届“汽车检测技术”网络会议,联合中国汽车工程学会汽车材料分会特设“汽车零部件失效分析”专场。点击图片直达会议页面会议特邀一汽、陕汽、比亚迪、中车四大主机厂失效分析工程师,结合相关理论、大量工作实践与具体案例,从不同角度分享汽车零部件失效分析经验。部分报告预告如下( 点击报名 ) 。汽车工程学会材料分会理化及失效专业委员会研究员高工 刘柯军《汽车零部件失效分析的技术逻辑》(点击报名) 刘柯军高工自1982年进入一汽,一直从事汽车金属零部件的金相检验和失效分析工作,退休前任一汽技术中心材料部技术总监;长期从事失效分析工作,积累了大量的实际经验,现为汽车行业失效分析工作的技术带头人。汽车零部件失效分析是一项专门的工程技术,需要长期的技术时间积累,在此过程中失效分析工程师需要形成切实有效的认知技术和逻辑思维模式。本次会议中,刘柯军高工将分享汽车零部件失效分析的技术逻辑。中车戚墅堰机车车辆工艺研究所有限公司高级工程师 潘安霞《兔年读图——图解汽车零部件失效分析》(点击报名) 潘安霞高工为中车戚墅堰所失效分析高级工程师,现任全国机械工程学会失效分析分会委员、中国中车技术专家,中车计量理化培训讲师,主要从事轨道交通行业齿轮、紧固件、弹簧等关键零部件失效分析研究工作,著有《紧固件失效分析与案例》。本次报告中潘安霞高工将图解汽车零部件失效分析,通过齿轮、电池包、紧固件、轴承等零部件的典型失效案例讲解,说明损伤形貌的宏微观图片正确表征和解读是失效分析的重要环节。陕汽控股集团公司失效分析总监 白培谦《重型汽车零部件失效分析及改进》(点击报名) 白培谦总监自1987年参加工作以来,一直在陕汽从事检验、检测、失效分析和质量管理等技术工作,主要特长为失效分析和质量改进工作,对重型汽车的失效分析和质量改进有30多年的经验积累,发表论文40多篇,从事的失效分析及质量改进项目达1000多项,创造了很大的经济效益和社会效益。 本次报告中白培谦总监将重点分享重型汽车失效的特点分析、重型汽车常见的失效形式,以及如何做好失效分析工作,探讨质量改进方法,分析典型案例等。中国第一汽车集团有限公司高级工程师 陈成奎《汽车零件热疲劳典型案例分析》(点击报名) 陈成奎高工自1997年参加工作以来,一直从事与金属材料相关的零部件失效分析、检测分析及金属材料开发方面工作,解决各种零部件及总成失效问题200多项,为解决设计、生产和使用中存在的问题提供有力的支持。本次报告中陈成奎高工将分享汽车零件热疲劳典型案例分析,主要介绍热疲劳零件失效特征和热疲劳分析要点,分享典型的热疲劳案例,包括汽缸盖、制动鼓、排气歧管、散热器和活塞等热应力开裂案例;并介绍不同零件热疲劳开裂特点及失效原因。比亚迪汽车工业有限公司实验室主任 唐刚《汽车半轴失效模式的分析与探讨》(点击报名) 唐刚为比亚迪汽车工业有限公司材料实验室主任,现任中国汽车工程学会材料分会委员、机械工程学会失效分析分会专家、机械工程学会无损检测分会理事。主要从事金属零部件理化检验、失效分析、焊接工艺研究与检测,长期参与主持重大质量事故和失效分析工作,通过长期工作的实践和技术总结,在汽车相关领域金属零部件失效分析、轻量化焊接方面积累了一定的实际经验。半轴是汽车传动系统中一个重要的零部件,由于其自身特殊结构功能和使用状况等因素的影响,半轴的各种失效发生的频次非常高,而且是汽车重要结构件中失效频次最高的零件之一。本次会议中唐刚主任将分享汽车半轴失效模式的分析与探讨,主要从半轴结构特点、载荷性质、失效模式等方面来阐述汽车半轴失效的多样性和分析思路。中国第一汽车集团有限公司技术主任 李润哲《X射线残余应力检测在汽车上的应用》(点击报名) 李润哲为中国第一汽车集团有限公司研发总院材料与轻量化研究院金属材料开发主任。自1991年参加工作后,主要从事无损检测、X射线衍射分析、工业CT结构分析、喷丸工艺及金属材料开发工作。现任中国机械工程学会无损检测学会理事、中国机械工程学会吉林省无损检测分会负责人,吉林省分析测试协会常务理事,中国机械工程学会残余应力委员会委员,中国机械工程学会喷丸委员会委员。本次会议李润哲主任将分享X射线残余应力检测在汽车上的应用,内容包括:(1)残余应力基础知识;(2)X射线残余应力检测原理及标准; (3)X射线残余应力检测在汽车上应用示例; (4)X射线残余应力检测实践中注意事项。汽车零部件失效分析离不开各类分析检测仪器的助力。除了精彩的专家报告之外,北京欧波同光学技术有限公司业务发展(BD)工程师苏瑞雪、岛津企业管理(中国)有限公司应用工程师崔会杰、日立科学仪器(北京)有限公司电镜市场部副部长周海鑫也将在本会场分享其产品在汽车行业的应用案例。北京欧波同光学技术有限公司业务发展(BD)工程师 苏瑞雪《欧波同汽车材料检测显微分析解决方案》(点击报名) 岛津企业管理(中国)有限公司应用工程师 崔会杰《岛津电子探针在汽车材料分析中典型应用》(点击报名)日立科学仪器(北京)有限公司电镜市场部副部长 周海鑫《日立电镜在汽车行业的应用》(点击报名)以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/automobile2023/
  • 德国新成立液态金属研究联盟
    由赫姆霍茨德累斯顿研究中心牵头的液态金属研究联盟近日在德国成立。液态金属可用于很多工业领域,比如钢与轻金属铸造,并因可用于新型液态金属电池储能、零排放氢生产、或是制造太阳能电池而被纳入未来技术的行列。这些新用途皆与其属性有关,即能大容量储能或是高效导热。其导热系数是水的50-100倍,并可在很大的温度范围内保持液态。液态金属由此适宜用来为高能量工艺程序降温,也可提高能源和资源的利用率,因为温度越高,热力过程的效率也会随之提高。该联盟的两个子项目也因此致力于液态金属在太阳能发电厂的应用。 近年来,液态金属技术的操作安全性有显著提高,这要归功于可完整监控流量的新型测量方法。对新测量方法作进一步开发也是该联盟的工作目标。另一个任务在于继续提高液态金属技术的能源与资源利用效率,包括在金属铸造、贵重金属与渣熔体分离或是在太阳能硅的生产过程中。 参与者该联盟的有多个赫姆霍茨研究中心、德国卡尔斯鲁尔理工学院及多所国内外大学。联盟拥有2000万欧元经费,用于研究液态金属技术的广泛应用。赫姆霍茨德累斯顿研究中心的领队认为,德国在这个技术领域里的研究处于地位。 以上信息由HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱、高低温交变湿热试验箱、盐雾腐蚀试验箱、药品稳定性试验箱、两三厢冷热冲击试验箱、精密曲线编程旋转烘箱、远红外线干燥箱、防爆干燥箱、精密烘箱、真空测漏箱、人工气候箱、光照培养箱、生物安全柜、干培两用箱、超净工作台、真空脱泡箱等。
  • 新标准出台 大部分稀土企业须更换工艺与设备
    中国正在制定全球首部针对稀土工业行业的污染物排放标准  中国《稀土工业污染物排放标准》目前完成各部委征求意见,正等待国家标准化管理委员会的审核,预计将在年内出台。原有产能将有一至两年整改期,但新建产能则须严格按照新标准操作。  《东方早报》消息称,参与起草工作的中国有色工程设计研究总院原副院长王国珍透露了上述消息。如正常出台,这将是全球首部针对稀土工业行业的污染物排放标准。  王国珍透露说,标准出台后,原有产能仍有一至两年的整改期限,但是新建产能必须严格按照标准来操作,“大部分企业要更换新工艺和设备”,在工艺操作方面也要增加环保投入。王国珍预计,标准出台后,预计稀土行业环保成本要比原来增加一倍。  2010年,中国加大了针对稀土资源的整合治理,并减少了相应产品的出口。商务部等部门表示,治理主要是出于环保考虑,是“不得已而为之”。  早在2002年,原国家环保总局就确定了制定有色金属工业污染物排放标准体系的工作目标。2009年7月,环境保护部终于公布了《稀土工业污染物排放标准》(意见征求稿),但迟迟未颁布实施。2010年12月30日,环境保护部常务会议原则通过了《稀土工业污染物排放标准》。
  • 岛津参加第十二届中国金属冶金展
    中国铸造协会举办的第十二届中国金属冶金展于3月29-31日在重庆国际会议展览中心举行。而重庆将工业发展重点放在汽车、装备制造产业,对于装备制造业的基础&mdash &mdash 金属冶金也是愈发重视,因此在重庆举行的此次金属冶金展已占人和先机。第十二届中国金属冶金展 应铸造协会的邀请,岛津携华东西南地区代理商共同参与此次展会,详细了解冶金行业新发展及对分析测试技术的新需求,并将岛津在冶金铸造行业的分析经验与业界同仁分享。大型铸造件 岛津直读光谱仪广泛应用于钢铁、有色、铸造、冶金、机械、汽车制造行业,三十几年来在全世界的金属质量管理中发挥了重要作用,在中国更有着良好的客户基础。新品PDA-8000是专门针对高端市场开发的高品质光电发射光谱分析装置,具有高灵敏度、高精度、高稳定性,软件操作简便以及节能等特点,从而保证了仪器的优异性能,并在减碳节能方面做出了创新。全新设计的新型软件能够实时显示装置工作状态的细节、控制各部件的运转时间、进行维护保养管理和支持,具有维护保养指南和分析仪器诊断功能,使得操作更加简便自如。 岛津PDA-8000直读光谱仪 什么是冶金?冶金就是从矿石中提取金属或金属化合物,用各种加工方法将金属制成具有一定性能的金属材料的过程和工艺。冶金的技术主要包括火法冶金、湿法冶金以及电冶金,同时冶金在我国具有悠久的发展历史,从石器时代到随后的青铜器时代,再到近代钢铁冶炼的大规模发展。人类发展的历史就融合了冶金的发展。 什么是铸造?铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了制作时间。铸造是现代装置制造工业的基础工艺之一。铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国商朝的重875公斤的司母戊方鼎,战国时期的曾侯乙尊盘,西汉的透光镜,都是古代铸造的代表产品。铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件 ,如燃汽轮机的镍基合金零件不用铸造方法无法成形。 铸造过程需要哪些分析仪器?我国铸件产量占世界总产量的1/3以上,是名副其实的铸件生产大国。目前主流工艺是砂型铸造,即熔炼&mdash 造型&mdash 制芯&mdash 砂处理&mdash 清理过程。为生产高品质铸件,在熔炼过程中,需要调整炉中的化学成分,此时需要光电直读光谱仪(PDA)进行元素的炉前分析。在来料检验及成品品质管理中,可以用直读光谱仪或X射线荧光光谱仪进行质量控制。铸造过程中采用这些分析仪器,不仅可以进行质量控制保证产品质量,更重要的是准确快速的分析结果可以降低单位成品的能耗,提高生产企业效益。 岛津PDA 岛津PDA系列产品,即岛津光电发射光谱仪(行业内称直读光谱仪),包括PDA-5500S、PDA-7000、PDA-8000,可快速测定固体金属样品的元素组成,广泛应用于钢铁、铸造、有色、汽车、机械加工等众多行业,提高对冶炼工业和机械加工工业的工程管理分析、原材料验收及产品出厂鉴定分析等能力。 岛津X射线荧光光谱仪岛津MXF-2400型X射线荧光光谱仪,是适合工业分析的多道同时型分析装置。采用4KW分析技术,特别适合从高含量到微量元素的全面分析。具有很好的长期稳定性和快速分析能力。在钢铁、有色金属和水泥获得广泛应用。岛津专利的背景基本参数(BG-FP)法,支持固定道的单标样定量分析,进一步扩展了仪器的应用范围。
  • 电镀业重金属监测未来2年市场规模为3-9亿元
    电镀作为制造业的四大基础工艺之一,广泛应用于各种行业,如高端的电子、航空、航天、能源、核工业,低端的日用五金、汽车配件、文具类产品等,是无法取代的服务性行业。  据不完全统计,2009年我国电镀企业数量(规模以上企业)总计1.5万家,5000多条生产线和2.5~3亿平方米电镀面积生产能力。近几年,随着各地政府对重污染企业的整治,电镀企业数量有减少的趋势。  2008年,环境保护部颁布了《电镀污染物排放标准》(GB21900-2008),标准的颁布为重点行业及重点污染源的管理提供了依据。  排放新标遭遇哪些问题?  需要寻求达标与投资、运行成本之间的平衡  根据电镀水污染物的理化特性、危害性以及污染控制的需要等,新标准共选择了20项污染物作为水污染控制项目,其中金属污染物11项,非金属污染物9项。与欧盟部分国家表面处理废水排放浓度限值比较,标准中金属污染物排放标准严格程度均处于中上游水平。而化学需氧量、磷等非金属污染物几项指标由于列入地表水体污染物排放总量,控制也较严格。  调查发现,各地电镀企业/园区在执行标准中普遍存在一些问题:  首先,COD、氨氮、总氮、总磷等生化指标由于废水生化性比较差,常规AO或A2O工艺无法处理,是超标的主要因子。电镀废水中COD的来源主要为:前处理废水(除油、除蜡)中的酯类 镀液中的各种添加剂(表面活性剂、光亮剂、络合剂等) 还原剂的过量添加产生的&ldquo 假性COD&rdquo 。虽然电镀废水的COD浓度不高(200~300mg/L),但由于其生化性较差而造成常规的生物法无法有效处理。  其次,Cu离子在化学法处理工艺中是重金属离子的主要超标因子。电镀工序产生的络合剂(EDTA、酒石酸钠等)与铜螯合形成络合铜,以及其他工序也会产生相应的含铜络合物,这造成在化学沉淀法中容易破络或沉淀不完全而造成铜超标。  再次,达到标准中水污染物特别排放限值的投资及运行成本压力大。园区或者企业为了达到标准,重金属废水及可回用的废水多数采用了膜技术工艺。调查发现电镀废水大型集中式污水处理厂膜处理的投入成本约占总成本的20%~30%,运行成本约增加25%~40%,中小型电镀废水处理厂膜处理投入成本及运行成本更高,这对于已经改造或新建的电镀废水污水处理厂而言,压力有点大。  园区成主要发展形式  由广泛式分布向集中式发展,但企业入园情况不理想  调查发现,标准颁布4年后,电镀行业及相应治理行业格局已经发生了变化。  首先,行业形态由广泛式分布向集中式分布发展。电镀园区集中化发展已成为电镀行业目前及未来的主要发展模式。电镀园区的建设,能够实现统一生产、统一管理和统一治污,有利于实现对一个地区电镀行业的监管。但同时,电镀企业入园发展也意味着电镀企业规模、自动化程度、管理水平及要求的提高以及近半的搬迁损失和客户流失,这对于政府部门形成了较大的挑战。调查发现,目前全国共有已建及在建的电镀园区或集聚区100多个。  调查发现,虽然广东、重庆等省市均在积极推动电镀企业入园发展,并采取了一定的强制手段,但入园情况仍不太理想。如广东中山、惠州等地的入园率约为50%,而重庆市园区外电镀企业仍占50%以上。  2010年以后,浙江省针对电镀企业制定了越来越严格的综合整治标准和验收标准,发布了一系列的政策。比如浙江省环保厅印发的67号文件中提出,&ldquo 2012年底前,电镀企业众多的县(市、区)建成电镀园区,除保留少数标杆式企业外,原则上所有电镀企业完成搬迁入园或在园区租赁厂房设备整合发展。&rdquo 同时制定了56条电镀企业污染综合整治验收标准,涉及9条废水处理、6条废气治理、3条固废处理验收标准。56条严格的验收标准在浙江省电镀企业中留下了深刻的印象,调研中发现,当地几乎所有电镀企业都会提到这个标准。  浙江省通过两年对电镀企业的综合整治取得了明显成效,如宁波市210家电镀企业(含配套电镀车间)中,位于电镀园区(集聚区)和工业功能区中的共196家,占比达到93.3%。建议其他地区可借鉴浙江省的经验结合本地方特色,采用引导和强制并用的手段,积极引导规模以上企业入园,取缔小、黑、散企业。  第三方运营找到商机  专业治理公司发展迅速,为园区电镀废水治理提供环境服务  新标准颁布后,有技术和有实力的治理企业认为这是一种机遇,迅速开拓市场,做大做强,逐渐垄断市场,而技术实力偏弱的企业只能分浅浅一杯羹。  值得注意的是,随着电镀园区的集中化发展以及排放标准的严格,园区集中式污水处理设施对专业化运营商的需求越来越大,针对电镀行业污染治理的第三方专业运营公司由此得到发展。  目前,各电镀园区的集中式污水处理厂运营模式主要为自运营(政府自运营或投资商自运营)和第三方运营两种模式。  如浙江省主要以第三方运营为主,其中温州已投运的4个电镀园区全部为第三方运营,而宁波、衢州等市也以第三方运营为主。统计发现,浙江省20多个电镀园区75%以上为第三方运营,广东省第三方运营的比例约为50%,重庆市第三方运营比例低于50%。  浙江海拓环境技术有限公司作为第三方运营公司的代表,近几年其运营规模以每年翻番的速度增长。公司成立于2007年,2008年公司营业额约400万元,2012年公司营业额就达1.6亿元。  据了解,海拓环境目前对浙江省12个电镀园区及企业进行第三方运营,总运营规模达到4万吨/天(设计规模)。而随着各地区对标准实施的严格要求及整治力度的加强,第三方运营企业的数量及规模也将呈现出快速发展的趋势。  在线监测开始成新热点  重金属污染企业强制安装,国内外厂家纷纷抢占市场  根据《电镀污染物排放标准》规定,新建设施应按照《污染源自动监控管理办法》的规定,安装污染物排放自动监控设备,并与环保部门的监控中心联网。这对在线监测的发展起到了积极促进作用。同时,随着国家对重金属污染控制的重视,部分省市逐渐开始关注重金属排放的在线监测,重金属监测成为水质在线监测市场一个新的热点领域。  目前国内市场上的重金属监测仪主要有铜、镍、锌、铅、铬、砷、锰等。调查发现,2008年重金属在线监测仪国内需求较少,生产厂家也很少。在《电镀行业污染物排放标准》颁布一年后市场开始预热,直至2010年才开始真正引爆市场,各地政府相继出台政策,强制要求重金属污染企业安装在线监测仪。  在各地需求激增的情况下,老牌的在线仪器厂家利用已有的技术积累和市场渠道策马圈地,占据了大半江山 一些本不是从事环保仪器的厂商也从中看到了商机,加入竞争行列中。同时,国外厂家(比利时的Applitek、澳大利亚的MTI、捷克的Istran、意大利SYSTEA等)也纷纷通过经销商向国内输入产品。  专家预测,未来2~3年,重金属在线监测仪的规模约为5000套。考虑电镀行业重金属在线监测40%的占比,未来2~3年电镀行业重金属在线监测的市场规模约为500~1500套,市场金额约为3~9亿元。   作者单位:李瑞玲 江苏省(宜兴)环保产业研究院 卢然 李小朋 环境保护部环境规划院
  • 金属所高性能全钒液流电池储能技术研究获进展
    全钒液流电池储能技术通过不同价态的金属钒离子相互转化实现电能的存储与释放,具有本质安全、设计灵活、成熟度高的特点。该技术是双碳战略下国家电力系统长时储能领域首选的电化学储能技术路线。 “新一代100MW级全钒液流电池储能技术及应用示范”作为国家“十四五”重点研发计划支持项目,对高性能全钒液流电池储能系统运行提出了更高的性能要求。而电极系统作为钒离子电化学氧化还原反应发生的媒介,其传质特性与活化特性直接决定全钒液流电池的转换效率。 因此,开发适用于工程化应用的电极结构优化策略与材料调控方法,是实现高性能全钒液流电池运行的基础与核心。近期,中国科学院金属研究所材料腐蚀与防护中心腐蚀电化学课题组在高性能全钒液流电池储能技术研究领域取得一系列新进展。科研人员在深入理解电池极化特性的基础上,以电极系统传质特性和电化学活性为切入点,以工程化应用为导向,先后通过引入流场优化设计和电极改性调控,显著降低了电池浓差极化与活化极化,实现了全钒液流电池高性能长循环运行。 全钒液流电池正负极以不同价态钒离子为活性物质,以水系溶液为支持电解质,具有环境友好和容量可恢复等优势,但受电极内部活性物质传质特性和流阻的局限,目前高功率全钒液流电池电堆运行仍面临挑战。 针对这一问题,研究人员运用有限元仿真与实验相结合的方式,通过在电极系统中引入结构化流场设计,开展传质、传动量与电化学反应多物理场耦合作用下的电池内部模拟分析(图1),优化了高电流密度下电极内部的传质特性,协同降低了电池浓差极化与流动阻力,有效提升了高电流密度下单电池的转换效率。 同时,对32kW电堆的动态模拟预测显示,电堆在200 mA cm-2高电流密度下恒流运行系统转换效率可提升约15%(图2),为实现高功率电堆设计与开发提供了新方法与新途径。相关成果以Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries为题,发表在《化学工程杂志》(Chemical Engineering Journal 2022, 450, 138170)上。 传质特性的优化在提升全钒液流电池高功率运行方面展示了显著效果,但全钒液流电池负极侧V2+/V3+迟缓的电化学动力学特性仍在一定程度制约了全钒液流电池高功率运行下的转换效率。针对这一问题,在课题组前期杂原子掺杂调控电极的研究基础上,科研人员提出了工程化易操作的基于固-固转化的电脱氧工艺方法。 该方法在碱性条件下通过还原涂覆在电极纤维界面Bi2O3粉末,制备了具有高氧化还原可逆性的Bi负载电极(图3),显著提升了负极V2+/V3+电化学动力学特性。理论计算进一步揭示了V-3d和Bi-6p轨道杂化作用对电荷转移过程的促进作用。以此为基础组装的全电池实现了350 mA cm-2电密下450个循环73.6%的稳定能量转换效率输出(图4),400 mA cm-2高电密下运行转换效率有效提升近10%,为高功率电堆开发提供了技术支撑。相关成果以Boosting anode kinetics in vanadium flow batteries with catalytic bismuth nanoparticle decorated carbon felt via electro-deoxidization processing为题,发表在《材料化学杂志A》(Journal of Materials Chemistry A,DOI:10.1039/D2TA09909H)上。 图3.(a)电脱氧制备工艺;(b)热力学计算和脱氧反应机理;(c)电解池示意图及循环伏安曲线图;(d)还原电位及表面形貌图;(e)电极成分表征。图4.(a)电极物理及电化学表征;(b)界面电化学理论计算;(c)全钒液流电池实验。
