当前位置: 仪器信息网 > 行业主题 > >

磁性分离器

仪器信息网磁性分离器专题为您提供2024年最新磁性分离器价格报价、厂家品牌的相关信息, 包括磁性分离器参数、型号等,不管是国产,还是进口品牌的磁性分离器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁性分离器相关的耗材配件、试剂标物,还有磁性分离器相关的最新资讯、资料,以及磁性分离器相关的解决方案。

磁性分离器相关的论坛

  • 磁浮子液位计在原油分离器液位测量中的现场校准方法

    前言按照国家检定规程的形貌,2m 以下液位计需通过标准水箱装置进行检定,但是,受原油分离器磁浮子液位计现场安装存在问题及本身尺寸的限制,现场所使用的磁浮子液位计无法拆除送检定单位进行检定,所以对磁浮子液位计进行简单而有效的现场校准方法,以期能够达到在现场安装条件下液位误差准确性及其科学性的目的,具有实际作用。1 磁浮子液位计布局与工作原理磁浮子液位计主要部件即是工作筒、磁浮子、外部指示器及一个远传检测传感器。液位计从上部和下部的侧面引出管线法兰与被测介质的器壁连接,通过中间阀门来实现磁浮子液位计的使用和切除。在磁浮子液位计下部通过法兰连接安装有一个排污泄压阀,在维护时进行排污泄压。测量筒内壁安装一个可以自由上下活动的磁性浮子,浮子里面密封有永远磁铁。在测量筒的法兰面上固定一个缓冲弹簧,用来减轻测量筒对浮子的硬性冲击。磁浮子液位计与原油分离器组成连通器,行使浮力原理和磁耦合,磁浮子随被测介质的液面的变化上下挪动,浮子内置永磁磁组与显示器的磁柱之间产生磁性耦合作用,吸引外部显示器磁柱的翻转,从而现场显示器可清楚地指示出液位的高度。当容器内的液面发生时,伴随磁性浮子随液面升降的同时,磁浮子液位变送器或防爆磁浮子液位变送器内干簧管经与磁性浮子耦合后随之动作,输出与液面比较应的电阻、电流或开关信号。2 原油分离器浮子液位计日常维护浮子液位计日常维护是巡检人员和自动化维护人员巡回检查所例行的具体内容,采用“看、摸、试”等方式对仪表进行检查。2.1 外观检查外观检查内容是检查人员在不采用工具、不进行拆卸、不表正常工作的情况下所进行的检查。主要针对仪表的连接部位、电路片面和相关附件进行一系列检查。在检查中,应做到:仪表防爆密封良好,防爆软管无破损,电气连接坚固,显示器磁柱无损坏;变送器、干簧管套、液位开关及固定部位无锈蚀;分离器与液位计联接处无漏油、气现象。2.2 性能检查性能检查是自动化维护人员在不影响正常生产的情况下,对磁浮子液位计不拆卸的检查,一般为每周一次。在怀疑磁浮子液位计发生故障时,可采用性能检查的方法进行排除。性能检查方法:改入液量较大油井,关闭出油阀,观察液位由下行程直至上行程。往复几次,根据浮子的阻力变化校验浮子遇阻情况。同时观察变送器输出信号变化量是否随浮子变化而变化。根据以上的检查可校验磁浮子液位计工作性能的好坏。原油分离器浮子液位计由于测量介质的结垢、结蜡的影响,至少每月对磁浮子室、分离器上下流阀门进行清洗、除垢,对磁浮子磁性进行检查。2.3 使用时的注意点原油分离器浮子液位计使用时应注意,当出现浮子难以浮起且浮子挪动不灵活的情况。这基本上是因为磁性浮子上沾有铁屑或其他污物造成的。可先排空介质,再取出浮子,消除磁性浮子上沾有的铁屑或其他污物即可。检查液位计时,不要用强磁铁在连通管外上下拉动浮子进行检查,否则会导致磁性浮子磁化而改变极性,乃至会使浮子磁性减弱,以致难以正常工作。3 在线校准方法原油分离器浮子液位计校准与每年分离器校验时同时进行,在发现浮子液位计存在误差时及时进行校准;新装浮子液位计、拆卸及维修后的浮子液位计均进行校准。校准内容一般包括确定介质密度、显示校准与信号输出校准。3.1 确定介质密度介质密度可以用标准密度计测量,也可以根据用户提供的具体资料查取,介质密度需记录备案,确保介质密度能够符合液位计磁浮子对密度的要求。虽然理论上介质密度对液位计的示值有影响,但是实际使用中液位计的零位和满度值都可以通过电位器直接调整过来。3.2 显示校准磁浮子液位计显示的是液位浮子的测量位置,它的准确程度是用于分离器液位控制的重要保证。现场人员往往通过现场观察磁浮子液位计的显示来校验液位的变化。校准方法:向分离器在不带压力的状况注水,用连通法测量液位计测量点。将液位计按照行程的高度均分成 0、25%、50%、75%、100%等五个测量点,其磁翻板显示应逐步与比较应。磁翻板调整通过安装位置进行调整其比较应的高度。3.3 信号输出校准通过对信号输出的校准,确保现场采集的信号能够准确地传送到控制终端及电动调节仪表中,可对整个分离器的液位回路、产量进行控制和计量。校准方法:将电流表串接入液位计测量回路中。将液位保持在磁翻板零位的基准刻线,电流表指示在 4mA,如输出电流小于 4mA,调节 0 位螺丝,反之亦然。然后将液位控制在满量程上,电流表指示在 20mA 如有误差调节满度螺丝至 20mA。然后将行程高度均分成0、25%、50%、75%、100%等五个测量点,其输出信号应为 4、8、12、16、20mA,信号误差不超过 0.4mA。远程终端及电动调节仪表显示为0、25%、50%、75%、100%。4 结束语在油田生产中,有较多的种类仪器、仪表无法在计量检定单位进行检验,原油分离器磁浮子液位计现场校准所用的仪器简单实用,可操作性强,可以保证原油分离器液位测量的准确性,确保了原油生产的安全运行和计量的准确性。

