当前位置: 仪器信息网 > 行业主题 > >

电生理设备

仪器信息网电生理设备专题为您提供2024年最新电生理设备价格报价、厂家品牌的相关信息, 包括电生理设备参数、型号等,不管是国产,还是进口品牌的电生理设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电生理设备相关的耗材配件、试剂标物,还有电生理设备相关的最新资讯、资料,以及电生理设备相关的解决方案。

电生理设备相关的资讯

  • 1712万!河南省医学科学院电生理研究所科研仪器设备采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2024-4602、项目名称:河南省医学科学院电生理研究所科研仪器设备采购项目二项目3、采购方式:公开招标4、预算金额:17,120,800.00元最高限价:17120800元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20240555-1河南省医学科学院电生理研究所科研仪器设备采购项目二项目包一315110031511002豫政采(2)20240555-2河南省医学科学院电生理研究所科研仪器设备采购项目二项目包二447970044797003豫政采(2)20240555-3河南省医学科学院电生理研究所科研仪器设备采购项目二项目包三9800009800004豫政采(2)20240555-4河南省医学科学院电生理研究所科研仪器设备采购项目二项目包四493000049300005豫政采(2)20240555-5河南省医学科学院电生理研究所科研仪器设备采购项目二项目包五358000035800005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1 采购内容:电生理研究所科研仪器设备一批(详见采购清单);5.2 交货期:国产设备合同签订后 30 日历天;进口设备合同签订后 90 日历天;5.3 交货地点:河南省医学科学院电生理研究所;5.4 质量要求:合格(符合现行国家、行业、地方相关规范要求);5.5 质保期:国产设备为三年; 进口设备为一年;5.6 供应商可同时参与多个标包投标;6、合同履行期限:至质保期结束7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2024年05月24日 至 2024年05月30日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站(http://www.hnggzy.net/)。3.方式:投标人需要完成信息登记及 CA 数字证书办理后,凭 CA 数字证书(CA 密钥)登录市场主体系统按网上提示自行下载招标文件及相关资料(详见http://www.hnggzy.net/公共服务-办事指南),未按规定在网上下载招标文件的,其投标将被拒绝。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省医学科学院地址:郑州市新郑市黄海路郑州临空生物医药园联系人:郑斌联系方式:0371-612665702.采购代理机构信息(如有)名称:大成工程咨询有限公司地址:郑州市金水区经三路15号1号楼A区12层1202号联系人:杨永丽、史岩岩联系方式:0371-655859063.项目联系方式项目联系人:杨永丽、史岩岩联系方式:0371-65585906
  • 103万!实验室基础(生理生化)平台第二批设备采购
    项目概况实验室基础(生理生化)平台第二批设备采购项目招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于 2022年01月28日 14时30分 (北京时间)前递交投标文件。一、项目基本情况项目编号:GZGK22D002A0005Z项目名称:实验室基础(生理生化)平台第二批设备采购项目采购方式:公开招标预算金额:10,300,000.00元采购需求:合同包1(高精度步入式植物培养箱(大型)等设备):合同包预算金额:10,300,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表高精度步入式植物培养箱(大型)1(套)详见采购文件--1-2其他仪器仪表高精度探入式植物生长箱(大型)1(套)详见采购文件--1-3其他仪器仪表烘片机2(套)详见采购文件--1-4其他仪器仪表切片机2(套)详见采购文件--1-5其他仪器仪表真空泵5(套)详见采购文件--1-6其他仪器仪表桌面小型离心机(PCR管)20(套)详见采购文件--1-7其他仪器仪表涡旋混匀器20(套)详见采购文件--1-8其他仪器仪表脱色摇床10(套)详见采购文件--1-9其他仪器仪表移液器100(套)详见采购文件--1-10其他仪器仪表离心机(小型台式常温)20(套)详见采购文件--1-11其他仪器仪表十万分之一天平5(套)详见采购文件--1-12其他仪器仪表万分之一天平10(套)详见采购文件--1-13其他仪器仪表千分之一天平10(套)详见采购文件--1-14其他仪器仪表洗片机2(套)详见采购文件--1-15其他仪器仪表1植物培养箱10(套)详见采购文件--1-16其他仪器仪表普通PCR10(套)详见采购文件--1-17其他仪器仪表PH计10(套)详见采购文件--1-18其他仪器仪表PH计(手持)10(套)详见采购文件--1-19其他仪器仪表干燥箱5(套)详见采购文件--1-20其他仪器仪表离心机(台式冷冻大容量)3(套)详见采购文件--1-21其他仪器仪表冻干机1(套)详见采购文件--1-22其他仪器仪表旋转蒸发系统2(套)详见采购文件--1-23其他仪器仪表恒温混匀仪3(套)详见采购文件--1-24其他仪器仪表种子储藏柜10(套)详见采购文件--1-25其他仪器仪表超低温冰箱10(套)详见采购文件--1-26其他仪器仪表果蔬测定仪2(套)详见采购文件--1-27其他仪器仪表2植物培养箱10(套)详见采购文件--1-28其他仪器仪表树木年轮分析系统1(套)详见采购文件--本合同包不接受联合体投标合同履行期限:见“标的提供时间”要求。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人,投标时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。2)有依法缴纳税收和社会保障资金的良好记录:提供2021年任意一个月的依法缴纳税收和社会保障资金的证明复印件,如依法免税或不需要缴纳社会保障资金的,应提供相应文件证明,若已对接“粤省事”“粤商通”“粤信签”等系统的,可提供书面承诺声明函(格式自拟)。3)具有良好的商业信誉和健全的财务会计制度:提供2020年的年度财务状况报告复印件,或2021年任意1个月的财务状况报告复印件;或银行出具的资信证明材料复印件,若已对接“粤省事”“粤商通”“粤信签”等系统的,可提供书面承诺声明函(格式自拟)。4)履行合同所必须的设备和专业技术能力:提供具备履行合同所必需的设备和专业技术能力的书面声明(格式自拟)。5)参加采购活动前3年内,在经营活动中没有重大违法记录:提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明(格式自拟)。2.落实政府采购政策需满足的资格要求:合同包1(高精度步入式植物培养箱(大型)等设备)落实政府采购政策需满足的资格要求如下:本项目不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:合同包1(高精度步入式植物培养箱(大型)等设备)特定资格要求如下:(1)供应商未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单(注:1)以评审当日在“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)的查询结果为准,处罚期限届满的除外;2)采购代理机构同时对信用信息查询记录和证据截图或下载存档。)(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目投标。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参与本项目投标。(3)已获取本项目采购文件。三、获取招标文件时间: 2022年01月07日 至 2022年01月14日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年01月28日 14时30分00秒 (北京时间)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。/七、对本次招标提出询问,请按以下方式联系。1.釆购人信息名 称:岭南现代农业科学与技术广东省实验室茂名分中心地 址:广东省茂名市茂南区油城六路联系方式:0668-22996982.釆购代理机构信息名 称:广州市国科招标代理有限公司地 址:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)联系方式:020-87688273、020-876839193.项目联系方式项目联系人:郑小姐、邹先生电 话:020-87688273、020-87683919广州市国科招标代理有限公司2022年01月07日
  • 310万!山东大学心肌细胞功能电生理分析系统采购项目
    项目编号:SDJDHF20220611-Z376/HYHA2023-0070项目名称:山东大学心肌细胞功能电生理分析系统采购预算金额:310.0000000 万元(人民币)最高限价(如有):310.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1心肌细胞功能电生理分析系统1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:山东大学地址:山东大学中心校区明德楼联系方式:山东大学0531-883697972.采购代理机构信息名 称:海逸恒安项目管理有限公司地址:0531-82661637联系方式:刘卿艳3.项目联系方式项目联系人:刘卿艳电话:0531-82661637山东大学心肌细胞功能电生理分析系统采购参数.pdf
  • 石墨烯 “新材料之 王”竟成为神经电生理研究新选择,为什么它拥有无限潜力?
    “新材料之 王”是什么? 石墨是的一种同素异形体,质软,黑灰色,有油腻感。高定向热解石墨(highly oriented pyrolytic graphite)是指热解石墨,经高温处理使性能接近单晶石墨的一种新型石墨,简称HOPG。在2004年来自英国曼彻斯特大学的科学家们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,把石墨片一分为二,不断重复操作,于是薄片越来越薄,最 后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。(▲三层碳原子构成的石墨结构分子示意图)在分离出单层石墨烯之前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,石墨烯的发现立即震撼了凝聚体物理学界。但是实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是一层甚至几层石墨烯。(▲由石墨烯构成的铅笔芯,图片取自央广网科普|习主席访英为何青睐&ldquo 奇迹材料&rdquo 石墨烯?2015-10-23) 石墨烯结构特点碳原子有4个价电子,石墨烯内部碳原子的3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成&pi 键,新形成的&pi 键呈半填满状态。形成的石墨烯为复式六角形晶格,每个元胞中有两个碳原子,每个原子与最近邻的 3个原子间形成3个&sigma 键,剩余的一个p电子垂直于石墨烯平面,与周围原子形成&pi 键。(▲石墨烯结构示意图,石墨烯的蜂窝状晶格包括两层互相透入的三角形晶格,每个子晶格A的格点都位于其他子晶格B确定的三角形中央,共同形成石墨烯的蜂窝状晶格)(▲石墨烯结构的波失空间,石墨烯的晶体结构与倒格子,所谓倒格子是与晶格空间相对应傅里叶变换出来的波矢空间,或称动量空间)(▲石墨烯能带结构图)我们可以看出在 K 和 K&rsquo 点附近,费米面附近的电子能量E与波矢 k成线性的关系,E= F|hk|v , 其中k为准粒子动量,Vf =106 m/s,为费米速度。色散关系是近似线性的,这等效于动量与能量的关系为线性,这也就表明电子的速度为常量,并不受动量与动能的影响。在这种情况下,薛定谔方程来描述粒子的运动已经无效了,我们需要运用引入了相对论效应的狄拉克方程来描述。关于石墨烯非常高的电子迁移率的原因也是由于狄拉克点的存在,由于量子隧穿效应的影响,电子有概率穿过高于自身能量的势场。石墨烯的优势有什么?由于存在这样的特殊结构,石墨烯具备了超高的载流子迁移性,也就具备了良好的导电性和极高的信噪比以及时间分辨率。所有性能都基于结构,所以,石墨烯同样还具备轻盈,高导热性,做同样的功所消耗电力少,化学反应性强,强度高,比表面积大,高弹性高硬度等特点,发热少等优点。这么多优点又如此应用广泛,难怪石墨烯被称为&ldquo 黑金&rdquo ,是&ldquo 新材料之 王&rdquo !2004年被发现,发现者2010年就获得了诺贝尔物理学奖,连我们的习大大都去参观了曼彻斯特大学的石墨烯研究所呢!在笔者看来最重要的一个特点是,单层的石墨烯近乎透明,对于应用场景的限制大大减少了。石墨烯如何制备?石墨烯之父采用的是机械剥离法,这个方法较为简便,将天然石墨块放在干净的二氧化硅SiO2上,上方用透明胶带反复剥离,从而得到石墨薄片。根据菲涅尔定律,在外部光源照射下,石墨烯与SiO2基底之间会因反射光强不同呈现光学反差,并且这种光学反差随着石墨样品厚度增加有着明显改变,借此办法来确定石墨烯是否为单层或多层。这个方法虽然简便,但不适合大规模生产。除此之外还有氧化还原法, 取向附生法, 碳化硅外延法, 赫默法以及化学气相沉积法(CVD)。CVD法简单说来就是用含碳有机气体为原料进行气相沉积制得石墨烯薄膜的方法,这也是目前科研机构制备石墨烯常用的方法。(▲化学气相沉积法CVD示意图)例如以铜Cu或镍Ni为基底,高温加热,并辅以甲烷作为碳源补充,使甲烷中的碳原子脱去氢,在基底上形成石墨烯。不同材质的基底对于碳原子溶解性不同,所以会产生&ldquo 石墨烯岛&rdquo 或&ldquo 石墨烯膜&rdquo ,通过控制气压高低可以获得单层石墨烯或多层石墨烯。 石墨烯的应用极高的信噪比和时间分辨率让石墨烯在生物电信号采集时具有极大的优势。目前的生物电传感器主要集中在膜片钳和微电极阵列,前者具备较高的空间分辨率,信噪比较好,但对生物体有损伤;后者没有损伤且可长时间记录生物体膜外信号,但是信噪比和空间分辨率相对较低。场效应晶体管是一种很好的代替微电极阵列的记录工具,利用场效应晶体管可以很好的记录小鼠大脑皮层或者海马区的神经电生理信号,也可以将其刺穿细胞膜来记录膜内电势差。这种技术信噪比较高,集成度也不错。石墨烯场效应晶体管和传统的场效应晶体管类似,但需要在石墨烯的表面做相应的修饰,使其能特异性识别某种分子或物质这样就既可以提高生物相容性和灵敏度,又能把石墨烯载流子迁移率高和载流子浓度高的特点发挥得淋漓尽致。上图为60通道石墨烯微电极阵列示意图,PI:1-&mu m-thick light-sensitive polyimide,即1微米厚光敏聚酰亚胺1,以此装置记录大鼠胚胎分离的神经细胞电生理活动。上图为石墨烯晶体管进行细胞电信号记录示意图,在柔性聚酰亚胺基底和透明基底(蓝宝石,玻璃,SiO2 /Si) 上制备了石墨烯液栅晶体管器件如上图所示,并用其记录小鼠初级海马神经元的神经信号2,因石墨烯材料透明的特点,同时结合倒置光学显微镜,观察细胞的光学特征。上图是石墨烯晶体管上培养的神经元细胞图,培养21天后的神经元进行免疫荧光染色2,DAPI(红色)和anti-Synapsin(绿色)染色,分别胞体和突触囊泡)机械剥离的石墨烯对心肌细胞电生理信号的记录3,A:在不同water gate potentias下记录的数据。蓝色、绿色和红色分别代表在 +0.05、+0.10 和 +0.15 V 下所记录。相应的灵敏度分别为 2020、398 和 2290 &mu S/V。B:所选栅极电位的代表性扩展峰值。蓝色类似于在石墨烯 FET 的 p 型器件极性处记录的结果,红色峰代表在n型器件极性处记录的结果,绿色峰代表在Gra-FET的狄拉克点附近记录的结果。上图为16通道石墨烯晶体管阵列记录HL-1细胞电生理信号4, 比例尺为100 &mu m。一个石墨烯场效应晶体管阵列中8个晶体管在数十秒(h)和数百秒(i)内同时记录电流的情况。图:细胞相容性测试,37摄氏度下,不同浓度纯石墨烯(上)和氧化石墨烯(下)处理Vero细胞后的存活率情况5。 石墨烯最 新应用研究近日,来自曼彻斯特大学的纳米医学实验室的研究者们利用利用石墨烯近乎透明的特点,监测脑缺血小鼠大脑皮层的电信号,并同时监测皮层血流灌注量变化情况,因为石墨烯近乎透明的性质,在激光成像下不会产生激光伪影(如下图所示)。(▲利用石墨烯透明的特点,监测脑缺血小鼠大脑皮层的电信号,并同时监测皮层血流灌注量变化情况,由RWD RFLSI Ⅲ激光散斑血流成像系统采集)总结石墨烯具备了许多神经电极活性材料的特性,如良好的相容性、化学稳定性、柔韧性、光学透明性和高导电性等,为更精 准的神经电生理研究提供了新的选择。识别下方二维码快来免费申请试用吧* 敬请期待下期内容,脑卒模型下的神经电生理相关特点。【参考文献】1:Du X, Wu L, Cheng J, Huang S, Cai Q, Jin Q, Zhao J. Graphene microelectrode arrays for neural activity detection. J Biol Phys. 2015 Sep 41(4):339-47.2. Veliev F, Han Z, Kalita D, Brianç on-Marjollet A, Bouchiat V, Delacour C. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors. Front Neurosci. 2017 11:466.3. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010 Mar 10 10(3):1098-102.4. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhä usser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater. 2011 Nov 16 23(43):5045-9, 4968. 5. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011 Jun 3(6):2461-4.