  • 原位电子显微学技术揭示固态金属类液态行为
    在科幻大片《终结者》系列中,常常出现这样的场面:阿诺德施瓦辛格掏出霰弹枪朝液体机器人射击,巨响过后,身体和脑袋被打穿了数个大窟窿的液体机器人又慢慢恢复了原形。真是打不死的&ldquo 小强&rdquo !《终结者》的&ldquo 小强&rdquo 被打了几个大窟窿,就是不死  这真的是遥远的明日科技吗?还是就在我们身边发生的事实?  东南大学电子科学与工程学院孙立涛教授团队,与浙江大学电子显微镜中心张泽院士、麻省理工学院李巨教授和匹兹堡大学毛星源教授的团队通力合作后发现,在极小的纳米尺度下(小于10纳米),普通的固态金属在常温下受到挤压、拉伸等外力作用后,会像揉面团那样柔软,甚至像液态那样任意变形 更为奇特的是,外力撤除后,还可以恢复原形。10月12日,这项研究的论文以&ldquo Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles&rdquo 为题,发表在国际著名期刊《自然材料》上,并被评为封面文章。  据查询,目前《自然材料》官网上公布的封面只到10月份,尚不含上文的研究成果。但是,在浙江大学材料科学与工程学院主页上可以发现,中国科学家这一新技能被安排在了11月号的杂志封面上 (着急想看的可以直接拖到页末)。从外面看,金属银颗粒像液体水滴,会摇晃并随时改变形状,而它们内部则是超级稳定的晶体结构  且慢,真的是普通的金属就可以吗?这不合乎直觉。  对,你没有看错,普通金属在室温下,就可能有这种神奇的特性,但是前提是要在纳米尺度下。  38岁的孙立涛教授带领团队发展了一种原位电子显微学技术,并基于此在国际上首次观察到10纳米以下固态金属银颗粒在室温下的类液态行为。据凤凰科技报道,这些纯银粒子的直径不超过10纳米&mdash &mdash 宽度不超过人类头发的1/1000。  科研人员告诉科技日报记者,宏观的金属材料的变形机制通常遵从经典的位错滑移和孪晶变形理论。然而,到了极小的纳米尺度,金属表面原子所占的比重越来越大,其变形机制越来越受表层原子的运动影响。我们都知道,表层原子是很活跃的,纳米金属就仿佛穿了一层水膜一样的外衣,一旦受到任何外力,&ldquo 水膜&rdquo 一样的外层原子就会呼啦啦先运动起来。这时候,纳米金属就兼具了固体和液体的特性,在挤压后,表层原子迅速移动,形成了新的表面层。  这种变形机制会带来一个特别的后果,那就是当撤除挤压时,这层活跃的&ldquo 水膜&rdquo 分子又会呼啦啦往上跑,以降低表面能,直到把金属颗粒恢复原形。这样,就出现了实验中观察到的那神奇一幕,不论怎么挤压,金属颗粒最终都会恢复原形。  科研人员把这种可以恢复原形的塑性行为,叫做赝弹性。  浙江大学材料科学与工程学院主页的图片显示,室温下,银纳米颗粒受挤压时表现出了液态行为  这种奇特的纳米颗粒塑性形变,超越了传统的金属物理中位错等缺陷导致的塑性形变理论,在变形的整个过程中颗粒内部始终保持着完好的晶态结构。这一发现暗示,随着金属颗粒尺寸减小,经典的Hall-Petch规律中&ldquo 越小越强&rdquo 不再适用,会逐渐过渡到&ldquo 越小越弱&rdquo (观察者网注:目前对大部分材料的关系的理解已经很成熟,即材料的机械强度会随着体积的减少而增加。)。  这种神奇的赝弹性,会给我们带来一系列神奇的结果。例如,可以制造出无论怎么变形都可以复原的金属关节,具有记忆功能的存储器件,打不穿的金属防弹衣,甚至还包括我们前面提到的《终结者》液体金属机器人。  同时,这项工作对于如何维持下一代纳米电子器件中的互连线和电极的稳定性,以及如何实现超小尺寸的纳米加工工艺,有着重要的指导意义。因为随着现代半导体技术的发展,集成电路中金属互连线以及电极的特征尺寸正在向10纳米逼近。在这样小的尺度下,作为基础框架的金属形态是否还能像块体材料那样稳定,科学家以前并不清楚。现在新的问题是,证实了纳米金属颗粒塑性形变的现象后,如何保障在如此小尺度下电子器件物理性能的稳定性?这一问题向现代集成电路产业提出了新理论和技术的挑战。  据悉,这项工作是东南大学传统电子学科与新兴纳米领域的交叉与融合的结果,得益于学校长期对基础研究和国际学术交流合作的支持与重视。孙立涛教授课题组近年来依托原位透射电子显微学技术,已经在微纳米器件、新型二维材料、纳米金属变形机制等领域取得了一系列研究成果。  观察者网综合科技日报、浙江大学网站、中新网消息。  浙江大学材料科学与工程学院主页展示的《自然材料》11月封面
  • 封装工艺和设备简述
    晶圆大多是非常脆的硅基材料,直接拿取是非常容易脆断的,所以必须封装起来,并且把线路与外部设备连接,才能出厂。本文详述芯片的封装工艺和相关的设备。封装听起来似乎就是包装,好像比较简单。封装与蚀刻和沉积相比,在一定程度上是要简单一点,但封装同样是一个高科技的行业。封装技术的发展芯片封装被分传统封装和先进封装。传统封装的目的是将切割好的芯片进行固定、引线和封闭保护。但随着半导体技术的快速发展,芯片厚度减小、尺寸增大,及其对封装集成敏感度的提高,基板线宽距和厚度的减小,互联高度和中心距的减小,引脚中心距的减小,封装体结构的复杂度和集成度提高,以及最终封装体的小型化发展、功能的提升和系统化程度的提高。越来越多超越传统封装理念的先进封装技术被提出。先进封装(Advanced Packaging)是本文讨论的重点。我们先了解一下传统封装,这有利于更好地理解先进封装。传统封装技术发展又可细分为三阶段。阶段一(1980 以前):通孔插装(Through Hole,TH)时代其特点是插孔安装到 PCB 上,引脚数小于 64,节距固定,最大安装密度 10 引脚/cm2,以金属圆形封装(TO)和双列直插封装(DIP)为代表;阶段二(1980-1990):表面贴装(Surface Mount,SMT)时代其特点是引线代替针脚,引线为翼形或丁形,两边或四边引出,节距 1.27-0.44mm,适合 3-300 条引线,安装密度 10-50 引脚/cm2,以小外形封装(SOP)和四边引脚扁平封装(QFP)为代表;阶段三(1990-2000):面积阵列封装时代在单一芯片工艺上,以焊球阵列封装(BGA)和芯片尺寸封装(CSP)为代表,采用“焊球”代替“引脚”,且芯片与系统之间连接距离大大缩短。在模式演变上,以多芯片组件(MCM)为代表,实现将多芯片在高密度多层互联基板上,用表面贴装技术组装成多样电子组件、子系统。自20世纪90年代中期开始,基于系统产品不断多功能化的需求,同时也由于芯片尺寸封装(CSP)封装、积层式多层基板技术的引进,集成电路封测产业迈入三维叠层封装(3D)时代。这个发展阶段,先进封装应运而生。先进封装具体特征表现为:(1)封装元件概念演变为封装系统;(2)单芯片向多芯片发展;(3)平面封装(MCM)向立体封装(3D)发展;(4)倒装连接、TSV硅通孔连接成为主要键合方式。先进封装优势先进封装提高加工效率,提高设计效率,减少设计成本。先进封装工艺技术主要包括倒装类(FlipChip,Bumping),晶圆级封装(WLCSP,FOWLP,PLP),2.5D封装(Interposer)和3D封装(TSV)等。以晶圆级封装为例,产品生产以圆片形式批量生产,可以利用现有的晶圆制备设备,封装设计可以与芯片设计一次进行。这将缩短设计和生产周期,降低成本。先进封装以更高效率、更低成本、更好性能为驱动。先进封装技术上通过以点带线的方式实现电气互联,实现更高密度的集成,大大减小了对面积的浪费。SiP技术及PoP技术奠定了先进封装时代的开局,如Flip-Chip(倒装芯片), WaferLevelPackaging(WLP,晶圆级封装),2.5D封装以及3D封装技术,ThroughSiliconVia(硅通孔,TSV)等技术的出现进一步缩小芯片间的连接距离,提高元器件的反应速度,未来将继续推进着先进封装的进步。所有这些先进封装技术,被集中起来发展成为了3D封装。3D封装会综合使用倒装、晶圆级封装以及 POP/Sip/TSV 等立体式封装技术,其发展共划分为三个阶段:第一阶段:采用引线和倒装芯片键合技术堆叠芯片;第二阶段:采用封装体堆叠(POP);第三阶段:采用硅通孔技术实现芯片堆叠。3D封装可以通过两种方式实现:封装内的裸片堆叠和封装堆叠。封装堆叠又可分为封装内的封装堆叠和封装间的封装堆叠。最后,我们列举一下这些主要的先进封装技术:★ 倒装(FC-FlipChip)★ 晶圆级封装(WLP-Wafer level package)★ 2.5D封装★ (POP/Sip/TSV)等3D立体式封装技术★ 3D封装技术封装的级别电子封装的工程被分成六个级别:层次1(裸芯片)它是特指半导体集成电路元件(IC芯片)的封装,芯片由半导体厂商生产,分为两类,一类是系列标准芯片,另一类是针对系统用户特殊要求的专用芯片,即未加封装的裸芯片(电极的制作、引线的连接等均在硅片之上完成)。层次2(封装后的芯片即集成块)分为单芯片封装和多芯片封装两大类。前者是对单个裸芯片进行封装,后者是将多个裸芯片装载在多层基板(陶瓷或有机材料)上进行气密闭封装构成MCM。层次3(板或卡)它是指构成板或卡的装配工序。将多个完成层次2的单芯片封装在PCB板等多层基板上,基板周边设有插接端子,用于与母板及其它板或卡的电气连接。层次4(单元组件)将多个完成层次3的板或卡,通过其上的插接端子搭载在称为母板的大型PCB板上,构成单元组件。层次5(框架件)它是将多个单元构成(框)架,单元与单元之间用布线或电缆相连接。层次6(总装、整机或系统)它是将多个架并排,架与架之间由布线或电缆相连接,由此构成大型电子设备或电子系统。先进封装的主要设备了解了封装的工艺,再来看看有哪些实际的操作要做,所需的设备就明确了。这里按工艺步骤列举一些:1、裸片堆叠。需要晶圆级叠片机。这是一个对可靠性要求极高的设备,因为线路完成后的晶圆很昂贵,而且非常易碎,更重要的对叠片的精度要求更高。目前还没有孤傲产量产的设备。2、晶圆切割,将Wafer切割成单个芯片。常见有切割机(Saw锯切)、划片机、激光切割机等。3、芯片堆叠。这个设备的难度在于精度和速度。目前国内有很多家厂商在研发这类设备,主要还是速度(产能)方面的差距。4、、封装级光刻和刻蚀。这是光刻技术练兵的场所,这里的光刻精度是微米级的,精度高一点的也达到了0.1微米。5、贴片(把芯片放在基板上)。这一过程需要用到点胶机,贴片机/固晶机/键合机等主要设备,还要用到印刷机,植球机,回熔焊,固化设备,压力设备,清洗设备等。6、引线键合。主要有Wire Bound和Die Bound两类设备。7、置散热片、散热胶、外壳。这一过程也要用到点胶,灌胶,植片机/固晶机/贴片机,压合设备,清洗设备等主要设备。8、检验。包括检验、测试和分选。下面我们针对其中部分常见设备,介绍其原理和结构。1、清洗机这些设备中,清洗机听起来相对简单,但清洗机也绝对不是那么的简单。清洗的优劣,决定着产品的良率,性能及可靠性。有时更决定着工艺过程的成败。接触芯片的零件的清洗,对尘埃、油污的要求,都是绝对严苛的,有的还要对零件表面的挥发气体进行测量,对表面对不同物质的亲合性进行测量。而要达到这些要求,对清洗工艺的要求也往往非常复杂。一条清洗线也动辄十几道 ,几十道工艺过程,对零件进行物理的、化学的、生物级别的清洗与干燥。2、涂胶设备封装阶段的胶水,作用一是把IC的不同部分粘结起来,作用二是把IC各个部分之间的间隙填充起来,作用三是把IC包裹保护起来。这也就基本形成了三个类别,一是点胶,二是填充,三是塑封(Moding)。这些工艺过程,听起来比较简单,很容易理解。事实也确实如此。只是对胶量的控制,均匀性有很高的要求。胶水的压力,出胶口的形状,温度,运动的平稳性,设备的振动,空气流动等,每一个环节都要精确控制。涂胶的工艺的特性主要的还是决定于胶水的特性。在这里我们只谈设备,不谈耗材。芯片点胶芯片底填芯片塑封3、刻蚀\光刻机我们常听说的那些高大上的光刻机,是指晶圆级别上用来刻蚀芯片电路的。封装过程也要用到光刻机,需要制作用于定位和精确定位芯片的封装模板。光刻机可以用于制作这些封装模板的微米级图案。光刻机通过曝光光刻胶和进行显影的过程,将图案精确地转移到封装模板上。封装过程所用光刻机线宽要求比较低,一般500nm的都能用了。封装用光刻机封装用刻蚀机4、芯片键合机芯片键合机,是把芯片与基板连接在一起的设备,有两种主要的方式,Wire Bond和Die Bond。Wire Bond设备通常被称作绑线机,绑线机是用金属引线把IC上的引脚与基板(Substrate)的引脚进行连接的设备。这个工艺中使用的金属细线通常只有几十微米,一根一根把金属丝熔融在引脚上。这个过程在引脚多的芯片上就很耗时。Die Bond设备有时被称作贴片机或固晶机机。Die Bond是近些年才发展起来的技术,是通过金属球阵列来进行连接,就是常说的BGA技术(Ball Grid Array)。Die Bond的连接方式效率更高,一次性可以连接所有引脚,所以生产数百数千引脚的芯片也很方便。还有就是Die Bond封装更加紧凑,所以Die Bond是未来芯片键合的主要方式。Wire Bond设备5、贴片机贴片机是一种高度复杂且精密的机器,其工作原理可以追溯到微电子组件制造的核心。这些机器使用先进的视觉系统,如光学传感器和高分辨率摄像头,以检测和定位微小的电子元件。这种视觉系统能够在纳米级别准确度下进行操作,确保元件的精确定位。贴片通常是指表面贴装技术,是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板(Printed Circuit Board,PCB)的表面或其它基板的表面上,通过再流焊或浸焊等方法加以焊接组装的电路装连技术。除此之外,贴片还指应用于裸芯片(Die)的贴装技术,是指将晶圆片上没有封装或保护层的晶片(裸芯片)贴装到基板上的过程。这些芯片通常由硅等材料制成,并通过刻蚀、沉积、光刻等工艺加工而成。裸芯片贴装是一种高精度、高技术含量的制造过程,在贴片过程中,由于裸芯片缺乏封装保护,对裸芯片的测试和组装要求更高,需要专门的贴片机设备和技术来确保其可靠性和稳定性。裸芯片贴装技术常用于高性能计算、光通信、存储和其他应用领域,其中需要更高的处理能力和集成度。
  • 金属3D打印上市企业铂力特定增募资超30亿元扩产
    8月29日晚,铂力特发布定增预案,拟募资总额不超过31.09亿元,投向金属增材制造大规模智能生产基地项目及补充流动资金。铂力特同日披露半年报,上半年实现营业收入2.77亿元,同比增长92.83%;归母净利润亏损3896.12万元。当日,公司股票上涨6.32%,收于222.2元/股。扩产动作频频定增公告显示,铂力特本次募投项目中,金属增材制造大规模智能生产基地拟投入25.09亿元,余下6亿元拟用于补流。何谓“金属增材制造技术”?简单来说,即通过二维逐层堆叠材料的方式,直接成型三维复杂结构的数字制造技术。瞄准产业化发展需求,积极加码生产基地。铂力特此次拟建造生产车间、厂房,总建筑面积约16.32万平方米;并配套金属3D打印粉末自动生产线、产品检验检测设备、大尺寸/超大尺寸3D打印设备和后处理设备等合计505台/套。铂力特智能制造工厂(来自铂力特)围绕主业做文章,铂力特的上市募投项目亦为金属增材制造智能工厂建设。截至目前,上述项目实际投入资金5.78亿元,项目投建的生产车间、研发大楼及主要生产设备已于去年12月达到预定可使用状态。铂力特曾在2021年年报中表示,随着增材制造产品批量化带来的产业链成熟化、成本降低和制造模式转变,下游客户群体将会不断扩大。早前,公司也已完成钛合金以及高温合金粉末材料制备以及应用验证,实现批量化生产,产能达到400吨以上。而关于本次进一步扩产的原因,铂力特表示,此举将大幅提升公司金属增材定制化产品和原材料粉末的产能,满足航空航天、医疗齿科及汽车等应用领域对增材制造快速增长的需求,同时满足公司和行业对金属增材制造粉末的需求。资金方面,铂力特坦言,增材制造行业属于技术及资金密集型行业,公司经营过程中对营运资金的需求较为明显。实施定增有助于为公司发展提供资金支持,扩大客户群体和业务规模,推动公司持续稳定发展。增材制造前景广阔尽管全球增材制造产业的增速在2020年有所放缓,但至2021年,行业又恢复了快速增长态势。《Wohlers Report 2022》报告显示,2021年全球增材制造市场规模(包括产品和服务)达到152.44亿美元,同比增长19.5%。近年来,3D打印技术不断成熟。随着材料和设备的国产化,金属3D打印在替代传统工艺,并在装备领域降本增效上优势显现,产品应用的深度和广度大幅提升。尤其是在以智能制造为核心的“工业4.0”战略提出后,3D打印作为自动化和信息化的结合,可实现从设计到生产全数字化的制造过程。与此同时,增材制造技术的应用领域也逐步拓宽,越来越多的企业将其作为技术转型方向,用于突破研发瓶颈或解决设计难题,助力智能制造、绿色制造等新型制造模式。目前,金属增材制造产品已被广泛应用于航空航天、模具制造、医疗研究、汽车制造、能源动力、轨道交通、船舶制造、电子工业等各领域,并已在多个应用领域中实现工业化批量生产。铂力特现与多家高端装备制造企业保持紧密的合作关系,包括中航工业下属单位、航天科工下属单位、航天科技下属单位、航发集团下属单位、空客公司、中国商飞下属单位、国家能源集团下属单位、中核集团下属单位、中船重工下属单位以及各类科研院校等。
  • 3D打印在金属制造业的兴起
    据最*新新闻发布报道,大规模人工智能(AI)驱动的机器人目前正使用全球最*大的金属打印机,以3D打印方式打印整枚火箭。另外还有一座3D打印的金属桥梁,2018年,我们向世界展示了这一座完工的桥梁——我们正等待将其安装至位于阿姆斯特丹的最终地点。金属3D打印颠覆了传统方法,被誉为新兴制造技术。这一发展非常振奋人心;在金属行业从业多年的我们对行业技术的进步感到兴奋不已,且这种进步十分明显。 3D打印的兴起虽然我们认为现有技术已经具有快速、安全和节约成本等优点,但事实证明,与之前的技术相比,3D打印过程更快、更安全、更便宜。实际上,金属3D打印的成本仅为现有技术成本的十分之一,其产品在材料上与传统技术生产的产品相当,且在许多方面的性能更好。金属3D打印是一场即将席卷传统金属制造行业的制造业海啸。采用3D打印金属时,可添加原材料,形成薄层,而非从金属实体中减少或切除原材料。因此,此技术可大幅节约原材料的使用,几乎不产生任何浪费,同时能显著降低材料和加工成本。 与所加原材料的优质特征相差无几虽然引入添加剂制造会增加成本,但随着技术的不断发展,优质机器将变得更实惠,即使是对小型制造商而言,情况亦如此。但值得注意的是,3D打印机打印出的物品与所加原材料的优质特征相差无几——与传统的金属制造工艺一样。所用材料包括铝、钴、铬、铜、不锈钢、钛和钨。但如若使用其中任何一种材料作为原材料,则其必须首先以纯元素或合金粉末的形式存在。可使用XRF(X射线荧光)金属分析仪测试这种“粉末”,确保其达到所需的质量规格后方可被转变成重要成分。首先,在计算机上创建待使用3D金属打印机打印的物品的详细图像。该图像可用于控制金属粉末的沉积和融合技术。然后,在轮廓顶部打印多层(通常每层的厚度仅为0.1 mm),据此可创造极其复杂的形状。这不仅创造了更多设计可能性,还使制造商有机会制造那些可能无法以其他方式制造或者需要花费极高成本使用机械加工、锻造或铸造等传统方法来制造的零件。打印机能够处理这些薄层,其能够极其便利地将超薄或中空设计转化为实物,并减轻物品重量。这对航空航天这类正积极寻找轻质产品以改善空气动力学、减少燃料消耗的行业而言特别有用。 确保质量控制3D打印金属技术采用逐步添加材料(而非减少材料)的方式进行打印,因此,在该过程中,可随时重复使用所有废弃物,从而大幅减少对环境的影响。考虑传统制造中所需的再加工过程之时,很容易发觉增材制造是一种值得考虑的更可持续的替代方法。最终产品是致密的烧结金属。实际上,金属打印零件具有更高的强度和硬度,比采用传统方法制造的零件更柔韧。此外,采用传统方式制造的零件更容易疲劳。金属打印技术的关键之处在于理解和控制制造组件的确切成分。日立手持式XRF光谱仪系列可对处于整个过程中的粉末和成品组件进行详细、即时的分析。此外,日立设备还能在云服务器中记录大量相关数据,以便立即访问和评估。我们迫不及待想看到行业内的第*一座3D打印的金属桥梁在阿姆斯特丹安装。
