当前位置: 仪器信息网 > 行业主题 > >

塑料编织机

仪器信息网塑料编织机专题为您提供2024年最新塑料编织机价格报价、厂家品牌的相关信息, 包括塑料编织机参数、型号等,不管是国产,还是进口品牌的塑料编织机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料编织机相关的耗材配件、试剂标物,还有塑料编织机相关的最新资讯、资料,以及塑料编织机相关的解决方案。

塑料编织机相关的资讯

  • 济南兰光参与编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》正式
    济南兰光机电技术有限公司作为主要起草单位,与国家包装产品质量监督检验中心(济南)、山东质量检验协会共同编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》(GB/T 28765-2012)国家推荐性标准近日由国家质量监督检验检疫总局发布,并于2013年5月1日正式实施。 常见有机气体如苯、酯、醇、酮、醛、醚等在渗透过程中会与多数薄膜材料发生反应,出现溶胀现象,导致材料的结构特性发生改变,进而影响其阻隔性,这也是当 前全球尚无有机气体透过率检测的方法标准的缘由之一。在该领域的研究中,一种定量测试方法&mdash &mdash 均衡法应用最广,对此,负责本标准起草的研究团队对该种方法 的仪器化可行性进行为期两年的全面分析及数据验证工作,肯定了该方法在实现检测及量化该测试指标上均可满足要求,同时提出了同样具有科学性和应用性的全新 测试方法&mdash &mdash 真空法。这在一方面有助于对当前实验室已在使用的均衡法测试给予使用指导,另一方面通过两种试验方法可进一步验证测试数据有效性。 当前包装容器的整体检测技术发展很快,由于容器测试与薄膜测试仅在测试腔的结构存在差异,其他测方面并无改动,因此容器有机气体透过率测试技术也被引入此标准中,进而拓宽了本标准的检测对象种类。 《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》涵盖了均衡法和真空法两种试验方法,是国际上首项有机气体透过率测试方法标准,为科学的评价食品、药品、 化妆品包装材料的有机气体透过率(即保香性能)提供了一种可量化的检测手段,同样也标志着济南兰光机电技术有限公司在包装材料有机气体渗透研究领域的学术 水平处于全国领先地位。
  • 2020年限塑令空降 禁止外卖酒店等使用非降解塑料
    p style="text-align: justify text-indent: 2em "塑料在生产生活中应用广泛,是重要的基础材料。不规范生产、使用塑料制品和回收处置塑料废弃物,会造成能源资源浪费和环境污染,加大资源环境压力。积极应对塑料污染,事关人民群众健康,事关我国生态文明建设和高质量发展。/pp style="text-align: justify text-indent: 2em "1月19日,国家发改委、生态环境部印发《关于进一步加强塑料污染治理的意见》,明确了未来一段时间内塑料污染治理的具体时间表和路线图。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 603px height: 320px " src="https://img1.17img.cn/17img/images/202001/uepic/ba5f5dc8-c040-40ee-ae88-587d0c783558.jpg" title="限塑令.png" alt="限塑令.png" width="603" height="320"//pp style="text-align: justify text-indent: 2em "这一政策是对2007年12月发布的《国务院办公厅关于限制生产销售使用塑料购物袋的通知》(限塑令)的重大升级,因此被市场称为“新版限塑令”。/pp style="text-align: justify text-indent: 2em "strong主要目标/strong/pp style="text-align: justify text-indent: 2em "到2020年,率先在部分地区、部分领域禁止、限制部分塑料制品的生产、销售和使用。到2022年,一次性塑料制品消费量明显减少,替代产品得到推广,塑料废弃物资源化能源化利用比例大幅提升;在塑料污染问题突出领域和电商、快递、外卖等新兴领域,形成一批可复制、可推广的塑料减量和绿色物流模式。到2025年,塑料制品生产、流通、消费和回收处置等环节的管理制度基本建立,多元共治体系基本形成,替代产品开发应用水平进一步提升,重点城市塑料垃圾填埋量大幅降低,塑料污染得到有效控制。/pp style="text-align: justify text-indent: 2em "strong这些和你我息息相关的领域禁止、限制使用的塑料制品。/strong/pp style="text-align: justify text-indent: 2em "strong1.不可降解塑料袋。(商场、超市、药店、书店等)/strong/pp style="text-align: justify text-indent: 2em "span style="background-color: rgb(255, 192, 0) "到2020年底,直辖市、省会城市、计划单列市城市建成区的商场、超市、药店、书店等场所以及餐饮打包外卖服务和各类展会活动,禁止使用不可降解塑料袋,集贸市场规范和限制使用不可降解塑料袋。/span/pp style="text-align: justify text-indent: 2em "strong2.一次性塑料餐具。(外卖领域、旅游景区等)/strong/pp style="text-align: justify text-indent: 2em "span style="background-color: rgb(255, 192, 0) "到2025年,地级以上城市餐饮strong外卖/strong领域不可降解一次性塑料餐具消耗强度下降30%。/span/pp style="text-align: justify text-indent: 2em "strong3.宾馆、酒店一次性塑料用品。(宾馆、酒店、民宿)/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) background-color: rgb(255, 192, 0) "到2022年底,全国范围星级宾馆、酒店等场所不再主动提供一次性塑料用品;到2025年底,实施范围扩大至所有宾馆、酒店、民宿。/span/pp style="text-align: justify text-indent: 2em "strong4.快递塑料包装。(快递)/strong/pp style="text-align: justify text-indent: 2em "span style="background-color: rgb(255, 192, 0) "到2022年底,北京、上海、江苏、浙江、福建、广东等省市的邮政快递网点,先行禁止使用不可降解的塑料包装袋、一次性塑料编织袋等,降低不可降解的塑料胶带使用量。到2025年底,全国范围邮政快递网点禁止使用不可降解的塑料包装袋、塑料胶带、一次性塑料编织袋等。/span/p
  • 塑料微珠被禁用,化妆品微珠检测出新规!——化妆品中塑料微珠的测定
    导 读 塑料微珠广泛用于洗面奶、按摩霜、去角质霜、牙膏、沐浴露等化妆品和个人护理品中,是一种直径小于5mm的塑料合成颗粒,常用原料有PE(聚乙烯),PP(聚丙烯),PMMA(聚甲基丙烯酸甲酯)等等。这种在化妆品界红极一时的塑料微珠,却对海洋及整个生态系统有着强大的破坏力。近年来,各国相继出台相关法规,禁止塑料微珠在化妆品中使用。国家发改委编制的《产业结构调整指导目录》(2019)要求,含塑料微珠的日化产品,到2020年12月31日禁止生产,到2022年12月31日禁止销售。目前我国发布最新的国标《化妆品中塑料微珠的测定》征求意见稿;该标准由深圳计量质量研究院负责制定,岛津作为验证单位参与了标准的验证。 应对细小塑料微珠的分析检测需求,您能否即刻满足?岛津公司助您从容应对。 仪器配置 岛津IRTracer-100, ATR(金刚石晶体), 岛津分析天平:感量0.1 mg,抽滤装置,烘箱,玻璃器皿等。 图1. 岛津IRTracer-100红外光谱仪 图2. 衰减全反射附件(ATR) 前处理及定性、定量方法 参考《化妆品中塑料微珠的定性定量分析》征求意见稿,用乙醇及乙醇水溶液将塑料微珠从化妆品样品中分离,烘干后使用岛津高性能红外IRTracer-100配置衰减全反射附件ATR测试化妆品中塑料微珠的种类,重量法定量。 结果考察 结合上述前处理方法,使用岛津红外IRTracer-100、ATR(金刚石晶体)对洁面膏、磨砂膏以及去角质啫喱进行了定性及定量分析。下图为三种样品的红外叠加谱图。从叠加谱图可以看到,三种样品中的塑料微珠红外光谱一致,可以判断,塑料微珠为同一物质。 图3 三种样品红外叠加谱图 对去角质啫喱中的塑料微珠进行光谱检索,结果如下图,图中红色谱图为去角质啫喱样品的红外光谱图,绿色谱图为聚乙烯PE的标准光谱图,两谱图出峰位置一致,峰强度比值一致,可以判断该去角质啫喱中的塑料微粒成分为PE。图4去角质啫喱样品光谱检索结果 结合重量法对塑料微珠进行了定量测试,从而实现了塑料微珠的定性定量分析。塑料微珠测试结果见下表: 结 语 应对化妆品行业中微珠的管控需求,岛津公司建立了快速分析化妆品中微珠成分及含量的分析方法。分析方法准确、可靠。且具有快速,易于操作的特点,适用于化妆品中塑料微珠的定性、定量分析。 识别二维码下载应用报告
  • 用塑料桶腌酸菜不用带颜色的可再生塑料 少吃腌菜食品亚硝酸盐含量高
    每年一到这个时候家里人都开始储备冬菜了,腌酸菜成了每年的惯例,也是老一辈留下的习俗。但是腌酸菜的桶可不能对付,有的人为了方便选择塑料桶,不像以前家里腌菜都是坛子或大缸,现在人吃的少用塑料桶腌点就够用了。可是用塑料桶腌菜安全吗,这塑料桶应该选择什么材质的好呢?带颜色的可再生塑料少用用塑料桶或塑料布来腌酸菜,会有有害物质释放的,但是如果选择像聚乙烯材质的应该没问题,像可再生材质的塑料用品就尽量不要用了,“如黑色、红色、绿色等带颜色的塑料用品,基本都是可再生的,有害物质会多一些,在酸菜腌制过程中,会有有害物质释放出来,如果选择了质量不过关的容器,由于酸菜的PH值很低,酸性腐蚀较强,再加上腌制酸菜需要的时间较长,所以很有可能对塑料产生腐蚀作用,使塑化剂进入到腌制好的酸菜中,对人体不利。”腌菜中含亚硝酸盐一般情况下,温度高盐浓度低的时候,腌菜中亚硝酸盐含量峰值出现就比较早;温度低而盐量大的时候,峰值出现就比较晚。一般来说,到20天之后,亚硝酸盐含量已经明显下降,一个月后是很安全的。亚硝酸盐的毒性食品加工业被添加在香肠和腊肉中作为保色剂,以维持良好外观;可以防止肉毒梭状芽孢杆菌的产生,提高食用肉制品的安全性。但是,人体吸收过量亚硝酸盐,会影响红细胞的运作,令到血液不能运送氧气,口唇、指尖会变成蓝色,即俗称的“蓝血病”,严重会令脑部缺氧,甚至死亡。亚硝酸盐本身并不致癌,但在烹调或其他条件下,肉品内的亚硝酸盐可与氨基酸降解反应,生成有强致癌性的亚硝胺。如果食用硝酸盐或亚硝酸盐含量较高的腌制肉制品、泡菜及变质的蔬菜可引起中毒,或者误将工业用亚硝酸钠作为食盐食用而引起,也可见于饮用含有硝酸盐或亚硝酸盐苦井水、蒸锅水后,亚硝酸盐能使血液中正常携氧的低铁血红蛋白氧化成高铁血红蛋白,因而失去携氧能力而引起组织缺氧。亚硝酸盐中毒特点亚硝酸盐中毒发病急速,一般潜伏期1一3小时,中毒的主要特点是由于组织缺氧引起的紫绀现象,如口唇、舌尖、指尖青紫,重者眼结膜、面部及全身皮肤青紫。头晕、头疼、乏力、心跳加速嗜睡或烦躁、呼吸困难、恶心、呕吐、腹痛、腹泻,严重者昏迷、惊厥、大小便失禁,可因呼吸衰竭而死亡。亚硝酸盐的检测食品中的亚硝酸盐含量检测可以采用分光光度计法和比色法,但是这两种方法在测定食品中的亚硝酸盐含量时测定步骤繁琐而且对操作人员和试剂要求较高。北京智云达科技有限公司作为您身边的食品安全检测专家,为保障消费者“舌尖上的安全”提供了多款快速检测食品安全的产品和方案,其自主研发、生产的亚硝酸盐速测管操作简便、易于携带,能准确测定食品中的亚硝酸盐含量是否符合国家标准,适合家庭、个人使用。亚硝酸盐的预防措施蔬菜应妥善保存,防止腐烂,不吃腐烂的蔬菜。食剩的熟菜不可在高温下存放长时间后再食用。勿食大量刚腌的菜,腌菜时盐应多放,至少腌至15天以上再食用;但现腌的菜,最好马上就吃,不能存放过久,腌菜时选用新鲜菜。肉制品中硝酸盐和亚硝酸盐用量要严格按国家卫生标准规定,不可多加。总之在用塑料桶腌酸菜是要慎重选择,不用带颜色的可再生塑料的,而且生活中我们还是要少吃腌菜食品,亚硝酸盐含量高对身体健康有潜在危害,吃菜还是要吃新鲜的好。
  • 应对微塑料污染中国科学家在行动
    p “我们利用潜在的生态风险指数和污染指数方法进行了初步评价,并将相关的模型应用到城市河流沉积物的风险评价,以及对长江口水域的微塑料污染风险评价,结果表明河口水域较高浓度的微塑料存在一定风险……”/pp  7月8日,贵阳国际生态会议中心。在主题为“携手蓝色伙伴保护海洋健康”的论坛上,华东师范大学河口海岸学国家重点实验室海洋塑料研究中心主任李道季教授介绍了国内关于海洋微塑料研究的最新进展。/pp  塑料制品规模化生产至今,“白色污染”肆意蔓延。大量的塑料垃圾通过各种途径进入海洋并逐步破碎,形成直径小于5毫米的塑料颗粒,即科学家所说的海洋中无处不在的微塑料。微塑料可被海洋中的贝类、鱼类摄食,对其生长发育产生不利影响;而通过食物链可能进入到人体,威胁人类健康。/pp  早在20世纪70年代,海洋塑料垃圾的环境风险就引起了科学家注意。近十年来,虽然国际学术界对海洋塑料污染问题的讨论和微塑料的研究取得了巨大进展,但李道季认为,对海洋微塑料垃圾和微塑料来源仍然认识不足,研究方法不统一、缺乏标准化,“应对这种新的海洋环境威胁的研究努力和措施,在全球不同区域存在较大差异”。/pp  我国对海洋微塑料的科学研究始于2013年,目前有近30个研究单位在开展相关研究,地域上遍及陆地、沿海、海洋、大洋甚至极地。“中国科学家率先报道了东海河口微塑料的空间分布,随后又陆续报道了长江等部分水域微塑料的浓度,相关研究涵盖了可能研究的方面,包括各种微塑料的分析方法、生物累积,作为携带有害污染物传递的载体和生态毒理效应,微生物降解以及塑料垃圾和微塑料的管理控制等。”李道季介绍。/pp  2017年1月6日,由李道季领衔主持的国家重点研发计划“海洋环境安全保障”领域首批项目“海洋微塑料监测和生态环境效应评估技术研究”在上海启动。“我们已经取得重要的阶段性研究进展,包括完成海洋微塑料监测技术规程草案并开展业务化试行,揭示了沿海海域微塑料的组成和分布,初步建立了渤海、长江口及东中国海的微塑料运输值模型,并揭示出我国近海域代表性海洋生物体微塑料污染特征等。”李道季表示。/pp  在开展海洋微塑料研究的同时,我国科学家还积极参与国际组织以及多边、双边国际合作计划。2017年,中国海洋科学家开始领导联合国教科文组织在亚太地区的海洋微塑料研究项目,启动构建了区域海洋微塑料研究和监测网络,统一观测和鉴定方法。在李道季看来,全球范围内应开展广泛的国际合作研究,包括建立全球统一的海洋微塑料研究监测和分析鉴定方法,确定全球入海河流和河口的塑料垃圾和微塑料通量,评估微塑料对海洋生态系统和人类健康的风险和影响,“尤其要推动国际社会形成协调一致的研究计划和行动,通过制定各类政策法规和研发新技术等,堵截和消减塑料垃圾进入海洋的途径”。/p