  • 2016植物生理生态及表型技术研讨会(上海)开幕 座无虚席
    2016年11月24日,继北京会场成功举办后,2016植物生理生态及表型技术研讨会移师上海举行。会议期间的上海正遭受年度最强寒潮的蹂躏,但严寒阻挡不了求知的欲望!上海会场参会嘉宾对新知识、新技术的热情不输北京,研讨会首日,100多人的会场即座无虚席。 与北京一样,上海会场的内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养等。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,专家讲嘉宾听,嘉宾问专家答,频繁的互动极大的活跃了会场交流的气氛。 为了让参会嘉宾对会上讲到的新技术及应用有更深的认识,泽泉科技在会场设置了展台,展示了WALZ公司、LemnaTec公司、CID公司等公司的产品,演示了部分产品的的操作和应用技巧,吸引了大量嘉宾的关注。 11月25日还将有7场报告,亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察也将在25日进行,精彩不容错过(请见后文研讨会日程)。泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎随时与我们交流。 上海会场会议日程:上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用(主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型)合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00种子选育技术介绍(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40CONVIRON植物培养解决方案介绍(主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-9:45Phyto-PAM-II 藻类分类叶绿素荧光测量技术原理与应用(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家)9:45-10:15从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司)10:30-12:00气体交换光合仪基本原理、实验技巧与日常维护(主讲人:郭峰,上海泽泉科技股份有限公司)午餐(青松城大酒店四楼 紫罗兰厅)13:00-14:00超高通量园艺物流与 LemnaTec 最新植物表型测量技术介绍(主讲人:李涛,上海泽泉科技股份有限公司)14:15-15:30CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技股份有限公司)15:30-17:30植物生理仪器使用现场交流,样机演示14:00-16:00参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 相关信息:?2016植物生理生态及表型技术研讨会开幕 首日百人参会?2016植物生理生态及表型技术研讨会第三轮通知
  • 2016植物生理生态及表型技术研讨会开幕 首日百人参会
    2016年11月21日,由上海泽泉科技股份有限公司主办的2016植物生理生态及表型技术研讨会(北京会场)正式开幕。会期恰遇年度最强寒潮来袭,北京天寒地冻,但挡不住与会嘉宾求知的欲望与热情,开幕首日即已吸引百人参会。 本次研讨会包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等内容。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,学术交流气氛热烈。 报告间隙,泽泉科技样机展台很受关注,前来咨询交流的嘉宾络绎不绝。通过跟技术工程师的深入交流,结合样机的实际操作,与会嘉宾进一步的理解和消化了讲座中提到的新技术和新应用。 11月22日还将有7场报告,精彩不容错过(请见后文研讨会日程)。 泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎您报名参会,免费听讲座! 更多会议信息请点击:2016植物生理生态及表型技术研讨会第三轮通知。 会议时间与地点: 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 会议日程:北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用(主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00种子选育技术介绍(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40CONVIRON植物培养解决方案介绍(主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究)午餐(紫玉饭店一层自助餐厅)13:30-14:00超高通量园艺物流与植物表型系统(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50气体交换光合仪基本原理、实验技巧及日常维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30光合仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用(主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型)合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00种子选育技术介绍(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40CONVIRON植物培养解决方案介绍(主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究)午餐(青松城大酒店四楼 牡丹厅)13:30-14:00超高通量园艺物流与植物表型系统(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50气体交换光合仪基本原理、实验技巧及日常维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30光合仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 参会二维码
  • 193万!山东省立第三医院转化医学研究中心仪器设备采购项目公开招标公告
    山东省立第三医院转化医学研究中心仪器设备采购项目(一)公开招标公告项目概况: 山东省立第三医院转化医学研究中心仪器设备采购项目(一)招标项目的潜在投标人应在济南市经十路5777号金域中心A座20层2004室。获取招标文件,并于2021-11-23 09:00:00(北京时间)前递交投标文件。一、项目基本情况: 项目编号:SDGP370000000202102008614 项目名称:山东省立第三医院转化医学研究中心仪器设备采购项目(一) 预算金额:85.0万元 最高限价:85.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)01超速离心机(可采进口)、-30℃低温保存箱、医用冷藏箱 1 详见文件 85.000000 合同履行期限:签订合同后国产设备30天、进口设备90天内交货,具体实际到货情况以采购人通知为准。 本项目不接受联合体投标。二、申请人的资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求:促进中小企业、支持监狱企业发展、促进残疾人就业政府采购政策原则:依据财政部、工信部等部委发布的《政府采购促进中小企业发展管理办法(财库〔2020〕46号文》;工信部等部委发布的《关于印发中小企业划型标准规定的通知》;财政部、司法部发布的《关于政府采购支持监狱企业发展有关问题的通知》;财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》的规定,在本次采购活动中,将给予中小企业、监狱企业、残疾人福利性单位给予政府采购政策优惠。 3、本项目的特定资格要求:1、在中国境内注册,具有独立承担民事责任能力的单位或其他组织;2、具有良好的商业信誉和健全的财务状况;3、参加本项目政府采购活动前三年(递交投标文件截止时间前)内在经营活动中没有重大违法记录;4、具有依法缴纳税收和社会保障资金的良好记录;5、具有履行合同所必须的设备和专业技术能力;6、被列入“失信被执行人、企业经营异常名录、重大税收违法案件当事人名单、政府采购严重违法失信名单”不得参与投标,履约后被解除的除外;查询方式:通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网、信用山东【信用中国(山东)】查询;7、本项目不接受联合体投标。三、获取招标文件: 1.时间:2021年11月2日9时0分至2021年11月8日17时0分,每天上午09:00至12:00,下午13:00至17:00(北京时间,法定节假日除外) 2.地点:济南市经十路5777号金域中心A座20层2004室。 3.方式:供应商须先在中国山东政府采购网注册并针对本项目备案,网上备案后将营业执照扫描件、授权委托书、标书费汇款截图发送到sdwjzb666@163.com邮箱(汇款时请备注:“转化医学研究中心仪器设备(一)标书费”字样;邮件正文注明:项目名称、项目编号、所投包号、供应商名称、项目联系人及联系人手机号),发送后联系代理机构确认(何工0531-55699109),经确认后方备案成功,备案成功后标书费不再退回。招标文件电子版与纸质版具有同等效力。标书费缴纳形式:公对公账户电汇(账号信息如下:开户名称:山东望京工程项目管理有限公司,开户行:恒丰银行济南舜华支行,银行账号:853114010122300139)。 4.售价:300元/包四、提交投标文件截止时间、开标时间和地点: 1.截止时间:2021年11月23日9时0分(北京时间) 2.开标时间:2021年11月23日9时0分(北京时间) 2.开标地点:济南市经十路5777号金域中心A座20层2005室五、公告期限: 自本公告发布之日起5个工作日。六、其他补充事宜: 其他补充事宜:无七、对本次招标提出询问,请按以下方式联系: 1、采购人信息 名 称:山东省立第三医院 地 址:济南市天桥区无影山中路11号 联系方式:81656816 2、采购代理机构 名 称:山东望京工程项目管理有限公司 地 址:山东省济南市高新区县(区)经十东路5777号奥体天泰广场地块四SOHO办公楼20层2003室 联系方式:0531-55699109 3、项目联系方式 项目联系人:山东望京工程项目管理有限公司 联系人电话:0531-55699109山东省立第三医院转化医学研究中心仪器设备采购项目(二)公开招标公告项目概况: 山东省立第三医院转化医学研究中心仪器设备采购项目(二)招标项目的潜在投标人应在济南市经十路5777号金域中心A座20层2004室。获取招标文件,并于2021-11-23 09:00:00(北京时间)前递交投标文件。一、项目基本情况: 项目编号:SDGP370000000202102010092 项目名称:山东省立第三医院转化医学研究中心仪器设备采购项目(二) 预算金额:108.0万元 最高限价:108.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)01全自动核酸提取仪、高速冷冻离心机、生物显微镜、三气培养箱、低氧工作站等 1 详见文件 108.000000 合同履行期限:签订合同30天内。 本项目不接受联合体投标。二、申请人的资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求:促进中小企业、支持监狱企业发展、促进残疾人就业政府采购政策原则:依据财政部、工信部等部委发布的《政府采购促进中小企业发展管理办法(财库〔2020〕46号文》;工信部等部委发布的《关于印发中小企业划型标准规定的通知》;财政部、司法部发布的《关于政府采购支持监狱企业发展有关问题的通知》;财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》的规定,在本次采购活动中,将给予中小企业、监狱企业、残疾人福利性单位给予政府采购政策优惠。 3、本项目的特定资格要求:1、在中国境内注册,具有独立承担民事责任能力的单位或其他组织;2、具有良好的商业信誉和健全的财务状况;3、参加本项目政府采购活动前三年(递交投标文件截止时间前)内在经营活动中没有重大违法记录;4、具有依法缴纳税收和社会保障资金的良好记录;5、具有履行合同所必须的设备和专业技术能力;6、被列入“失信被执行人、企业经营异常名录、重大税收违法案件当事人名单、政府采购严重违法失信名单”不得参与投标,履约后被解除的除外;查询方式:通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网、信用山东【信用中国(山东)】查询;7、本项目不接受联合体投标。三、获取招标文件: 1.时间:2021年11月2日9时0分至2021年11月8日17时0分,每天上午09:00至12:00,下午13:00至17:00(北京时间,法定节假日除外) 2.地点:济南市经十路5777号金域中心A座20层2004室。 3.方式:供应商须先在中国山东政府采购网注册并针对本项目备案,网上备案后将营业执照扫描件、授权委托书、标书费汇款截图发送到sdwjzb666@163.com邮箱(汇款时请备注:“转化医学研究中心仪器设备(二)标书费”字样;邮件正文注明:项目名称、项目编号、所投包号、供应商名称、项目联系人及联系人手机号),发送后联系代理机构确认(何工0531-55699109),经确认后方备案成功,备案成功后标书费不再退回。招标文件电子版与纸质版具有同等效力。标书费缴纳形式:公对公账户电汇(账号信息如下:开户名称:山东望京工程项目管理有限公司,开户行:恒丰银行济南舜华支行,银行账号:853114010122300139)。 4.售价:300元/包。四、提交投标文件截止时间、开标时间和地点: 1.截止时间:2021年11月23日9时0分(北京时间) 2.开标时间:2021年11月23日9时0分(北京时间) 2.开标地点:济南市经十路5777号金域中心A座20层2005室五、公告期限: 自本公告发布之日起5个工作日。六、其他补充事宜: 其他补充事宜:无七、对本次招标提出询问,请按以下方式联系: 1、采购人信息 名 称:山东省立第三医院 地 址:济南市天桥区无影山中路11号 联系方式:81656816 2、采购代理机构 名 称:山东望京工程项目管理有限公司 地 址:山东省济南市高新区县(区)经十东路5777号奥体天泰广场地块四SOHO办公楼20层2003室 联系方式:0531-55699109 3、项目联系方式 项目联系人:山东望京工程项目管理有限公司 联系人电话:0531-55699109
  • 2016植物生理生态及表型技术研讨会主讲人公布(第三轮通知 )
    尊敬的老师: 您好! 为更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,为植物科研领域研究人员更深入地了解最新的产品及测量技术,上海泽泉科技股份有限公司将于2016年11月21日至11月25日分别在北京和上海两地举办2016植物生理生态及表型技术研讨会。会议内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等。 现向全国高校、研究所科研人员发出诚挚邀请,期待您的光临!上海泽泉科技股份有限公司携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,期待与您的交流与合作。 此致敬礼!上海泽泉科技股份有限公司 2016年11月04日 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 ? 强强联合的魅力——WALZ不同生理测量技术的联用 ? CID生理生态测量技术的介绍和应用 ? 土壤测量技术解决方案 ? 调制叶绿素荧光和P700测量技术原理、PAM实验技巧及样机操作演示 ? 高通量植物表型技术介绍 ? 先进种子选育技术介绍 ? 气体交换光合仪原理、实验技巧、日常维护及样机操作演示 ? 根系测量技术解决方案 ? 藻类光合测量的核武器——Phyto-PAM-II介绍 ? AgriPheno™ 高通量植物基因型-表型-育种平台介绍及参观考察 北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用(主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00种子选育技术介绍(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40CONVIRON植物培养解决方案介绍(主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究)午餐(紫玉饭店一层自助餐厅)13:30-14:00超高通量园艺物流与植物表型系统(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50气体交换光合仪基本原理、实验技巧及日常维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30光合仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用(主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型)合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00种子选育技术介绍(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40CONVIRON植物培养解决方案介绍(主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究)午餐(青松城大酒店四楼 牡丹厅)13:30-14:00超高通量园艺物流与植物表型系统(主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50气体交换光合仪基本原理、实验技巧及日常维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10讨论、休息16:10-17:30光合仪操作演示、数据分析示例及生理生态设备现场维护(主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 1、参会方式: 请参会人员于2016年11月20日前将参会回执(附件1)通过电子邮件发送至邮箱:qinglu.wei@zealquest.com,或传真发至021-32555117。我们将根据参会回执协助推荐住宿和安排参会事宜;扫描以下二维码,提交信息直接参会。参会二维码 2、参观考察回执:本次会议将安排于2016年11月25日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,本次考察仅限于上海会场参会人员,如您需参加,请前往上海会场参会,并在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”(附件2),与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部或北京分公司,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 美国CID德国LemnaTec德国WALZ加拿大Conviron 北京会场会务联系人 李俊艳:tracy.li@zealquest.com 电话:010-88824075转618 传真:010-88824075 仪器邮寄地址:北京市海淀区北三环西路43号青云当代大厦1907室(100086) 上海会场会务联系人 魏庆璐:qinglu.wei@zealquest.com 电话:021-32555118转8048 传真:021-32555117 仪器邮寄地址:上海市普陀区金沙江路1038号华东师大科技园2号楼8层(200062) 附件1:2016植物生理生态及表型技术研讨会参会回执.doc 附件2:2016植物生理生态及表型技术研讨会维修服务单.doc