  • 薄膜沉积工艺和设备简述
    薄膜沉积(Thin Film Deposition)是在基材上沉积一层纳米级的薄膜,再配合蚀刻和抛光等工艺的反复进行,就做出了很多堆叠起来的导电或绝缘层,而且每一层都具有设计好的线路图案。这样半导体元件和线路就被集成为具有复杂结构的芯片了。化学气相沉积(CVD)化学气相沉积(CVD)通过热分解和/或气体化合物的反应在衬底表面形成薄膜。CVD法可以制作的薄膜层材料包括碳化物、氮化物、硼化物、氧化物、硫化物、硒化物、碲化物,以及一些金属化合物、合金等。化学气相沉积是目前很重要的微观制造方法,因为它有如下的这些特点:1. 沉积物种类多: 可以沉积金属薄膜、非金属薄膜,也可以按要求制备多组分合金的薄膜,以及陶瓷或化合物层。2. CVD反应在常压或低真空进行,镀膜的绕射性好,对于形状复杂的表面或工件的深孔、细孔都能均匀镀覆。3. 能得到纯度高、致密性好、残余应力小、结晶良好的薄膜镀层。由于反应气体、反应产物和基材的相互扩散,可以得到附着力好的膜层,这对表面钝化、抗蚀及耐磨等表面增强膜是很重要的。4. 由于薄膜生长的温度比膜材料的熔点低得多,由此可以得到纯度高、结晶完全的膜层,这是有些半导体膜层所必须的。5. 利用调节沉积的参数,可以有效地控制覆层的化学成分、形貌、晶体结构和晶粒度等。6. 设备简单、操作维修方便。7. 反应温度太高,一般要850~ 1100℃下进行,许多基体材料都耐受不住CVD的高温。采用等离子或激光辅助技术可以降低沉积温度。化学气相沉积过程分为三个重要阶段:1、反应气体向基体表面扩散2、反应气体吸附于基体表面3、在基体表面发生化学反应形成固态沉积物及产生的气相副产物脱离基体表面CVD的主要有下面几种反应过程:i). 多晶硅 PolysiliconSiH4 — Si + 2h2 (600℃)沉积速度 100 - 200 nm /min可添加磷(磷化氢)、硼(二硼烷)或砷气体。多晶硅也可以在沉积后用扩散气体掺杂。ii). 二氧化硅 DioxideSiH4 + O2→SiO2 + 2h2 (300 - 500℃)SiO2用作绝缘体或钝化层。通常添加磷是为了获得更好的电子流动性能。当硅在氧气中存在时,SiO2会热生长。氧气来自氧气或水蒸气。环境温度要求为900 ~ 1200℃。氧气和水都会通过现有的SiO2扩散,并与Si结合形成额外的SiO2。水(蒸汽)比氧气更容易扩散,因此使用蒸汽的生长速度要快得多。氧化物用于提供绝缘和钝化层,形成晶体管栅极。干氧用于形成栅极和薄氧化层。蒸汽被用来形成厚厚的氧化层。绝缘氧化层通常在1500nm左右,栅极层通常在200nm到500nm间。iii). 氮化硅 Siicon Nitride3SiH4 + 4NH3 — Si3N4 + 12H2(硅烷) (氨) (氮化物)化学气相沉积CVD 设备CVD反应器有三种基本类型:◈ 大气化学气相沉积(APCVD: Atmospheric pressure CVD)◈ 低压CVD (LPCVD:Low pressure CVD,LPCVD)◈ 超高真空化学气相沉积(UHVCVD: Ultrahigh vacuum CVD)◈ 激光化学气相沉积(LCVD: Laser CVD,)◈ 金属有机物化学气相沉积(MOCVD:Metal-organic CVD)◈ 等离子增强CVD (PECVD)物理气相沉积(PVD)在真空条件下,采用物理方法,将材料源(固体或液体) 表面材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积不仅可沉积金属膜、合金膜, 还可以沉积化合物、陶瓷、半导体、聚合物膜等。物理气相沉积技术基本原理可分三个工艺步骤:(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。(3)镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程无污染,耗材少。成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层 。物理气相沉积也有多种工艺方法:◈ 真空蒸度 Thin Film Vacuum Coating◈ 溅射镀膜 PVD-Sputtering◈ 离子镀膜 Ion-Coating
  • 1nm后的工艺路线图
    比利时imec在2021年11月举办了针对日本的技术介绍会议一一ITF(imec Technology Forum) Japan 2021,在会议上imec披露了当下的研发成果和未来的计划。之前都是在东京的某家酒店举行会议,今年受到疫情影响,在线举行。图1:ITF Japan 2021的演讲。出自笔者截图。(图片出自:mynavi)新结构、新材料、3D化为“摩尔定律”续命在上世纪末,就已经出现“摩尔定律”已经终结的悲观论调。但是,imec为了不让摩尔定律(是半导体产业增长的原动力)终结,一直在致力于提高工艺微缩化的集成度。而且,imec认为,在2020年之前的五十多年时间里,摩尔定律一直都在发挥作用。未来,通过导入微缩化、新型元件结构、新材料,以及堆叠芯片内晶体管和3D封装(堆叠芯片),摩尔定律还会继续发挥作用。图2:在过去五十年里,半导体芯片上晶体管数量的变迁。摩尔定律一直存在。(图片出自:mynavi)对1纳米以下工艺的超微缩化技术的研究首先,作为2D的微缩化方向的努力,imec此次展示了未来十年的逻辑半导体工艺、电子元件的长期技术蓝图。一直以来,微缩化的标准都是以纳米为单位表示的,在2025年以后,即进入以“埃(Å,angstrom,1埃 = 0.1纳米 = 1^(-10)米)”来表示的时代。届时逻辑半导体工艺、元件实用化的蓝图如下:2025年为“A14(14Å=1.4纳米)”、2027年为“A10(10Å=1nm)”、2029年为“A7(7Å=0.7纳米)”。这与英特尔在2021年7月披露的逻辑半导体工艺技术蓝图如出一辙,即2024年为“Intel2(2纳米)”、2025年为“Intel 18A(18 Å)”(注:此处为英特尔公司内部叫法,可以看出英特尔试图追赶在微缩化方面领先的TSMC)。Imec展示的逻辑半导体元件的技术蓝图上记载了“Industry Timeline”,还展示了先进半导体企业开始生产的年份。另外,imec的长期方向在于研发先进工艺,而不是先进半导体企业从事的生产工艺。即,为了实现1纳米以下的微缩化元件,imec已经在研发工艺、材料。将研发业务委托给imec的全球先进半导体企业与诸多设备材料厂家一起,外派了诸多技术人员、研发人员到比利时的imec园区,从事合作研发。之前,人们使用最小加工尺寸、最小线宽、MOS晶体管的栅极(Gate)长等来表示逻辑工艺的微缩化,如今,各家公司不再将微缩化的程度拘泥于指标性数字,实际上集成电路上并没有表示其长度的地方。因此,TSMC一直以来的“Nx(比方说,不说4纳米,而是说N4)”、Intel最近提出的“Intel x(比方说,不说4纳米,而是说Intel 4)”,这些名称上都没有提到长度单位。从数字来看,每个代际(技术节点)都是上一代际的0.7倍左右(如,3纳米、5纳米、7纳米、10纳米。。。。。。),这是英特尔自1970年制造出全球首个1K DRAM以来的传统,长度为上一代际的0.7倍,面积就会成为上一代际的二分之一。如今,代际已经不再用长度来表示,因此面积也不一定就是上一代际的二分之一。比方说,从下图3中可以看出,PP为多晶硅(Polysilicon)排线线距(Pitch)的实际长度,MP为第一段金属排线层的线距的实际长度。这样,各家公司对于逻辑元件微缩化的指标就大相径庭,且他们的指标远远小于线距。图3:imec的逻辑工艺元件的微缩化技术蓝图。时间轴与先进半导体企业的生产元年一致,imec已经开始研发1纳米(10Å)以下的工艺。imec的目标是在三年内,将High NA EUV设备从试做到导入量产。(图片出自:mynavi)晶体管结构每个代际都在变化就逻辑元件而言,随着微缩化发展,其晶体管的结构从长年以来的平板型(Planner)结构到FinFET结构,在2纳米以后,TSMC、英特尔正试图采用GAA(Gate-All-Around,全环绕栅极)纳米片(Namo-sheet)压层结构。英特尔称之为“RibbonFET”。此外,三星率先宣布已经从3纳米过度到GAA纳米层(三星称之为“MBCFET(Multi Bridge Channel FET)”)。就14 Å节点而言,imec提案了原用于CMOS的Forksheet结构(将p型和n型纳米片晶体管成对排列,由于类似于用餐的叉子,所以命名为Forksheet),并一直在研发。就10Å节点而言,imec试图采用CEFT结构(Complementary FET,在硅表面垂直堆叠P-channel FET和N-channel FET),制作CMOS。在1纳米(10Å)以及以下节点,计划采用原子形状的沟道(Atomic Channel),其沟道采用厚度为1~多个原子层的2D材料。此外,imce所指的2D材料为半导体单层过渡金属二硫属化物(Dichalcogenide),化学式为MX2。此处的M为Mo(钼)、W(钨)等过渡金属元素。X为硫、Se硒、Te(碲)等硫硒碲化合物(16类元素),imec通过采用2D材料和High NA EUV,开拓了1纳米以下的工艺。图4:对晶体管结构变化的预测,imec正在研发以上所有的晶体管结构。(图片出自:mynavi)目标是在High NA EUV试做机出货三年后实现量产下面我们来看看EUV 光刻的未来技术蓝图。就2纳米工艺而言,其使用的是继7纳米、5纳米、3纳米之后的第四代EUV光刻技术,且14Å就在其延长线上。但是,据预测,在14Å以后,将不再使用NA=0.33的EUV,而是采用NA=0.55的High NA EUV光刻。Imec和ASML已经合作在荷兰设立“imec-ASML Joint High NA EUV Research Laboratory”,由ASML在2023年导入High NA试做一号机。就EUV专用涂覆显影设备(coater developer,即clean truck)而言,已经决定由独霸市场的东京电子来提供。ASML在2010年出货了用于首代量产技术研发的EUV曝光设备一一“XE:3100”,十年后,量产设备“NXE:3400”被用于逻辑半导体的量产产线。就High NA EUV曝光设备而言,目标是在2023年出货试做设备(EXE:5000),在三年后的2026年导入量产产线,技术人员正在imec-ASML的合作研究所里集中推进研发。图5:ASML 的EUV曝光设备技术蓝图。(图片出自:mynavi)通过微缩化和3D封装,进一步实现集成化通过将原本平铺的晶体管垂直堆叠,就可以使集成电路的晶体管数量增多,这是一个方向;此外,通过采用3D封装技术(堆叠半导体芯片或者晶圆),来进一步增加晶体管数量的研发也在如火如荼地进行。TSMC在日本成立3DIC研究中心的目的似乎也在于此。就imec而言,其研发水平远远领先于业界5一一8年的时间,其目标是先于业界实现某些技术,而且这些研究大部分是与合作伙伴共同合作的。图6:半导体企业的3D Interconnect密度、imec的推移表、未来的预测。(图片出自:mynavi)开始涉足降低生产半导体时的环境负荷项目此外,imec在ITF Japan 2021上 做了新的研究主题一一《可持续发展的半导体技术、系统(Sustainable Semiconductor Technology and Science: SSTS项目)》。在这个项目中,预测了生产半导体芯片时对环境造成的影响(电能消耗、化学药品、材料、超纯水、气体等其他消耗),通过详细分析碳足迹(Carbon Footprint,指的是一个人或者团体的“碳耗用量”),力求实现降低生产IC时的环境负荷。很期待半导体厂家(如生产设备厂家、材料厂家、晶圆代工厂)等企业共同加入研发,最近Apple(既是半导体Fabless、也是半导体客户)也加入了研发,作为一项可以响应全球“碳中和(Carbon Neutral)”目标的活动,而被业界所熟知。即,imec希望通过以上措施,以支持全球半导体供应链削减 “碳足迹”。
  • 专家约稿|微电子大马士革工艺的发展现状
    微电子大马士革工艺的发展现状赵心然中科芯集成电路有限公司随着“摩尔定律”逼近物理极限,前道晶圆制造的特征尺寸发展进程变慢,后道布线能力的升级成为提升集成电路密度的关键,而大马士革工艺是晶圆级再布线技术下一阶段需要引进的重要工艺,不仅可以将线宽/线距从PI-Cu 5/5 μm缩减到亚微米级别,还可以利用SiO2基介质材料加工工艺进一步提升再布线层的可靠性,甚至可以推进混合键合先进封装技术的加速落地。针对大马士革工艺,本文将对其工艺原理、流程、难题与突破进展进行总结,便于在封装领域中落地,将会为后道制造更精细的再布线提供新的思路。1 前言半导体产业初期,都是以铝(Al)作为互连材料,后来为了减小互连线的电阻、减轻电子“跳线”现象、避免电迁徙效应,IBM公司首先提出了以铜(Cu)作为互连材料,由于该工艺方法与2500多年前的叙利亚大马士革城铸剑工艺有异曲同工之妙,故以“大马士革”(Damascene)命名。大马士革工艺已经被广泛应用到了微电子工业中,大致思路是,先利用离子刻蚀、光刻蚀等技术在硅片上刻蚀好沟槽和通孔,然后将Cu电镀进入凹陷的硅片中,最后用化学机械抛光(CMP)将多余的Cu磨平,获得嵌有Cu线路的平整硅片。这种镀铜思路最早应用于前道PCB板上Cu线路的制造,虽然目前的工艺极限可以实现4 nm以下线宽,但28 nm被认为是收益最高的线宽,后来大马士革逐渐被中道和后道封装工序采用,来生产比引线键合、倒装、再布线+凸点等方法更加精细的封装系统。一方面,大马士革工艺的布线尺寸可以做到很小,目前已经可以做到几纳米的Cu线宽和焊盘,这是引线焊点、植球/植柱等毫米、微米级连接点所不能比的,这样就可以实现更高密度的互连;另一方面,它不仅可以用来制造2D方向上的沟槽,还可以制造3D方向上的通孔,这对2.5D/3D封装技术的发展也有促进作用。利用了大马士革的最具有代表性的封装技术就是Xperi公司的混合键合(Hybrid bonding),利用极其光滑的表面上的分子间作用力,直接将两个布有大马士革Cu线路的硅片“面对面”相互连接,这种工艺巧妙避开了植球/植柱、转接板、底填胶、引线等各类键合中间物体,在一定程度上模糊了前道和后道的界限。综上,大马士革工艺的精度直接影响了各类3D封装的精度,对微电子工艺一体化至关重要,是未来先进封装必不可少的一个环节,所以研究开发高精度大马士革工艺是很有意义的。2 大马士革工艺当芯片特征尺寸(线宽)达到25 μm以下时,会产生Cu线路间寄生效应,阻容(RC)耦合增大,信号传输延迟、串扰噪声增强、功耗增大、发热增加,器件频率受到抑制。线路之间的介质介电常数(k)对解决上述问题很关键,k值由公式k=Cd/(ε0A)计算,其中ε0为真空电阻率8.85×10-12 F/m,C为电容,A为电极面积,d为膜厚,均使用国际单位。为了减少寄生电容,现在经常使用多孔SiO2、掺氟SiO2(FSG)、掺氟聚酰亚胺(F-PI)等低介电常数材料(Low-k材料)。对于k值是否足够低,业界有以下定义:广义上,k3.9的材料即可被称为Low-k材料,但某些晶圆制造企业会有自己的k值界限标准,例如,IBM公司的标准是k2.8才可以被称为Low-k材料。Low-k材料的特性如表2-1所示,可见其拥有非常惰性的物理化学性质,这对于避免线路之间的电信号泄露和提升布线层的可靠性都是至关重要的。表2-1 Low-k材料性质要求性质类型要求电学低损耗、低漏电流、高击穿场强、尺寸稳定性、各向异性力学高附着力、高硬度、低应力、高机械强度热学高热稳定性、低热膨胀率、高热导率化学低释气量、耐腐蚀性、不与金属反应、低吸水性通俗地讲,大马士革工艺就是在Low-k介电材料上刻蚀出凹痕并电镀Cu的过程,并不会刻蚀较深的Si晶圆。IBM最早的大马士革工艺称为铜质双重镶嵌,所谓“双重”,即需要刻蚀出通孔和沟槽两种形状,在这两种形状中溅射Ti、Cu种子层,再电镀出Cu互连线,故该工艺也常被称为“双大马士革”(Dual-damascene)。通孔用于垂直方向的互连,直径小;沟槽用于平面方向的互连,直径大。此处的通孔与硅通孔技术(TSV)不同,大马士革刻蚀的是以SiO2为主要成分的介电层材料,而TSV刻蚀的是Si晶圆,由于Low-k介电层很薄,所以大马士革通孔的深度远不及TSV通孔。大马士革工艺有三种路径选择:1)先通孔后沟槽;2)先沟槽后通孔;3)自校准同步沟槽通孔。其中,2、3两种路径分别因为沟槽中的光刻胶堆积效应和校准工艺难度大而被逐渐淘汰,目前应用最广的是第一种先通孔后沟槽的工艺路径,该路径中沟槽刻蚀是最困难的。如图2-1所示,Cu线上方一般会有两层Low-k介电材料,中间夹有一层阻挡层用于更好地刻蚀出沟槽。整个刻蚀流程为,先在Low-k介电材料表面涂覆PR胶,曝光显影后,干法刻蚀穿透表面硬阻挡层和中间阻挡层直达底部SiN阻挡层,然后重新涂覆一层PR胶,使通孔中保留少量PR胶,刻蚀出沟槽,最后洗去PR胶。中间的阻挡层方便通孔和沟槽的分步刻蚀。图2-1 先通孔后沟槽的刻蚀方法示意图当前上海华力微电子有限公司还发展出了一体化刻蚀方法(All-in-one,AIO)[1],即把上述流程中的通孔刻蚀、去除光刻胶、沟槽刻蚀三个步骤合为一体,在同一道工序中完成,具体工艺流程如图2-2所示,其优点是仅需要3步即可完成,与传统的先通孔后沟槽的工艺质量相比,其在小平面控制、光刻胶选择比、通孔边缘粗糙度等方面也有着较大的优势。图2-2 一体化刻蚀方法示意图目前大马士革工艺对光刻精度的要求越来越高,由于Low-k材料是多孔材料,质地较软,容易在高能量的刻蚀下出现侧壁弯曲、阶梯、栅栏等缺陷,故对射频能量、气体流量、压力的控制要求极高,需要经过大量理论计算和实验才能摸索出最优化的光刻条件。不只是光刻,整个大马士革工艺中存在着各种各样的难题,电镀、清洗、等离子体刻蚀、磨平抛光等各个环节都需要精雕细琢,才有助于实现高质量、高可靠性的电路互连,也为大马士革工艺在封装领域的应用奠定良好的基础。以下介绍各类前沿难题与突破,综合论述大马士革在应用时要重点关注的问题。3 难题与突破3.1 低电阻通孔制备难题[2]与沟槽布线相比,大马士革通孔线宽更窄,所以很容易产生更大的电阻,对电信号传输造成损耗。为了解决通孔电阻过高的问题,IMEC的Marleen等人将通孔制备为下半部是钨(W)上半部是Cu的复合型金属通孔。如图3-1(a)~(c)所示,通孔的深度为70 nm,介质层采用SiOCH低介电材料,k值为3.0,使用CVD沉积SiC阻挡层,最终获得的通孔线宽/线距为16/16 nm。图3-1(d)为该结构的电阻值,在相同的通孔直径下,W-Cu复合型通孔电阻值明显低于纯Cu通孔,在通孔直径为10 nm时,W-Cu通孔电阻仅为Cu通孔的一半。该工作还对Wu-Cu复合型通孔的热储存性能做了验证,在200℃的N2气氛下保持150 h后可以储存热量1000 h,证明了该结构的可靠性很高。该工作为微电子布线的材料创新提供了新思路。图3-1 W-Cu复合型大马士革通孔制备方法与电阻效果3.2 电迁移失效难题[3]越细小的Cu线宽和线距,越容易出现电子迁移现象。这种现象的原理是,当电流通过Cu线时,会使Cu原子发生迁移,迁移方向与电子移动方向相同,导致的问题称为失效现象,包括两方面:1)移动的Cu原子原来的位置留下了空洞,导致开路,通常以电阻增加10 %作为判定失效的标准;2)移动的Cu原子在其他地方停留,造成连线间的短路,短路会造成严重的逻辑功能紊乱,现象更加明显。迁移路径分为2种,如图3-2所示,下方金属线1宽较大,上方金属线2线宽较小,中间存在通孔,当电子由上至下迁移(金属线2至金属线1)称为顺流电迁移,电子由下至上(金属线1至金属线2)称为逆流电迁移。顺流迁移失效规律单一,更容易检测和改善,但逆流迁移失效原因复杂,不容易改善。2013年,上海交通大学针对电迁移问题,优化了大马士革结构的工艺参数,该工作就是专门针对逆流迁移失效展开研究,并寻找到了改善失效问题的方法。该实验所刻蚀的Low-k材料为SiCOH,阻挡层为SiCN,种子层为TaN/Ta+Cu(其中含Ta材料起到了粘结作用),整个结构Cu线宽为45 nm。图3-2 逆流电迁移截面示意图图3-2中还标记了大马士革结构的重要参数,可将4个参数归纳为2种深径比,有关通孔的深径比W1 = HD/D1,和有关沟槽的深径比W2 = HT/D2。逆流迁移失效的位置通常有2种,通孔底部和通孔斜面。一方面,如果种子层过厚,通孔会提前封口,在底部形成空洞,发生底部失效,经常发生在晶圆边缘;另一方面,如果溅射种子层的方向过于竖直,不利于在通孔斜面(侧壁)上积累种子层,那么斜面上就容易形成空洞,发生斜面失效。经实验与仿真,研究得出结论,减小W1和W2可以有效改善2种失效现象,具体的方法是:1)减小Low-k介质层总厚度HD;2)减小沟槽深度HT;3)增大通孔上方直径D2。当W1低至4.67,W2低至1.85时,可有效避免失效问题。3.3 电镀添加剂优化[4]上海集成电路研发中心有限公司的曾绍海等人在2018年针对电镀铜添加剂进行了研究。