  • 关于金属分离器的分离技术介绍

    关于金属分离器的分离技术介绍

    金属分离器广泛应用于食品行业,医药行业,药物和胶囊兼用细微的粉末产品;调料,添加剂或粉状原料进入下一步处理之前对其进行检测,保护后续设备;药草、茶叶、奶粉和化学添加剂等细微的粉末产品对其进行质量检测。并完成金属和非金属的分离工序,主要利用电磁转化原理,当电流通过线圈时会产生磁场,根据电磁转换理论,当一定的电流通过固定的线圈时就在线圈内产生稳定的磁场,该磁场会受到外界的环境变化而被破坏,主要是受到金属物体的破坏,破坏了磁场的稳定,磁场的改变又会引起电路电流的改变,得到一个改变的电流,该改变的电流就会被侦测到,并被放大。然后通过微处理器对前后的电流变化比较,得到是否有金属通过,根据现在技术DSP的应用很快能分选出是否有金属通过和非金属通过。http://ng1.17img.cn/bbsfiles/images/2013/11/201311041533_475270_2803766_3.jpg此外,金属分离器是特别设计以满足严格的卫生标准,因而特别适用于食品、化工和制药行业。金属分离器的分离系统可通过回旋漏斗清除自由下落的散装材料中磁性和非磁性的金属杂质(钢、不锈钢、铝等),而不对产品处理造成任何干扰。这已被证实特别是对谷粒、轻薄、易碎含纤和潮湿的散装材料中的杂质高度有效的清除方法。金属分离器的性能特点:1、含有长纤维的产品不会堵塞排出设备。2、可以避免紊乱和产品结块(轻而薄的产品)。3、卫生设计,排出装置防锈防水。4、可避免长时间的产品积淀和结块发霉。5、通过清理薄片可以快速而简单的清洁。

  • 磁性微粒偶联生物分子的原理以及使用

    xMagTM磁性微粒表面分别含有氨基、羧基等功能基团,利用戊二醛或1-乙基-3碳二亚胺(EDC)等偶联试剂,将蛋白质、抗体和核酸等生物分子共价结合在其表面,可应用于蛋白纯化、免疫学检测、核酸纯化和核酸杂交检测等领域。 产品特点偶联稳定:共价偶联保证在苛刻条件下生物分子仍可稳定固定于磁粒表面。高效偶联:相比同类产品具有更多的活性基团,有效提高生物分子的利用率。操作简单:借助磁性分离器即可完成生物分子的分离,无需分离柱及离心操作。偶联原理http://img.dxycdn.com/trademd/upload/userfiles/image/2012/11/A1353485727_small.jpgxMag TM 氨基末端磁性微粒偶联原理图 http://img.dxycdn.com/trademd/upload/userfiles/image/2012/11/A1353485746_small.jpgxMagTM羧基末端磁性微粒偶联原理图

  • 一年了,专利才下来,气液分离器

    一年了,专利才下来,气液分离器

    http://simg.instrument.com.cn/bbs/images/default/em09501.gif大家已经看到很多种氢化物发生器气液分离器了,还有很多在原子荧光内的专利气液分离器老式气液分离器大多数是玻璃的U型管结构,还有些扩展的大容量测汞仪用U型变形结构,现在的就更多了,多次气液分离,气液分离膜分离,还有未曾见过实物的直接用过滤棉或微孔隔膜做液阻进行气液分离的..我一直在想能不能简单一点,做的便于制作,便于安装,便于拆装的面板化的气液分离器呢?知道有一天,忽然想到一个方式,把3个一次性注射器用热熔胶黏了起来,做了个简易的实验装置....然后居然实验成功了...http://ng1.17img.cn/bbsfiles/images/2015/01/201501061108_531285_1939081_3.jpg然后我得到了结论,只要有微小的水封结构,就能够在氢化物发生器的气液分离内做很好的应用,那个文献里用过滤棉/膜做的气液分离器就是这个原因吧,但是那也太容易脏了...在后续的实验观察里我发现这种微U型水封结构很容易被排空,也就意味着对比老实U型结构更耐脏至此,世上可能是最简单的气液分离器诞生了,微U型液阻气液分离器,面板安装http://ng1.17img.cn/bbsfiles/images/2015/01/201501061108_531284_1939081_3.jpg看了几个其他的面板化的气液分离器,视乎都还需要有个专门的排液蠕动泵,这个到是不需要,直排就可以

  • 喷雾干燥机之旋风分离器

    喷雾干燥机之旋风分离器

    旋风分离器是喷雾干燥机收集部分的重要玻璃仪器,起着举足轻重的作用,它的结构和尺寸极大影响收率,现在让我们来一起认识一下这个非同寻常的宝贝。http://ng1.17img.cn/bbsfiles/images/2016/09/201609231430_611853_676_3.jpg 旋风分离器的原理: 旋风分离器是利用器内旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置。如上图示。含尘气体在引风机的作用下,从干燥塔过来后进入旋风分享器的圆柱体内,气流将由直线运动变为圆周运动,并围绕着中央排气管向下旋转,气体中的粉尘受到因旋转而产生的离心力作用向器壁作径向运动,撞到圆柱体或圆锥体壁上失去动能而沿壁落下,进入主收集瓶内。气体向下旋转至圆锥底部无法逸出,于是折转向上旋转,经玻璃直角管到排气管排出。这一股向上旋转的气体核心往往还由于空气的曳力作用又带走少量的细粉排出器外。 看过原理之后,明白此物的重要性,鉴于其重要性,特别适用一些贵金属等一些样品,提高收率是实验人员的首考要素。来亨公司除研发出最佳结构外,根据用户需求,在一级旋风分离器后面,加了二级旋风收集器,使收率提高15%左右。能收集一些更细的粉末

  • 恒温恒湿试验箱之分离器的选择

    一般市场上最常见的两种分离器类型是油分离器和气液分离器,两种分离器都各有千秋,下面小编就来为大家一一讲解: (1)油分离器:恒温恒湿试验箱压缩机排气口有时候会带出部分压缩机润滑油,使用油分离器可使油回流,另一部分的油要通过系统的循环跟制冷剂一起由压缩机吸气口回流。雅士林品牌的试验箱使用的制冷剂是R404和R23,使用油分离器会增加制冷剂溶油的饱和度。恒温恒湿箱系统一般管道较粗,回油要流畅很多,且油量较多,配油分离器是比较合适的。 (2)气液分离器:使用气液分离器是避免液击的有效手段,同时还可以适当调节制冷量。但是气液分离器还有一点弊端,那就是气液分离器会切断系统回油,因此安装气液分离器就必须同时安装油分离器。雅士林品牌的恒温恒湿试验箱制冷系统采用的是原装法国“泰康”压缩机组,由于回气口内有适当的缓冲空间,可以起到一定的气化作用,因此可以不用气液分离器。

