酸雾吸收器

仪器信息网酸雾吸收器专题为您提供2024年最新酸雾吸收器价格报价、厂家品牌的相关信息, 包括酸雾吸收器参数、型号等,不管是国产,还是进口品牌的酸雾吸收器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酸雾吸收器相关的耗材配件、试剂标物,还有酸雾吸收器相关的最新资讯、资料,以及酸雾吸收器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

酸雾吸收器相关的厂商

  • 400-860-5168转6028
    安徽吸收谱仪器设备有限公司是一家专注于X射线吸收/发射谱技术和光谱仪器开发,为科研人员提供专业的吸收/发射谱技术解决方案。公司由院士牵头,基于同步辐射背景的博士在吸收/发射谱领域10余年的技术研究积累,开发标准化的台式X-射线吸收/设备谱设备。公司秉承“让XAFS走进实验室”的技术追求,钻研吸收/发射谱技术,发扬工匠精神和现代科学创新精神,持之以恒推进X射线技术和仪器设备研发。
    留言咨询
  • 广州市顺捷风机有限公司(原名:广州市顺通风机厂)主要生产防腐蚀防爆风机酸雾废气净化塔等。主要产品有: 实验室风机,玻璃钢风机;玻璃钢屋顶风机;玻璃钢离心风机; 玻璃钢轴流风机;玻璃钢酸雾净化塔;PP高压离心风机;PVC防腐离心风机; PP防腐离心风机,PP防腐废气处理塔;PP酸雾净化塔以及方形、圆形玻璃钢/PP风管. 本公司风机主要适用于电镀,化工,石油,纺织,电站,实验室等. 需通风换气以及工艺流程中输送含酸性、碱性或大湿度水汽等腐蚀生气体及一般易爆气体,在电镀设备、涂装设备以及实验室设备,化学实验室配套通风等都广泛应用。设计销售为一体的企业.本公司是中国风机行业协会指定风机选用单位、中国玻璃钢工业协会会员单位、是广东省环保产业协会会员单位。以“创新突破,精益求精”为经营宗旨与时俱进,开创环保事业新篇章.我们将继续提高责任感与你携手合作共创辉煌!F4-72-A式玻璃钢离心通风机系列,F4-72-C式玻璃钢离心通风机系列,PP4-72塑料离心通风机系列,PVC4-72塑料离心通风机系列,PP4-62塑料离心通风机系列,PVC4-62塑料离心通风机系列,FT-35玻璃钢轴流通风机系列,FT-30玻璃钢轴流通风机系列,PP6-30高压离心风机系列,DWT-I玻璃钢轴流式屋顶通风机系列,DWT-II玻璃钢离心式屋顶通风机系列,BJT玻璃钢/PP酸雾废气净化塔处理塔吸收塔洗涤塔喷淋塔系列,GF4-72系列玻璃钢离心通风机系列。
    留言咨询
  • 濮阳贝德福环源环保科技有限公司是一家致力于污水处理工程、废气治理工程、污水处理设备及环保产品研发的环保高科技企业,主要从事工业污水处理、中水回用、废气治理、烟气脱硫除尘工程的设计、施工、调试以及环保新产品的研发、生产和销售。公司以科技攻关、新工艺研发应用、新产品开发与生产为主导,博采国内外各种先进给排水处理工艺和设备的长处,在印染、制药、造纸、矿井、食品加工等污水处理以及中水回用行业采用高效水处理新工艺,本着保证工程质量、减少工程造价、降低运行费用、提高处理效果的技术原则,完成了大量的工程实例,在用户中取得了良好的信誉;在电厂烟气脱硫除尘、有机废气治理、酸雾吸收等废气治理河南环源环保科技有限公司是一家致力于污水处理工程、废气治理工程、污水处理设备及环保产品研发的环保高科技企业,主要从事工业污水处理、中水回用、废气治理、烟气脱硫除尘工程的设计、施工、调试以及环保新产品的研发、生产和销售。
    留言咨询