电镀添加剂涉及3种试剂,加速剂A,抑制剂S,平坦剂L。根据文献报道,加速剂A通常使用的是聚二硫二丙烷磺酸钠[bis-(3-sodiumsulfopropyl disulfide),简称SPS],SPS可以在铜沉积的电化学反应中参与到电荷转移步骤中,加速电荷转移过程,此外,SPS还可以在表面形成硫化物,加速Cu沉积时晶核的形成。抑制剂S通常使用的是氯离子Cl-和聚乙二醇(PEG),其中PEG可以在阴极表面阻挡活性位的暴露,而吸附在阴极上的Cl-有助于增强PEG的这种阻挡作用[5]。平坦剂L通常使用的是乙二胺四乙酸二钠(EDTA-2Na),因为EDTA含有2个自由电子对,4个亲水羧基基团,这种结构有助于阴极表面催化析氢反应的进行,析氢的气体张力对电镀层的抛光是至关重要的[6]。该工作使用了多种添加剂配方,探究3种成分的比例对Cu电镀层质量的影响,实验结果表明,抑制剂S的比例过高会引起Cu镀层应力的升高,平坦剂L的比例过高会增加Cu镀层内的杂质含量,也会增加Cu镀层的应力,过高的应力不利于Cu镀层的可靠性。最终,A3/S9/L2为最佳的添加剂配方,300℃下的封装级电迁移测试结果达到可靠性要求,大于10年。如图3-3所示,该工作还展示了SRAM产品55 nm技术双大马士革工艺的版图,通孔直径70 nm,沟槽宽度150 nm,电镀设备为12英寸Sabre品牌设备。图3-3 SRAM产品版图和TEM图像3.4 Ni污染现象[7]2019年,上海华力集成电路制造有限公司的陈敏敏等人研究了金属Ni污染对大马士革刻蚀过程的影响。在干法、湿法刻蚀过程中,很多化学试剂中含有成分为金属Ni的杂质,超标的Ni会严重影响刻蚀图形形貌,如图3-4所示,在光刻前用含Ni的清洗剂和无Ni清洗剂处理后的大马士革腔体形貌有很大区别,Ni的污染导致了光刻时聚合物颗粒的形成。该工作详细讨论了Ni污染的机理:金属Ni与CO气氛反应生成Ni(CO)4,会降低PR胶的刻蚀率,造成光刻胶的残留,然后会生成聚合物杂质。虽然我们使用的接触式光刻机不会涉及CO气体,该工作提出的反应机理也只是推测,理由源于文献的引证,缺乏确凿的证据,但仍然要警惕Ni单质会直接影响刻蚀速率的可能性,对于目前的光刻工艺还是有一定的指导意义。图3-4 (a) Ni污染的腔体;(b) 无污染腔体的SEM图像该工作为目前中道线工艺优化提供了一个思路:刻蚀形貌不理想有可能是原料纯度问题。原材料的纯度虚报在工业生产中屡见不鲜,只有通过购买后二次检测才能获得更真实的原材料信息。原材料成分精确的检测方法有:电感耦合等离子体质谱分析(ICP-MS),原子发射光谱分析(OES),X射线荧光分析(XRF)等。而我们常用的电镜能谱(EDX)精度较低,X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)等方法检测对象较局限,不推荐用于原料成分的精细检测。3.5 等离子体损伤难题[8]2019年,中科院大学的赵悦等人从天线扩散效应出发,提出了改善大马士革等离子体损伤的方法。干法刻蚀和Low-k材料沉积的过程需要使用到等离子体技术,但高能量的等离子体会导致充电损伤,降低体系的可靠性。其原理是福勒-诺德海姆(FN)隧穿过程,由于等离子体携带高能光子,当光子能量超越Low-k材料的禁带宽度时,会令材料的电子从价带跃迁至导带,形成短路,所有Cu连线作为一个等势体,会从各个方向收集Low-k介电材料的电荷,所以收集电荷的面积大于连线上表面面积,从而增大了从Cu流向栅极的电流,使栅氧化层可靠性降低。这种电流放大的效应就是天线扩散效应。该工作展示了大马士革工艺的介质层结构,如图3-5所示,各金属层间介质为Low-k材料FSG与一层SiN阻挡层,而最上面是正硅酸乙酯TEOS。TEOS为常用的简单介质层,因为上表面并不需要考虑寄生电容,只需要起到防氧化、防腐蚀作用即可,TEOS完全水解后会形成极细的SiO2,起到保护作用。与FSG相比,上表面的TEOS层不容易被等离子体损伤,原因有:1)PECVD沉积时,TEOS使用的是He气氛,FSG使用的是N2气氛,N2激发的光子更容易诱发损伤;2)TEOS沉积时的腔体压强往往比FSG沉积的压强大很多,能有效缓冲离子轰击。图3-5 大马士革介质层结构示意图该工作提出了有效的等离子体损伤改善方法,一方面需要尽量减少单层的Cu面积,把大面积的Cu布线利用通孔分成多层布线(跳线法);另一方面需要增加电流泄放路径,连接到保护二极管结构,如图3-6所示。故在前期的设计阶段就要充分考虑天线扩散效应,在天线比计算中引入扩散比,增强系统的可靠性。图3-6 电流泄放路径示意图3.6 CMP选择比难题[9]大马士革工艺的表面磨平抛光是一项难题,尤其近年来热门的Hybrid bonding技术要求表面足够光滑才能实现键合,目前使用的磨平技术是化学机械抛光(CMP)。2017年,Merhej等人研究了大马士革工艺中金属与介电材料CMP过程的重要参数:材料去除率(MRR),表示一种材料在CMP过程中去除的速率,单位nm/min。如图3-7,该工作在SiO2介电层中嵌入了Au互连线,最小线宽70 nm,深度50 nm,整个流程与传统的光刻工艺相同,构造了一层单大马士革结构。要想得到第8步Au-SiO2共存的光滑平面,必须要使用最优化的Au和SiO2相对的MRR之比。该工作的CMP分为2步,分别是第7步的多余Au去除,这步只涉及纯Au表面,和第8步Au-SiO2共存表面的抛光。经过实验验证,得到了最优化的CMP参数,涉及4个重要因素:1)时间,纯Au去除60 s,Au-SiO2抛光180 s;2)压力,P = 300 g/cm2;3)转速,Vpad = 50 rpm,Vhead = 40 rpm;4)浆料流量,Dslurry = 25 mL/min。最后可得Au的MRR为 40 nm/min,SiO2的MRR为20 nm/min,故Au/SiO2去除选择比为2。使用原子力显微镜(AFM)对表面粗糙度进行表征,所得结果RMS roughness为1.06 nm。该结果对提升本地CMP工艺能力有很大的参考价值。图3-7 70 nm线宽Au-SiO2大马士革工艺流程图4 发展建议与展望虽然大马士革工艺目前已有了很多突破,但仍有诸多难题有待解决,例如,FSG和SiO2刻蚀的方法在其他Low-k介质层材料中的普适性问题、电镀添加剂配方对于多种线宽的普适性问题以及CMP原位实时的粗糙度检测问题等。大马士革工艺的能力依然有很大的提升空间。大马士革在前道生产中应用广泛,在后道封装领域应用较少,但随着前道后道一体化的推进,我们开发大马士革工艺是有必要的,综合上述难题及研究进展,我们开发大马士革工艺应该重点从3个方面入手:1)刻蚀能力,我们目前只有Si刻蚀相关的技术,需要配备SiO2、FSG、F-PI等介电材料刻蚀相关的设备及原材料;2)电镀能力,我们目前拥有湿法电镀的技术,但仍需要结合大马士革的工艺需求对电镀添加剂成分进行优化;3)CMP能力,我们尚无较好的CMP设备,对粗糙度的检测也只用到了台阶仪,应考虑引入CMP设备及AFM表征渠道。大马士革工艺的开发将有利于混合键合技术的开发,是该技术中不可缺少的一环,更有利于增加前道与后道工艺的兼容性,扩大产品订单的种类。大马士革工艺与目前中道线的刻蚀-电镀技术有相似之处,可以在中道线的基础上增添或升级必要的设备,不用从头建立新的产线,具有较高的可行性。近年来,中科芯努力耕耘CPU、FPGA、DSP、存储器、微系统等领域,“十三五”期间在CPU、FPGA、DSP、存储器、DDS、微系统及封装技术领域都取得了显著的成绩,在“十四五”规划中也对相关重点发展方向提出了更高的要求。未来所制造的芯片性能会越来越强大,与之共存的是,芯片之间的互连密度也将迅速攀升。从晶圆制造栅极尺寸14 nm开始,前道工艺节点的演化已经开始变慢,与此同时,封装层面的布线尺寸进步开始加速,从50/50 μm的再布线线宽/线距迅速缩小到5/5 μm,并向着1/1 μm以下的趋势发展。届时,常规的晶圆级PI-Cu布线已经很难满足工艺需求,必须将大马士革布线技术引进至后道封测产线,配合更加精细的焊盘尺寸,实现芯片与封装基板之间的Si基互连。虽然低k值的SiO2介质层成本比PI高,但可靠性和制造灵活性也是PI介质层不可比拟的,各种先进封装技术将在SiO2介质工艺的支撑下实现完美兼容,例如,TSV转接板、内嵌桥芯片、带核基板等部分的组装,都将克服PI旋涂工艺的困难,利用SiO2-CVD沉积的方式,与各类功能性芯片进行灵活的异构集成。由此可见,大马士革布线工艺是后道先进封装技术发展的关键环节之一,而在此方面中科芯具有较大的优势,由于中科芯具备设计-制造-封测-组装全产业链,拥有较为成熟的前道晶圆制造和后道封测工艺基础,将前后道进行技术融合将有利于促进大马士革工艺在后道的落地,全面提升中科芯芯片产品的性能。参考文献:[1] 盖晨光. 40nm一体化刻蚀工艺技术研究. 半导体制造技术, 2014, 39: 589-595.[2] M. H. van der Veen, O. V. Pedreira, N. Heylen, et al. Exploring W-Cu hybrid dual damascene metallization for future nodes, 2021 IEEE International Interconnect Technology Conference, 2021: 6-9.[3] 唐建新, 王晓艳, 程秀兰, 45 nm双大马士革Cu互连逆流电迁移双峰现象及改善, 半导体技术, 2013: 153-158.[4] 曾绍海, 林宏, 陈张发等, 55 nm双大马士革结构中电镀铜添加剂的研究, 复旦学报(自然科学版), 2018, 57: 504-508.[5] M. Tan, J. N. Harb, Additive behavior during copper electrodeposition in solutions containing Cl-, PEG, and SPS, J. Electrochem. Soc., 2003, 150: C420-C425.[6] S. Mohan, V. Raj, The effect of additives on the pulsed electrodeposition of copper, T. I. Met. Finish., 2005, 83: 194-198.[7] 陈敏敏, 张年亨, 刘立尧, 金属镍污染对大马士革刻蚀的影响, 中国集成电路, 2019, 244: 57-87.[8] 赵悦, 杨盛玮, 韩坤等, 大马士革工艺中等离子体损伤的天线扩散效应,半导体技术, 2019, 44: 51-57.[9] M. Merhej, D Drouin, B. Salem, et al, Fabrication of top-down gold nanostructures using a damascene process, Microelectron. Eng., 2017, 177: 41-45.
  • 液态金属还原氧化石墨烯在生物传感中的应用
    Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing布鲁克纳米表面仪器部 李勇君 博士自室温和近室温液态金属(LMs)出现以来,此类材料因其软流体性质、高电子和热导率特性而受到研究者们越来越多的关注。其中,镓及其共晶合金因其低毒性和低蒸汽压等特性成为了LMs家族的典型代表之一,其可用于驱动表面化学反应,设计纳米结构等应用。到目前为止,众多研究者已经在 LMs 表面探索了多种反应,以生成基于层状材料和纳米粒子等不同涂层,但其表面在暴露于氧的情况下易形成天然氧化层而快速钝化,形成损害LMs导电性的绝缘表面,从而限制了在电化学和电子系统中的应用。因此,在LMs表面建立导电层,以实现高导电界面是对于需要电子、电荷转移这类应用的一种有前景和十分重要的策略。2021年11月,澳大利亚新南威尔士大学和中国香港大学的研究人员通过共晶镓(Ga)-铟(In)液态金属(EGaIn)与氧化石墨烯(GO)的界面相互作用成功实现了衬底上、单独GO的还原(rGO),合成了基于rGO与LM的核-壳复合材料(LM-rGO)。进一步,研究者通过布鲁克公司的原子力显微镜(AFM)、 峰值力扫描电化学显微镜(PF-SECM)、纳米红外光谱(nanoIR)、X射线能谱(EDS)等技术系统、详细地表征和讨论了LM对GO的还原能力,LM-rGO界面的相互作用,LM的界面传递,以及LM-rGO的电化学性能等,证实了LM−rGO是一种有效的功能材料和电极改性剂。最后,研究者基于LM-rGO开发出来的纸基电极实现了抗生物干扰的多巴胺选择性传感,展示了该低成本技术的商业应用前景。该项研究工作最终以“Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing”为题发表在2021年11月的《ACS NANO》杂志上。原文导读:研究背景:在过去十年中,自室温和近室温液态金属(LMs)出现以来,其在治疗学、微流体学、材料合成和催化等多个研究学科中得到了广泛的应用。作为LM家族的代表,镓及其共晶合金因其低毒性和低蒸汽压而倍受关注。具体而言,Ga基LMs的可调表面特性以及柔软、动态的界面使其成为合成多种材料的理想反应介质。基于Ga的LMs的另一个独特特性与Ga的不同氧化状态有关,这使得能够在电解或电流调节中调整氧化还原介导的合成路线。在界面上,LMs通常用于两种设想的合成路线:①作为柔软的超光滑模板,然后从表面剥离目标材料,②作为反应点和稳定载体,用于生成颗粒。将所有这些优点结合在一起,基于Ga的LMs可被视为有效的功能载体,为功能化合物的保留和生成提供了多功能界面。还原氧化石墨烯 (rGO) 是常用、流行的平面材料之一,其具有高导电性和跨平面的机械强度等特点。尽管研究者们已经提出了许多用于rGO 生产的方法,但开发一种高度可控的在室温下可行,并且对试剂的需求最少的还原方法仍然具有很大的前景。凭借其超反应性界面,可提供两种自由电子和离子,LMs 可能可以提供这样的反应介质,使 GO 薄膜和各种厚度的GO膜能够在室温下实现还原。一方面,LMs的动态可再生界面可用作重复使用的还原GO试剂,从而在无需任何外部输入(特别是施加电压)的情况下将成本和废物产生降至最低。 另一方面,LMs 的非极化表面可以轻松地从其表面捕获产生的 rGO,无需额外的化学步骤及可形成LM-rGO核-壳复合结构。在本研究中,研究者探索了共晶镓-铟 (EGaIn)和 GO 薄片之间的界面相互作用,考虑了不同的方法:包括利用 LMs 块体作为反应模板来还原GO 和利用LMs微颗粒作为的小型反应位点来合成复合材料。对于这两种情况,研究者都对 LMs表面的 rGO 进行了广泛的表征,以全面了解还原 rGO的特征和组成。 最后,研究者将合成的LM-rGO 微颗粒复合物用于标准电化学电池和电化学纸基分析装置 (ePAD) 中的传导表面改性修饰剂,用于在存在其他生物干扰的情况下对多巴胺 (DA) 进行选择性生物传感和检测。结果及讨论:为了研究LM对GO的界面影响,研究者考虑了不同的实验条件,包括使用LM块体作为软介质来还原不同厚度的GO膜、单独的膜,以及利用LM微液滴作为还原剂核心来生成LM-rGO核−壳复合结构。1. 衬底上GO膜的LM还原研究图1 a, 显示了衬底(Si/SiO2)上GO放入LM中还原的方法。通AFM表征还原前后的GO单层膜发现:LM处理后,单层膜膜厚从1.2 nm减小到了0.6 nm,膜厚的减小可归因于GO还原后变形的sp3碳结构和各种含氧官能团的去除。另外,通过对另外两个GO和rGO样品的AFM图像进行厚度统计分析,研究者进一步证实了暴露于LM后GO单层的厚度减少(图2,原文补充信息Figure S2)。在石墨结构的拉曼光谱中,D带(ID)和G带(IG)的强度之比被认为是石墨烯层内缺陷的指标,拉曼光谱显示LM还原前后的ID/IG从0.89变化到1.2,同时结合ID/IG拉曼成像(图1. d、e)可以进一步确认LM相对均匀地还原了GO单层。在这种方法中,LM大部分在设计的原电池中既是导体又是电解液。换句话说,导体本身可以提供一个充满离子和反应性金属位置的环境,而不是使用外部介质来移动负责电偶反应的电荷载体。LMs的柔软性还提供了液体块体和目标基板之间的有效界面接触,使所需的金属物种易于在表面上接触。图1. (a)基于衬底的GO的LM还原方法示意图 AFM图像:(b)暴露于LM前的GO样品和(c)LM反应后获得的rGO样品 (d)衬底上的GO和(e)浸入LM后获得rGO的拉曼光谱测量,D带和G带的表面拉曼成像及相应的ID/IG成像。图2. Si/SiO2衬底上不同样品的AFM成像和厚度分析:(a-b)LM还原前的GO样品和(c-d)LM还原后的rGO样品。2. 单独GO膜的LM还原研究为了进一步探索开发的基于LM的工艺能力,研究者探索了其独立薄膜GO的LM还原潜力。图3 a,显示了制备独立GO膜的LM还原方法。拉曼光谱证实了还原的有效性(图3c)。为了研究暴露于EGaIn前后表面官能团的分布,转移的厚rGO样品(~1.6 μm, 原文Figure S3-nanoIR表征的测量膜厚度)被进一步通过纳米红外光谱(nanoIR)进行了表征。如图3d所示,纳米红外成像是一种基于AFM的高空间分辨率化学成像和光谱研究技术,其中脉冲红外激光用于产生光热诱导共振和热膨胀。光吸收引起的膨胀激发了AFM悬臂梁的共振振荡,悬臂振荡的振幅正比于相应波长的红外光谱吸收。该技术被用于在高空间分辨率下评估GO和rGO样品中表面官能团的分布。从GO的纳米红外光谱(图3f)中可以看出,羰基峰1730 cm−1(C=O)具有很高的纳米红外振幅, 纳米红外成像也显示了GO表面上相对均匀的羰基分布。另外,GO样品的纳米红外光谱在1615 cm−1处也显示出明显的峰值,对应于GO中的C=C。同样,纳米红外光谱成像也显示了C=C分布的均匀性。GO和rGO之间的主要区别在于:rGO样品纳米红外光谱中羰基峰的消失(图3e),证实了厚GO样品的成功还原。纳米红外光谱中剩余的C=C振动(1593 cm−1),源自石墨烯环,在rGO纳米红外成像中也显示出高振幅和适当的分布(图2e)。最后,表征研究结果证实基于LM还原工艺也可以用于生成独立的rGO膜。图3.(a)单独GO的LM还原方法示意图 (b)单独GO膜的照片;(c)在暴露于LM之前和之后的GO薄膜拉曼光谱 (d)纳米红外光谱原理示意图 (e)浸入LM后获得rGO的纳米红外光谱、AFM表面形貌、偏转信号和C=C分布纳米红外成像 (f)浸入LM前GO的纳米红外光谱、AFM表面形貌、偏转信号和C=O、C=C分布纳米红外成像。3. LM-rGO复合材料的制备及表征为了探究GO还原过程的适用性,并在实际功能应用中了解LM微颗粒的还原能力,研究者进一步研究了在酸性GO悬浮液中通过超声波处理制备的LM-rGO复合材料。其合成过程的示意图如图4a所示。研究者通过透射电镜(TEM)证实并研究了LM-rGO核-壳结构,如图4b所示,球形LM颗粒被稳定的石墨片壳包裹,这表明粒子和LM颗粒表面的有效相互作用。另外,研究者也通过X射线能谱(EDS)完成了Ga, In,C,O元素的分析,EDS结果进一步证实了LM颗粒表面存在碳层和rGO片层的全覆盖。图4. (a) LM-rGO复合材料合成过程示意图 (b)LM-rGO核−壳结构的TEM图像 (c) SAED分析和HR-TEM图像 (d) LM-rGO不同放大倍数和角度下的SEM图 (e) LM-rGO表面的镓、铟、碳和氧元素的EDS成像。另外,为了收集更多关于合成复合材料元素组成的信息,研究者通过X射线光电子能谱(XPS)也对GO和LM-rGO复合材料进行了详细的研究。研究者也通过传统宏观傅里叶红外光谱(FT-IR)对LM-rGO表面官能团进行了研究,表明GO含氧官能团被广泛去除。4. LM-rGO复合材料的电化学行为由于LM-rGO复合材料具有高表面积、高活性界面和导电性等特点,可将合成的材料作为电活性改性修饰剂。因此,研究者在玻璃碳电极(GCE)和丝网印刷纸电极(PEs)上进行了大量的电化学性能评价,以探索LM基改性剂与纸张技术的相容性,以及开发低成本生物传感器的可能性。在这两种情况下,研究者采用电化学行为已知的亚铁氰化钾作氧化还原探针,并从电化学阻抗谱(EIS)响应、电活性表面积的变化等方面评估了改性剂对电化学性能的影响,并利用循环伏安法、微分脉冲伏安法、方波伏安法等多种电化学技术进行了表征。结果显示:LM-rGO改性修饰后的电极优于GCE和PE裸电极,证实了改性剂LM-rGO的优良电化学特性。另一方面,研究者也通过峰值力扫描电化学显微镜(PF-SECM)在纳米尺度对LM- rGO复合材料与电解溶液的界面电导率进行了评估,并研究了其表面的局部电化学活性。在PF-SECM方法中,利用AFM探针的纳米尖端和利用样品表面与针尖之间发生的可逆氧化还原反应,可以研究电荷转移的动力学。AFM探针纳米尖端可以实现表面高空间分辨率的电化学成像。PF-SECM操作示意图如图5a (原文Figure S9),PF-SECM工作在布鲁克专利的峰值力轻敲(PFT)模式下,该模式下纳米探针在一定振幅和频率下振荡,以收集样品的形貌和导电性等信息。