  • 2017泽泉植物表型育种及生理生态研讨会第一轮通知
    上海泽泉科技股份有限公司多年来秉承推进中国生态环境改善、农业兴国的理念,服务涉及植物表型育种,植物生理生态,水文水利,农业工程等领域的科研和技术支持。为更好地服务全国科研用户,促进植物表型育种、生理生态领域的研究,整合有效资源,同时促进相关研究设施和平台的建设,上海泽泉科技股份有限公司将于2017年12月7日至12月9日在上海举办2017泽泉植物表型育种及生理生态研讨会。 研讨会内容包括植物表型与分子育种、植物生理生态环境研究、农业物联网等。邀请的演讲嘉宾有国家重点高校、科研院所,植物遗传育种、基因表型等领域专家;世界先进植物生理生态、植物培养等仪器制造商科学家团队;泽泉公司资深科研技术团队。结合讲座内容,会议期间将安排实地参观考察,亚洲第一个开放式高通量植物基因型-表型-育种服务平台——AgriPheno™ 。另外,为了感谢广大客户长久以来的支持和合作,本次研讨会特别设置,生理生态设备的免费检测与保养服务。 上海泽泉科技股份有限公司现向各单位植物研究、农业建设领域科研人员发出诚挚邀请,欢迎您出席本次会议与参会者交流领域内的科研进展,期待您的光临。 一、主办单位:上海泽泉科技股份有限公司 二、会议时间与地点时间:2017年12月7日至12月9日,7日早上报道,7日全天研讨会,8日上午研讨会,下午参观,9日离会地点:上海青松城大酒店(黄山厅),上海市徐汇区肇嘉浜路777号 三、会议主题主题1. 植物表型与分子育种主题2. 植物生理生态环境研究主题3. 农业物联网 四、参会须知1、参会回执:请参会人员于10月31日前回传参会回执,我们将根据参会回执协助推荐住宿和安排参会事宜。2、参观考察回执:本次会议将安排于2017年12月8日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,如您需参加,请在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、会议费用:参会免费。交通、食宿自理。会议期间提供工作午餐。 4、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”,与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 五、会务组联系人徐静萍 六、会议日程12月7日8:00-8:30现场注册、报到8:30-12:00研讨会12:00-13:30午餐13:30-17:30研讨会12月8日9:00-12:00研讨会12:00-13:30午餐13:30-17:30高通量植物基因型-表型-育种服务平台AgriPheno™ 参观或者会议室生理生态设备的免费检测与保养12月9日离会
  • 赛默飞登“2013 年中国大学生理想雇主100强”榜单
    中国上海,2013年11月29日 &mdash &mdash 近日,全球科学服务的领导者赛默飞世尔科技(以下简称:赛默飞)荣登由中国日报社21世纪英文报联合Universum优兴咨询联合评选的&ldquo 2013中国大学生理想雇主100强&rdquo 榜单。凭借在工作环境、技术优势、人才培养、企业文化等多方面的成就,赛默飞成功入围医药领域企业榜单,成为中国大学生心目中的理想雇主。  &ldquo 一直以来,赛默飞始终践行毕业生培养计划,为其踏入社会、适应工作保驾护航。而这份殊荣正是对赛默飞在完备人才培养、塑造良好工作环境等方面的高度肯定。&rdquo 赛默飞中国人力资源副总裁李晓彤女士表示。&ldquo 中国是赛默飞全球第二大市场,我们会继续优化人力资源管理,寻找并吸纳愿意在生命科学、医疗医药、环境保护、食品安全等领域发展的大学生,从而支持并促进赛默飞多年来在中国市场的快速增长。&rdquo 作为科学服务领域的领军企业,赛默飞不仅专注于技术研发和进步,更重视对优秀高校人才的培养。公司与许多高等学府开展合作项目&mdash &mdash 与清华大学、南开大学药学院等联合建立分析实验室 与复旦大学携手开展大学生暑期社会实践。在一年一度的校园招聘季,赛默飞足迹遍布上海、北京、成都、南京等地的高校,为应届生选择工作岗位、面对职业生涯提供专业指导和建议。  &ldquo WetFeet职业测试&rdquo (原&ldquo 优兴咨询大学生职业倾向调查&rdquo )自2006年起已在中国连续进行了8年。该测试一方面为人才提供了一个良好的平台,表达其对未来雇主的看法 另一方面,也使雇主们能够实时检测其品牌及其在人才竞争中的表现。此次评选自去年2012年12月启动,历时5个月,共调查了中国103所高校的共64,522名学生,最终得出了商科、工科、理科、人文社科、法律及医药6大专业的大学生理想雇主TOP100排行榜单。Universum(优兴咨询)于1988年在瑞典成立,在90年代初就开始在欧洲进行全球最早的雇主品牌调研,是目前全球进行雇主品牌调查的最权威、规模最大的机构。2013 年中国大学生理想雇主100强奖杯  关于赛默飞世尔科技  赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com  关于赛默飞世尔科技中国  赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2500名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了7个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 北京易科泰受邀独家赞助参加第七届动物生理生态学学术会议并合作创办第一届动物生理生态研究技术和方法技术
    2017年9月15-18日,由中国生态学会动物生态学专业委员会主办、北京师范大学生命科学学院承办的“第七届动物生理生态学学术会议暨孙儒泳院士学术思想研讨会”在北京师范大学成功召开。来自全国的动物生态相关研究的科研工作者齐聚一堂,围绕动物生理生态研究的相关课题进行了深入的探讨。北京易科泰生态技术有限公司作为国内知名的动物生理生态研究高新技术专业公司,应邀独家赞助此次会议,并在会议上展示了一系列国际前沿上的动物呼吸代谢测量技术仪器,受到了研究人员的广泛关注。北京易科泰生态技术有限公司作为美国Sable Systems International公司在中国指定的唯一技术推广与售后服务的高新技术专业公司,领航国内最先进的动物能量代谢测量技术,占据国内动物能量代谢测量市场80%以上的份额。培训班现场:中科院动物所王德华教授做能量代谢技术理论及应用报告会议期间,易科泰公司与动物生理生态学术会议联合举办了第一届动物生理生态学研究技术和方法讲座。邀请中国科学院动物研究所的王德华研究员做了题为《能量代谢测量技术理论及应用》的报告,并特别邀请Sable公司总裁兼首席科学家John R.B. Lighton教授做了题为《Constraints and Solutions in Metabolic Measurement》的精彩报告;另外杜卫国研究员做了《两栖爬行类生理生态研究技术与方法》、北京师范大学牛翠娟教授做了《水生动物研究方法》、迟庆生博士做了《代谢仪器测定使用中的一些问题》等报告。本次培训班受到了大家的热烈响应,到场参加的人达到100人左右。易科泰生态技术公司从事动物能量代谢仪器技术服务已有十余年,为国内科研院校提供了上百套动物能量代谢仪器设备和相应技术服务,包括大小鼠等实验动物能量代谢与行为观测系统、牛羊等家畜家禽能量代谢测量系统、两爬类能量代谢测量系统、果蝇及昆虫能量代谢测量系统、斑马鱼及水生动物能量代谢与行为观测系统、人类能量代谢测量系统等,应用领域涵盖动物生理生态学研究、生物医学、家畜家禽营养与能量代谢研究、动物遗传与生物技术(能量代谢表型分析)、生态毒理学等,仪器设备采用国际先进的间接测热法( indirectcalorimetry),并结合行为观测、环境调控(如温度调控等)、体温心率监测、红外热成像等技术;除实验室测量仪器外,还提供了大量FMS、FoxBox等便携式能量代谢测量仪器。公司还通过Ecolab 生态实验室平台,与中科院动物所(动物生理生态与能量代谢)、农科院畜牧所(家禽呼吸代谢)、农科院植保所(蚜虫呼吸代谢)、疾控中心、北京实验动物中心等保持密切合作关系。易科泰展台易科泰展台前科研人员与我司技术人员热烈讨论 中科院动物所杜卫国教授做两栖爬行类技术方法报告John R.B. Lighton教授做学术报告 易科泰展台及能量代谢技术团队
  • 文献解读 | 利用仿生性肺微生理系统监测肺部病理及炎症反应
    肺,作为呼吸和免疫防御的关键战场,在体外建立模拟感染和炎症反应的仿生肺模型一直是生物医学研究人员面临的一项重要但具有挑战性的任务。 长久以来,二维细胞培养模型为我们提供了肺上皮研究的初步平台,然而,这些模型却难以捕捉到肺部复杂多变的三维结构和免疫互动的丰富性。动物模型虽然有三维结构,但与人类肺组织的结构差异增加了制备过程的难度。直接培养人体组织则有免疫细胞丢失、体外维持时间不足等问题。 东南大学团队2023年1月在《Biosensors and Bioelectronics》(影响因子:12.6)期刊上发表了题为“A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions”的文章(第一作者:东南大学青年至善学者、艾玮得生物CTO陈早早副教授,通讯作者:巢杰教授,浦跃朴教授和顾忠泽教授),介绍了体外肺微生理系统模型的构建方法与应用。该模型不仅在芯片上建立了肺泡-支气管复杂器官模型,而且在模型中引入了多种免疫细胞,增强了模型的仿真性,可以在模型上模拟肺脏病理和炎症级联反应,再现气溶胶微滴在肺中的传播,研究阻断病原传播的方法。该模型对于评价肺泡和支气管的通透性、粘液分泌、炎症反应等功能、开展高风险传染性肺疾病研究有重要作用。 体外肺微生理系统的设计与构建研究人员选择了多种肺上皮细胞系,如BEAS-2B(支气管上皮细胞)、NCI-H441(2型肺泡上皮细胞)、A549和Calu-3,人单核细胞系(THP-1)和人内皮细胞系(HUVEC),并将它们接种到膜式芯片上。芯片由支气管和肺泡腔组成,每个腔室由多孔膜分割为上下两个独立空间,上层接种肺上皮或支气管上皮细胞,下层接种肺血管内皮细胞,这些细胞在芯片内形成了致密的上皮层,模拟了肺部的自然结构。芯片使用多通道流控系统进行液体灌注。B)肺mps的典型构建时间C)上皮和内皮形态分析(I)肺- mps transwell样膜上的肺上皮(BEAS2b)和内皮(HUVEC)示意图。(II)肺- mps的冷冻切片和H&E染色显示在低(上)和高(下)放大下膜两侧存在上皮和内皮(第5天)(III)扫描电镜(SEM)图像显示内皮和上皮在膜上生长(第5天)(IV)芯片腔内内皮和上皮的活/死染色,显示肺- mps细胞的高活力(第7天) 肺微生理系统芯片的应用 1 在肺微生理系统芯片上模拟炎症级联反应巨噬细胞受免疫原性物质如PAMP和DAMP激活,进而分泌炎症因子、活化内皮细胞,造成更多单核细胞粘附并聚集于内皮层,引发炎症级联反应,而炎症级联反应通常用来描述炎症反应的放大。 为了模拟肺炎症反应,研究人员构建了一套器官芯片流路灌注系统,将肺微生理系统先后用组织定居巨噬细胞和循环单核细胞进行灌注,并用脂多糖(LPS)处理模型上腔,激活巨噬细胞,诱发炎症反应。通过连续观测芯片中流动的单核细胞,可以观察到LPS刺激后内皮细胞层有大量单核细胞粘附。炎症因子(如TNF-α、IL-6、MCP1)、跨上皮电阻(TEER)值、肺泡腔粘液分泌等指标的变化也证明了模型的炎症状态。肺器官芯片模拟早期炎症反应A)巨噬细胞在上皮上的播种B)灌注过程中LPS (10 μg/ml)对内皮细胞附着的单核细胞的影响C)在经LPS预处理的肺mps中,红色箭头表示内皮上原有的单核细胞,绿色箭头表示新的单核细胞附着D)扫描电镜图像显示单核细胞附着在内皮与不处理LPSE)肺- mps w/或w/o LPS组内皮上单核细胞粘附的定量比较 2肺微生理系统芯片上用于液滴与空气传播疾病的研究飞沫通过说话、呼吸和咳嗽传播是空气传播疾病的典型传播方式。为了构建能够模拟液滴扩散的体外模型,研究人员设计了一个全面的集成系统,整合了传播链上游的肺器官芯片、雾化器、防护口罩、下游的肺器官芯片以及泵和辅助设备。上游肺芯片肺泡室内的培养液通过雾化器产生液滴或气溶胶,经泵导入下游肺芯片。 在佩戴外科口罩与不戴口罩的情况下,追踪上游形成的色素微滴和荧光微珠扩散至下游介质的情况。结果显示,佩戴口罩能将两者的传播数量减少至5%以下,证明了防护口罩的预防效果。用这一系统也可以观察到伪病毒从病毒感染的上游肺器官向下游的传播,而口罩几乎完全阻止了伪病毒的感染。A)模拟液滴在人体肺部之间扩散的肺器官芯片集成系统B)肺器官芯片流路灌注系统,包括:两个控制系统口罩阻断伪病毒传播。 在空气传播的感染性疾病尤其是呼吸系统疾病领域,构建一个能够全面反映肺部感染和炎症反应的仿生模型,不仅需要技术的革新,更需要对生命本质的深刻理解和对病理过程的精准把握。体外肺器官芯片模型的研究与构建,使得仿生肺模型更加完整,更能模拟真实世界的人体组织内的复杂情况,致力于填补现有科学技术的空缺。 文献索引:Chen Z, Huang J, Zhang J, Xu Z, Li Q, Ouyang J, et al. A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions. Biosens Bioelectron. 2023 Jan 1 219:114772. doi: 10.1016/j.bios.2022.114772. PMID: 36272347 江苏艾玮得生物科技有限公司(AVATARGET)是一家专注于提供人体器官芯片产品与解决方案的创新型科技公司,致力于器官芯片、智能装备及生物试剂等产品和服务的研发生产,构建器官芯片全产业链生态体系,创新突破传统动物模型与2D细胞模型的限制,解决种属差异难题、实现体外模型3D动态培养,构建高仿真的人体微环境、提高实验数据的准确性,为肿瘤精准诊疗、疾病建模、药物筛选、药物评价、化妆品评价、再生医学研究、航天医学研究等领域用户提供精准高效的产品与解决方案。 本期文献提及的肺器官芯片与肺器官芯片流路灌注系统已在艾玮得生物实现量产转化。单腔膜式芯片可用于构建体外肺模型、肠道模型、肝脏模型、皮肤模型、肾脏模型与血脑屏障模型。高通量膜式屏障芯片可用于构建体外肺模型、肠道模型、肝脏模型、皮肤模型、肾脏模型、血脑屏障模型与免疫共培养模型。器官芯片流路控制系统可实现细胞空间结构排布,模拟细胞生长的流体环境和气体-液体界面环境,实现自动化培养,节省人力,减少误差和人为操作失误,并大大降低实验的复杂性。 欢迎咨询详情:电话:0512-65367666邮箱:bd@avatarget.com.cn
  • 细数近12年诺贝尔生理学或医学奖
