当前位置: 仪器信息网 > 行业主题 > >

往复式给料

仪器信息网往复式给料专题为您提供2024年最新往复式给料价格报价、厂家品牌的相关信息, 包括往复式给料参数、型号等,不管是国产,还是进口品牌的往复式给料您都可以在这里找到。 除此之外,仪器信息网还免费为您整合往复式给料相关的耗材配件、试剂标物,还有往复式给料相关的最新资讯、资料,以及往复式给料相关的解决方案。

往复式给料相关的论坛

  • 圆周式摇床和往复式摇床效果有什么不同?

    圆周式摇床和往复式摇床效果有什么不同?

    圆周式摇床http://ng1.17img.cn/bbsfiles/images/2012/07/201207171338_378227_2347661_3.jpg往复式摇床http://ng1.17img.cn/bbsfiles/images/2012/07/201207171339_378228_2347661_3.jpg这两种摇床,使用起来,有什么不同呢?

  • 岛津液相色谱仪LC-20AB,往复式柱塞泵上,橡胶管连接问题

    [table=100%][tr][td]各位大侠,我们在清洗岛津液相色谱仪LC-20AB管路的时候,不小心把往复式柱塞泵上的橡胶管弄下来了,不知道是如何连接的了,现在泵不能吸上液体来了。各位用过岛津LC-20AB的,能不能发张图片来呢,就是往复式柱塞泵外面的橡胶管是如何连接的,我们照着图片连接一下。不胜感激。[/td][/tr][/table]

  • 往复式摩擦色牢度标准测试中细节问题分析详解?

    往复式摩擦色牢度标准测试中细节问题分析详解?

    [font=宋体]前言[/font][font=宋体]作为一个资深的检测人员,机械式的操作已经是过去式。对于一个有心检测人员总会把日常检测中的问题进行归纳,找的解决的方法来进一步达到检测结果的更加准确性。这不,一位做了多年摩擦色牢度的检测人员通过多年的检测经验发现了[/font]GB/T 3920-2008[font=宋体]《纺织品[/font] [font=宋体]色牢度试验[/font] [font=宋体]耐摩擦色牢度》中一些规定的问题,下面让我们来一起分析一下:[/font]1. [font=宋体]标准适用范围描述不清晰[/font][font=宋体]做过摩擦色牢度测试的人员都知道,对于单色织物或大面块印花织物来说用往复式的摩擦测试是没错的,因为它能够测试到织物每种颜色的摩擦色牢度测试结果。而对于小花型的印花来说因为其取样位置的局限性,如果再用往复式摩擦色牢度测试的话会因为取样面积包含了多种颜色而导致摩擦结果的差异性,而这种差异不是一星半点,所以,对于往复式摩擦色牢度测试中的适用范围应该明确适用于面块至少为取样面积的印花产品及单色织物,这样的话对于初次就接触摩擦色牢度测试的人员来说可能在选择摩擦标准上更加方便一些,同时还能减少实验室间及人员之间测试结果的差异性。[/font][align=center][img=,690,67]https://ng1.17img.cn/bbsfiles/images/2023/10/202310061813063326_3128_2646158_3.png!w690x67.jpg[/img] [/align][align=center][font=宋体]图[/font]1[font=宋体]—标准中对适用范围的界定不明确[/font][/align]2. [font=宋体]试验操作及设备校验的方法选择不合理[/font][font=宋体]在[/font]GB/T 3920-2008[font=宋体]《纺织品[/font] [font=宋体]色牢度试验[/font] [font=宋体]耐摩擦色牢度》第[/font]4.4[font=宋体]条款的小注重明确指出“需定期对试验操作和设备进行校准,并做好记录。一般使用内部已知试样,做三次干摩擦试验。”在这里我想说,做三次“干摩擦”试验能保证摩擦结果具有可比性吗?因为做过摩擦测试的人员都知道,一般样品的测试都需要做干摩擦和湿摩擦,而且很多产品的干摩擦结果很好,在干摩擦结果很好地情况下,摩擦布不沾色呈现的摩擦状态和结果怎么能够分析评价?为什么在核查时不增加一个湿摩擦,这样的话干湿摩擦结果相结合,才能发现测试中设备、评级等方面的问题。因为呈现出结果差异及外观形态的摩擦沾色最好的样品结果是[/font]3[font=宋体]级左右,也就是在摩擦结果为[/font]2-3[font=宋体]级至[/font]3-4[font=宋体]级时的样品最能够发现设备及人员操作的问题。所以建议标准中增加湿摩擦试验的校准要求。[/font][align=center] [img=,690,55]https://ng1.17img.cn/bbsfiles/images/2023/10/202310061813188058_4293_2646158_3.png!w690x55.jpg[/img][/align][align=center][font=宋体]图[/font]2[font=宋体]—标准中对校准试验的要求[/font][/align][align=center][img=,421,281]https://ng1.17img.cn/bbsfiles/images/2023/10/202310061813325885_1991_2646158_3.png!w421x281.jpg[/img][img=,433,285]https://ng1.17img.cn/bbsfiles/images/2023/10/202310061813391301_4015_2646158_3.png!w433x285.jpg[/img] [/align][align=center][font=宋体]图[/font]3[font=宋体]—不同沾色情况下的摩擦布所呈现的摩擦布表面形状、均匀度更能反映出设备的状态及人员的操作情况。[/font][/align]3. [font=宋体]色牢度评级中辅助方法的合理利用[/font][font=宋体]在标准的评定中[/font]GB/T 3920-20088[font=宋体]《纺织品[/font] [font=宋体]色牢度试验[/font] [font=宋体]耐摩擦色牢度》第[/font]7.2[font=宋体]条款只对沾色用灰色样卡的使用进行了规定,但是纵观其他国际标准有的将仪器评级引入到摩擦色牢度评级中了,这一引用通过仪器评级的参考无疑更加增加了结果评定的信心。起码评级人员在劳累、生病等情况下评级毕竟还是有偏差的。[/font][align=center] [img=,306,159]https://ng1.17img.cn/bbsfiles/images/2023/10/202310061814047629_3089_2646158_3.png!w306x159.jpg[/img][/align][align=center][font=宋体]图[/font]4[font=宋体]—部分国际标准中对仪器评级的使用规定[/font][/align][font=宋体]结束语[/font][font=宋体]标准的制定就像内部技术文件的编制一样会随着科技的变迁、经验的增长而需要不断地改进,只有适合的才是最好的,所以国家标准的编制除了完全“引用”之外,还需要在“创新”上下点工夫。[/font]