酸雾吸收器相关的仪器

  • 1 产品简介 ZR-D17BT型废气盐酸雾/硫酸雾/氟化物采样装置可独立完成采样也可与烟尘采样器配套使用,适用于固定污染源废气中酸性物质采集测定。一体化设计:采样管、S型皮托管与铂电阻有机组合,液晶显示,结构紧凑,既可以进行采样也能够测出流速、烟温等参数。一机多用,可满足盐酸雾、硫酸雾、氟化物等多种酸性气体采集。广泛应用于环保、卫生、劳动、安监、军事、科研、教育等部门。2 技术特点满足多功能采样需求多功能组合型采样枪,包含测量烟温及皮托管测流速功能。一机多用,可满足硫酸雾\氯化氢\氟化氢\溴化氢等多种酸性气体采样。滤筒或滤膜及采样管全程两点加热,可单独设置加热温度,自动恒温加热,能对颗粒态、蒸汽态和气态硫酸雾\盐酸雾进行采集。高效保温箱,独特设计吸收瓶支架,可满足不同规格吸收瓶。配有烟气采样泵,可独立完成烟气采样。冰浴箱外接式,既可用于水平烟道采样也可以用于垂直烟道采样。配有单向阀,防止采样时吸收液回流。 精选优质材质 取样外管采用钛金属材质,重量轻,耐腐蚀。气路采用聚四氟乙烯材料,有效降低吸附。 3 执行标准HJ 688-2019 固定污染源废气 氟化氢的测定 离子色谱法HJ 544-2016 固定污染源废气 硫酸雾的测定 离子色谱法HJ 548-2016 固定污染源废气 氯化氢的测定 硝酸银容量法HJ 549-2016 环境空气和废气 氯化氢的测定 离子色谱法HJ 1040-2019 固定污源废气 溴化氢的测定 离子色谱法HJ/T 67-2001 大气固定污染源 氟化物的测定 离子选择电极法
    留言咨询
  • 仪器介绍AAS6000系列原子吸收分光光度计是由天瑞仪器公司集多年研发经验开发的全自动智能化火焰原子吸收仪器,用于测定各种物质中的常量、微量、痕量金属元素和半金属元素的含量。该机采用PC机和中文界面操作软件,使仪器操作简便,直观易懂。应用先进的电子电路系统和USB2.0通讯控制,实现了仪器的波长扫描、寻峰定位、光谱通带宽度、回转元素灯架、原子化器高度和位置、燃气流量、灯电流和光电倍增管负高压等功能的自动调节。仪器存储多种分析方法的所有测定元素的分析操作参考条件,用户还可根据需要修改操作条件,并可把操作条件和工作曲线及测试结果存盘,可重新调出使用和处理。性能特点1、全反射消色差光学系统。采用凹面镜代替凸透镜作为仪器的光学聚焦设备,有效解决了不同元素焦点不同的色差问题,提高了光学系统效率2、全自动化设计。除主机开关外,仪器功能全部由PC机自动监测与控制3、八元素灯灯塔。一灯工作,可七灯同时预热,节省了换灯和预热时间,使元素测量更加快捷方便4、USB2.0通讯方式。淘汰了老旧的232串口通信方式,采用新的USB2.0通信接口,提升了通信速度,并兼容新计算机系统5、纯钛雾化室,纯钛燃烧头。有效防止酸气腐蚀,增加了使用寿命6、高效玻璃雾化器。采用专门定做的吴氏高效玻璃雾化器,雾化效率更高,通用性强7、质量流量控制器实现乙炔流量控制。使乙炔流量连续可调,并对流量进行动态监测,使用方便,安全可靠8、更多的安全保护措施,使样品分析更加安全可靠 (1) 乙炔泄露保护 (2) 乙炔压力监视 (3) 空气压力监视 (4) 防爆开关状态监视 (5) 火焰燃烧状态监视9、背景校正系统。氘灯背景校正:可校正1A背景。自吸收背景校正:可校正1A背景。10、外观采用流线型钣金工艺设计,简约时尚,美观大方11、自主知识产权,强大完善的分析软件。人性化的操作界面,让您的操作易如反掌,中英文自动切换Windows界面操作系统,全自动定性、定量分析,自动计算元素含量,自动生成测试报告。技术指标波长范围:190nm~900nm单色器类型:切尔尼-特纳型(Czerny-Turner型)光谱带宽:0.1/0.2/0.4/0.7/1.4 nm五档自动切换光栅闪耀波长:230nm光栅刻线:1800线/mm波长准确度:± 0.25nm波长重复性: 0.10nm分辨率:优于0.3nm特征浓度(Cu): 0.025&mu g/ml/1%检出限(Cu): 0.006ug/mL精密度(Cu): 0.8%基线稳定性:0.003 Abs(static) 0.004 Abs(Dynamic)扣背景方式:氘灯+自吸收标准配置1、AAS6000主机(1)单色器1套(2)光电倍增管1只(3)质量流量控制器1部(4)空心阴极灯3只(如用户无特殊要求,标配Cu、Hg、Mn三只元素灯)(5)燃烧头1套(6)雾化室1套(7)高效玻璃雾化器2套(8)电路控制系统1套2、附件箱可选配置1、低噪音无油空气压缩机2、氢化物发生器HG6003、136位自动进样器AS1003、品牌计算机4、品牌打印机应用领域地质、矿产、冶金工业分析、钢铁分析、有色金属分析环境分析、空气分析、水质分析、土壤及固体废弃物分析石油化工和轻工产品分析、原油及其加工产品分析、化工轻工产品分析食品分析、生物医药和保健品分析建筑材料分析(玻璃、陶瓷、涂料等)
    留言咨询
  • 光束吸收器 400-860-5168转1451
    位于美国新泽西的HAAS公司,成立于1992年,做为一个世界上最大的提供激光束传输类器件与装置的公司,以其产品的创新性.优质.可靠而获得业界和客户认可。  HAAS拥有经验丰富的工程设计团队,高效的加工生产组织以及最先进尖端的加工中心,为工业客户提供最高标准的易于集成且模块化的激光传输类产品。并有为使用广泛的二氧化碳激光器光纤激光器设计的标准产品,还可根据客户的要求设计定制产品。光束吸收器· 用于终止激光· 水冷500W,风冷100W· 液体冷却:80PSI最大
    留言咨询