    p  诺贝尔奖是根据诺贝尔遗嘱所设基金提供的奖项(1969年起由5个奖项增加到6个),每年由4个机构 (瑞典3个,挪威1个)评选。1901年12月10日即诺贝尔逝世5周年时首次颁发。诺贝尔在其遗瞩中规定,该奖应授予在物理学、化学、生理学或医学、文学与和平领域内“在前一年中对人类作出最大贡献的人”。/pp  诺贝尔生理医学奖的评选由瑞典的医科大学卡罗琳学院(也叫做卡罗琳斯卡医学院)负责。根据诺贝尔基金会的相关章程,评选由卡罗琳医学院诺贝尔大会(Nobel Assembly)负责,大会由50名选举出来的卡罗琳医学院名教授组成。/pp style="text-indent: 2em "span style="text-indent: 2em "小编为大家盘点了生理学或医学自2007年来诺贝尔奖的获奖情况,供读者阅览、思考。/span/pp style="text-indent: 2em text-align: center "strong style="color: rgb(0, 112, 192) text-indent: 2em "2018 免疫调节治疗癌症/strongbr//pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/1a18bb9f-f362-4adb-a3a5-9edf28be128d.jpg" title="2018nuo.png" alt="2018nuo.png" width="283" height="212" style="text-align: center width: 283px height: 212px "//pp style="text-indent: 2em "美国的詹姆斯艾利森(James Allison)与日本的本庶佑(Tasuku Honjo) ,以表彰他们“发现负性免疫调节治疗癌症的疗法方面的贡献”。br//pp  艾利森被认为是分离出T细胞抗原(T-cell antigen)复合物蛋白的第一人,他同时发现,如果可以暂时抑制T细胞表面表达的CTLA-4这一免疫系统“分子刹车”的活性,就能提高免疫系统对肿瘤细胞的攻击性,从而缩小肿瘤的体积。他对T细胞发育和激活,以及及免疫系统“刹车”的卓越研究,为癌症治疗开创了全新的免疫治疗思路——释放免疫系统自身的能力来攻击肿瘤。/pp  本庶教授建立了免疫球蛋白类型转换的基本概念框架,他提出了一个解释抗体基因在模式转换中变化的模型。1992年,本庶首先鉴定PD-1为活化T淋巴细胞上的诱导型基因,这一发现为PD-1阻断建立癌症免疫治疗原理做出了重大贡献,曾在2013年被《Science》评为年度十大科学突破之首。/pp style="text-align: center "strong style="text-align: center text-indent: 2em "span style="color: rgb(0, 112, 192) "2017 发现控制昼夜节律的分子机制/span/strong/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/d67d767e-d3b5-496e-8dfc-5607e5389ea1.jpg" title="2017诺贝尔奖.jpg" alt="2017诺贝尔奖.jpg" style="text-align: center width: 288px height: 293px " width="288" height="293"//pp style="text-indent: 2em "2017年诺贝尔生理学或医学奖授予杰弗理· 霍尔(Jeffrey C Hall)、迈克尔· 罗斯巴希(Michael Rosbash)、迈克尔· 杨(Michael W Young)。br//pp  三位科学家的获奖理由是:发现控制昼夜节律的分子机制。/pp style="text-indent: 2em "研究人员对生物钟进行了深入研究,阐明了其内在工作机制,相关的研究发现解释了植物、动物以及人类如何适应自身的昼夜规律,一边能够和地球的旋转同步。研究人员以果蝇作为模式动物,分离到了一种能够控制动物日常正常生物节律的特殊基因,这种基因能够编码一种特殊的蛋白,此种蛋白在夜间积累、白天降解;此外他们还发现了一种额外的蛋白组分,同时还阐明了指导细胞内部自我维持时钟(self-sustaining clockwork)的特殊机制。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2016 细胞自噬/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/6e3c6a0e-c088-486e-af4a-39c0d4ba0c64.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em "2016年的诺贝尔生理学或医学奖授予了日本科学家大隅良典(Yoshinori Ohsumi),获奖理由是“发现了细胞自噬机制。”br//pp  尽管人类认知自体吞噬过程已经超过50年了,但自20世纪90年代研究者大隅良典发现自噬作用后,其在生理学和医学研究中的关键角色和作用才被发现。自噬能够消灭外来入侵的细菌和病毒,对胚胎发育和细胞分化也很关键,自噬基因的突变会引发多种疾病发生。br//pp  这项成果目前在产业方面的应用前景主要包括:帕金森疾病、2型糖尿病、癌症及衰老等领域。相关研究正在紧密展开中,以期开发相关标靶自噬药物治疗多种疾病。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2015 寄生虫疾病/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/598b0719-3bc6-4743-b54c-3cbac2d13026.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em "2015年的诺贝尔生理学或医学奖授予了爱尔兰科学家威廉· 坎贝尔、日本科学家大村智和中国药学家屠呦呦。/pp  这其中,一半共同授予威廉· 坎贝尔和大村智,以表彰他们发现针对蛔虫感染的新疗法(伊维菌素和阿维菌素的发现) 另一半则授予屠呦呦,以表彰她发现针对疟疾的新疗法(青蒿素的发现)。br//pp  如今,伊维菌素广泛被用于牛、羊、马、猪的胃肠道线虫、肺线虫和寄生节肢动物,犬的肠道线虫,耳螨、疥螨、心丝虫和微丝蚴以及家禽胃肠线虫和体外寄生虫的预防和治疗 阿维菌素则被广泛作为农用或兽用杀菌、杀虫、杀螨剂 青篙素被开发成治疗肿瘤、黑热病、红斑狼疮等疾病的衍生新药,并正在探索其治疗艾滋病、恶性肿瘤、利氏曼、血吸虫、涤虫、弓形虫等疾病以及戒毒的新用途。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2014 大脑GPS/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/df0d7258-2e18-480e-af30-a01a2ab8f43a.jpg" title="3.png" alt="3.png"//pp style="text-indent: 2em "2014年的诺贝尔生理学或医学奖授予了美国及挪威三位科学家约翰· 欧基夫、迈-布里特· 莫泽和爱德华· 莫索尔获奖。获奖理由是“发现构成大脑定位系统的细胞”。他们发现,大鼠海马区形成的回路在大脑中构成了一个广泛的定位系统——大脑GPS。/pp  这一研究促进了脑成像系统的进展,以及阿尔茨海默症等神经疾病的治疗提供了新思路,为理解记忆、思考、计划等认知过程,开辟了新的途径。br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2013 细胞囊泡运输调控机制/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/02549e22-d115-4faf-9c5d-20ad6bf124e8.jpg" title="4.png" alt="4.png"//pp style="text-indent: 2em "2013年的诺贝尔生理学或医学奖授予了美国科学家詹姆斯-E. 罗斯曼和兰迪- W. 谢克曼、德国科学家托马斯- C. 苏德霍夫,以表彰他们发现细胞内部囊泡运输调控机制。/pp  该研究揭示了“囊泡”周围细胞货物如何在正确的时间被运送到正确的细胞靶点。如果没有囊泡这个精确而奇妙的组织,细胞会陷入一片混乱,患者的囊泡转运都出现缺陷,从而会导致上述疾病。br//pp  目前,该研究被运用于神经系统疾病、糖尿病、免疫疾病等疾病的病程生理调控。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2012 体细胞重编程技术/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/f57529db-f511-4336-8bfa-23f7a8416efb.jpg" title="5.png" alt="5.png"//pp style="text-indent: 2em "2012年的诺贝尔生理学或医学奖授予了英国科学家约翰· 格登和日本医学教授山中伸弥,以表彰他们在“体细胞重编程技术”领域做出的革命性贡献。其中,山中伸弥利用基因技术,通过对小鼠的成熟细胞重编程,诱导成功具有分化能力的诱导多能干细胞。/pp  这项技术的价值在于建立长期稳定传代的患者特异细胞系,用以进行个体化药物筛选 以及将从患者体细胞获得的干细胞作为细胞治疗的材料,在疾病模拟、药物筛选和细胞治疗中有着巨大的应用前景,被人们视为细胞疗法的新希望。br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2011 免疫系统激活的关键原理/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/7d7870f0-8d78-4bc0-831a-0834976a593a.jpg" title="6.png" alt="6.png"//pp style="text-indent: 2em "2011年的诺贝尔生理学或医学奖一半归于布鲁斯· 巴特勒和朱尔斯· 霍夫曼,理由是“先天免疫激活方面的发现” 另一半归于拉尔夫· 斯坦曼,理由是“发现树枝状细胞及其在获得性免疫中的作用”。/pp  免疫系统是人体和动物健康“防线”,用以抵御细菌和其他微生物。他们发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识,为驱使人体自身细胞和免疫进程来阻止传染病、自体免疫紊乱、过敏、癌症和器官移植排异提供了可能性,例如癌症治疗疫苗的开发。span style="text-align: center "  /span/pp style="text-align: center "strong style="text-align: center "span style="color: rgb(0, 112, 192) "2010 试管婴儿技术/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/0158c112-8ec9-4f2b-8e88-67b73d0a95ef.jpg" title="7.png" alt="7.png"//pp style="text-indent: 2em "2010年的诺贝尔生理学或医学奖授予了被誉为“试管婴儿之父”的英国科学家罗伯特· 爱德华兹,因其“在试管受精技术方面的发展”。br//pp  罗伯特· 爱德华兹让治疗不育症成为可能,全球超过10%的夫妇因此获益匪浅。1978年7月25日,世界上第一例试管婴儿的诞生,就是对爱德华兹的不懈努力的最好表彰。他的贡献代表着现代医学史上的又一座里程碑。br//pp  如今,试管婴儿技术不断创新,从一代试管婴儿、二代试管婴儿迈向三代试管婴儿,造福千万家庭。strong style="text-align: center "span style="color: rgb(0, 112, 192) " /span/strong/pp style="text-align: center "strong style="text-align: center "span style="color: rgb(0, 112, 192) "2009 端粒和端粒酶保护染色体/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/b471b1ce-986d-44fc-b4ea-213850889547.jpg" title="8.png" alt="8.png"//pp style="text-indent: 2em "2009年的诺贝尔生理学或医学奖授予了美国加利福尼亚旧金山大学的伊丽莎白· 布莱克本、美国巴尔的摩约翰· 霍普金医学院的卡罗尔-格雷德、美国哈佛医学院的杰克· 绍斯塔克,以表彰他们发现了端粒和端粒酶保护染色体的机理。/pp  他们解决了生物学的一个重大问题:在细胞分裂时染色体如何完整地自我复制以及染色体如何受到保护以免于退化。解决办法存在于染色体末端—端粒,以及形成端粒的酶—端粒酶。br//pp  这项细胞基本机制的发现,提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于新兴治疗措施的发展,尤其是在抗衰老和抗癌方面的疗法开发。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "2008 HPV和HIV病毒的发现/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/e894ec77-8930-4cd8-9298-fba357252691.jpg" title="9.png" alt="9.png"//pp style="text-indent: 2em "2008年的诺贝尔生理学或医学奖授予了发现给发现宫颈癌的人乳头状瘤病毒(HPV)的德国科学家Harald zur Hausen以及发现艾滋病病毒(HIV)的法国科学家Franç oise Barré -Sinoussi和Luc Montagnier。/pp  HPV病毒的发现是进行疫苗研究的基础,为人类攻克宫颈癌提供了更为明确的“靶点”,如今科学家们在这一基础上研制出宫颈癌疫苗,这不仅是为全球女性送上的一份“科学礼物”,也对今后人类防治其他癌症具有重要借鉴意义。目前,全球共有3种HPV疫苗上市,分别是二价、四价和九价。br//pp  正是因为HIV病毒的发现,才开发出了用于诊断艾滋病的血液检查新方法和试剂,并开发出抗HIV病毒的药物,进而极大延长了艾滋病患者的生存期。span style="text-align: center " /span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong style="text-align: center "2007 利用胚胎干细胞引入“基因打靶”技术/strong/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/580a1953-7a57-4e88-aaad-c721aa058162.jpg" title="10.png" alt="10.png"//pp style="text-indent: 2em "2007年的诺贝尔生理学或医学奖授予了在“小鼠基因打靶”技术研究的三位科学家,美国犹他大学Eccles人类遗传学研究所科学家Mario R. Capecchi 、美国北卡罗来纳州大学教会山分校医学院教授Oliver Smithies 与英国科学家卡迪夫大学卡迪夫生命科学学院Martin J. Evans因在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。/pp  这项在老鼠身上进行的“基因打靶”技术,极大地影响了人类对疾病的认识,已被广泛应用在几乎所有生物医学领域。br//pp  科学家几乎能实现所有小鼠基因的敲除,构建许多不同类型的人类疾病小鼠模型,为心血管疾病、糖尿病、癌症、囊肿性纤维化等疾病的对症下药提供了证据。/pp  以上就是2007年来诺贝尔生理学或医学奖在临床应用中的进展。明年它将会花落谁家呢?让我们拭目以待。/p
  • 2011诺贝尔生理学奖得主被前同事质疑
    12月16日,《科学》网站发表文章称,2011年诺贝尔生理学或医学奖得主之一、法国科学家Jules Hoffmann受到其实验室前研究人员Bruno Lemaitre的质疑。  Lemaitre上周建立了一个网站(www.behinddiscoveries.com) 他在上面声称,自己上世纪90年代在Hoffmann实验室工作的时候,正是Hoffmann获诺奖的成果完成的时候,而且事实上是他完成了所有研究工作,他是1996年体现该成果的《细胞》文章的第一作者。Hoffmann本人当时对此工作几乎没有兴趣,但是当工作的重要性显现的时候,Hoffmann就声称这全是他自己的成果。  Science Insider于16日联系Hoffmann,Hoffmann拒绝对此评论,因为他觉得“不会感到一点内疚”。  今年诺贝尔生理学或医学奖公布以来已经受到诸多质疑,包括在公布之前就已经逝世的 Ralph Steinman是否应该继续获奖 另外,26位免疫学家上个月致信《自然》称今年诺奖没有适当考虑Charles A. Janeway Jr. 和Ruslan Medzhitov的贡献。
  • 原生态有限公司成功参加2016年全国青年作物栽培与生理学术研讨会
    由中国作物学会主办,农业部作物生理生态与耕作学科群及中国作物学会栽培专业委员会协办,山东农业大学与中国农业科学院作物科学研究所共同承办的“2016年全国青年作物栽培与生理学术研讨会”于2016年10月26-28日在山东省泰安市顺利召开。原生态有限公司(即北京普瑞亿科科技有限公司)应邀参加了此次大会,主要展示了G4301便携式CO2 CH4 H2O分析仪、G2201-i CO2 CH4同位素分析仪、G2508 CO2 CH4 N2O NH3 H2O分析仪、超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)、CRS-1000/B土壤含水量测量系统、环境气象监测等多款仪器,同时也将稳定同位素分析和元素分析服务展示给与会专家学者。本次会议以“作物可持续生产与现代农业”为主题,围绕作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制和作物轻简化生产的原理与技术等四个专题,与会专家学者深入探讨了作物生理生态与栽培耕作学科的发展方向与研究重点。我公司高度重视此次会议,公司总经理张光辉先生亲自带队前往,由销售主管张学涛和销售工程师李锦桥进行现场讲解。在我公司的展台前,不断有与会专家学者领取产品资料,咨询仪器性能、操作使用等相关问题,并留下仪器使用需求和购买意向。值得一提的是,新一代超轻便、电池供电的温室气体分析仪——Picarro G430便携式CO2 CH4 H2O分析仪在展会上相当吸睛。其兼顾了便携性以及测量所需的高精度和灵敏度,整体设计结实耐用,重量轻至11.3Kg,稳定功率为25W;其采样系统和内部整合的气体泵,可用于土壤的气室开发式或闭路式测量,并具备其他野外使用的扩展功能。该设备采用近红外激光,通过高精度传感器进行特定识别,用单一的时间变量进行浓度分析,测量有效路径可达5km。高精度测量腔室只有35ml,并配备高精度温度和压力控制系统,确保仪器在不断变化的环境条件下获得超高的精确度、准确性和超低的漂移。通过参加此次全国青年作物栽培与生理学术研讨会,促进了我公司与科研学者的深入交流,加强了与同领域科研机构和大学的对接,进一步提升了我公司在生态学相关领域的影响力,也为推动作物生理生态与栽培耕作学科的创新发展提供了新思路。关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际厂商签订代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 1982年/2022年,父子先后获诺贝尔生理学或医学奖!