  • 高低温试验箱两款分离器知多少

    高低温试验箱两款分离器知多少

    在[b][url=https://www.instrument.com.cn/netshow/SH101036/]高低温试验箱[/url][/b]安装的部件中是有分离器的,分离器是有不同的类型,比较常见的是气液分离器和油分离器,这2种分离器大家知道多少呢?其实这两种类型的分离器是有区别的,下面小编就为大家介绍一下它们的特点。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151746599023_5697_5295056_3.jpg!w348x348.jpg[/img][/align]  一、高低温试验箱分离器之气液分离器:该装置不仅可以调节制冷量,同时也能够有效避免出现液击等情况,但是该装置也是有弊端的:它会切断系统回油,所以一般在安装气液分离器的时候有要安装油分离器。  二、高低温试验箱分离器之油分离器:在试验的过程中,压缩机的润滑油是通过系统的循环和制冷剂一起由压缩机吸气口回流,但是也有一部分偶尔会被带到压缩机的排气口处,这时可以通过使用油分离器让油回流,同时使用油回流可以增加制冷剂溶油的饱和度,便于油的回流。现在试验设备的管道比较粗,油量比较多,为了保证油能够顺畅的回流,厂家通常会使用油分离器。  看完关于高低温试验箱两款分离器的介绍,你现在对它们的特点一定有深入的认知了吧,如果您想了解该配件更多内容可咨询在线客服,我司作为环试产品厂家,对设备的结构、工艺不断优化和升级,可以为客户配置高端环试产品。目前我司重磅推出了新型温湿度系列环试设备,设备采用原创设计,并且通过精密的机加工制作,同时是厂家直接供货,设备在产品质量、技术、服务等方面优势明显,我们可以打造优质的环试项目,让客户享受环试产品的方案设计+设备制作+安装调试+完善售后等全方位服务,如果您想选购环试产品,可以来我厂选购,我们将为您提供真诚的服务。

  • 【我们不一YOUNG】+水源性致病微生物检测水样前处理方法之磁性分离法

    [font=宋体][color=black][back=white]磁性分离是以磁性或可磁化的材料作为吸附剂的一种分离富集技术。大多数应用于分离的磁性材料具有超顺磁性[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]即在通常情况下没有磁力[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]在外加磁场下可表现出磁性。在没有磁场的情况下可以充分地分散在溶液中[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]与目标物结合[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]之后在外加磁场下聚集于容器一侧[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]通过弃去溶液和重复洗涤来最大限度地去除抑制物。磁性材料只是载体[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]只有对磁性纳米材料[/back][/color][/font][font='Times New Roman',serif][color=black][back=white](magnetic nanoparticles,MNPs)[/back][/color][/font][font=宋体][color=black][back=white]进行表面修饰[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]使其具有抗体、抗生素[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]([/back][/color][/font][font=宋体][color=black][back=white]万古霉素、达托霉素等[/back][/color][/font][font='Times New Roman',serif][color=black][back=white])[/back][/color][/font][font=宋体][color=black][back=white]和化合物等识别基团才能捕获目标微生物。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]1[/back][/color][/font][font=宋体][color=black][back=white]、免疫磁分离法[/back][/color][/font][font=宋体][color=black][back=white]免疫磁分离是指用抗体修饰[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs,[/back][/color][/font][font=宋体][color=black][back=white]基于抗体[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]-[/back][/color][/font][font=宋体][color=black][back=white]抗原相互作用从水体中选择性捕获目标微生物。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Guven[/back][/color][/font][font=宋体][color=black][back=white]等用[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]IgE[/back][/color][/font][font=宋体][color=black][back=white]标记的免疫磁珠分离水样中的大肠埃希氏菌[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]结合免疫分析技术进行检测[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]检出限为[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]8 CFU/mL[/back][/color][/font][font=宋体][color=black][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Huy[/back][/color][/font][font=宋体][color=black][back=white]等用蛋白[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]A[/back][/color][/font][font=宋体][color=black][back=white]偶联壳聚糖修饰的[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Fe3O4[/back][/color][/font][font=宋体][color=black][back=white]磁性颗粒结合[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]IgG[/back][/color][/font][font=宋体][color=black][back=white]抗体从浓度低至[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]10 CFU/mL[/back][/color][/font][font=宋体][color=black][back=white]水样中分离出了霍乱弧菌。我国施行的《生活饮用水标准检验方法[/back][/color][/font][font=宋体][color=black][back=white]第[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]12[/back][/color][/font][font=宋体][color=black][back=white]部分[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]: [/back][/color][/font][font=宋体][color=black][back=white]微生物指标》[/back][/color][/font][font='Times New Roman',serif][color=black][back=white] (GB/T5750.12—2023) [/back][/color][/font][font=宋体][color=black][back=white]规定采用免疫磁分离荧光抗体法测定生活饮用水及其水源水中的贾第鞭毛虫孢囊和隐孢子虫卵囊。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Villamizar-Gallardo[/back][/color][/font][font=宋体][color=black][back=white]等使用抗轮状病毒单克隆抗体功能化氟[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs[/back][/color][/font][font=宋体][color=black][back=white]实现了对水中轮状病毒的富集。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]2[/back][/color][/font][font=宋体][color=black][back=white]、基于抗生素修饰的磁性分离法[/back][/color][/font][font=宋体][color=black][back=white]一些抗菌物质能够抗菌是因为能与致病菌表面的一些生物结构相互结合[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]利用这一特点将其与磁性粒子结合可以起到捕获细菌的作用。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Meng[/back][/color][/font][font=宋体][color=black][back=white]等用万古霉素修饰的[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs[/back][/color][/font][font=宋体][color=black][back=white]捕获水、牛奶和果汁饮料中的金黄色葡萄球菌[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]结合流式细胞仪[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]检出限为[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]33 CFU/mL[/back][/color][/font][font=宋体][color=black][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Ding[/back][/color][/font][font=宋体][color=black][back=white]等用抗菌肽功能化[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs[/back][/color][/font][font=宋体][color=black][back=white]在较低质量浓度下[/back][/color][/font][font='Times New Roman',serif][color=black][back=white] (0.1 mg/mL) [/back][/color][/font][font=宋体][color=black][back=white]实现了对致病性革兰氏阴性杆菌的半选择性捕获[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]在较高质量浓度下[/back][/color][/font][font='Times New Roman',serif][color=black][back=white] (0.5 mg/mL) [/back][/color][/font][font=宋体][color=black][back=white]实现了对自来水和娱乐用水中大肠埃希氏菌的高效捕获[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]捕获效率大于[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]97%[/back][/color][/font][font=宋体][color=black][back=white]。[/back][/color][/font]

  • 【求助】如何选择购买一台好的油水分离器?

    我科购买了一台热电M5型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],当时配的是天津产的一款气体压缩机,但是没有购买油水分离器,现在压缩空气的皮管内有部分积液,所以想购买一个油水分离器,不知要如何选择购买? 请各位帮忙了!