酸雾吸收器相关的资讯

  • 最强二氧化碳吸收器问世
    物美价廉,可用于电池及人造树研制 一种新的聚合物被证明适于去除大气中的二氧化碳   美国加利福尼亚州的研究人员生产出一种能够从空气中去除大量二氧化碳气体的廉价塑料制品。沿着这条路,这种新材料将能够用于大型电池的研制,甚至在避免灾难性气候变化的尝试中,成为旨在降低大气二氧化碳浓度的“人造树木”的主要成分。   这些长期目标一直吸引着由洛杉矶市南加利福尼亚大学(USC)的化学家George Olah领导的研究团队。作为1994年诺贝尔化学奖得主,Olah一直设想未来社会主要依赖由甲醇(一种简单的液体酒精)制成的燃料。随着容易开采的化石燃料在未来几十年变得愈发稀缺,他提出,人们可以贮存大气中的二氧化碳,并将其与从水中分离的氢相结合,从而形成一种具有广泛用途的甲醇燃料。   Olah和他的同事还在研制一种廉价铁基电池,这种电池能够储存由可再生能源产生的额外电力,并在需求高峰时输入电网。在运行时,铁电池会从空气中攫取氧。但即便只有微量的二氧化碳加入反应也将使电池报废。最近几年,研究人员开发出一些很好的二氧化碳吸收装置,它们由名为沸石的多孔固体与金属有机骨架构成。但是这些吸收装置价格昂贵。因此Olah和他的同事着手寻找一种成本更低的替代方法。   研究人员转而求助聚乙烯亚胺(PEI),这是一种廉价的聚合物,同时也是一种像样的二氧化碳吸收器。但它只能在表面俘获二氧化碳。为了增大PEI的表面积,USC的研究团队将这种聚合物溶解于一种甲醇溶剂中,并将其铺在一堆煅制二氧化硅的上面,后者是一种工业生产的、由玻璃熔解的小滴制成的廉价多孔固体。当溶剂蒸发后,留下的固体PEI便具有很大的表面积。   当研究人员对新材料的二氧化碳吸收能力进行测试时,他们发现,每克该物质在潮湿的空气中——类似于目前大多数的环境条件——平均可吸收1.72毫微摩尔的二氧化碳。这已经远远超过近期由氨基硅制成的另一个竞争对手1.44毫微摩尔每克的吸收值,并且在迄今进行的二氧化碳吸收能力测试中处于最高水平。研究小组在日前出版的《美国化学会志》中报告了这一研究成果。   如果二氧化碳处于饱和状态,这种PEI-二氧化硅合成物也很容易再生。当聚合物被加热至85摄氏度后,二氧化碳便会飘离。而其他常用固体二氧化碳吸收器则必须加热超过800摄氏度才能够赶走二氧化碳。   哥伦比亚大学的二氧化碳空气捕获专家Klaus Lackner表示:“这很有趣。它能够在低温下工作真太好了。”研究团队成员之一、USC的化学家Surya Prakash认为,这使它除了保护电池之外还能够用来抓住空气中的二氧化碳。这种聚合物可用于建造旨在减少大气中二氧化碳浓度的人造树大农场,以及防止气候变化的最严重破坏。但前提是世界各国愿意花费数不清的资金来控制大气中的二氧化碳。   由于这种聚合物会在高温下降解,因此意味着它不可能用于吸收来自工厂烟囱或汽车排气管中的二氧化碳——那里的二氧化碳通常浓度很高且温度也很高。为了克服这一瓶颈,Prakash说,USC的研究团队如今正在研制高表面积且更耐热的PEI。
  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究
  • 天津市发布《铅蓄电池工业污染物排放标准》,LUMEX原子吸收助力铅镉污染物监测
    《导读》--天津市生态环境局近期会同市市场监管委发布《铅蓄电池工业污染物排放标准》(DB12/856-2019)(以下简称《标准》),明确了pH值等11项污染物排放限值。新建企业自2019年2月1日起执行《标准》,现有企业自2020年1月1日起执行。 该标准规定了铅蓄电池生产行业水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准控制项目包括11项污染物排放限值和单位产品基准排水量;其中涉及水污染物8项,包括pH值、化学需氧量、悬浮物、总磷、总氮、氨氮、总铅、总镉;大气污染物3项,包括铅及其化合物、硫酸雾和颗粒物。LUMEX高频塞曼原子吸收可以为铅、镉污染物检测提供有效、稳定、准确的解决方案。 铅蓄电池工业是重金属污染防治的重点监管行业,是我市铅排放占比最高的行业。