    今天(北京时间17时30分),2022年诺贝尔生理学或医学奖获奖名单揭晓。瑞典科学家斯万特帕博(Svante Pääbo)获奖。斯万特帕博的获奖理由是“在灭绝古人类基因组和人类进化方面的发现”。奖金为1000万瑞典克朗(约合642.8万元人民币)。斯万特帕博1955年出生于瑞典的斯德哥尔摩。他的父亲为1982年的诺贝尔生理学或医学奖得主、瑞典生物化学家苏恩伯格斯特龙(Sune Bergström)。斯万特帕博苏恩伯格斯特龙诺贝尔生理学或医学奖从1901年到2021年,诺贝尔生理学或医学奖共颁发了112次。没有颁发的9年分别是1915、1916、1917、1918、1921、1925、1940、1941、1942年。从1901年至2021年,共224人获奖。112次颁奖中,39次为单独获奖者,34次为2人共享,39次为3人共享。最年轻和最年长的生理学或医学奖得主最年轻的获奖者是加拿大科学家弗雷德里克班廷(Frederick G. Banting),1923年因“发现胰岛素”获奖,时年32岁。最年长的获奖者是美国科学家佩顿劳斯(Peyton Rous),1966年因“发现肿瘤诱导病毒”获奖,时年87岁。父子均获诺奖,太少见在诺贝尔奖一百余年的历程中,共有两对父子先后获得了诺贝尔奖,在斯万特帕博教授获奖后,他和他的父亲苏恩伯格斯特龙成为第三对“父子诺奖”组合。斯万特帕博教授的父亲苏恩伯格斯特龙是瑞典生物化学家,他发现“前列腺素及其相关的生物活性物质”,与萨米尔松以及约翰范恩共同获得诺贝尔生理学与医学奖。
  • 2010年诺贝尔生理学或医学奖揭晓
    2008年7月12日,罗伯特爱德华兹、莉沙布朗、世界上第一个“试管婴儿”路易丝布朗,以及路易丝的儿子。(图片来源:诺贝尔奖基金会网站)  获奖当天,安德烈海姆、康斯坦丁诺沃肖洛夫在曼切斯特大学。(图片来源:《纽约时报》)  铃木章在北海道大学举行的新闻会上回答记者提问  在菲律宾的家中,理查德赫克向来访的记者展示以往的奖状  10月6日颁奖当天,根岸英一在得知获奖消息后,依然到普渡大学上他的化学课(图片来源:《纽约时报》)  10月6日,随着诺贝尔化学奖的颁发,本年度诺贝尔三大自然科学奖项:生理学或医学奖、物理学奖、化学奖尘埃落定。  与往年相同的是,三大奖无一例外地再次颁给了为全世界人们带来福祉的科研成果。“试管婴儿之父”爱德华兹再次成为世界焦点、世界上最薄的碳薄片在科学界激起千层浪、钯催化交叉偶联反应的发现为化学家再次找到一个有力的工具……  不同的是每项成果背后的曲折故事,但无论是罗伯特爱德华兹的“遗憾”、两位物理学家的“星期五夜实验”,还是化学家一个世纪的努力,都彰显着科学家们伟大而又平凡的探索历程。  值得肯定的还有科学家们对诺奖和科学研究的理性认知,正是所有科学家不懈的探索和努力,使得这些科学成果再次向人们的福祉延伸。  以下为聚焦详细内容:  2010年诺贝尔生理学或医学奖:试管婴儿技术改变人类生育方式  2010年诺贝尔物理学奖:最薄材料展现应用神奇  2010年诺贝尔化学奖:众望所归的圆梦之旅  400万新生命验证非凡科学成就  大胆的研究 谨慎的应用  英国生理学家罗伯特爱德华兹:一路坎坷的人类体外受精技术  俄裔英国物理学家安德烈海姆、康斯坦丁诺沃肖洛夫:世界最薄碳片是如何被发现的  赫克反应、根岸反应和铃木反应:给化学家们一个有力工具
  • 锐拓RT7流池法溶出系统应用案例——生理条件下的药物溶出研究
    固体制剂口服给药后, 药物的吸收取决于药物从制剂中的溶出或释放、药物在生理条件下的溶解以及在胃肠道的渗透。所以,a如果体外溶出度试验能够模拟人体胃肠道的生理环境,那么该溶出方法将拥有更好的区分力,而且能够更好地预测药物体内行为。在这次应用案例中,我们将分享为某客户开展的某BCS II 类产品在生理条件下的溶出研究,希望能够给您带来启发和帮助。研究方法溶出装置:锐拓RT7流池法溶出系统流通池:22.6mm内径 药典标准流通池溶出介质:模拟人体餐前胃肠道pH环境的多种溶出介质(具体种类和配方:技术保密)流速:技术保密模式:开环过滤系统:锐拓专利流通池在线过滤装置生理条件下的溶出研究分别将客户自研样品和参比制剂置于流通池中,按照拟定的研究方法开始溶出测试,在开环模式下的每个取样时间点收集样品溶液,利用HPLC检测主药浓度,并绘制浓度-时间曲线。浓度-时间曲线根据测试结果,我们可以地发现:(1)自研样品和参比制剂在模拟胃部阶段都基本上没有溶出。(2)进入模拟小肠阶段后,自研样品达到浓度的峰值高于参比制剂,且自研样品达到浓度峰值的时间比参比略有提前。基于实验结果,我们可以有理由推断,自研样品和参比制剂经过胃排空进入小肠后的释放行为是存在差异的。进一步地,计算每个取样时间点的累积溶出率,绘制溶出率-时间曲线。溶出率-时间曲线选取模拟小肠阶段的溶出数据,计算各区间内两者的相似因子(f2)=41.5,表示在当前的实验条件下,自研样品和参比制剂在模拟餐前小肠环境下的体外释放行为不具有相似性。QC溶出方法的开发为了满足QC阶段对产品品质的有效监控,我们根据上述生理条件下的溶出研究结果,对相关流池法的溶出参数和溶出介质配方进行精简和优化,以缩短测试时间,简化溶出介质配制和溶出测试步骤。使用精简优化后的流通池溶出方法对自研样品和参比制剂进行检测,并对比两者的溶出率-时间曲线: 在溶出度度超过85%的时间点不超过1个的前提下,计算两者的相似因子(f2)=37.8。证明该方法依然拥有极好的区分力。另外,同步执行的重复性测试结果显示,自研样品和参比制剂的最终溶出率的相对标准偏差(RSD)均小于2%,且两者各自平行测试的溶出曲线基本重合。证明该方法拥有良好的重复性。上述结果显示,流池法拥有开发为QC溶出方法的潜力,特别在区分力方面,拥有远超传统溶出方法的巨大优势。结论流池法溶出装置能够在溶出试验过程中自由切换不同种类的溶出介质,且流体力学更加接近人体胃肠道环境。得益于这些设计优势,使得流池法溶出装置能够更好地模拟人体胃肠道的生理环境,测试结果拥有更好的区分力,而且能够更好地预测药物体内行为。
  • 重磅!2023年诺贝尔生理学或医学奖揭晓|你不知道的冷知识
    10月2日,瑞典卡罗琳医学院宣布,将诺贝尔生理学或医学奖授予Katalin Karikó、Drew Weissman,以表彰他们在核苷碱基修饰方面的发现,这些发现使得针对COVID-19的有效mRNA疫苗得以开发。他们将平均分享1100万瑞典克朗的奖金。诺贝尔官网表示,这两位诺贝尔奖获得者的发现对于在2020年初开始的新冠肺炎大流行期间开发有效的mRNA疫苗至关重要。通过他们的突破性发现,从根本上改变了人们对信使核糖核酸如何与免疫系统相互作用的理解,获奖者为疫苗开发的空前速度做出了贡献。卡塔琳卡里科 (Katalin Karikó) 1955 年出生于匈牙利索尔诺克。她于1982年在塞格德大学获得博士学位,并在塞格德的匈牙利科学院从事博士后研究直至1985年。随后,她在费城坦普尔大学和贝塞斯达健康科学大学进行博士后研究。1989年,她被任命为宾夕法尼亚大学助理教授,并一直任职到2013年。之后,她成为BioNTech RNA Pharmaceuticals的副总裁,后来又担任高级副总裁。自2021年起,她一直担任塞格德大学教授和宾夕法尼亚大学佩雷尔曼医学院兼职教授。德鲁魏斯曼 (Drew Weissman) 1959 年出生于美国马萨诸塞州列克星敦。1987年,他在波士顿大学获得医学博士、博士学位。他在哈佛医学院贝斯以色列女执事医疗中心接受临床培训,并在美国国立卫生研究院进行博士后研究。1997年,魏斯曼在宾夕法尼亚大学佩雷尔曼医学院成立了他的研究小组。他是罗伯茨家族疫苗研究教授和宾夕法尼亚大学RNA创新研究所所长。近三年诺贝尔生理学或医学奖获奖者盘点2022年,瑞典遗传学家斯万特帕博(Svante Pbo)获得诺贝尔生理学或医学奖,因为他关于已灭绝人类基因组和人类演化的发现揭示了所有现存人类与已灭绝古人类之间的基因差异,并建立了古基因组学这一崭新的科学领域。2021年,美国生理学家戴维朱利叶斯(David Julius)和美国分子生物学家、神经学家阿登帕塔普蒂安(Ardem Patapoutian)共享诺贝尔生理学或医学奖,因为他们发现了温度和触觉感受器。2020年,美国病毒学家哈维奥尔特(Harvey J. Alter)、英国生物学家迈克尔霍顿(Michael Houghton)和美国病毒学家查尔斯赖斯(Charles M. Rice)共享诺贝尔生理学或医学奖,因为他们发现了丙型肝炎(Hepatitis C)病毒。关于诺贝尔生理学或医学奖!你知道吗?获奖者破百自1901年以来,共颁发了114项诺贝尔生理学或医学奖。巾帼不让须眉获奖者到目前为止,已有13名女性获得了医学奖。最“萌”年龄差,获奖者32岁的弗雷德里克G班廷是有史以来最年轻的医学奖获得者,他因发现胰岛素而获1923年医学奖。1966年,佩顿劳斯因发现肿瘤诱导病毒而获得医学奖,87岁是他有史以来最年长的医学奖获得者的年龄。上阵父子兵!获奖者在诺贝尔奖的百年历史中,已经出现了7对父子获得过诺贝尔奖,他们分别是:父亲亨利布拉格和儿子劳伦斯布拉格(共同获得1915年诺贝尔物理学奖);父亲约瑟夫汤姆逊(1906年获得诺贝尔物理学奖)和儿子乔治汤姆逊(1937年获得诺贝尔物理学奖);父亲奥伊勒凯尔平(1929年获得诺贝尔化学奖)和儿子乌尔夫奥伊勒(1970年获得诺贝尔生理学或医学奖);父亲尼尔斯玻尔(1922年获得诺贝尔物理学奖)和儿子阿格玻尔(1975年获得诺贝尔物理学奖);父亲曼内西格巴恩(1924年获得诺贝尔物理学奖)和儿子凯西格巴恩(1981年获得诺贝尔物理学奖);父亲亚瑟科恩伯格(1959年获得诺贝尔医学和生理学奖)和儿子罗杰科恩伯格(2006年获得诺贝尔化学奖)父亲苏恩伯格斯特龙(1982年获得诺贝尔生理学或医学奖)和儿子斯万特帕博(2022年获得诺贝尔生理学或医学奖)
  • 2021年诺贝尔生理学或医学奖公布,如何感知温度和压力?
    当地时间10月5日,在瑞典首都斯德哥尔摩卡罗琳医学院,诺贝尔奖委员会总秘书长托马斯佩尔曼宣布,2021年诺贝尔生理学或医学奖授予David Julius和Ardem Patapoutian,以表彰他们在“发现温度和触觉受体”方面作出的贡献, 他们的发现通过揭示了大自然的秘密之一——我们是如何感知并同内外环境进行互动的。 二位获奖者将分享1000万瑞典克朗奖金(约合740.9万人民币)。神经冲动是如何产生的?我们为什么可以感知到温度和压力?温度和压力,在我们的日常生活中非常常见,但大多人可能都不曾思考过,人类是如何感受到外界压力的。事实上,这样的感知对人类的生存至关重要,是我们同外界互动的基础。此次的诺贝尔生理学或医学奖解答了这个问题。任职于美国加州大学旧金山分校的David Julius, 利用从辣椒中提取的辣椒素,发现了皮肤神经末梢中可识别“热”的受体TRPV1。来自于美国斯克利普斯研究所的Ardem Patapoutian,则利用压力敏感细胞发现了一类新的受体Piezo,可对皮肤和内脏器官中的机械刺激做出反应。两位诺贝尔奖得主分别独立发现了 温度感受器和压力 感受器,弥补了人类对感官与环境之间复杂相互作用的理解中缺失的关键环节。他们的研究结果也 引发了 神经科学领域的 一场“变革”,大量的研究关注并阐明了相关通道在各种生理过程中的功能, 为人类生理健康和相关疾病治疗提供了新的研究思路。
  • 女性更容易获得诺贝尔生理学或医学奖!
