当前位置: 仪器信息网 > 行业主题 > >

组织学设备

仪器信息网组织学设备专题为您提供2024年最新组织学设备价格报价、厂家品牌的相关信息, 包括组织学设备参数、型号等,不管是国产,还是进口品牌的组织学设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合组织学设备相关的耗材配件、试剂标物,还有组织学设备相关的最新资讯、资料,以及组织学设备相关的解决方案。

组织学设备相关的资讯

  • 滨松数字病理扫描仪亮相中国解剖学会第十五届组织学与胚胎学青年学术研讨会
    滨松数字病理扫描仪亮相中国解剖学会第十五届组织学与胚胎学青年学术研讨会 中国解剖学会第十五届组织学与胚胎学青年学术研讨会于2017年7月12日至7月13日,在石河子大学举办。本次会议由中国解剖学会组织胚胎学专业委员会主办,新疆石河子大学医学院协办。旨在加强组织学与胚胎学专业同行们之间的教学、学术、技术交流与协作,展示教学改革成效,探讨组织胚胎学未来发展趋势。 滨松数字病理扫描仪NanoZoomer-SQ于本次会议中亮相,由滨松中国与上海千欣仪器有限公司共同出展,为与会专家们展示了独特的“轻便式”数字病理解决方案。 NanoZoomer-SQ于2015年推出,主要实现单张组织切片的全视野扫描。SQ有一个明显的优势,就是结构紧凑(360×380×440 mm,20kg),是滨松NanoZoomer家族中身材最“苗条”的一个,即使在一个超小的实验室,也能进行安放。轻巧的身形,并可直接与手提电脑连接,使其也易于移动,可以满足需在不同地点扫描切片时及时移动的需求。 滨松 NanoZoomer-SQ除了小巧身形博得了与会者专家们的注目外,其与系列中其他大型设备一样优秀的图像质量也获得了专家们的认可。装载器、传感器和光学系统高度集成于设备中,保证了可靠性和坚固性。另外,SQ具有很高的性价比,用户只需较低的成本,即可实现数字切片的远程访问和图像浏览,非常适合希望实现病理切片数字化的中小实验室和基层单位。 通过现场试用,许多与会专家也表示其操作也十分友好简单。NanoZoomer-SQ只需USB3.0标准接口及电源线相接,即可完成安装。在具体进行扫片时,用户只需通过十分直观的自有软件,即可扫描切片并观察结果,负责扫片和观察的人员只需简单的2步操作就能够利用NanoZoomer-SQ完成切片扫描工作。另外,用户也可根据具体的需求进行个性化的定制设置。 随着行业的不断发展,需要更加智能化、高品质的病理切片扫描、储存和共享技术,在本次会议中,滨松通过对“硬件+软件”的一体化和“紧凑、低成本”解决方案的展示,为中小实验室和基层单位数字病理的发展开拓了新的思路和可能。
  • Lecia收购Labindia显微镜及病理组织学业务
    2011年11月14日,Lecia(莱卡)公司宣布收购印度Labindia公司显微镜及病理组织学业务,具体收购金额没有披露。   Labindia公司是印度领先的解决方案和服务供应商。Lecia与Labindia的合作超过20年,Labindia成功在印度分销Leica产品。约130 家Labindia联营公司将转变为Lecia显微系统部门,维持现有客户,以及从Labindia获取满足客户需求和应用的连续性。实际上,收购是一个长期而富有成效的合作关系后自然而成,并且此次收购也有助于支持Lecia以扩大其在印度业务的策略。  Labindia和Lecia显微系统的合作历史可以追溯到20世纪80年代末,当时Labindia开始在印度为Reichert Jung的产品提供服务,不久之后Reichert Jung成为徕卡的一部分。Labindia董事Vijay Bibikar评论说:“我们深信,在这个时间点达成此项收购协议是双方合作进一步加强的表现。”  Lecia显微系统总裁Kaldowski表示,“我们高度赞赏我们的合作伙伴Labindia对我们在印度的业务增长的贡献。我们很高兴能在进一步挖掘印度市场的潜力,以帮助我们的客户,满足他们专业挑战的需求。”  据悉,同期AB SCIEX收购Labindia质谱业务;而去年,Life Technologies也收购了Labindia部分业务。
  • 质谱成像新技术推动癌组织分析进入数字时代
    在癌症研究领域,质谱成像(MSI)技术是前景广阔,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等诸多问题的限制。  现在,来自英国帝国理工学院(Imperial College London)的研究人员在《PNAS》杂志上报告称,他们开发出了一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。  质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。  而这项最新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。  研究人员表示,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。  与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生们选择最有效的治疗方法十分重要。  研究人员指出,自 19 世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。  他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。
  • 质谱成像新技术推动癌组织分析进入数字时代
    p  在癌症研究领域,质谱成像(MSI)技术是前景广阔,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等诸多问题的限制。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/806a5453-baab-47e2-9e92-be078e5686fe.jpg"//pp  质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。/pp  而这项最新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。/pp  研究人员表示,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。/pp  与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生们选择最有效的治疗方法十分重要。/pp  研究人员指出,自 19 世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。/pp  质谱成像技术无疑是完全自动化的组织学分析手段的新征程,而科学家不断研究的新技术,也在逐渐完善质谱成像技术实际应用所遇到的新课题。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/928073e4-589a-4fe5-a89d-b3ab900444a3.jpg"//pp style="text-align: center "  融智生物的新一代全谱可定量飞行时间质谱技术/p
  • 加速赋能您的组织成像研究 THUNDER 3D Tissue高分辨组织成像系统
    一更高的分辨率更细节的细胞生物学信息THUNDER技术采用硬件加软件的整体解决方案,在宽场成像原理下,通过计算清除(Computational Clearing)和自适应反卷积(Adaptive Deconvolution)的专利方法,有效的减少离焦信号的干扰,保留焦平面的信号,从而提高对比度,改善图像质量并提供更多细节信息供进一步分析。XY轴分辨率能达到136nm,Z轴分辨率能达到264nm,是一种广泛受到学术界认可的宽场高分辨率成像技术。(小鼠肾脏组织切片)通过THUNDER技术,排除模糊离焦信号的干扰,将原本“深藏于”模糊离焦信号之中的、微小的细节信息暴露出来,为进一步破解细胞生命动态变化的规律提供了新的思路。(视网膜切片,普通宽场成像,左;THUNDER成像,右)技术详情请点击点击下载THUNDER的工作原理:如何赋能细胞生物学研究新一代Live THUNDER,通过实时THUNDER技术,在预览的模式下,实现高分辨率条件下的视野寻找,提高实验工作效率。(脑组织切片成像的预览模式)二 更深的成像深度更完整的细胞生物学信息(脑组织切片 成像深度达150um)在上图中,用于厚样本成像(如脑组织成像,通常为了尽可能保留神经元的完整性,而制备较厚的组织样本;如类器官成像),通过Large Volume Computational Clearing(LVCC),一种匹配大体积的、厚的样品的THUNDER技术。在样本的上层,甚至最微小的细节都能被THUNDER解析。(神经元深度成像)三 更多的颜色(生物标记物)更丰富的空间信息(癌症组织6色成像)THUNDER结合上游的多色荧光染色技术,如TSA技术,突破常规荧光标记方法因为种属限制和特异性限制,可以实现超过4色的细胞生物学研究。通过多个荧光探针(或多个荧光蛋白)对不同的生物分子或细胞结构进行标记,可以同时观察多个目标,并了解它们之间的相互关系和空间分布,揭示细胞内的亚细胞结构、细胞类型、代谢状态、信号通路活性等多个方面的信息。四从高分辨率成像到样品捕获 更有效率的组织学研究方式(激光显微切割工作原理)THUNDER系统可以与激光显微切割(LMD)升级成为一体机。连接从高分辨率成像到精准的单个细胞或组织区域捕获,不再需要通过两种不同的系统进行组织和数据的转移。通过显微切割重力收集作用将其收集到下方的收集管中,以便进行下游处理。从高分辨率成像到精准的单个细胞或组织区域捕获,再到下游精确定量的分析技术,如 RNAseq、NGS、MS、qPCR、微阵列等,加速与赋能您的组织学研究。五应用案例【THUNDER小课堂】感觉神经元的高对比度快速三维成像【THUNDER小课堂】血管疾病的分子机制六申请样机徕卡显微咨询电话:400-630-7761关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 让诊断不再需要活检 —高速3D显微镜可实时观察活组织细胞
    美国哥伦比亚大学工程团队开发了一种技术,可实现活体内的实时成像并取代传统的活检。在28日的《自然生物医学工程》上发表的一篇论文中,研究人员描述了一种高速3D显微镜MediSCAPE,其能捕获组织结构的图像,以指导外科医生定位肿瘤及其边界,而无需活体取样分析病理结果。哥伦比亚大学生物医学工程和放射学教授、该研究的资深作者伊丽莎白希尔曼称,活检需要从体内切取小块组织,然后用简单的显微镜观察,因此可能需要几天时间才能得到诊断结果。希尔曼团队希望能直接捕获组织图像而不用切出样本。“这种技术可以让医生实时反馈他们正在查看的组织类型,无需长时间等待。”她解释道,这将让医生就如何最好地切除肿瘤并确保没有留下任何东西做出明智的决定。此外,对于珍贵的组织,如大脑、脊髓、神经、眼睛和面部等,切取组织还可能错过重要的疾病区域。希尔曼一直在开发用于神经科学研究的新型显微镜,这些显微镜可非常快速地捕捉活体样本的3D图像。此次,该团队通过观察小鼠肾脏对他们的显微镜进行了测试。他们观察到的结构很像标准组织学所得到的结构。最重要的是,过程中并没有添加任何染料。研究人员看到的一切都是组织中的自然荧光,而这些荧光通常太弱而无法看到。即使研究人员以足够快的速度进行整体3D成像,实时漫游,扫描组织的不同区域,MediSCAPE也能非常高效地显示出这些微弱的信号。研究人员甚至可将获得的体积拼接在一起,并将数据转化为组织的大型3D展示,这样病理学家就可像一整盒组织学幻灯片一样使用它。该团队展示了MediSCAPE在广泛应用中的强大功能,从分析小鼠胰腺癌到对人体移植器官(如肾脏)的非破坏性快速评估。研究人员认为,通过对体内的活组织进行成像,可获得比无生命的活检样本更多的信息。他们发现,实际上可看到通过组织的血流,并看到缺血和再灌注的细胞水平效应(切断肾脏的血液供应,然后让它回流)。该团队的最后一个关键步骤是将希尔曼实验室中标准SCAPE显微镜的大尺寸缩小为适合手术室并可供外科医生在人体中使用的系统。