  • 【求助】皮革色牢度往复摩擦色牢度测定

    求助:按QB/T2537-2001《皮革色牢度往复摩擦色牢度》标准进行色牢度测试时,如果皮革表面涂层被磨掉了,如何评定沾色(变色)级别?[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=188931]QBT 2537-2001 皮革_色牢度试验 往复式摩擦色牢度.pdf[/url]

  • 27 L 往复振荡恒温水浴器特性参数

    [b][url=http://www.f-lab.cn/shaking-baths/swbr27.html]往复震荡恒温水浴SWBR27[/url][/b]是一[b]款科学级进口往复式震荡水浴箱[/b]或[b]往复振荡水浴摇床,[/b]为满足多种科研应用而设计[b],[/b]具有27L容积,0.2%温度均匀性[b],往复振荡恒温水浴箱[/b]非常适用于生物分子学领域比如分子杂交,细菌培养,溶解度和新陈代谢研究,在科学级[b]往复振荡恒温水浴[b]箱[/b]品牌[/b]中具有高性价比的[b][b]往复振荡恒温水浴[b]箱[/b]价格。[b]往复[b]震荡[/b]恒温水浴[/b][/b]特点[/b]具有精密的温度控制和顺滑的往复振荡模式。[b][b]震荡[/b]恒温水浴[/b]采用单独控制器,从而可用于常规恒温水浴应用,例如,解冻或升温试剂,一般性孵化。[b]震荡水浴箱[/b]具有可调的时间长度(0.5'', 1''或1.5''),从而使得用户可控制搅拌程度。[img=往复震荡恒温水浴27L]http://www.f-lab.cn/Upload/SWBR27.JPG[/img][b][b][b]往复[b]震荡[/b]恒温水浴箱[/b][/b]特色[/b]独立的振荡和温度控制可调的工作时间包括托盘在内防止加热过度独特设计技术消除温度热点包含盖子温度均匀度:+/-0.2% at 37摄氏度温度范围:室温+5摄氏度到80设施度容积:17L[b]往复[b]震荡[/b]恒温水浴应用[/b]分子杂交,细胞培养,细胞通风充气,增加溶解速率,分子生物学化验,细菌培养更多水浴器官网:[url]http://www.f-lab.cn/water-baths.html[/url]