  • 食品安全对塑料包装提出高要求
    食品塑料包装的主要功能是保护食品,使之便于携带、运输和保存,它与人们的生命健康息息相关。因此,为防止食品污染、变质,不仅要求食品包装外形美观、实用性强,更重要的是要提高质量,以确保食品安全,这无疑对食品塑料包装制品提出了更高的要求。  用于食品的塑料包装必须有适当的阻隔性,如油脂食品要求高阻氧性和阻油性,干燥食品要求高阻湿性,芳香食品要求高阻异味性 果品、蔬菜类鲜活食品又要求包装有一定的氧气、二氧化碳和水蒸气的透气性。  与此同时,食品塑料包装还要有良好的机械性能,主要包括材料的抗拉伸强度,耐撕裂、耐冲击程度等 有良好的化学稳定性,不应与内装食品发生任何化学反应,确保食品安全。另外,塑料食品包装还要有较高的耐温性,适合食品的高温消毒和低温储藏等特点。  目前,在众多的食品包装材料中,塑料制品及复合包装材料占有举足轻重的地位,但因塑料材料自身存在的缺陷,如对环境的污染等问题,其耐温性和阻隔性总体还不如金属和玻璃等容器。  因此,快速发展的食品工业已向化工,尤其是塑料制品产业提出新的课题——这就是改善已有的塑料性能,开发新型品种,提高其强度和阻隔性,并减少用量(厚壁) 同时还要便于重复使用,分类回收,以保护环境。  据我国高分子材料领域的权威专家雷景新教授介绍,目前我国九成以上PVC软制品仍使用传统邻苯二甲酸酯类增塑剂,如果不彻底改变PVC塑料制品的现状,白酒“增塑剂事件”的出现,乃至啤酒、饮料、月饼、各类食品佐料如酱油、食醋和医用输液器、输血袋等有毒增塑剂超标的事件的出现,就不是偶然,而是必然。  正是因为邻苯增塑剂的滥用,已经让我们在生活中几乎无法找到“洁净无毒”的塑料制品,这决非危言耸听。  雷景新教授说,其实生产无毒的PVC塑料制品其实并不难。无毒的PVC树脂配以无毒的环保增塑剂、钙锌稳定剂及其他无毒的加工助剂,就完全可以制备出无毒的PVC塑料制品。  食品业是21世纪的朝阳产业,但随着人们生活质量的不断提高和对健康消费的日益重视,对食品的质量和安全将有更高的要求,与之相适应,食品包装材料领域也将迎来巨大的发展空间和开发潜力。
  • 上海市塑料工程技术学会发布《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》征求意见稿
    各会员单位、业界单位及专家:由上海市塑料工程技术学会立项,福建新安科技有限责任公司、云南云天化股份有限公司、金发科技股份有限公司等企业起草的团体标准《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》已完成征求意见稿的编制(附件1)。现向社会公开征求意见,有关单位和个人可通过以下途径和方式提出意见和建议,填写团体标准征求意见回函表(附件2),征集意见截止日期为2023年4月30日。上海市塑料工程技术学会联系方式联系人:陈佳 13795212029邮箱:504812632@qq.com附件1:塑料无卤阻燃抗冲击聚苯乙烯(PS-I)专用料-征求意见稿.pdf附件2:意见反馈表.pdf上海市塑料工程技术学会关于《塑料 无卤阻燃抗冲击聚苯乙烯(PS-I)专用料》团体标准征求意见的通知.pdf
  • 上海塑料行业协会关于团体标准 《生物降解塑料制品快速检测方法 红外光谱法》的立项公告
    各会员单位、有关单位:根据《上海塑料行业协会团体标准管理办法》的相关规定,经协会标准化工作委员会专家对团体标准《生物降解塑料制品快速检测方法 红外光谱法》团体标准项目进行立项审查,认为所申报的团体标准是提供一种通过红外光谱快速、定性检测生物降解塑料制品的方法,可方便各生产和使用生物降解塑料制品的企业对产品快捷检验,同时提高政府部门监督检查效率,该团体标准符合立项条件,现批准立项。请参与研制的单位严格按照上海塑料行业协会团体标准编制工作要求及标委会专家意见,尽快组织标准研制,强化研制过程中的质量管理,加强组织协调,确保按期完成标准研制任务。如有单位对该标准项目存在异议,请在公告之日起15日内将意见书面反馈至上海塑料行业协会标准化工作委员会。同时,为使立项团体标准的制定更加科学合理,欢迎有意参与该团体标准研制工作的单位与上海塑料行业协会标准化工作委员会联系。联系人:钮贤圭电话:021-62985029/13701671577邮箱:sspi2012@163.com上海塑料行业协会2023年3月15日上海塑料行业协会关于团体标准《生物降解塑料制品快速检测方法 红外光谱法》立项公告.pdf
  • 鉴知1064nm手持拉曼穿透不透明包装的系列测试报告之:塑料包装篇
    普通拉曼可以穿过透明及半透明包装进行检测,但对纸包装、深色玻璃及有色塑料等不透明包装中的样品普通拉曼无法进行直接检测。鉴知RS1500手持式物质识别仪采用1064nm激光光源,结合特殊的光路设计和智能识别算法,有效提高了包装穿透能力,可以对上述不透明包装中的样品进行有效检测。 本系列测试使用RS1500手持式物质识别仪对多种不透明包装中的样品进行测试,并与普通785nm拉曼的测试进行比较。本篇为系列二:塑料包装篇 回顾:系列一 纸包装篇 【塑料包装测试篇】塑料是一种很常见的包装材料,本测试使用包装为常用的白色PE塑料瓶、彩色HDPE塑料瓶及编织袋。 白色PE塑料瓶透光性较差,会干扰普通拉曼的检测。彩色HDPE塑料瓶的颜色会带来荧光干扰,同时瓶壁一般较厚,穿透难度更大。编织袋厚度较薄但有颜色且完全不透明,普通拉曼透过编织袋直接检测时往往受到荧光干扰。这些因素给普通拉曼的直接检测带来诸多难题。 检测设备及方法检测设备1064nm手持拉曼:RS1500手持式物质识别仪785nm手持拉曼:RS1000手持式物质识别仪检测样品不透明PE塑料瓶内的乙醇彩色HDPE塑料瓶内的乙醇编织袋内的蔗糖测试方法使用RS1500及RS1000分别隔着3种塑料包装,对塑料包装内的乙醇、蔗糖进行直接检测,观察并分析检测结果。检测结果1、不透明PE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线,混合物分析结果显示为聚乙烯和乙醇。图1.不透明PE塑料瓶测试结果 2、彩色HDPE塑料瓶RS1500:报出乙醇,谱图见下方红色曲线,与乙醇标准谱图(蓝色曲线)一致。RS1000:未报出,谱图见黑色曲线。图2.彩色HDPE塑料瓶测试结果 3、编织袋RS1500:报出蔗糖,谱图见下方红色曲线,与蔗糖标准谱图(蓝色曲线)一致。RS1000:报出蔗糖,谱图见黑色曲线,特征峰强较弱。图3.编织袋测试结果结果分析 RS1500可检测到3种塑料包装内的不同样品并正确报出,RS1000可穿透编织袋测到包装内的蔗糖。RS1000直接检测白色塑料瓶时,由于采集乙醇信号的同时采集到了塑料包装的信号,导致没有直接报出,但通过混合物分析可正确识别出聚乙烯材料和包装内的乙醇。测试彩色HDPE塑料瓶时,由于瓶壁厚且颜色鲜艳,具有较强荧光,仅RS1500可穿透该包装获得乙醇的拉曼信号(图2红色曲线)。编织袋是化工制药企业原辅料的一种常见包装,RS1000能正确报出包装内蔗糖,但由于其有颜色且不透光,导致荧光信号强,获取到的谱图信息不如RS1500清晰丰富。但总的来说二者都可帮助制药企业在不打开编织袋包装的情况下,实现原辅料的快速无损鉴别。
  • 河流微塑料|从采集到分析,轻松“一网打尽”
    导读 微塑料是一种新兴的污染物,具有与其它污染物相似的普遍性和生态毒性,微塑料的尺寸范围大、分布广、环境干扰影响大,所以快速采集、处理、分析微塑料组分,对于环境污染治理有很重要的意义。微塑料的危害 《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》对“重视新污染物治理”提出了有关要求。新污染物虽然在环境中浓度较低,但具有器官毒性、神经毒性、生殖和发育毒性、免疫毒性、内分泌干扰效应、致癌性、致畸性等多种生物毒性,同时具有较强的生物持久性、明显的生物富集性、难以监测等特性,对人体健康和生态环境构成危害。 现阶段国际上主要关注的新污染物包括:微塑料、环境内分泌干扰物(EDCs)、全氟化合物等持久性有机污染物、抗生素等四大类。作为四大类新型污染物之一的微塑料等细颗粒物,可以吸附重金属和有机污染物的载体,其危害性更为复杂。 下面小编为您介绍河流中微塑料从采集到样品前处理方法以及使用岛津傅立叶变换红外光谱仪(IRSpirit)快速进行分析的过程。 微塑料的采集 目前海水和淡水中微塑料采集一般采用具有不同孔径网目的拖网,使用拖网需要船只,对流域面积也有一定要求。采用一种新型微塑料采集装置Albatross(株式会社Pirika),解决了昂贵的租船费用以及狭窄地点和流速慢的河流难以取样的限制问题,可以在任何地点轻松使用的采集装置,仅需3分钟即可完成收集微塑料样品,成本低、使用方便。 图1 微塑料采集装置Albatross图2(a) 河流A中的采集过程图图2(b) 河流B中的采集过程图3 采集的微塑料样品 微塑料的前处理 首先将采集到的样品过2mm和0.1mm目筛,在通过0.1mm目筛捕集的样品中加入30%的双氧水(H2O2),溶解杂质,然后用纯水清洗样品,去除H2O2,加入5.3mol/L的碘化钠水溶液(NaI),进行比重分离。 图4 前处理流程 微塑料的分析 在收集的微塑料中,随机选了一颗微塑料使用岛津小巧型IRSpirit进行红外分析,光学显微镜观察图像和红外测定结果如下: 图5 收集的部分微塑料图6 光学显微镜下微塑料图像图7 FTIR的测定结果 岛津塑料分析系统包括了多种类型塑料的红外谱图,这些塑料经过了0小时(未照射)到使用Iwasaki Electric Co., Ltd.生产的超加速老化仪最长550小时(相当于紫外线照射约10年)照射。以上测定结果和紫外线照射550小时老化的PE匹配。检测到图中⻩框所示的3400cm-1附近的O-H伸缩振动、1750 cm-1附近的C=O伸缩振动引起的吸收,因此,可以推测出该微塑料暴露在环境中由于紫外线照射引起的氧化老化。另外,根据图中蓝框所示的1050cm-1附近的吸收峰,判断可能存在硅酸盐等。 结语 采用新型微塑料采集装置Albatross(株式会社Pirika),仅需3分钟即可完成收集微塑料样品,成本低、使用方便。针对采集的微塑料样品进行前处理,使用岛津傅立叶变换红外光谱仪(IRSpirit)可实现快速分析。 本文来源于:藤里砂(岛津制作所全球应用技术开发中心),河流中采集的微塑料的前处理方法和FTIR的分析方法。本文内容非商业广告,仅供专业人士参考。
  • 海南省塑料行业协会关于近红外光谱法2项团体标准立项
    按照《海南省塑料行业协会团体标准管理办法》的要求,依据市场需求,经海南塑协团标编审委员会同意编制《全生物降解塑料制品中不可降解成分快速测定-近红外光谱法》《手持式近红外塑料成分快速检测仪》两项团体标准,积极协助海南禁塑、参与塑料污染治理。近日,经过公开征集两项团体标准的起草宣贯单位,海南省塑料行业协会发布公告,由海南禁塑溯源科技有限公司为起草单位,中国科学院理化所工程和生态塑料国家工程研研究中心、中国塑料加工工业协会降解塑料专业委员会、海南省产品质量监督检验所为指导单位,两项团体标准正式立项。
  • 发改委&环境部:加强江河湖海微塑料污染机理、监测等研究
    p  《国家发展改革委 生态环境部关于进一步加强塑料污染治理的意见》中指出:开展不同类型塑料制品全生命周期环境风险研究评价。加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。/pp  全文如下:/pp style="text-align: center "国家发展改革委 生态环境部关于进一步加强塑料污染治理的意见/pp style="text-align: center "发改环资〔2020〕80号/pp各省、自治区、直辖市人民政府,国务院各部委、各直属机构:/pp  塑料在生产生活中应用广泛,是重要的基础材料。不规范生产、使用塑料制品和回收处置塑料废弃物,会造成能源资源浪费和环境污染,加大资源环境压力。积极应对塑料污染,事关人民群众健康,事关我国生态文明建设和高质量发展。为贯彻落实党中央、国务院决策部署,进一步加强塑料污染治理,建立健全塑料制品长效管理机制,经国务院同意,现提出如下意见。/pp  一、总体要求/pp  (一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届二中、三中、四中全会精神,坚持以人民为中心,牢固树立新发展理念,有序禁止、限制部分塑料制品的生产、销售和使用,积极推广替代产品,规范塑料废弃物回收利用,建立健全塑料制品生产、流通、使用、回收处置等环节的管理制度,有力有序有效治理塑料污染,努力建设美丽中国。/pp  (二)基本原则。/pp  突出重点,有序推进。强化源头治理,抓住塑料制品生产使用的重点领域和重要环节,针对社会反映强烈的突出问题,分类提出管理要求 综合考虑各地区、各领域实际情况,合理确定实施路径,积极稳妥推进塑料污染治理工作。/pp  创新引领,科技支撑。以可循环、易回收、可降解为导向,研发推广性能达标、绿色环保、经济适用的塑料制品及替代产品,培育有利于规范回收和循环利用、减少塑料污染的新业态新模式。/pp  多元参与,社会共治。发挥企业主体责任,强化政府监督管理,加强政策引导,凝聚社会共识,形成政府、企业、行业组织、社会公众共同参与的多元共治体系。/pp  (三)主要目标。到2020年,率先在部分地区、部分领域禁止、限制部分塑料制品的生产、销售和使用。到2022年,一次性塑料制品消费量明显减少,替代产品得到推广,塑料废弃物资源化能源化利用比例大幅提升 在塑料污染问题突出领域和电商、快递、外卖等新兴领域,形成一批可复制、可推广的塑料减量和绿色物流模式。到2025年,塑料制品生产、流通、消费和回收处置等环节的管理制度基本建立,多元共治体系基本形成,替代产品开发应用水平进一步提升,重点城市塑料垃圾填埋量大幅降低,塑料污染得到有效控制。/pp  二、禁止、限制部分塑料制品的生产、销售和使用/pp  (四)禁止生产、销售的塑料制品。禁止生产和销售厚度小于0.025毫米的超薄塑料购物袋、厚度小于0.01毫米的聚乙烯农用地膜。禁止以医疗废物为原料制造塑料制品。全面禁止废塑料进口。