  • 【转帖】磁性液体性质及应用

    磁性液体性质及应用 一、概述磁性液体是由纳米级(10纳米以下)的强磁性微粒高度弥散于某种液体之中所形成的稳定的胶体体系。60年代美国首先应用于宇航工业,后来逐渐转为民用,现已成为很庞大的产业,在美国、日本、德国等发达国家都有磁性液体公司,全球每年要生产磁性液体器件数百万吨。磁性液体中的磁性微粒必须非常小,以致在基液中呈现混乱的布朗运动,这种热运动足以抵消重力的沉降作用以及削弱粒子间电、磁的相互凝聚作用,在重力和电、磁场的作用下能稳定存在,不产生沉淀和凝聚。磁性微粒和基液浑成一体,从而使磁性液体既具有普通磁性材料的磁性,同时又具有液体的流动性,因此具有许多独特的性质。磁性液体是由强磁性微粒、基液以及表面活性剂三部分组成。为了得到稳定的磁性液体,强磁性微粒必须足够小,如对铁来说,微粒直径要小于3纳米;对Fe3O4来说,直径不能大于10纳米。制备纳米微粒的方法很多,我们采用化学共沉淀技术制备直径10纳米左右、分布均匀的Fe3O4微粒。化学共沉淀技术具有操作简便、成本低,对设备要求不高等优点。选择合适的表面活性剂是制备磁性液体的关键。表面活性剂包覆在微粒表面,具有以下作用:1. 防止磁性颗粒的氧化;2. 克服范德瓦尔斯力所造成的颗粒凝聚;3. 削弱静磁吸引力;4. 改变磁性颗粒表面的性质,使颗粒和基液浑成一体。对表面活性剂总的要求是,活性剂的一端能吸附于微粒表面,形成很强的化学键,另一端能与基液溶剂化。不同基液的磁性液体要选择不同的表面活性剂,有时甚至需要两种以上的表面活性剂。南京大学从八十年代开始进行磁性液体的研制工作,在强磁性微粒的制备,表面活性剂的选择等方面积累了丰富的经验。现已能制备出高质量的水基、煤油基和邻苯二甲酸二异辛脂基磁性液体。 二、磁性液体的性质由于磁性液体同时具有磁性和流动性,因此具有许多独特的磁学、流体力学、光学和声学特性。磁性液体表现为超顺磁性,本征矫顽力为零,没有剩磁;在外磁场下,磁性液体被磁化,满足修正的伯努利方程。与常规伯努利方程相比,添加了一项磁性能,使磁性液体具有其它流体所没有的、与磁性相关联的新性质:例如磁性液体的表观密度随外磁场强度的增加而增大;当光通过稀释的磁性液体时,会产生光的双折射效应与双向色性现象。当磁性液体被磁化时,使相对于磁场方向具有光的各向异性,偏振光的电矢量平行于外磁场方向比垂直于外磁场方向吸收更多,具有更高的折射率;超声波在磁性液体中传播时,其速度及衰减与外磁场有关,呈各向异性;磁性液体在交变场中具有磁导率频散、磁粘滞性等现象。 三、磁性液体的应用磁性液体的特殊性质开拓了许多新的应用领域,一些过去难以解决的工程技术问题,由于磁性液体的出现而迎刃而解。下面简单地介绍几种磁性液体应用的原理。1. 旋转轴动态密封 磁性液体旋转轴动态密封技术是磁性液体较成熟也是最重要的应用之一,现已广泛应用于X-射线转靶衍射仪、单晶炉、大功率激光器、计算机等精密仪器的转轴密封。其结构原理见图1. 磁性液体在非均匀磁场中将聚集于磁场梯度最大处,因此利用外磁场可将磁性液体约束在密封部位形成磁性液体“O”型环,具有无泄露、无磨损、自润滑、寿命长等特点。目前在国外的精密仪器中,磁性液体密封部件作为一个整体出售,售价一般在两、三千美圆,不单独出售磁性液体。南京大学在磁性液体旋转轴动态密封方面做了大量工作,积累了丰富的经验,拥有一项国家实用新型专利。在南京大学、南京师范大学、南京55研究所等单位的仪器上使用我们的磁性液体密封技术,效果良好,真空度可达10-6t .磁性液体密封技术目前重要用于真空、灰尘、气体的动态密封,封水等液体由于难度较大,实际应用的不多。若能在封水、封油等方面取得突破,其应用领域将极为广阔,必将产生巨大的经济效益和社会效益。我们认为可从以下方面开展工作:改进密封件结构,改善磁路设计,研制新型磁性液体。2. 扬声器 将磁性液体注入扬声器的音圈气隙对音圈的运动起一定的阻尼作用,并能使音圈自动定位,同时音圈所产生的热量可以通过磁性液体耗散,因此加入磁性液体可以提高扬声器的承受功率,在同样结构条件下可使输入功率提高2倍,同时改善频率响应,提高保真度。磁性液体用于金属膜扬声器性能更佳。目前国内许多厂家生产磁性液体扬声器,生产线和磁性液体均从国外进口。若能将磁性液体国产化,必将带来非常可观的收益。3. 阻尼器件 利用磁性液体作为旋转与线性阻尼器,以阻尼不需要的系统振荡模式。与一般阻尼介质相比优点在于可挤占籍助外磁场定位。例如在步进马达中使用磁性液体阻尼来消除系统的振荡与共振,使马达精确定位。另外在防振台中使用磁性液体阻尼(图2),可消除外界振动噪音的干扰,以确保精密仪器(天平,光学设备等)正常工作。4. 选矿分离 利用磁性液体的表观比重随外磁场的变化而改变的特点,可用来筛选比重不同的非磁性矿物(图3)。比重差别在10%左右的矿物可用此技术较好地分离,一般采用水基磁性液体,可重复使用。5. 开关 图4为磁性液体无摩擦开关示意图。水银和磁性液体装在一个不导电的容器中,利用外磁场改变水银在容器中的位置,来达到接通和断开电流的目的。图5为不需动力的新型磁性液体离心开关示意图。磁性液体密封在转轴上的非磁性容器中。当转轴静止时,磁性液体位于容器下部,传感器检测不到它;当轴转动时,离心力使磁性液体分布于容器内壁,传感器检测到磁性液体并引发开关动作。6. 精密研磨和抛光 磁性液体研磨是利用磁性液体的浮力将微米级的磨料悬浮于液体表面,与待抛光的工件紧密接触。不论工件的表面形状多么特殊,均可用此技术精密抛光。另外还可用来研磨高级Si3N4陶瓷球(图6),效率比传统方法高40倍。7. 传感器 目前有两种商用磁性液体传感器:一种是在石油勘探工业中用来测量钻头的加速和倾斜(图7),另一种是在建筑工业中用来检测地下管道的倾斜(图8)。8. 其它应用 除此以外,磁性液体还在许多领域有着广泛的应用前景。如:磁性液体印刷、磁性液体薄膜轴承、声纳系统、磁性药物、细胞磁性分离、磁性液体人工发热器、磁性液体涡轮发电、光学开关,磁性液体刹车,等等。 四、当前的重要工作首先将已经成熟的磁性液体旋转轴封真空、封气技术推向市场,以此为突破口占领市场。同时研制用于超高真空的硅油基磁性液体、可封油用的憎油基磁性液体;改善磁路设计和密封件结构,力争在封水、机油等液体介质方面取得突破。

  • 气液分离器

    想问一下那位版友使用过海光的AFS,想要一张AFS的气液分离器的照片,http://simg.instrument.com.cn/bbs/images/default/em09511.gif谢谢了!