该标准实施后,可以有效促进企业加强运营管理、提高工艺水平、减少无组织排放,有利于天津市地表水环境质量及环境空气质量的改善,通过减少铅、镉等对人体健康有危害的重金属污染物排放,有助于铅蓄电池行业的健康、可持续发展。 LUMEX公司自1991年成立以来一直致力于新产品和先进技术的开发,现已拥有100多种分析方法,为全球用户提供相应行业的解决方案,现产品和方法用户遍布全球80多个国家。LUMEX原子吸收经过二十年多年的发展,具备成熟的仪器方法和配置,独特的优势特点受到广大用户的好评。 LUMEX将其独有的高频塞曼背景校正专利技术、无极放电灯技术用于石墨炉原子吸收,并结合最优软件流程设计,研制出快速、稳定、可靠、智能的MGA1000原子吸收光谱仪。产品特点:高频塞曼背景校正技术(50KHz)塞曼全波段校正有效消除化学背景干扰和结构背景干扰,实现超低检出限,测定稳定性更好。极快的升温速率—瞬时升温高达7000℃/秒瞬时升温速度高可有效提高原子化效率,减少挥发损失,灵敏度较高,检测结果更准确。光源设计—高强度无极放电灯先进的高强无极放电灯EDL光源保证能够实现超低痕量重金属的准确检测,砷As和硒Se无需氢化物发生器即可直接检测。灯座设计—兼容性强旋转六灯座同时兼容空心阴极灯和高强度无极放电灯(EDL),无需额外EDL灯位及供电系统,操作更简单,检测结果更加稳定。独有的准双光束光路设计独特设计有效消除由于元素灯、电子元件和设备引起的仪器漂移,提高仪器的长期稳定性。STPF稳定温度石墨炉平台技术结合快速升温速率,可兼容Massman 石墨管和Lvov’s平台石墨管,纵向加热及STPF设计使石墨管寿命更长,石墨管平台与石墨管契合度好,原子化效率高,能够消除基质干扰,提高分析重复性一体化冷却循环水设计仪器集成冷却循环水系统,冷却效率高,无需单独外接冷却循环水和其他管线。开机即测—仪器无需预热即使仪器和元素灯不经预热,测量数据也能保持很好的稳定性。卓越的软件控制—实现全自动测量高智能型软件设计,全自定义元素、样品及序列等参数,实现六种元素灯自动切换,所有样品自动顺序测量,完全实现无人值守自动测量。精巧设计紧凑一体化设计,整合石墨炉电源,布局合理,安全性能高,外观紧凑小巧,节省实验室空间。前 言为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》等法律、法规,保护环境,防治污染,促进铅蓄电池工业生产工艺和污染治理技术的进步,结合天津市实际情况,制定本标准。本标准实施之日起,天津市铅蓄电池工业污染物排放控制按本标准的规定执行,环境影响评价文件或排污许可证要求严于本标准时,按照批复的环境影响评价文件或排污许可证执行。本标准由天津市生态环境局提出并归口。本标准起草单位:天津市生态环境监测中心。本标准主要起草人:刘佳泓、周晶、赵吉睿、孙猛、张骥、张莹、高翔、杨丽萍、张玉慧、张丽红、张震、何富生、陈魁。本标准由天津市人民政府于2018年12月27日批准。本标准为首次发布。铅蓄电池工业污染物排放标准1 适用范围本标准规定了铅蓄电池生产企业(含生产设施)水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准适用于天津市辖区内铅蓄电池生产企业(含生产设施)水、大气污染物的排放管理,新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证管理及其建成投产后的水、大气污染物排放管理。本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》《中华人民共和国固体废物污染环境防治法》《中华人民共和国环境影响评价法》《天津市大气污染防治条例》《天津市水污染防治条例》等法律、法规、规章的相关规定执行。2 规范性引用文件本标准引用下列文件或其中的条款。凡是不注日期的引用文件,其最新版本(包括所有修订单)适用于本标准。