当前位置: 仪器信息网 > 行业主题 > >

发光化合物

仪器信息网发光化合物专题为您提供2024年最新发光化合物价格报价、厂家品牌的相关信息, 包括发光化合物参数、型号等,不管是国产,还是进口品牌的发光化合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合发光化合物相关的耗材配件、试剂标物,还有发光化合物相关的最新资讯、资料,以及发光化合物相关的解决方案。

发光化合物相关的论坛

  • 荧光光谱(荧光化合物的发射峰裂分的原因)

    荧光光谱(荧光化合物的发射峰裂分的原因)

    [color=#444444]有机荧光小分子化合物的荧光比较弱,当加入其它生物时荧光强度增加,但此时小分子的发射峰不但蓝移还出现峰裂分。请问有人知道其中的原因吗?此外发射峰蓝移,如果要算荧光增加倍数FI/FI0,所选的发射波长以蓝移前的为标准,还是蓝移后的为标准。[/color][color=#444444][img=,481,289]https://ng1.17img.cn/bbsfiles/images/2019/08/201908270941341649_2055_1843534_3.png!w481x289.jpg[/img][/color]

  • 荧光光谱(荧光化合物的发射峰裂分的原因)

    荧光光谱(荧光化合物的发射峰裂分的原因)

    [color=#444444]有机荧光小分子化合物的荧光比较弱,当加入其它生物时荧光强度增加,但此时小分子的发射峰不但蓝移还出现峰裂分。请问有人知道其中的原因吗?此外发射峰蓝移,如果要算荧光增加倍数FI/FI0,所选的发射波长以蓝移前的为标准,还是蓝移后的为标准。[/color][color=#444444][img=,481,289]https://ng1.17img.cn/bbsfiles/images/2019/08/201908201005419522_2600_1849104_3.png!w481x289.jpg[/img][/color]

  • 【分享】VOC-挥发性有机化合物

    【分享】VOC-挥发性有机化合物

    1.[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908100045_164737_1610969_3.jpg[/img][color=#DC143C]VOC—挥发性有机化合物[/color]  VOC是挥发性有机化合物(volatile organic compounds)的英文缩写。  [color=#00008B]定义种类[/color]  例如,[color=#DC143C]美国ASTM D3960-98标准将VOC定义为任何能参加大气光化学反应的有机化合物。美国联邦环保署(EPA)的定义:挥发性有机化合物是除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物。[/color]  世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。  有关色漆和清漆通用术语的国际标准ISO 4618/1-1998和德国DIN 55649-2000标准对VOC的定义是,原则上,在常温常压下,任何能自发挥发的有机液体和/或固体。同时,德国DIN 55649-2000标准在测定VOC含量时,又做了一个限定,即在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物。  巴斯夫公司则认为,最方便和最常见的方法是根据沸点来界定哪些物质属于VOC,而最普遍的共识认为VOC是指那些沸点等于或低于250℃的化学物质。所以沸点超过250℃的那些物质不归入VOC的范畴,往往被称为增塑剂。

  • 【第三届原创大赛】ASTM D5504-2008气相色谱和化学发光法测天然气和燃料气中硫化合物的标准方法

    本文出自huacai原文是aip格式,是俄文,我没有英文稿D5504-08气相色谱和化学发光法测天然气和燃料气中硫化合物的标准方法本标准以固定名称D5504发行;紧跟在名称标号后的数字表示最初采用此标准的年份,或者如有修订,则为最后一次修订的年份。括号中的数字表明此标准最后一次重新获得批准的年份。上标(ε)表示自从最后一次修订或再次获准后的编辑变化。1.范围1.1 本方法用于测定挥发性硫化物——包括高含甲烷的气态燃料如天然气中的硫化合物。本法已成功地应用于其它气态样品如空气、消解气、填埋气、炼厂燃气等燃料气。进1mL样品分析硫化物检测范围为 10~1 000 000pg,相当于0.01~1000mg/m3。1.2本方法可通过稀释或选用更小的进样环,使检测范围扩展到更高浓度。注1——稀释会降低方法精度1.3本方法不能识别样品中全部硫化合物种类。只有在一定色谱条件下,从选定的柱中流出的硫化合物可以测定。检测器对本法1.1范围内所有硫化物等摩尔响应。所以,未识别的化合物和已识别的化合物以同等精度测定。总硫含量由各组分总和得到。1.4数值以国际单位为准。英制单位仅用于信息1.5本方法并非旨在解决所有与使用有关的安全问题,本标准的使用者有责任建立适当的安全健康措施并在使用前确定应用的规定限制。2. 参考文献2.1 ASTM标准方法:D1072通过燃烧和氯化钡滴定测定燃料气中总硫的分析方法D1945气相色谱分析天然气的方法D3609用渗透管校准技术方法D4468氢解比色法测定燃料气中总硫的分析方法E594用于气体或超临界流体气相色谱的火焰离子化检测器的测试方法3 本标准概述3.1由于气态硫化物的活性使得气态硫化物的分析富有挑战性。取样和分析较难。理想情况下最好现场分析以消除变质的影响因素。取样必须用非活性材料容器如内衬硅钢的容器,杜邦的衬有聚丙烯或同等的Tedler袋。Tedler取样袋要能避光隔热。实验室仪器必须惰性或耐氧化以保证结果可信。3.21mL样品注入气相色谱,经大孔径、厚膜,聚甲基硅酮液相,开口管状分离柱或其它适当的柱,最后分离出各个组分。3.3硫化学发光检测---当硫化物从气相色谱柱流出,在FID内或热燃烧带处理。其产物被收集并转到硫化学发光检测器(SCD)。此技术灵敏性好,选择性高,对挥发性硫化物成线性响应且可在FID收集碳氢化合物和不挥发气体数据时应用。3.3.1用SCD系列检测器---SCD可频繁用于其它不挥发气体和碳氢化合物检测器的系列。但组织可能质疑检测器兼容性并要求演示多检测器系统中的SCD和用FID或热燃烧带操作的SCD间的等同性。用户参见USEPA方法301,其中列举了一个通用等同性程序。3.3.2可替代检测器---本测试方法专为硫化学发光检测器而做,但其它证明有足够灵敏度,对全部硫化物有响应,无干扰且满足质量保证标准的硫专用检测器也可使用。4.意义和应用4.1 许多天然气和石油气源都含有硫化合物。这些硫化物有刺激味,腐蚀性,对气态燃料处理过程中的催化剂有毒。4.2为安全起见天然气和液化石油气中会加入少量硫臭味剂。有些臭味剂性质不稳定并反应形成较低味阈的化合物。定量分析这些加味的气可确保加味设备准确添加。4.3尽管不打算用于天然气及相关燃料以外的气体,但是本方法已成功应用于燃料型气体包括炼厂气,填埋气,废热发电气,污水消解等气。炼厂气,填埋气,污水消解和其它有关燃料型气体一般含有挥发性硫化物,需符合联邦,国家或当局限制。这些燃料型气体的甲烷有时卖到天然气经销商。这样,管理机构和产销商都可能要求准确测定硫以满足管理和产销要求。燃料气也用于能量生产或用催化剂转换成新产品。进气中过量的硫会使催化剂中毒。企业经常要求测定这些燃料气中的硫以保护催化剂的投资。4.4分析方法---气相色谱GC通常用于测定固定的气体和天然气中的有机组分(测试方法D1945)。其它分析燃料气中硫的ASTM方法有D1072,测总硫的D4468,方法D4010和测硫化氢的D488

  • 【分享】甲烷和金属首次合成化合物 开创药物研发新工艺

    美国亚利桑那大学的科学家首次成功地将金属原子插进了甲烷气体分子中,并精确地测定了所得到的“金属-甲烷化合物”分子的结构,为有机化合物的合成特别是新药研制开创了新的制造工艺,新发现也能让人们更好地理解金属在活性生物体内的工作模式。研究发表在《美国化学学会杂志》上。  有机物衰败会产生甲烷,科学家一直希望利用丰富的甲烷来生产其他化学产品。但是作为最简单的碳氢化合物,甲烷在和其他分子相互作用时会有点“内向”,需要各种方法来“激活”。领导这项研究的亚利桑那大学化学家露西·兹瑞斯表示,金属插入会让甲烷分子更活跃,即将金属插入甲烷分子中激活甲烷,使其更容易和其他物质发生化学反应,比如利用被激活的甲烷分子制造乙醇。  兹瑞斯研究团队将锌加热成气态,让其蒸发进一个真空室,接着再向真空室添加甲烷气体。在一个放电设备提供的能量下,锌和甲烷组成的气体混合物变成发光的等离子体,金属-甲烷化合物分子瞬间形成。

  • 无铅焊球表面金属间化合物的分析!