到2020年底,禁止生产和销售一次性发泡塑料餐具、一次性塑料棉签 禁止生产含塑料微珠的日化产品。到2022年底,禁止销售含塑料微珠的日化产品。/pp  (五)禁止、限制使用的塑料制品。/pp  1.不可降解塑料袋。到2020年底,直辖市、省会城市、计划单列市城市建成区的商场、超市、药店、书店等场所以及餐饮打包外卖服务和各类展会活动,禁止使用不可降解塑料袋,集贸市场规范和限制使用不可降解塑料袋 到2022年底,实施范围扩大至全部地级以上城市建成区和沿海地区县城建成区。到2025年底,上述区域的集贸市场禁止使用不可降解塑料袋。鼓励有条件的地方,在城乡结合部、乡镇和农村地区集市等场所停止使用不可降解塑料袋。/pp  2.一次性塑料餐具。到2020年底,全国范围餐饮行业禁止使用不可降解一次性塑料吸管 地级以上城市建成区、景区景点的餐饮堂食服务,禁止使用不可降解一次性塑料餐具。到2022年底,县城建成区、景区景点餐饮堂食服务,禁止使用不可降解一次性塑料餐具。到2025年,地级以上城市餐饮外卖领域不可降解一次性塑料餐具消耗强度下降30%。/pp  3.宾馆、酒店一次性塑料用品。到2022年底,全国范围星级宾馆、酒店等场所不再主动提供一次性塑料用品,可通过设置自助购买机、提供续充型洗洁剂等方式提供相关服务 到2025年底,实施范围扩大至所有宾馆、酒店、民宿。/pp  4.快递塑料包装。到2022年底,北京、上海、江苏、浙江、福建、广东等省市的邮政快递网点,先行禁止使用不可降解的塑料包装袋、一次性塑料编织袋等,降低不可降解的塑料胶带使用量。到2025年底,全国范围邮政快递网点禁止使用不可降解的塑料包装袋、塑料胶带、一次性塑料编织袋等。/pp  三、推广应用替代产品和模式/pp  (六)推广应用替代产品。在商场、超市、药店、书店等场所,推广使用环保布袋、纸袋等非塑制品和可降解购物袋,鼓励设置自助式、智慧化投放装置,方便群众生活。推广使用生鲜产品可降解包装膜(袋)。建立集贸市场购物袋集中购销制。在餐饮外卖领域推广使用符合性能和食品安全要求的秸秆覆膜餐盒等生物基产品、可降解塑料袋等替代产品。在重点覆膜区域,结合农艺措施规模化推广可降解地膜。/pp  (七)培育优化新业态新模式。强化企业绿色管理责任,推行绿色供应链。电商、外卖等平台企业要加强入驻商户管理,制定一次性塑料制品减量替代实施方案,并向社会发布执行情况。以连锁商超、大型集贸市场、物流仓储、电商快递等为重点,推动企业通过设备租赁、融资租赁等方式,积极推广可循环、可折叠包装产品和物流配送器具。鼓励企业采用股权合作、共同注资等方式,建设可循环包装跨平台运营体系。鼓励企业使用商品和物流一体化包装,建立可循环物流配送器具回收体系。/pp  (八)增加绿色产品供给。塑料制品生产企业要严格执行有关法律法规,生产符合相关标准的塑料制品,不得违规添加对人体、环境有害的化学添加剂。推行绿色设计,提升塑料制品的安全性和回收利用性能。积极采用新型绿色环保功能材料,增加使用符合质量控制标准和用途管制要求的再生塑料,加强可循环、易回收、可降解替代材料和产品研发,降低应用成本,有效增加绿色产品供给。/pp  四、规范塑料废弃物回收利用和处置/pp  (九)加强塑料废弃物回收和清运。结合实施垃圾分类,加大塑料废弃物等可回收物分类收集和处理力度,禁止随意堆放、倾倒造成塑料垃圾污染。在写字楼、机场、车站、港口码头等塑料废弃物产生量大的场所,要增加投放设施,提高清运频次。推动电商外卖平台、环卫部门、回收企业等开展多方合作,在重点区域投放快递包装、外卖餐盒等回收设施。建立健全废旧农膜回收体系 规范废旧渔网渔具回收处置。/pp  (十)推进资源化能源化利用。推动塑料废弃物资源化利用的规范化、集中化和产业化,相关项目要向资源循环利用基地等园区集聚,提高塑料废弃物资源化利用水平。分拣成本高、不宜资源化利用的塑料废弃物要推进能源化利用,加强垃圾焚烧发电等企业的运行管理,确保各类污染物稳定达标排放,并最大限度降低塑料垃圾直接填埋量。/pp  (十一)开展塑料垃圾专项清理。加快生活垃圾非正规堆放点、倾倒点排查整治工作,重点解决城乡结合部、环境敏感区、道路和江河沿线、坑塘沟渠等处生活垃圾随意倾倒堆放导致的塑料污染问题。开展江河湖泊、港湾塑料垃圾清理和清洁海滩行动。推进农田残留地膜、农药化肥塑料包装等清理整治工作,逐步降低农田残留地膜量。/pp  五、完善支撑保障体系/pp  (十二)建立健全法规制度和标准。推进相关法律法规修订,将塑料污染防治纳入相关法律法规要求。适时更新发布塑料制品禁限目录。制定塑料制品绿色设计导则。完善再生塑料质量控制标准,规范再生塑料用途。制修订可降解材料与产品的标准标识。建立健全电商、快递、外卖等新兴领域企业绿色管理和评价标准。研究对包装问题突出的商品开展包装适宜度分级评价,提出差别化管理措施。将一次性塑料制品管控要求纳入旅游景区和星级宾馆、酒店评定评级标准。完善塑料废弃物资源化能源化利用的环境保护相关标准。探索建立塑料原材料与制成品的生产、销售信息披露制度。探索实施企业法人守信承诺和失信惩戒,将违规生产、销售、使用塑料制品等行为列入失信记录。/pp  (十三)完善相关支持政策。加大对绿色包装研发生产、绿色物流和配送体系建设、专业化智能化回收设施投放运营等重点项目的支持力度。落实好相关财税政策,加大对符合标准绿色产品的政府采购力度。开展新型绿色供应链建设、新产品新模式推广和废旧农膜回收利用等试点示范。各地要支持专业化回收设施投放,消除设施进居民社区、地铁站、车站和写字楼等公共场所的管理障碍。鼓励各地采取经济手段,促进一次性塑料制品减量、替代。公共机构要带头停止使用不可降解一次性塑料制品。/pp  (十四)强化科技支撑。strong开展不同类型塑料制品全生命周期环境风险研究评价。加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。/strong加大可循环、可降解材料关键核心技术攻关和成果转化,提升替代材料和产品性能。以降解安全可控性、规模化应用经济性等为重点,开展可降解地膜等技术验证和产品遴选。/pp  (十五)严格执法监督。加强日常管理和监督检查,严格落实禁止、限制生产、销售和使用部分塑料制品的政策措施。严厉打击违规生产销售国家明令禁止的塑料制品,严格查处虚标、伪标等行为。推行生态环境保护综合执法,加强塑料废弃物回收、利用、处置等环节的环境监管,依法查处违法排污等行为,持续推进废塑料加工利用行业整治。行业管理部门日常监管中发现有关塑料环境污染和生态破坏行为的,应当及时将相关线索移交生态环境保护综合执法队伍,由其依法立案查处。对实施不力的责任主体,依法依规予以查处,并通过公开曝光、约谈等方式督促整改。/pp  六、强化组织实施/pp  (十六)加强组织领导。各地区、各有关部门要高度重视塑料污染治理工作,精心组织安排,切实抓好落实。国家发展改革委、生态环境部会同有关部门建立专项工作机制,统筹指导协调相关工作,及时总结分析工作进展,重大情况和问题向党中央、国务院报告。生态环境部会同有关部门开展联合专项行动,加强对塑料污染治理落实情况的督促检查,重点问题纳入中央生态环境保护督察,强化考核和问责。各级地方人民政府要结合本地实际,制定具体实施办法,实化细化政策措施。/pp  (十七)强化宣传引导。加大对塑料污染治理的宣传力度,引导公众减少使用一次性塑料制品,参与垃圾分类,抵制过度包装。利用报纸、广播电视、新媒体等渠道深入宣传塑料污染治理的工作成效和典型做法。引导行业协会、商业团体、公益组织有序开展专业研讨、志愿活动等,广泛凝聚共识,营造全社会共同参与的良好氛围。/pp style="text-align: right "  国家发展改革委/pp style="text-align: right "  生 态 环 境 部/pp style="text-align: right "  2020年1月16日/ppbr//p
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 国家塑料质检中心(福建)顺利通过国家专项监督检查
    近日,设立在福建省质检院的国家塑料制品质量监督检验中心迎来2010年国家中心专项监督检查。经过专家细致的检查评审,该中心以23项综合评价为全部符合的良好成绩,顺利通过此次专项监督检查。  本次检查是为贯彻落实全国质检系统检测工作整顿活动的要求,由国家认监委组织的。内容主要涉及国家塑料中心的法律地位、组织机构及履行职责,技术水平与能力保障,检测质量,制度建设和管理水平以及社会责任等5个方面。
  • 塑料抗氧化性测试国家标准即将发布实施
    由石油化工研究院大庆化工研究中心编制完成的一项评价塑料抗氧化性的国家标准,日前通过了塑料标准化技术委员会塑料树脂产品分会的审查验收,经呈送国家质量监督检验检疫总局批准,即将在全国发布实施。   据介绍,该标准为《塑料一差示扫描量热法(DSC)第六部分:氧化诱导时间和氧化诱导温度的测定》。塑料的氧化诱导时间和氧化诱导温度是评价塑料抗氧化性能的一项重要指标,而目前我国还没有通用的国家标准。该标准的制定不仅可以提高各类非结晶或半结晶聚合物的产品质量和技术水平,也可为其产品加工和改性研制提供技术参数,从而满足塑料测试方法趋向统一使用国际标准的需要。同时,该标准的制定发布与实施填补了我国在该项目中的空白,缩小了我国差示扫描量热法的分析方法标准与国外先进水平的差距,对促进对外贸易和交流具有十分重要的意义。
  • 全国塑料标准化技术委员会年会召开及新一届委员诞生
    2014年4月10日,SAC/TC15暨全国塑料标准化技术委员会年会胜利开幕,全国塑标委负责塑料的国家标准和行业标准编制、修订工作,以及与国际标准化组织塑料标准技术委员会(ISO/TC61)的技术归口管理工作。TC15主要负责塑料术语、通用方法、热固性塑料产品、工程塑料产品等的标准化工作,现已制订塑料国家标准251项、塑料行业标准95项。SAC/TC15于2013年经国家标准化管理委员会批准正式成立了第八届技术委员会,此次成立大会是新一届委员会开启标准化工作的第一次大会也是TC15的年会。 本次会议主要研究讨论国内外塑料及相关国家标准、行业标准的制定及修订,2014年新上标准项目情况,如负荷变形温度的测定、拉伸性能测定、维卡软化点测定等,本次会议也为国内为塑料行业的专家学者提供一个学术交流的平台。国家标准化管理委员会、中国石油和化学工业联合会、中蓝晨光化工研究设计院有限公司、深圳万测试验设备有限公司等单位出席了本次会议,深圳万测试验设备有限公司董事长安建平先生当选为全国塑料标准化技术委员会(SAC/TC15)第八届技术委员会委员。
  • 塑化剂蔓延:川酒整改 塑料包装食用油或被污
    白酒行业,栽到了一根小小的塑料管上。  11月21日,湖南省质量技术监督局的初检结果证实,酒鬼酒塑化剂超标,超标结果与之前媒体披露的相差无几。这一结果引发了白酒业的集体危机,尤其是在资本市场,白酒股集体遭遇重挫,在漩涡中复牌的酒鬼酒(000799)至今已3个跌停。  11月28日,酒鬼酒股份有限公司董事会称,公司塑化剂成分已排查至包装环节,预计将于11月30日前完成整改。  在国家质检总局部署对白酒生产企业全面排查之际,11月26日,四川中国白酒金三角酒业协会召集四川主要白酒生产企业,专题调研白酒塑化剂问题。  整改中的白酒业  “经过排查瓶盖、众多涉塑环节,我们确认问题的元凶锁定在一段与酒泵相连的临时使用的10米长输酒管。” 酒鬼酒方面表示。  酒鬼酒方面称,成品酒中塑化剂的来源可能有几个塑料环节:一是瓶盖,二是自动包装线上的一些塑料环,三是临时使用的老车间里曾有一段与酒泵相连的10米长输酒管。初步排查发现,这10米长的输酒管是成品酒“涉塑”的最大可能。该老车间去年年底曾偶用于生产,但只生产50度酒鬼酒,今年年初已停产,目前处于停产整顿状态。  28日,酒鬼酒澄清并未从27日起全面停产:“公司曲酒(基酒)生产正常,未停产。”公司将对采购、基酒生产、储藏、勾兑、包装、运输等生产经营中每个环节进行排查,对可能导致邻苯二甲酸酯类物质感染、迁移的设备和设施进行彻底更换,于11月30日前完成整改。  50度酒鬼酒是否会召回?酒鬼酒如何赔偿经销商和消费者的经济损失?  酒鬼酒供销有限责任公司市场总监张毅在本报记者打进电话时表示,上述问题他并不清楚。白酒塑化剂成分限量标准没有出台。目前,公司正按照政府的要求进行整改。可以预计的是,到今年底,酒鬼酒的生产和销售都将受到一定影响,塑化剂事件何时过去,要看2013年的春节订货会。  塑化剂事件还在发酵  22日,质检总局称,目前已完成检测的国产白酒样品中,有部分样品检出微量邻苯二甲酸二丁酯(DBP)。同时检测的进口蒸馏酒样品中,有部分样品检出微量邻苯二甲酸酯类物质。  塑化剂已从酒鬼酒蔓延至了全行业现象。产量占全国1/3的白酒大省四川,尤其不敢掉以轻心。  26日下午,宜宾红楼梦酒业股份有限公司董事长文万彬尽管在外地出差,依然收到了四川中国白酒金三角酒业协会关于塑化剂问题调研的会议邀请。沱牌舍得宣传部负责人坦承,公司也接到了通知,“生产方面的相关负责人去了。”  “会长王国春讲话称,四川的白酒以前注重质量、卫生、安全,四川白酒质量没问题,酒厂把重视程度颠倒了。应该安全在前,然后再是卫生,质量。”四川省经信委综合处兼四川中国白酒金三角酒业协会有关负责人杨荣生对本报记者说。  四川中国白酒金三角酒业协会成立于今年5月,五粮液集团原董事长、省政府参事王国春任协会副理事长、会长,该协会意图和贵州联手,以宜宾、泸州和贵州仁怀为金三角核心区,将中国白酒推向世界。  “肯定有整改措施,我们随后将以文件的形式下发。”关于塑化剂危机,杨荣生如此回答。  他表示,对塑化剂的防范不仅仅更换塑料制品。“这只是皮毛。”他说,早在七八年前,四川绝大多数白酒生产企业就把白酒生产过程中的塑料管、塑料桶等换完了,有极少数还需更换。  “从技术的角度,尽量让酒不接触塑料。”四川省酿酒研究所一位负责人说,四川中国白酒金三角酒业协会有一个设想,由政府和协会旗下的企业出资,由白酒技术研究所牵头,做白酒前沿课题的公共研究,包括质检分析、酿酒工艺监控等,最终共享。  该负责人称,就酒鬼酒事件来看,塑化剂既不增香也不增味,不是人为添加。既然存在,即是在生产过程中因历史原因,造成塑料制品的人为迁移。  在复旦大学公共卫生学院营养与食品卫生教研室主任、国家FDA保健食品审评中心评审专家厉曙光看来,塑料容器是塑化剂的主要来源。他对媒体称,由于塑化剂在环境中广泛存在,使用塑料包装的食用油在生产、加工、运输、贮存过程中也可能会被塑化剂污染。  1998年,国家进口食品卫生监督检验中心(广州)的陈文锐和彭瑄抽取市场上欧盟进口奶粉共19个样品进行检测,结果显示有7种奶粉含有酞酸酯,均为酞酸二丁酯。含量范围为0.4~1.9mg/kg,平均为0.9mg/kg。  不过,厉曙光也强调,这些过往研究中的增塑剂污染量大多超过了卫生部新近颁布最大残留量的标准,但与台湾食品塑化剂危机中检出的量仍有数量级上的差别,因此对其可能产生的健康风险也需要做更进一步的科学评估。
  • 南极雪样惊现微塑料!新污染物治理拉开序幕!