PF-SECM模式使用“interleave mode”,在每个振荡实例中,探针被提升到样品上方250 nm的距离。当探针从样品表面提升时记录探针尖端电流,而该探针在样品表面一定距离的电流,可用来表征样品表面电化学活性。本研究中,六胺钌氧化还原反应被用于PF-SECM成像。图5b显示了LM-rGO复合材料的形貌。图5c显示了与样品表面接触时的针尖电流,该电流既反映了样品在电解溶液中的界面局部电导率,又反映了样品表面的电化学活性。纯电化学活性数据(图5d)为AFM探针从样品表面250 nm提升高度处的探针测量电流,这证实了电荷转移可能发生在整个表面。LM-rGO微颗粒边界具有较大电化学活性,并与附近颗粒的壳相互连接。边界处电流的轻微增加是由于这些边界代表样品中的低洼区域(如山谷形状),具有高有效表面积,可再生还原剂六胺钌。PF-SECM测量结果显示LM-rGO在纳米尺度具有良好的整体电化学活性,电流可达1.7 nA。图5. PF-SECM原理和LM-rGO粒子PF-SECM分析结果:(a)PF-SECM工作原理示意图(RE、CE和WE分别对应于参比电极、对电极和工作电极);(b) LM-rGO微粒的AFM图像;当针尖位于样品表面(c)(此处的电流代表界面电导率和电化学活性)和距离样品表面250 nm高度(d)(代表样品和电解质之间界面的电化学活性)时,针尖电流成像。5. 多巴胺的选择性传感在完成了前述的详细研究后,在抗坏血酸(AA)和尿酸(UA)存在的情况下,研究者采用了多巴胺(DA,重要的神经调节剂之一)进行了LM-rGO修饰电极用于DA检测的适用性和选择性评估。LM-rGO修饰,rGO修饰 (ErGO)和裸GCE电极的电化学EIS光谱被用来显示LM- rGO复合物中每个组件的作用。如图6a所示,ErGO显示表面DA反应的Rct值仍然较高(50.7Ω)。然而,在LM-rGO中, Rct值为20.3 Ω。这一观察结果证实了LM在系统电化学性能中的作用,与ErGO相比,LM产生的混合物对电荷转移的阻力更小。为了探索LM-rGO的作用,研究者将修饰剂、裸电极和修饰电极暴露于含有DA、AA和UA混合物的溶液中,然后记录了电化学信号(DPV和CV)。图6b、c、h显示了从裸电极, LM-rGO 修饰GCE和 PE的信号。结果可以看出:对于裸电极,DA、AA和UA的氧化还原峰显示出重叠和接近。然而,在修饰后,在不同的电位窗口中可观察到每种化合物相应的分离峰,因而证实在存在其他干扰化合物的情况下,直接测定DA成为可能。另外研究者也通过FT-IR测量了DA、AA和UA与LM-rGO的特定相互作用(图5f)。LM-rGO的FT-IR光谱显示,LM-rGO在低波数区(低于900 cm-1)尤其是在667 cm-1(代表Ga−OH基团) 表现出剧烈变化。LM-rGO表面的Ga−OH还原仅在存在AA中观察到,这为选择性峰移机制提供了证据。UA向高电位的选择性转移来源于LM-rGO表面剩余负电荷基团和带负电荷的UA分子之间的电荷排斥作用。因此,这种表面相互作用因为AA和UA的峰移,从而增强了DA的选择性。为了获得最大的传感响应,研究者对修饰材料的用量进行了优化。在最佳修饰膜厚度下,研究者获取了LM-rGO修饰GCE和PE的DA定量测定校准曲线。根据图6d,i中提供的结果,该传感器可定量测量100 nM至1500μM(GCE)和400 nM至750μM(PE)范围内的DA浓度水平,GCE和PE的灵敏度分别为30和100 nM。与GCE相比,尽管PE具有更高的电活性表面积,但观察到的动态范围更窄,灵敏度更低,这是由于PEs中已知的耗尽效应和有限的扩散。在不同浓度水平的DA和其他干扰化合物(包括AA、UA和葡萄糖(GLU),高浓度1.0 mM)共存的情况下,研究者也对界面选择性也进行了评估。图6e结果显示,DA的原始信号不会受到其他干扰物的影响,目标分析物DA的测量具有良好的选择性。最后,研究者在人血清样本中进一步研究了该传感器用于DA生物传感的适用性和选择性,结果证明:研究者设计的传感器在如此复杂的生物基质中的具有良好的准确度和精确度。图6.(a)裸GCE(i),LM-rGO修饰的GCE(ii)和ErGO修饰GCE(iii)的EIS光谱(DA用作电化学探针);LM-rGO对GCE表面进行修饰前后,含有AA、DA和UA的混合物的CV(b)和DPV(c)信号;(d) LM-rGO修饰GCE的校准曲线,DA浓度从0到1500μM不等;(e)LM-rGO修饰GCE上进行的DA选择性试验,AA和UA浓度为1 mM;(f)LM-rGO,LM-rGO暴露于AA、UA和DA的FT-IR光谱;(g)ePAD的结构图像和 LM-rGO修饰前后PE表面的显微图像;(h)LM−rGO进行表面修饰前后,含有DA、UA和AA混合物的DPV测量信号;(i)LM-rGO修饰PE的校准曲线,DA浓度从0到750μM不等;分别使用Ag/AgCl和碳准参比电极测量从GCE和PE获得的电化学信号。 研究结论:在本研究中,研究者探索了室温LMs和GO薄片之间的界面相互作用。证明了LM和GO之间存在很强的电偶相互作用,这可以用于生成rGO单层膜和rGO厚膜。研究者对所制备的rGO样品进行了AFM,nanoIR, EDS和PF-SECM等详细表征,实验结果确认通过LM能均匀有效地还原GO薄片。研究者所提出的基于LM的rGO生产方法,有望实现rGO独立膜和衬底支撑单层膜的简易合成。此外,这种界面作用也被用于合成LM-rGO核−壳复合结构。研究者对LM-rGO修饰电极进行的电化学表征显示在AA和UA存在下LM-rGO修饰电极对DA具有良好的选择性,可用于生物传感。总之,本研究显示了LMs对GO薄片室温的还原能力,以及展示了构建功能性应用的可能性。类似利用LMs的界面特性的工艺,可以在未来的研究和工业应用中具有大量潜在应用前景。Bruker公司的AFM,nanoIR,PF-SECM,EDS等纳米技术手段因其高空间分辨率的形貌,纳米光谱和化学成像,纳米电化学,纳米元素分析的能力,将为各类复合材料纳米结构的界面研究提供新的多样化表征手段和研究方法。原文链接:Mahroo Baharfar, Mohannad Mayyas, Mohammad Rahbar, Francois-Marie Allioux, Jianbo Tang, Yifang Wang, Zhenbang Cao, Franco Centurion, Rouhollah Jalili, Guozhen Liu, and Kourosh Kalantar-Zadeh,Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing,ACS Nano,(2021)15 (12), 19661-19671https://pubs.acs.org/doi/10.1021/acsnano.1c06973?ref=PDF
  • 快速退火工艺在欧姆接触中的应用RTP
    作为新一代半导体的代表材料,氮化镓(GaN)具有大禁带宽度、高临界场强、高热导率、高载流子饱和速率等特性,是制造高功率、高频电子器件中重要的半导体材料。其中,GaN材料与金属电极的欧姆接触对器件性能有着重要的影响,器件利用金属电极与GaN间接触形成的欧姆接触来输入或输出电流。当欧姆接触电阻过高时会产生较多的焦耳热,缩短器件寿命,而良好的欧姆接触可使器件通态电阻低,电流输出大,具有更好的稳定性。退火温度影响欧姆接触质量氮化镓欧姆接触的制备通常需要进行退火处理,退火的目的是通过热处理改变材料的结构和性质,使金属电极与氮化镓之间形成低电阻接触。而金属与GaN之间形成欧姆接触的质量受退火条件的影响,良好的欧姆接触图形边缘应保持平整,电极之间不应存在导致短路的金属粘合,退火完成后不会出现金属的侧流。(a) 退火前欧姆接触形态 (b)退火后欧姆接触形态(图源网络)退火温度作为影响欧姆接触性能的重要参数,温度过高或过低都会导致电阻率的增加和电流的减小。一般来说,退火温度越高,金属电极与氮化镓之间的比接触电阻率则越低。比接触电阻率与退火温度的函数关系(图源:知网)然而,当退火温度过高则可能导致氮化镓材料的损伤或金属电极的熔化,不利于形成好的欧姆接触;当温度过低时会导致金属与半导体之间形成较高的势垒,阻碍载流子的传输。因此在对GaN欧姆接触进行退火处理时,对于退火温度的条件选择尤为重要。快速退火炉(RTP)原理:快速退火炉(RTP)是一种用于半导体器件制造和材料研究的设备,其工作原理是通过快速升温和降温来处理材料,以改变其性质或结构。RTP结构示意图(图源网络)晟鼎快速退火炉(RTP)优势RTP快速退火炉具有温度控制精确、升温速度快等优点,可以满足欧姆接触对温度敏感的材料和结构的需求。晟鼎快速退火炉制程范围覆盖200-1250℃,具有强大的温场管理系统,此外,还能灵活、快速地转换和调节工艺气体,使得其在同一个热处理过程中可以完成多段处理工艺。晟鼎快速退火炉RTP温度控制—1000℃制程半自动快速退火炉RTP-SA-12为半自动立式快速退火炉,工艺时间短,控温精度高,相对于传统扩散炉退火系统和其他RTP系统,其独特的腔体设计、先进的温度控制技术和独有的 RL900软件控制系统,确保了极好的热均匀性。产品优势◎红外卤素灯管加热,冷却采用风冷◎大气与真空处理方式均可选择,进气前气体净化处理◎灯管功率 PID 控温,可精准控制温度升温,保证良好的重现性与温度均匀性全自动双腔退火炉RTP-DTS-8相对于传统扩散炉退火系统和其他 RTP 系统,其独特的腔体设计、先进的温度控制技术和独有的RL900 软件控制系统,确保了极好的热均匀性。产品优势◎红外卤素灯管加热,冷却采用风冷 ◎灯管功率 PID 控温,可精准控制温度升温,保证良好的重现性与温度均匀性 ◎大气与真空处理方式均可选择,进气前气体净化处理 ◎标配两组工艺气体,最多可扩展至 6 组工艺气体桌面型快速退火炉RTP-Table-6 为桌面式 6 英寸晶圆快速退火炉,使用上下两层红外卤素灯管作为热源加热,内部石英腔体保温隔热,腔体外壳为水冷铝合金,使得制品加热 均匀,且表面温度低。 RTP-Table-6 采用 PID 控制,系统能快速调节红外卤素灯管的输出功率,控温更加精准。产品优势◎双层红外卤素灯管加热,氮气快速降温◎自主研发灯管分组排布,使温度均匀性更好 ◎采用PID 算法控制,实时调节灯管功率输出 ◎软件主界面能实时显示气体、温度、真空度等参数◎自动识别错误信息,出现异常时设备自动保护
  • EZ 系列铁/锰在线分析仪在自来水过滤工艺中的应用
    EZ 系列铁/锰在线分析仪在自来水过滤工艺中的应用哈希公司EZ6000 痕量金属分析仪当前痛点铁和锰的浓度突变通常可以用于表征自来水处理过程中砂滤工艺的性能。常规的实验室分析仪铁和锰的过程有延时的特点,难以高效准确的用于指导砂滤工艺的管理和维护。解决方案Hach EZ系列分析仪能够测量多达8个样品流,短时间内提供关于铁或锰的连续检测数据。丹麦的研究人员正在利用相关产品从根本上设计水处理的过滤工艺。相关效益当进行过滤器反清洗时,Hach EZ系列分析仪能够提供快速、及时的数据或报警,从而能够优化工艺流程,令宕机时间最小化;保护水质且降低成本。能够避免潜在的水质风险,自来水厂也能够更好的评估新的过滤器性能和相关技术。 Hach EZ 系列在线比色原理分析仪能够为用户全天候检测各种参数。自来水工艺中的铁和锰是非常重要的两个指标参数,接下来就针对这两个指标的在线监测提供一份应用案例分析报告。1.背景铁和锰通常并存于地表水、地下水等水源中,但锰的浓度通常要低得多。锰天然存在于土壤、大多数地表水和地下水中,由于其在酶的作用中扮演一定的角色,锰元素成为了许多生命体的基本元素。对人类来说,锰的最大来源通常是食物。胃肠道吸收的锰由身体调节以维持体内锰的平衡,因此通过口服获得的锰通常被认为是毒性较小的元素之一。然而根据最近的研究,饮用水中的锰的参考值一直有待商榷。中国大陆针对饮用水的锰含量限值为 0.1mg/L。铁是地壳中一种丰富的金属,主要以氧化物的形式存在。铁离子 Fe2+和Fe3+很容易与含氧和含硫化合物化合,形成氧化物、氢氧化物、碳酸盐和硫化物。铁也是人体必需的微量元素,它在血液和酶中起着至关重要的作用。自来水中的铁和锰河流中的铁浓度通常较低,一般为 0.7 mg/L。处于厌氧的地下水中铁通常以 Fe2+的形式存在,浓度通常为 0.5-10 mg/L,但个别极端浓度可能高达 50 mg/L。饮用水中的铁含量通常低于 0.3 mg/L,这也是中国饮用水标准中铁含量的限值。但在使用铁盐作为絮凝剂的国家以及在配水管网中使用铸铁、钢和镀锌铁管的国家,其饮用水的铁含量可能更高。2.五大监测缘由居民抱怨自来水的变色、异味和固形物是公众投诉饮用水的最常见原因。铁和锰一方面是异味和变色的原因之一,另一方面它们也是变色和异味等问题关键的预警参数。处理这些投诉以及进行调查和实施补救措施的成本可能非常高。浊度在自来水厂中是最常见的预警指标,通过浊度分析仪的报警信号,工作人员可以采取措施将混浊的水从配水管网中分流出来,避免进一步问题升级。但浑浊可能是由各种问题引起的,而铁和锰的增多是由特定问题引起的,因此监测有助于查明原因并给出合适的缓解措施。健康风险铁和锰对健康的危害很小,但是细菌会导致腐蚀并使铁浓度升高从而出现与细菌相关的风险。对人类来说,铁的致死剂量是体重的200-250mg/kg,该剂量会导致大量的胃肠道出血,但铁中毒是非常罕见的,通过饮用饮用水的铁摄入量通常很低,不大会引发健康问题。不过,氧化铁被认为是金属和半金属的有效清除剂,这有可能会导致砷含量的增加,众所周知,砷是一种具有高健康风险的元素。政府监管许多政府或组织(包括饮用水供应商和饮料行业)在相关法规或标准中都会针对铁和锰的最大浓度做相关规定。1998 年 11 月 3 日的关于人类饮用水质量的欧盟饮用水指令98/83/EC表示:就最低要求而言,用于人类饮用的水应是健康和清洁的:(a)不含任何微生物和寄生虫,不含任何数量或浓度的对人体健康构成潜在危险的物质,(b)满足附录 I 里 A 和 B 部分中规定的最低要求。在附录 1 里 C 部分“参数指标”中包括了标准锰含量为0.05mg/L 和铁为 0.2 mg/L。不过之前的大部分指标参数已被移至附录四,该附主附录要涉及消费者的信息。理由是指标参数不提供与健康相关的信息,而是提供消费者感兴趣的信息(如味道、颜色和硬度)。对于那些使用铁盐作为磷酸盐去除混凝剂的废水处理厂,排放批准中也会包括对铁(通常为总铁)含量的限制。美国环保署已经确定了影响饮用水美观但不会对人类健康造成危害的污染物的二级最大污染水平(SMCLs)。SMCLs 不是联邦强制执行的,公共水处理设施不一定非要对其进行监测除非所属州有相关要求。SMCLs规定的铁含量为0.3mg/L,潜在的外观问题包括锈色,沉淀物,金属味,以及红色和橙色的水染色。SMCLs 里的锰含量为 0.05 mg/L,潜在的外观问题为黑棕色,黑色染色 和苦涩的金属味。美国环保署认为,如果这些污染物存在于水中并超出了标准,这些污染物可能会导致人们停止使用来自公共供水系统的水,即使水实际上是可以安全饮用的。因此,二级标准被制定出来以向公共水系统提供一些关于如何将这些化学物质去除到低于大多数人会注意到的水平的指导。此外,一些动物也会拒绝饮用这些气味或者颜色有异常的水源。结垢和腐蚀 处理蒸汽或冷却水的工业装置所使用的铸铁管道和设备易受多种腐蚀机制的影响。机械和 化学腐蚀可以从钢表面剥离和溶解铁,而这种未结合的铁可以沉积在水处理系统的其他点的表 面上,从而导致进一步的腐蚀。通过监测水样中铁的含量能够及时了解管道或锅炉的腐蚀情况 或针对性处理。 降低成本 对于使用铁盐作为絮凝剂的水处理厂来说,这些化学物质可能会带来巨大的成本。因此,尽管使用足够的混凝剂来去除固体很重要,但铁盐也不能被过量投放,因为这样会使过滤器过载,并将残留的铁盐留在水中,这将导致处理成本上升。3.持续监控-工作原理HACH EZ 系列分析仪采用在线比色技术,能够准确可靠地测量关键水质参数。智能,自动化的操作和功能有助于提高分析仪的的分析性能。最小化停机时间并无需操作员干预。机器清洗是自动的,校准和验证频率都可以由用户设置。EZ1000 系列能够同时测量最多 8 个样品流。这样就降低了每个采样点的成本,但是在下达指令时需要保证指令精准详细。EZ1000 铁分析仪使用 TPTZ 试剂,其在反应时会形成很深的蓝紫色,以此测量溶解铁(II)、铁(III)和总溶解铁(II+III),循环时间为 15 分钟,标准测量范围为 0-1 mg/L。但可以通过校准曲线的设置或稀释功能来测量低浓度(0-0.1mg/L)或高浓度(0-10mg/L)的样品。EZ1000 锰分析仪使用甲醛肟法在 450nm 处测量溶解的锰 Mn(II),标准测量范围为 0-1 mg/L Mn,量程同样可以有多种可选,循环时间为 10 分钟。如果客户对于总铁或总锰的含量比较关注,可以选择 EZ2000 系列对应的总铁或总锰分析仪。EZ2000 系列分析仪具有一个内部样品消化装置,能够在分析前提供一个额外步骤用于消解不溶性或复合型金属,从而达到总铁或总锰的分析。4.连续监测的优点一般来说,实验室分析水质指标数据具有较高的可信度。然而,在采样和传递结果之间存在一个时间延迟,并且偶尔采样可能会因为错过了浓度峰值而监测不出风险。在线分析仪由于取样的及时性和分析时间较短的特点,因而能够大大降低这种风险。此外,EZ 系列分析仪提供标准的 4-20mA 信号输出并配有报警程序,正常情况下在量程内的异常浓度都可以被监测到,并将报警信号发送至控制中心。5.连续监测的优点在一个由丹麦环境保护局资助,VIA大学管理的研究和开发项目中,研究人员正在通过重新思考饮用水的生产过程来重新设计水处理方案。该项目的合作伙伴包括Aarhus Water,Vandcenter Syd,Vand&Teknik,Amphi-Bac,Dansk Kvartsindustri 和 NIRAS。该项目的目标是建立一个小而优的自来水厂,其主要特点有:更强大的处理能力 更高的生产效率较短的启动时间 节省能源改善水质在丹麦,饮用水的供应主要来自地下水。政府的立场是饮用水应来自纯净的地下水,这些纯净的水只需要通过简单的通风处理、pH 调整,然后过滤即可进行输送至居民家中。砂滤工艺在丹麦已经使用了 100 多年,该过滤器开发项目的结果将于 2020 年在 IWA 水大会(丹麦)上公布。世界各地的水处理厂普遍采用砂滤器,砂滤器有助于去除悬浮固体和病原体,改善味道和颜色而无需额外的化学物质。这些砂滤器需要通过定期反洗来保持最佳性能,反冲洗能够清除集聚的颗粒并提高流速。然而,反洗过程会打断水处理过程。因此有必要进行监测以优化过滤性能。目前较普遍的做法是针对浊度和流速进行检测,不过化学指标的分析能够为流程情况提供更深入的了解。2018 年,丹麦实施了新的饮用水法规以符合欧盟关于参数、采样频率和采样地点的相关法规。在此之前要求针对出厂水(下限)和用户终端出水进行监测。欧盟法规调整后,用户终端出水不仅需要监测还针对铁和锰这两项指标设置了限值,具体为铁:0.2 mg/L,锰:0.05 mg/L。传统的做法是不定时的采集样本,随后送至实验室分析各项参数水平,当然这也包括铁和锰。如果通过指标数据表明滤池中的污染物无法通过反冲洗来去除,则有必要对滤料进行更换,更换滤料意味着该条生产线的停机,因此是一项耗时耗财的步骤。为更加准确高效的评估和监测滤池工艺的性能,该项目研究者通过在线监测滤池水样中铁和锰的浓度水平,为更加准确掌握滤池工艺状态,他们还对不同滤料层间的水样进行分析。该项目应用的产品有 HACH EZ1024 总溶解铁(Fe(II) 和 Fe(III))分析仪,HACH EZ1025 二价锰分析仪。这些仪器于 2018 年 11 月安装,每小时采样四次。项目初始,每台仪器被设置为每小时从过滤器入口和出口分别抽取两个样品。通过与实验室结果对比发现两者具有良好的相关性。 EZ1024 总溶解性铁(II+III)分析仪工作现场组件:A-工业面板 PC,B-高精度微型泵,C-取样泵,D-排水泵,E-光度VIA 大学的项目经理,高级副教授 Loren Ramsay 说:“监测是饮用水处理研究的重要组成部分。为了保证监测的正确性,必须在处理过程中的多个位置进行频繁的测量。使用具有多通道功能的在线铁锰自动分析仪非常适合我们的需求。我们相信我们的项目成果对整个饮用水处理行业来说都非常有用。”6.总结随着传感器技术的进步,连续监测和实时控制系统有助于优化水行业内的各种处理工艺。在提高工艺性能的同时也可以降低相关成本。随着 HACH EZ 系列在线分析仪的不断优化和进步,如今不仅能实时评估进厂及出厂水的铁锰含量,更重要的是通过对铁锰含量的实时监测侧面反映滤池工艺的性能和状态,这对于更加高效的安排和管理滤池反冲洗操作大有帮助。此外,正如丹麦的案例所展示的一样,锰和铁的连续监测有助于开发新的改进过滤系统。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • EZ 系列铁/锰在线分析仪在自来水过滤工艺中的应用