    现在我有两种无铅焊球,他们是在同一块芯片上生产的,就说,他们的所有工艺条件是一样的。但是出来的结果却得到一种表面比较光滑的焊球(少数),另外也得到表面粗糙的焊球(多数)现在问题是,是什么原因造成这样的结果呢?会不会跟他们在冷却过程中,由于受热不均匀,冷却速度快的焊球由于金属间化合物来不及生长,导致其表面比较光滑,而冷却速度比较慢的焊球,由于有足够的时间,金属间化合物生长的比较多,表面上有大量的金属间化合物?这是我的初步想法,希望能和大家一起讨论!

  • 【转帖】新分子化合物可显著减缓生物钟

    据美国物理学家组织网12月14日报道,美国研究人员在使用自动筛选技术寻找新药品时,发现了一种能显著减缓生物钟的分子化合物,将其命名为“白日罪恶”。这一发现有望被用来开发新药品,帮助需要倒时差的空中飞人和严重睡眠障碍患者。相关论文发表于《公共科学图书馆—生物学》(PLoS Biology)。此项研究由美国加利福尼亚大学圣地亚哥分校生物科学院院长史蒂夫·凯的实验室主导。实验中,他们将生物钟基因加入到可使萤火虫发光的荧光素酶基因中,然后将其植入人的骨癌细胞中,这样骨癌细胞就可以在生物钟被激活时发光,从而可以直观地得知细胞生物钟的变化。在观察了多达12万种可能的化合物与人类骨癌细胞发生的反应后,研究人员筛选出了“白日罪恶”。在老鼠和幼年斑马鱼身上,研究人员同样发现这种分子化合物能显著减慢它们的生物钟。之后,史蒂夫的团队将隔离出的“白日罪恶”分子交给另一间实验室的科学家做进一步研究,也得出了同样的结论。有鉴于此,史蒂夫自信地表示:“从理论上来说,‘白日罪过’可以用于治疗睡眠障碍。

  • 【分享】总挥发性有机化合物(TVOC)的性质、对人体的危害及其来源

    总挥发性有机化合物(TVOC):挥发性有机物常用VOC表示,它是Votatile organic Compound三个词第一个字母的缩写,但有时也用总挥发性有机物TVOC来表示。   TVOC是空气中三种有机污染物(多环芳烃、挥发性有机物和醛类化合物)中影响较为严重的一种。VOC是指室温下饱和蒸气压超过了133.32pa的有机物,其沸点在50℃至250℃,在常温下可以蒸发的形式存在于空气中,它的毒性、刺激性、致癌性和特殊的气味性,会影响皮肤和黏膜,对人体产生急性损害。TVOC可有嗅味,有刺激性,而且有些化合物具有基因毒性。 TVOC对人体健康产生什么样的危害呢? 目前认为,TVOC能引起机体免疫水平失调,影响中枢神经系统功能,出现头晕、头痛、嗜睡、无力、胸闷等自觉症状;还可能影响消化系统,出现食欲不振、恶心等,严重时可损伤肝脏和造血系统,出现变态反应等。 TVOC是从哪来的呢? 室内的TVOC主要是由建筑材料、室内装饰材料及生活和办公用品等散发出来的。如建筑材料中的人造板、泡沫隔热材料、塑料板材;室内装饰材料中的油漆、涂料、粘合剂、壁纸、地毯;生活中用的化妆品、洗涤剂等;办公用品主要是指油墨、复印机、打字机等; 此外,家用燃料及吸烟、人体排泄物及室外工业废气、汽车尾气、光化学污染也是影响室内总挥发性有机物(TVOC)含有量的主要因素。 TVOC的浓度标准 2002年国家新家颁布的《民用建筑室内环境污染控制规范》中,室内空气中TVOC的含量,已经成为评价居室室内空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量是否合格的一项重要项目。在此标准中规定的TVOC含量为Ⅰ类民用建筑工程:0.5 mg/m3、Ⅱ类民用建筑工程:0.6mg/m3。

  • 生物试验中化学发光的标记

    吖啶酯以及相关化合物通过简单的加入氢氧化钠以及过氧化氢就可以使吖啶酯标记的抗原或抗体发光,这种抗原或抗体采用一种活性标记物[2',6'-dimethyl-4'-(N-succinimidyloxycarbonyl) phenyl 10-methylacridinium-9-carboxylate]来获得。发光过程非常短暂,只是快速的一闪,持续时间小于5s。这么短暂的发光过程给反应的起始与测量带来了一定的限制(Weeks et al.1983,Law et al.1989)。通常是将试剂直接注入放在光度计暗仓内光探测器前面的试管内来检测发光。吖啶酯以及氨甲酰吖啶类似物[acridinium-9-(N-sulronyl) carboxamide](Kinkel et al.1989,Mattingly 1991)是用于免疫分析的主要化学发光标记物(可从Assay Designs lnc,Athens,GA;Behringwerke AG,Marburg,Germany;Ciba Coming Diagnostics,Medfield,MA以及Molecular Light Technology Research Ltd,Cardiff,UK等处获得)。这类标记的检测的最小量为~0.5attomol(0.5X10-18mol)。基于杂交保护的非分离DNA探针分析(nonseparation DNA probe assay)方法已被设计出来(Arnold et al.1989)。这种类型的分析无需将结合与未结合的标记物分开,因而分析可方便的一步完成。这种杂交保护分析利用已与互补DNA杂交的吖啶酯标记探针与溶液中游离探针之间水解速率相差百万倍的特性,在pH7.6的硼酸缓冲液中破坏游离探针的化学发光特性,从而使水解后的化学发光仅仅来源于已杂交的标记探针(可从Gen-Probe,San Diego,CA获得)。 鲁米诺及其类似物鲁米诺(Luminol)是第一个用于免疫学分析标记的化学发光化合物(Schroeder et al.1978)。在合适的催化剂(辣根过氧化物酶、微过氧化物酶(microperoxidase)、铁氰化物)存在的情况下,通过加入氧化剂(如:过氧化氢)可导致发光。然而,通过鲁米诺的5-氨基进行标记会使发光量减少10倍。异鲁米诺,一种鲁米诺6氨基异构体,其发光效率较鲁米诺低(量子产额0.1%),但当通过第6位进行标记时可使发光量增加10倍。因而,这种化合物以及其氨基取代类似物,比如ABEI(N-(4-aminobutyl)-N-ethylisoluminol),已在免疫分析应用中成为最受欢迎的标记物(Kohen et al.1979;Pazzagli et al.1982)。吡啶哒嗪(Pyridopyridazines)代表另一类化学发光化合物。早期的数据显示这些化合物,尤其是8-氨基-5-氯-7-苯基和8-羟基-7苯基衍生物,可作为检测过氧化物酶标记的标记和协同底物(co-substrates)。与鲁米诺相比,这类化合物具有很强的化学发光特性(约为50倍)(Masuya et al.1992)。 碱性磷酸酶磷酸金刚烷基1,2-二氧杂环丁烷(如:AMPPD;disodium 3-(4-methoxyspiro[1,2-dioxetane-3,2'-tricyclo[3.3.13,7]decan]-4-yl)-phenylphosphate)以及5-位取代类似物(如:5-choro:CSPD;可从Tropix Inc获得)已成为碱性磷酸酶标记的最为广泛使用的化学发光底物(Bronstein et al.1989,1990,1991;Schaap et al.1989)。这种酶的检测极限是1 zeptomole(10-21摩尔)并且其发光持续时间超长(1h),因而特别适合与基于膜的分析。这个反应的发光强度可被尼龙膜表面以及特定的多聚物增强,如:聚氯苄(苄基二甲基铵)乙烯(polyvinylbenzyl(benzyldimethylammonium)chloride)。对尼龙膜来说,这种增强作用是用于其疏水性基团对去磷酸化的反应中间体的螯合作用;从而稳定和减少中间体的非发光性降解。碱性磷酸酶标记的化学发光分析目前被广泛地用于印迹试验以及DNA序列测定(Beck and Koster 1990,Tizard et al.1990)。 beta-半乳糖苷酶AMPGD(Adamantyl 1,2-dioxetane aryl galactoside)做为这种酶的底物现已越来越流行。这种酶从芳香环的第3位裂解半乳糖苷基团产生一种苯氧化物中间体,这种中间体的降解可导致发光。对这种酶采用这种分析方法的检测极限为30zeptomol。 辣根过氧化物酶鲁米诺以及其他环状二酰基酰肼(cyclic diacylhydrazides)化合物是辣根过氧化物酶的化学发光协同底物。采用鲁米诺、过氧化氢,以及一种增效剂(如:4-碘苯酚或4-羟基肉桂酸),辣根过氧化物酶的碱性同工酶可被检测出的最小量96h)。 葡萄糖氧化酶目前已经发展了几种用于葡萄糖氧化酶的法学发光分析。异鲁米诺或鲁米诺在微过氧化物酶催化剂存在的情况下可用于分析葡萄糖氧化酶与葡萄糖反应所产生的过氧化物(Sekiya et al.1991);另一种方法是采用化学发光荧光基团致敏的bis(2,4,6-trichlorophenyl)oxalate反应来检测(Arakawa et al.1982)。 商业试剂、试剂盒及光度计对于可获得的化学发光试剂和试剂盒以及用于发光测定的光度计的全面的评述已有发表(请参见Stanley 1992,1993)。一系列关于化学发光在基础及应用领域的当前进展的资料汇编也同样可以得到(请参见Kricka and Stanley 1992,Kricka et al.1993,Wilkinson 1998)。化学发光可采用一系列的检测设备来进行检测,包括光电倍增管(采用光子计数或灵敏度较低的光子流模式(photon current mode))、硅光电二级管、CCD照相(Wick 1989)摄影或胶片摄影(Kricka and Thorpe 1986)。CCD照相由于是检测二维光源(如膜以及96孔微板)的方便且灵敏的方法而被广泛使用。除此以外,它还能容易的监测发光动力学、可通过图像增强以及背景减影来改善结果质量。