  • 无锡市质管会理化无损检测协会组织学员于金义博检测中心参加培训
    无锡市金义博仪器科技有限公司www.instrument.com.cn/netshow/SH100833/#,是拥有自主知识产权以高速分析仪器研制、开发、制造、市场营销为一体的现代化高科技公司。公司荟萃了众多高科技人才和行业精英,致力于材料检测的发展和应用。专业制造红外碳硫分析仪、光电直读光谱仪、等离子体发射光谱仪、系列高速分析仪器等产品。产品广泛应用于钢铁、冶金、铸造、机械、建筑、大专院校、石油化工、质量监督及进出口商检等领域。 近年来公司奉行&ldquo 仪器精密、满意用户&rdquo 的经营理念,在全国设立十大销售服务中心,四十多个服务网点。产品遍及全国各地,并出口到南美、非洲、西亚、越南、台湾、香港等地。公司在发展材料检测仪器产品的同时,建立产品研发中心、材料检测中心、理化培训中心、产品展示中心及贸易结算中心五大中心。公司力求发展成为全面的检测仪器制造商和国际检测仪器供应商。 2011年4月24日,由无锡市质量管理协会理化无损检测协会组织部分学员来我司检测中心参加为期3天的现场培训。主要培训内容是五大元素的分析及材料物理性能的实训。我司检测人员对参加培训的人员给予了耐心的现场演练及指导工作。 无锡市金义博仪器科技有限公司检测中心掠影(一) 无锡市金义博仪器科技有限公司检测中心掠影(二) 学员参加培训图(一) 学员参加培训图(二)
  • 财政贴息贷款项目 | 从新鲜骨组织到骨形态计量分析的整体解决方案
    近日,国家卫健委发布国卫办财务函【2022】313 号文件——《国家卫健委开展财政贴息贷款更新改造医疗设备的通知》,鼓励及重点支持各类医疗卫生机构开展诊疗、临床检验、重症、康复、科研转化等涉及的设备更新改造,以及疾病预防控制机构开展科研等设备更新改造,实现“国家医学中心、国家区域医疗中心建设”、“专科医院重点学科建设”整体能力提升。预计将全面覆盖所有公立和非公立医疗机构,要求每家医院贷款金额不低于2000万元。9月28日,中 国 人 民 银 行 宣布设立设备更新改造专项再贷款,额度 2000 亿元以上,支持金融机构以不高于 3.2% 的利率向 10 个领域的设备更新改造提供贷款,加上此前中央财政贴息 2.5 个百分点,今年第四季度内更新改造设备的贷款主体实际贷款成本不高于 0.7% 。作为病理学诊断与科研、形态学计量与分析领域专业设备及技术服务的供应商,北京共赢联盟国际科技有限公司将继续为各医学科研院校提供从新鲜骨组织到骨形态学计量分析的整体解决方案,积极响应财政贴息贷款政策,助推医疗新基建。一、骨组织病理标本超快速处理系统该系统由金刚石分切取材技术和温控超声波技术组成,采用金刚石切骨机将新鲜骨组织病理标本、包括带金属植入物的骨头,分切成1-5mm的样本,再通过Histra-DC温控超声波脱钙脱脂固定仪和脱钙试剂,能够快速完成骨组织病理标本的前期处理,缩短固定、脱脂和脱钙的处理时间,没有人为造成的组织收缩或膨胀,对染色结果无影响,还可提高染色样本分辨率,十分有利于加快病理标本的诊断进程。二、不脱钙硬组织切磨片系统EXAKT不脱钙硬组织切磨片系统是由一组设备和装置成套构成,相互不可替代,彼此互相依存。其中包括E300/310CP硬组织切片机、E400CS硬组织磨片机、E402平行粘片装置、E510脱水浸润仪、E520光固化包埋机、E530干燥渗透聚合装置。EXAKT不脱钙硬组织切磨片系统能够将不脱钙硬组织标本制成医学组织切片,并保持软硬组织、组织与植入物之间的原有组织结构形态。该切磨系统特殊的技术设计、技术配置以及独特的工艺方法,均与常规设备和工艺不同。新鲜的医学组织标本经过固定及脱水处理后,用光固化树脂浸透、包埋、再行锯片、磨片、染色等步骤制成厚约10μm的医学组织切片。在显微镜下能够清楚准确地观察到组织的解剖结构及其之间的相互关系,能为医学软硬组织疾病的科学研究、新材料的生物相容性研究和嵌入物研究以及医学院教学等提供可靠的组织学评价依据。三、骨生物学研究分析平台BIOQUANT OSTEO IMAGER骨生物学研究分析平台是通过图像扫描采集与处理,将硬组织病理切片样本从实物形式转化为数据图像呈现在图像工作站上。运用骨生物学研究软件内置的测量模板、计算公式以及图像分析等功能,针对标定区域和分析目标进行二维或三维形态学数据的自动测量、计算和统计,开展定量与定型研究以及数字病理学分析,从而得出骨形态计量学、病理学以及材料相容性等数据分析报告。适用于骨形态学相关的病理学研究分析任务,包括但不限于牙齿、颌骨与口腔种植体研究、植入物与生物材料研究、骨骼表型研究、骨肿瘤转移研究、人体活检组织切片检查、骺骨和软骨研究、皮质骨结构研究、骨关节研究、骨质疏松与缺陷形成研究、破骨细胞分化分析、发育骨生物学研究、结节形成分析等涵盖骨科研究的所有领域。四、骨形态测量分析系统OSTEOMEASURE骨形态测量分析系统用于相关的数字病理学分析任务。医生将骨组织、牙齿、或含有植入物的硬组织切片,在荧光显微镜下进行观察后,通过软件控制相机拍摄采图,通过测量区域标定,利用骨形态计量学专业软件的测量列表,可以自动计算超过341种骨参数,并完成统计和病理学分析,以此得出数据报告,用于定性/定量研究。骨组织形态计量学测量指标多样且敏感性高,不仅能提供与骨密度仪BMD和Micro-CT测定类似的静态实验结果,更能通过测定动态参数如成骨细胞的数量、活性以及分泌类骨质、矿化沉积率和矿化延迟时间来分析骨骼矿化、软化或硬化的情况。这些细胞水平动态实验的测定结果能反映骨组织发生静态变化的相关机制。这些动态实验结果是骨密度BMD测定和Micro-CT测定无法比拟的,是形态学的独特优势。五、生命科学研究分析平台BIOQUANT LIFESCIENCE是由先进的数字扫描显微镜与生命科学研究专业测量分析软件组成。能够将病理切片样本从实物形式转化为数据图像,用于测量和分析。可以自动采集序列图片并拼接成可达1TB的高分辨率单色或多色大图,具备图像剪辑、图像测绘和图像校正。内置生命科学研究者常用的组织形态学数据测量模板和计算公式,自动完成二维和三维形态学计量。应用连续切片实现组织结构的3D重构。还可分析来自Micro CT,2D X-ray,扫描仪,相机等不同来源的图像。支持高精度的人工交互操作来得出形态计量学数据,在现代病理学、组织工程学、生物学和生命科学研究中,满足高效率、可存储、即时分析、安全共享、教学、远程会诊等需求。六、解剖学标本制备及生物塑化技术解决方案
  • 我国首个软组织及腹膜后肿瘤中心成立
    在6月27日于北京国际会议中心举办的第十届全国胃癌学术会议暨第三届阳光长城肿瘤学术大会上,100多位来自全国各地的专家一同参与了北京大学肿瘤医院软组织和腹膜后肿瘤中心的第一次学术研讨会,也宣告了我国首个肉瘤中心(SarcomaCenter)的正式成立。  软组织及腹膜后肿瘤为来源于间叶组织肿瘤的统称。它包括50种以上的不同组织学亚型,如多形细胞肉瘤、胃肠间质瘤(GISTs)、脂肪肉瘤、硬纤维瘤、平滑肌瘤、外周神经鞘瘤等。软组织肿瘤并不少见,每年仅软组织肉瘤的发病率约为5/10万。长期以来,由于软组织肿瘤和腹膜后肿瘤发病率较低、病理类型繁杂、临床表现各异等特点,该类肿瘤早期诊断及规范化治疗一直是医学界的难题。特别是腹膜后肿瘤,在发病早期,患者往往无特异性的表现,待出现症状之时,肿瘤往往已经极其巨大,压迫如十二指肠、肝、脾、肾、胰腺等腹腔重要脏器或大血管,给外科手术切除带来极大的困难,手术难度大、风险高,术后复发率高,给患者家庭及社会都带来了沉重的负担。  据统计,软组织及腹膜后肿瘤患者最容易反复局部复发,如果接受规范的手术治疗,切除后的5年复发率可以从50%降低到20%,5年生存率可以达到70%以上。放疗、化疗及靶向治疗目前取得了显著进展,包括基因检测的精准医疗也日益得到重视。在多学科专家团队共同参与下,根据患者情况进行个性化的综合治疗,将使患者的治疗效果进一步提高。  北京大学肿瘤医院每年收治此类患者400余例,为国内及国际领先。在积累一定的诊治经验后特成立此中心,旨在充分利用现有优质资源的基础上,对软组织及腹膜后肿瘤进行系统、规范化的诊治,集中、深入的进行科学研究,提高此类疾病的诊疗水平,最终使广大患者受益。  北京大学肿瘤医院软组织及腹膜后肿瘤中心依托该院国内一流肿瘤专业医院的学科优势,集中了我国软组织肿瘤与腹膜后肿瘤领域相关的肿瘤外科、肿瘤内科、放疗科、病理科和影像科等各专业顶级专家,可为软组织肿瘤和腹膜后肿瘤患者提供国际化、规范化的优质诊疗服务。据悉,该中心接诊的患者,将采用多学科协作会诊(MDT)体系,由多个学科的专家共同讨论制定患者的具体治疗方案。据北京大学肿瘤医院的专家介绍,由于肿瘤自身的复杂性,多数情况下单一治疗手段仅对早期患者及部分肿瘤有效,即便有效也难以获得满意疗效,而大多数肿瘤患者则需要将外科手术、化疗、放疗等多种方法有机地结合起来,针对患者的具体病情,提出最适合的个体化诊疗方案。  此次会议上,该中心还推出了亚洲第一个腹膜后肿瘤的指南性文件《北京大学肿瘤医院腹膜后软组织肿瘤诊疗共识》。
  • 3D显微镜使肿瘤手术样本完整活检 大型组织几分钟即可快速成像
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/550aef41-75aa-40f6-b325-2db358b78763.jpg" title="liux7689_b.jpg"/ /pp 英国《自然· 生物医学工程》杂志25日在线发表了一项研究成果:科学家利用改进的显微镜,实现了对肿瘤手术后完整切除的大型组织的快速成像。运用这种新方法,临床病理学家能在数分钟内获得整个样本的三维可视化图像,从而提高诊断准确性。/pp  医学上,肿瘤病理诊断需要研究疾病发生的原因、发病机制,以及疾病过程中患病机体的形态结构等等,从而为疾病的诊断、治疗、预防提供必要的实践依据。这是目前肿瘤科各种检查方法中最可靠的“金标准”,是疾病的最终诊断。常规的做法是,通过手术取出组织样本后,病理学家首先会通过化学固定保留其结构 然后将组织切成薄片,放置在载玻片上 再用染料染色,在显微镜下进行组织学检查以诊断疾病。/pp  但这一传统过程十分费时费力,在一个样本中,实际上只有几个组织切片得到了显微镜分析,其能为诊断提供的信息也就很有限。研究人员一直尝试突破这一瓶颈,因为这会显著影响临床医生正确做出决定的能力,从而导致病理分型错误。/pp  此次,美国华盛顿大学科学家乔纳森· 刘及同事优化了扫描样本切片的荧光显微镜,使手术样本可在数分钟内成像,且无需对样本进行处理。这种三维显微成像技术是利用光学层析技术获取样本三维图像的光学显微成像方法。研究团队的结果表明,显微镜可快速识别肿瘤切缘,避免标准组织病理学方法中产生的伪影,从而提供更准确的临床组织样本评估,改善对患者的诊断。/pp  研究人员表示,新技术很快就可用于手术后的肿瘤组织成像,医生将能以前所未有的效率和准度进行判断并采取治疗措施。/p
  • 第二届全国艾滋病临床影像学研讨会报道
    由艾滋病临床影像学组主办,首都医科大学附属北京佑安医院承办的的“第二届全国艾滋病临床影像学研讨会暨培训班”于2009年11月13日至15日在北京京西宾馆举行。本次会议由北京佑安医院的李宏军教授担任主讲,来自全国各大医院的专家分别就艾滋病诊断的新技术进行了交流 来自北京、上海、浙江、河南、河北、内蒙、山东、山西、贵州、云南、四川等省市国家重点医院的师生近五百人参加了会议,CCTV对本次大会进行了报道。     精彩大会  莱伯泰科作为主要协办商,在会议上展示了意大利Milestone公司创新的大体标本成像系统,李宏军教授做的题为“中国艾滋病合并症影像学疾病谱系的影像诊断与病理基础”的精彩大会报告中包括了采用大体成像进行艾滋病影像分析的主要工作和其所带来的便捷高效的信息储存和传输。与会代表对Milestone提供的这一独特技术非常感兴趣,纷纷索要产品信息和咨询相关技术。     莱伯泰科协办大会  莱伯泰科作为国内**知名度的实验室产品供应商,是中国最**的微波技术应用专家,在分析领域拥有丰富经验,目前正拓展其在医疗领域的业务,致力于推动微波快速组织处理这一创新技术在中国的应用,改变病理学界100多年来的冗长处理手段,显著提高组织学家和病理学家的工作效率,实现当天诊断,解除广大患者焦虑,为其带来福音。     大体成像产品展示