    据今日央视网报道,科研人员从南极洲最大的冰架——罗斯冰架沿线的不同地点采集了19个雪样本,在每个样本中都发现了微塑料,这可能意味着塑料污染对生态环境的破坏在加速,即便是被科研人员称为地球上“最干净”的地方——南极洲也无法幸免。科学家曾在该地区的深海沉积物、海洋和地表水中发现过微塑料,但在雪样中发现微塑料尚属首次。渐入人心的“微塑料”微塑料(Microplastics, MPs)是指粒径小于5 mm的塑料碎片,被认为是一类新污染物。微塑料这一概念早在2004年由英国普利茅斯大学的理查德汤普森(Richard Thompson)在《Science》上发表文章时提出。随后,由于其在海洋环境中的广泛存在以及对生物产生的各种确定的以及不确定的危害,得到了各界的广泛关注。近几年,随着科学家不断深入的研究,大气、土壤、陆地环境乃至生物体中相继检出微塑料,研究人员已开始尝试对微塑料样品进行更进一步的定性和定量分析。据相关媒体报道,不久前,南京医科大学夏彦恺教授团队联合中国科学院南京土壤研究所骆永明教授团队,首次在人体血栓样本中发现了一定数量和不同类型的微塑料和染料颗粒。据文献,这是第一次检测血栓中的微塑料,尽管只有一种颗粒被鉴定为LDPE(主要用于农用薄膜,医疗器械,药品和食品包装材料等)。随着微塑料的“渐入人心”,更多的新污染物逐渐走进大众视野。新污染物治理,蓄势待发9月27日,生态环境部发布了关于公开征求《重点管控新污染物清单(2022年版)(征求意见稿)》意见的通知。通知指出,按照《新污染物治理行动方案》(国办发〔2022〕15号)关于“2022年发布首批重点管控新污染物清单”的要求,生态环境部组织编制了《重点管控新污染物清单(2022年版)(征求意见稿)》,并公开征求意见。该《清单》共分为四大类,主要包括 14 种类新污染物:分类二级分类持久性有机污染物类1.全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS 类)2.全氟辛酸及其盐类和相关化合物1(PFOA 类)3.十溴二苯醚4.短链氯化石蜡5.六氯丁二烯6.五氯苯酚及其盐类和酯类7.三氯杀螨醇8.全氟己基磺酸及其盐类和相关化合物3(PFHxS 类)9.得克隆及其顺式异构体和反式异构体14.已淘汰类 (六溴环十二烷、氯丹、灭蚁灵、 六氯苯、滴滴涕、α六氯环己烷、β-六氯环己烷、林丹、硫丹原药及其相关异构体、多氯联苯) 有毒有害污染物类10.二氯甲烷11.三氯甲烷 环境内分泌干扰物类12.壬基酚 抗生素类13.抗生素 ACCSI同期会议——新污染物监测新技术论坛为了进一步助力我国新污染治理行动的进行,仪器信息网联合珀金埃尔默,将于ACCSI2022期间举办新污染物检测与监测新技术发展论坛,邀请了5位报告专家聚焦新污染物检测新技术,分享新污染物最新研究进展和检测技术!ACCSI2022 线下到场参会,实现与专家面对面互动交流!年会报名链接:https://www.instrument.com.cn/accsi/2022/嘉宾报告1:海洋环境中微塑料检测技术报告嘉宾:孙承君嘉宾简介:孙承君,2001年12月于美国加州大学圣芭芭拉分校获得博士学位,现任自然资源部第一海洋研究所研究员,主要从事海洋环境科学、海洋生物化学等方面的研究工作,获评山东省泰山学者海外创新人才和自然资源部科技领军人才。承担和完成包括国家重点基础研究计划973计划课题、国家自然科学基金等在内的多项国家和省部级项目,多次参与我国大洋和极地科考,近五年发表高水平学术论文60余篇,其中SCI论文50余篇,目前团队研究工作以海洋微塑料和海洋生物材料为主,在微塑料研究领域又较好的积累。嘉宾报告2:“eXXpedition环球航行”:全球海洋中的塑料污染状况研究报告嘉宾:Dr. Winnie Courtene-Jones嘉宾简介:Dr. Winnie Courtene-Jones是一位塑料污染研究方面的专家,2019年完成博士学位(深海生态系统中的微塑料),就职于普利茅斯大学国际海洋垃圾研究小组,曾以“eXXpedition环球航行” 组织科学项目领队的身份,开展全球海洋微塑料污染的研究,目前正参与“BIO PLASTIC RISK”生物塑料风险研究项目,调查研究可生物降解塑料的环境归趋,以及它们对生物和生态系统功能的相关影响。她的科学研究遍布各种陆地、海洋环境中的塑料污染情况,从海岸线到地球上一些最偏远的地方,包括深海和海洋环流。Dr Winnie Courtene-Jones在其研究领域发表了大量论文和技术报告,并在国际会议、英国和欧洲学术议会上发表演讲。嘉宾报告3:新污染物的转化与毒理报告嘉宾:曲广波嘉宾简介:研究员、博士生导师,现任职于中国科学院生态环境研究中心。主要研究方向为“新型污染物的转化与毒理”。研究成果以第一/通讯作者在Chemical Reviews、Chemical Society Reviews、Chem、Angewandte Chemie International Edition、Environmental Health Perspectives、ACS Nano、Environmental Science & Technology等期刊上。国家优秀青年基金获得者、中国科学院青年创新促进会优秀会员。2018年获第五届中国毒理学会优秀青年科技奖、2018年获“The 16th International Symposium on Persistent Toxic Substances Young Scientist Award”、 2021年获中国分析测试协会特等奖(排名第1)。中国毒理学会分析毒理专业委员会委员、中国环境诱变剂学会毒性测试与替代方法专业委员会委员、《环境化学》青年编委。嘉宾报告4:人体生物组织中PFAS的检测与研究报告嘉宾:Dr. Sabra Botch-Jones嘉宾简介:Sabra Botch-Jones是波士顿大学医学院—生物医学法医学研究生课程的法医毒理学家和助理教授,长期从事于法医毒理学和分析化学方面的研究,Sabra担任美国科学院标准委员会毒理学共识机构副主席,美国法医学会毒理学分会主席。她被州长查理贝克(Charlie Baker)任命为马萨诸塞州法医监督委员会成员。 嘉宾报告5:纳米材料检测和职业风险防护标准示例及应用研究报告嘉宾:郭玉婷嘉宾简介:郭玉婷,国家纳米科学中心中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组(筹)委员,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定五项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。报名现场,赢取珀金埃尔默定制礼品!
  • 达成合作:中美两国决心终结塑料污染,全球塑料污染防治条约将迈向何方?
    11月15日,中美两国发表《中美关于加强合作应对气候危机的阳光之乡声明》,其中表示,将在循环经济和资源利用效率方面达成合作:中美两国决心终结塑料污染,并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。这份声明在塑料污染的第三次国际谈判过程中发出,为当前全球协同应对塑料污染释放出了积极信号。11月13日—19日,“塑料条约”第三届政府间谈判会议(INC-3)在位于肯尼亚内罗毕的联合国环境规划署总部举行。会议谈判进程如何?全球塑料污染防治条约又将迈向何方? 记者联系到作为观察员机构的深圳零废弃政策顾问刘华进一步分享。INC-3大会现场全球塑料污染防治:存在共识基础却艰难启动目前,INC-3 如期于 11月19日晚间落幕。深圳零废弃政策顾问刘华坦言:“INC-3的‘显著进展’是确定了INC-4和INC-5的会议时间、地点等安排。但在实质性内容,特别是关于生命周期边界、定义等关键性文本方面的进展仍然有限” 。塑料污染是当前最显著也是关注度颇高的全球环境问题之一,也有多项多边环境协议涉及塑料污染,例如《控制危险废物越境转移及其处置巴塞尔公约》《关于持久性有机污染物的斯德哥尔摩公约》以及国际海事组织(MO)负责船舶运输相关的塑料垃圾管理。但三者各自侧重于危废、持久性有机污染物(POPs)和海洋污染。塑料污染自身一直缺乏系统性、直接性的国际协定来推动相关污染防治工作。2022年3月,第五届联合国环境大会续会在肯尼亚首都内罗毕召开。来自175个国家的政府首脑、环境部长和其他部门代表通过了一项历史性决议,即《终止塑料污染决议(草案)》(以下简称塑料条约)。决议指出,建立一个政府间谈判委员会(INC),到2024年年底前,达成一项具有国际法律约束力的协议,涉及塑料制品的整个生命周期,包括其生产、设计、回收和处理等。联合国环境署执行主任英格安德森表示:“这是自《巴黎协定》以来最重要的环境多边协议” 。“可以说自此之后,塑料污染正式从一个国家或地区的局部问题上升至全球化、国际化的环境问题。”在绿色创新发展研究院日前举办的全球塑料条约背景下中国塑料污染治理进程与展望论坛中,刘华评价道。分歧仍在:零草案讨论仍延续前次会议本次INC-3会议之前,2022年11月,在乌拉圭埃斯特角城召开了INC-1,主要讨论文书框架并选举了INC主席;2023年5月,在法国巴黎召开了INC-2,此次会议授权INC主席在秘书处的支持下,在INC-3召开之前准备一份“零草案”协议(Zero Draft)。“我们过去参与的两次会议中,会发现不同国家的代表看待塑料污染的出发点并不一样。例如,有些岛国更关注海洋污染问题,内陆国家更多从固废的角度考虑,而另一些则更关注生态。不同国家和地区基于其产业结构、对于塑料的使用情况及其在不同的发展阶段形成了对塑料污染的不同观点,这也解释了为什么各国在对塑料污染治理存在共识却仍然艰难地启动了几次会议。”刘华说。本次INC-3会议主要是基于“零草案”进行进一步商讨,而“零草案”的第二部分——塑料及塑料产品的全生命周期,仍然保留了INC-2中较为焦灼的讨论内容。“例如,塑料聚合物是否需要纳入塑料污染管控的生命周期范畴内仍然存在较大争议。一些国家坚持认为其作为原生塑料的重要生产要素应该限制和减少,另一些国家则持反对态度,认为塑料文书应聚焦管控塑料污染,而不是消灭塑料。这也是会议期间较有争议的热点话题。”刘华举例。记者注意到,此前包括欧盟、日本、加拿大和肯尼亚在内的数十个国家曾呼吁塑料污染防治条约其中应包含“具有约束力的条款”,以减少生产和使用从石化产品中提炼出来的原始塑料聚合物,并消除或限制问题塑料,如聚氯乙烯(PVC)和其他含有有毒成分的塑料。但这一立场遭到了塑料行业以及沙特阿拉伯等石油和石化出口国的反对。他们认为,该条约应着重关注塑料的回收和再利用——即塑料供应的“可循环性”。国际化学协会理事会发言人Matthew Kastner也曾在一份声明中称,“塑料协议应该专注于结束塑料污染,而不是塑料生产”。刘华认为,“零草案”第二部分第三项“有问题和可避免的塑料产品,包括短寿命和一次性塑料产品,以及有意添加的微塑料”也值得关注,这一项主要是对 “有问题和可避免的塑料产品”进行定义厘清。“但是什么是有问题,什么是可避免,这一定义难以达成一致。”刘华说。他介绍,因为团队长期关注化学品的问题,实际检测中会发现一些塑料制品添加了并没有必要、并不合适的化学物质,这种情形会为塑料制品的循环利用设置极大障碍,这就属于有问题的产品类型。但定义价值体现在,一旦塑料产品以附件形式被列为有问题和可避免的产品或产品类别的标准、确定有问题和可避免的特定产品或产品类别,就会对其明确其削减或淘汰的时间范围。刘华介绍:“上述争议几乎持续了整个会议阶段,但由于各方的观点分歧显著,直至闭幕仍然无法形成统一意见,各方代表通过接触组会议等方式表达了不同的观点,很多条款被打上方括号需要进一步讨论。本次全球塑料大会依然最终未能在实质性内容上突破,在这是令人遗憾的,也意味着明年内是否能达成最终共识仍然面临挑战”。中美两国决心终结塑料污染,成会议期间热点话题全球塑料公约被寄予终结塑料污染的厚望同时,一些大国也被寄予厚望。本次全球塑料公约大会期间,中美两国联合发表了《中美关于加强合作应对气候危机的阳光之乡声明》。声明在第15条明确提出,“中美两国决心终结塑料污染并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。”,以及第14条提及,“认识到循环经济发展和资源利用效率对于应对气候危机的重要作用,两国相关政府部门计划尽快就这些议题开展一次政策对话,并支持双方企业、高校、研究机构开展交流讨论和合作项目”。刘华介绍,这对塑料公约谈判期间带来积极信号,也迅速成为会议期间的热点话题。中国作为塑料生产和消费大国,在塑料污染的治理发挥着举足轻重的角色。刘华表示:“从会场的反馈来看,无论是国际NGO组织还是科学家联盟包括我们接触到的一些不同利益相关方,我能感受到他们对于中国在塑料污染治理议题上的期待还是很高的。因为他们会认为,中国宣布禁止进口‘洋垃圾’后,不仅对中国国内产生了极大效益,也推动了国际的废弃物的贸易变革”。在历次INC会议中,中国代表团在多轮讨论中积极陈述,坚持问题导向,聚焦易向环境泄露的塑料制品,针对不同种类的塑料制品采取分类管控措施,加强回收利用和安全处置。在国内层面,我国政府对塑料污染治理高度重视,2022年10月21日,中国已全面禁止“洋垃圾”入境,实现固体废物零进口目标。在国内层面,2007年,中国限制生产销售使用塑料购物袋。2020年年初,中国进一步加强塑料污染治理,在餐饮行业禁止了一次性塑料袋和吸管的使用。目前,国家发展改革委联合多部门发布的《关于进一步加强塑料污染治理的意见》《“十四五”塑料污染治理行动方案》《商务领域经营者使用、报告一次性塑料制品管理办法》等政策文件正持续保障塑料污染治理从全链条、重点领域开展。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 微塑料登上世界最高峰|上海净信冷冻研磨仪解决塑料难题
    珠峰是一个遥远、纯净的地方,在世界之巅却发现了微塑料的痕迹!    据英国《新科学家》周刊网站11月20日报道,首次在珠峰上发现直径不足5毫米的塑料微粒。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。       报道称,“污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。“    在过去的几年里,我们在全球各地收集的样本中都发现了微塑料,足迹遍布从北极到河流、深海。那么,什么是微塑料?    微塑料是指粒径很小的塑料颗粒以及纺织纤维。由于学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。相比于“白色污染”塑料,因微塑料体积小,意味着就有更大的比表面积(比表面积是指多孔固体物质单位质量所具有的表面积)。而比表面积越大,吸附污染物的能力越强,这就是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因。    它的污染分布如何呢?这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。    大气中:纺织产品生产使用过程中产生的超细合成纤维、工业上材料切碎和磨削等加工产生;质轻,可作为污染物载体,通过呼吸道进入人体。    水域中:塑料污染主要来源,海洋、地表河流、湖泊、水库、居民饮用水中均已发现;市政污水排放、大气微塑料干湿沉降、工业产生塑料废弃物、纺织行业废水排放、个人日用护理品及其包装等。    土壤中:市政污泥的土地利用、有机肥的长期施用、农用地膜的残留分解、大气微塑料的沉降、地表径流和农用灌溉水的带入等;通过食物链传递并富集。    上至世界之巅,下至世界最深的海沟,微塑料可谓无处不在。有研究指出,每年每人平均会摄入70000颗微塑料。目前微塑料对人体的危害如何还需要深入的研究,但这类无孔不入的物质无疑为我们人类敲响了警钟!我们必须加强对微塑料的研究,尽早提出可行的塑料减排和处理方案。    提到塑料研究,不得不提塑料的前处理。由于塑料制品对温度极其敏感,且加热后会变形、变性,只有在超低温环境下,才能保证样品的完整性。所以,在样品前处理这块着实让科研工作者头疼,因为常规的仪器根本搞不定它。    上海净信浸入式液氮冷冻研磨仪(JXFSTPRP-MiniCL),却完全可以做到!    这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻,全程-196度低温下研磨粉碎。保持了生物物质活性,确保易挥发物质的保留;防止热不稳定化合物的受热降解,对热和机械压力敏感的代谢物、异构体和复杂化合物保持原有的敏感特性物质。传统需要五分钟的粉碎研磨,而本设备只需要三十秒,称得上是研磨界的终极手段!