GB 3097海水水质标准GB 3838地表水环境质量标准GB 6920水质 pH值的测定 玻璃电极法GB 7475水质 铜、锌、铅、镉的测定 原子吸收分光光度法GB 11893水质 总磷的测定 钼酸铵分光光度法GB 11901水质 悬浮物的测定 重量法GB 30484电池工业污染物排放标准GB/T 14295空气过滤器GB/T 15432环境空气 总悬浮颗粒物的测定 重量法GB/T 16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 55大气污染物无组织排放监测技术导则HJ/T 397固定源废气监测技术规范HJ/T 399水质 化学需氧量的测定 快速消解分光光度法HJ 75固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范HJ 535水质 氨氮的测定 纳氏试剂分光光度法HJ 536水质 氨氮的测定 水杨酸分光光度法HJ 537水质 氨氮的测定 蒸馏-中和滴定法HJ 539环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 544固定污染源废气 硫酸雾的测定 离子色谱法HJ 636水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法DB12/ 856—2019水质 氨氮的测定 连续流动-水杨酸分光光度法HJ 667水质 总氮的测定 连续流动-盐酸萘乙二胺分光光度法HJ 670水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法HJ 685固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 700水质 65种元素的测定 电感耦合等离子体质谱法HJ 776水质 32种元素的测定 电感耦合等离子体发射光谱法HJ 828水质 化学需氧量的测定 重铬酸盐法HJ 836固定污染源废气 低浓度颗粒物的测定 重量法3 术语和定义下列术语和定义适用于本标准。3.1 铅蓄电池 lead-acid battery又称铅酸蓄电池。含以稀硫酸为主的电解质、二氧化铅正极和铅负极的蓄电池。3.2 铅蓄电池生产企业 lead-acid battery manufacturing plants指从事铅蓄电池生产、极板加工、电池组装的生产企业。3.3 现有企业 existing facility指本标准发布之日前已建成投产或环境影响评价文件已通过审批的铅蓄电池生产企业。3.4 新建企业 new facility指本标准发布之日起环境影响评价文件通过审批的新建、改建、扩建的铅蓄电池生产企业。3.5 排水量 amount of drainage指生产设施或企业向企业法定边界以外排放的废水的量,包括与生产有直接或间接关系的各种外排废水(含厂区生活污水、厂区锅炉和电站排水等)。3.6 单位产品基准排水量 benchmark effluent volume per unit product指用于核定水污染物排放浓度而规定的单位铅蓄电池产品的废水排放量上限值。3.7 排气筒高度 stack height指排气筒(或其主体建筑构造)所在的地平面至排气筒出口的高度。3.8 企业边界 enterprise boundary指铅蓄电池生产企业的法定边界;若无法定边界,则指实际边界。3.9 标准状态 standard condition指温度为273K,压力为101325Pa时的状态。本标准规定的有组织大气污染物标准值以标准状态下的干空气为基准;企业边界无组织排放的铅及其化合物、硫酸雾、颗粒物浓度为监测时大气温度和压力下的浓度。3.10 公共污水处理系统 public wastewater treatment system指通过纳污管道(渠)等方式收集废水,为两家以上排污单位提供废水处理服务并且排水能够达到相关排放标准要求的企业或机构,包括各种规模和类型的城镇污水处理厂、区域(包括各类工业园区、开发区、工业集聚区等)废水处理厂等,其废水处理程度应达到二级或二级以上。3.11 直接排放 direct disge指排污单位直接向环境水体排放水污染物的行为。3.12 间接排放 indirect disge指排污单位向公共污水处理系统排放水污染物的行为。