    EZ6000 痕量金属分析仪当前痛点铁和锰的浓度突变通常可以用于表征自来水处理过程中砂滤工艺的性能。常规的实验室分析仪铁和锰的过程有延时的特点,难以高效准确的用于指导砂滤工艺的管理和维护。解决方案Hach EZ系列分析仪能够测量多达8个样品流,短时间内提供关于铁或锰的连续检测数据。丹麦的研究人员正在利用相关产品从根本上设计水处理的过滤工艺。相关效益当进行过滤器反清洗时,Hach EZ系列分析仪能够提供快速、及时的数据或报警,从而能够优化工艺流程,令宕机时间最小化;保护水质且降低成本。能够避免潜在的水质风险,自来水厂也能够更好的评估新的过滤器性能和相关技术。 Hach EZ 系列在线比色原理分析仪能够为用户全天候检测各种参数。自来水工艺中的铁和锰是非常重要的两个指标参数,接下来就针对这两个指标的在线监测提供一份应用案例分析报告。1.背景铁和锰通常并存于地表水、地下水等水源中,但锰的浓度通常要低得多。锰天然存在于土壤、大多数地表水和地下水中,由于其在酶的作用中扮演一定的角色,锰元素成为了许多生命体的基本元素。对人类来说,锰的最大来源通常是食物。胃肠道吸收的锰由身体调节以维持体内锰的平衡,因此通过口服获得的锰通常被认为是毒性较小的元素之一。然而根据最近的研究,饮用水中的锰的参考值一直有待商榷。中国大陆针对饮用水的锰含量限值为 0.1mg/L。铁是地壳中一种丰富的金属,主要以氧化物的形式存在。铁离子 Fe2+和Fe3+很容易与含氧和含硫化合物化合,形成氧化物、氢氧化物、碳酸盐和硫化物。铁也是人体必需的微量元素,它在血液和酶中起着至关重要的作用。自来水中的铁和锰河流中的铁浓度通常较低,一般为 0.7 mg/L。处于厌氧的地下水中铁通常以 Fe2+的形式存在,浓度通常为 0.5-10 mg/L,但个别极端浓度可能高达 50 mg/L。饮用水中的铁含量通常低于 0.3 mg/L,这也是中国饮用水标准中铁含量的限值。但在使用铁盐作为絮凝剂的国家以及在配水管网中使用铸铁、钢和镀锌铁管的国家,其饮用水的铁含量可能更高。2.五大监测缘由居民抱怨自来水的变色、异味和固形物是公众投诉饮用水的最常见原因。铁和锰一方面是异味和变色的原因之一,另一方面它们也是变色和异味等问题关键的预警参数。处理这些投诉以及进行调查和实施补救措施的成本可能非常高。浊度在自来水厂中是最常见的预警指标,通过浊度分析仪的报警信号,工作人员可以采取措施将混浊的水从配水管网中分流出来,避免进一步问题升级。但浑浊可能是由各种问题引起的,而铁和锰的增多是由特定问题引起的,因此监测有助于查明原因并给出合适的缓解措施。健康风险铁和锰对健康的危害很小,但是细菌会导致腐蚀并使铁浓度升高从而出现与细菌相关的风险。对人类来说,铁的致死剂量是体重的200-250mg/kg,该剂量会导致大量的胃肠道出血,但铁中毒是非常罕见的,通过饮用饮用水的铁摄入量通常很低,不大会引发健康问题。不过,氧化铁被认为是金属和半金属的有效清除剂,这有可能会导致砷含量的增加,众所周知,砷是一种具有高健康风险的元素。政府监管许多政府或组织(包括饮用水供应商和饮料行业)在相关法规或标准中都会针对铁和锰的最大浓度做相关规定。1998 年 11 月 3 日的关于人类饮用水质量的欧盟饮用水指令98/83/EC表示:就最低要求而言,用于人类饮用的水应是健康和清洁的:(a)不含任何微生物和寄生虫,不含任何数量或浓度的对人体健康构成潜在危险的物质,(b)满足附录 I 里 A 和 B 部分中规定的最低要求。在附录 1 里 C 部分“参数指标”中包括了标准锰含量为0.05mg/L 和铁为 0.2 mg/L。不过之前的大部分指标参数已被移至附录四,该附主附录要涉及消费者的信息。理由是指标参数不提供与健康相关的信息,而是提供消费者感兴趣的信息(如味道、颜色和硬度)。对于那些使用铁盐作为磷酸盐去除混凝剂的废水处理厂,排放批准中也会包括对铁(通常为总铁)含量的限制。美国环保署已经确定了影响饮用水美观但不会对人类健康造成危害的污染物的二级最大污染水平(SMCLs)。SMCLs 不是联邦强制执行的,公共水处理设施不一定非要对其进行监测除非所属州有相关要求。SMCLs规定的铁含量为0.3mg/L,潜在的外观问题包括锈色,沉淀物,金属味,以及红色和橙色的水染色。SMCLs 里的锰含量为 0.05 mg/L,潜在的外观问题为黑棕色,黑色染色 和苦涩的金属味。美国环保署认为,如果这些污染物存在于水中并超出了标准,这些污染物可能会导致人们停止使用来自公共供水系统的水,即使水实际上是可以安全饮用的。因此,二级标准被制定出来以向公共水系统提供一些关于如何将这些化学物质去除到低于大多数人会注意到的水平的指导。此外,一些动物也会拒绝饮用这些气味或者颜色有异常的水源。结垢和腐蚀 处理蒸汽或冷却水的工业装置所使用的铸铁管道和设备易受多种腐蚀机制的影响。机械和 化学腐蚀可以从钢表面剥离和溶解铁,而这种未结合的铁可以沉积在水处理系统的其他点的表 面上,从而导致进一步的腐蚀。通过监测水样中铁的含量能够及时了解管道或锅炉的腐蚀情况 或针对性处理。 降低成本 对于使用铁盐作为絮凝剂的水处理厂来说,这些化学物质可能会带来巨大的成本。因此,尽管使用足够的混凝剂来去除固体很重要,但铁盐也不能被过量投放,因为这样会使过滤器过载,并将残留的铁盐留在水中,这将导致处理成本上升。3.持续监控-工作原理HACH EZ 系列分析仪采用在线比色技术,能够准确可靠地测量关键水质参数。智能,自动化的操作和功能有助于提高分析仪的的分析性能。最小化停机时间并无需操作员干预。机器清洗是自动的,校准和验证频率都可以由用户设置。EZ1000 系列能够同时测量最多 8 个样品流。这样就降低了每个采样点的成本,但是在下达指令时需要保证指令精准详细。EZ1000 铁分析仪使用 TPTZ 试剂,其在反应时会形成很深的蓝紫色,以此测量溶解铁(II)、铁(III)和总溶解铁(II+III),循环时间为 15 分钟,标准测量范围为 0-1 mg/L。但可以通过校准曲线的设置或稀释功能来测量低浓度(0-0.1mg/L)或高浓度(0-10mg/L)的样品。EZ1000 锰分析仪使用甲醛肟法在 450nm 处测量溶解的锰 Mn(II),标准测量范围为 0-1 mg/L Mn,量程同样可以有多种可选,循环时间为 10 分钟。如果客户对于总铁或总锰的含量比较关注,可以选择 EZ2000 系列对应的总铁或总锰分析仪。EZ2000 系列分析仪具有一个内部样品消化装置,能够在分析前提供一个额外步骤用于消解不溶性或复合型金属,从而达到总铁或总锰的分析。4.连续监测的优点一般来说,实验室分析水质指标数据具有较高的可信度。然而,在采样和传递结果之间存在一个时间延迟,并且偶尔采样可能会因为错过了浓度峰值而监测不出风险。在线分析仪由于取样的及时性和分析时间较短的特点,因而能够大大降低这种风险。此外,EZ 系列分析仪提供标准的 4-20mA 信号输出并配有报警程序,正常情况下在量程内的异常浓度都可以被监测到,并将报警信号发送至控制中心。5.连续监测的优点在一个由丹麦环境保护局资助,VIA大学管理的研究和开发项目中,研究人员正在通过重新思考饮用水的生产过程来重新设计水处理方案。该项目的合作伙伴包括Aarhus Water,Vandcenter Syd,Vand&Teknik,Amphi-Bac,Dansk Kvartsindustri 和 NIRAS。该项目的目标是建立一个小而优的自来水厂,其主要特点有:更强大的处理能力 更高的生产效率较短的启动时间 节省能源改善水质在丹麦,饮用水的供应主要来自地下水。政府的立场是饮用水应来自纯净的地下水,这些纯净的水只需要通过简单的通风处理、pH 调整,然后过滤即可进行输送至居民家中。砂滤工艺在丹麦已经使用了 100 多年,该过滤器开发项目的结果将于 2020 年在 IWA 水大会(丹麦)上公布。世界各地的水处理厂普遍采用砂滤器,砂滤器有助于去除悬浮固体和病原体,改善味道和颜色而无需额外的化学物质。这些砂滤器需要通过定期反洗来保持最佳性能,反冲洗能够清除集聚的颗粒并提高流速。然而,反洗过程会打断水处理过程。因此有必要进行监测以优化过滤性能。目前较普遍的做法是针对浊度和流速进行检测,不过化学指标的分析能够为流程情况提供更深入的了解。2018 年,丹麦实施了新的饮用水法规以符合欧盟关于参数、采样频率和采样地点的相关法规。在此之前要求针对出厂水(下限)和用户终端出水进行监测。欧盟法规调整后,用户终端出水不仅需要监测还针对铁和锰这两项指标设置了限值,具体为铁:0.2 mg/L,锰:0.05 mg/L。传统的做法是不定时的采集样本,随后送至实验室分析各项参数水平,当然这也包括铁和锰。如果通过指标数据表明滤池中的污染物无法通过反冲洗来去除,则有必要对滤料进行更换,更换滤料意味着该条生产线的停机,因此是一项耗时耗财的步骤。为更加准确高效的评估和监测滤池工艺的性能,该项目研究者通过在线监测滤池水样中铁和锰的浓度水平,为更加准确掌握滤池工艺状态,他们还对不同滤料层间的水样进行分析。该项目应用的产品有 HACH EZ1024 总溶解铁(Fe(II) 和 Fe(III))分析仪,HACH EZ1025 二价锰分析仪。这些仪器于 2018 年 11 月安装,每小时采样四次。项目初始,每台仪器被设置为每小时从过滤器入口和出口分别抽取两个样品。通过与实验室结果对比发现两者具有良好的相关性。 EZ1024 总溶解性铁(II+III)分析仪工作现场组件:A-工业面板 PC,B-高精度微型泵,C-取样泵,D-排水泵,E-光度VIA 大学的项目经理,高级副教授 Loren Ramsay 说:“监测是饮用水处理研究的重要组成部分。为了保证监测的正确性,必须在处理过程中的多个位置进行频繁的测量。使用具有多通道功能的在线铁锰自动分析仪非常适合我们的需求。我们相信我们的项目成果对整个饮用水处理行业来说都非常有用。”6.总结随着传感器技术的进步,连续监测和实时控制系统有助于优化水行业内的各种处理工艺。在提高工艺性能的同时也可以降低相关成本。随着 HACH EZ 系列在线分析仪的不断优化和进步,如今不仅能实时评估进厂及出厂水的铁锰含量,更重要的是通过对铁锰含量的实时监测侧面反映滤池工艺的性能和状态,这对于更加高效的安排和管理滤池反冲洗操作大有帮助。此外,正如丹麦的案例所展示的一样,锰和铁的连续监测有助于开发新的改进过滤系统。
  • 我国将全面排查10896家重金属排污企业
    7月9日,重金属污染防治部际联席会议在京召开。环境保护部部长周生贤出席会议并讲话,他强调,要坚定不移贯彻落实中央关于重金属污染防治工作的决策部署,始终秉持环保为民的服务理念,突出重点,完善政策,严格执法,让人民群众远离重金属污染危害。  7月9日,重金属污染防治部际联席会议在京召开。环境保护部部长周生贤出席并讲话。(来源:中国环境报)  周生贤说,去年以来,我国发生多起重金属污染事件,威胁人民群众身体健康,引起社会广泛关注。我国重金属污染是在长期的矿产开采、加工以及工业化过程中累积形成的,随着我国经济社会的快速发展,人口增长、工业化和城镇化的加快推进,涉重金属行业仍保持一定的增长势头,由此带来的重金属污染压力将有增无减。党中央、国务院对此高度重视,就加强重金属污染防治工作做出一系列重要决策部署,我们必须深刻认识重金属污染的严峻形势,进一步增强紧迫感,把思想认识统一到贯彻落实中央决策部署上来,凝心聚力实现重金属污染防治目标。  周生贤指出,为有效遏制重金属污染事件高发势头,去年以来,按照国务院统一部署,环境保护部会同国家有关部门迅速开展重金属污染企业专项检查。截至2009年底,全国共出动执法人员9.2万人次,检查涉铅、镉、汞、铬和类金属砷企业9123家,查处环境违法企业2183家,其中取缔关闭231家、停产整治641家。今年的联合专项行动,再次全面排查重金属排污企业10896家,其中有960家企业被列为重点整治对象。  同时,会同有关部门研究提出了涉及铅、汞、镉、铬、砷等重金属污染防治技术标准、政策措施和管理规定,制定了涉及含砷、铅、汞、铬、镉等重金属的“高污染、高环境风险”产品名录。今年6月,在各部门各地区的积极支持和大力配合下,由环境保护部牵头的《重金属污染综合防治规划(2010~2015年)》编制工作已基本完成,按程序报经国务院批准后组织实施。  《规划》的实施,将有利于进一步优化涉重金属产业结构,完善重金属污染防治体系、事故应急体系及环境与健康风险评估体系等三大监管体系,为实现污染源综合防治水平大幅度提升,突发重金属污染事件显著减少,重点防控区环境质量有所好转,重金属污染得到有效控制奠定坚实基础。  周生贤强调,当前和今后一个时期,必须贯彻落实党中央、国务院一系列重要决策部署,突出抓好重点防控地区、重点防控行业和重点防控企业,健全法规标准体系,完善政策措施,依靠科技进步和严格执法监督,扎实深入推进重金属污染综合防治工作,切实维护人民群众身体健康和社会和谐稳定。重点要抓好以下工作:  一要加强领导,落实责任。充分发挥重金属污染防治部际联席会议制度的作用,指导、协调和督促检查重金属污染综合防治规划实施进程,把目标和任务分解落实到各有关省(区、市)和各部门,实行目标责任制 定期召开部际联席会议,及时研究解决存在问题。各省(区、市)政府要实行“一把手”亲自抓、负总责,确保规划任务按期完成,对完不成任务的地区和部门,要严肃追究有关人员的责任。  二要突出重点,综合整治。下大力气整治重点防控地区、重点防控行业的重金属排放企业的环境违法问题,彻底取缔关停国家明令淘汰的小电镀、小制革、小冶炼等落后工艺装备和生产能力,对未完成淘汰落后产能任务、重金属污染问题突出的地区和企业,暂停其新增重点防控污染物排放的建设项目审批。严肃查处重金属排放企业的违法建设行为,未经环评审批的建设项目,一律停止建设和生产。进一步规范重金属排放企业环境管理,督促重金属排放企业建立特征污染物产生、排放台账和日常监测制度,定期报告监测结果,并向社会公布重金属污染物排放和环境管理情况 督促企业提升污染治理水平,规范原料、产品、废弃物堆放场和排放口,建立和完善重金属污染突发事件应急预案 督促重点防控企业开展清洁生产审核。  三要受理投诉,认真查处。认真梳理有关重金属排放企业环境污染问题的投诉、举报和信访案件,严厉查处危害群众健康、社会反响强烈的重金属污染突出问题。对屡查屡犯、明知故犯、偷排偷放、多次被查处仍未整改到位的,一律停产整顿 对超标排放的,依法给予高限处罚,责令限期改正 对治理设施运行不正常的,责令停产整顿限期改正,逾期未完成的依法关闭 对饮用水水源地一级、二级保护区内的重金属排放企业,一律取缔关闭 对无经营许可证从事危险废物利用处置企业,一律取缔 对历史遗留的重金属废物堆场,统筹谋划,妥善予以解决。  四要制定办法,严格考核。抓紧研究制定重金属污染综合防治规划实施情况考核办法,建立责任追究机制,将重金属污染防治成效纳入各地经济社会发展综合评价体系,作为政府领导干部综合考核评价和企业负责人业绩考核的重要内容。  会议由环境保护部副部长张力军主持。  会上,环境保护部、中宣部、发展改革委、教育部、科技部、工业和信息化部、财政部、国土资源部、水利部、农业部、商务部、卫生部、安全生产监管总局等13个部门及内蒙古、江苏、浙江、江西、河南、湖北、湖南、广东、广西、四川、云南、陕西、甘肃、青海等14个省(区)政府分管领导对《重金属污染综合防治规划(2010~2015年)》进行了深入细致讨论,并提出了修改意见和建议。会议原则通过了《重金属污染综合防治规划(2010~2015年)》,决定经进一步修改后报国务院批准实施。  重金属污染防治部际联席会议成员单位代表,环境保护部有关司局、派出机构和直属单位负责同志参加了会议。
  • 默克与您携手抗疫——病毒疫苗收获液澄清与核酸去除工艺开发
    在病毒疫苗的澄清工艺中,除了滤器的载量会作为重要的考察因素外,病毒回收率也十分重要。根据病毒的带电性和粒径特点,在病毒收获液的澄清中往往会选择低吸附的深层滤器,如默克Millistak+ CE系列深层滤器;或玻璃纤维/混合纤维素酯材料的表面滤器,如PolysepTM II。这样的滤器选择在保证澄清效果的同时也维持了很高的回收率。 下面让我们来看看COVID-19同源病毒或工艺相近的病毒澄清和核酸去除工艺的应用。 悬浮细胞Coronavirus疫苗病毒澄清工艺 Coronavirus为包膜病毒,粒径75-160nm。 选择深层过滤器Millistak+ CE50做为一级滤器,表面过滤器PolysepTM II 2.0/1.2um作为二级滤器进行澄清时,料液浊度可以从100NTU以内的初始值降低至20NTU以下。同时滤器的载量可以达到400L/m2以上,回收率90%。 ?图1. Coronavirus 澄清过滤中CE50和PolysepTM II的载量与回收率 Millistak+ CE系列深层滤器的填充材料为纤维素,从23cm2到1.1m2规格,覆盖小试到大规模生产,简化您的澄清工艺。作为一款高颗粒物容纳,低残留体积的深层滤器,CE50的孔径约0.6-1um,适用于细胞密度、浊度较低的收获液澄清,对于病毒类产品,可以保证很高的回收率。而PolysepTM II表面滤器的材质为玻璃纤维/混合纤维素酯,兼具深层滤器的高颗粒物容纳特性和膜滤器的截留能力,同样具有低吸附的特点,常用的规格有2.0/1.2um、1.0/0.5um、1.0/0.2um等,可作为低浊度料液的澄清滤器,或者在培养基、中间产品等料液的除菌过滤步骤前用作保护性滤器。良好的可放大性,支持小试工艺开发到大规模生产应用。Vero细胞微载体悬浮培养条件下的病毒澄清工艺 在Vero细胞微载体悬浮培养的包膜病毒疫苗澄清工艺中,考虑到简化工艺步骤和优越的浊度控制,我们使用了具有较强吸附能力的深层滤器Millistak+ HC Pro C0SP,当高载量使用时(500L/m2以上),总回收率则达到90%,浊度20NTU以内。可见虽然C0SP吸附能力很强,但由于其同时具有高载量的特点,从而保证了较高的回收率。Millistak+ HC Pro系列深层滤器,用合成材质聚丙烯酸纤维和二氧化硅代替了传统的硅藻土和纤维素,在单抗和疫苗澄清中,载量通常是传统深层滤器的两倍以上。同时由于人工合成材质相比传统材质更为清洁,在工艺放大后,可以节省大量的冲洗用水,节约成本和时间。通常C0SP用于高密度细胞收获液的单级澄清。 腺病毒病毒澄清工艺 腺病毒病毒广泛应用于疫苗和基因治疗领域,在腺病毒的澄清工艺中,默克不同系列的深层滤器在高细胞密度和裂解细胞的情况下都能到达良好的澄清效果,并保持很高的回收率。下图是Millistak+ HC和Millistak+ HC Pro系列滤器在腺病毒澄清中的常规表现。在病毒疫苗工艺中,核酸残留是客户非常关心的质控指标。Benzonase核酸内切酶不但可以对料液中的核酸进行高效切割,并且内切酶和切割后核酸碎片可以在下游工艺中的超滤步骤轻松除去,无残留风险。 Benzonase核酸内切酶在病毒载体疫苗中的应用 对于Vero、CHO等细胞表达的疫苗类生物制品,残余DNA含量通常被限定为100或10pg/剂。Benzonase核酸内切酶可以在37°C条件下,迅速将料液中的核酸切割成3-8bp的片段,从而大幅降低工艺过程中的核酸残留,使得DNA残余量达到要求。这些切割后的片段和Bensonase内切酶可以在下游的300kD超滤中轻松去除。试验数据表明,在经过8个CV的透析换液之后,残留的核酸片段和内切酶可以达到99.9%的去除率。 下图可见,经过4min反应后,Bensonase内切酶对于核酸的切割效率。反应后琼脂糖凝胶电泳图 在病毒疫苗的澄清工艺中,根据不同的细胞培养方式、病毒类型、病毒原液收获模式,默克Millistak+ Pod深层滤器和PolysepTM II表面滤器都可以很好的满足工艺需求,并可实现从小试到生产线性放大。而非动物源Bensonase核酸内切酶,能简单快速地降低工艺过程中核酸残留,为疫苗安全性提供了强有力的保障。
  • 哈工大(深圳): 基于可调塑性的凝固态液态金属的3D柔性电子