  • 磁性金属测定仪操作规程

    1 操作前准备本机具有以下主要技术参数:电源电压:220v±22V;电机功率:15W;电机转速:50转/分;刮刀转速:50转/分;电磁铁吸力:40±2公斤;最大试样量:1公斤;回收率:不小于95%;操作前要满足以上要求。2 使用方法从平均样品中称试样1公斤,倒入仪器上部的容器内,接通电源,先按下“通磁”开关,再按下电机“运转”开关,然后调节流量控制门,使试样匀速地经过淌槽流到成盛样箱内。试样全部流完后先停止电机运转,再将盛样箱取出,然后把小杯接在淌槽的下部,断磁以后,用毛刷将淌槽上的吸附物全部扫入小杯中,如此重复操作三次,将各次磁性金属物合并于已知重量的坩埚(WO)中,用四氯化碳洗数次,直至粉粒除净,然后烘干、冷却,用万分之一天平称量(W1)。结果计算:磁性金属物含量按下式计算磁性金属物(mg/Kg)=(W1-W0)×1000式中:W0-坩埚重量,g;W1-磁性金属物和坩埚重量,g。双试验以最高含量为测定结果。3 实验前后,应做好仪器使用记录,以保证其正常的工作状态。

  • 样品回收与旋风分离器的关系

    [font=微软雅黑][size=10.5000pt]旋风分离器是喷雾干燥过程中,用于气固分离的仪器,起着举足轻重的作用。[/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]喷雾干燥过程中用于粒子回收的旋风分离器对颗粒的分离效率跟旋风分离器的物理尺寸、入口风速和粒子直径有密切关系。[/font][/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]对于既定的旋风分离设备,入口风速的增加和颗粒粒径的增加在一定程度上可以提高其分离效率。[/font][/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]但是入口风速的增加同时也带来进出口压差快速增加,带来更大的动力消耗,故而盲目地提高旋风分离器的入口风速来提高其分离性能是不可取的。[/font][/size][/font]

  • 【讨论】三通阀到气液分离器间管的长度要求~

    现在实验室用的那台原子荧光是海光AFS-230E的,还原剂与样品液的反应是在三通阀与气液分离器间的一段软管中进行的。以前用吉天AFS-920它专门设置了个反应模块。所以也就不用考虑什么。前段时间更换了AFS-230E的一系列管路,想请教下从三通阀到气液分离器间那段软管的长度一般多长合适,怎么判断?注:由于本人接手该仪器时,此仪器已经服役7年之久,期间也有过更换管路,所以不知道以前的使用人员有没有注意到这点。

  • 【原创】顺磁性物质与逆磁性物质

    我们使用的在线分析仪表中有顺磁式氧分仪,现在把顺磁性及逆磁性的概念澄清:任何物质,在外界磁场的作用下,都会被磁化,呈现出一定的磁特性。物质在外磁场中被磁化,其本身会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质被外磁场吸引;方向相反时,则被外磁场排斥。为此,把被外磁场吸引的物质称为顺磁性物质,而把会被外磁场排斥的物质称为逆磁性物质。气体介质处于磁场中也会被磁化,而且根据气体的不同也分别表现出顺磁性或逆磁性。如氧气是顺磁性气体,氢气、氮气等式逆磁性气体。

  • 【求助】气液分离器

    各位,有个问题想请教下!我用的仪器是吉天AFS830的,在砷汞同测完以后,突然发现在一级气液分离器那有积水,应该是废液没排出去,倒流在里面,大家有没遇到这种情况,怎么解决??!谢谢~

  • 喷雾干燥机之旋风分离器的原理

    [font=&] 旋风分离器是喷雾干燥机收集部分的重要玻璃仪器,起着举足轻重的作用,它的结构和尺寸极大影响收率,现在让我们来一起认识一下这个非同寻常的宝贝。[/font][align=center][font=&][img]https://ng1.17img.cn/bbsfiles/images/2016/09/201609231430_611853_676_3.jpg[/img][/font][/align][align=left][font=&][font=&]旋风分离器的原理:[/font][font=&] 旋风分离器是利用器内旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置。如上图示。含尘气体在引风机的[/font][font=&]作用下,从干燥塔过来后进入旋风分享器的圆柱体内,气流将由直线运动变为圆周运动,并围绕着中央排气管向下旋转,气体中的粉尘受到因旋转[/font][font=&]而产生的离心力作用向器壁作径向运动,撞到圆柱体或圆锥体壁上失去动能而沿壁落下,进入主收集瓶内。气体向下旋转至圆锥底部无法逸出,于[/font][font=&]是折转向上旋转,经玻璃直角管到排气管排出。这一股向上旋转的气体核心往往还由于空气的曳力作用又带走少量的细粉排出器外。[/font][font=&] 看过原理之后,明白此物的重要性,鉴于其重要性,特别适用一些贵金属等一些样品,提高收率是实验人员的首考要素。来亨公司除研发出最佳[/font][font=&]结构外,根据用户需求,在一级旋风分离器后面,加了二级旋风收集器,使收率提高15%左右。能收集一些更细的粉末。[/font][/font][/align]