4 技术及管理要求4.1 实施时间新建企业自本标准发布之日起执行;现有企业自2020年2月1日起执行本标准。4.2 水污染物排放限值及要求4.2.1 水污染物排放限值执行表1的规定,单位产品基准排水量执行表2的规定。4.2.2 排放限值按污水不同的排放去向和不同的功能区分为三级,其中一级、二级为直接排放标准,三级为间接排放标准。4.2.3 排入GB 3838中IV类(含)以上水体及其汇水范围内水体的污水,以及排入GB 3097中二类、三类海域的污水执行一级标准。4.2.4 排入GB 3838中V类或排污控制区水体及其汇水范围内水体的污水,以及排入GB 3097中四类海域的污水执行二级标准。4.2.5 排入公共污水处理系统的污水执行三级标准。4.2.6 本标准规定的水污染物排放限值适用于单位产品实际排水量不高于单位产品基准排水量的情况。若单位产品实际排水量超过单位产品基准排水量,则按照GB 30484的相关规定换算为水污染物基准排水量排放浓度,并据此判定排放是否达标。4.3 大气污染物排放限值及要求4.3.1 大气污染物排放限值执行表3的规定。4.3.2 企业边界无组织排放小时浓度限值执行表4的规定。4.3.3 产生大气污染物的生产工艺和装置必须设置局部或整体气体收集系统,并安装集中净化处理装置。排气筒高度应不低于15m,具体高度按批复的环境影响评价及排污许可文件从严确定。4.3.4 生产设施应采取合理的通风措施,不得故意稀释排放。在国家未规定生产设施单位产品基准排气量之前暂以实测浓度作为判定是否达标的依据。5 污染物监测要求5.1 一般要求5.1.1 企业应按照有关法律、法规、规章、规范性文件及相关标准等规定,建立企业监测制度,制定监测方案,对污染物排放状况及其对周边环境质量的影响开展自行监测,保存原始监测记录,并公布监测结果。5.1.2 新建企业和现有企业安装污染物排放自动监控设备的要求,按有关法律、法规、规章、规范性文件及相关标准等规定执行。5.1.3 企业应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性采样口、采样测试平台和排污口标志。5.1.4 对企业排放废水和废气的采样,根据监测污染物的种类,在规定的污染物排放监控位置进行,有废水和废气处理设施的,应在处理设施后监测。5.1.5 企业产品产量的核定,以法定报表为依据。5.1.6 对企业污染物排放情况进行监测的采样点位置、采样时间和监测频次等要求,按国家有关污染源监测技术规范的规定和生态环境主管部门的要求执行。5.1.7 本标准发布实施后,新发布的国家环境监测分析方法标准中,其方法适用范围相同的,也适用于本标准排放对应污染物的测定。5.2 水污染物监测要求水污染物浓度的测定采用表5所列的方法标准。5.3 大气污染物监测要求5.3.1 排气筒中大气污染物的监测采样按GB/T 16157、HJ/T 397或HJ 75的规定执行。5.3.2 无组织排放监测按HJ/T 55进行监测。5.3.3 大气污染物浓度的测定采用表6所列的方法标准。6 其它污染控制要求6.1 有组织废气污染控制要求。各生产工序产生的废气必须收集、处理达标后方可排放;熔铅、板栅、制粉、和膏、分片、称片叠片、组装等工序产生的含铅废气,应采用符合GB/T 14295要求的高效空气过滤器或其他更先进的除尘设施。6.2 无组织废气污染控制要求。所有涉铅生产工序应集中布置在独立、封闭的车间内。厂房设置机械排风,维持负压运行,排风需经过废气处理装置处理。6.3 污染治理设施运行与管理要求。企业应加强对污染治理设施的运行管理和定期维护,并做好记录,保留台账备查。7 实施与监督7.1 本标准由各级生态环境部门负责监督实施。7.2 在任何情况下,企业均应遵守本标准规定的污染物排放控制要求,采取必要措施保证污染治理设施正常运行。在发现企业耗水或排水量有异常变化的情况下,应核定企业的实际产品产量和排水量,按照GB 30484要求换算水污染物基准排水量下的排放浓度。7.3 各级生态环境部门在对排污单位进行监督检查时,可以现场即时采样,监测结果可以作为判定污染物排放是否超标的证据。来源:LUMEX分析仪器