  • 【分享】中空成型吹塑机的分类

    中空成型吹塑机按其出料方式的不同可分为连续挤出吹塑和间歇挤出吹塑两种成型方法。   (1)连续挤出中空成型吹塑机的工作原理 此法的特点是由挤出机连续挤出管坯。其优点是:成型设备简单,投资少,容易操作,是目前国内中小型企业普遍采用的基本成型方法。连续挤出吹塑成型法的生产过程又有往复式、轮换出料式和转盘式三种。   ①往复式连续挤出中空成型吹塑机,型坯由挤出机连续挤出,当型坯足够长时,吹塑模具从吹塑及冷却工位移至机头下方合模夹持型坯,而后移返吹塑工位。由机头下方左右分置的两个模具往复运动来保证生产过程的连续性。   ②轮换出料式连续挤出中空成型吹塑机,在挤出机前端采用换向阀来控制熔体的流动,使熔体轮换通过挤出机两侧的型坯机头挤出型坯,实现连续生产。   ③转盘式连续挤出中空成型吹塑机,挤出机连续挤出型坯,型坯被模具夹持后,绕转盘轴线转送至吹胀、冷却、开模及取出制品等工位,实现过程的连续。吹塑模具也可按水平转盘设置。   (2)间歇挤出中空成型吹塑机的工作原理 该法是由挤出机不断地将熔融塑化好的熔体挤进到一个储料腔中,待储料腔中的物料达到所需数量时,再将储料腔中的物料快速推压出

  • 液相色谱仪填料的发展史

    高效液相色谱(HPLC)不仅是一种有效的分析分离手段,也是一种重要的高效制备分离技术。色谱柱是HPLC系统的核心,不同性能的填料是HPLC广泛应用的基础。液相色谱柱的分离作用是在填料与流动相之间进行的,柱子的分类是依据填料类型而定。  正相柱:多以硅胶为柱填料。根据外型可分为无定型和球型两种,其颗粒直径在3—10 μm的范围内。另一类正相填料是硅胶表面键合—CN,-NH2等官能团即所谓的键合相硅胶。  反相柱:主要是以硅胶为基质,在其表面键合十八烷基官能团(ODS)的非极性填料。也有无定型和球型之分。  常用的其他的反相填料还有键合C8、C4、C2、苯基等,其颗粒粒径在3—10 μm之间。1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。  1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法(HPLC)正式建立。在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在医`学教育网搜集整理有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。高效液相色谱同时还极大的刺激了固定相材料、检测技术、数据处理技术以及色谱理论的发展。  1960年代前,使用的填充粒大于100μm,提高柱效面临着困境,后来的研究人员便采用微粒固定相来突破着一瓶颈。科克兰、荷瓦斯制备成功薄壳型固定相,这种在固定相在玻璃微球表面具有多孔薄壳,实现了高速传质,为高效液相色谱技术的发展奠定了稳固的基础。随着填料粒径的降低,更高的柱效也得以实现。  1960年代研制出气动放大泵、注射泵及低流量往复式柱塞泵,但后者的脉冲信号很大,难以满足高效液相色谱的要求。1970年代,往复式双柱塞恒流泵,解决了这一问题。1970年代后科克兰制备出全多孔球形硅胶医`学教育网搜集整理,平均粒径只有7μm,具有极好的柱效,并逐渐取代了无定形微粒硅胶。之后又制造出的键合固定相使柱的稳定性大为提高,多次使用成为可能。1970年后,适合分离生物大分子的填料又成为研究的热点。1980年后,改善分离的选择性成为色谱工作者的主要问题,因此改变流动相的组成提高选择性是关键。如今利用基于亚2μm填料的超高压液相色谱技术、基于核-壳型填料的快速分离技术、基于杂化硅胶填料的高温液相色谱技术等。硅胶经表面化学键合、聚合物包覆等有机改性可制得先进的大分子限进填料、温敏性填料、手性填料等,大大扩展了HPLC的应用范围,随着科学技术的进步填料的发展朝着多样性多功能的综合型方向发展。

  • 小花型印花产品摩擦色牢度为什么不用旋转摩擦牢度仪?

    现在看到很多印花产品在摩擦色牢度测试时只选择往复式的摩擦方法,而旋转的很少用。平时也做了一些对比虽然旋转摩擦的结果稍微松了点但是小花型做往复式的摩擦其他的颜色沾的也不少,从而影响结果,导致投诉。不知道为什么印花产品客户不选择旋转摩擦方法?

  • 岛津液相色谱仪LC-20AB,管路连接问题

    各位大侠,想请教一下,岛津LC-20AB管路连接问题。我们冲洗管路时,不小心把与往复式柱塞泵连接的橡胶管弄掉下来了,不知道如何安装了。请问各位大侠,能帮忙发张图片过来吗,就是往复式柱塞泵上橡胶管是如何连接的,我们照着连接连接试试。不胜感激感激!