  • 人类血液中首次发现微塑料,监控微塑料污染刻不容缓
    近日,发表在环境科学领域权威期刊《环境国际》(Environment International)上的一项研究中,来自荷兰阿姆斯特丹自由大学领导的研究团队,首次在人体血液中检测到了微塑料,研究中发现在近80%的实验受试者样本中存在微塑料颗粒,这也进一步证实微塑料已进入人类体内,成为人类健康的又一大隐患。监控微塑料污染刻不容缓目前,微塑料已经被列入国际上广泛关注的环境中新污染物四大类之一(四大类分别是持久性有机污染物、内分泌干扰物、抗生素和微塑料)。 2022年3月30日,生态环境部召开新闻发布会,生态环境部固体废物与化学品司司长任勇介绍了新污染物治理,并表示生态环境部会同发展改革委等13个部门正在研究行动方案,制定行动方案加大新污染物治理。2020年1月,国家发改委与生态环境部发布关于《进一步加强塑料污染治理的意见》,要求强化与微塑料污染防治相关的科技支撑,开展不同类型塑料制品全生命周期环境风险研究评价,加强江河湖海塑料垃圾及微塑料污染机理、监测、防治技术和政策等研究,开展生态环境影响与人体健康风险评估。在生态环境部通过的《生态环境监测规划纲要( 2020-2035 年)》中,海洋微塑料专项监测的任务内容也列在其中。全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。Pyroprobe-GC-MS:快速有效的微塑料检测技术全球现在每年制造300万吨塑料,大量塑料最终会进入并污染海洋,除了在海洋表面清除较大体积塑料外,海水中含有的塑料微颗粒越来越受到人们的重视。目前海洋中微塑料的检测主要利用FT-IR和拉曼技术,光学方法可提高检测能力,但只是针对微塑料的类型和大小等方面,不能准确测量结构构成。而Pyroprobe-GC-MS热裂解-气质联用技术分析时间较短,在快速判断微塑料类型、评估微塑料污染程度等方面有较大优势,可为微塑料的定性和定量提供良好的解决方案,是研究分析微塑料环境污染的有效工具。使用Pyroprobe-GC-MS技术在鉴定微塑料颗粒的材料成分以及所使用的添加剂时,首先通过热裂解使高聚物在特定温度发生裂解,再利用气质联用仪鉴别裂解后短链小分子单体,就可以同时鉴定聚合物及添加剂。对于不易溶解或水解的聚合物颗粒,Pyroprobe-GC-MS联用是一个非常实用的技术,可根据聚合物在受热分解过程中形成的聚合物单体提供有关大分子聚合物的结构信息。热裂解分析流程图CDS Pyroprobe热裂解的优势CDS成立于1969年,距今已有53年历史,是一家专注于GC进样技术的公司,2015年正式加入莱伯泰科,更加及时有效的为中国客户提供支持和服务。CDS产品历经多年研发与改进,已推出多款迭代产品,于2017年推出的第6代6000系列热裂解产品,对热裂解核心部件做出了重要创新,设计出“DISC模块”,在原有的经典的电阻加热线圈的基础上,改进了加热腔并更有利于配合自动进样器自动上样。CDS 公司在丝式裂解方面具有强大的实力,其合理的的温控技术和设计理念,其科学的的高压裂解、有氧裂解、催化裂解、多步裂解(可达10步)等技术,使得CDS一直跻身全球高端裂解器之列。CDS热裂解6200CDS Pyroprobe特点:❇ 数据重现性好:RSD1.5% (聚苯乙烯)❇ 温度范围:室温到1300℃,温度精度达到±0.1℃,升降温速率快。❇ 加热速率:加热速率可控10-20000℃/s (脉冲裂解)或0.01-999.9℃/s❇ 具有标配自动捡漏功能和选配自动流量调节控制功能❇ 不影响GC的其他进样口使用,具有更方便的加热的样品传输线与GC连接。❇ 支持载气切换及反应气模式❇ 具有三种操作模式:运行、干燥、清洗❇ 裂解调节容易调节,还可以模拟一些反应条件,应用领域广泛。
  • 微塑料污染之忧将解 中大规模产可在海水中“消失”的塑料
    p  新华社北京9月5日电(记者喻菲)为解决日益严峻的海洋塑料污染问题,保护海洋生态环境,中国科学家最近研制出一种可在海水中降解的聚酯复合材料,有望在诸多领域替代现有难以降解的通用塑料。/pp  中国科学院理化技术研究所高级工程师王格侠介绍,其团队研制出的这种结合了水溶性与降解性的材料具有一定的环境耐受性,废弃后能在数天到数百天内在海水中降解消失,最终分解为不会对环境造成污染的小分子。/pp  王格侠说,长期以来人们聚焦于陆地上的白色污染及其治理。直至近年,大量塑料污染致使海洋生物遇害的现象被频繁报道才引起广泛关注。/pp  据保守估计,人类每年向海洋投放的塑料垃圾为480万吨到1270万吨,占海洋固体污染物总量的60%至80%。目前,人类活动和洋流导致这些塑料垃圾集中分布于北太平洋、南太平洋、北大西洋、南大西洋及印度洋中部。/pp  世界经济论坛也发出警告,2050年全球海洋塑料总重量将超过鱼类的总重量。/pp  专家介绍,目前几乎所有类型的塑料都已经在海洋中找到。这些塑料微粒或者漂浮在海水中,或者沉入海底,几十年甚至几百年不会分解,对整个海洋环境造成了严重的污染。塑料在使用后被直接丢弃或从陆地经过河流、风吹进入海洋,在海水中受到光、海水风化,以及洋流和生物群的作用,导致塑料最终形成小于5毫米的微塑料。/pp  一些海洋生物,如信天翁、海龟等,误食塑料袋会产生一系列的胃肠问题,以至于无法再进食,最终被饿死。最令人震惊的一项科学数据显示:有90%的海鸟是因为误食了塑料袋而死于非命。/pp  王格侠指出,尽管海洋中塑料污染问题已经非常严峻,但目前人们对于这些塑料污染仍然没有有效的应对措施。海洋特殊水域环境使得人们不能像在陆地上一样对这样大量分散的垃圾进行集中收集和处理。最根本有效的办法就是让材料废弃进入海水后能自行降解消失。/pp  据介绍,中国科学院理化技术研究所降解塑料和工程塑料研究组是中国率先开展生物可降解塑料研究的单位。生物降解塑料大都是含酯键的高分子材料,分子链相对脆弱,因而可以被自然界许多微生物分解、消化,最终形成二氧化碳和水。/pp  目前,该团队的生物降解塑料生产及应用技术已经向4家中国企业完成了技术授权,其中3家已经顺利投产,总产能达到每年7.5万吨,占全球总量的一半。/pp  在认识到海洋塑料污染的严重性后,科研人员希望研发出在海水中可降解的材料。然而他们发现,在陆地上能够快速降解的生物降解材料在海水中却难以降解,甚至长时间都不降解,不能用来解决海洋中的塑料污染问题。/pp  经过多次反复实验,理化技术研究所的科研团队将非酶水解过程和水溶过程与生物降解过程结合起来,实现了材料在海水中快速降解。科研人员通过对材料的设计、合成、改性和加工使得其降解性能可根据不同的应用需求进行调控。/pp  在近期于深圳举行的旨在提升中国自主创新能力、加大先进科技成果转化的第一届“率先杯”未来技术创新大赛上,这一技术位列30个优胜项目之一。/pp  中国已将生态环境保护提高到前所有未有的层面,在解决本国生态问题的同时也为解决全球环境污染问题贡献中国智慧。/ppbr//p
  • 焦塑料——经过火焚烧转变而来的一种新型塑料污染
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/1400f8bf-32a9-4176-aba4-1392bd6a7d02.jpg" title="塑料垃圾.jpg" alt="塑料垃圾.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "人们在康沃尔海滩上收集的塑料垃圾 图片来源:ROB ARNOLD/span/pp  在环绕英国西南部海岸线的沙湾上,人们可以找到各种各样的石头,从小鹅卵石到厚重的镇纸石,散落在漂浮物中。它们的颜色是深浅不一的灰色,表面平滑、没有棱角,看起来很不起眼。/pp  但如果你拿起它们看时,很快就会发现,这些看起来毫不起眼的“石块”其实根本不是岩石。/pp  这是焦塑料——经过火焚烧转变而来的一种新型塑料污染。地质学家甚至也对它们的外表感到困惑。英国普利茅斯大学环境科学家Andrew Turner最近在《全环境科学》上发表的一篇论文中对这种物质进行了描述。他认为,这种污染可能隐藏在世界各地。/pp  “因为它们看起来像地质变化形成的,这让很多人经过时都不会留意到它们。”Turner说。/pp  几年前,康沃尔塑料污染联盟志愿者联系到Turner时,他第一次听说了这种奇怪的新垃圾。/pp  海滩拾荒者发现了一些奇怪的鹅卵石和石块的塑料仿制品,它们非常轻,可以漂浮在水面上。Turner说,一些志愿者已经收集了数千块。环境艺术家Rob Arnold甚至为当地一家博物馆设计了一个展览,让游客在塑料中找真正的石块。很少有人能够分辨出来。/pp  “这个活动非常成功,但也令人震惊。”Arnold说,“人们很惊讶他们居然完全没有注意到这些污染。”/pp  一年前,Turner决定更系统地研究这一现象。在社交媒体上发出呼吁后,他收到了从苏格兰到英属哥伦比亚等地的垃圾样本,他的分析最终集中在从惠特桑德湾附近收集的垃圾上。这是一个受保护的大海湾,其中包括康沃尔郡一部分最好的海滩。在进行大小和密度测量后,该团队用X射线和红外光谱检测了塑料的化学成分。/pp  他们了解到,这些“石头”是由聚乙烯和聚丙烯构成的,这是两种最常见的塑料。它们还含有大量的化学添加剂,但最让研究人员吃惊的是它经常和铅、铬一起出现。/pp  Turner认为,这些是铬酸铅的痕迹。几十年前,制造商将这种化合物添加到塑料中,使其呈现出鲜艳的黄色或红色。而这些颜色可能由于燃烧而变暗。该团队在实验室里熔化了一些颜色鲜艳的塑料,验证了这个想法。果然,它们变成了深灰色。/pp  与此同时,多年的风和水的侵蚀可以让这些经过高温的塑料形成光滑的边缘和风化的外观。/pp  “想象一下,如果一块卵石在地质学上发生这样的变化,它会需要几十万年的时间。”Turner说,“我们在这些塑料上看到了同样的情况,但它发生的速度要快得多。”/pp  康沃尔热塑性塑料的确切起源仍然是个谜。Turner认为可能有很多来源,从篝火到旧的垃圾填埋场,篝火与夏威夷塑料—岩石混合物“塑小球”的形成就存在关联。他认为,其中一些塑料垃圾可能是从萨克岛漂到英吉利海峡对岸,因为最近的报告显示,萨克岛的垃圾在焚烧后被倾倒在海里 另一种可能是从加勒比海岸一路漂到英吉利海峡对岸。/pp  无论如何,高温塑料已经在世界上出现了,Turner想知道它们会对环境造成什么样的危害。他发现几个蠕虫样本中似乎富含铅,这表明这些生物可以摄取塑料,并将重金属引入食物链。/pp  Turner与美国的一位合作者分享了一些样本。这位合作者正在做进一步分析,以确定这些样本中是否也含有有害的有机化合物。“在不受控制的环境下燃烧塑料,会产生各种有害物质。”他说。/pp  除了直接的生态效应,热塑性塑料的出现还表明环境中的塑料无处不在。英国莱斯特大学古生物学教授Jan Zalasiewicz想知道,这些东西最终是否会在岩石记录中留下痕迹。/pp  无论高温塑料的最终命运如何,Zalasiewicz说,很清楚的是,塑料正在“成为地质循环的一部分”。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/60eaff85-f756-497e-837e-d605b32afed6.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论!/spanbr//p
  • 治理塑料污染,碳酸钙如何乘借“可降解塑料”的东风?