  • 【分享】大气中羰基化合物GC/MS分析方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152826]大气中羰基化合物GC/MS分析方法[/url]摘要:介绍了一种灵敏度高、可靠并且能同时检测大气中2O种羰基化合物(C 一C 。)的分析方法.该方法是采用涂布PFPH(衍生剂)的TenaxTA作为固体吸附剂采集大气样品,然后再经过溶剂洗脱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/质谱(GC/MS)分离检测的一项分析技术.校正曲线的可决系数(R。)、检测限(LOD)、平行样标准偏差(RSD,n=6)、回收率分别为0.995—1.00,0.15—1.04ngm~ ,7.3% 一15.8% 和92.7% ~109.2%.该方法成功地应用到对大气中羰基化合物的定量检测.对羰基化合物浓度的日变化分析表明,上海大气中羰基化合物浓度变化与大气光化学反应的强弱有密切关系.

  • *知识普及之光化学烟雾

    一、光化学烟雾光化学烟雾是排入大气的氮氧化物和碳氢化物受太阳紫外线作用产生的一种具有刺激性的浅蓝色的烟雾。它包含有臭氧(O3)、醛类、硝酸酯类(PAN)等多种复杂化合物。这些化合物都是光化学反应生成的二次污染物,主要是光化学氧化剂。当遇逆温或不利于扩散的气象条件时,烟雾会积聚不散,造成大气污染事件,使人眼和呼吸道受刺激或诱发各种呼吸道炎症,危机人体健康。这种污染事件最早出现在美国洛杉矶,所以又称洛杉矶光化学烟雾。20世纪末开始,光化学烟雾不仅在美国出现,而且在日本的东京、大板、川崎市,澳大利亚的悉尼、意大利的热那亚和印度的孟买等许多汽车众多的城市都先后出现过。二、光化学烟雾形成大气中的氮氧化物和碳氢化物主要来自汽车尾气、石油和煤燃烧的废气、及大量使用挥发性有机溶剂等。在太阳紫外线的作用下,产生化学反应,生成臭氧和醛类等二次污染物。在光化学反应中,臭氧约占85%以上。日光辐射强度是形成光化学烟雾的重要条件,因此在一年中,夏季是发生光化学烟雾的季节;而在一日中,下午2时前后是光化学烟雾达到峰值的时刻。光化学氧化剂可由城市污染区扩散到100公里甚至700公里以外。在汽车排气污染严重的城市,大气中臭氧浓度的增高,可视为光化学烟雾形成的信号。

  • 滨松公司诚邀您参加光化学测试产品技术研讨会

    滨松中国与北京赛泰克将于5月11日在北京翠宫饭店携手举办“光化学测试产品技术研讨会”。本次会议特别邀请中科院化学研究所杨国强教授、中国人民大学张建平教授及中科院长春应用化学研究所林君教授一起探讨光化学测试领域的前沿技术及应用。届时,日本滨松的产品经理铃木建吾将向大家详细介绍滨松公司的绝对量子产率测试、荧光寿命及外量子效率测试系统并分享该类技术在光致发光及OLED测试领域的应用案例。现场还安排样机演示及样品测试环节,与会者可以自带样品并现场测试材料的寿命及量子产率等参数。其中绝对量子产率测试设备内置积分球,可以对固体、粉末、薄膜及液体进行测试,操作简单,2分钟即可得到包含量子产率、激发谱、发射谱和波长依赖性等数据,重复精度可达到1,且不需要标准品进行比对。近红外型绝对量子产率测试设备的探测波长达到1100nm,很好的解决了以往近红外波段没有标准品进行比对的问题。会议地点:北京翠宫饭店二层多功能厅(Jade Palace Hotel)地址:北京市海淀区知春路76号 会议时间:2012年5月11日 报告人:杨国强中国科学院化学研究所,研究员,博士生导师,科学院“百人计划”入选者,化学所所长助理,中国科学院光化学重点实验室主任,化学所和分子科学中心学委会委员;中国化学会理事,化学会光化学专业委员会常务副主任;中国感光学会理事。亚洲大洋州光化学理事会理事,J.Photochem. Photobiol. A:Chem.编委。林君中科院长春应化所稀土化学与物理重点实验室副主任,研究员,中科院百人计划入选者,获国家杰出青年科学基金;中国稀土学会理事,中国稀土学会发光专业委员会秘书,中国物理学会发光分科委员会委员,美国材料研究学会会员。张建平中国人民大学理学院化学系,责任教授,博士生导师。中科院百人计划入选者。分子动态与稳态结构国家重点实验室副主任、学术委员会委员,中国科学院物质科学基地分子科学中心第二届学术委员会委员,中国科学院化学研究所第十届学术委员会委员,《物理化学学报》第二届编辑委员会委员,中国生物物理学会光生物专业委员会委员,中国人民大学化学系学术委员会主任,中国人民大学第七届学位评定委员会理工分会副主席。报名方式:电话:010-82858336-19, 13426082940 传真:010-82859156电邮:selina@cy-tech.com.cn联系人:范女士研讨会日程 9:00 – 9:15 北京赛泰克公司总经理张冬梅致辞 9:15 – 9:30 滨松公司简介 9:30 – 10:00 基于分子内电荷转移化合物和质子转移化合物的强荧光材料——中科院化学研究所光化学重点实验室杨国强教授 10:00 – 10:30 软化学方法制备多种形态结构发光与多功能纳米复合材料及其应用探索——中科院长春应用化学研究所稀土资源利用国家重点实验室林君教授 10:30 – 10:45 茶歇 10:45 – 11:45 条纹相机原理及应用——中国人民大学化学系张建平教授 11:45 – 1:00 中西自助餐 1:00 – 2:30 光致发光绝对量子产率、荧光寿命及外量子效率测试技术——日本滨松Quantaurus产品经理铃木建吾博士 2:30 – 3:30 样品现场测试1 3:30 – 3:45 茶歇