  • 10x Genomics收购Spatial Transcriptomics,旨在拓展“空间基因组学”业务
    p style="text-indent: 2em "近日,10x Genomics公司宣布,已收购位于瑞典的空间基因组学技术开发商Spatial Transcriptomics,收购金额未公开。/pp  作为新兴的空间基因组学领域的领先企业,Spatial Transcriptomics通过对基于组织样品的cDNA文库进行测序,将组织学和基因表达分析相结合,并开发了可视化基因表达和形态学数据的软件。该公司的技术平台结合显微成像技术和RNA测序技术,能够从一片完整的冰冻组织切片中,获取切片上不同位置细胞中的完整的转录组数据。该平台的工作流程将冰冻组织切片覆盖在特定的玻璃矩阵芯片上。芯片上固定着能够捕获细胞中mRNA的探针。探针上携带的条形码标志出它们在矩阵芯片上的位置。通过这种探针捕捉细胞中mRNA并进行测序的方法,研究人员可以观察到哪些基因在组织的特定位置表达,并且可以定量检测出它们的表达水平。/pp style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/fa310988-1b64-4652-864a-406919ce8df6.jpg" title="1.jpg" alt="1.jpg" style="text-align: center width: 300px height: 200px " width="300" height="200" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Joakim Lundeberg/spanbr//pp  Spatial Transcriptomics公司联合创始人Joakim Lundeberg表示:“从人类基因组测序到组织测序,再到单细胞测序,基因组学领域已经在很短的时间内取得了飞速进展。空间基因组测序将成为下一个发展前沿。”通过Spatial Transcriptomics公司的技术,研究人员不仅能够获得单细胞内的基因组数据,而且可以比较在组织不同部位的细胞中基因组信息的变化,了解细胞间的相互作用,为全面理解疾病的发生与发展提供宝贵的见解。此外,空间基因组学技术也为肿瘤学、神经科学和免疫学等疾病领域提供了丰富的可能性,还可用于更广范围的生物学研究,具有十分广阔的应用前景。  /pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/e6bbd33f-a105-4c38-8aef-c990b3c54bfc.jpg" title="2.jpg" alt="2.jpg" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "Serge Saxonov/spanbr//pp  “10x Genomics致力于寻求对生物学的全面理解,我们最近的增长和收购活动正呈指数地加速我们的进步,”10x Genomics首席执行官兼联合创始人Serge Saxonov表示,“我们很高兴Spatial Transcriptomics的团队能与我们联手。现在,研究人员不仅能够了解细胞内部发生了什么,还能了解细胞活动相互之间的关系。这是谜题中另一个不可或缺的部分,让我们更接近于看到生物学的全貌,从而推动新的研究发现。”/pp  strong2018年,10x Genomics动作不断。今年早些时间,10x Genomics在2018 AGBT大会上宣布推出Feature Barcoding技术/strong。这项技术能够对研究人员感兴趣的特定生物组分以及同一细胞内无偏向的基因表达或免疫图谱进行同时分析。strong近期,10x Genomics与BioLegend和Immudex合作开发了Feature Barcoding技术的相关应用/strong,包括适用于细胞表面蛋白检测的抗体panel以及适用于同时检测抗原特异性T细胞应用的panel。/pp  strong今年8月,10x Genomics宣布收购表观遗传学领域初创公司Epinomics/strong。这一收购为10x Genomics带来ATAC-seq技术和相关知识产权。10x Genomics随后也将Epinomics专有的表观遗传技术整合到其Chromium Single Cell ATAC Solution中。在今年10月召开的2018 ASHG年会上,10x Genomics公司详细阐述了新技术和解决方案,包括全新的Chromium Single Cell ATAC Solution。这一产品也成为第一款适用于快速且大规模并行分析单细胞表观基因组特征的商业化解决方案。此外,该方案包括功能全面的软件,可实现大规模单细胞ATAC-seq实验的快速分析及可视化。/pp  上个月,10x Genomics曾告诉《旧金山商业时报》,公司正计划明年将其占地40,000平方英尺的运营空间迁移到150,000平方英尺的新址中,并预计在未来几个月创造约200个新的工作岗位。strong今年4月份,10x Genomics还曾获得了1.25亿美元的资金,包括5000万美元的D轮融资和7500万美元的信贷融资/strong。本次收购Spatial Transcriptomics是10x Genomics的最新扩张计划。双方本次联手将如何整合基因组和组织学信息?10x Genomics又将如何撬动空间基因组学领域?还让我们拭目以待。/pp  参考资料:/pp  1. 10x Genomics Acquires Spatial Transcriptomics/pp  2. 10x Genomics Maintains Expansion with Spatial Transcriptomics Acquisition/p
  • 重磅!华人科学家发明笔形质谱探测器,能精准判定癌灶与正常组织的界限
    p  担心肿瘤切除不彻底?外表看不出异常的组织该不该切?这样的担忧和疑问恐怕不止一位病人和医生有过。/pp  9月6日著名期刊《科学转化医学》杂志以封面的形式发表的重磅研究成果,也许将打消这些顾虑。德克萨斯大学奥斯汀分校的研究人员开发了一种方便快速的笔形探测器,能在10秒之内确定手术切缘组织的良恶性状况,用时是现行病理诊断手段的1/150[1]!/pp style="text-align: center "img title="1.gif" style="width: 600px height: 338px " src="http://img1.17img.cn/17img/images/201709/insimg/ec6e1f36-58a7-42a7-9ee7-bdc28f5350e7.jpg" width="600" vspace="0" hspace="0" height="338" border="0"//pp style="text-align: center "strong哪里不清楚?那就点哪里!/strong/pp  手术切除实体肿瘤时,对切缘性质的判断是非常关键的。以乳腺癌治疗的保乳术为例,要判定癌灶与正常组织的界限,既要保证尽可能全部切除癌组织,让手术切缘没有癌细胞残留,又要尽可能保留正常组织,以达到外表美观的目的。而对肺癌、卵巢癌等癌症,若手术切除后仍留有癌灶残余,原处复发往往预后不良。因此,完整切除肿瘤并进行准确的切缘判断是手术高质量的体现。/pp  但到底切除范围多大,才能实现完整切除不留后患呢?临床实践中并没有统一的标准,手术中更多要依靠术者根据术前检查结果、肿瘤形态、切除组织量对正常生理功能的影响等因素进行判断,这就为癌症复发留下了可乘之机。/pp style="text-align: center "img title="2.jpg" style="width: 316px height: 400px " src="http://img1.17img.cn/17img/images/201709/insimg/4f903cba-8933-43a5-a74c-777fa6eaf912.jpg" width="316" vspace="0" hspace="0" height="400" border="0"//pp style="text-align: center "strong本期《科学转化医学》封面/strong/pp  当然,医生们也并非全靠着经验和感觉行事,冰冻切片检查可以在手术过程中快速提供病理诊断,但这一方法也存在明显的局限性。冰冻制片过程会影响组织结构和癌细胞形态,因此阅片医生需要丰富经验进行精准判断。虽然相对快捷,但冰冻切片检查过程一般也需要30-40分钟,手术时间延长也会带来病人出现麻醉意外的风险。而如果将病理诊断放到术后进行,若手术切缘的确有癌组织残留,病人可能又要再次经历手术,医疗花费增加、手术并发症风险等一系列问题随之而来[2]。/pp  针对这一问题,近年来也不断有新的技术手段和理念被提出,如术中荧光染色法[3]、拉曼光谱技术[4]、质谱分析法[5]等。基于质谱分析法的多种手段已在开发和应用中,如电喷雾解析质谱(DESI-MSI)、基于快速蒸发电离质谱的智能电子手术刀iKnife[6]等。/pp style="text-align: center "img title="3.jpg" style="width: 300px height: 168px " src="http://img1.17img.cn/17img/images/201709/insimg/93861f9f-876c-45a5-9843-afd3e950cec1.jpg" width="300" vspace="0" hspace="0" height="168" border="0"//pp style="text-align: center "strong智能手术刀iKnife/strong/pp  这些方法虽然有着较高的准确性,但也有着各自的局限性。DESI-MSI需要高电压产生电喷雾,限制了其进入手术室实时应用的能力,而iKnife则需对组织进行切除后再作判断。能否有一种无创且便于推广的手段,实现手术过程中的快速病理定性呢?/pp  Livia Ebervin带领的德克萨斯大学奥斯汀分校研究团队也许找到了答案。她们开发出了一种实时组织学诊断设备,命名为MasSpec Pen。这支“神笔”是多学科共同努力的结晶,Ebervin带领的化学团队、Thomas Milner教授带领的生物医学工程团队、贝勒大学医学院和MD安德森癌症中心的病理学研究人员携手完成了开发工作。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/3623ab76-a0d0-4934-a9cb-0d1d87ecbe84.jpg"//pp style="text-align: center "strongLivia Eberlin教授(左)和论文第一作者张佳玲博士(右)/strong/pp  MasSpec Pen的整套设备主要由三个部分组成:一台微量注射泵、双向活瓣导管和形状与一支笔相似的手持探测器。当然,旁边的质谱分析仪也是必不可少。相信看过示意图,很多外科医生会对它的控制方式感到颇为亲切。这不就像整天握在手中的电刀嘛!/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/fbd3740f-46a1-4e92-b55b-309ac97f1170.jpg"//pp style="text-align: center "strongMasSpec Pen设备示意图/strong/pp  用Eberlin教授自己的话来简单介绍一下MasSpec Pen的工作原理:“随着生长失控,肿瘤细胞的代谢会出现明显失调,与正常细胞的差异极大,因此我们用MasSpec Pen对组织进行像采集指纹一样的提取和分析。