    p  诺贝尔奖从1901年到2015年,共有575人荣获科学奖(生理学或医学奖、物理学奖、化学奖)。其中仅有17位女性共获得18次奖(居里夫人两次获奖),女性占科学奖获奖总人数的比例不到3% 而女性物理学奖获得者仅有2人(居里夫人和迈耶),占科学奖获奖总人数的比例约为0.35%。在女性诺贝奖获奖者中,有11人获得生理学或者医学奖,占全部女性获奖者的比例为64%。可见,女性更容易获得生理学或医学奖。/ppstrong  物理学奖:2/strong/pp  1903年,马丽亚· 居里,波兰,对放射性现象所作出的卓越研究工作 /pp  1963年,马丽亚· 古博特· 迈耶,美国,发现原子核的壳层结构 /pp strong 化学奖:5/strong/pp  1911年,马丽亚· 居里,波兰,发现放射性元素镭和钚 /pp  1935年,依琳· 约里奥· 居里,法国,在放射性元素合成方面的贡献 /pp  1964年,多萝西· 霍奇金,英国,发现青霉素和维生素B12的结构 /pp  2009年,阿达· 约纳特,以色列,研究核糖体的结构和功能 /pp  2009年,卡罗尔· 格雷德,美国,发现端粒和端粒酶如何保护染色体 /ppstrong  生理学或医学奖:11/strong/pp  1947年,盖提· 拉尼兹· 考瑞,美国,发现糖元的催化转化机理 /pp  1977年,罗莎琳· 苏斯曼· 亚娄,美国,创立对多肽类激素的放射免疫分析 /pp  1983年,巴巴拉· 麦克林斯托克,美国,发现转座子即基因是可以移动的 /pp  1986年,瑞塔· 莱维· 蒙塔尔西尼,美国,发现生长因子 /pp  1988年,格特鲁德· 艾琳,美国,发现糖尿病治疗的重要药理学机制 /pp  1995年,克里斯丁· 瓦哈德,德国,发现早期胚胎发育的控制机制 /pp  2004年,琳达· 巴克,美国,在嗅觉方面的卓越研究 /pp  2008年,弗朗索瓦丝· 巴尔-西诺西,法国,在人类免疫缺陷病毒(HIV)的发现过程中做出重要贡献 /pp  2009年,伊丽莎白· 海伦· 布莱克本,澳-美,端粒和端粒酶研究领域的先驱 /pp  2014年,梅· 布莱特,挪威,发现构成大脑定位系统的细胞 /pp  2015年,屠呦呦,中国,发现治疗疟疾的青蒿素。/pp style="text-align: center "img width="600" height="390" title="01.jpg" style="width: 600px height: 390px " src="http://img1.17img.cn/17img/images/201512/noimg/4e8ecde2-dfbc-470b-b024-541821a0f56c.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "诺奖典礼现场/pp  strong1911年诺贝尔化学奖授奖辞/strong/pp  (1911.12.10)/pp  瑞典皇家科学院院长、国家图书馆馆长E· W· 达尔格伦博士/pp  陛下、殿下、女士们、先生们:/pp  皇家科学院于今年11月1日决定,将1911年诺贝尔化学奖授予巴黎大学理学院的教授玛丽· 斯科罗多夫斯卡· 居里女士,以表彰她在化学发展中所作的贡献:/pp  发现了化学元素镭和钋 /pp  确定了镭的特性并分离出纯金属镭 /pp  最后,研究了这个著名元素的化合物。/pp style="text-align: center "img width="600" height="403" title="02.jpg" style="width: 600px height: 403px " src="http://img1.17img.cn/17img/images/201512/noimg/69fee540-6865-465c-8934-2a08775a30ba.jpg" border="0" vspace="0" hspace="0"//pp  居里夫人1903年与丈夫、贝克勒尔共同获得诺贝尔物理学奖时的证书/pp  1896年,贝克勒尔发现铀元素的化合物中放出射线。这射线使照相底片感光,使空气导电。这一现象被称为放射性现象,导致这现象的物质被称为放射性物质。/pp  稍后,人们发现化合物中的另一种元素,即由伯齐里乌斯(Berzelius)发现的钍元素,也具有相同的特性。/pp style="text-align: center "img width="600" height="455" title="03.jpg" style="width: 600px height: 455px " src="http://img1.17img.cn/17img/images/201512/insimg/e96f0336-1451-40bb-ba45-a79bf08dedaa.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "居里夫妇纪念邮票/pp  因为发现和研究这种被称为铀射线或者贝克勒尔射线,皇家科学院把1903年的诺贝尔物理奖授给了贝克勒尔和居里夫妇。/pp  在研究许多含铀和钍的化合物的过程中,居里夫人发现放射性强度与这些元素在化合物中的比例成正比。但是,某些天然矿石,例如沥青铀矿石,却表现出意外情况:它的放射性强度大大超出了其中铀放射性所能达到的预期值,实际上甚至比铀元素自身的放射性还要强。br//pp style="text-align: center "img width="300" height="448" title="04.jpg" style="width: 300px height: 448px " src="http://img1.17img.cn/17img/images/201512/noimg/7f4675bf-53e4-4923-8e0f-70bf6a12908a.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "青年居里夫人/pp  合理的结论是,这些矿石中一定含有一种那时还未知的元素,且该元素有极强的放射性。的确,经过系统地利用十分复杂的化学程序,玛丽和皮埃尔· 居里从几吨的沥青矿石中,最终成功地提炼出——坦白地说是少量的——两种新的放射性强的元素的盐,他们称这两种元素分别为钋和镭。/pp style="text-align: center "img width="300" height="330" title="05.jpg" style="width: 300px height: 330px " src="http://img1.17img.cn/17img/images/201512/noimg/f191c18c-236f-4569-b0af-f2283987e5c5.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "葛丽亚· 嘉逊凭电影《居里夫人》赢得一生演艺事业的顶峰/pp  其中之一的镭元素,化学性质与金属钡相似,能够通过一条特征光谱而识别,一直被认为是可以分离成纯金属态的。它的原子量由居里夫人确定为226.45。直到去年(1910年),在一个合作者的帮助下,居里女士才成功地分离出纯金属镭。尽管有各种相反的假说,她还是一劳永逸地确定了镭作为一个元素的位置。br//pp style="text-align: center "img title="06.jpg" src="http://img1.17img.cn/17img/images/201512/noimg/48ed2ba2-87e0-44a6-8eb0-e37997a00f5c.jpg"//pp style="text-align: center "电影《居里夫人》剧照/pp  镭是一种银白色且发光的金属,能剧烈地分解水,当与有机物例如纸接触时,它能使之烧焦。它的熔点是700℃,比钡更易挥发。/pp  根据化学家的观点,镭和它的衍生物最显著的特点是,在不受外界条件影响下,它们将不断地释放出一种射气(emanation),这是一种放射性气体,在低温下可以凝聚成液体。这种被建议称为氡的气体,似乎在各方面都具有元素的特性,化学性质与所谓的惰性气体非常相似,它的发现者当时就获得了诺贝尔化学奖。事情还没有结束,这种气体还不断地自行分裂,在它的产物中,诺贝尔奖获得者拉姆塞爵士发现了气态的氦元素,后来其他著名的科学家也发现了氦。这种元素曾经在太阳的光谱中被观察到,在地球上也可少量地找到。/pp  这个事实在化学史上首次表明,一种元素真的可以转变成另一种元素。而且,正是由于这一原因使镭的发现有了更为重大的意义:它引起了化学革命,开创了化学的新篇章。/pp style="text-align: center "img title="07.jpg" src="http://img1.17img.cn/17img/images/201512/noimg/c4f1f830-c9ce-4c4f-8c64-c75715438942.jpg"//pp style="text-align: center "电影《居里夫人》海报/pp  化学元素绝对不变的理论不再有效了,因为科学家已经揭开了一些至今还遮盖着的元素演变的秘密。/pp  炼金术士最感亲切的嬗变理论,意外地死而复生,不过这次是以一种精确的形式,排除了任何神秘的要素。具有这种嬗变功能的点金石不再是一种神秘而费解的炼金药液,而是现代科学所称的能量。/pp  可以假定,由镭原子构成的粒子系统中一定包含着巨大的能量。当原子分裂时,这些能量以光和热的形式不断释放出来。这正是镭的特征。/pp  由于以上成就,我们论及的不再仅仅是个别或者特殊的现象了。放射性更强的镭和钋元素的发现,已经导致许多其他寿命或长或短的放射性元素的发现。通过这些发现,我们的化学知识以及我们对自然界物质的了解得到很大的扩展。/pp  的确,镭的研究近年来导致科学的一个新分支的诞生,即放射学(radiology)的诞生。在巨大的科学王国里,放射学已经拥有自己的研究机构与杂志。/pp  p style="text-align: center "img width="300" height="385" title="08.jpg" style="width: 300px height: 385px " src="http://img1.17img.cn/17img/images/201512/noimg/03c058ca-ce03-4278-ba21-41bef00bf20d.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "电影《居里夫人》海报/pp  由于和其他自然科学,例如物理学、金属学、地质学和生理学有许多结合点,这个自身很重要的学科又具有更多的重要性。我们知道,因为镭的生理作用,镭在医疗方面找到了应用。许多应用者认为,放射性治疗法在治疗癌症和狼疮方面有良好的效果。/pp  镭的发现,首先对于化学,接着对人类知识的许多其他分支和人类活动,都有巨大的意义。有鉴于此,皇家科学院有理由认为,应当将诺贝尔化学奖授予两位发现者的唯一幸存者——玛丽· 斯科罗多夫斯卡· 居里夫人。/pp  居里夫人,1903年瑞典皇家科学院荣幸地把诺贝尔物理奖部分地授给了您和您的丈夫,以表彰你们在放射性方面的发现。/pp  今年,皇家科学院决定授予您化学奖,以表示对您为这个学科付出巨大劳动的赞赏。您发现了镭和钋,您描述了镭的特性和它的分离,您研究了这一著名元素的化合物。在诺贝尔奖颁发的11个年头里,这是第一次将此殊荣赐给以前的获奖者。现在,夫人,请您允许我在这种场合下,用我们科学院对您近年来发现的关注,表明您的发现的重要性。请您接收国王陛下的授奖。br//pp/pp/p/p
  • 重磅!华中科技大学等再发《Nature》,研发出“颅内生理信号监测黑科技”!
    当前,临床上监测颅内压等关键生理指标的技术,通常需要通过外科手术将有线传感器植入患者颅内。这种方法存在一定风险,如术后感染和并发症等。尽管现有的无线电子传感器能够在一定程度上降低这些风险,但由于它们的体积较大(例如,传统电子元件的截面积往往超过1平方厘米),因此不适合通过微创注射方式植入。此外,由于无线电子传感器不能在体内自然降解,患者还需要进行二次手术来移除它们。因此,在临床实践中,这些无线传感器也面临着许多挑战。华中科技大学臧剑锋教授、姜晓兵教授以及新加坡南洋理工大学陈晓东教授团队携手合作,研发出一种创新型可注射超声凝胶传感器。该传感器有望克服传统有线传感器存在的感染风险和术后并发症等问题,同时避免现有无线电子传感器体积过大、无法体内降解等临床应用挑战。相关研究成果以"Injectable ultrasonic sensor for wireless monitoring of intracranial signals"为题在线发表于《Nature》杂志。传感器结构与制备:这种名为"超声超凝胶"的传感器是由双网络交联的水凝胶基质和内部周期性排列的空气孔道组成,体积仅为2×2×2mm³ 。这种可注射传感器是研究团队采用摩方精密面投影微立体光刻(PμSL)3D打印技术(nanoArch S140,精度:10 μm)加工模具后,经水凝胶翻模制备而成。经过计算机模拟结构优化,该特殊结构在8-10MHz频段具有声学带隙,对入射超声波有很强的反射能力。图1. 可注射、可降解的超凝胶超声传感器设计原理。(a)基于超声反射的超凝胶无线颅内生理传感器示意图。(b)超凝胶样品及穿刺针照片,比例尺2 mm。(c)超凝胶结构显微镜照片,比例尺500 μm。(d)照片显示超凝胶浸泡在37度的PBS溶液中一个月后开始降解。(e)超凝胶工作原理示意图。(f)变形导致超凝胶反射峰值频率偏移示意图。(g)超凝胶能带结构图。(h, i)带隙中心频率随晶格常数(h)及占空比(i)变化曲线图。(j, k)超凝胶变形前后声场(仿真)分布。多功能凝胶传感器:研究团队设计了三种功能凝胶传感器用于检测不同参数。压力凝胶采用双交联聚乙烯醇/羧甲基纤维素凝胶,灵敏度可达5.7 kHz/mmHg,分辨率0.1 mmHg;温度凝胶由温敏性聚乙烯醇/聚丙烯酰胺凝胶构成,温度检测范围28-43℃,分辨率0.1℃,灵敏度80kHz/℃;pH凝胶则利用质子化聚乙烯醇/壳聚糖凝胶,可检测pH 2-8的范围,分辨率0.5 pH单位,灵敏度256 kHz/pH单位。这些凝胶均采用生物相容性且可降解材料制成,注射入体约1个月后可自然降解,无需再次开颅取出。同步读取与算法:研究团队提出了同步读取多个凝胶传感器的新方法。通过检测各个凝胶的反射频率变化,结合先进算法,可高效分离压力、温度、pH等多种因素的耦合影响,实现对复杂生理环境的全面监测。图2. 超凝胶超声传感器体外测试表征。(a)温度及pH响应超凝胶示意图。(b)超凝胶及纯水凝胶照片(顶部)与超声图像(底部),比例尺2 mm。(c)超凝胶结构显微镜照片,比例尺500 μm。(c, d)超凝胶与纯水凝胶超声反射信号时域对比(c)与频域对比(d)。(e)压力超凝胶与商用压差计压力测试对比。(f)压力超凝胶校准曲线。(g) 温度超凝胶与商用温度计温度测试对比。(h) 温度超凝胶校准曲线。(i) pH超凝胶与商用温度计温度测试对比。(j) pH超凝胶校准曲线。(k) 压力超凝胶反映临近血管模型内流速。动物实验结果:在大鼠和猪的动物实验中,这一凝胶传感系统展现出媲美商用有线临床设备的检测精度,且在耗能、无热效应等方面表现出极大优势。值得一提的是,在实验猪体内,它甚至能检测到微小的呼吸引起的颅内压力细微波动(约1 mmHg),而同步植入的有线压力传感器则无法监测到如此精细的变化。图3. 活体大鼠传感实验及生物相容性表征。(a)实验装置配置照片。(b)超凝胶植入在大鼠颅内的磁共振图像,比例尺2 mm。(c)大鼠佩戴外部超声探头照片。(d)超凝胶与临床有线颅内压探头测试大鼠颅内压力变化曲线。(e, f) 超凝胶与商用有线温度探头测试大鼠颅内温度变化曲线。(g)超凝胶24天内多次监测大鼠颅内压变化。(h) H&E染色脑组织切片照片显示超凝胶降解过程。(i) 免疫荧光染色照片显示超凝胶存续期间炎症情况。图4.实验猪无线颅内压原位监测。(a)实验方案配置示意图。(b)超凝胶及临床有线颅内压探头植入后猪头部照片。(c) 猪腰椎穿刺位置照片。(d)超声图像照片显示超凝胶植入猪颅内位置。(e) 超凝胶、商用压差计以及临床颅内压探头测量猪颅内压随腰椎注射生理盐水变化曲线。(f)体积测试管液面高度照片显示猪颅内压随呼吸起伏。(h) 超凝胶、商用压差计以及临床颅内压探头测量猪颅内压随呼吸变化曲线。临床颅内压探头难以测量微小颅内压变化。总结:该研究提出了一种创新型的植入式无线传感技术,该技术基于超凝胶材料变形所引发的超声波频移效应,能够精确地监测颅内各种生理参数,如颅内压、温度、pH值以及血液流速等。相较于目前市场上的植入式传感器,超凝胶传感器在尺寸、多参数分离监测能力以及可生物降解特性上展现出明显优势。这项技术不仅有望应用于颅内生理参数的监测,还能够扩展至人体其他部位的无创检测,从而为多种疾病的预防和治疗提供了新的技术支持。这种微型且可自然降解的传感器通过微创注射即可使用,大幅提升了患者的就诊便捷性,并为智能医疗健康领域的发展注入了新的活力。
  • 睿科仪器助力“2016年全国卫生理化检测技术论坛”完美收官
    2016年11月23日-24日,由北京市疾病预防控制中心主办的“2016年全国卫生理化检测技术论坛”会议在北京首农香山会议中心顺利举行。北京大学城市与环境学院胡建英教授、国家食品安全风险评估中心技术总师吴永宁先生、国家食品安全风险评估中心陈君石院士等专家和领导出席了本次大会,来自全国30多家省、市和区(县)级疾控中心的理化检测技术人员,共计160余人参加了此次论坛。为了促进疾病预防控制机构公共卫生检测监测水平的发展,提升卫生理化检测技术水平、交流工作经验,睿科仪器有限公司支持并助力此次技术论坛会议。为了让参会的各位专家了解睿科仪器在检测技术方面的重大进步,睿科仪器的应用工程师戴相辉先生做了“睿科全自动固相萃取浓缩仪在食品安全及水质分析中的应用”的报告,报告结束后也得到参会人员的详细咨询,表示对睿科的产品有浓厚的兴趣。会上,现场还着重展示了睿科在样品前处理领域的两款热门产品。其中,Fotector-02HT高通量全自动固相萃取仪,能自动完成固相萃取的整个流程,自动化程度高,为实验室人员解放工作,释放时间,获得现场专家与学者的高度评价。AutoEVA-20Plus全自动平行浓缩仪是一款可在无人值守的情况下自动对大批量样品同时进行快速、平行浓缩的浓缩仪,是液相、气相以及质谱分析等不可缺少的样品制备设备。本次论坛的圆满举办,使与会人员全面了解了国内外理化检测技术的前沿和进展,对提升我国公共卫生检测监测技术的整体水平、深化疾控系统理化检测工作的交流协作起到了积极的推动作用。与此同时,经过短暂的相聚,参会的各位专家和领导对睿科仪器有了更深入的了解与认识,感谢所有用户对睿科仪器的支持与信任,我们也将继续努力,为检测领域注入更多的新能量!