  • 一种硼酸酯类化合物的方法开发

    一种硼酸酯类化合物的方法开发

    [align=left]近期我们遇到了一种硼酸酯类的化合物1,采用实验室通用方法进行检测的时候发现会出现一个很大的杂质2,根据工艺分析不可能会出现这么大的杂质,定量核磁检测发现该物质含量比较高,并不存在这个大的杂质,用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]去鉴定后发现该杂质为该化合物的水解杂质2(如图1)[/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090922409286_9676_5310417_3.png[/img][/align][align=center]图 1:流动相A: 0.05%TFA 流动相B: ACN条件下的样品色谱图[/align]为此我们判定肯定是检测方法出现了问题,首先我们排除稀释剂的影响,稀释剂为乙腈,做了相应的稳定性实验,发现临用新配情况下该杂质仍旧很大。由此我们判断可能是流动相导致该化合物1不稳定会水解生成杂质2。考虑到硼酸酯类化合物可能对酸不稳定,在酸性条件下会被催化水解成硼酸类化合物和相应的醇,因此打算更换其他流动相。首先我们尝试了碱性体系(如图2),由于该化合物1为酸性化合物,在碱性条件下保留较弱,但是从图谱可以看出水解杂质仍旧比较大,由此可以判断在碱性条件下该化合物1也并不稳定。[align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090922406680_5272_5310417_3.png[/img][/align][align=center]图 2:流动相A: 0.1%NH4OH 流动相B: ACN条件下的样品色谱图[/align][align=left]随后我们又尝试了中性体系,采用中性体系的流动相进行测试(如图3)。从图3(a)可以看出,水做流动相条件下,由于流动相的离子强度不够导致峰形丑,还可以看出水解杂质2仍旧存在,但从(b)中可以看出当用乙酸铵作为流动相时候,峰形对称,水解杂质2也比较小。[/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090922412671_1242_5310417_3.png[/img][/align][align=left][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211090922413707_3568_5310417_3.png[/img][/align][align=center]图 3:(a)流动相A: 水 流动相B: 乙腈 (b)流动相A: 10mM 乙酸铵水溶液 流动相B: 乙腈条件下的样品色谱图[/align][align=left]根据以上结果我们猜测:该化合物对酸碱都不稳定,但中性条件下只在乙酸铵体系下稳定,为此我们从化合物1本身及水解杂质2的结构分析,该化合物1中的硼原子为sp2杂化,还存在一个空的p轨道,这个空轨道易于接受水和醇等带有未共用电子对的亲核试剂的进攻而使硼酸酯水解([font='adobeheitistd-regular'][size=13px]其机理见方程式[/size][/font][font='dlf-32769-4-2073904376+zipdfa-8'][size=13px]([/size][/font][font='dlf-3-0-25052658+zipdfa-84']1[/font][font='dlf-32769-4-2073904376+zipdfa-8'][size=13px]))。[/size][/font]继续与水作用,生成相应的醇和硼酸。[/align][align=left][/align][img]" style="max-width: 100% max-height: 100% [/img]通过对此分析,似乎已经能够解释化合物1对碱不稳定的原因,即羟基中氧上的孤对电子会进攻硼的空轨道导致其水解,至于为什么在乙酸铵体系中是稳定的我们推测原因是乙酸铵的氮原子会与硼原子形成配对键,从而使该化合物1稳定。 虽然只是硼酸酯类化合物中的一种物质的检测,但是根据检测结果和分析可以为以后的该类化合物的方法开发提供思路,即通在对硼酸酯类的化合物进行方法开发时候,尽量不要采用酸碱体系的流动相,可以考虑用乙酸铵缓冲液作为流动相进行检测。[align=left] [/align]

  • 关于有机化合物中酸性化合物和碱性化合物的判断的几个问题?

    我想问个比较常用的问题就是酸性化合物和碱性化合物怎样判断。因为我根据PKA好像是判断不出化合物的酸碱性。我有三个疑问如下1.三聚氰胺是一个碱性化合物他的pka=8,苯酚是一个酸性化合物但是他的pka是9.99.按照pka来划分有机化合物的酸碱性不是很合适。有没有高手帮忙解惑一下怎么判断有机化合物的酸碱性?以克球粉为例因为克球粉带N,所以我感觉克球粉是一个碱性化合物但是他是一个酸性的。结构式如下:http://www.ichemistry.cn/pstructure/2971-90-6.png2.还有一句话是在液相色谱柱应用的时候经常说的,在C18上碱性化合物会发生拖尾,这个原因是硅羟基的次级保留造成的,这里面的碱性化合物是指那些碱性物质?3.第二句话是化合物最好让流动相ph在化合物pka±2时候分析,酸性化和物是-2, 碱性化合物是+2(即在分子态分析)但是在实际应用中碱性化合物往往是在酸性的流动相下分析的?对于苯甲酸的pka是4.2但是现在测苯甲酸应用的乙酸铵流动相ph是6.67的貌似理论不能支持大部分的实践。请高手解答

  • 关于未知化合物HPLC的方法开发问题

    关于未知化合物HPLC的方法开发问题

    一个未知 的复杂化合物,查不到文献,以下为其大概的结构式,分子量约700多,以下尝试了几种方法、[img=,401,312]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131304270646_2129_3116636_3.png!w401x312.jpg[/img]刚开始用的溶剂是乙腈,体系为TFA乙腈体系,无法得到理想的峰形,而且尝试了很多种都不可以,后来尝试可一个梯度,这个梯度下出峰尖锐,但是并不理想,有峰未分离开来。(这个梯度是尝试了很多种后选择的分离度相对较好的条件。)梯度:0 50% 50% 5 50% 50% 9 15 % 85% 17 15% 85% 19 5% 95% 27 5% 95% 27.01 50% 50%后来尝试往有机相加了一定比例的甲醇,约30%(尝试过15-45%)基本差不多。乙腈溶解,0.1%TFA和30%+70%乙腈做流动相,梯度跟上图一样,出了两个峰,但实验员反映,打过核磁没有发现同分异构体也没有其余杂质。如下图[img=,690,345]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131309278474_7582_3116636_3.png!w690x345.jpg[/img]后来怀疑会跟流动相中的甲醇反应,于是将溶剂换成了甲醇,梯度流动相与上图一致,发现峰变成了一个,全部转化为左边峰,证明产品会与甲醇反应。(也试过异丙醇,一样会反应)如下图。[img=,690,353]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131312161097_8267_3116636_3.png!w690x353.jpg[/img]因此这个体系不可取了,实验员认为TFA可能也会与化合物反应,并且猜测化合物为中性,让用纯水,但是在我看来中性化合物的话,PH的影响对其在液相中的保留时间分离度不会有明显变化,但是还是尝试了一下纯水体系。乙腈溶解,纯水和乙腈作为流动相,梯度与上面相同,保留时间延后,分离度变好。但是左边依然有一个峰,这与最开始TFA和乙腈体系下有点相似,左边有一个未分离开来的小峰,在这个体系下分开了。那么说明这个化合物并非是中性化合物吗?如下图[img=,690,351]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131317512074_2363_3116636_3.png!w690x351.jpg[/img]为了证明左边的峰是否是与甲醇反应的峰一致,于是又进了一针甲醇溶解的,梯度进样量与上相同。结果变成了三个峰,第三个峰变小了,中间的峰变高,并且多了第一个峰……[img=,690,339]https://ng1.17img.cn/bbsfiles/images/2019/06/201906131325256497_9234_3116636_3.png!w690x339.jpg[/img]就以上几种尝试多了很多无法想通的问题:1、这个化合物到底是偏中性还是碱性。2、在TFA体系下,甲醇溶解后进样只出一个峰,而在纯水体系下,却出了三个峰,那么是否说明起始在TFA的体系下也有三个峰,只是未能完全分开。3、谁做过类似的化合物,是否有较好的分析方法呢?最新的情况:还有一个化合物跟上面的相似,是其前一个步骤称为化合物1,只有一个基团不同,就是右下角是羟基,其余一样,上面那个就称为化合物2然后我们用上面的方法,TFA体系和纯水体系,有机相都为乙腈的条件下走了两针。在TFA体系下峰形良好,出峰时间约18.7,在中性体系下,峰形宽胖,出峰时间15.0min。然后呢还得知了其PKA值为6.7左右,上面那个化合物2PKA值5.3左右。那么为了更好的分离这两个物质,我选择的流动相应该PH在多少?已知TFA/磷酸这种较弱的PH下不可以分离,两个化合物峰靠的很近。在纯水体系下,两个化合物分离的很远,带羟基的化合物1出峰时间15.0min,但是峰形宽胖,带醛基的化合物2出峰时间27min,分离度良好,但是时间太靠后,试了好多其他梯度都没办法解决。我准备尝试0.1%的氨水体系,不知道是否可以。有没有其他更好的调节方式呢?望指教~~~