通过简洁和平缓的化学过程,MasSpec Pen就能在不造成组织损伤的状况下迅速提供给我们诊断所需的分子信息。[7]”/pp  以下两张动图可以更好地诠释MasSpec Pen的工作流程。/pp style="text-align: center "img title="6.gif" src="http://img1.17img.cn/17img/images/201709/insimg/28d33f75-a63b-4422-ac15-1cb7d4248c21.jpg"//pp style="text-align: center "strong探测器注入极微量的水,提取出病人体内的小分子物质/strong/pp style="text-align: center "img title="7.gif" src="http://img1.17img.cn/17img/images/201709/insimg/a148e006-072a-49fd-91f7-9f9482041389.jpg"//pp style="text-align: center "strong提取物传递到质谱分析仪,进行良恶性的判断/strong/pp  整个过程中,探测器接触组织的时间仅需3秒,而判断可在10秒钟之内完成。/pp  当然,为了实现良恶性的判断,还需要首先收集到用来判断的数据。研究人员先从正常的组织中获取了相关的数据图谱,并与DESI-MSI法的结果进行了比对,结果基本一致。再用同样的手段进行对癌组织的检测,标定出与正常组织明显不同的图谱表现,就让“神笔”有了判断的基础。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/9a9b744a-221a-4422-ad01-96337d6420a6.jpg"//pp style="text-align: center "strong正常组织(上)和癌症组织(下)的质谱图对比/strong/pp  在实现快速判断的同时,MasSpec Pen的损伤也是极小,相比大手术时动辄十几公分的切口,下图里400微米的取样,基本可以称为完全无创了。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/e62bdc51-095d-4a34-972b-987989d028f3.jpg"//pp  /pp /pp /pp  是时候把“神笔”投入实战了。使用MasSpec Pen,研究人员对包括肺、卵巢、甲状腺、乳腺在内的253份人体组织样本进行检查,其中近半为癌症组织,而这些癌症每种都会出现不同的质谱图。MasSpec Pen的表现没有让人失望,数据分析的结果显示,它的诊断特异性达到了96.2%,敏感性为96.4%!/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/1a547d9d-c020-40f6-9fc4-562dbcc17d04.jpg"//pp style="text-align: center "strongMasSpec Pen对不同类型肿瘤的判断精确度均很高/strong/pp  研究人员随后对MasSpec Pen能否准确区分组织学上的良恶性区域边界进行了测试,同样得到了令人满意的结果,MasSpec Pen的判断与病理诊断结果几乎完全相同。/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/b4ebf04d-e3cf-453f-b827-4a22a027ae5a.jpg"//pp  为继续验证MasSpec Pen的准确性,研究人员决定在小鼠模型上进行进一步的活体试验。在向小鼠植入乳腺癌细胞并培养后进行手术切除,再用MasSpec Pen进行取样检测,分析的结果也清晰地显示出了正常组织与癌组织的不同。/pp  Livia Eberlin教授对“神笔”的临床前景抱有很高的期待。“和术后的癌症病人交谈时,很多人说的第一句话就是:‘希望医生们把肿瘤彻底切干净了’。若情况并非如此,就真的很让人伤心。我们的成果可以大幅提高外科医生手术中真正彻底切除肿瘤所有部分的概率。”/pp  Eberlin团队成员,毕业于北大化学与分子工程学院的论文第一作者张佳玲则说:“在设计MasSpec Pen时,我们就确定只有探测器的探头和注入的水会与组织产生接触,从而保持组织的完整性。它有很高的生物兼容性和自动化水平,我们对将它转入临床使用极其兴奋。”[7]/pp style="text-align: center "img title="12.jpg" src="http://img1.17img.cn/17img/images/201709/insimg/aac8e4b8-0659-4431-92f7-2344e1592fa8.jpg"//pp  Eberlin教授希望,这一研究成果能在2018年进入临床开展初步的验证[8]。不过只研发出“神笔”,并不能解决投入临床实践面临的所有问题,首当其冲的拦路虎就是质谱分析仪的配备问题。由于价格高昂(在美国可达50万美元一台),质谱分析仪往往多见于实验室,在手术室中相当少有。/pp  对此Eberlin教授表示,她设想开发一种体积更小、仅保留MasSpec Pen配套功能,从而更加廉价的质谱分析仪,应用于手术室环境。这一想法也并非不切实际,佐治亚大学的研究人员今年就曾在《自然· 纳米技术》上发表相关的研究[9]。/pp  MasSpec Pen的功能或许不仅限于判断肿瘤的切除程度。在获取更多数据建立大规模的数据库后,研究人员还希望将它与腹腔镜手术系统、机器人手术系统等微创技术和可视化技术结合,从而促进更广泛的临床应用。/pp  《科学转化医学》用“笔比手术刀还神奇?”来形容此次的成果。奇点糕衷心希望,这样一种简洁、快速、准确的诊断手段能尽快进入临床,帮助外科和肿瘤医生。/pp  参考资料:/pp  1.http://stm.sciencemag.org/content/9/406/eaan3968/pp  2.Buchholz T A, Somerfield M R, Griggs J J, et al. Margins for breast-conserving surgery with whole-breast irradiation in stage I and II invasive breast cancer: American Society of Clinical Oncology endorsement of the Society of Surgical Oncology/American Society for Radiation Oncology consensus guideline[J]. Journal of clinical oncology, 2014, 32(14): 1502-1506./pp  3.Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial[J]. The lancet oncology, 2006, 7(5): 392-401./pp  4.Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science translational medicine, 2015, 7(274): 274ra19-274ra19./pp  5.Chughtai K, Heeren R M A. Mass spectrometric imaging for biomedical tissue analysis[J]. Chemical reviews, 2010, 110(5): 3237-3277./pp  6.Balog J, Sasi-Szabó L, Kinross J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry[J]. Science translational medicine, 2013, 5(194): 194ra93-194ra93./pp  7.https://news.utexas.edu/2017/09/06/new-device-accurately-identifies-cancer-in-seconds/pp  8.https://spectrum.ieee.org/the-human-os/biomedical/devices/handheld-mass-spectrometry-pen-identifies-cancer-in-seconds-during-surgery/pp  9.Li A, Zi Y, Guo H, et al. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry[J]. Nature Nanotechnology, 2017, 12(5): 481-487./p
  • 新型组织血氧成像仪获认证
    日前,由中国科学院合肥物质科学研究院安光所刘勇研究员、王贻坤研究员团队研发的一款基于新型光谱成像技术的组织血氧检测装备,正式获批医疗器械注册证,这也是目前唯一获得NMPA(国家药品监督管理局)认证的血氧成像技术产品。  血氧监测技术不断推陈出新,近年来,基于空间频域光谱成像技术的组织血氧检测新技术成功问世。安光所光电子中心团队长期专注于生物医学光学的研究工作,在组织光谱测量与分析等方面积累了较好的经验。  经过多年研发,在国家自然科学基金、合肥综合性国家科学中心项目、安徽省重点研究与开发计划等多个项目的支持下,合作团队在基于空间频域光谱成像技术的组织血氧检测新技术方面进行了深入研究,突破组织光学参数提取、表面轮廓提取、图像切割、运动伪影消除等多项关键技术,并与多家三甲医院进行临床合作研究,成功研制出了具有完全自主知识产权创新医疗器械——组织血氧成像仪。  组织血氧成像仪作为一种非接触式的光学成像技术,与传统的监测方法相比,这项基于新型光谱成像技术的组织血氧检测技术有显著优势。一是高精度,新型光谱成像技术结合了结构光和特定的光传输模型,在检测组织形态结构的同时可以提供组织的光学参数,从而提高血氧检测的准确性;二是高效,相比传统接触、耗时的检测方式,组织血氧成像仪,采用可移动的扫描探测器,实现局部组织的氧合血红蛋白、脱氧血红蛋白、血氧饱和度等重要生理参数的快速成像,并定量给出具体数值;三是应用广泛,在内分泌科、血管外科(手足外科)、健康管理中心以及烧伤创面、各类重建皮瓣手术等检测评估方面具有较好的临床价值。
  • 施一公、李家洋入选欧洲分子生物学组织外籍成员
    当地时间5月21日,欧洲分子生物学组织(EMBO, European Molecular Biology Organization)公布了新当选成员名单,清华大学施一公教授入选EMBO外籍成员。  此次共有52名优秀的生命科学家入选,其中43名来自欧洲及其毗邻国家,9名外籍成员分别来自美国、中国、加拿大、日本和印度,其中2名成员来自中国,另一位入选的中国科学家是中国农业科学院院长、中科院院士李家洋研究员。  欧洲分子生物学组织成立于1964年,旨在推动欧洲及世界的生命科学发展。每年选举优秀的生物学家为其成员,至今共有近1600名欧洲及外籍成员,其中57位为诺贝尔奖获得者。
  • 北京中仪远大公司组织迎新年滑雪活动
    新年快要到了,北京中仪远大科技有限公司在北京怀北国际滑雪场组织了滑雪活动,让诸多从未滑过雪的同事有了一次全新的体验。既放松了身心,也增进了彼此的了解。  滑雪使人感受激情。走出温室,在冬日的阳光里搏击风、搏击雪、搏击自己的恐惧。  滑雪使人感受温情。当别人把你扶起来帮你穿上雪鞋的那一刻,你就会不断受到其它滑雪者的鼓励和关怀。  大家在雪花中尽情放松。           大家在体育竞技中得到乐趣,也在大自然的环境中找到了活力。感谢公司活动的组织!!!
  • 中国生物工程学会理事长高福院士当选欧洲分子生物学组织外籍院士