  • 中国学者解读2012年度诺贝尔生理学或医学奖
    10月8日,英国和日本科学家共同分享了2012年度诺贝尔生理学或医学奖。  79岁的约翰戈登爵士,50岁的山中伸弥,相差40多年时间,他们的工作共同 “发现成熟细胞能够通过再编程而具有多能性”。  诺贝尔奖委员会认为,他们精彩的成果完全颠覆了人们对发育的传统观念,关于细胞命运调控和发育的教科书内容已经被重新改写。  逆转细胞发育的程序  《中国科学报》记者第一时间拨通了中科院动物所研究员周琪的电话,他已获知两位科学家获奖,并对诺贝尔奖委员会的评价表示高度赞同。  中国科学院生物物理研究所研究员王江云认为,获奖的研究工作破除了以往认为胚胎发育及细胞分化不可逆的概念,完成了在体细胞中转入基因并将其转化为干细胞的重大突破,为实现干细胞治疗及体外器官培养铺平了道路。  “细胞命运是否可以改变,是一个很古老的命题。”周琪说。  早在戈登研究前很多年,科学家就已经证明了植物细胞的全能性 1938年,德国科学家Spemann提出了细胞核移植的概念和设想 后来,戈登分别发表于1962年和1966年的工作创造性地回答了Spemann的问题,证明细胞可以通过细胞核移植改变命运,生命可以重新启动 而哺乳动物体细胞核移植的首次成功,则是大家熟悉的1997年发表的克隆羊“多利”的工作。  相对于细胞核移植的烦琐和复杂,周琪认为,2006 年山中伸弥仅用4个基因就让细胞变成多能干细胞的工作,显得更为神奇。  随之,小鼠、人等不同物种iPS细胞(诱导多能干细胞)的成功已经反复证明了细胞命运是可以通过基因调节转换的。  “今后,也许能实现人体的器官像汽车零件一样可以更换。”王江云对《中国科学报》记者说。周琪也相信,细胞核移植和iPS两项成果的获奖,将会进一步推动该领域新的诊断和治疗方法的产生。  不过,“干细胞离治疗还有距离。山中发明的方法虽有所突破,但迄今尚未证明是否最后能用于人体治疗。”北京大学生命科学学院院长饶毅在接受《中国科学报》记者采访时表示。  周琪也强调,将细胞核移植和iPS等技术应用于人类为时尚早。  “干细胞研究还处于实验室研究阶段,这一领域面临的挑战和问题依然很多。”王江云举例说,如诱导生成干细胞的效率需要进一步提高,干细胞的质量控制需要有更好的标准等。  “这些问题需要各国科学家的共同努力和合作来解决。”周琪说。  中国迈开赶超步伐  2009年,周琪首次利用iPS细胞,通过四倍体囊胚注射得到存活并具有繁殖能力的小鼠,从而在世界上第一次证明了iPS细胞的全能性。  “中国不论在细胞核移植领域还是iPS领域均已经具备了较强的实力,并且已经取得了一些成就。”作为国际干细胞组织(ISCF)中国代表,周琪肯定了中国科学家在iPS细胞领域的工作。  而王江云认为,我国干细胞的研究水平在世界上相对处于较高水平。他特别提到,在中国科学院战略性先导专项“干细胞与再生医学”的支持下,干细胞研究呈现出良好势头。  2011年,中国在iPS领域发表的论文数量仅逊于美国和日本,居于世界第三位 但在干细胞领域发表论文的总数量已经超过日本跃居世界第二。  “论文数量可以反映我们的进步,但差距仍是巨大的。”周琪认为,尤为突出的问题是原始创新能力不足,开展开拓性工作的信心不够。继续重视基础研究,强调原创性工作,仍是需要长期坚持的方针。  三人未能同行  记者发现,这两位获奖者位列饶毅所写“值得获诺贝尔生理学或医学奖的工作及科学家”名单之中。  2002年,饶毅的名单中就有戈登和“多利羊之父”英国罗斯林研究所教授Ian Wilmut,2010年他又在这项工作中加入了山中伸弥的名字。  但最终获奖者却少了Wilmut。“非常遗憾,Wilmut并没能共享这一奖项。”周琪这样对记者说。  不过,饶毅对戈登本人的印象良好。他在美国做博士后期间的指导老师,就是戈登的学生。  “他是典型的,但现在越来越少的绅士科学家。”饶毅说,他做科学做得很优雅。很长时间以来,戈登的工作都被发育生物学界所推崇。  在饶毅印象中,日本获得的诺贝尔生理学或医学奖寥寥无几,尽管日本曾在生命科学领域作出过多个重要发现。实际上,在获得诺奖的19位日本人中,除了山中伸弥,只有利根川进在25年前因“发现抗体多样性的遗传学原理”而获生理学或医学奖。
  • 2011年诺贝尔生理学或医学奖揭晓
    Bruce A. Beutler   Jules A. Hoffmann   Ralph M. Steinman  北京时间10月3日下午5点30分,2011年诺贝尔生理学或医学奖揭晓,美国、法国、加拿大三位科学家因在免疫学方面的发现获奖。其中一半的奖金归于Bruce A. Beutler和Jules A. Hoffmann,获奖理由是“先天免疫激活方面的发现”;另一半奖金归于Ralph M. Steinman,获奖理由是“发现树突状细胞及其在获得性免疫中的作用”。  今年的诺奖得主发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识。  免疫应答作为一种能帮助人类与其它动物抵御细菌及其它微生物的生理过程,长久以来,科学家们一直在寻找它的“守护者”。Bruce Beutler和Jules Hoffmann发现了能识别微生物并激活先天性免疫的受体蛋白质,从而揭示了身体免疫应答过程的第一步。Ralph Steinman则发现了免疫系统中的树突状细胞,以及其可激活并控制获得性免疫的功能,从而完成身体免疫应答过程的下一步,即将微生物清除出体内。  三位诺奖得主的发现揭示了免疫应答中的先天性免疫和获得性免疫是如何被激活,从而让我们对疾病机理有了一个新的见解。他们的工作为传染病、癌症以及炎症的防治开辟了新的道路。  Bruce A. Beutler,美国公民。1957年出生于美国芝加哥。1981年从芝加哥大学获得医学博士学位。曾在洛克菲勒大学和德州大学工作,其间发现了LPS受体。自2000年开始,他担任斯克里普斯研究所遗传学和免疫学教授。  Jules A. Hoffmann,法国公民。1941年出生于卢森堡公国。就读于法国斯特拉斯堡大学,1969年获得博士学位。在德国马尔堡大学做完博士后之后,他返回了斯特拉斯堡,于1974年至2009年一直主持一个研究实验室。他曾担任斯特拉斯堡分子细胞生物学研究所所长,2007年至2008年曾担任法国国家科学院院长。  Ralph M. Steinman,1943年出生于加拿大蒙特利尔。在麦吉尔大学学习生物学和化学。1968年从哈佛医学院获得医学博士学位。自1970年开始他一直在洛克菲勒大学工作,1988年开始成为免疫学教授,并担任免疫学和免疫疾病中心主任。
  • 2020 Nobel生理学与医学奖背后的科学仪器
    p style="text-align: justify text-indent: 2em "2020年诺贝尔生理学或医学奖颁发给了三位科学家,获奖理由是“for the discovery of Hepatitis C virus”(发现了丙型肝炎病毒)。他们在对抗血源性肝炎领域做出了决定性贡献。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 615px height: 241px " src="https://img1.17img.cn/17img/images/202010/uepic/f9b8f24c-e0bd-40f7-b88d-ea151134fbdb.jpg" title="combine.png" alt="combine.png" width="615" height="241"//pp style="text-align: justify text-indent: 2em "Harvey J. Alter哈维· 奥尔特对与输血相关的肝炎系统研究后证明:一种未知病毒是引起慢性肝炎的常见病因。/pp style="text-align: justify text-indent: 2em "Michael Houghton迈克尔· 霍顿使用了一种未经验证的策略分离出了丙型肝炎病毒(Hepatitis C virus)的基因组。/pp style="text-align: justify text-indent: 2em "Charles M. Rice查尔斯· 瑞斯提供了最终的证据表明丙型肝炎病毒HCV感染可引起肝炎。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 518px height: 344px " src="https://img1.17img.cn/17img/images/202010/uepic/4fa0adbb-8dd5-4b72-802e-c6de76fdc48a.jpg" title="Key Publications.png" alt="Key Publications.png" width="518" height="344"//pp style="margin-top: 10px text-align: justify text-indent: 2em "Nobel Prize今年涨了100万SEK(瑞士克朗),3位科学家总共将平分这1000万SEK瑞典克朗(合CNY人民币756万)。在这份超级大奖的背后,令小编感兴趣的是,有哪些科学仪器曾经在他们是实验中起到了决定性的作用。这些科学仪器在今天是否还在使用?它们又有哪些更新和提升呢?/pp style="margin-top: 10px text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong科学家们的发表物/strong/spanbr//pp style="margin-top: 10px text-align: justify text-indent: 2em "上面的Key Publications是这三位科学家曾经的代表作,他们的实验成果大多被发表在新英格兰医学杂志、Science、柳叶刀等顶级期刊上。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 444px height: 384px " src="https://img1.17img.cn/17img/images/202010/uepic/5a4afdcd-123d-4ef6-af70-28b2f05ebc1a.jpg" title="1978.png" alt="1978.png" width="444" height="384"//pp style="margin-top: 10px text-align: justify text-indent: 2em "其中,最初的研究成果在1972年发表。这是一篇有关输血后奇怪的肝炎感染的现象。Harvey J. Alter的研究中发现了心脏手术后输血的患者有一种奇怪的肝炎。他们的AST升高,但是供血者并没有甲肝和乙肝的感染。后来,在1978年Harvey又发表了他在黑猩猩上的感染实验。实验证明了,这种不明的“不是甲肝病毒,也不是乙肝病毒”的感染者的血清或血浆都可以引起黑猩猩感染这种肝炎并引起转氨酶升高。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 522px height: 449px " src="https://img1.17img.cn/17img/images/202010/uepic/7d1845ca-8d78-426e-aee2-675e768eed96.jpg" title="combine2.png" alt="combine2.png" width="522" height="449"//pp style="text-align: justify text-indent: 2em "到了1989年,Michael Houghton的团队利用Northern Blotting技术分离出了NANBH的基因组。这一发现为后续的该病毒致病机理的研究以及药物的开发都提供了重要的依据。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 509px height: 338px " src="https://img1.17img.cn/17img/images/202010/uepic/cfae461a-97ba-491a-8969-944a738029b5.jpg" title="Rice的文章.png" alt="Rice的文章.png" width="509" height="338"//pp style="text-align: justify text-indent: 2em "Charles M. Rice的研究进一步证明了HCV这种RNA病毒就是引起丙型肝炎的原因。在1989年,世界上又1%的人口被慢性肝炎困扰。这一发现为拯救这些患者提供了希望的曙光。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(0, 112, 192) "strong科学仪器助力研究成果/strong/span/pp style="text-align: justify text-indent: 2em "在现代病毒学的研究中会使用到许多先进的仪器。可以假设一下,如果1972年之前就有a href="https://www.instrument.com.cn/zc/133.html" target="_blank"span style="color: rgb(0, 176, 80) "strong实时荧光定量PCR/strong/span/aspan style="color: rgb(0, 176, 80) "strong、a href="https://www.instrument.com.cn/zc/286.html" target="_blank"激光共聚焦/a以及a href="https://www.instrument.com.cn/zc/134.html" target="_blank"全自动核酸测序仪/a/strong/span等等设备,那么HCV的发现会不会变得容易很多?不过历史怎能重来?这更能说明科学家研究的艰辛和不易。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 582px height: 290px " src="https://img1.17img.cn/17img/images/202010/uepic/e8bc5495-cdcd-41e0-b351-679ae69cfb2d.jpg" title="放射免疫.png" alt="放射免疫.png" width="582" height="290"//pp style="text-align: justify text-indent: 2em "在1978年的文章中Harvey使用了solid-phase radioimmunoassaystrongspan style="color: rgb(0, 176, 80) "RIA放射免疫实验/span/strong来检测乙肝抗原。这种方法在当时已经是很先进的技术了,但是由于使用的仪器和试剂会在放射性的环境中,实验人员可能会暴露在放射元素中影响健康。