  • 【转帖】液相色谱-质谱联用系统用于小分子化合物分析时的几点体会。

    液质联用仪因其对大部分化合物的高灵敏度得到越来越广泛的应用,适合于体内药物、体内有毒物质、药物的杂质等物质的定性和定量分析等领域。与传统的色谱分离检测器(紫外、荧光、视差、蒸发光散射、电化学等)检测的分析手段比较,质谱属于液相色谱的广适性检测器,具有明显的优势,该方法适用范围更广,灵敏度和高通量的特点,能够满足多个领域的定性和定量要求。 液质联用仪用于小分子化合物定性已有多年历史,普通高效液相系统只能对已知化合物(有标准品的化合物)通过峰位来定性,对于未知化合物却无能为力。而高效液相色谱—质谱联用仪可以对化合物作多级质谱,通过多级质谱的分析来推测化合物的结构,从而对已知和未知化合物均可以较准确的定性。液质联用仪还可用于小分子化合物定量,且与用普通高效液相系统对化合物进行定量相比,其不需要定量的化合物必须与样品中的其它有类似性质的成分完全分离,而高效液相色谱—质谱联用仪对化合物间的分离度没有要求,不但对保留时间不一致的物质能区分开,即使保留时间完全一致也同样互不干扰,只要过滤出想测的物质即可;且该方法可在数分钟内对几十个化合物同时定量,简便、快捷、灵敏、可靠。 质谱仪的定量原理是在电压和气流的作用下把待测物加氢离子(正离子方式)或减氢离子(负离子方式)后带电荷,仪器检测到的是一定质核比(m/z)的物质,即选择离子监测(SIM),其他质量数的物质能被滤掉,其他原理及要求同一般色谱要求。目前多使用的一般仪器是单位质量分辨,可将分子量相差1的物质完全可以区分,专属性高,用单四级杆质谱仪就可以定量;有时为了进一步保证检测的准确性,把待测物加能量打碎,产生碎片离子(子离子),对母离子和子离子同时进行检测,采用三重四级杆质谱仪,也就是用选择反应监测(SRM)定量,母离子和子离子均完全一样的物质非常少见,因此定量的准确性更好,检测限更低。

  • 环境空气6种挥发性羧酸类化合物的测定(GC-MS法)

    [align=right][b]SGLC-GC/MS-019[/b][/align][b]摘要:[/b]本文建立了6种挥发性羧酸类化合物测定的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]方法。参照HJ 1220-2021中方法,采用色谱柱SH-Polar D 对6种挥发性羧酸类化合物进行分析。结果表明,各化合物峰形对称,重现性好,满足标准要求。本方法可为6种挥发性羧酸类化合物测定提供参考。[b]关键词:[/b]6种挥发性羧酸类化合物 环境空气 SH-Polar D [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url][b]1. 实验部分1.1 实验仪器及耗材[/b]仪器配置:岛津 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050NX [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪;色谱柱:SH-PolarD(30 m×0.25 mm×0.25μm;P/N:R221-75981-30);纯水机:PR-FP-0120α-MT1(+ 60L水箱 + 取水器);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件1.2.1 色谱条件:[/b]毛细管柱:SH-PolarD(30 m× 0.25 mm×0.25μm;P/N:R221-75981-30)程序升温:初始温度50℃,保持2 min,以8℃/min升温到150℃,以20℃/min升温到220℃,保持5min检测器:蒸发光散射检测器ELSD-III;Gain:5;漂移管温度50℃载气:He载气控制模式:恒流流速:1.5mL/min进样口温度:240 ℃进样量:1 μL进样方式:不分流进样[b]1.2.2 质谱条件:[/b]毛细管柱:SH-Polar D(30 m× 0.25 mm×0.25μm;P/N:R221-75981-30)电离模式:电子轰击电离(EI)电子轰击能量:70 eV离子源温度:230 ℃接口温度:240 ℃溶剂延迟:3min数据采集模式:SIM各化合物SIM参数见下表[img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-019_01.png[/img][font=arial, &][size=12px][/size][/font][b]1.3 混合标准品溶液的制备[/b]取市售混合标准品适量,用甲基叔丁基醚稀释至浓度为12mg/L和0.6mg/L的溶液(以乙酸计),作为混合标准品溶液。[b]2. 结果及讨论2.1 混合标准品的色谱图[/b][img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-019_02.png[/img][img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-019_03.png[/img][font=arial, &][size=12px][/size][/font][b]重现性数据[/b]混合标准品溶液(0.6 mg/L,以乙酸计)[img=SHIMSEN Styra HLB]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-019_04.png[/img][font=arial, &][size=12px][/size][/font][b]3. 结论[/b]本文建立了6种挥发性羧酸类化合物测定的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]方法。参照HJ 1220-2021的方法,采用色谱柱SH-Polar D 对6种挥发性羧酸类化合物进行分析。结果表明,各化合物峰形对称,重现性好,满足标准要求。本方法可为6种挥发性羧酸类化合物测定提供参考。

  • 对于这类紫外吸收弱的化合物如何进行液相分析?

    对于这类紫外吸收弱的化合物如何进行液相分析?

    各位坛友,最近我手上有个项目,反应过程如下:http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456760_1654054_3.jpg(01)→http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456760_1654054_3.jpg(02)→http://ng1.17img.cn/bbsfiles/images/2013/08/201308080859_456762_1654054_3.jpg(03)因为这几个化合物的沸点偏高,所以不能选择气相色谱。我现在需要做的工作:建立合适的液相方法,去监测反应和中间体及成品的质量控制。我对样品进行了紫外扫描,结果与预期一样,吸收很弱。鉴于Boc对酸不稳定,所以我选择了中性流动相。我现在使用的方法:25cm的C18柱,流动相(水和乙腈),检测波长210nm,梯度洗脱。这种方法是可以看到色谱峰,但我总感觉要做成品的质量控制,有些不可靠。毕竟除了有微弱吸收的能被检出,还有一些紫外吸收更弱的不能出峰,这样报告出来的色谱纯度就有欺骗性。当然,做出来的成品我还会送去做1H NMR分析。可是NMR只能有个大概的结论,定量上还是没有色谱准确。例如,我的(03)成品送检NMR,与文献数据一致,这样我只能说样品纯度比较高,但我不能告诉别人我的样品纯度是多少。有几个问题向大家请教:(1)这类紫外吸收弱的化合物,用蒸发光检测器是不是更好一些?(2)在只有紫外检测器的情况下,如何让检测结果更可靠?(3)化合物(03)可以利用什么试剂衍生来增强紫外吸收吗?(4)关于这类化合物,大家都有什么比较好的经验?希望亲们不吝赐教,我和小伙伴们都在盼望着......http://simg.instrument.com.cn/bbs/images/default/em09506.gifhttp://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 雾霾检出大量危险含氮有机化合物,一起来探索它的检测吧