  • 【原创大赛】气液分离器理论浅析

    【原创大赛】气液分离器理论浅析

    其实,从自制的这个气液分离器说起,看似简单的东西,其实里面包含着很多复杂、高深的理论知识。以前俺也是自以为是,一边用着人家千辛万苦做出来的仪器,一边嘴里谩骂人家的仪器是垃圾中的极品。后来和仪器公司的朋友请教了一些问题,发现完全不是那么简单的事情,看似简单的一个结构,实际上仪器公司的研发人员做了成百上千次的实验,最后得出的结论。于是乎,对仪器公司感觉歉意的同时,对他们的佩服也是五体投地的,对他们的敬意也是油然而生的。在自制这个气液分离器之前,看了很多相关的书籍和文献。下面将书中的一些精华整理一下,添加个人的一些见解,和大家分享一下。一般原子荧光气液分离器具有两个功能:1.氢化物供给功能S(t),指单位时间内以氢化物形式传送到原子化器时分析物质的原子数。2.总气体流量供给的功能F(t)。最早看这句话的时候,不是很明白怎么回事,也就一扫而过了。从我最开始学原子荧光的时候,我的理解:气液分离器不就是起个气液分离的作用吗?我不知道有多少人和我持相同的观点。后来又仔细研读一下,再去理解这两个功能,才明白书作者的真实意图。书作者是想通过数学模型来量化气液分离器。从而从理论的高度上来解释气液分离器过程,并对其进行评价。在用数学模型评价气液分离器的性能之前,一般都会做一些假设。为什么呢?我个人认为,一般模型都是在理想状态下求的的,而这种理想状态在一般情况下是不存在的,所以先假设一个理想状态,推出数学模型以后,在通过不断的测试,添加一些修正系数,从而的理想状态下的模型符合现实的需要。为此,做了如下假设:假设1.还原剂硼氢化钠和酸性样品溶液在反应开始时是均匀混合的。目前市售原子荧光混合器一般为三通,见下图:http://ng1.17img.cn/bbsfiles/images/2011/12/201112162158_338898_1644065_3.jpg一路为硼氢化钠,一路为样品溶液,两者混合后由载气吹入气液分离器。混合程度的好坏直接影响气液分离的效果。此外,假设1在现实实验过程中还存在另外一个不准确的地方,在酸性溶液中,硼氢化钠的分解速率很快,这一点我们在实际实验过程中是感受不到的。其反应物的非完全混合对模型所产生的影响并不大。混合方式也仅影响氢化物从溶液中释放的过程。所以,要想进一步提高整机的性能,提高分析的灵敏度和检出限,此处是一个下功夫的地方,俺也在持续关注此处。假设2.反应混合液体积等于样品的体积,即加入的硼氢化钠的量很少。这一假设我不是很明白。即使后文中解释,当硼氢化钠溶液的体积与样品溶液体积相比,即使可以忽略不计时,仍可适用。在所有关系式中,样品溶液的体积是用样品和硼氢化钠溶液的总和来代表的。那为何当初假设的时候,直接假设成反应混合液体积为样品溶液体积和还原剂硼氢化钠体积之和不就完了,何必多此一举。这一点还希望请假大家。假设3.假设在氢化物生成过程中,反应混合液的温度、体积和酸度没有显著的变化。至于这一假设,不知道有没有人考察过,当室内温度不相同的时候,比如夏天和冬季(为何不是夏天和冬天,也不是夏季和冬季,因为夏天是一位美女版主的昵称,冬季是一帅哥巡视的昵称,开个小玩笑,别让大家看着枯燥),室内温度不尽相同,是否会对测定结果有影响呢?温度不一样,由于热胀冷缩,其溶液的体积也会发生相应的变化。同理,温度不一样,其溶液的酸度也会发生一些变化。当时想对其样品溶液和硼氢化钠溶液进行水域加热处理,做个比较极端的实验,看看结果如何。不过凭感觉,温度升高,反应大多数会比常温下更剧烈。希望有时间能试一下,哪位有兴趣也可以一试哦。假设4.硼氢化钠的消耗量按照反应BH4-+3H2O+H+→H3BO3+8H进行的,即一分子的硼氢化钠形成4分子的氢,根据假设3,这个反应是一个准一级反应,反应速率常数为K1(单位为t-1),在氢化物释放过程中反应速率不变,并对其他反应影响不大。 但此假设暴露出的问题也是显而易见的,此假设限定了所有反应的基质必须的一致的,这一点在实际检测中是不可能的,因为标准溶液和样品溶液的基质显然不同。如果基质不同,反应可能不完全按照BH4-+3H2O+H+→H3BO3+8H进行。由此看见,基质对测定结果有一定的影响。如果是敏感样品,可以考虑用标准加入法来消除基体对测定结果的影响。假设5.氢化物从溶液中释放是一个第二级过程,速率常数为K2(单位是(c.t)-1),这里C代表浓度,t代表时间,反应过程如下:分析物质(液)+BH4-→氢化物(气)上式为氢化物释放的整个过程,即分析物质还原成氢化物及氢化物从反应混合液中释放出转变成气相的整个过程。所以速率常数的数量级也受载气流速和所用氢化物发生器涉及的影响。此释放过程也相当重要,氢化物释放的多少决定着反应完全的程度,即释放效率Br与100%接近的程度。这个参数由硼氢化钠供给是否充分来决定。以上是建立模型的五个假设,基于以上的五个假设,才能到处下面的数学模型的关系式。由假设4得,在硼氢化钠注入后,它的浓度CB将降低,是一个一级反应过程:CB=q.exp(-K1.t)-----------(1)——q指样品溶液中硼氢化钠的量由假设5,若反应液中分析物质的浓度为C,则反应的二级动力学关系为:http://ng1.17img.cn/bbsfiles/images/2011/12/201112162202_338900_1644065_3.jpg在硼氢化钠完全分解时,t远远大于1/K1,分析物质的浓度C可由下式求出:C=C0exp(-qK2/K1)--------------(3)C0为样品溶液中分析物质的初始浓度。由此可见,引入硼氢化钠的量q与氢化物释放效率(Br)之间的关系可由下式表示:Br=1-exp(-qK2/K1)---------(4)由此可见,当q远远大于K1/K2时,即可实现氢化物完全释放。由此可知,氢化物完全释放所需的硼氢化钠的量仅由试样溶液的体积和速率常数比K1/K2来决定。对于指定的分析物质而言,这个比值(单位:体积/质量)是试样溶液组成的特征。反过来讲,如果我们知道这个比值,就可以从式3中知道对于一个选定的氢化物释放效率或氢化物完全释放时所需的硼氢化钠的量。因此,这个比值对氢化物释放参数的选择及其重要。虽然书作者花了很大的力气导出了这个关系式,但我个人理解,求出氢化物完全释放时所需的硼氢化钠的量,在实际检测中意义不是很大,因为一般在检测过程中,配制的还原剂硼氢化钠的量一般都是过量的,而我们在实验过程中,去优化硼氢化钠的量的时候,一般选择不断增加硼氢化钠的量,荧光强度不在增加的最少量作为最优化的硼氢化钠的量,一般仪器公司推荐的量就可以,因为这个量也是他们做过大量实验之后得出的结论。其实对于K1和K2的理解,我也不是很深刻。感觉比较抽象,没有具体量化到实验中。一般认为:氢化物的形成决定于两个因素:一是被测元素与氢化合的速度;二是硼氢化钠在酸性溶液中的分解速度。要理解这句话,我们先看看所有书上都有的一个反应方程式:NaBH4+3H2O+H+→H3BO3+Na++8H. EHn+H2(过剩)如果从上式方程可以解释上句话,那我觉得至少决定因素的顺序应该改变一下。一是硼氢化钠在酸性溶液中的分解,二才是被测元素与氢化合的速度。如反应方程,硼氢化钠与酸中氢离子反应生成氢自由基,而后才是待测元素与氢自由基反应生成气态氢化物和氢气。随着氢自由基的消耗,使硼氢化钠在酸中的分解速度加快,促使其反应向正方向进行。当然同时也在进行着大部分氢自由基相互结合生成氢气,也促使硼氢化钠朝正反应方向进行。这样我们就更容易理解K1在整个模型中的作用。 综上所述,其实氢化物发生体系的理论远不止这些,我这些读数笔记不知道理解的是否正确,还希望向大家多请教和交流。