    近日,国家发展改革委、生态环境部、工业和信息化部、住房城乡建设部、农业农村部、商务部、文化和旅游部、市场监管总局、供销合作总社等9部门联合印发《关于扎实推进塑料污染治理工作的通知》,明确禁限不可降解塑料袋、一次性塑料餐具、一次性塑料吸管等一次性塑料制品的政策边界和执行要求,对疫情防控等突发事件期间用于应急保障的一次性塑料制品予以豁免。相比2008年“限塑令”主要是针对于流通使用环节,这次的“禁塑令”不仅聚焦于使用环节,也关注到了生产、流通、使用、回收、处置的全过程。在政策方面,“禁塑令”没有不顾实际情况搞“一刀切”,指出用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等,不在禁止之列 “禁塑令”扩大到“餐饮打包外卖服务以及各类展会活动”。从技术角度看,环保替代塑料吸管有多种选择,而可降解塑料抗摔性、耐热性、防腐性等方面的提升空间是另一个问题。这也意味着我国可降解塑料将迎来发展机遇。到2030年,预计我国可降解塑料需求量可到428万吨,市场规模可达855亿元。2020年底“禁塑令”工作目标从材料与环保协调发展角度看, 使用源于自然并可回归于自然的无机矿物作为填料部分取代高分子材料生产塑料制品是目前的可行方案之一。近年研究表明,碳酸钙等无机粉体材料在制造环境友好塑料材料方面发挥了重要作用。实现了提高塑料制品尺寸的稳定性、提高塑料制品的硬度和刚性、改善塑料加工性能、提高塑料制品的耐热性、改进塑料的散光性、降低塑料制品成本等多重优势。碳酸钙有利于塑料材料的降解,聚乙烯(PE)薄膜中有碳酸钙粉末时,在填埋后碳酸钙有可能与CO2和H2O反应,生成溶于水的Ca(HCO3)2而离开薄膜。留下的微孔,将增大聚乙烯塑料接触周围空气和微生物的面积,从而有利于进一步降解。同时,填加碳酸钙有利于PE焚烧。燃烧时,塑料溶化容易形成黏壁现象,无机粉体加入能够使得这一问题得到极大改善。在PE塑料材料中添加了大量碳酸钙,其效果不仅体现在塑料材料的减量上,且焚烧时可减少对大气污染,减少尾气中有害气体的排放量, 特别是与焚烧热氧降解剂配合使用,对遏止二恶英产生有十分重要意义。近几年日本等国开发了可焚烧PE塑料薄膜袋用来作为盛放焚烧垃圾发电专用袋。随着中国禁塑行动的进行,超细重质碳酸钙、轻质碳酸钙和纳米碳酸钙由于价格相对低廉,又可促进塑料降解,环境友好,在可降解塑料中的添加比例会越来越大,市场前景会越来越广阔。广西贺州是全国的重钙粉体生产基地和人造岗石生产基地,被授予中国“重钙之都”和“岗石之都”称号。目前,贺州市年产重质碳酸钙粉体达800万吨,产品市场占有量达到60%以上。广西贺州也是珠海欧美克仪器用户最集中的区域之一,在深耕非矿行业二十余载的岁月里,欧美克的仪器质量和品牌口碑不断得到贺州“钙帮”老板们一致认可。Topsizer 激光粒度分析仪碳酸钙根据品种不同有多种不同的粒径和不同的表面涂层特性。欧美克Topsizer激光粒度仪应用于测试碳酸钙微粉,在短短几分钟的时间内就可以完成覆盖从纳米到毫米级别范围的测量。可以实现生产过程中以及最终产品的质量中对碳酸钙的粒度的监测和控制。其次,通过优化的产品设计,Topsizer可以为客户提供高准确性、高重复性和高重现性的数据。图3和表2显示了同一GCC(立磨)样品分成三等份样品的重复性结果,由同一台Topsizer仪器测量。图4和表3显示了三台不同的Topsizer仪器所测量的同一批次的重复性粒度分布。图3:方法重复性:同一台Topsizer仪器测量同一批GCC中三种不同样品的粒度分布表2:同一台Topziser仪器测量同一批GCC的三等份试样的粒度分布图4:系统重现性:用三台不同的Topsizer仪器测量同一批GCC的粒度分布表3:用三台不同的Topsizer仪器测量同一批GCC的粒径分布最重要的是,激光粒度仪测试过程比较简单,很容易掌握测试方法,对测试人员的要求不高,从样品制备到测试可以在几分钟内完成质控把关。随着后疫情时期的经济反弹,广大碳酸钙企业在这一难得机遇面前,可以通过增加碳酸钙与塑料的亲合性的活化处理及采用粒度仪进行良好的粒径控制,开发出可降解塑料用高填充比例高制品性能的碳酸钙专用产品,提高碳酸钙产品附加值,促进碳酸钙产业的发展。欧美克仪器也在仪器性能和日常维护上为广大碳酸钙企业提供及时全面的技术支持,例如针对行业集中区域客户的免费上门回访维护等系列售后增值服务活动(点击文字了解相关活动),以及多场碳酸钙行业专场直播课程等。扫描二维码报名专题直播课始终坚持“以客户为中心”的服务宗旨,欧美克作为国内最著名的颗粒测量仪器制造商、高新技术企业及广东省工程技术研究中心,始终致力于粉体行业粒度检测与控制技术的不断提高,为客户提供先进的物超所值的粒度测量仪器,服务及整体解决方案,为粉体行业创新发展提供强有力的支撑!参考资料:1. 欧美克仪器.《碳酸钙的激光衍射粒度分析报告》2. 腾讯新闻.《从“纸上谈兵”到“落地有声” “禁塑令”要突破两大难点》;3. 矿材网.《后疫情下,中国禁塑行动为碳酸钙行业带来大机遇!》
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 热分析如何让塑料变得更加环保
    前言塑料如今名声狼藉。每年生产的塑料超过3.8亿吨,其中近60%作为废物丢弃。实际上,把废弃塑料收集在垃圾填埋场和海洋中,这往往会导致灾难性的后果。然而,在减少排放对防止失控的气候灾难至关重要的时期,塑料可通过减轻运输重量、提高车辆的燃油效率和保持食物新鲜的方式帮助降低有害温室气体排放。事实上,加拿大最近发布的文件证实,因塑料产生的问题是源于对塑料废物管理不善,而塑料作为一种材料,对环境有诸多积极的影响。1. 回收塑料的挑战目前,仅“16%的塑料废物得到回收,用于制造新塑料”。其余的塑料被焚烧、送往垃圾填埋场,或最终排入大海。由于原油价格波动以及回收过程依赖于人工对废物进行分类,回收问题往往非常复杂。有时,制造新塑料比回收旧塑料成本更低。许多塑料产品包含塑料或添加剂的混合物,使得塑料成分过于复杂而无法回收,即使确定塑料成分,也无法确定回收塑料是否与原始材料完全相同。与原始塑料相比,回收物品因暴露于雨水、紫外线辐射和高温,其材料特征可能会改变。好消息是塑料回收率正在逐渐增加。但我们的全球塑料使用量也在以惊人的速度增长,这意味着尽管回收率变高了,但每年丢弃塑料废物变多了。针对这一全球性问题的解决方案非常复杂,但可以快速准确地确定回收材料成分和潜在性能的简单技术将有助于生产设备使用更多可用的回收材料。这就是热分析发挥作用的地方。热分析在塑料回收中的作用在塑料的生命周期中,热分析有三种主要用途:原材料测试:热分析可向您提供正在处理的聚合物类型,如PET或HDPE,纯度以及混合塑料中每种成分的百分比浓度。最终产品检查:在经过生产过程后,您可使用热分析检查塑料产品是否符合经认可的规范。您可能已验证原材料,但如果您在其中添加元素或将材料置于高温下,那么您需要在过程结束时验证实际特征。新产品研发:当您正在开发具有特定特征的新型聚合物时,热分析可帮助您全面了解新型聚合物的表征,而无需对成品进行寿命测试。热分析可帮助您选择正确的添加剂,从而确保不产生任何不利影响,如不必要的颜色变化。因此,如果您使用回收塑料,热分析可帮助解决关于使用回收塑料相关的问题。您可准确确定塑料类型和数量,并根据指定产品或新型聚合物开发来检查其性能特征。现在,我们来看看热分析在塑料生命周期中的具体示例。示例1Example 1 用于原材料识别的DSC此示例可以让您检查回收原材料的聚合物类型。使用差示扫描量热仪,通过测定玻璃化转变温度和熔点以便识别材料。您可将熔融温度和/或玻璃化转变温度值与已知值进行比较,以验证聚合物类型。在此示例中,我们使用了DSC200仪器。示例2Example 2 用于检查杂质的DSC现在,我们来看看稍微复杂的示例。回收聚合物中的任何杂质均会影响其特性,因此DSC可用于检测微量有害物质。在此示例中,我们测试了含0.5% PP的HDPE,以说明如何在测量过程中检测少量PP。在此案例中,我们使用了DSC600,这款仪器的灵敏度更高,为0.1µW。在测量杂质含量非常低的材料时,需要高灵敏度的仪器。两种聚合物的熔点差异显著,这种灵敏度水平可使您更容易看到PP的峰值。示例3Example 3 用于检查回收塑料稳定性的TGA您可能需要检查回收聚合物的另一个特征,即稳定性。如果材料用于高温环境,这可能适用于最终产品用途,但您也可检查材料是否可承受您自身的生产过程。这时,我们使用了同步热重分析仪STA200RV的TGA功能。我们分析了三种PET:90%回收、60%回收和0%回收。图表显示,与原始材料相比,回收材料具有较低的稳定性,并在较低的温度下开始分解。材料的百分比越高,开始分解的温度越低。然后,您可将温度与生产过程中达到的温度进行比较,以确定回收材料的适用性。示例4Example 4 您是否可在生产中使用重新研磨的部件?这种情况有助于减少浪费和节约生产成本。问题在于,您能否将生产过程中产生的废物回收到生产中。我们寻找的关键点是聚合物有机成分和无机成分之间的组成是否有任何变化。STA/TGA能帮助让您了解任何成分变化。通过图表,您可看到实线(原始材料)和虚线之间的差异。500℃和550℃之间的差异表明,在再利用样品中,无机材料(玻璃纤维)的浓度较低。然而,为确定这是否是最终产品应用中的问题,我们使用了我们特有的RealView系统,该系统允许您在扫描过程中查看样品的情况。 原始材料 重新研磨的材料这些图片可为您提供额外信息。例如,您可以看到重新研磨的材料具有较少的玻璃纤维,或者即使有,其纤维含量也比原始样品的纤维含量低。这只是一个示例,说明RealView技术能够为您提供比单纯的图形输出更全面的信息。如需更多与日立系列热分析仪如何帮助您在生产中使用更多回收塑料有关的信息,您可进入日立分析官网查看我们关于热分析如何为塑料和地球带来更美好未来的网络研讨会,或联系我们就您的具体应用进行讨论。
  • 微塑料分析新技术及其应用
    TED-GC-MS“热萃取热脱附 - 气相色谱 - 质谱”法是GERSTEL与德国联邦材料研究所(BAM)共同研发并且申请专利的微塑料检测新技术,可以对微塑料做到全面定性、准确定量、快速检测。TED-GC-MS 分析分两步:样品首先在热重分析仪 (TGA) 中进行热萃取,然后气态分解产物被捕获在固相吸附层上。随后,用热脱附气相色谱质谱法(TDU-GC-MS)分析固相吸附剂。这个技术的优势在于:1. 热萃取和热脱附分开,降低了GCMS被污染的风险,提高了仪器稳定性并最大限度地减少了维护工作2. TGA样品量大,可达100mg,提高了样品的重现性和检测准确性。3. 检测时间快,仅需几小时,可用于对环境样品做快速筛查4. 通过GC-MS可以实现定量分析TED-GC-MS: 热重分析(TGA)耦合热脱附-气质联用(TDU-GC-MS)TGA的样品制备简单,并且样品容量大自2014年以来,德国联邦材料研究所的Braun博士带领的团队,已经发表了数篇文章,下面是最新文献的总汇:01Determination of tire wear markers in soil samples and their distribution in a roadside soil(2022)“土壤样品中轮胎磨损标记物的测定及其在路边土壤中的分布”轮胎磨损是陆地生态系统中微塑料的重要来源。众所周知,道路排放的颗粒物对邻近区域的影响可达100米。这里首次应用热萃取热脱附气相色谱-质谱法 (TED-GC-MS) 通过检测丁苯橡胶 (SBR) 的热分解产物来测定土壤样品中的轮胎磨损,无需额外富集。TED-GC-MS测定丁苯橡胶的标准偏差均小于 10%, 是一种合适的分析工具,无需使用有毒化学品、富集或特殊样品制备即可确定土壤样品中的轮胎磨损。02Development of a Routine Screening Method for the Microplastic Mass Content in a Wastewater Treatment Plant Effluent (2022)“污水处理厂出水中微塑料质量含量常规筛查方法的开发”对经过三级处理的市政污水处理厂 (WWTP) 出水中的微塑料 (MP) 进行了调查。通过应用分级过滤方法(500、100 和 50 μm 网孔尺寸)采集1立方米的代表性样品体积。首次通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 检测微塑料质量分数,而无需进行先前需要的额外样品预处理。测试了用于评估 TED-GC/MS 数据的不同类型的量化方法,其准确性和可行性已在实际样品中得到验证。在出水样品中鉴定出聚乙烯、聚苯乙烯和聚丙烯。聚合物质量含量在5到50mg/m3 之间变化很大。TED-GC/MS测定1 mg滤渣中检出聚合物的峰面积;50、100 和 500 表示分馏过滤后以 µ m 为单位的分数粒径截止值。03Smart filters for the analysis of microplastic in beverages filled in plastic bottles (2021)水样中微塑料的高效收集与检测食品中微塑料 (MP)的出现,如塑料瓶装饮料,引起了公众的高度关注。现有的分析方法侧重于确定粒子数量,需要复杂的采样工具、实验室基础设施和通常耗时的成像检测方法。在目前的工作中,我们展示了智能过滤坩埚作为采样和检测工具的开发。过滤并干燥滤出的固体后,可以通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。新的过滤坩埚允许过滤粒径小至5 μm的微塑料。 结果显示,所测塑料瓶装饮料中微塑料含量低于0.01 μg/L到 2 μg/L,具体取决于饮料瓶类型。几种塑料瓶类型中的饮用水,可乐以及苹果汽水样品中测到的微塑料含量04Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples(2020)“评估几种逸出气体分析的热分析方法,用于检测环境样品中的微塑料”在这项工作中,比较了四种热分析方法,并讨论了它们的优点和局限性。 其中之一是热萃取热脱附气相色谱质谱法 (TED-GC-MS),这是近年来建立起来的一种微塑料检测分析方法。 此外,还应用了热重分析与傅里叶变换红外光谱 (TGA-FTIR) 和热重分析与质谱 (TGA-MS) 相结合的方法,这两种方法在该领域不太常见,但仍在其他研究领域使用。 最后,应用了微型燃烧量热仪 (MCC),这是一种尚未用于微塑料检测的方法。结果发现,TED-GC-MS 是最适合基质未知、微塑料种类和含量未知的样品的方法。 TGA-FTIR 是一种可靠的方法,适用于具有已知基质和定义种类的微塑料的样品。TGA-MS 可能会在未来为检测 PVC 颗粒提供解决方案。MCC 可用作一种非常快速和简单的筛选方法,用于识别未知样品中标准聚合物的潜在微塑料负载。用于通过 TED-GC/MS 检测 PE、PP、PS 和 PET 的定性和定量物质列表。使用三种 TGA 方法的实验室间测试样品的目标值和结果, TED-GC-MS的结果最好。05Development and testing of a fractionated filtration for sampling of microplastics in water(2019)“开发和测试用于水中微塑料采样的分馏过滤技术”采样、样品制备和检测的协调是获得环境中微塑料 (MP) 可比数据的关键。本文开发并提出了一种适用于水体的采样技术,该技术考虑了环境中不同的塑料特性和影响因素。给定微塑料质量浓度的人工水和废水处理厂的处理过的废水都用于验证衍生的采样程序、样品制备。使用热萃取热脱附-气相色谱-质谱法 (TED-GC-MS) 对微塑料进行分析。在给定微塑料质量浓度的人工水中,回收率范围为80%至110%,具体取决于不同的微塑料类型和大小等级。在处理过的废水中,我们发现了不同尺寸等级和数量的聚乙烯和聚苯乙烯。06Automated thermal extraction-desorption gas chromatography massspectrometry: A multifunctional tool for comprehensivecharacterization of polymers and their degradation products(2019)“自动热萃取热脱附气相色谱质谱法:一种用于全面表征聚合物及其降解产物的多功能技术”自动化TED-GC-MS代表了一种用于综合分析聚合物的新型灵活多功能方法,类似的聚合物表征以前只能通过多种独立分析方法的组合来实现。三个例子证明了这一点:第一个是木塑复合材料的分析,其中聚合物和生物聚合物(木材)的分解过程可以通过使用顺序分馏收集清楚地区分吸附剂。其次,通过与参考材料比较确定未知聚烯烃共混物的重量浓度,展示了定量的应用。第三是环境样品中微塑料浓度的测定正成为越来越重要的分析必需品。结果表明,TED-GC-MS校准曲线对最重要的微塑料前体显示出良好的线性,甚至可以成功分析复杂的基质材料(悬浮颗粒物)。六个选定降解产物峰的样品质量归一化的重复性积分结果。平均值显示为一条直线。四种化合物的RSD约为 6%,两种化合物的RSD约为 12%。纯 PE 的 TED 色谱图 (m/z = 55),放大了三萜(C31H62;MW = 434.8)保留时间附近的区域,叠加了 m/z = 434 的质量碎片离子。PE/PP 混合物参考样品的 TED 色谱图(上)和未知样品的色谱图(下);标记了 PE 和 PP 的特定峰,用于确定重量比。悬浮物基质 (SPM) 中 PE(左上)、PP(右上)和 PS(下)的特定降解化合物的线性回归。07Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method (2015) “使用热分解法分析环境样品中的聚乙烯微塑料”直径小于5毫米的小聚合物颗粒称为微塑料,通过聚合物碎片和工业生产进入环境。需要一种方法来识别和量化各种环境样品中的微塑料,以生成可靠的浓度值,这对于评估环境介质中的微塑料是必要的。通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。与热解气相色谱质谱 (Py-GC-MS) 等其他色谱方法相比,TGA中可以使用相对较高的样品质量(比Py-GC-MS 中使用的样品质量高约200倍)。聚乙烯 (PE) 是微塑料最重要的代表之一,被选作识别和量化的示例。土壤中PE的校准曲线的线性达到了约 0.99 ,该方法的相对误差从约为10%。土壤中 PE 的校准曲线达到了约 0.99 的 R2 因子,该方法的相对误差从约为 10%