    5月23日,欧洲分子生物学组织(European MolecularBiologyOrganization,EMBO)公布了新入选的优秀生命科学家成员名单。中国生物工程学会理事长、中国科学院微生物研究所研究员、中国疾病预防控制中心副主任高福院士作为中国科学家当选EMBO外籍院士(会士, Associate Member)。  高福理事长长期从事病原微生物与免疫学研究,近年聚焦于新发、突发传染性病原的跨物种传播以及与宿主互作机制,关注全球公关卫生政策与策略研究。在国际上率先取得了一系列突破性、标志性进展,研究成果发表在Cell、Nature、Science、Lancet、NEJM、PNAS等国际最高水平的生物和医学期刊。高福理事长因其在病原微生物与免疫学领域做出的突出贡献当选中国科学院院士(2013)、发展中国家科学院院士(2014)、美国微生物科学院院士(2015)、欧洲分子生物学组织外籍院士(2016)。  EMBO为国际生物医学界著名的非官方的学术组织,成立于1964年,旨在推动整个欧洲乃至全世界分子生物学及相关领域的合作和发展,每年推举在生物医学领域有突出贡献的优秀科学家为其成员,会员遴选程序非常严格。此前,当选EMBO外籍成员的中国科学家仅有六位:2006年入选的杨焕明院士,2013入选的李家洋院士和施一公院士,2014年入选的王晓东院士,以及2015年入选的曹雪涛院士和邵峰院士。
  • IMC20分会场集锦:当电子显微学遇见艺术
    2023年9月11日,四年一届、国际显微学界的奥林匹克盛会——第二十届国际显微学大会(IMC20)在韩国釜山会展中心(BEXCO)隆重开幕。本次大会由韩国显微镜学会 (KSM)和国际显微学联合会 (IFSM)共同主办,会议吸引来自超过49个国家和地区的3000余名电子显微学专家学者、仪器技术专家代表参会交流。韩国釜山会展中心大会为期五天,分别在每天上午安排了一位大会特邀报告。同时,分会报告分为生命科学、物理科学、分析科学、主题论坛等四大主题,四大主题分设若干专题分会场,在几天的议程中平行开设,总计报告一千余个。大会同期还安排了IFSM青年科学家论坛、poster展示、午餐研讨会、仪器设备展、企业沙龙等多种活动。在主题论坛中,SS-01.1.专题分会场主题为“显微镜与艺术”,分享了电子显微学与艺术的一场碰撞。以下为报告内容摘录,以飨读者。报告人:美国德克萨斯大学达拉斯分校Moon Kim教授报告题目:When Nanoscience Becomes ArtMoon Kim详细阐述了纳米科学领域中的艺术之美。纳米艺术是一个新的学科领域,通过探索和展现纳米级别的自然和人造结构的艺术性,将科学和艺术有机地结合在一起。纳米艺术主要有两种表现形式:第一种是直接在科学实验中观察纳米结构的美学价值;第二种则是通过使用天然或人造材料来创作纳米甚至更小尺寸的艺术品。报告中列举了几个具有代表性的科学发现,这些发现中都蕴含着艺术之美。其中包括“原子花”,这是一种新发现的Mo6Te6纳米线,由于其独特的花形结构,给人们带来了强烈的视觉冲击。还有“纳米峡谷”,这是由达拉斯大学Nano&Beyond实验室发现的石墨烯纳米峡谷。另一个发现则是“纳米太阳”,这是由250纳米硅酸盐纳米壳颗粒组成的结构,外壳内部的氧化铁呈鲜红色,使得外壳看起来如同一个 “太阳耀斑”。这些纳米级的发现不仅展示了科学技术的巨大潜力,更揭示了科学与艺术的紧密联系。在这个不断扩大的领域中,科学家们既是研究者,也是艺术家,他们通过独特的视角和不懈的努力,让我们得以一窥微观世界中的艺术之美。报告人:韩国高丽大学医学院解剖学系Im Joo Rhyu教授报告题目:The Impact of Microscopy Invention on Paintings in the 1900sIm Joo Rhyu报告讲解一副奥地利象征主义画家Gustav Klimt在20世纪初创作的代表画作之一《吻》开始,继而探讨了显微镜与代表生命的细胞及艺术之间的联系。Gustav Klimt在20世纪初创作的代表画作之一《吻》接着,分别对比介绍了显微镜的发明历史、细胞的发现历史。随着显微镜技术的不断精进,这种观察的深入对于我们理解生命的过程产生了深远影响。显微镜被广泛应用于微生物学、组织学和胚胎学等领域,帮助科学家们深入探索细胞结构和功能,以及生命的奥秘。此外,Im Joo Rhyu还分享了艺术在科学研究中发挥的作用。正是由于显微镜下可以清晰地观察到细胞和生物的结构,才使得艺术家们有可能将其描述出来,让更多人认识到这些科学成果。这些科学研究成为激发艺术家灵感的缪斯,并允许他们扩大表达的视野。显微镜与艺术的密切联系不仅为科学研究提供了重要支撑,也促进了人类对于生命的理解和欣赏。报告人:以色列特拉维夫大学纳米科学与纳米技术中心Zahava Barkay博士报告题目:Science and Art in “Under the lens” exhibitionZahava Barkay从展览中显微技术画作呈现的角度,为大家展示了镜头下的科学与艺术。首先,Zahava为大家分享了去年下半年在耶路撒冷国际会议中心举行的一次展览中的系列批判性油画画作。在人类好奇心驱使下,这些画作展开了对显微镜技术发展历程与显微镜头下的故事。同时,也分享了展览设计的框架,从历史角度,首先要考虑所有交叉领域是如何以个体角度介入的,其次要关注研究的微观世界与生活的宏观世界是如何关联的,最后还要考虑显微镜对艺术发展的贡献是什么。接着,Zahava针对系列代表性画作,逐一介绍了这些以上的展览设计理念是如何在这些画作中体现出来的。这些画作涵盖了从17世纪显微镜技术在科学界引起的风暴,到显微镜技术对18-19世纪艺术的贡献,到20世纪电镜、扫描隧道显微镜等技术的出现,再到21世纪的当下对显微镜技术的无线遐想等。Zahava分享的部分画作(下图图注:电子显微镜和光学显微镜的历史,这幅丙烯布面油画展示了显微镜的发展历史:扫描电子显微镜,包括原子模型(左)和各种光学工具,包括伽利略显微镜 (右),SEM屏幕上的图像为整个场景提供了背景。这幅图也展出在以色列显微学会举办的一次艺术显微镜展览上,展览网址:http://www.ismicroscopy.org.il/ism-art-exhibition/)最后,Zahava表示,显微镜对我们的社会生活的影响是通过对成熟科学和生物科学的研究来实现的,而绘画艺术和摄影本身,提供了一个广阔的视角,跨越了主动的人,被动的设备,过去和现在之间的界限,融合微观和宏观领域,成为记录科学与艺术的一种很好的方式。报告人:德国锡根大学微纳米分析组Julian Mueller报告题目:A modern look at medieval Zwiscchgold plating由金在银上制成的双层金属薄片通常被认为是金箔的替代品,Zwischgold为大家分享了中世纪镀金工艺的发展过程,如流行于14世纪中世纪晚期的雕塑作品中,镀金工艺应用于雕像上的头发、胡子、毛皮大衣、毛皮外衣等,并通过电镜表征手段分析了其双层的结构。接着介绍了当前电镜制样技术与喷金技术发展历程,喷金样品的三维纳米断层成像分析等。通过历史镀金工艺与当前电镜制样技术中的应用对比,展现了纳米分析技术在艺术领域的重要作用。流行于14世纪中世纪晚期的雕塑作品中镀金工艺的应用案例
  • 【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织
    【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织(文末预约试拍)01—研究介绍脑组织样本的组织学分析给我们提供了有关导致常见神经退行性疾病的病理过程的宝贵信息。在这种情况下,开发新的高分辨率成像方法是神经科学当前面临的挑战。为此,我们使用了一种被称为随机光学重建显微镜 (STORM) 的超分辨率成像技术来分析人脑切片。作者将 STORM 细胞成像方案与神经病理学技术相结合,对患有神经退行性疾病的患者和对照受试者的脑样本进行了成像。02—研究结果(节选)作者在新皮质、白质和脑干样本中执行了 2D、3D 和双色STORM成像 。STORM 被证明在可视化致密蛋白质包涵体的组织方面特别有效,作者对阿尔茨海默病、帕金森病、路易体痴呆和额颞叶变性患者的中枢神经系统内的病理聚集体进行了 50 nm 分辨率的成像。聚集的 Ab 分支在细胞外基质中呈网状和交联,宽度为 60 至 240 nm。神经元内 Tau 和 TDP-43 内含物更密集,胞体呈蜂窝状,轴突呈丝状组织。最后,α-突触核蛋白病理学的 STORM 成像揭示了路易体的内部组织,这是传统荧光显微镜无法观察到的。1、使用 STORM 和TEM测量对人脑前额叶皮层冷冻样本进行成像图1、使用 STORM 对人脑样本进行超分辨率成像。(A) 用于 STORM 成像的光学设置示意图。I.B.,入射光束;E.F,渐逝场;R.B.,反射光束。(B) STORM 采集人脑切片中的皮层轴突,对神经丝 (NF) 进行免疫染色:首先采集传统的宽视场荧光显微镜图像。(B1),然后强烈增加激发功率以诱导荧光团闪烁,并获得数千帧记录(B2-B5)。以亚像素精度(B6-B9)在每帧的基础上检测到激活的荧光分子的定位。然后使用来自所有帧的累积定位来重建超分辨率图像(B10)。IF,成像帧。(C) 使用常规宽视场荧光显微镜、STORM 和透射电子显微镜 (TEM) 获得的纵向和横向切片前额叶皮层轴突的代表性图像。(D 和 E)使用常规荧光显微镜、STORM 和 TEM 在人脑中测量的轴突直径(纵向切片)和面积(横向切片)。误差线表示具有标准偏差的平均值。*P .0012、AD 患者脑样本中老年斑和神经原纤维缠结的STORM图像图2、AD患者大脑样本中老年斑和神经原纤维缠结的STORM图像。(A1) AD 患者新皮质中老年斑的代表性图像(Ab 的免疫组织化学检测)。(A2) 同一患者的新皮质切片中整个老年斑块的常规荧光显微镜图像对 Ab 进行免疫染色。(A3) 同一区域的风暴图像。插图(1 和 2)显示了聚合 Ab 分支的分布和大小的特写细节。(A4) 老年斑中 Ab 纤维(黑色箭头)的比较 TEM 图像。(B1) AD 患者新皮质中神经原纤维缠结的代表性图像(p.Tau 的免疫组织化学检测)。(B2) 在同一患者的新皮质切片中,整个退化神经元的胞体内神经原纤维缠结的常规荧光显微镜图像被 Ab 沉积包围。(B3) 通过结合传统荧光显微镜 (Ab) 和 STORM (p.Tau) 对同一神经元进行成像。插图(3 和 4)显示了胞体中 p.Tau 聚集体的蜂窝结构和轴突中的丝状组织的特写细节。(B4) 神经原纤维缠结中 Tau 丝(白色箭头)的比较 TEM 图像。03—研究总结本文中,作者结合了超分辨率显微镜和神经病理学技术来分析人脑切片。迄今为止,组织中纳米结构的成像主要依赖于透射电子显微镜,这是一项耗时的技术,需要超薄组织切片 (50-70 nm) 进行严格的样品制备,并限制了免疫靶向多样性和3D采集。相反,STORM在样品制备,广阔的观察领域,多分子标记和3D采集方面具有光学荧光显微镜的优势,而图像采集和重建仅需几分钟。人脑样本的 STORM 成像进一步打开了全面了解常见神经系统疾病的大门。这种技术的便利性应该会直接扩展其在人脑超分辨率成像方面的应用,为当前神经科学面临的挑战提供更好解决方案。04—超高分辨率显微成像系统 iSTORM前文中提及的随机光学重构显微镜(STORM)技术,目前已成功实现商用,有需要STORM技术进行实验研究的专家老师们,请文末填写问卷,即可预约获得 iSTORM 超高分辨率显微成像系统试拍服务哦~超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在 20 nm的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及超分子结构解析、生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大性突破。图3、超高分辨率显微成像系统iSTORM。超高分辨率显微成像系统 iSTORM 具有 20 nm超高分辨率、3通道同时成像、3D同步拍摄、实时重构、2小时新手掌握等特点,已实现活细胞单分子定位与计数,并提供荧光染料选择、样本制备、成像服务与实验方案整体解决方案,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:P. Codron, F. Letournel, S. Marty, L. Renaud, A. Bodin, M. Duchesne, C. Verny, G. Lenaers, C. Duyckaerts, J.-P. Julien, J. Cassereau and A. Chevrollier (2021) Neuropathology and Applied Neurobiology 47, 127–142 STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain
  • 科学岛团队研发的组织血氧成像仪获批医疗器械注册证
    由中科院合肥物质院安光所刘勇研究员、王贻坤研究员团队研发的一款基于新型光谱成像技术的组织血氧检测装备,正式获批医疗器械注册证,这也是目前唯一获得NMPA(国家药品监督管理局)认证的血氧成像技术产品。  血氧监测技术不断推陈出新,近年来,基于空间频域光谱成像技术的组织血氧检测新技术成功问世。安光所光电子中心团队长期专注于生物医学光学的研究工作,在组织光谱测量与分析等方面积累了较好的经验。经过多年研发,在国家自然科学基金、合肥综合性国家科学中心项目、安徽省重点研究与开发计划等多个项目的支持下,合作团队在基于空间频域光谱成像技术的组织血氧检测新技术方面进行了深入研究,突破组织光学参数提取、表面轮廓提取、图像切割、运动伪影消除等多项关键技术,并与多家三甲医院进行临床合作研究,成功研制出了具有完全自主知识产权创新医疗器械——组织血氧成像仪。  组织血氧成像仪作为一种非接触式的光学成像技术,与传统的监测方法相比,这项基于新型光谱成像技术的组织血氧检测技术有以下几个显著的优势:一是高精度。新型光谱成像技术结合了结构光和特定的光传输模型,在检测组织形态结构的同时可以提供组织的光学参数,从而提高血氧检测的准确性;二是高效。相比传统接触、耗时的检测方式,组织血氧成像仪,采用可移动的扫描探测器,实现局部组织的氧合血红蛋白、脱氧血红蛋白、血氧饱和度等重要生理参数的快速成像,并定量给出具体数值;三是应用广泛。在内分泌科、血管外科(手足外科)、健康管理中心以及烧伤创面、各类重建皮瓣手术等检测评估方面具有较好的临床价值。
  • 重磅:湖北省高校实验室工作研究会下文 近70所高校设备处将组团参观“华中科教仪器展”
    2022湖北“高教会”来啦!第十一届华中科教仪器与技术装备展览会将于2022年9月27日至29日在武汉中国光谷科技会展中心举办。日前,湖北省高校实验室工作研究会下达《关于举办2022华中科教仪器展通知》文件,这是该研究会十年来首次参与主办科教仪器展。研究会成立于1983年11月,是由湖北省高校实验室管理、设备管理以及实验教学等主管部门自发组成的学术团体。现有会员单位近70个,个人会员达300多人,第十一届理事长单位华科大,副理事长单位武大、华师、理工大、地大、财大、华农,涵盖湖北省本科高校、高职高专和独立学院等。在高校实验室建设与管理、技术物资采购、信息化建设等方面积极开展理论与实践研究,组织学术交流与研讨活动,积极服务湖北省高校实验室建设工作。详情请登录:hbsys.ccnu.edu.cn2022第十一届华中科教仪器与技术装备展览会规模全新升级,A1馆展示科学仪器及生命科学/生物技术,A2馆展示科学仪器及实验室装备,A3馆展示教育装备/高职教仪器及高校后勤。让湖北各高校设备处带队的庞大参观团老师们,来有所值,品类齐全、专业对口,积极打造华中地区科教全产业链“一站式”采购平台。参展联系:张玉 15972141556同微信号
  • 洛克菲勒大学Brian T.​Chait教授获US HUPO 2021组织颁发的蛋白质组学终身成就奖
    仪器信息网讯 2021年3月8日-11日,第17届美国人类蛋白质组学会议(US HUPO 2021)于线上盛大召开。自2005年以来,美国HUPO每年举行一次年度会议,除US HUPO外,该组织还联合多方举办过3届HUPO国际会议。本年度的US HUPO会议期间公布了该组织的多个奖项结果,其中洛克菲勒大学Brian Chait教授获2021年的蛋白质组学终身成就奖,加利福尼亚大学的PeiPei Ping教授获2021年的蛋白质组学杰出贡献奖。  US HUPO颁发的蛋白质组学终身成就奖全称为“Catherine E. Costello蛋白质组学终身成就奖”,该奖项由US HUPO赞助,是为了纪念其第一位获奖者Catherine E. Costello而设立的。  第三届获奖者(2021年) 洛克菲勒大学 Brian T. Chait  Brian T. Chait教授在过去的42年中,曾与卡米尔(Camille)和亨利德雷福斯(Henry Dreyfus)教授任职质谱和气态离子化学实验室的负责人。最近,他一直领导着美国国立卫生研究院(NIH)资助的国家资源生物大分子的质谱分析实验室。Chait教授因开发用于表征蛋白质的仪器和方法方面的研究而获得了多个奖项,包括2002 ACS质谱杰出成就奖,2007 HUPO蛋白质组学杰出发现奖和2015 ASMS质谱学会的杰出贡献。  往届获奖者一览:  第一届获奖者(2019年) 波士顿大学医学院 Catherine E. Costello  第二届获奖者(2020年) 苏黎世联邦理工学院 Ruedi Aebersold
  • 加利福尼亚大学Peipei Ping教授获US HUPO 2021组织颁发的蛋白质组学杰出贡献奖
    仪器信息网讯 2021年3月8日-11日,第17届美国人类蛋白质组学会议(US HUPO 2021)于线上盛大召开。自2005年以来,美国HUPO每年举行一次年度会议,除US HUPO外,该组织还联合多方举办过3届HUPO国际会议。本年度的US HUPO会议期间公布了该组织的多个奖项结果,其中加利福尼亚大学的PeiPei Ping获2021年的蛋白质组学杰出贡献奖。  US HUPO颁发的蛋白质组学杰出贡献奖全称为“Donald F. Hunt蛋白质组学杰出贡献奖”,该奖项由《蛋白质组学研究杂志》(JPR)支持,旨在表彰Donald F. Hunt教授在蛋白组学领域取得的杰出成就,Hunt教授为该奖项的第一位获奖者,现在该奖项以他的名字命名。获奖者均为美国HUPO会员。  第四届获奖者(2021年) 加利福利亚大学 Peipei Ping  Ping教授任职于加州大学洛杉矶分校大卫格芬医学院主教生理学、医学和生物医学信息学。她在心血管疾病的线粒体生物学和蛋白质组重构、数据科学在分子表型和疾病中的应用以及心血管疾病的计算分析平台方面的专业知识得到了国际认可。Ping教授目前是加州大学洛杉矶分校心血管医学综合数据科学培训NHLBI T32项目主任,也担任加州大学洛杉矶分校Samueli工程学院计算机科学系可扩展分析研究所(ScAI)副主任。从2014年到2019年,Ping博士担任美国加州大学洛杉矶分校NIH BD2K卓越中心(HeartBD2K)的项目主任。  往届获奖者一览:  第一届获奖者(2018年) 弗吉尼亚大学 Donald F.Hunt  Donald F.Hunt是弗吉尼亚大学化学和病理学教授,美国艺术与科学学院院士。他以在质谱领域的研究而闻名,开发了电子捕获负电子质谱(ETD),在FT-MS方面做出许多贡献。在将近半个世纪的职业生涯中,Donald F. Hunt一直是质谱领域的先驱。Hunt 发表了3000多篇文章,培养了100多名研究生和博士后进入学术领域,并在质谱领域处于领先地位,此外还教授了4,000 多名医学预科学生。  Hunt教授的杰出贡献是:开发质谱仪器和方法来分析蛋白质,对蛋白质组学和质谱学领域产生了巨大影响。Hunt教授于1968年加入到弗吉尼亚大学,成为开发利用质谱研究生物有机分子技术的先驱。质谱学起源于物理化学,但Hunt教授和其他一些先驱者表明,这些工具也可以应用于生物,并最终用于生物医学用途。Hunt教授更是超过 25 项专利和专利申请的共同发明者,曾共同撰写了超过 300多篇学术出版物,并跻身全球 130 位引用最高的化学家之列。  第二届获奖者(2019年) 雪松西奈医疗中心 Jennifer Van Eyk  第三届获奖者(2020年) 哈佛大学医学院 Steven Gygi
  • 第三届显微仪器技术国际高层论坛(IFM2023)成功举行
    第三届显微仪器技术国际高层论坛(International Forum on Microscopy, IFM2023)于2023年9月8至10日在广东中山举行。本论坛由中国工程院、中国仪器仪表学会指导举办,哈尔滨工业大学主办,中国仪器仪表学会显微仪器分会等联合承办。   中国仪器仪表学会副理事长、哈尔滨工业大学精密仪器工程研究院院长谭久彬院士担任大会主席并主持会议。谭久彬院士指出:“随着新一轮科技革命和工业革命的到来,显微仪器技术必然迎来前所未有的巨大挑战和发展机遇。本次论坛邀请国际显微仪器领域的高层科学家与专家,就国际显微仪器领域面临的重大机遇、重大科学问题和关键技术问题进行研讨,交流国际显微仪器领域最新重大进展,判断未来5年和10年显微仪器技术的发展方向和技术路线,判断国际显微仪器产业发展趋势,进而提出促进世界显微仪器科学研究与产业发展的建议,共同促进世界范围内显微仪器技术的发展。”   牛津大学TonyWilson院士、中山市副市长欧阳锦全参加大会并致辞。   Tony Wilson院士首先阐述了显微的定义,系统地回顾了显微仪器的发展历史,强调了显微技术研究产业化应用的意义。接着,Tony Wilson院士介绍了共焦显微的原理和优势,并指出“操作智能化、通用化和小型化是显微仪器的重要发展方向”。   共有来自中国、美国、英国、法国、德国、日本、加拿大、澳大利亚、意大利、瑞士、荷兰、奥地利、挪威和中国香港等15个国家和地区的230余名代表现场参加研讨,2.7万人次在线观看会议直播和图文直播。   大会邀请诺贝尔奖获得者Stefan Hell、原子力显微技术的重要贡献者之一Paul Hansma教授、悉尼科技大学DayongJin院士、美国UCLA AydoganOzcan院士、深圳大学袁小聪教授、瑞士苏黎世联邦理工学院Daniel J. Müller教授、澳大利亚RMIT Baohua Jia教授、中科院深圳先研院郑海荣教授等国际著名专家做大会报告。   2014年诺贝尔化学奖得主Stefan Hell教授发表题为“MINFLUX和MINSTED在荧光显微镜中提供分子级分辨率”的主题演讲。Stefan Hell教授深入阐述了无衍射极限的荧光显微镜(显纳镜)基本原理,以及该原理如何催生出强大的崭新的超分辨概念-MINFLUX显纳镜。通过结合单分子开关,MINFLUX和MINSTED技术均获得了终极的分辨率:分子的大小。这些最新的显微镜概念可提供1-3纳米的分辨率,用于最高分子尺寸分辨率水平的常规荧光成像。Stefan W. Hell教授指出,该技术有望在固定细胞和活细胞中的蛋白质复合物和分布成像领域开启新的篇章。   AydoganOzcan院士围绕“深度学习对无标记组织进行虚拟染色”主题进行演讲。AydoganOzcan院士指出,深度学习技术通过使用训练有素的神经网络以数字方式生成组织学染色,为组织染色方法的彻底变革创造了新的机会,为标准化学染色方法提供快速、经济高效、准确且环保的替代方案。AydoganOzcan院士介绍了其团队使用深度神经网络进行无标记组织染色的最新研究成果,在生物医学方面的应用。   Paul Hansma教授做了“扫描探针显微镜:起点及未来”的主题演讲,回顾了原子力显微镜仪器的发展,以及重点关注技术的临界点。接着,Paul Hansma教授介绍了其团队提出的悬臂梁偏转检测技术,该技术现已在世界各地的大多数 原子力显微系统中广泛采用,并使得原子力显微镜扩展了其在材料、生物学和其他领域的应用。最后,Paul Hansma教授介绍了团队最新的基于探针的显微技术,开展已通过监管部门的批准的对数千名患者进行骨骼体内测试,以及该研究的重大意义。   DayongJin院士介绍了团队在超分辨率成像和深度卷积神经网络分割15种亚细胞结构方面的进展。该方法绕过了多色成像的限制,将成像速度加快了一个数量级。金大勇院士展示了所提出的网络在不同显微镜、不同细胞类型、甚至复杂的活体组织系统之间的强大的迁移学习能力。