  • 【原创大赛】磁性物质含量的测定

    【原创大赛】磁性物质含量的测定

    磁性物含量测定1. 概述各种含铁矿物按其矿物组成,主要可分为四大类:磁铁矿、赤铁矿、褐铁矿和菱铁矿。磁铁矿是主要含铁矿物,其化学式为Fe3O4,其中FeO:31%, Fe2O3:69%。本方法采用磁选管法测定磁铁矿试样的磁性物含量。磁选管法的工作原理是在C行电磁铁的两极之间装有玻璃管,并作往复移动和旋摆运动。当磁选管中的试样通过磁场区时,磁性物即附着于管壁,非磁性物在机械运动中被水冲刷而排出,使磁性物与非磁性物分离。以磁性物和试样的百分比来表示磁性物含量。2. 试验主要设备:磁选仪(带磁选管),500ml烧杯,塑料桶,坩埚,烘箱,天平(精确到0.1mg),方形小磁铁等。http://ng1.17img.cn/bbsfiles/images/2013/07/201307271951_454093_1657564_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307271952_454095_1657564_3.jpg本实验的主要设备是磁选管。磁选管又名戴维斯管(Davis Tube)。它适用于选煤、矿山、冶金、地质等实验室。用来测定强磁性矿石的磁性成分含量。为矿石的分选提供参考数据。3. 操作步骤3.1 首先,检查电源是否正常,接线是否正确,水箱是否有水,玻璃管位置是否合适,手动盘车,确保设备运行正常。3.2 称取20g±20mg的样品,将试样装入一个容积为500mL的烧杯中,加入5~8mL的酒精和约400mL水,搅拌均匀,确保样品颗粒被充分地湿润。3.3 组装好全套装置后,接通电源,操作控制器,调节磁场至所需磁场强度值。磁场强度是根据磁性物磁性强弱及现场对磁性物要求来调节的。如果试样中磁性物很少或磁性物磁性较弱,则磁场强度应提高。一般将磁场强度设定在150~250mT之间。3.4 先用管夹夹紧玻璃管下端出口软管,向磁选管中加水直至距漏斗约5cm,以确保下一步骤所加磁性物悬浮于水中。3.5 将“电机启动开关”打开,此时,电机带动传动机构及玻璃管开始工作。然后将烧杯中的磁性物混合液体缓缓倒入漏斗,(玻璃管中液面不能太高,约距漏斗口处5cm,确保液体不从玻璃管上口溢出)同时打开玻璃管下部管夹,使液体缓缓流入塑料小桶中。3.6 待烧杯中磁性物混合液体全部倒入玻璃管后,再打开上面水箱的龙头,缓缓注入清水,确保磁性物悬浮于水中,而非磁性物质随水流下沉直至排出管外,磁性物颗粒在磁力作用下附着于管壁两磁极处,直至排出液体不含杂质。3.7 当排出液体不再含杂质时,停止加入清水,用管夹夹紧排水软管。将“电机启动开关”断开。电机停止工作。松开管夹。排出玻璃管内清水。3.8 断开“磁场启动开关”,当磁场显示为“0000”后,将玻璃管拆下,在玻璃管出口处放一个干净的500ml烧杯,轻轻转动玻璃管,同时用洗瓶从玻璃管上口冲刷,把磁性物从玻璃管中冲洗干净,收集到烧杯中。3.9 将装有磁性物混合液的烧杯静置约15分钟,直至磁性物沉淀,上部水澄清,慢慢倒出烧杯中的水,同时用一块强磁铁放在烧杯底部,以防止杯中磁性物有任何损失。3.10 开激磁电源,关闭螺旋夹,向磁选管中加水,打开螺旋夹,并使水流动,把第一个塑料小桶中的液体和固体慢慢加入漏斗,并使混合液通过磁选管进入第二个塑料小桶中。将第二次收集到的磁性物质和第一次的合并在一起。将磁性物质转入干燥的并已称好重量为M0的碗型坩埚中。注:

  • 【原创大赛】自制气液分离器

    【原创大赛】自制气液分离器

    其实这个也不算自制,就是将医院里输液的东西拿过来,简单收拾一下,搭载在原子荧光的仪器上。之所以做这个,主要想给大家提供一个思路,提供一个崭新的东西。一般做检测了,做久了就会麻木,没有激情,每天机械的重复着检测任务,觉得生活很无趣,工作很美意思。机械的重复让我们失去了对检测的执着追求,机械的重复让我们按部就班的工作,机械的重复让我们失去了很多。所以,在每天重复的工作中,需要加入一点点思考,需要加入一点点创新,这样,你的工作就不会枯燥,你的工作才会丰富多彩,你的工作才能有意义。记得一位哲人说过:如果你将太阳定为自己的目标,不要因为追求不到而懊悔,因为你的身影早已融入美丽的霞光。而我也是利用工作之余,追逐那一丝阳光,搞点小研究,自娱自乐一下。 废话不多说了,现将自制气液分离器的过程和大家分享一下:一、 材料准备医院输液管一套,万能胶水等物品。剪掉没用的管线,有一个接口不能兼容,需要用胶水处理一下。折腾完后,见图1 http://ng1.17img.cn/bbsfiles/images/2011/12/201112142327_338203_1644065_3.jpg其实就是医院输液的中间那部分,大家都见过吧,这个图不是很清楚,手机拍的,不好意思。先用仪器自带的气液分离器测定了一组数据,好有个比较。测定数据见表1http://ng1.17img.cn/bbsfiles/images/2011/12/201112142331_338205_1644065_3.jpg然后很兴奋的装上我自制的气液分离器,赶紧测定,结果数据很差,一塌糊涂,后来仔细观察了气液分离的过程,大概观察了半个小时,发现液体在还没有完全气液分离的时候,就已经排废了。于是又装了一个控制流速的东西,见图2http://ng1.17img.cn/bbsfiles/images/2011/12/201112142332_338208_1644065_3.jpg然后又试验了几次,让流速缓慢的留下,这个过程用手机不好拍,我简单做了一个示意图,见图3,http://ng1.17img.cn/bbsfiles/images/2011/12/201112142333_338209_1644065_3.jpg大家看下,我这个气液分离器废液是自己排的,而不是利用蠕动泵,这样的话,如果在气液分离器中还没分离,就已经排废了,这样就导致结果偏低。后来加装了控制流速的东西后,效果就好了很多。见图4,http://ng1.17img.cn/bbsfiles/images/2011/12/201112142333_338210_1644065_3.jpg控制流速后,废液会自然留下的慢一些,在气液分离器底部形成一个液封,这样氢化物往上走,废液慢慢的往下排,很好的解决了之前的问题。测定数据见表2http://ng1.17img.cn/bbsfiles/images/2011/12/201112142334_338211_1644065_3.jpg结果我觉得还行,没有原装的好,但也在一定程度上能说明问题。和厂家的比,我这个气液分离器具有以下优点:1、 结构简单2、 成本造价低3、 材质为塑料,不易破碎4、 能和厂家仪器兼容5、 排废不用蠕动泵当然,本身也存在缺点1、 塑料材质虽然不易破碎,但是否目标组分会残留在塑料内壁上,有待进一步考察。2、 性能还是和厂家原装的有一定差距,有待进一步改进提高。