  • 【求助】求助两个标准

    [size=3][font=宋体]1. [/font][/size][size=3][font=宋体]DZ/T0119 [/font][/size][size=3][font=宋体]地质钻探用往复式泥浆泵技术条件[/font][/size][size=3][font=宋体]2. [/font][/size][size=3][font=宋体]DZ/T0120 [/font][/size][size=3][font=宋体]地质钻探用往复式泥浆泵试验条件[/font][/size]

  • 【分享】阀门执行机构及应用选型(二)

    3、执行机构选择要素 选择一台合适的阀门执行机构类型和规格时必须考虑下列要素: 1.驱动能源 最常用的驱动能源是电源或流体源,如果选择电源为驱动能源,对于大尺寸阀门一般选用三相电源,对于小尺寸阀门可选用单相电源。一般电动执行机构可有多种电源类型供选择。有时也可选直流供电,此时可通过安装电池实现电源故障安全操作。 流体源种类很多,首先可以是不同的介质如:压缩空气、氮气、天然气、液压流体等,其次它们可以具备各种压力,第三执行机构具有各种尺寸以提供输出力活力矩。 2.阀门类型 当选择阀门用执行机构时,必须要知道阀门的种类,这样才可以选择正确的执行机构类型。有些阀门需要多回转驱动,有些需要单回转驱动,有些需要往复式驱动,它们影响了执行机构类型的选择。 通常多回转的气动执行机构比电动多回转执行机构价格要贵,但是往复式直行程输出的气动执行机构价格比电动多回转执行机构便宜。 3.力矩大小 对于90度回转的阀门如:球阀、碟阀、旋塞阀,最好通过阀门厂商获得相应阀门力矩大小,大部分阀门厂商是通过测试阀门在额定压力下阀门所需的操作力矩,他们将这一力矩提供给客户。对于多回转的阀门情况有所不同,这些阀门可分为:往复式(提升式)运动-阀杆不旋转、往复式运动-阀杆旋转、非往复式-阀杆旋转,必须测量阀杆的直径,阀杆连接螺纹尺寸已决定执行机构规格。 4.执行机构选型 一旦执行机构类型和阀门所需驱动力矩确定了,就可以使用执行机构厂商提供的数据表或选型软件进行选型。有时还需考虑阀门操作的速度和频率。 流体驱动的执行机构可调节行程速度,但是三相电源的电动执行机构只有固定的行程时间。 部分小规格的直流电动单回转执行机构可调节行程速度。 开关控制 自动控制阀最大的好处是可以远距离的操作阀门,这就意味着操作人员可以坐在控制室控制生产过程而不需要亲临现场去人工操作阀门的开和关。人们只需铺设一些管线连接控制室和执行机构,驱动能源通过管线直接激励电动或气动执行机构,通常用的4-20mA信号来反馈阀门的位置。 连续控制 如果执行机构被要求用于控制过程系统的液位、流量或压力等参数,这是要求执行机构频繁动作的工作,可以用4-20mA信号作为控制信号,然而这个信号可能会和过程一样频繁的改变。如果需要非常高频率动作的执行机构,只有选择特殊的能频繁启停的调节型执行机构。当一个过程中需要多台执行机构时,可以通过使用数字通讯系统将各个执行机构连接起来,这样可大大降低安装费用。数字通讯回路可以快速高效的传递指令和收集信息。目前有多种通讯方式如:FOUNDATIONFIELDBUS、PROFIBUS、DEV[color=#810081]IC[/color][color=#810081]集成电路PI5V330SQ[/color]ENET、HART和专为阀门执行机构设计的PAKSCAN等。数字通讯系统不单单可以降低投资费用,它们还可以收集大量阀门信息,这些信息对于阀门的预测性维护程序非常有价值。 4、预测性维护 操作人员可以借助内置的数据存储器来记录阀门每次动作时力矩感应装置测得的数据,这些数据可以用来监测阀门运行的状态,可以提示阀门是否需要维修,也可以用这些数据来诊断阀门。 针对阀门可以诊断如下数据: 1.阀门密封或填料摩擦力 2.阀杆、阀门[color=#810081]轴承[/color] [color=#810081]齿轮旋转式[/color] 的摩擦力矩 3.阀座摩擦力 4.阀门运行中的摩擦力 5.阀芯的所受的动态力 6.阀杆螺纹摩擦力 7.阀杆位置 上述大部分数据存在于所有种类的阀门,但着重点不同,例如:对于蝶阀,阀门运行中的摩擦力是可以忽略的,但对于旋塞阀这个力数值却很大。 不同的阀门具有不同的力矩运行曲线,例如:对于楔式闸饭,开启和关闭力矩都非常大,其它行程时只有填料摩擦力和螺纹摩擦力,关闭时,液体静压力作用在闸板上增加了阀座摩擦力,最终楔紧效应使力矩迅速增大直到关闭到位。所以根据力矩曲线的变化可以预测出将会发生的故障,可以对预测性维护提供有价值的信息。 智能变频控制 执行机构在工作过程中,由于电机的频繁启动,导致工作时额定频率的变化,通过智能变频控制可使频率达到额定值 例如:由于电阻或外力原因,电机启动速度变慢,导致执行机构行程控制的误差,运用智能变频控制,可以改变输入转速,从而使执行机构的工作更可靠和稳定。