该技术可使得没有机器学习专业知识的生物学家也可以分析自己的图像数据并获得一致的结果。   袁小聪教授发表题为“用于术中病理评估的快速光声组织学成像”的主题演讲,指出组织学分析是目前手术切缘评估的金标准,而耗时的组织学切片制备妨碍了癌症手术期间对肿瘤边缘的术中组织病理学解释。袁小聪教授指出通过利用光学表面波的超快时间动力学和高度局部化的渐逝场,能够使得紫外光声显微镜在无需切片和染色的情况下,即可在新鲜收获的组织中对其细胞核的三维组织学进行成像,从而实现在肿瘤切除手术中快速、准确地进行术中组织病理学评估。   BaohuaJia教授发围绕“用于小型化成像系统的原子材料平面透镜”进行主题演讲,指出由激光纳米打印平面透镜制成的平面透镜已成为显微镜小型化的一项有前景的技术创新。BaohuaJia教授介绍了该平面透镜的设计原理、制造工艺和成像质量,并着重强调了通过利用由激光纳米打印平面透镜制成的平面透镜可以实现相位和幅度调谐,为解决内窥镜、VR和AR以及其他便携式设备面临的小型化挑战提供了多种可能性。   郑海荣教授在“超声超分辨率成像与大脑活动调节”的主题演讲中指出,大脑活动的可视化和调制是全面分析和理解大脑的核心任务,也是国际脑科学研究的重要挑战。郑海荣教授介绍了新型超声脑成像,即功能超声和超分辨率超声的理论和发展及其应用。此外,郑海荣教授进一步介绍了超声脑调制的最新进展及其在啮齿动物、灵长类动物和人类中的应用,以及高频声学无创脑机接口的发展前景。   Daniel J. Müller教授做了题为“机械量化与指导生物过程”的主题演讲,指出机械生物学的巨大挑战是量化生物系统如何感知、转换、响应和应用机械信号。Daniel J. Müller 教授介绍了其团队使用基于原子力显微镜的纳米检测来表征引导动物细胞通过有丝分裂进行的剧烈形状变化的机械过程,并引入基于原子力显微镜的高分辨率检测来表征在动物细胞中发挥主导作用的个体细胞机器。   分论坛分为10个分会场,共计68个分会邀请报告,其中境外专家报告20个。分论坛的专家学者们结合显微仪器技术各个分支方向,如光学显微仪器技术、扫描探针显微仪器技术、电镜显微仪器技术和超声显微仪器技术等的不同特点,交流了重大研究进展与突破、目前存在的重大科学问题与关键技术问题、具有发展优势的新的技术路线;探讨了因学科交叉衍生出的新原理、新技术和新方向;并对该领域未来10年的发展趋势与特点、新的应用背景和可能产生的新突破进行了探索与研判。   除主论坛、分论坛的学术交流与研讨以外,会议还以圆桌会议形式进行战略研讨,研讨会由谭久彬院士主持。圆桌论坛还邀请陈钱教授、赵元富教授、高思田教授、姚保利教授、郑海荣教授、须颖教授、赵维谦教授、周维虎教授、曹良才教授等显微仪器领域著名专家学者,以及深圳市中图仪器股份公司、凌云光技术有限公司、、哈尔滨芯明天科技有限公司、锐光凯奇(镇江)光电科技有限公司、长春长光辰英生物科学仪器有限公司、深圳市大成精密设备股份有限公司、东莞市兆恒机械有限公司、天津三英精密仪器股份有限公司、深圳中科精工科技有限公司、无锡影速半导体科技有限公司、合肥锐世数字科技有限公司深圳明锐仪器有限公司、南京木木西里科技有限公司等企业代表100余人,共同探讨显微仪器科学与工程科技发展战略和仪器产业发展战略。   与会代表围绕“高端显微仪器高质量发展”主题开展深入研讨,深入探讨了显微技术发展的前沿问题与主要发展趋势、我国高端显微仪器技术研究与国际前沿的主要差距、我国高端显微仪器产业与国际一流显微仪器产业的主要差距及瓶颈、我国现行国家测量体系对显微仪器产业发展的制约以及数字化、网络化和智能化技术的发展对我国显微仪器产业的发展带来的机遇等问题。   与会代表就目前中国显微领域面临的问题、显微仪器测量体系与标准、显微仪器创新链与产业链构建、显微仪器产业政策需求、显微仪器产业生态环境营建、市场推广的制约因素等问题进行了深入探讨,并达成了初步共识。
  • 凯杰生物为联合国组织提供现场分子测试设备
    美国东部时间2010年11月29日上午2时39分消息,凯杰生物公司获选为联合国组织的一个国际试点项目提供超快速分子实地检测便携式设备,以对抗多个新兴国家出现的动物传染。  该设备名为ESE-量化管扫描仪,仅两磅重,约与台式电话等大。凯杰生物计划向非洲、亚洲及南美洲35个新兴国家的国家保健权威提供50件新设备。  该试点项目为期三年,将评选一个检测禽流感、羊群中的小反刍兽疫及牛传染性胸膜肺炎的测试系统。
  • 基因组学推进肿瘤研究未来发展——访Illumina肿瘤业务营销副总裁John Leite
    基因组学正在改变肿瘤研究,其最终目标是推进癌症的诊断、治疗、监控及最终的筛查方式。Illumina的肿瘤业务营销副总裁John Leite介绍了这一领域的最新进展,以及随着今天的研究转化为临床,他对未来的期望。  基因组学如何影响肿瘤学未来的发展?  癌症通常是按照其形态来分类的,这指的是病理学家在显微镜下看到的内容。如今,我们的癌症分类依据开始从形态特征转变为更有效治疗的方式,而发生的主要转变在很大程度上归功于基因组研究。  我喜欢用的一个例子是骨髓增生异常综合征(MDS),这是白血病的一种。MDS可分成很多亚类,包括根据奥氏小体(auer rod)或环形铁粒细胞(ring sideroblast)来分类。这些子分类对病理学家有用,因为他们在显微镜下能看到小的亚结构。不过这些分类对主治医生的价值其实是相当有限的。  与之相对的是根据Deletion 5q来分类,这是MDS的一种,其中5号染色体部分缺失。这种分类对医生如何治疗患者是十分有意义的,因为根据遗传组分,患者通常对来那度胺(Revlimid)这种药物反应良好。随着更多癌症有了遗传分类,我们看到这一趋势涌现。基因组学正帮助我们根据遗传标志物来定义疾病,这些标志物可能激发肿瘤恶变,可作为治疗靶点。  Illumina正成为这一领域的领导力量,它开发从试剂盒到仪器和软件的研究方案,同时也在努力进步,以改善未来的肿瘤诊断、预后、治疗和监控。我们追求获监管批准的产品,参与一些临床试验,并与制药公司合作,以开发与他们的疗法相配合的伴随诊断。  谁是Illumina的主要客户?  我们总体来说将目标放在转化研究市场,我们在努力满足研究人员的需求,他们正帮助建立新一代的癌症干预、癌症诊断工具和癌症疗法。我们的目标是为他们提供解决方案,这些方案将经受临床市场所需的严峻考验。我们希望向我们的转化客户合理地保证,尽管他们今天用的是仅供科研使用(RUO)的解决方案,但在不久的将来将看到体外诊断(IVD)检测,正如TruSight Tumor试剂盒。  TruSight Tumor 15是一个项目中的一部分,其中技术、平台和方案作为一个整体的IVD路线。TruSight Tumor 15利用新一代测序(NGS)技术对15个实体瘤中常常突变的基因进行全面评估。我们最近向合作伙伴宣布,我们有这个检测的仅供临床试验使用(IUO)版本,适合临床试验使用。Amgen是我们最近签约的合作伙伴,它将在肿瘤发展计划中使用TruSight Tumor 15的IUO版本。  肿瘤学是一个如此广泛的领域。就应用而言,Illumina关注哪一方面?  体细胞变异是Illumina肿瘤业务的基础。我们这方面的产品包括TruSight Tumor 15。我们也在开发另一种检测,TruSight Tumor 170,它将在今年晚些时候推出,作为我们简化、标准化和整合体细胞变异鉴定的整个过程中的一部分。体细胞变异的鉴定对患者分配到适当的靶向治疗或组合治疗至关重要。我们期待成为这一领域的市场领导者。  我对免疫肿瘤学也感到很兴奋,我们正非常迅速地在这个新兴应用上打造核心能力。最近一些侧重于不同免疫疗法的临床试验表明,一些本来预后较差的患者有了非常有希望的治疗结果。  在免疫肿瘤学,人们必须评估许多不同的参数,才能从整体上了解患者的免疫系统如何与癌症相互作用,并确定他们是否适合免疫治疗。例如,新抗原检测可能表明一些患者适合接种疫苗或T细胞疗法,并利用全外显子组测序(WES)来确定。Illumina是WES的市场领导者,我们的定位是提供最有竞争力的研究工具,帮助您开发方案,确定免疫治疗的良好候选目标。  肿瘤浸润淋巴细胞是另一个参数,可协助预测患者将如何应答治疗。包含这些淋巴细胞(也就是渗透到肿瘤的免疫细胞)的肿瘤,通常意味着更积极的结果,因为它们的存在意味着患者的免疫系统参与对抗癌症。这个参数可通过基因表达来评估,而研究人员也可利用Illumina的转录组或RNA-Seq方案来开发诊断工具,在今后用于此类分析。  现在的整体问题还有哪些炎症过程参与了个别病例。这也是基因表达的问题,研究人员可利用Illumina产品线中的RNA-Seq或RNA Access这两种方案开展研究。  此外,还有一些免疫调控基因被癌症所利用,以“规避”个体的免疫系统。这些基因包括PD1、PDL 1和CTLA-4。这些基因的表达是肿瘤采用的一种策略,以逃避免疫细胞的检测。Illumina的RNA-Seq和RNA Access同样适用于这一领域的研究。  我认为,WES和Illumina RNA方案的组合是一种非常强大的研究工具,因为你可以研究免疫系统的多个参数,广泛了解癌症的环境,以及癌症可能如何应对某些免疫疗法。我认为Illumina有望独家为免疫肿瘤学带来简化而强大的研究方案。  基因组学是否将在患者旅程的每一步发挥作用?如何发挥作用?  第一个问题始终是– 这名个体是否患有癌症?我认为,与之前讨论过的形态学相比,基因组学将提供方案,对疾病分类,并真正告知医生– 这名特定患者的疾病驱动因素是什么,从而实现更好的诊断。  具体而言,我们希望提供的是体细胞变异的评估,利用TruSight Tumor 15的IVD版本对组织进行评估,若没有足够的活检材料,可利用循环肿瘤DNA(ctDNA)的方案。  在诊断之后,下一个问题是– 患者的整体风险状况怎样?这是一种低风险、中等风险还是高风险的癌症?许多基因具有预后意义。你可以利用临床因素的组合,以及检测到的突变,了解患者的整体风险状况。  我们相信,这些知识最终将带来更多个性化的治疗选择,这是旅程的下一步。我们希望能快速准确地分配疗法。例如,在诊断出Deletion 5q的情况下,MDS患者可根据遗传图谱来选择使用药物Revlimid。这样的例子还有很多,如肺癌,其中多个基因(如EGFR、ALK)的突变可能需要选择特定的抑制剂。  越来越多的靶向药物出现,终有一天,我们能使用IVD版本的TruSight Tumor 170这样的工具,为患者选择适当的疗法,或确定适合的临床试验。  一旦患者接受治疗,你随后想知道,这是不是依据患者的一切信息而选择的适当疗法?根据疾病的特定遗传驱动因素,根据任何生殖系变异,它们可能改变患者响应或代谢药物的方式,或者对药物有某种不良反应。  我们也在评估ctDNA,以监控治疗后或手术后的干预。如果我们能确定患者癌症的单个突变克隆,我们也能监控血液中的这些相同变异。在连续治疗或干预后,我们期望变异被清除,不会再次出现,因为这可能与复发相关。如果我们再次看到变异,这也许是一个早期警告信号,提示人们改变疗法或以不同的方式干预。  您认为这个领域接下来将如何发展?  Illumina正致力于扩大我刚才讨论的“持续关怀”。部分得益于ctDNA的工作,我们如今能够考虑这个持续过程的较早期阶段– 筛查。这是成立GRAIL的主要推动力。GRAIL的目标是利用ctDNA鉴定癌症,在任何成像或组织学证据出现之前对癌症的分子证据进行筛查。对于肿瘤学而言,这是十分激动人心的,因为我们知道早期检测与最终的成功结果密切相关。  还有其他的问题。一个人的癌症将如何发展?他们是否会复发?整体的生存概览如何?除了患者,他们的家人是否有风险?如果我负责一个癌症中心或国家的医疗保健计划,我从群体的角度看待这些患者,那么我会问,我该如何适当且经济地管理这个群体?  这些类型的问题真正激励着我在Illumina的工作,虽然它们目前只是潜在的方向,仍处于理论阶段,但有着巨大的社会意义。
  • 实验室组织研磨机:上海净信样品前处理设备提高样品研磨效果