    镓基液态金属(LM)由于其优异的金属导电性以及室温流动性特点,被认为在柔性电子领域具有广泛的应用前景。基于镓基LM材料,目前已成功开发出各类柔性电子器件,如可穿戴传感器、柔性电容器、柔性电感器以及柔性变阻器等。LM柔性器件的集成性和可靠性一直以来是该领域的研究热点,其中3D柔性电子被普遍认为是提高集成性的有效解决方案之一。然而,液态金属的流动性是一把双刃剑,虽然它为LM柔性器件提供了优异的可变形性,但同时给3D结构柔性电路的制备带来了巨大挑战。目前报道的3D打印、冷冻打印、通道填充等方法在复杂3D结构电路的制备、工艺成本以及功能性芯片的集成等方面仍存在不足。近期,哈尔滨工业大学(深圳)马星教授联合中科院深圳先进技术研究院刘志远研究员,提出了一种通过将镓基液态金属转变为固态并通过塑性变形制备复杂3D结构柔性导体的方法。作者基于金属材料的合金化及相关理论,着重考量材料的相变温度、机械强度和塑性加工性能,筛选出Ga-10In作为3D柔性电子制备的基础材料。固体Ga-10In的高塑性特点允许通过机械弯曲、缠绕等方式制备复杂3D结构导体,在熔点以下温度将3D导体与功能芯片连接并使用硅胶封装后,熔点以上温度加热(22.7 °C)便可使Ga-10In熔化并恢复其流动性。此外由于过冷效应,Ga-10In导体可以在低于熔点的一定的温度范围内保持液态,保证了柔性电子器件的服役温度区间。为证明该方案的实用性,作者设计了具有超高灵敏度的3D应变传感器、由3D跳线导体构成的二极管 (LED) 阵列以及由3D螺旋结构的可穿戴传感器和多层柔性电路板组成的手指动作监测装置。相关工作以“Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity”为题发表于电子领域权威期刊《Nature Electronics》,2019级博士生李国强同学为该论文第一作者。在本项研究中,由摩方精密25 μm精度的nanoArch P150设备3D打印的高精度模具,为制备2D应变传感电路和3D拱形跳线提供了精密支持。图1:基于可调塑性的凝固态液态金属的3D柔性电子简介说明。(a) 液态的Ga-10In转变为固态的片状和棒状示意图;(b) 塑性变形能力对比;(c) Ga-10In低温拉伸性能;(d) Ga-10In相变性能测试;(e) 基于该方案制备的3D柔性电子。图2:Ga-In合金材料表征及性能测试。(a) 凝固态Ga-10In显微组织;(b) Ga-In合金中A6相体积分数于In元素含量的关系;(c) Ga-10In和Ga-15In显微组织表征;(d) Ga-10In拉伸样断口附近显微组织表征;(e) Ga-In合金力学性能测试;(f) 图(e)对应的屈服强度和延伸率;(g) Ga-In合金相变测试;(h) Ga-In合金熔点与In元素含量的关系。图3:2D应变传感器的电力性能测试及3D高灵敏度应变传感器设计。(a) 2D应变传感器电阻-应变关系;(b) 2D应变传感器平均GF值与应变的关系;(c) 2D应变传感器横向及纵向拉伸性能测试;(d) 3D应变传感器照片及其性能;(e) 3D应变传感器挤压位置的CT微观表征;(f) 与已报道LM应变传感器的灵敏度对比。 图4:Ga-10In 3D拱形导体及其LED柔性阵列应用。(a) 熔化前后拱形Ga-10In导体图像;(b) LED阵列示意图;(c) LED阵列电流-电压性能测试;(d) 控制装置和LED阵列电路图;(e) 控制系统和LED柔性阵列照片;(f) LED阵列动态弯曲图像。图5:3D结构的可穿戴手指动作监测柔性装置。(a) 装置示意图;(b) 3D柔性传感器及其变形性能;(c) 3D柔性传感器的手指动作传感测试;(d) 3D传感器疲劳性能测试;(e) 3D柔性电路板俯视图像;(f, g) 3D垂直电路图像;(h) 该柔性装置的手指动作测试。通过凝固态Ga-10In液态金属的塑性变形制备复杂结构3D柔性导体具有显著优势,但作者表示,该3D柔性电子制备方案目前在导电线径、柔性器件制备效率、以及自动化制造设备等方面仍存在限制。原文链接:https://doi.org/10.1038/s41928-022-00914-8
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 新起点,新跨越,Sanotac三为科学参加化工全流程绿色先进工艺大会
    新起点,新跨越,Sanotac三为科学参加化工全流程绿色先进工艺大会---记2017医药化工全流程绿色先进工艺与工程技术交流大会 2017年3月1~2日,宁波春暖花开,由医药化工全流程绿色先进工艺工程技术联盟,中国医药化工网,制药工艺优化与产业化工程研究中心,长三角绿色制药协同创新中心联合主办的会议取得了圆满成功。 如下是本次大会的主讲嘉宾和会议内容简单介绍: 张福利,上海医药工业研究院,研究员,博士生导师,演讲题目:手性药物三种制备方法比较。周章涛,广东莱佛士制药技术有限公司,研发总监,演讲题目:医药工艺路线开发中的微创新策略。车大庆,浙江九洲药业股份有限公司,副总裁,演讲题目:不对称催化技术在原料药开发中的应用。张庆武,北京日新远望科技发展有限公司,总工程师,教授,演讲题目:高品质的活性碳纤维用于液体净化。陈荣业,原)大连绿源公司及大连联化总工程师,现任多家企业技术顾问,演讲题目:有机反应的机理与优化。张海峰,汉鸿泰诺化学(上海)有限公司,博士,副总经理/首席技术官,演讲题目:如何对釜式反应器进行高效放大:工业化实例及探讨。黄红雨,拜凯化工技术(杭州)有限公司,技术总监,演讲题目:精细化学品与医药中间体的绿色工艺生产之贵金属催化解决方案。刘岩,华东理工大学药学院,博士,副教授,演讲题目:药物结晶工艺开发与案例分享。朱子丰,南京高新生物医药公共服务平台有限公司,研发商务总监,演讲题目:分离纯化在工艺杂质研究中的应用。高峰,北京世纪迈劲生物科技有限公司,总经理,演讲题目:规范市场新型CDMO商业模式的机遇和挑战。李玉芳,宁波信远膜工业股份有限公司,技术总监,演讲题目:渗透汽化膜分离技术在医药化工溶剂脱水中的应用。马东杰,Scale-up Systems公司的DynoChem产品经理,演讲题目:实验数据和模型结合的工艺开发,从实验室到工厂的一次性准确放大。王学重,Pharmavision (UK) Nanosonic Technology LTD 教授,演讲题目:PHARMAVISION(UK)晶格码更好的PAT在线分析技术。李慧,中国航天二院曌越真空事业部,市场总监,演讲题目:医药化工真空应用及选择。 会议以“结构优化、转型升级、绿色低碳、产研结合”为主题,邀请医药化工行业研发、生产、管理、环保、安全等优秀企业代表,就医药化工行业市场发展动态、热点项目前景、绿色环保技术和全流程的工艺优化等话题进行深入交流,在两天时间里面,与会代表包括主讲嘉宾,一共有100来人进行了详细的交流互动。 相聚总是太短,会议紧凑,内容丰富,在会议结束的当天晚上20多点了,大家还意犹未尽的自发组织交流。 作为本次大会的协办单位之一,上海三为科学携带了本公司的平流泵(柱塞泵)产品参会,根据不同的化工流体性质,不同的耐腐蚀要求,我们有针对性的提供不同的化工流体精确输送解决方案。我们有各种金属和工程塑料的平流泵(柱塞泵)供用户选择,如316L不锈钢、PEEK聚醚醚酮、PTFE聚四氟乙烯,Ti钛金属,HC哈氏合金材料的泵头和流路管路。我们可以自豪的说,Sanotac平流泵是腐蚀性化工流体精确输送方案的终结者! 进入21世纪,化工过程向着更为绿色、安全、高效的方向发展, 而新工艺、新设备, 新技术的开发对于化工过程的进步显得十分重要。在这样的背景下, 微反应器系统的出现吸引了研究者和生产者的极大关注。微反应技术必将开创连续制造的新时代,微反应器专用平流泵是微反应器系统里面使用程度和磨损程度最高的部件之一,我们已经给市场上的几大主流微通道反应器厂商成功配套供应。 三为科学Sanotac,作为化工流体输送解决方案的领导者,微通道反应器专用平流泵供应商,以助力微通道反应器,打造绿色智能化工为己任,会上展示的平流泵产品引起了各位参会老师的热情关注。 新起点,新跨越,2017医药化工创新的科研道路上,有我们Sanotac与你陪伴前行。再次感谢会议的组织者,协办方,以及各位参会嘉宾老师,让我们享受了一次盛大的医药化工全流程绿色先进工艺与工程技术交流大会。
  • 重金属污染事件频发 污染企业躲猫猫暴监管缺陷
    环保部督查重金属污染  环境保护部刚刚公布了《中国环境状况公报》,2009年全国污染减排好于预期,首次达到了“十一五”环保规划的实施进度要求,但关系民生的重金属污染问题仍然很突出,今年要集中力量开展专项综合整治。和我们熟悉的空气污染、水污染相比,重金属污染又会带来什么样的危害。  肖平,是山东肥城市肖家店村的村民,拥有一个其乐融融的五口之家,然而短短3年过后,这个五口之家却只剩下了孤儿寡母——肖平和她的孩子。  肖平:晚上想起都出汗,太可怕了。  1997年4月,肖平的丈夫突然去世,年龄只有29岁。肖平的丈夫得的是食道癌,丈夫怎么会染上这种绝症呢?在悲痛中,肖平时常感到疑惑,但噩梦才刚刚开始。不久,肖平的公公婆婆也先后去世,死因同样是食道癌。  肖平:开始疼,开始的情况一样。  短短几年时间,三位亲人都死于癌症,让肖平一直生活在恐惧和忧虑当中。  肖平:晚上一想到死去的亲人心里就哆嗦,特别是过节时,人家全家团聚,我一个人孤孤单单的。  在肖家店村,遭遇不幸的,并不是肖平一家。在肖家店村村委会,记者看到了肖家店村历年的死亡名单:2000年,死亡人数17人,其中11人死于癌症 2001年,死亡人数16人,其中9人是因为癌症死亡 2002年,死亡人数17人,其中10人死于癌症 2003年,死亡人数19人,其中12人是因为癌症死亡。2004年,死亡人数21人,其中14人是因为癌症死亡。整个村子的癌症患病率高达12.5%,超过正常值10万分之200,近60倍。究竟是什么原因让肖家店村的老百姓遭受着癌症的劫难呢?中国地质科学院的专家来到这里寻找原因。  林景星(中国地质科学院地球环境科学研究中心教授):我想了解最重要的问题是发病有没有时间界限。  村医生(山东肥城市安驾庄镇肖家店村卫生所):1989年以前少,从1987年 1989年以后,年年增多。  癌症并没有传染性,可却像瘟疫一样在肖家店村蔓延,村民们说,罪魁祸首正是这些流淌在大汶河里的污水。记者拍摄时,河水散发着一股刺鼻的臭味,黄褐色的水面上还漂浮着一层油腻腻的泡沫。就是这样的水,环绕在肖家店村周围。尽管又臭又脏,但却是村里唯一的灌溉水源。  记者:85年以后为什么污染严重了呢?  村支书:从1985年以后污染加重,造纸厂、农药厂都往大汶河里排污水。  林景星教授曾经多次对环境污染和癌症的关系进行实地调研。他发现,肖家店村癌症的高发期与水质受到污染的时间基本吻合。在排除饮食习惯、家族遗传等因素之后,林教授进一步对村里的土壤、农作物进行了分类取样。检测证实,该村的土壤、蔬菜以及人的毛发均不同程度受到剧毒元素的污染。其中,小麦中的铬含量超标1.7倍,白菜中的铅超标2倍 菠菜的镉含量超标达到9倍,铬含量超标12倍 莴笋叶中的镉含量超标2倍,铬含量超标4倍。  林景星教授:其中超标比较厉害的就是镉,镉是一个剧毒元素,超标会引起各种各样癌症,比如说肠胃癌、食道癌、还有肝癌。  污染给肖家店村带来的创伤不能愈合,然而在更多的地方,悲剧不断上演:2004年4月,湖南省浏阳市镇头镇长沙湘和化工厂未经审批建设了一条炼铟生产线,2009年6月,湖南省浏阳市对湘和化工厂周边1200米范围内的1600余名村民进行体检,结果镉超标者达350多人。截至目前,湖南浏阳镉污染事件已造成了两人死亡、500余人尿镉超标,厂区周边土壤、农田、林地等被污染   贵州东部万山特区万山镇是国内规模最大的汞矿产地,但由于常年未经处理排放,直接导致环境中金属汞总量居高不下,至少达到350吨,几乎相当于全球目前每年汞排放量的1/10。据当地卫生部门估算,当地6万总人口中,目前至少有200余人出现了不同程度的汞中毒症状。  最近两年,南阳宗海砷污染事件、贵州独柳江砷污染事件、山东邳州砷污染事件、河南大沙河、陕西凤翔儿童血铅超标事件等等,因为重金属污染导致的公共卫生事件,接连发生。  环保部华北督察中心主任 熊跃辉:改革开放以来,尤其是一些地方工业企业一蜂而上,而且起点低,污染治理设施不到位,使这些重金属污染物的排放日积月累的,瘀积到附寄到一定程度以后,出于一个重金属中毒的这些高发期,很多地方铅中毒的,铬中毒的汞中毒的,重金属污染的防控,如果再不引起重视,很多致命的问题依然会层出不穷。  记者:如果让您用一个词来形容目前涉重金属污染企业的现状,您会怎么形容呢?  熊跃辉:堪忧。  我们所面对的重金属污染确实不容乐观,2009年环境保护部共接报重金属、类金属污染事件12起,共造成4035人血铅超标、182人镉超标。为了防患于未然,避免引发重大公共卫生事件,环保部最近部署华北、西北、东北、华东、华南五个督查中心,对重金属污染状况进行了一次仔细摸底排查。我们来看看他们在河北排查的情况。  河北威县小营村  陈国旗(国家环保部华北环境保护督察中心督查三处处长):村里像这样的作坊有多少?  俆树杰(威县环保局局长):这几年都取缔了,原来12家后来取缔6家,现在都取缔了。  皮毛行业是河北威县的一大产业,当督察组来到当地皮毛加工摊点密集的小营村时,当地环保局的工作人员,将督查人员带到了一个被拆除的皮毛加工作坊。  陈国旗:我判断停的时间不长,你看这东西。这不会是停了两三年的,肯定是没几天的事。  在这个被拆除的作坊对面,是小营村唯一的一个水塘,水塘里的水已经发红,并且不断发出阵阵恶臭,水塘边的这两棵小树也已经快要枯死,水塘边的这些皮毛明显是刚刚倒过来的。  记者:刚刚陈处长说,这可能是刚刚停产,不是说停了好几年。  徐树杰:这个啊,是说没再洗。  事实上,小营村的皮毛加工摊点,并没有完全被取缔,就在距离水塘不到100米的地方,记者看到,这个加工摊点的主人虽然不见踪影,但清洗皮毛的机器、还有这件工作服都还在滴水,在作坊前的开阔地带,晾晒皮毛用得木板也还没来得及收起来。从现场迹象来看,是刚刚停止生产,而这里清洗皮毛的污水,没有经过任何处理,直接排向村子的水塘。  陈国旗:绝对不能用了,这水污染厉害,水这都没法拯救。  河北威县的皮毛加工产业,有近百年的历史了,由于加工摊点规模小、工艺简单、技术落后,大多属于家庭作坊式生产,没有任何治污措施,成为当地生态环境的一大隐患。  徐树杰:他这个反弹特厉害,你给他全部给他砸了,他马上垒起来,垒起来他正常能生产就这个。断电,他自个儿接了线。  在督查中,威县一些规模稍大的企业也存在问题。威县洲达皮业有限公司由于环保手续不全,没有排污许可,被威县的相关部门要求停产,但是督察组在现场发现,厂子的晾晒场依旧晾晒着刚刚处理完的皮毛,机器也明显是刚刚才停产的。  针对威县皮毛行业污染现状,威县曾经发动过数次集中整治活动,环保、工商、电力、水利、税务等部门进行联合执法,形成高压态势。  徐树杰:执法可以说投入多人力物力财力,投入太多。  徐树杰:效果有。  徐树杰:责任大,压力也大,环保局长不好干,确实责任大。  河北 广宗县 现场执法  陈国旗(国家环保部华北环境保护督察中心督查三处处长):你们平时在这个过程当中,对这个水对这个废渣,国家一块规定,你清楚不清楚?  河北广宗县金属表面处理厂老板:我也没文化,小学毕业,我也不清楚。  河北广宗县金属表面处理厂建于1993年,主要生产工艺是镀铬、镀镍,督察人员经过现场勘查和询问得知,这个厂没有排污许可、没有运行台账、没有对污水处理的监测记录,十几年来产生的含铬污泥去向不明、并且没有相应的危废处理协议和联单,更令督查人员震惊的是,这个企业有5个排污口可以向外排水,而其中四个排污口,直接将污水排到这个叫合义渠的河里。  监察员:你这个水达标排放,能不能达标排放。有没有数?  工厂老板:能。  陈国旗:咱们市局监测过没有?  工作人员:市局监测,监测。  陈国旗:他这个情况怎么样?  工作人员:监测完了应该是不达标,要不然市政府下过停产。  2005年,邢台市环保局经过监测,广宗县金属表面处理厂的污水排放不能达标,因而责令停产,检查这天,这家企业虽然处于停产状态,但停产时间却并不是2005年。  陈国旗:大概是什么时候停产的?  河北广宗县金属表面处理厂老板:大概我也记不清。就是6月份,那5月份了。  2005年被邢台市政府叫停的企业,一直到今年5月份还在生产,在恢复生产前,厂子的治污设置并没有进行过任何改进。而企业生产一天就会产生危废、并且会向紧邻的合义渠排放不能达标排放的污水。现在合义渠的水已经变成了黑色,散发出刺鼻的气味。  督察组在广宗县共检查了六家电镀企业,都没有排污许可,含铬污泥也都去向不明,甚至有的企业,含铬废水没有经过深度处理便进入了市政管网。  广宗县目前正在规划建设一个电镀小区,好让这些电镀企业集中生产、集中治理、集中排放,以便于监督管理。  广宗县县长:我们没这个能力现在就说找客商,招商引资也得做,甭管想什么法。那天我们那书记也说,这个事要花多少力气也得办这个事。  采访当中,督察组专家告诉我们,重金属一旦严重污染了土壤和水源,治理起来难度很大,传统化学方法修复一亩农田,要花几十万元甚至上百万元,而用成本相对较低的植物修复法,又得要三五年时间才能见到效果。看来只有从源头上杜绝污染,才是环境资金代价最小的办法。可是,一道道监管难题又接踵而至。  记者跟随环保部华北督察中心,拍摄了他们在河北省排查重金属污染的情况。这一路下来,看到一些地方重金属污染污染依然令人担忧。而除了不法企业违规生产,环保督察人员在排查中还发现了别的隐患。  石家庄鹿泉县的这家电镀企业,当督查组来到工厂的废水池边时,工厂负责人突然俯下身子,用手撩起了水池中的废水。  石家庄鹿泉县的这家电镀企业老板:处理以后水是清的。  陈国旗:含重金属水都是清的,没有一个不是清的,小伙子我跟你看,重金属污染那个水,看时候比较清的,那含量比较高了。  在石家庄鹿泉县的这家电镀企业老板:种田没事。  事实上,这家企业电镀产生的含铬废水并没有经过深度处理。  石家庄鹿泉县的这家电镀企业老板:环评的时候说是没事,可以浇花。  记者:那你都经过什么处理,那个水?  石家庄鹿泉县的这家电镀企业老板:经过就是那个处理池。  这就是工厂负责人所说的处理池,其实只是一个简单的沉淀池,池底淤积了厚厚一层含铬污泥,就在这个沉淀池旁边,正是这个厂负责人的菜地,在他看来,用这样清亮的水浇菜并没有什么问题。  石家庄市赵县的一家化工厂,黄色粉尘中的六价铬,含有剧毒。而工厂已经完全被这些剧毒粉尘覆盖,工厂目前已经停产,但是根据督察组了解,厂长本人已经深度中毒。厂区及周围地区被严重污染,无法恢复。在河北平乡县,这家电镀厂虽然被关停了多年,但检查检查完后,环保部华北督察中心副主任王赣江显忧心忡忡。  王主任:你们看,这个企业的旁边不到10米的地方就是农田蔬菜,如果这个下了大雨这个水一冲去,老百姓一浇到菜里边,菜就污染,吃到人的肚子里面,致突变致畸形致癌。  一些企业告诉督察人员,自己的危险废物,已经和有处理资质的机构签定了协议,并且会定期转送,但事实却并非如此。  监察员:一问说是去,都是送给砖厂处理,但实际上也没有协议,也没有转运的联单,到底有没有处理去哪了?  记者:说不清楚。  监察员:很可能自己比如说找个地方随便倾倒这些都有可能。  龙腾环保服务有限公司,是河北省唯一一家有资质处理危险废弃物处理的公司,按照规定,涉重金属污染企业都应该将危废送到这里处理。  龙腾环保服务有限公司负责人:有些企业在进行投产前他不有个环评,环评的话,他是这个范围内的经营资质,我们可以给他进行签这样协议,但真正投产以后有些企业没有达到真正的危废转移,就是像产值比较小的100万以下的注册企业,最终发生转移的不是特别多。  实际上,重金属污染一直是环保部门监管的重中之重,去年国务院办公厅转发了《关于加强重金属污染防治工作指导意见的通知》,环境保护部联合国务院九部门开展了重金属污染企业专项检查,共检查企业9123家,查处环境违法企业2183家,取缔关闭231家,停产整治641家。那么,怎么才能把监管真正落实到位,防止污染企业死灰复燃呢?我们也采访了河北省环保厅厅长姬振海和环保部华北督察中心主任熊跃辉。  实际上针对目前河北省,涉重金属污染企业存在的问题,问题多多,但是发现问题并不可怕,发现问题,才能解决问题。记者采访了河北省环保厅厅长姬振海。 以及华环保部北督察中心主任熊跃辉。  记者:这次的督查中主要有哪些突出的问题呢?  熊跃辉:环首都圈的共282家涉重金属企业逐家严查,不同程度存在问题的占65.9%。这个重金属含量高,有的有三四种重金属,要素齐全,这个危害很大的。  河北省涉重金属污染企业有将近430家,这些企业以制革、铅冶炼、电镀、蓄电池加工居多,排放的重金属主要是铬、铅、镍、铜。  熊跃辉:这些重金属污染企业确实还是存在一些问题。比如说有的很小的这些企业,工艺很简单,设备很简单,你管得严了,打得严了他就停了,一旦放松他又死灰复燃、。  从5月中下旬开始,环保部华北督察中心对北京、天津、河北张家口、承德、保定、廊坊、唐山、沧州、石家庄7地市,环首都圈的共282家涉重金属企业逐家严查,发现186家不同程度存在环境违法问题,违法率占65.9%。其中:北京查39家,14家有问题 天津查124家,101家有问题 河北查119家,71家有问题。  记者:导致这种现状的原因都有哪些呢?  熊跃辉:我觉得很多问题是由于忽视监管,放松监管,不会监管造成的。同时涉重金属污染物排放的企业也存在三个方面的问题,哪三个方面问题呢?你不查我不改,你不处罚我不整治,人民群众没有要求我不尽责任。  记者:针对目前这种现状,您认为可行的解决之道是什么呢?  熊跃辉:我觉得并不难,首先是我们国家对威胁废物的处置、储存、运输、处理有一套严格的法律法规和标准要求,也就是说有法可依,关键是要做到有法必依。只要我们加强监管,加大查处力度,工艺技术,关键是有法必依的问题。  记者:下一步河北省对于涉重金属污染企业会采取什么样的措施呢?  姬振海:从环保部门来说我们本身来讲我们是提倡执法叫三严,叫严厉查处环境违法行为,严格审批新建项目环评,严肃追究环境监管的实质责任,用铁的手腕来治污。现在就想要解决的问题必须和地方的这个政绩,地方领导的政绩,地方的这些考核要挂起钩来。如果长期你得不到整治,考核当中可能就分数低,或者考核当中就不过关,那么你不过关就和你的官帽子就有联系了,所以摘不掉黑帽子, 我们省委书记讲了,摘不掉黑帽子就摘官帽子,最终还得是社会一起行动来动员方方面面力量,形成一种合力让这种现象不能再死灰复燃。  陕西凤翔铅污染、湖南浏阳镉污染、山东临沂砷污染,重金属污染事件在2009年接连发生,为我们敲响了警钟。但我们也看到,面对数量众多的小皮革小冶炼厂,环保督察人员即使使出浑身解数,十个手指头恐怕也难以按下不断浮出来的葫芦。冰冻三次非一日之寒,污染事件频频现身,暴露出了环境监管中的一些制度性矛盾。不少污染企业所以能苟延残喘,不是因为它们狡猾,而是因为它们能给地方带来经济收入。在利益驱动下,这些企业总能想办法和环保部门玩起躲猫猫,绕开各种监管。我们要改变这场猫捉老鼠,疲于奔命的游戏,不仅需要相关部门加紧努力,也需要建立一个更合理的规则,真正把经济增长的希望放到绿色产业上去。