  • 【求助】求助几个标准

    [size=3]1.[/size] [size=3]GB3836.1 [/size][size=3][font=宋体]爆炸性气体环境用电气设备[/font][font=Times New Roman] [/font][font=宋体]第[/font][font=Times New Roman]1[/font][font=宋体]部分:通用要求[/font][/size][size=3]2.[/size] [size=3]GB/T9234 [/size][font=宋体][size=3]机动往复泵[/size][/font][size=3]3.[/size] [size=3]GB7784 [/size][font=宋体][size=3]机动往复泵试验方法[/size][/font][size=3]4.[/size] [size=3]JB/T8098 [/size][font=宋体][size=3]泵的噪声测量与评价方法[/size][/font][size=3]5.[/size] [size=3]JB/T5923-1997 [/size][font=宋体][size=3]汽动气缸技术要求[/size][/font][size=3]6.[/size] [size=3]DZ/T0119 [/size][font=宋体][size=3]地质钻探用往复式泥浆泵技术条件[/size][/font][size=3]7.[/size] [size=3]DZ/T0120 [/size][font=宋体][size=3]地质钻探用往复式泥浆泵试验条件[/size][/font]

  • 印花产品的取样问题?

    很多素色产品在取样过程中很容易取,但是对于印花产品很多客户也选择往复式的摩擦方法,这种情况下对于小花型的印花产品实验室该如何取样?还是按照标准要求的经纬向各取一组或45度角取样吗?

  • 培养室内设备及用具

    (1)内室通常配备培养架和摇瓶机(摇床)。常用的摇瓶机有旋转式、往复式两种。(2)外室应有专用的工作服、鞋、帽、口罩、手持喷雾器和 5%石炭酸溶液、70%酒精棉球等。

  • 【转帖】高效液相色谱发展历史

    以下资料是转自其它网站:1960年代,由于气相色谱对高沸点有机物分析的局限性,为了分离蛋白质、核酸等不易气化的大分子物质,气相色谱的理论和方法被重新引入经典液相色谱。1960年代末科克兰(Kirkland)、哈伯、荷瓦斯(Horvath)、莆黑斯、里普斯克等人开发了世界上第一台高效液相色谱仪,开启了高效液相色谱的时代。高效液相色谱使用粒径更细的固定相填充色谱柱,提高色谱柱的塔板数,以高压驱动流动相,使得经典液相色谱需要数日乃至数月完成的分离工作得以在几个小时甚至几十分钟内完成。   1971年科克兰等人出版了《液相色谱的现代实践》一书,标志着高效液相色谱法(HPLC)正式建立。在此后的时间里,高效液相色谱成为最为常用的分离和检测手段,在医`学教育网搜集整理有机化学、生物化学、医学、药物开发与检测、化工、食品科学、环境监测、商检和法检等方面都有广泛的应用。高效液相色谱同时还极大的刺激了固定相材料、检测技术、数据处理技术以及色谱理论的发展。   1960年代前,使用的填充粒大于100μm,提高柱效面临着困境,后来的研究人员便采用微粒固定相来突破着一瓶颈。科克兰、荷瓦斯制备成功薄壳型固定相,这种在固定相在玻璃微球表面具有多孔薄壳,实现了高速传质,为高效液相色谱技术的发展奠定了稳固的基础。随着填料粒径的降低,更高的柱效也得以实现。   1960年代研制出气动放大泵、注射泵及低流量往复式柱塞泵,但后者的脉冲信号很大,难以满足高效液相色谱的要求。1970年代,往复式双柱塞恒流泵,解决了这一问题。1970年代后科克兰制备出全多孔球形硅胶医`学教育网搜集整理,平均粒径只有7μm,具有极好的柱效,并逐渐取代了无定形微粒硅胶。之后又制造出的键合固定相使柱的稳定性大为提高,多次使用成为可能。1970年后,适合分离生物大分子的填料又成为研究的热点。1980年后,改善分离的选择性成为色谱工作者的主要问题,人们越来越认识到改变流动相的组成事提高选择性的关键。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制