    组织研磨机被广泛应用,它主要是应用于对生物样品的DNA提取实验分析,确保样品前处理的理想效果;同时它在种子纯度检测项目实验中的应用频率也较高,提高了对种子DNA的提取效果,同时也大大的提高了实验的工作效率。  样品前处理设备主要是通过垂直振荡和振荡系统的高频往复运动,使离心管中的冷冻样品与磨珠的相互碰撞摩擦,所产生的研磨剪切力和冲击力来使样品组织被完全破碎,其可在几秒钟到几分钟内快速实现对生物样品组织的粉碎、混合和细胞破壁,进而获得良好的样品磨碎效果。  组织研磨机是一款实验室样品制备的多面手仪器,不仅能够快速粉碎、均匀化处理硬、软、弹性等样品组织,还可满足理化实验分析的需求;不锈钢罐也配有不同的体积和材料,可用于样品干磨、湿磨和冷冻研磨,也可用于细胞破碎和DNA/RNA提取,还被广泛应用于生物医学、农业、食品等行业领域。  组织研磨机的主要优点:  1. 可快速高效地将样品磨碎,使其达到所需的粒度分布,满足后续实验要求,大大提高了工作效率。  2. 可充分研磨样品,利于后续实验的提取和分析,确保实验结果准确性。  3. 研磨结果均匀,保证实验结果的可靠性。  4. 采用独立研磨管,防止样品交叉污染,保护样品。  实验设备的使用注意事项还有注意这几点,仪器要放置在干燥通风的环境中进行使用;冷冻样品时,要注意避免液氮的溅出,做好防护,避免造成冻伤等事故;样品要对称分布在样品夹中,要确保样品夹的平衡;在关闭设备门之前,需要确认夹具是否已经完全固定,没有松动现象;在设置仪器程序参数时,对其设备的振荡频率参数设置不得超过设备的较大量程范围值。  组织研磨机的样品前处理操作,不仅提高了实验效率,还为实验提供了可靠的分析基础,进而成为实验室中样品前处理制备的常备实验仪器。
  • 中共中央组织部宣布曹雪涛任南开大学校长
    p   1月3日,中共中央组织部在南开大学宣布了中共中央、国务院的任免决定,曹雪涛任南开大学校长(副部长级),龚克不再担任南开大学校长职务。教育部党组成员、副部长杜占元,天津市委常委、教育工委书记程丽华,中共中央组织部干部三局副局长魏向阳出席宣布大会并讲话。/pp  曹雪涛,男,1964年7月出生,中共党员,1981年9月参加工作,第二军医大学内科学专业博士研究生毕业,中国工程院院士。2015年11月至今任中国医学科学院院长、北京协和医学院校长。/pp style="text-align: center " img title="001.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/edb38c99-5209-4e81-88e1-fc815e4e2155.jpg"//pp style="text-align: center "曹雪涛个人简历(来源:中国工程院)/pp  曹雪涛(1964.7.19- )免疫学专家。出生于山东省济南市。1990年毕业于第二军医大学,获博士学位。现任中国医学科学院院长、北京协和医学院校长。中国工程院院士、德国科学院外籍院士、法国医学科学院外籍院士、英国医学科学院外籍院士,兼任中国生物医学工程学会理事长、中国科协生命科学联合体主席、亚太免疫学会联盟秘书长、医学免疫学国家重点实验室主任。创办《中国肿瘤生物治疗杂志》并任主编,Cellular and Molecular Immunology共同主编、任Journal of Molecular Medicine、Cancer Immunology Research副主编, 任Cell、Annual Review of Immunology、Science Translational Medicine、Science Advances、eLife、Cell Research等编委。/pp  主要从事天然免疫与炎症的基础研究、肿瘤免疫治疗应用研究。以通讯作者在Cell、Nature、Science、Nature Immunology、Cancer Cell等发表SCI论文230余篇,引用1万余次。以第一完成人获国家自然科学二等奖1项 (2003)、中华医学科技奖一等奖2项、军队和上海市科技进步一等奖2项、上海市自然科学一等奖4项,获得国家发明专利16项,获得国家II类新药证书2个。获得中国工程院光华工程奖(2012)、中科院陈嘉庚生命科学奖(2016)、教育部长江学者成就奖、中国青年科学家奖等。培养的12名博士生获得全国优秀博士论文,获得首届中国研究生教育特等奖、Nature杰出导师终身成就奖。/pp  2005年当选中国工程院院士。/pp /p
  • 广东省组织申报“精密仪器设备”重点专项项目
    广东省科学技术厅关于组织申报2021年度广东省重点领域研发计划“精密仪器设备”重点专项项目的通知省直有关部门,各地级以上市科技局(委),各有关单位:  为全面贯彻落实党的十九届五中全会和习近平总书记关于加强关键核心技术攻关的系列重要讲话精神,按照省委省政府关于科技创新的相关部署,根据《广东省重点领域研发计划实施方案》,现启动2021年度广东省重点领域研发计划“精密仪器设备”重点专项项目申报工作(申报指南见附件1)。有关事项通知如下:  一、申报要求  (一)项目申报单位(包括企业、科研院所、高校、其他事业单位和行业组织等)应注重产学研结合、整合省内外优势资源 同时应注重优选合作单位,原则上同一项目牵头单位与参与单位总数不超过8家(含)。  (二)项目申报单位应在该领域具有显著优势,具备较强的研究开发实力或资源整合能力,承担项目的核心研究组织任务。对企业牵头或国家、省实验室(含分中心)牵头申报的项目,优先予以支持。  (三)项目申报单位应认真做好经费预算,按实申报,且应符合申报指南有关要求。申报项目必须有自筹经费投入,企业牵头申报的,项目总投入中自筹经费原则上不少于70% 非企业牵头申报的,项目总投入中自筹经费原则上不少于50%。在财政资金分配方面,牵头单位原则上应分配最大的资金份额。  (四) 省重点领域研发计划申报单位总体不受在研项目数的限项申报约束,但不鼓励同一研究团队或同一单位分散力量,在申报同一专题时,同一研究团队原则上只允许牵头1项或参与1项,同一法人单位原则上只允许牵头及参与不超过3项,否则纳入科研诚信记录并进行相应处理。  (五) 项目负责人应起到统筹领导作用,能实质性参与项目的组织实施,防止出现拉本领域高端知名专家挂名现象。  (六) 项目内容须真实可信,不得夸大自身实力与技术、经济指标。各申报单位须对申报材料的真实性负责,申报单位和推荐单位要落实《关于进一步加强科研诚信建设的若干意见》(厅字〔2018〕23号)要求,加强对申报材料审核把关,杜绝夸大不实,甚至弄虚作假。各申报单位、项目负责人须签署《申报材料真实性承诺函》(模板可在阳光政务平台系统下载,须加盖单位公章)。项目一经立项,技术、产品、经济等考核指标无正当理由不予修改调整。  (七) 有以下情形之一的项目负责人或申报单位不得进行申报或通过资格审查:  1.项目负责人有广东省级科技计划项目3项以上(含3项)未完成结题或有项目逾期一年未结题(平台类、普惠性政策类、后补助类项目除外)   2.项目负责人有在研广东省重大科技专项项目、重点领域研发计划项目未完成验收结题(此类情形下该负责人还可作为参与人员参与项目团队)   3.在省级财政专项资金审计、检查过程中发现重大违规行为   4.同一项目通过变换课题名称等方式进行多头或重复申报   5.项目主要内容已由该单位单独或联合其他单位申报并已获得省科技计划立项   6.省内单位项目未经科技主管部门组织推荐   7.有尚在惩戒执行期内的科研严重失信行为记录和相关社会领域信用“黑名单”记录   8.违背科研伦理道德。  (八) 申报项目还须符合申报指南各专题方向的具体申报条件。  二、申报方式  (一) 项目申报采用在线申报、无纸化方式,符合指南申报条件的单位通过“广东省政务服务网”或“广东省科技业务管理阳光政务平台(http://pro.gdstc.gd.gov.cn)”提交有关材料,必要的技术、财务、知识产权、合作协议、承诺函、推荐函等佐证支撑材料请以附件形式上传。确有不宜通过网络形式提交的,由申报单位提出书面申请,经科技厅审核把关后可走线下申报。  (二) 项目评审评估过程中需要提供书面材料的,由专业机构另行通知提交。  (三) 项目按程序获得立项后,项目申报书、任务书纸质件再一并报送至省科技厅综合业务办理大厅(均需签名、盖章,提交时间及具体要求另行通知)。  三、评审及立项说明  省重点领域研发计划项目由第三方专业机构组织评审,对申报项目的背景、依据、技术路线、科研能力、时间进度、经费预算、绩效目标等进行评审论证,并进行技术就绪度和知识产权等专业化评估:  (一) 技术就绪度与先进性评估。本专项主要支持技术就绪度3~6级的项目,项目完成时技术就绪度一般应达到7~9级,原则上项目完成后技术就绪度应有3级以上提高(技术就绪度标准见附件2),各申报单位应在可行性报告中按要求对此进行阐述并提供必要的佐证支撑材料(可行性报告提纲可在阳光政务平台系统下载)。  (二) 查重及技术先进性分析。将利用大数据分析技术,对照科技部科技计划历年资助项目与广东省科技计划历年资助项目,对拟立项项目进行查重和先进性等分析。  (三) 知识产权分析评议。项目研究成果一般应有高质量的知识产权,请各申报单位按照高质量知识产权分析评议指引(见附件3)的有关要求,加强本单位知识产权管理,提出项目的高质量知识产权目标,并在可行性报告中按要求对此进行阐述并提供必要的佐证支撑材料(可行性报告提纲可在阳光政务平台系统下载),勿简单以专利数量、论文数量作为项目目标。  拟立项项目按程序审核报批后纳入项目库管理,视年度财政预算及项目落地情况分批出库支持,结合项目进展分阶段拨付财政资金。  同一指南中的同一项目方向(或课题),原则上只支持1项(指南有特殊说明的除外),在申报项目(或课题)评审结果相近且技术路线明显不同时,可予以并行支持。  四、申报时间  申报单位网上集中申报时间为2021年7月21日~2021年8月20日17:00,主管部门网上审核推荐截止时间为2021年8月27日17:00。  五、联系人及电话  1.省科技厅基础研究处(专题业务咨询):张子良,路智林 020-83163450、83163889  2.业务受理及技术支持:020-83163930、83163338  3.资源配置与管理处(综合性业务咨询):020-83163838  附 件:1.2021年度广东省重点领域研发计划“精密仪器设备”重点专项申报指南.pdf  2.技术就绪度评价标准及细则.pdf  3.高质量知识产权分析评议指引.pdf  省科技厅  2021年7月21日
  • 科技部高技术中心组织召开“重大科学仪器设备开发”重点专项2018年度项目组织实施动员会
    p  新年伊始,科技部高技术中心在北京组织召开了“重大科学仪器设备开发”重点专项(以下简称“科学仪器专项”)2018年度新项目项目组织实施动员会。高技术中心副主任、专项办主任卞曙光等专项办人员(科学仪器专项办)、专项总体专家组长及代表、在研项目代表以及53个获得立项支持的项目牵头单位代表和项目负责人共约120人参加了会议。/pp  会上,高技术中心专项办主管负责人介绍了科学仪器专项“十三五”期间立项实施基本情况及专项特点,对重点研发计划专项管理工作的基本流程做了详细说明,强调了项目牵头单位法人责任制的落实、强化目标管理、绩效管理等方面的要求。专项总体专家组年夫顺组长介绍了专项总体实施方案、专家组的职责分工与主要任务,提出了为每个项目安排专家服务的工作计划,并就如何编写项目的实施方案向参会项目代表做了详细说明,希望能使每个项目都做到“挂图施工”,细化过程管理,明确任务(课题)接口关系和项目成果形态。在研项目代表为新立项目介绍了项目管理的组织实施的具体做法和经验,新立项项目代表也就如何做好项目组织管理工作进行了汇报交流。此外,专项办及专家组针对参会代表提出的问题进行了现场解答。/pp  高技术中心卞曙光副主任在总结发言中指出,项目牵头单位和项目负责人要强化责任意识、担当精神,提高对国家目标和国家任务的认识水平,通过专项实施研发自主核心技术,推动国产仪器发展 要强化诚信意识、契约精神、绩效管理,推动科研诚信工作,在项目管理过程中坚持问题导向、目标导向、绩效导向,保证按照任务书要求完成项目实施 要落实法人责任制,提高自我管理能力,确保项目顺利实施。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制