  • 塑料人时代何以为家? 四种武器解构新“灭霸”
    p style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 338px " src="https://img1.17img.cn/17img/images/201905/uepic/6fb0d832-b53f-4b69-bcdc-885592a82aa2.jpg" title="qazqz.jpg" alt="qazqz.jpg" width="600" height="338" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"或许若干年后,能够将人类与人工智能区别开来的,将不再是大脑,而是人类体内的微塑料含量。那些我们以为大自然会免费埋单的塑料垃圾,如今又将轮回为人类自己背负的十字架。据一项最新的研究报告预测,全球约/spanspan50%/spanspan style="font-family:宋体"人口的体内都能找到塑料微粒,《复仇者联盟》中灭霸历尽万劫却枉费心机的“理想”,竟被微塑料在悄无声息中打了响指,塑料人时代已经来临。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"虽然该预测仍有待证实,但是微塑料对人类社会的大范围入侵却已是不争事实。/spanspan2015/spanspan style="font-family:宋体"年联合国首次将微塑料污染列为新型环境污染的一大类型,与全球气候变化、臭氧污染、海洋酸化并列为全球重大环境问题。那么微塑料到底是何方神圣?小小的它能对自然和人类造成怎样的危害?又有哪些分析方法可以帮我们应对这个敌人,保护我们的家园呢?/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"美丽的代价/span /strongstrongspan style="font-family:宋体"滥用的惩罚/span/strong/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/f3a003d5-b641-442d-844a-f6300cb51dd3.jpg" title="timg_看图王.jpg" alt="timg_看图王.jpg"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的概念首次出现在/spanspan2004/spanspan style="font-family:宋体"年的美国《/spanspanscience/spanspan style="font-family:宋体"》期刊上,英国纽卡斯尔大学海洋污染研究团队在其关于海洋水体及沉积物塑料碎屑污染的研究论文中对之进行了描述。根据其定义,微塑料是指直径小于/spanspan5mm/spanspan style="font-family:宋体"的塑料纤维、颗粒与薄膜。海洋是微塑料的主要囤积场所,目前,海洋中微塑料垃圾大约有/spanspan 10.5 /spanspan style="font-family:宋体"万吨,甚至在北极,每立方米海冰中含有的微塑料颗粒都多达/spanspan240/spanspan style="font-family:宋体"个,因此微塑料也得到“海中/spanspanPM2.5/spanspan style="font-family:宋体"”的形象称呼。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的诞生可以毫不夸张地说基本是人类活动的产物。与神话传说的分类方式类比,微塑料也大致可以分为两类,一类是初生微塑料,一类是次生微塑料。初生微塑料的主要来源也可一分为二,一类是化妆液、防晒霜、剃须膏、牙膏等个人护理、清洁用品中的柔珠,用以加速人体皮肤角质祛除,增加人体皮肤光滑度,进而达到深度清洁的目的。这种“柔珠”就是典型的微塑料。特别是打着“深层护理、深度清洁”招牌的护理用品,基本上都是依靠微塑料来满足人类爱美、爱干净的天性。另一类初生微塑料来源于洗衣机产生的超细纤维碎屑。据统计,一个/spanspan10/spanspan style="font-family:宋体"万人口规模的小城市,每天经过洗衣机向水体中排放的细小纤维就会达到/spanspan110/spanspan style="font-family:宋体"千克,大部分属于微塑料,其污染程度相当于向自然水体中扔掉/spanspan1.5/spanspan style="font-family:宋体"万个塑料袋所造成的污染。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 600px height: 420px " src="https://img1.17img.cn/17img/images/201905/uepic/b375936c-59f1-499c-9565-be4af986e667.jpg" title="2wxd.jpg" alt="2wxd.jpg" width="600" height="420" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"相当一部分的初生微塑料可以通过政策法律等措施进行有效限制,比如美国政府就在/spanspan2016/spanspan style="font-family:宋体"年/spanspan5/spanspan style="font-family:宋体"月颁布了全国首个微塑料禁用立法,明确禁止在个人护理用品、化妆品中使用微塑料,英国也紧随其后颁布了相似法律。但是次生微塑料却复杂难办得多,次生微塑料的来源主要是塑料垃圾和浮渣在水环境中破碎而产生的碎屑。塑料经过物理、化学、生物的分解作用,可以从大塑料变小,由小变微产生的碎屑,形成各种尺寸和形状的微塑料。次生微塑料具有更大的生态危险,由于塑料用品已经渗透到人类生活的方方面面,想要令行禁止,短期之内基本等于天方夜谭。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"“幽灵”消失之谜/span /strongstrongspan style="font-family:宋体"两大危害足以撬动地球?/span/strong/pp style="text-align:center"strongspanimg style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/201905/uepic/809db240-70ac-4ae4-a3ba-1304879c6759.jpg" title="0d0604ede9bd2365d7d45def088584d1_timg_image& quality=80& size=b9999_10000& sec=1559114114& di=d013ac74340170828cf0750f0c48ce20& imgtype=jpg& er=1& src=http%3A%2F%2Fimg7.itiexue.net%2F2884%2F28848079.jpg.jpg" alt="0d0604ede9bd2365d7d45def088584d1_timg_image& quality=80& size=b9999_10000& sec=1559114114& di=d013ac74340170828cf0750f0c48ce20& imgtype=jpg& er=1& src=http%3A%2F%2Fimg7.itiexue.net%2F2884%2F28848079.jpg.jpg" width="600" height="400" border="0" vspace="0"//span/strong/pp style="text-indent: 27px text-align: justify "span style="font-family:宋体"来无影去无声,除了纤细无声地潜入外,微塑料竟然也能像幽灵蜃景一样悠忽间消失,最近一项研究结果显示,大洋海水中测到的小于/spanspan 4.75 mm/spanspan style="font-family:宋体"的微塑料数量比预测的要少/spanspan 90% /spanspan style="font-family:宋体"左右。如此庞大的微塑料群体都去了哪里呢?一种假说是微塑料被海洋生物吞食了。细思极恐的是,这个假说已在多项研究中得到了证实,数百种海洋鱼类、藤壶、牡蛎等海洋生物的消化道内都发现了微塑料。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"大鱼吃小鱼,小鱼吃虾米,随着食物链层层传递,这些微塑料最终会随着食物链进入人类体内。事实上,越来越多的研究表明,除了海洋外,越来越多的微塑料已经进入了陆地食物链,土壤里、蚯蚓体内、母鸡粪便和胃里、城市自来水系统、食盐、蔬菜、海盐、啤酒、蜂蜜等产品中都发现了微塑料的痕迹,这也是为什么微塑料最终会进入人体的重要原因。/span/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/a6c7de9a-9dae-410a-8751-9c79e2c63bfd.jpg" title="fe04b5189c428128b6dbf5eea6cdfcc6_timg_image& quality=80& size=b9999_10000& sec=1558519713638& di=ae07fb089a8d8e73b4b3d50b181251d6& imgtype=0& src=http%3A%2F%2Fs1.sinaimg.cn%2Fmw690%2F006WIuVxzy7horBXd5u20%26690.jpg" alt="fe04b5189c428128b6dbf5eea6cdfcc6_timg_image& quality=80& size=b9999_10000& sec=1558519713638& di=ae07fb089a8d8e73b4b3d50b181251d6& imgtype=0& src=http%3A%2F%2Fs1.sinaimg.cn%2Fmw690%2F006WIuVxzy7horBXd5u20%26690.jpg"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料主要会带来四大环境效应,上述讲到的食物链效应首当其冲。生物摄食微塑料后,首先会由于其难以消化降解在体内累积,可造成生物的肠道堵塞、消化不良、体重减轻、行为迟钝、生长生殖速率减慢等短期不良效应。最终这些随着食物链从餐桌进入人体的微塑料,也会对人体的健康带来危害,不少微塑料在生产中会加入阻燃剂、增塑剂等含有氯化烃类、邻苯二甲酸酯类等毒性物质,大量摄入可能影响生殖发育,干扰内分泌等,更恐怖的是微塑料对重金属和有机污染物具有吸附作用,这些具有显著生物毒性的物质,难以被生物降解,富集在生物体内,容易造成蛋白质的失活或者引起慢性中毒。而纳米尺度的微塑料甚至可以穿过生物细胞膜,对人体造成物理性的危害。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"除了对人类的伤害外,微塑料对整个生态系统也有巨大的破坏作用,一方面,微塑料的生物吸附作用可使得水体中的微塑料作为微生物和藻类提供附着位点,形成生物膜,并提供较稳定的微生物居住环境。由于微生物的附着,可能会改变塑料颗粒的某些物理性质如密度等,影响其迁移,并影响当地生物的生存状况,一些致病性的有害微生物可给所入侵的生态系统带来巨大的危害。另外,微塑料可向周围环境中释放毒性物质,这些毒性物质经常能与周围环境发生一系列的反应,通过吸附或者其他表面相互作用结合周围环境中的污染物,产生具有更大危害毒性的复合污染物,对生物产生复合毒性效应。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"蛮荒之地/span /strongstrongspan style="font-family:宋体"四大分析仪器开路/span/strong/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 600px height: 399px " src="https://img1.17img.cn/17img/images/201905/uepic/da0b5178-1991-4faa-b412-bc41f1ac12e9.jpg" title="xsaa.jpg" alt="xsaa.jpg" width="600" height="399" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的提出已经有十多年的时间,但是真正作为重大污染源进行系统研究,也就在近几年才刚刚热了起来。因此关于微塑料的分析检测还基本是一片蛮荒之地,有大量的工作亟待开展。目前在微生物的分析检测中主要用到的仪器有非破坏性分析仪器和破坏性分析仪器两种,仪器信息网编辑对之进行了不完全的整理,汇总如下,以飨读者:/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体 color:red"非破坏性分析方法/span/strong/pp style="text-indent: 28px text-align: justify "span1/spanspan style="font-family:宋体"扫描电子显微镜分析(/spanspanSEM/spanspan style="font-family:宋体")/span/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"在微塑料的物理性质中,颗粒粒径与微塑料在环境中的迁移行为有密切关系,目前微塑料颗粒检测的常用方法为筛分法,但实际上,相当一部分微塑料的粒径范围在激光粒度仪和纳米粒度仪的射程范围之内,该市场或许将成为激光粒度仪发展的又一片黄金沃土,在此先按下不表。而对微塑料另外一种重要物理性质——腐蚀性的分析,则需要用到扫描电子显微镜。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 400px height: 345px " src="https://img1.17img.cn/17img/images/201905/uepic/0dfa4d59-aeec-4c1a-b66d-ff2ba533b910.jpg" title="123.jpg" alt="123.jpg" width="400" height="345" border="0" vspace="0"//span/pp style="text-align: center "strongspanSEM-EDS/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的腐蚀主要是由生物降解、光降解、化学风化等环境外力造成的。腐蚀作用会在塑料表面产生裂缝,导致塑料断裂成更细小的碎片,对微塑料表面形貌的表征需要再较高放大倍数下进行,因此研究中多以/spanspanSEM/spanspan style="font-family:宋体"为辅助,如扫描电镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspan X /spanspan style="font-family:宋体"射线联用分析技术/spanspan(SEM-EDS)/spanspan style="font-family:宋体",环境扫描电子显微镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspan X /spanspan style="font-family:宋体"射线联用分析技术/spanspan(ESEM-EDS)/spanspan style="font-family:宋体"等。这种方法可在进行形态表征的同时,分析微塑料的元素组成,此外还能利用元素指纹排除采样过程引入的微塑料,但该检测方法的成本较高。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"事实上,目前在微塑料的物理性质表征的领域,颜色、形状等大部分参数尚需要依靠目检法完成。随着人们对分析表征结果要求的提高,立体显微镜等高分辨率仪器也开始被用来确定微塑料的形态特征。/span/pp style="text-indent: 28px text-align: justify "span2/spanspan style="font-family:宋体"、红外光谱分析/span/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"红外光谱分析同样是一种非破坏性的检测分析手段,此外还可以用未知样品的红外谱图可与标准谱图进行比对鉴定。目前傅里叶变换/spanspan-/spanspan style="font-family: 宋体"红外光谱分析法/spanspan(FT-IR)/spanspan style="font-family: 宋体"可以说是微塑料界最常用的化学组分鉴定方法之一。