  • 磁性纳米粒子在生物医学方面的应用

    磁性纳米粒子/磁性纳米颗粒(Magnetic Nanoparticles, MNPs)是近年来发展迅速且极具应用价值的新型材料,在现代科学的众多领域如生物医药、磁流体、催化作用、核磁共振成像、数据储存和环境保护等得到越来越广泛的应用。 在科学家、工程师、化学家和物理学家的共同努力下,纳米技术使得生命科学和健康医疗领域在分子和细胞水平上取得很大的进展。磁性纳米粒子是纳米级的颗粒,一般由铁、钴、镍等金属氧化物组成的磁性内核及包裹在磁性内核外的高分子聚合物/硅/羟基磷灰石壳层组成。最常见的核层由具有超顺磁或铁磁性质的Fe3O4或γ-Fe2O3制成,具有磁导向性(靶向性),在外加磁场作用下,可实现定向移动,方便定位和与介质分离。最常见的壳层由高分子聚合物组成,壳层上偶联的活性基团可与多种生物分子结合,如蛋白质、酶、抗原、抗体、核酸等,从而实现其功能化。因此磁性纳米粒子兼具磁性粒子和高分子粒子的特性,具备磁导向性、生物兼容性、小尺寸效应、表面效应、活性基团和一定的生物医学功能。 由于其独特的物理、化学特性,磁性纳米粒子可以简化繁琐复杂的传统实验方法,缩短实验时间,是一种新型的高效率的试剂。目前,磁性纳米粒子在生物医药方面主要应用在磁性分离、磁性转染、核酸/蛋白质/病毒/细菌等的检测、免疫分析、磁性药物靶向、肿瘤热疗、核磁共振成像和传感器等。下文将具体介绍磁性纳米粒子的性质及在生物医学领域的主要应用, 并列出对应于不同应用的具体产品。 磁性纳米粒子的性质 磁性纳米粒子有一系列独特而优越的物理和化学性质。随着合成技术的发展,已成功生产出一系列形状可控、稳定性好、单分散的磁性纳米粒子。磁性纳米粒子具有的磁性使其易于进行富集和分离,或进行定向移动定位。磁效应由具有质量和电荷的颗粒运动形成。这些颗粒包括电子、质子、带正电和负电的离子等。带电颗粒旋转产生磁偶极,即磁子。磁畴指一个体积的铁磁材料中所有磁子在交换力的作用下以同一方向排列。这个概念将铁磁与顺磁区别开来。铁磁性材料有自发磁化强度,在无外加磁场时,也具有磁性。铁磁材料的磁畴结构决定磁性行为对尺寸大小的依赖性。当铁磁材料的体积低于某个临界值时,即成为单磁畴。这个临界值与材料的本征属性有关,一般在几十纳米左右。极小颗粒的磁性来源于基于铁磁材料磁畴结构的尺寸效应。这个结论的假设是铁磁颗粒在具有最低自由能的状态对小于某个临界值的颗粒有均匀的磁性,而对较大颗粒的磁性不均匀。前者较小颗粒称为单磁畴颗粒,后者较大的颗粒称为多磁畴颗粒。当单磁畴颗粒的直径比临界值更进一步降低,矫顽力变成零,这样的颗粒即成为超顺磁。超顺磁由热效应造成。超顺磁纳米粒子在外加磁场作用下具有磁性,而在外加磁场移除后不具有磁性。在生物体内,超顺磁颗粒只在有外加磁场时具有磁性,这使得它们在生物体内环境中具有独特优点。铁、钴、镍等晶体材料都有铁磁性,但由于氧化铁磁铁(Fe3O4)是地球上天然矿物中最具磁性的,且生物安全性高(钴和镍等材料具有生物毒性),因而在多种生物医学应用中,超顺磁形式的氧化铁磁性纳米粒子最常见。 铁磁流体(磁流体)是在外加磁场作用下变得具有很强磁性的液体,它是既具有磁性又具有流动性的新型功能材料。铁磁流体是由纳米级的铁磁或亚铁磁构成的胶体溶液,颗粒悬浮于载体溶液中,载体溶液通常为有机溶剂或水。纳米颗粒完全被表面活性剂包裹以防止聚合成团。铁磁流体通常在无外加磁场时不保持磁性,因而被归类为超顺磁。铁磁流体中的纳米粒子在正常条件下由于热运动不发生沉降。 球形颗粒的磁性纳米粒子的比表面积(表面积与体积之比)与直径成反比。对于直径小于0.1um的颗粒,其表面原子的百分数急剧增大,此时表面效应显著。颗粒直径减小,比表面积显著增大,同时表面原子数迅速增加。当粒径为1nm时表面原子数为完整晶粒原子总数的99%,此时构成纳米粒子的几乎所有原子都分布在表面上,在表面原子周围形成很多悬空键,具有不饱和性,易与其他原子结合形成稳定结构,表现出高化学活性。因此,固定目标分子/原子效率高。[font='

  • 【有奖征集】原子荧光气液分离器图片

    原子荧光分析中,气液分离器是一个极为关键的部件,该部件因品牌之间的不同或许有较大的差异。让我们一起来征集气液分离器的图片,开眼界之余又能进行更好的学习交流。积分奖励!回帖模式仪器品牌型号:使用心得(欢迎讨论):气液分离器图片:

  • 【原创】求助各位-还是气液分离器中的积液问题

    上次碰到气液分离器中的积液问题,于是这次我把泵管换了,泵管上面那螺丝也拧紧了,做完一遍标准后,积液现象并不严重,后来发觉标准配错了,重配后做载流时,我觉得那螺丝太紧了,于是稍稍调试了下,接着气液分离器里就开始反应很剧烈,老往上喷,光做载流就这样了,我根本没法继续往下做,后来不管我怎么调,那里面老是喷,我真想不出问题会出现在哪儿,心里那个急啊!求助论坛里的各位高手

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制