    专项组“大气灰霾溯源”项目负责人、中科院大气物理所研究员王跃思说,本次席卷中国中东部地区的强霾污染物化学组成,是英国伦敦1952年烟雾事件和上世纪40-50年代开始的美国洛杉矶光化学烟雾事件污染物的混合体,并叠加了中国特色的沙尘气溶胶。  尤其值得一提的是洛杉矶光化学烟雾事件,在该污染事件中,共有800余人丧生。美国政府在后来的调查中称,石油挥发物(碳氢化合物)和二氧化氮,在强烈的阳光紫外线照射下,会产生一种有刺激性的有机化合物,这个过程被称为光化学反应,其产物就是含剧毒的光化学烟雾。  在京津冀雾霾天气的专项研究中,专项组检出了大量含氮有机颗粒物,这在王跃思看来是“最危险的信号”,因为这就是“洛杉矶上世纪光化学烟雾的主要成分之一”。  经过源解析技术,这些包括含氮有机颗粒物在内的有机物被识别出了4类有机组分:氧化型有机颗粒物,主要来自于北京周边;油烟型有机物,主要来自局地烹饪源排放;氮富集有机物,一种化学产物;还有烃类有机颗粒物,主要来自于汽车尾气和燃煤。其中氧化型有机颗粒物在整个污染过程所占比例最大,为44%,其余三个组分别占21%、17%和18%。===============================================================1、雾霾影响了中国大部分,其中的危害已经是不可忽视,你又检测了吗?2、石油挥发物、二氧化氮你都检测过吗?3、检测方法都有哪些?都用到什么仪器设备?

  • 关于化学中发光分析法的讨论

    关于化学中发光分析法的讨论徐吉龙(沈阳师范大学,辽宁,沈阳,110034)【摘要】化学发光分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光.根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法叫化学发光分析法。化学发光与其它发光分析的本质区别是体系产生发光(光辐射)所吸收的能量来源不同。【关键词】化学发光;体系;应用 1 鲁米诺化学发光反应体系 鲁米诺(5-氨基一邻苯二甲酰肼)属于酰肼类有机化合物,性质稳定,结构简单,易于合成,无毒,不污染环境,且水溶性较好,是使用最早应用最广泛的化学试剂之一,它在强碱性溶液中可以被氧化剂氧化而处于激发态,激发态发射蓝光同时回到基态。鲁米诺可与各种氧化剂如过氧化氢、氧气、次氯酸盐、碘、铁氰化钾、高锰酸钾等反应产生化学发光。鲁米诺作为一种有效的化学发光试剂被广泛用于各种氧化剂、催化剂和抑制剂的测定。利用化学发光分析已经测定了抗坏血酸、酚磺乙胺、富马酸酮替芬、脱氧肾上腺素、甲基多巴、氯丙嗪、双嘧达莫、胰腺脂肪酶、氨苄西林、左旋多巴以及阿莫西林等。这些有机物质都是各类药物中有效成分,因此,对于此类有机物含量的测定对药物的研究和开发以及质量标准研究、安全性评价、药物临床研究等,都有非常重要的作用和意义。 2 光泽精化学发光反应体系 光泽精(N,N-二甲基二吖啶硝酸盐),也是最常见的化学发光试剂之一。它在碱性条件下,可以被过氧化氢氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发射蓝绿色的光同时回到基态.光泽精具有较高的发光效率,量子产率一般在0. 010. 02之间。光泽精可在一些还原性物质存在的情况下产生化学发光,因此该化学发光试剂主要被用于无机还原剂和有机还原剂的测定,大多数化学发光反应在无催化剂作用下是一个非常缓慢的氧化反应,光泽精发光体系亦是如此。当分别选择Sn4+、Fe2+、U3+等金属离子作为催化剂时,光泽精发光体系的发光速率急剧加快,发光强度也随之增强。被增强的发光强度与金属离子的浓度有良好的线性关系,从而建立了测定痕量金属离子的化学发光方法。3 高锰酸钾化学发光反应体系 高锰酸钾是化学发光反应中常用的强氧化剂,高锰酸钾化学发光反应可用来测定两类物质,一类是能直接与高锰酸钾产生化学发光反应的有机物,该有机物的分子结构大多数都含有多个羟基或氨基。另一类是基于能量转移机理测定荧光物质。高锰酸钾可以氧化很多种有机物从而产生化学发光,某些不易与鲁米诺、光泽精发光进行测定的物质,可以利用高锰酸钾的高氧化性与之反应,得到满意的测定结果,从而不断开发了新的化学发光体系,扩展了化学发光的应用范围。由于高锰酸钾和多种物质均有化学发光,因此高锰酸钾体系用于实际物质的化学发光测定干扰较严重,为提高分析方法的选择性,对高锰酸钾同时作用于维生素C( vc)和罗丹明B的化学发光行为进行了研究。有关高锰酸钾氧化有机物的化学发光反应已有不少报道,但高锰酸钾与无机物化学发光反应的研究较少,利用甲醛可以对高锰酸钾有很好的增敏作用,从而提高体系的灵敏度和选择性,并测定了一系列的金属以及无机离子。同时还发现连二亚硫酸钠也有很好的增敏效果。高锰酸钾作为化学发光的新体系,曾被应用于吗啡、可卡因、尿酸、肾上腺素、维生素等药物分析和的测定。4 过氧草酸酯类化学发光反应体系 过氧草酸酯类化学发光体系最早发现于20世纪60年代,最初主要用于军事目的,后来逐渐转入民用。过氧草酸酯类化学发光体系有4种要素化合物,即荧光剂、草酸酯、过氧化氢、催化剂。其化学发光的基本原理是:在合适的荧光化合物的存在下,过氧化氢诱导氧化芳香基草酸酯放出能量,而由化学发光染料分子吸收后转化为光能,以荧光形式放出。这种发光体系除了能用于制造各种冷光源外,还广泛应用于各类化学发光分析。与鲁米诺及其类似物化学发光体系相比,主要优点是量子产量高,因而具有较高的灵敏度,金属离子和氧分子干扰少。5 钌(II) -联吡啶配合物化学发光反应体系 钌(II) -联吡啶(2+溶液中加入芳香胺,观测桔红色的发光.2+是常用的电致化学发光试剂,具有独特的化学稳定性、氧化还原性和发光性,在硫酸介质中,它能与氧化剂产生化学发光,加入某些有机物可以增强其发光强度,且发光强度与有机化合物浓度呈线性关系,基于此,可以测定这些有机化合物。自从发现钉(II) -联吡啶配合物具有光解水的功能以来,钌(II) -联吡啶配合物及其衍生物一直是化学家研究的热点之一,活跃在许多研究领域,建立了多种测定有机物以及无机物方法,包括测定丙酮酸、氨基酸、草酸及其它有机酸等,同时还发现了测定抗坏血酸的新方法。6 铈(IV)化学发光反应体系 在酸性介质中,Ce (IV)可以和许多物质发生氧化还原反应从而产生荧光特性或化学发光,利用该反应已经建立了一些化合物的测定方法.何治柯等人发现铈(IV)可以氧化钌(II) -联吡啶从而产生比较微弱的化学发光现象,并且发现a-羟基羧酸、巴比妥酸、丙酮酸、抗坏血酸、盐酸小檗碱等作为增敏剂,对该反应有显著的增强作用,其增强的强度跟被测物质的浓度成正比,据此建立起一系列测定有机酸的新方法.并在此基础上提出了偶合化学发光机理,指出增强化学发光与有机酸结构的关系。