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 400px height: 200px " src="https://img1.17img.cn/17img/images/201905/uepic/c67c7f0a-b47a-4c32-b645-eb5e9f8847de.jpg" title="timg (1).jpg" alt="timg (1).jpg" width="400" height="200" border="0" vspace="0"//span/pp style="text-align: center "strongspanFTIR/span/strong/pp style="text-indent: 28px text-align: justify "spanFTIR /spanspan style="font-family: 宋体"的衰减全反射/spanspan(ATR)/spanspan style="font-family: 宋体"、透射与反射等/spanspan3/spanspan style="font-family: 宋体"种模式在微塑料分析领域均有所应用,但应用范围有所差异。/spanspanATR/spanspan style="font-family: 宋体"模式适用于不规则微塑料的鉴定;透射模式能够提供高分辨图谱,但分析材料需足够透明、轻薄,确保能被红外线穿透;发射模式则可以完成厚、不透明材料的分析。/spanspanFTIR/spanspan style="font-family: 宋体"法仅需通过过滤等简单的预处理操作即可直接分析样品中的微塑料,但该方法的鉴定结果受被测微塑料不均匀性、材料老化、环境尘埃等严重干扰,需要进一步完善以更好地适应环境样品分析。/span/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"随着研究的不断深入,基于焦平面阵列/spanspan(FPA)/spanspan style="font-family: 宋体"的显微/spanspan FTIR /spanspan style="font-family: 宋体"法/spanspan(Micro FTIR)/spanspan style="font-family: 宋体"也开始应用于微塑料的鉴定。/spanspanMicro FTIR/spanspan style="font-family: 宋体"法充分结合了显微镜与/spanspan FTIR/spanspan style="font-family: 宋体"的优点,即在采集视场内的景物图像的同时也能获得视场内每一个像元对应的红外谱图。/spanspanMicro FTIR /spanspan style="font-family: 宋体"法分析迅速,仅数分钟即可完成一次全面测试,再结合/spanspanFPA/spanspan style="font-family: 宋体"就能满足小粒径微塑料检测及区域范围检测的要求。/span/pp style="text-indent: 28px text-align: justify "span3/spanspan style="font-family: 宋体"、显微拉曼/span/pp style="text-align: center text-indent: 28px "spanimg style="max-width: 100% max-height: 100% width: 400px height: 194px " src="https://img1.17img.cn/17img/images/201905/uepic/5fbc80b2-a398-492d-bbd9-6f554a3d7de4.jpg" title="1231额3受委屈爱心.jpg" alt="1231额3受委屈爱心.jpg" width="400" height="194" border="0" vspace="0"//span/pp style="text-align: center text-indent: 28px "strongspanMicro Raman/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"拉曼光谱法被应用于微塑料的化学组分鉴定。拉曼光谱/spanspan-/spanspan style="font-family: 宋体"显微镜联用技术/spanspan(Micro Raman)/spanspan style="font-family: 宋体"不仅能够获得表面官能团的信息,还可以观测到局部的微观形貌。然而显微拉曼主要的狩猎范围为/spanspan10um/spanspan style="font-family: 宋体"以下的微塑料,而如何从环境中分离到/spanspan10um/spanspan style="font-family:宋体"以下的塑料进行实验是一大挑战,因此该分析方法,并没有得到大范围的应用。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"4.红外成像系统/span/strong/pp style="text-align:center"strongspan style="font-family:宋体"img style="max-width: 100% max-height: 100% width: 400px height: 400px " src="https://img1.17img.cn/17img/images/201905/uepic/e968e66e-fdba-4106-9b87-bb66628c62d4.jpg" title="41081a9fbd9f845c02d5ee0e2cc90aea_b7904802-818b-43a1-b13c-7a3b8c8da14e.jpg!w300x300.jpg" alt="41081a9fbd9f845c02d5ee0e2cc90aea_b7904802-818b-43a1-b13c-7a3b8c8da14e.jpg!w300x300.jpg" width="400" height="400" border="0" vspace="0"//span/strong/pp style="text-align: center "font face="宋体"b红外显微成像系统/b/font/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: 宋体, SimSun "红外显微成像系统将傅里叶变换红外光谱与红外显微镜及微区成像技术有机结合,已被广泛应用于微塑料的定性检测,可测量尺寸小至约 10 µ m 的微粒。目前知名仪器厂商如安捷伦、珀金埃尔默等都有丰富的微塑料红外成像解决方案。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体 color:red"破坏性分析方法/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family: 宋体"热解吸/spanspan-/spanspan style="font-family: 宋体"气相/spanspan-/spanspan style="font-family: 宋体"质谱联用技术/spanspan(Pyr-GC-MS)& /spanspan style="font-family: 宋体"热重/spanspan-/spanspan style="font-family: 宋体"气相/spanspan-/spanspan style="font-family: 宋体"质谱联用技术(/spanspanTGA-GC-MS/spanspan style="font-family: 宋体")/span/pp style="text-align:center"spanimg style="max-width: 100% max-height: 100% width: 400px height: 150px " src="https://img1.17img.cn/17img/images/201905/uepic/f1dbcbf9-081f-42eb-8cc5-fbad673b51f0.jpg" title="9dc6020d20455eb5d76f8aa8adcca231_20150317100100.jpg" alt="9dc6020d20455eb5d76f8aa8adcca231_20150317100100.jpg" width="400" height="150" border="0" vspace="0"//span/pp style="text-align: center "strongspanTGA-GC-MS/span/strong/pp style="text-indent: 28px text-align: justify "spanPyr-GC-MS/spanspan style="font-family: 宋体"是不断升高样品池温度,使得高聚物在特定温度发生裂解,释放短链小分子单体,再进入/spanspanGC-MS /spanspan style="font-family: 宋体"测定质荷比,从而推断高聚物类型的一种方法。而/spanspanTGA-GC-MS/spanspan style="font-family: 宋体"只是热解的方法有所变化,后续分析过程与前相同。所有微塑料的热解过程均为一步热解,且所有微塑料均完全热解。如果仅通过/spanspanTGA /spanspan style="font-family: 宋体"识别聚合物,则结果容易受到其他因素的影响导致假阴性或假阳性/spanspan./spanspan style="font-family: 宋体"因此,为了准确的量化微塑料,必须对热分解产物进行/spanspanGC-MS/spanspan style="font-family: 宋体"化学结构解析。虽然该方法对实验条件要求较高,但具有样品用量小、可定性定量分析、无需额外投加试剂等优点。做微塑料吸附实验时,用这种方法比较多。/span/pp style="text-align: center "spanimg style="max-width: 100% max-height: 100% width: 600px height: 303px " src="https://img1.17img.cn/17img/images/201905/uepic/c44a6b83-bea3-48e9-afb4-1e48c5560095.jpg" title="4_看图王.png" alt="4_看图王.png" width="600" height="303" border="0" vspace="0"//span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"在上述几种分析方法中,目前最受学界依赖的还是红外光谱分析方法。另外,根据微塑料的颗粒大小,上述四种方法也有不同的适用范围。由上图可知,/spanspanFTIR-ATR/spanspan style="font-family:宋体"适用的微塑料粒径范围大概在数百/spanspanum-5mm/spanspan style="font-family:宋体"的范围内,显微红外光谱的适用范围在/spanspan10um-/spanspan style="font-family:宋体"数百/spanspanum/spanspan style="font-family:宋体"之间,而显微拉曼的范围则在/spanspan1um-10um/spanspan style="font-family:宋体"之间。/spanspanPyr-GC-MS /spanspan style="font-family: 宋体"和/spanspanTGA-GC-MS/spanspan style="font-family: 宋体"则适用于/spanspan1um/spanspan style="font-family: 宋体"以上的全尺寸微塑料。另外,上图没有显示的扫描电镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspanX/spanspan style="font-family:宋体"射线联用分析技术/spanspan(SEM-EDS)/spanspan style="font-family:宋体"以及环境扫描电子显微镜/spanspan-/spanspan style="font-family:宋体"能量色散/spanspan X /spanspan style="font-family:宋体"射线联用分析技术/spanspan(ESEM-EDS)/spanspan style="font-family:宋体"适用的微塑料粒径范围一般需要大于/spanspan20um/spanspan style="font-family:宋体"。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"微塑料的复杂性决定了其研究方法的千差万别,目前,在微塑料的分析研究中,有三大问题是研究中遇到的难点:首先横亘在研究者面前的就是分离前处理strong,/strong微塑料的环境来源千差万别,可以是垃圾场、垃圾渗出液或者污水厂等,如何在某个场景下的进行完善的分离和前处理是一个难点。其次,如前所述对小粒级的微塑料鉴定也非常棘手,因为样品很难得到,直接从矿泉水样品中过滤有可能得不到微塑料,而野外样品中如何分离出/spanspan10um/spanspan style="font-family:宋体"以下的微塑料又难以解决。除此之外,在进行红外光谱分析时,如何快速计数滤膜上的微塑料颗粒也是研究者之殇,现有的很多研究都需要一个个遴选样品颗粒并上机检测,效率较低。/span/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/d8b4e8cc-3a32-407c-9fb3-8593d4bf88aa.jpg" title="w21w1.jpg" alt="w21w1.jpg"//span/pp style="text-align: justify "span style="font-size:14px font-family:宋体" 知己知彼方能百战不殆,如何解决微塑料分析研究中遇到的难点,关系着人类对微塑料的研究可以深入到什么程度,在这场人类与微塑料的战役中,我们需要更多、更有效的分析仪器和检测手段来扮演钢铁侠的角色。毕竟人类自己孕育的新“灭霸”,需要整个人类联盟共同去抵抗,而科技和智慧就是我们自我救赎最好的武器。/span/pp style="text-align: justify "span style="font-size:14px font-family:宋体" 微塑料检测典型仪器点击a href="https://www.instrument.com.cn/zc/31.html" target="_self"strongspan style="font-size: 14px font-family: 宋体 color: rgb(0, 176, 240) "绿色通道/span/strong/a获取。/span/p
  • 印度创建塑料大学!塑机企业的机遇来了!
    p style="text-indent: 2em "印度塑料基金会贸易协会和美国马萨诸塞州大学洛维尔分校签订合作备忘录,由美方提供课程、基础设施、工业和技术学位授予等方面的咨询意见,双方共同建立印度塑料行业国际大学。该大学旨在促进印度塑料行业的教育和培训,提高印度塑料行业的技术水平。除工程类课程外,印度塑料行业国家大学还将设置现代化的研发实验室,增加塑料工程类的课程设置。目前该校已经接受来自塑料、化工和机械工程师的入学申请。br/ 作为世界第二大人口大国,印度一直备受国际关注。随着本届印度政府一系列改革措施的推进,不少媒体和分析人士认为,印度会取代中国,成为新的“世界工厂”。资料显示,2017年印度经济增速为7.2%,成为世界第七大经济体。经济的快速增长,伴随着政府改革的深入,印度制造定会在不久的将来登上国际舞台。而塑料工业是印度重点发展的工业之一,从建立塑料行业国际大学可见一斑。我国塑机企业应该抓住当前机遇进入印度市场。br/ 和中国相比,印度在诸多领域有着一定的优势。中国的人口红利逐渐消失,劳动力价格持续上涨,劳动力成本优势不再。反观印度,不仅有着不逊于中国的人口基数,还拥有着全世界最多的人口结构和优越的劳动力结构。据世界银行2016年统计,印度人口为13.24亿,仅与中国的13.79亿相差5500万人。印度人口年龄中位数为27.6岁,而中国是37.1岁。良性的人口结构、充沛的劳动力资源,使印度在承接产业转移过程中不用考虑劳动力成本问题。br/ 除劳动力优势外,印度政府的改革措施也是吸引国际社会目光的原因之一。自2014年以来,印度政府进行了一系列大刀阔斧的改革。无论是加强基建,还是解决财政赤字,亦或是改革税制等措施都推动了印度经济进一步快速发展。尤其是建立全国统一的税收体系、合并税种等措施,不仅打破了印度国内各邦之间的贸易壁垒、建立了统一的印度市场,还减轻了企业的税收成本,改善了投资环境促进了商品的流通,为外部资本进入印度投资创造了良好的条件。br/ 相关媒体报道,世界其他地区的塑机企业,如赫斯基、威猛巴顿菲尔、索尔维和科思创等国外知名塑机企业已经开始在印度设厂或者扩大厂区。印度塑料市场正以蓬勃的生机吸引着世界各地的优秀企业投资生产,我国也有塑机企业跟随国外塑机企业的步伐进入印度。br/ 在积极抓住机遇进入印度市场,享受优惠的同时,我国塑机企业也要直面印度市场存在的一些弊端。尽管印度有着充沛的劳动力资源,但是其劳动力素质较为低下,大量的劳动力资源能否与市场发展,尤其是塑机行业相匹配还是一个问题。贫富差距过于悬殊,印度农村有着近10亿的人口,但是农村普遍较为贫穷,购买力低下。印度农村能为印度发展贡献多大力量还有待进一步观察。大国关系较为微妙,尤其是与中国因众所周知的原因,关系较为紧张,中国企业在印度能否得到与其他国家相同的待遇考验着印度政府。br/ 印度正以开放的姿态吸引国际投资的到来,尽管印度市场存在着种种问题,但是在其政府的努力下,印度市场发展的前景是乐观的。我国塑料行业有关企业要清楚认识印度市场动态,应积极参与印度塑料产业发展建设,努力形成互利共赢局面。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制