酸雾吸收器相关的方案

  • 离子色谱法测定固定污染源废气中硝酸雾、磷酸雾
    本文使用离子色谱仪,建立了固定污染源废气中硝酸雾、磷酸雾的检测方法。本方法参考生态环境部发布的《HJXXX-20XX固定污染源废气 硝酸雾、磷酸雾的测定 离子色谱法》(征求意见稿),在0.5~50 μ g/mL浓度范围内建立标准曲线,各化合物线性相关系数均在0.999以上,线性良好。空气样品采样体积为0.4 m3制成50 mL试样,进样体积为25 μ L时,硝酸雾方法检出限为0.012 mg/m3,磷酸雾方法检出限为0.013 mg/m3,1 μ g/mL标准溶液重复分析6次,硝酸根峰面积相对标准偏差为1.53%,磷酸根峰面积相对标准偏差为2.83%,重复性良好。加标回收实验中,各组分回收及精密度良好。6次加标实验相对标准偏差小于4%。该方法简单方便,能有效的对固定污染源中硝酸雾、磷酸雾的含量进行测定。
  • 离子色谱法测定固定污染源废气中硝酸雾
    本文建立了一种使用离子色谱法测定固定污染源废气中硝酸雾的方法。参考2021年版《固定污染源废气 硝酸雾的测定 离子色谱法(征求意见稿)》标准,用HIC-ESP进行定性定量分析。结果显示硝酸根线性良好,标准曲线相关系数均≥0.999;低中高浓度连续分析6次,保留时间RSD≤0.03%,峰面积的RSD≤0.6%;低中高浓度加标样品回收率在99.4%~102.3%之间,方法准确可靠。该方法重现性好,灵敏度高,可用于固定污染源废气中硝酸雾的测定。
  • 离子色谱法测定有组织排放废气硫酸雾采样
    崂应1083A型 硫酸雾多功能取样管采用整体钛合金加硼硅酸玻璃材质,钛材质本身更加耐腐蚀,相比不锈钢材质也更轻便,使用寿命更长,硼硅酸玻璃材质本身对样品无污染,此外该取样管也可以根据HJ/T-67-2001标准完成氟化物的采样,崂应3012H-D型便携式大流量低浓度烟尘自动测试仪,配备自护研发的高负载、低噪声、大流量采样泵,空载流量达到100L/min,负载20KPa时流量不小于60L/min,可完成一些负压大负载高的工况,具备制造计量器具许可证书,流速、烟尘、大气压等参数可同时监测,让您可以放心的更好的完成采样,如果您已经有我们的崂应3012H 新08代仪器,在流速相对较低,负压不高的污染源工况,崂应3012H 新08代同样可以配崂应1083A完成采样任务。