  • 工信部&水利部征集国家工业节水工艺、技术和装备
    4月12日,工信部和水利部两部门发布通知,要求征集国家工业节水工艺、技术和装备。通知详情如下:两部门关于征集国家工业节水工艺、技术和装备的通知工业和信息化部办公厅 水利部办公厅关于征集国家工业节水工艺、技术和装备的通知工信厅联节函〔2021〕65号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、水行政主管部门,有关行业协会,有关中央企业:按照《关于推进污水资源化利用的指导意见》(发改环资〔2021〕13号)部署,为加快先进节水工艺、技术、装备研发和应用推广,提升工业用水效率,现启动国家工业节水工艺、技术和装备征集工作。有关事项通知如下:一、征集范围及类别征集范围重点包括钢铁、石化化工、纺织染整、造纸、食品、皮革、制药、建材、有色金属、机械、煤炭、电力等工业行业废污水再生利用、高效冷却或洗涤、高耗水生产工艺替代、用水智能管控等节水工艺、技术和装备,以及适用于黄河流域、京津冀等严重缺水地区和长江经济带等水环境敏感地区的节水工艺、技术和装备等。按工艺、技术和装备所处阶段,主要分为研发类、产业化示范类和推广应用类。(一)研发类:指通过自主研发、技术引进、集成创新等方式,实现重大技术突破、已有阶段性成果、节水效果明显、知识产权明晰,并经用户初步验证的工艺、技术和装备。(二)产业化示范类:指技术基本成熟、知识产权明晰、节水效果显著、推广应用前景广阔、已具备应用基础条件但尚未实现产业化的重大关键工艺、技术和装备。(三)推广应用类:指技术成熟、装备性能稳定、节水效果好、知识产权明晰、经济和社会效益显著,目前已有成熟应用案例,技术普及率相对较低,但已实现产业化生产的工艺、技术和装备。二、申报程序请省级工业和信息化主管部门会同水行政主管部门组织本地区工业节水工艺、技术、装备研发和生产单位,通过“工业节能与绿色发展管理平台”(https://green.miit.gov.cn)分类填报《工业节水工艺、技术和装备申报书》(附件1、2、3),并上传相关支撑材料。通过平台进行网上审核,择优推荐,并于2021年6月11日前通过平台报送《工业节水工艺、技术和装备推荐汇总表》(附件4)及申报材料。请有关全国性行业协会、中央企业参照前述程序,分别组织本行业、本集团申报工作。三、联系方式(一)工业和信息化部节能与综合利用司联系人:秦洁璇 袁令电 话:010-68205367传 真:010-68205368邮 箱:jsc@miit.gov.cn (二)水利部全国节约用水办公室联系人:朱明明电 话:010-63206014传 真:010-63206044邮 箱:jsbglc@mwr.gov.cn附件:1.工业节水工艺、技术和装备申报书(研发类).doc2.工业节水工艺、技术和装备申报书(产业化示范类).doc3.工业节水工艺、技术和装备申报书(推广应用类).doc4.工业节水工艺、技术和装备推荐汇总表.doc工业和信息化部办公厅 水利部办公厅2021年4月2日
  • 第五届中国科协优秀科技论文公布,97篇入选
    日前,中国科学技术协会发布了《关于对第五届中国科协优秀科技论文进行公示的通知》,97篇入选。各有关单位:根据《第五届中国科协优秀科技论文遴选计划实施方案》,经学科集群专家推荐、牵头单位组织遴选、中国科协终审认定等程序,现确定了拟入选论文名单(详见附件),自即日起至9月17日面向社会进行公示。公示期间,如对入选论文有异议,请以书面形式向中国科协学会学术部反映,并提供必要的证明材料。以个人名义提出异议的,须签署真实姓名及单位;以单位名义提出异议的,须加盖单位公章,否则不予受理。联系电话:68571884,68581259联系人:卫夏雯,王素学会学术部2020年9月11日第五届中国科协优秀科技论文遴选计划入选论文名单编号集群篇名文献类型学科期刊发表年/期1数理化与交叉学科集群Topologyandtopologicalsequenceentropy基础研究型数学ScienceChinaMathematics2020/22Topologicalnodallinesemimetals综述型物理学ChinesePhysicsB2016/113LargeunsaturatedpositiveandnegativemagnetoresistanceinWeylsemimetalTaP基础研究型物理学ScienceChinaPhysics,Mechanics&Astronomy2016/54Ultrasensitivebroadbandphototransistorsbasedonperovskite/organic-semiconductorverticalheterojunctions基础研究型物理学Light:Science&Applications2017/65Achievingover16%efficiencyforsingle-junctionorganicsolarcells基础研究型化学ScienceChinaChemistry2019/66Singleatomacceleratesammoniaphotosynthesis基础研究型化学ScienceChinaChemistry2018/97基于声子晶体带隙特性的薄板减振设计基础研究型晶体学人工晶体学报2016/48Complexdynamicsofaharmonicallyexcitedstructurecoupledwithanonlinearenergysink基础研究型力学ActaMechanicaSinica2017/49Quantumeffectsonthermalvibrationofsingle-walledcarbonnanotubesconveyingfluid基础研究型力学ActaMechanicaSolidaSinica2017/510Convolutionalneuralnetworksfortimeseriesclassification应用研究型自然科学总论JournalofSystemsEngineeringandElectronics2017/111地球科学集群Hilbert曲线层级演进关系基础研究型测绘学测绘学报2016/S112青藏高原软流圈与特提斯洋板块俯冲基础研究型地球物理学地质评论2019/313页岩储层构造应力场模拟与裂缝分布预测方法及应用应用研究型地质学地学前缘2016/214DiamondsandOtherExoticMineralsRecoveredfromPeridotitesoftheDangqiongOphiolite,WesternYarlung-ZangboSutureZone,Tibet基础研究型地质学ActaGeologicaSinica(EnglishEdition)2016/2152017年九寨沟Ms7.0地震揭示青藏高原东缘岷山地区一条新的左旋走滑断裂基础研究型地质学地质学报2018/1216中国海洋科学技术发展70年综述型海洋学海洋学报2019/1017TheStrongElNiñ oof2015/16andItsDominantImpactsonGlobalandChina' sClimate基础研究型大气科学(气象学)JournalofMeteorologicalResearch2016/318地理探测器:原理与展望基础研究型自然地理学地理学报2017/119青海可可西里盆地雅西措组介形类动物群及其地层意义基础研究型古生物学古生物学报2019/320预防与中医药集群经典名方的研发——中医药传承发展的突破口之一应用研究型中国医学中国现代中药2018/721脉络学说营卫理论指导血管病变防治研究基础研究型中国医学中国实验方剂学杂志2019/122基于整合药理学的中药质量标志物发现与应用应用研究型中国医学中国实验方剂学杂志2019/623冠心病现代中医证候特征的临床流行病学调查应用研究型中国医学中医杂志2017/2324Inhalableoridonin-loadedpoly(lactic-co-glycolic)acidlargeporousmicroparticlesforinsitutreatmentofprimarynon-smallcelllungcancer基础研究型药学ActaPharmaceuticaSinicaB2017/125中国大陆流行的风疹病毒的变异变迁规律研究应用研究型预防医学、卫生学病毒学报2017/126我国登革热流行新趋势、防控挑战及策略分析应用研究型预防医学、卫生学中国媒介生物学及控制杂志2020/1272005—2014年中国7~18岁儿童青少年近视流行状况与变化趋势应用研究型预防医学、卫生学中国预防医学杂志2017/428临床医学集群第二代生物可降解聚合物涂层西罗莫司洗脱支架治疗原发原位冠心病患者的长期疗效分析临床研究型内科学中华心血管病杂志2019/1029TypesofOrganInvolvementinPatientswithImmunoglobulinG4-relatedDisease临床研究型内科学Chinesemedicaljournal2016/1330胆囊癌的临床分型和预后关系初步分析:多中心回顾性临床研究临床研究型外科学中华外科杂志2019/431嗜酸性实性和囊性肾细胞癌的临床和分子病理学特征临床研究型肿瘤学中华病理学杂志2019/1132卡介苗预防中、高危非肌层浸润性膀胱癌术后复发的有效性、安全性随机、对照、多中心临床试验中期报告临床研究型外科学中华泌尿外科杂志2019/733利用术前指标基于机器学习算法预测腹部手术后死亡风险模型的建立临床研究型外科学中华麻醉学杂志2019/1134早孕期系统胎儿超声结构筛查诊断胎儿异常的价值临床研究型妇产科学中华围产医学杂志2017/335规范化护理方案在卧床卒中患者中的应用及卫生经济学研究临床研究型临床医学中华现代护理杂志2019/163618个月化疗方案对耐多药肺结核患者的治疗效果分析临床研究型内科学中国防痨杂志2019/337进展期胃癌中EB病毒感染率及EB病毒参与免疫调节的机制探索临床研究型肿瘤学肿瘤综合治疗电子杂志2019/238农林集群DeepgenotypingofthegeneGmSNAPfacilitatespyramidingresistancetocystnematodeinsoybean应用研究型农业基础科学TheCropJournal2019/539大豆耐荫性评价体系的建立与中国南方大豆资源耐荫性变异应用研究型农业基础科学中国农业科学2017/540基于改进卷积神经网络的多种植物叶片病害识别应用研究型农业工程农业工程学报2017/1941WheatpowderymildewresistancegenePm64derivedfromwildemmer(Triticumturgidumvar.dicoccoides)istightlylinkedinrepulsionwithstriperustresistancegeneYr5基础研究型农学(农艺学)TheCropJournal2019/642Ligand-bindingpropertiesofthreeodorant-bindingproteinsofthediamondbackmothPlutellaxylostella应用研究型植物保护JournalofIntegrativeAgriculture2016/343不同年代中籼水稻品种的叶片光合性状基础研究型农作物作物学报2016/344AssessingtheconcentrationandpotentialhealthriskofheavymetalsinChina’smaindeciduousfruits应用研究型农业基础科学JournalofIntegrativeAgriculture2016/745基于林分潜在生长量的立地质量评价方法与应用应用研究型林业林业科学2018/1246Effectsofsustainedcoldandheatstressonenergyintake,growthandmitochondrialfunctionofbroilerchickens应用研究型畜牧、动物医学、狩猎、蚕、蜂JournalofIntegrativeAgriculture2016/1047大黄鱼性别特异SNP标记的开发与验证应用研究型水产、渔业水产学报2018/948制造业与材料集群Convolutionalneuralnetworksfortimeseriesclassification应用研究型航空、航天JournalofSystemsEngineeringandElectronics2017/149高熵合金的变形行为及强韧化应用研究型金属学与金属工艺金属学报2018/1150基于稀疏自动编码深度神经网络的感应电动机故障诊断基础研究型航空、航天机械工程学报2016/951采用NSGA_Ⅱ多目标优化算法的机械压力机三角形肘杆机构优化设计应用研究型金属学与金属工艺锻压技术2018/1152DynamicBendingofBionicFlexibleBodyDrivenbyPneumaticArtificialMuscles(PAMs)forSpinningGaitofQuadrupedRobot应用研究型机械、仪表工业ChineseJournalofMechanicalEngineering2016/153Fluidizedminingandin-situtransformationofdeepundergroundcoalresources:anovelapproachtoensuringsafe,environmentallyfriendly,low-carbon,andcleanutilisation应用研究型矿业工程InternationalJournalofCoalScience&Technology2019/254基于Unity3D与Kinect的康复训练机器人情景交互系统应用研究型机械、仪表工业仪器仪表学报2017/355应用TRIZ的主动再制造绿色创新设计研究基础研究型机械、仪表工业机械工程学报2016/556纬编针织柔性传感器结构及其导电性能应用研究型轻工业、手工业、生活服务业纺织学报2016/657基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法基础研究型机械、仪表工业中国机械工程2016/458电工、电子与信息技术集群5G若干关键技术评述综述型电子技术、通信技术通信学报2016/759跨区互联电网热稳定安全域边界近似方法基础研究型电工技术电工技术学报2016/860IF控制结合滑模观测器的永磁同步电机无位置传感器复合控制策略基础研究型电工技术电工技术学报2018/461数据质量多种性质的关联关系研究基础研究型自动化技术、计算机技术软件学报2016/762平行学习—机器学习的一个新型理论框架基础研究型自动化技术、计算机技术自动化学报2017/163智能配电网的新形态及其灵活性特征分析与应用应用研究型电工技术电力系统自动化2018/1064DesignandImplementationoftheTianhe-2DataStorageandManagementSystem应用研究型电子技术、通信技术JournalofComputerScienceandTechnology2020/165Low-ComplexityJointChannelEstimationandSymbolDetectionforOFDMASystems应用研究型电子技术、通信技术ChinaCommunications2019/766边缘计算:万物互联时代新型计算模型应用研究型自动化技术、计算机技术计算机研究与发展2017/567大数据分析的无限深度神经网络方法应用研究型自动化技术、计算机技术计算机研究与发展2016/168交通与基建集群中国大陆建筑物地震灾害风险分布研究基础研究型建筑科学土木工程学报2017/969重要建筑结构抗恐怖爆炸设计爆炸荷载取值探讨应用研究型建筑科学建筑结构学报2016/370破碎千枚岩隧道施工期位移安全控制基准研究应用研究型建筑科学岩石力学与工程学报2016/1171考虑横向惯性效应时桩侧土-管桩-土塞纵向耦合振动特性研究应用研究型建筑科学岩土力学2017/472海绵城市建设中若干水文学问题的研讨应用研究型水利工程水资源保护2017/173中国大陆降水时空变异规律——Ⅲ.趋势变化原因应用研究型水利工程水科学进展2016/374特高土石坝坝坡抗滑稳定安全判据和标准研究应用研究型水利工程水利学报2019/175基于三维激光雷达的智能车辆目标参数辨识应用研究型交通运输汽车工程2016/976CRTSⅡ型板式无砟轨道板下离缝动力影响分析及运营评估基础研究型交通运输铁道学报2017/177城市道路环境下自动驾驶车辆接管绩效分析基础研究型交通运输中国公路学报2019/678能源、化工与环境集群沁水盆地南部高阶煤层气成藏规律与勘探开发技术应用研究型石油、天然气工业石油勘探与开发2016/279± 1100kV/12000MW特高压直流输电工程成套设计研究应用研究型能源与动力工程电网技术2018/480特厚煤层综放开采大空间采场覆岩结构及作用机制应用研究型能源与动力工程煤炭学报2016/381新型660MW超超临界环形炉膛循环流化床锅炉技术研究应用研究型能源与动力工程中国电机工程学报2018/1082Fabricationofchitosanmicrospheresforefficientadsorptionofmethylorange应用研究型化学工业ChineseJournalofChemicalEngineering2018/383先进核能系统结构材料辐照性能研究应用研究型原子能技术原子核物理评论2017/384燃料特性对柴油机排放颗粒物理化特性影响的研究应用研究型能源与动力工程内燃机学报2016/285变压器雷电冲击试验空间磁场对智能组件影响的计算分析应用研究型能源与动力工程中国电机工程学报2016/1486黄河水沙变化与治理方略研究基础研究型能源与动力工程水力发电学报2016/1087煤矿井下水力压裂技术及在围岩控制中的应用应用研究型灾害及其防治煤炭科学技术2017/188生命科学与基础医学集群EvolutionofthenovelcoronavirusfromtheongoingWuhanoutbreakandmodelingofitsspikeproteinforriskofhumantransmission基础研究型基础医学ScienceChinaLifeSciences2020/389《中国心血管病报告2017》概要基础研究型生物工程学(生物技术)中国循环杂志2018/190RapidgenerationofgeneticdiversitybymultiplexCRISPR/Cas9genomeeditinginrice基础研究型生物工程学(生物技术)ScienceChinaLifeSciences2017/591核糖体工程技术选育ε-聚赖氨酸高产菌株基础研究型微生物学微生物学通报2016/1292IntestinallysozymeliberatesNod1ligandsfrommicrobestodirectinsulintraffickinginpancreaticbetacells基础研究型细胞生物学CellResearch2019/793RedRiverbarrierandPleistoceneclimaticfluctuationsshapedthegeneticstructureofMicrohylafissipescomplex(Anura:Microhylidae)insouthernChinaandIndochina基础研究型动物学CurrentZoology2016/694植物免疫研究与抗病虫绿色防控:进展、机遇与挑战综述型生物工程学(生物技术)中国科学:生命科学2019/1195ZmMs30EncodingaNovelGDSLLipaseIsEssentialforMaleFertilityandValuableforHybridBreedinginMaize应用研究型生物物理学MolecularPlant2019/396Single-cellRNA-sequncoversdynamicprocessesandcriticalregulatorsinmousespermatogenesis基础研究型细胞生物学CellResearch2018/997中国高等植物受威胁物种名录基础研究型植物学生物多样性2017/7
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制