  • 挥发性有机化合物的采样方法

    空气中VOCs的采样方法空气中VOCs的采样主要分主动采样和被动采样。在实际工作中,多采用被动采样,主要有容器捕集法、固体吸附剂法、SPME法。容器捕集法容器捕集法是将内壁经硅烷化处理的不锈钢罐内部抽成真空后,用减压或加压的方式采样。采集的试样需再用固体吸附剂吸附(如Tenax)或低温富集处理,然后导入GC-MS测定。该方法操作繁琐,富集倍数小,容器对VOCs有吸附,但优点是一份试样可用作多次分析。Kelly曾用此法研究了有毒VOCs在采样容器中的稳定性,并对不同的化合物在容器中的稳定性做了总结。EPA曾建立了一个数学模型来预测痕量VOCs在采样容器中的稳定性。固体吸附剂采样法用固体吸附剂捕获空气中VOCs也是通常采用的方法之一。吸附剂选择的一般原则为:①具有较大的比表面积,即具有较大的安全采样体积;②具有较好的疏水性能,对水的吸附能力低;③容易脱附,分析的物质在吸附剂上不发生化学反应,即只是物理吸附。常见的固体吸附剂采样法有:Tenax富集采样法、活性炭吸附溶剂洗脱法、活性炭纤维采样法和混合吸附剂采样等方法。固相微萃取法(SPME)SPME是一项较新的采样方法,该法操作简单方便、无需有机溶剂,集采样、萃取、浓缩和进样于一体。SPME装置由萃取头和手柄两部分组成。该法的关键在于萃取头,其上1cm长的融熔石英纤维表面涂有聚合物。常见的萃取头以聚二甲基硅氧烷(PDMS)为涂层,它对于吸附非极性化合物有非常好的选择性。以聚丙烯酸酯(PA)为涂层的萃取头适用于采集极性化合物,主要用于分析有机氯、酚类等。涂层的厚度影响化合物的采集,100μmPDMS 适用于低沸点、易挥发的非极性化合物,7μmPDMS适用于中等挥发、高沸点的非极性化合物,因此对某一种或一类化合物应选用一个合适的萃取头。采样时利用手柄将萃取头推出,使其直接暴露于室内空气中进行采样,无需动力;采样结束后,收回萃取头即可。分析时,将该装置直接插入GC进样口,推出萃取头,吸附在萃取头上的有机物就会在进样口进行热解吸,随载气进入毛细管柱进行测定。由于解吸时没有溶剂注入,且分析物很快被解吸送入GC柱,所用的毛细管柱可以很短很细,这可加快分析速度,提高检出限。目前,SPME已广泛用于环境样品的分析。

  • 化合物简称

    大家好: 我对化合物简称弄不清楚,希望高手能赐教。 像三氟乙酸为什么是TFA,三氟乙酸乙酯是ETFA,三氟乙酸酐是TFAA等,像这种简称有一定的规律性吗?如果只告诉你简称,怎么来推化合物名称? 请各位多多帮忙!谢谢

  • 方法开发-碱性化合物Case

    方法开发-碱性化合物Case

    [font='calibri'][size=13px][back=#ffff00]碱性化合物:[/back][/size][/font]流动相pH要高于待测物pKa,待测物在反相中才以中性化合物存在。增加保留措施:(序号就是优先级顺序,若能用高氯酸代替氨水,则2优先级最大)1.使用高pH缓冲液,比如氨水2.使用高氯酸或高氯酸盐作为缓冲液添加剂。3.HILIC模式:反反相。水相为洗脱相,有机相为保留相。有机相的占比不能少于40%。离子形态才能在该模式下实现保留。4.使用TEA抑制峰拖尾(已慢慢淘汰)5.离子对试剂:使用己烷磺酸钠等,最好别用案例:[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011514371336_6863_3433829_3.png[/img]开发该化合物IM4的纯度方法。使用氨水体系去开发:[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011514372693_6175_3433829_3.png[/img][align=left]开启全波段,214nm为最佳吸收波长[/align][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011514374031_6226_3433829_3.png[/img]用氨水体系,峰形及保留都可以。一周时间后,IM4保留2.8-4.6min之间漂移,方法需要调整。[img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011514377112_2150_3433829_3.png[/img]改用HClO[font='calibri'][sub][size=13px]4[/size][/sub][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011514378430_7715_3433829_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011514378064_5639_3433829_3.png[/img]15天之内的叠加图,在5.3-5.5min之间,保持稳定。ClO[font='calibri'][sub][size=13px]4[/size][/sub][/font][font='calibri'][sup][size=13px]-[/size][/sup][/font]有非常强的扰乱水分子间的氢键、增加其混乱度的能力。能够增强在反相色谱系统中低pH条件下碱性化合物的保留。其中的作用机制是ClO[font='calibri'][sub][size=13px]4[/size][/sub][/font][font='calibri'][sup][size=13px]-[/size][/sup][/font]和质子化的碱性分析物产生强的离子对作用而对它们之间的水分子产生排斥,从而形成一个中性复合物。这种复合物在疏水的固定相上有更好的保留。也有人认为分析物保留的增强与ClO[font='calibri'][sub][size=13px]4[/size][/sub][/font][font='calibri'][sup][size=13px]-[/size][/sup][/font]在反相固定相上的吸附有关。ClO[font='calibri'][sub][size=13px]4[/size][/sub][/font][font='calibri'][sup][size=13px]-[/size][/sup][/font] 对比NH[font='calibri'][sub][size=13px]4[/size][/sub][/font]OH的优势:色谱柱更耐用(绝大部分色谱柱耐酸不耐碱)截止波长更低,基线干扰小一定程度上能修饰峰形劣势:无法与MS联用。更多精彩内容可关注“研发分析之路”

  • 求助化合物鉴定

    求助化合物鉴定

    http://ng1.17img.cn/bbsfiles/images/2012/12/201212111503_411752_2657521_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212111503_411753_2657521_3.jpgGC-MS法测定了挥发油,结果有两个化合物的匹配度较低,我想鉴定,该怎么办。现将两个化合物的图片截图如上,请问该化合物是什么。

  • 油漆挥发性有机化合物检测

    请问有用气相做油漆挥发性有机化合物的?我们想用气质开展这个项目,看国标无法理解上面的定性,既没有说买标准物质也没有具体的说如何定性,我是走样品出了色谱峰后匹配谱库然后再看特整离子,没有标准物质如何对比,有机化合物这么多,自己做检测不久实验室也没有懂得,所以一有问题就上来论坛,真的帮忙解决了不少,希望这次也能得到指教,感谢

  • 【原创】化学发光及生物发光的原理及其应用

    化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ) ,第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4— 氨基已基 —N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。 2 .光泽精 光泽精以硝酸盐的形式存在,在碱性介质中,过氧化氢将其氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发光。利用光泽精与还原剂作用,可用于测定临床医学上一些重要的还原性物质,如抗坏血酸、肌酸酐、谷胱甘肽、葡萄糖醛酸、乳糖、葡萄糖。 3 .洛粉碱 洛粉是文献上记载最早的化学发光试剂,但却迟迟未得到应用,直到 1979 年 Marino 等人将它应用于 Co 的测定后才得到重视。此试剂已被用于多种元素的分析测定。 4 .过氧化草酸酯类 草酸盐类化学发光反应大都生成过氧草酰 (Peroxalate) 中间体,因此这类反应亦称过氧草酰类化学发光反应。过氧草酸盐类化学发光分析应用的推广还有赖于新的荧光衍生试剂的开发。 5 . 吖啶酯类 McCap r 等合成了一系列吖啶酯类化合物,对该类试剂的化学发光机理研究表明,发光效率与试剂中的可解离酸性基团的 pKa 有密切关系, pKa 一般应小于 11 。吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作 DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。 以上五种化学发光剂化学发光量子产率高,水溶液稳定,能被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光,许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。目前报道的有邻菲咯啉,碱基水杨酸、罗明丹 —B 、没食子酸、香豆素、皮素,茜素紫、苏木色精,培花青,三苯甲烷类染料,丙酮、乙醇、羟胺等。这些试剂商品化程度高,价廉,使用方便,但化学发光量子产率较低,因此,研究增敏试剂来提高它们的化学发光量子产率是非常关键的。