现在,检测乙肝的金标准已经变成span style="color: rgb(0, 176, 80) "strongECLIA电化学发光免疫荧光分析/strong/span,该方法是目前最先进的免疫测定技术,既具有放射免疫的高灵敏度,又具有酶联免疫的操作简便、快速的特点,易于标准化操作,且测试中不使用有害的试剂,试剂保持期长,应用于生物学、医学研究和临床实验诊断工作,成为非放射性免疫分析法中最有前途的方法之一。/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% width: 569px height: 337px " src="https://img1.17img.cn/17img/images/202010/uepic/f2036507-a316-4cc0-bb93-211c5800d2b6.jpg" title="chiron corp.png" alt="chiron corp.png" width="569" height="337"//pp style="text-align: justify text-indent: 2em "1997年,Charles的研究中使用了Chiron设备来进行RNA的分析实验。现在使用的基因测序设备早已超越当时的水平。三代测序技术使得实验的技术指数级别提升。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(0, 112, 192) "strong对于HCV的认识br//strong/span/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(0, 112, 192) "strong/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 574px height: 159px " src="https://img1.17img.cn/17img/images/202010/uepic/453ced2a-8587-4f3e-b058-026436c1e65c.jpg" title="丙肝认知.png" alt="丙肝认知.png" width="574" height="159"//pp style="text-align: justify text-indent: 2em margin-top: 10px "对于官方网站的调查中,依然有66%的人表示不知道每年有40万人会死于HCV的感染。这是一件很可怕的事情。今年的诺贝尔生理学或医学奖颁发给了这三位发现HCV的科学家不仅一味着奖励他们的贡献,笔者认为,更大的意义在于使人们更加关注HCV感染,关注血液卫生。/pp style="text-align: justify text-indent: 2em margin-top: 10px "span style="color: rgb(0, 0, 0) "如今,在科学仪器和IVD技术先进的现在,也相信这些仪器技术会给人来的健康带来更多的福祉。/spanbr//p
  • 两名科学家分享2021年诺贝尔生理学或医学奖
    新华社斯德哥尔摩10月4日电(记者和苗 付一鸣)瑞典卡罗琳医学院4日宣布,将2021年诺贝尔生理学或医学奖授予戴维朱利叶斯和阿德姆帕塔普蒂安两名科学家,以表彰他们在发现温度与触觉“感受器”方面所做出的贡献。
  • 天隆御兔号与陕西援吉医疗队并肩作战、共迎胜利
    4月28日12时起,吉林市全域调整为低风险地区,抗疫取得胜利。天隆“御兔号”移动核酸检测车与陕西援吉医疗队并肩作战36天,圆满完成驰援任务,也于近期胜利归来。4月28日12时起,吉林市全域调整为低风险地区,抗疫取得胜利。天隆“御兔号”移动核酸检测车与陕西援吉医疗队并肩作战36天,圆满完成驰援任务,也于近期胜利归来。3月17日天隆科技紧急协调大量核酸检测设备及试剂与陕西省支援吉林省核酸检测及采样队第一批队员一起乘坐包机抵达长春。3月18日深夜,第二批队员奔赴吉林市,315名医务工作者汇聚吉林,同心战“疫”。3月19日凌晨7点,经过36个小时昼夜疾驰,两辆天隆“御兔号”移动核酸检测车跨越2124公里,抵达吉林。4月5日陕西援吉医疗队共计完成116万人次的核酸采样,4万管的核酸样本检测。4月25日陕西援吉医疗队在长春市龙嘉机场乘机返程。构筑坚实堡垒 助力疫情防控天隆“御兔号”移动核酸检测车灵活机动,快速奔赴吉林疫情防控重点区域,强化当地核酸检测能力。“御兔号”与陕西援吉医务人员一起并肩作战,构筑起疫情防控的坚实堡垒,助力快速阻断疫情传播链条,守护了当地人民健康,留下许多抗疫记忆。@渭南 木兰出击 马不停蹄3月7日,6位来自渭南市蒲城县医院的医务人员,随天隆“御兔号”移动核酸检测车驰援西安。3月11日,根据宝鸡市疫情防控需要,6人又随检测车支援宝鸡。3月18日,还没来得及休息,她们随陕西支援吉林医疗队再次出发支援吉林核酸检测。@咸阳 援吉抗疫 有秦有义3月18日,咸阳市中心医院七名检验师奔赴吉林和天隆“御兔号”移动核酸检测车“胜利会师”,经过近一个月的努力工作,他们看到了胜利的曙光,疫情社会面基本清零。“待全面战胜疫情后,我们约好要来吉林市的大街小巷转一转,再去看看雾凇和曾经与天隆‘御兔号’移动核酸检测车一起战斗过的地方。”队员们表示。做好持续升级 提速核酸检测天隆“御兔号”移动核酸检测车装备了天隆自主研发的样本管开盖、核酸提取、PCR体系配置、核酸检测等自动化设备,每天可完成10000管份核酸检测,即10合1混采10万人,20合1混采20万人。此外,天隆“御兔号”移动核酸检测车还不断升级,持续提高核酸检测能力,助力疫情“早发现 早报告 早隔离 早诊疗”。未来,天隆科技将不断推出匠心产品,助力全国各局地疫情精准、快速防控。
  • 人类为什么如此独特?2022年诺贝尔生理学或医学奖解读
    人类的起源向来是人们感兴趣的话题。我们从哪里来?现代人与我们之前的人种有什么关系?是什么让智人有别于其他人种?获得2022年诺贝尔生理学或医学奖的瑞典科学家斯万特帕博通过其开创性研究,完成了一件看似不可能的事:为尼安德特人的基因组测序。尼安德特人是现代人已灭绝的近亲。帕博还发现了一种以前不为人知的古人类——丹尼索瓦人。更重要的是,帕博发现,在大约7万年前迁出非洲后,这些现已灭绝的古人类向智人进行了基因转移。这种流动在今天具有生理学上的意义,例如,其影响了人类免疫系统对感染的反应。2022年诺贝尔生理学或医学奖得主斯万特帕博(Svante Pääbo)。图源:诺贝尔奖委员会官网帕博的开创性研究催生了一门全新的科学学科:古基因组学。通过揭示所有活着的人类与已灭绝的原始人类的基因差异,他的发现为探索是什么让我们成为独特的人类奠定了基础。图源:瑞典卡罗琳医学院诺贝尔奖委员会官网完成尼安德特人基因组测序1990年,帕博到德国慕尼黑大学任教。他决定分析尼安德特人线粒体的DNA。线粒体基因组很小,只包含细胞中遗传信息的一小部分,但它存在数千个DNA副本,增加了研究成功的机会。帕博成功对一块4万年前的骨骼的线粒体DNA区域进行了测序。人类因此首次获得了第一个已灭绝的近亲古人类的基因序列。与现代人类和黑猩猩的比较表明,尼安德特人在基因上与众不同。DNA位于细胞内的两个不同区域。核DNA包含大部分遗传信息,而小得多的线粒体基因组则以数千个拷贝存在。死亡后,DNA会随着时间推移而退化,最终只剩下少量。它还会被来自例如细菌和现代人类的DNA污染。图源:诺贝尔奖委员会官网2010年,帕博及其团队公布第一个尼安德特人基因组序列。对比分析表明,尼安德特人和智人最近的共同祖先生活在大约80万年前。通过研究尼安德特人和来自世界不同地区的现代人之间的关系,结果表明,与源自欧洲或亚洲的当代人类的序列相比,尼安德特人的DNA序列与源自非洲的当代人类更为相似。这意味着尼安德特人和智人在他们几千年的共存过程中进行了交配。在具有欧洲或亚洲血统的现代人中,大约有1-4%的基因组源自尼安德特人。(左图)帕博从已灭绝的人类骨骼标本中提取 DNA。他首先从德国的尼安德特人那里获得了一块骨头碎片,该地点以尼安德特人的名字命名。后来,他使用了来自西伯利亚南部丹尼索瓦洞穴的一根指骨,丹尼索瓦人就是在这个地方命名的。(右图)系统发育树显示智人与已灭绝的人类之间的进化和关系,还说明了帕博发现的基因流。图源:诺贝尔奖委员会官网发现不为人知的丹尼索瓦人2008年,帕博在西伯利亚南部的丹尼索瓦洞穴中发现了一块4万年前的手指骨碎片。这块骨头含有保存极为完好的DNA,帕博的团队对其进行了测序。结果引起轰动:与所有已知的尼安德特人和现代人的序列相比,该DNA序列是独一无二的。帕博发现了一种此前不为人知的古人类,并将其命名为丹尼索瓦人。与来自世界不同地区的当代人类的序列进行比较后发现,丹尼索瓦人和智人之间也发生了基因流动。这种结合的关系首先出现在美拉尼西亚和东南亚其他地区的人口中,那里的个体携带高达6%的丹尼索瓦人的DNA。帕博的发现使我们对人类进化史有了新的理解。在智人迁出非洲时,欧亚大陆上至少居住着两个原始人类种群。尼安德特人生活在欧亚大陆的西部,而丹尼索瓦人则居住在该大陆的东部。在智人向非洲以外扩张和向东迁徙的过程中,他们不仅与尼安德特人结合,还与丹尼索瓦人结合。帕博的发现提供了有关智人从非洲迁移到世界其他地方时世界人口分布情况的重要信息。尼安德特人居住在欧亚大陆的西部,丹尼索瓦人则居住在东部。当智人遍布整个大陆时,人种的结合就发生了,留下了“印”在我们DNA中的痕迹。图源:诺贝尔奖委员会官网开创古基因组学全新学科通过开创性研究,斯万特帕博建立了一门全新的科学学科——古基因组学。在最初的发现之后,他的团队已完成对灭绝的古人类的几个额外基因组序列的分析。帕博的发现为科学家提供了更好了解人类进化和迁徙的广泛而独特的资源。新序列分析方法表明,在非洲,古人类也可能与智人混合在一起。然而,由于热带气候中古老DNA的加速退化,非洲已灭绝的古人类的基因组还没有被测序。帕博的发现让我们了解到,我们已灭绝的近亲古人类的基因序列影响了现代人类的生理。其中一个例子是丹尼索瓦人版本的EPAS1基因,它赋予了人类在高海拔地区生存的优势。此外,尼安德特人基因影响了人们对不同类型感染的免疫反应。
  • 2012年诺贝尔生理学或医学奖揭晓
    北京时间10月8日下午5点30分,2012年诺贝尔生理学或医学奖揭晓,英国科学家约翰戈登(John B. Gurdon)和日本科学家山中伸弥(Shinya Yamanaka)获奖,获奖理由为“发现成熟细胞可被重编程变为多能性”。  John B. Gurdon,1933年出生于英国的Dippenhall。1960年他从牛津大学获得博士学位,曾在加州理工学院做博士后。他于1972年加入剑桥大学,成为细胞生物学教授。目前他供职于剑桥Gurdon研究所。  Shinya Yamanaka,1962年出生于日本大阪。1987年他从神户大学获得MD。在转向基础研究之前,他曾受训为整形外科医生。1993年他从大阪大学获得博士学位,之后他曾供职于美国旧金山Gladstone研究所和日本奈良先端科学技术大学院大学。目前他于日本京都大学担任教授。  今年的诺贝尔生理学或医学奖颁给两位发现“成熟、特化的细胞能够被重编程为可发育成身体组织的非成熟细胞”的科学家。他们的发现革新了我们对细胞和有机生命体发育的理解。  1962年,约翰戈登发现细胞的特化(specialisation)是可逆转的。在一项经典实验中,他将一个青蛙卵细胞的细胞核替换为成熟肠细胞的细胞核。这个改变了的卵细胞发育成为一只正常的蝌蚪。该成熟细胞的DNA仍含有发育成青蛙所需的全部信息。  40多年后,山中伸弥在2006年发现了小鼠的完整成熟细胞是如何能够被重编程为非成熟干细胞。令人惊讶的是,通过导入仅仅少量的基因,就可以将成熟细胞重编程为多能干细胞,即可发育成为身体各种组织的非成熟细胞。  这两项突破性的发现彻底改变了我们对于发育和细胞特化的看法。现在,我们知道成熟细胞并不需要永远局限在它的特化功能里。历史被改写,新的研究领域产生。通过重编程人体细胞,疾病研究的新机遇获得实现,诊断与治疗的新方法获得发展。  生命——一次不断特化的旅程  我们所有人都是由受精卵细胞发育而来。在受精后的第一天里,这些组成胚胎的非成熟细胞,每一个都具有发育成成熟生命体中各种细胞类型的能力,这一类细胞被称为多能干细胞。随着胚胎的进一步发育,这些细胞发育成神经细胞、肌肉细胞、肝脏细胞以及其他各类细胞——每一种细胞都肩负起成熟身体内的一项特定使命。之前,这趟从非成熟细胞到特化细胞的旅程被认为是单一方向的。人们曾以为,细胞在成熟过程中是以这样的方式发生着改变,不可能回到非成熟、多能的阶段。  青蛙的逆发育  特化细胞功能的不可逆转一度被当成是教条,约翰戈登向它发出挑战。他曾假设,细胞的基因组或许仍然含有其发育成生命体各种类型的细胞的所需要的全部信息。1962年,为了验证他的这种假设,他用蝌蚪肠道的成熟特化细胞的细胞核替换掉青蛙卵细胞的细胞核。该卵细胞发育成一只功能完全的克隆蝌蚪并最终长成如同实验培养出的成体青蛙。成熟细胞的细胞核并未丢失功能完全的生命体发育所需的能力。  戈登这次里程碑式的发现一开始是受到质疑的,但经过其他科学家的确认,人们接受了他的发现。这项发现引起研究热潮,相关技术获得进一步发展,最终发展到哺乳动物的克隆。戈登的研究告诉我们,一个成熟特化细胞的细胞核是可以被逆转到非成熟、多能化的状态。但是他的实验是将一些细胞的细胞核抽出,然后引入另外一些细胞的细胞核。有没有可能让一个完整的细胞回退到多能干细胞呢?  往返旅程——成熟细胞返回干细胞状态  在戈登的发现40余年后,山中伸弥在一项突破性的研究中回答了这个问题。他的研究有关胚胎干细胞,分离自胚胎并在实验室中培养的诱导多能干细胞。这些干细胞最初是由Martin Evans(2007年诺奖得主)从小鼠身上分离得到。山中伸弥试图发现保持它们未成熟的基因。当几个这样的基因被鉴别出来后,他进行了测试,以确定它们是否能够重编程成熟细胞变成多能干细胞。  山中伸弥与合作者用不同的组合方式向成熟细胞中引入了这些基因,这些成熟细胞来自于结缔组织和纤维原细胞。他们在显微镜下检测了结果,最终发现其中的一个组合起作用,而其“处方”是惊人的简单。通过同时引入四个基因,他们可以重编程纤维原细胞变成未成熟干细胞!  由此得到的诱导多能干细胞(iPS细胞)能够发育成多种成熟细胞,例如纤维原细胞、神经细胞以及肠细胞等。完整、成熟的细胞可被重编程成多能干细胞这一发现在2006年一经发表,立即被认为是一个重大的突破。  从惊人发现到医学应用  戈登和山中伸弥的发现显示,在某种情况下,特化的细胞能够回拨发育的时钟。虽然它们的基因组在发育中经受了修改,但这些修改并不是不可逆的。我们就此获得了对于细胞和有机体发育的一种新观点。  近年的研究显示,iPS细胞能够生成机体所有不同种类的细胞。这些发现也为全球科学家提供了新工具,使得他们在医学的许多领域做出了非凡的成就。iPS细胞也能从人体细胞中获得。  例如,可从罹患各种疾病的病人身上获得皮肤细胞,进行重编程,并在实验室进行检测以确定它们与健康人体细胞的不同。这些细胞对于理解疾病机制提供了无价的工具,从而为开发医学疗法提供了新机会。  诺贝尔奖网站官方公告(英文)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制