酸雾吸收器相关的资料

酸雾吸收器相关的试剂

酸雾吸收器相关的论坛

  • 【转帖】雾吸收器在CEMS系统中的作用

    雾吸收器在CEMS系统中的作用是用于吸收SO3烟雾。http://www.shimadzu.com.cn/upload/2009/2/2009212155237440.gif  我们知道在可燃性硫及硫化合物在燃烧时,主要是生成SO2,只有1%--5%氧化成SO3。其主要化学反应如下:  如单体硫燃烧:S+O2= SO2     SO2+ O2= SO3  虽然SO2在洁净干燥的大气中氧化成SO3的过程是很缓慢的,但是,在相对湿度比较大,特别是在有颗粒物存在时,可发生催化氧化反应,从而加快生成SO3。       SO2*+O2→SO3+〔O〕    SO3+H2O→H2SO4  而SO2在干燥空气中,其含量达800ppm时,人还可以忍受。但在三氧化硫与水结合可形成硫酸气溶胶后,其含量仅0.8ppm人即不可忍受。  当SO3溶于水时放出大量的热,使水蒸发成为蒸汽态,而三氧化硫本身熔点16.8度和沸点44.8度很低,因此它也会蒸发为气态,并与空中的水蒸气反应生成硫酸小液滴,也就是酸雾。  酸雾的腐蚀性比SO2更严重,如果酸雾进入到系统设备中,如电磁阀,连接接头,测量池等,都会造成这些部件的腐蚀,特别是国产的CEMS系统(如旭东升公司,世纪伟天公司,青岛佳名等)他们的系统没有使用雾吸收器、过滤器,并且使用的是一些(如快速接头、材质不好的不锈钢接头、电磁阀或其他接气金属部件等),SO3的存在使得接头、电磁阀都被腐蚀,造成气路管路漏气、分析仪测量池被严重污染、部件损坏等,增加了的维护量及沉重维护成本,这也是国产CEMS设备系统一直苦恼的问题。而我们的系统使用由很多细微孔的硅藻土为填充剂构成的雾吸收器,更能有效的去除和吸收SO3 ,减少腐蚀性,减少维护。  雾吸收器在CEMS系统中同时过滤其它粉尘结晶物,保证了抽气泵等重要部件的长期运行,延长部件的寿命。  因此雾吸收器在CEMS系统中起的一个非常重要的作用,整个CEMS系统的长期稳定运行都是离不开它。

  • 硫酸雾吸收液

    我想问一下,固定汚染源废气 硫酸雾 的新国标中有提到用吸收瓶进行废气吸收,那吸收瓶中吸收液的浓度是需要按照淋洗液浓度进行调整,还是说不管你淋洗液用什么吸收液都用30mmol/l的NaOH呢?

酸雾吸收器相关的耗材

  • 安徽封闭式定硫吸收器封闭式定硫吸收器非水
    STEEL SULFUR ABSORPTION APPARATUS.别名:非水定硫吸收器一.概况及用途:该仪器采用硼硅玻璃经灯工磨砂制成。它适用于钢铁、冶金、机械和科研单位。用碘量法对钢铁中的含硫量测定时做吸收器之用。二、造型及原理:该仪器有开口和封闭式两种,它是一只筒型杯,杯内有一支浮子的气体导入管,杯身下端有一支三路斜孔活塞,它用于排出废液和引入吸收液用。其原理:式样在高温的氧气流中燃烧生成的混和气体引入吸收器,用水吸收成亚硫酸后,以碘标准液进行氧化还原滴定,用淀粉为指示剂,根据所消耗的碘量,计算出试样中的含流量。三、使用方法:先检查燃烧管有否挥发性物质,方法如下,当炉温达到1250℃~1300℃时,将燃烧管的管口用塞塞住,加60毫升吸收液于吸收管中,并用滴定管滴入碘标准溶液数滴滴至溶液呈浅蓝色,然后在燃烧管内通氧气至吸收器内,如氧气流迅速通过数分钟后,吸收器内溶液颜色如有退色则证明管内有与碘发生反应之物质排出,须继续通氧,并向吸收器内再加数滴碘标准溶液,继续燃烧直至浅蓝色不退为止,再用0.5克标准刚样进行校验,待仪器检验准确后,即可进行使用。将称好试样放入燃烧舟内再覆盖一层纯锡助溶剂,用长沟推入燃烧管最热处,即将管口塞住,预热一分钟,输入氧气,其速度掌握在使吸收器中液面升高30~40毫米为准。当气体进入吸收器,吸收液下层开始退色时应立即滴入碘标准液,使溶液之蓝色在燃烧期间不至消失,当吸收液退色较缓时应以较缓的速度滴入碘标准液直至浅蓝色保持不变(即与燃烧前的色泽一致时)为止,在继续通氧1分钟,根据滴定时所耗用的碘量,就能计算出样式的含硫量。
  • CO2 吸收器 CW 6.2837.100
    CO2 吸收器 CW订货号: 6.2837.100涡形吸收器,用于去除 MCS 吸入空气里的 CO2。该吸收器使用时无需上游的 H2O 吸收器。
  • CO2吸收器、二氧化碳吸收器
    TOC-4100/TOC-4200630-00999CO2吸收器¥ 800.00照片非实物
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制