  • 化学发光的应用

    第三部分 化学发光的应用• 无机化合物化学发光分析 1.1 金属离子分析 痕量金属离子对化学发光反应具有很好的催化作用,因而化学发光测定金属离子得到广泛的应用 ( 见表 1) 。但是,由于不同金属离子催化氧化发光试剂时,发光光谱相同,致使金属离子催化化学发光反应的选择性较差。为提高分析的选择性,可采用以下方法 : (1) 利用待测金属离子与干扰离子配合物稳定性不同进行选择性分析,如加入掩蔽剂 EDTA 或水杨酸掩蔽干扰离子 (2) 优化实验条件以减少其它离子的干扰 (3) 稀释样品溶液 (4) 加入敏化剂。但是,当样品中待测物相对于干扰物浓度很小时,上述方法也无济于事,只得进行前处理,常用的分离方法有色谱、溶剂萃取等。 色谱分离的高选择性与化学发光检测的高灵敏度相结合,是一种很有前途的联用技术。关键是流动相的选择,流动相选择得好,不仅可以提高选择性,还可以进行多个离子的同时测定。如用离子交换分离法同时测定 Cr (à ) 和 Cr (? ) 。溶剂萃取也是提高化学发光测定金属离子选择性的一个有效方法。这种方法的主要问题是费时,因为进行化学发光检测前必须将无机物从有机溶剂中反萃取出来,或是将有机溶剂蒸发除去。较好的方法是自动在线溶剂萃取选择性检测待测物。 1.2 其它无机化合物的分析  化学发光反应中,过氧化氢是最常用的一种氧化剂,因此有关 H 2 O 2 化学发光分析的报道较多 ( 见表 2) ,涉及到鲁米诺、过氧草酸酯及光泽精等化学发光反应。根据鲁米诺化学发光反应制成的 H2O 2 光纤传感器与流动注射法联用,可检测 10nmo l / L ~ 1 mmo / L 的 H 2 O 2 ,用模拟酶代替辣根过氧化物酶催化鲁米诺发光,检测限可达 5 . 5×10 - 9 mo l / L 。根据 ClO - 对鲁米诺的氧化作用,可用于测定 ClO - ,其它物质如 Cl 2 的干扰,可用流动注射法消除。利用停流技术测定水中 ClO - 不必进行前处理。含氮的无机化合物如 NH3 / NH +4 ,可将其衍生后用 TCPO 化学发光法检测,线性范围为 2 。 9ug / L ~ 6 m g / L 。 CN - 能抑制鲁米诺 H 2 O 2 - Cu (II ) 的化学发光,据此可分析测定 CN — 。在低温条件下化学发光分析测定 CN - ,当进样量为 100uL 时,线性范围为 10 - 9 - 10 -7 g / mL ,当进样量 20 uL 时,线性范围为 10 - 8 ~ 5×10 -7 g / mL 。 • 有机化合物的化学发光分析 2.1 有机酸 有机化合物的同系物结构和性质相似,使单一组分的测定遇到困难,因此有机化合物同系物的分析常与 HPLC 相结合。有机酸的化学发光分析 ( 见表 3) ,一般是先将其衍生成荧光物质经色谱分离后进行化学发光检测。但衍生法有如下的缺点 : (1) 衍生反应不完全 (2) 衍生物稳定性差,要求及时检测 (3) 限制了分离方法和条件的选择。由于衍生产物的性质与待测物不同,导致分离效率和分辨率下降,同时增加分析的时间和劳动强度。在临床医学上,草酸是一个重要的检测项目,可以直接用氧化化学发光反应测定尿液和草酸二乙酯中的草酸盐及游离的草酸。另外还可以测定苯酮尿症病人的尿液的苯丙酮酸的含量,方法是先在碱性条件下将苯丙酮酸氧化成 1 , 22 二氧杂环丁烷类化合物,然后裂解产生化学发光。另外可以将 Fe ( III )草酸配合物光解得到 Fe (II ) ,催化鲁米诺-过氧化氢化学发光反应,此法线性范围为 0 . 1 ~ 100uM 。此外酶联偶合反应也可以用于某些有机酸的化学发光分析。 2.2 有机碱  胺类化合物第一离子化电势呈如下规律 : 伯胺 仲胺 叔胺,并随碳链增长,离子化电势逐渐下降,因此叔胺化合物的检测限较低,达 0 . 28 pM 。胺类化合物的分析 ( 见表 4) ,较多的是经柱前衍生生成荧光衍生物,分离后用过氧草酸盐化学发光体系检测,也可将其生成希夫碱或其它产物氧化而发光。有些碱如肾上腺素等可直接氧化而发光。通常有一个经验规则,假如一物质具有荧光或其反应产物有荧光,该物质一般可发生化学发光反应,但也有例外。嘌呤碱是核酸的基础物质,因此对嘌呤碱的分析测定将推动 DNA 分析方法的发展。在酸性醇液中腺嘌呤与苯甲醛反应,然后用过氧化氢氧化反应产生化学发光,此法具有很好的选择性,线性范围为 1 . 5×10 - 7 ~ 5 . 0×10 - 7 M ,用此法测定鸟嘌呤灵敏度比荧光法高 20 倍。 2.3  氨基酸  氨基酸分析方法的改进有利于推动生物技术、基因工程、 DNA 重组和基因克隆等的发展。由于绝大多数氨基酸没有内源荧光特性,因此用过氧草酸盐体系测定氨基酸需将其衍生成荧光物质,但此法避免不了衍生法所固有的缺点。此外亦可通过测定氨基酸与氨基酸氧化酶反应产生的过氧化氢来测定氨基酸的含量,如 L 2 氨基酸经反相色谱柱分离后流经 L 2 氨基酸氧化酶反应器产生过氧化氢,然后用过氧草酸盐体系检测。氨基酸与 Ru (b ipy) 3+3 反应,用流动注射化学发光法检测,相对于脯氨酸和天冬酰胺检测限可分别达到 20 pmo l 和 50 pmo l 。一般来说,仲胺反应产生的的发光强度比伯胺大。对氨基酸上取代基性质研究表明,给电子基有利于增强化学发光强度。 2.4 糖类  光泽精体系可用于测定一些还原性物质,如乳糖、葡萄糖,用于抗坏血酸和脱氢抗坏血酸的分析测定有很高的灵敏度。但此法用于复杂样品分析却因干扰多而受到限制。用草酰胺化学发光照相法测定了葡萄糖。在微量滴定板上将草酰胺发光剂、荧光增感剂及 50 uL 试样混合,于 5 m in 内用照相荧光剂测定液斑的发光强度,可检出 100 pmo l 的萄萄糖。 糖类物质测定的另一个重要方法是测定酶反应产生的 H 2 O 2 ,由此对酶底物 —— 葡萄糖、乳糖等进行测定。而酶的固定化技术为此法的发展注入了新的活力。采用物理包埋法将葡萄糖氧化酶固定在聚丙烯酰胺凝胶中并制成酶柱,再将酶柱接入流动注射系统中,用流动注射化学发光法测定由酶促反应产生的 H 2 O 2 ,从而测定人体血液中的葡萄糖,检出限可达 0.1 m g / L 。 2.5 类固醇与类酯  一些特异性酶如类固醇脱氢酶和其它荧光素酶与合适底物反应产生 H 2 O 2 ,通过测定 H 2 O 2 达到分析测定底物的目的。 2.6 药物  根据药物的不同类型选择不同的化学发光分析方法。目前较常用的方法是直接氧化化学发光。在碱性溶液中用 N -溴代丁二酰亚铵氧化含有酰胺基的药物产生化学发光,如利福霉素等检测限在 1 . 23 m g / L ~ 0 . 5 g / L 之间。氧化四环素类药物检出限在 0 . 02 - 0 . 04 m g / L 之间。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制