当前位置: 仪器信息网 > 行业主题 > >

木材削片机

仪器信息网木材削片机专题为您提供2024年最新木材削片机价格报价、厂家品牌的相关信息, 包括木材削片机参数、型号等,不管是国产,还是进口品牌的木材削片机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合木材削片机相关的耗材配件、试剂标物,还有木材削片机相关的最新资讯、资料,以及木材削片机相关的解决方案。

木材削片机相关的资讯

  • 新标准实施丨X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法
    导读随着国家标准《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》于2021年12月1日正式实施,标志着防腐木材和木材防腐剂中重金属分析已从传统繁复的湿化分析向智能化高效化能谱仪的快速分析迈进。岛津EDX-7000能量色散型X射线荧光光谱仪快速无损分析防腐木材和木材防腐剂的重金属分析应用也早已完成,您准备好了吗? 法规解读据统计,我国防腐木年生产量约500万立方米,年产值约1000亿元,各类型防腐剂消费总量约3000吨,其中铜铬砷(CCA)和季铵铜(ACQ)木材防腐剂总生产量占90%以上。目前,我国现阶段市场上流通的防腐木平均每立方米载药量远低于户外最低C3类4.0kg/m³使用要求。数据表明防腐木行业发展及其市场秩序已经偏离相关标准规范。而《GB/T 40196-2021》标准的制定将会给防腐木行业产品快速检测、快速分析数据、在线指导生产带来革命性的突破,助推防腐木行业高质量发展。 铜铬砷(简称CCA),主要成分为铜、铬和砷盐或其他氧化物的混合物;季铵铜(简称ACQ),是铜盐(以氧化铜计)与季铵盐化合物(以二癸基二甲基氯化铵计)的混合物。 CCA和ACQ都是木材防腐剂中能抑制木材腐朽菌、霉菌、变色菌、昆虫和海生动物在木材中生长的活性成分。CCA木材防腐剂和ACQ木材防腐剂适用于建筑用材、园林景观用材、矿用木材、铁道枕木、船用木材、海洋用材及其他工业用材和农用木材等的防腐、防虫(蚁)、防海生钻孔动物处理。 《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》国家标准,规范了能量色散型X射线荧光光谱仪如何建立工作曲线,如何对防腐木材和木材防腐剂中的氧化铜、三氧化铬、五氧化二砷含量进行分析。岛津是如何应对的呢? 岛津应对方案根据铜、铬和砷元素浓度与X荧光强度成正比例关系的原理,利用岛津EDX-7000能量色散型X射线荧光光谱仪建立防腐木材和木材防腐剂中Cu、Cr、As的工作曲线,然后采用工作曲线法进行防腐木材和木材防腐剂中Cu、Cr、As的含量分析。 • EDX-7000能量色散型X射线荧光光谱仪特点 工作曲线由于不同基体对X荧光的吸收与增强不同,故要建立铜铬砷防腐木材、铜铬砷木材防腐剂、季铵铜防腐木材、季铵铜木材防腐剂四种基体的工作曲线,根据不同基体选择对应的工作曲线进行分析。 图2 防腐木材粉压片样及木材防腐剂液体样 下面以铜铬砷防腐木材为例,进行介绍。元素氧化物的校准曲线如下图。图3. 元素氧化物校准曲线 各元素氧化物的检出限如下。元素氧化物的检出限(单位:%)按标准要求,连续3次分析实际样品,三次结果极差要求0.3%。选择4个样品进行测试,极差远小于0.3%。同时,与客户提供的参考值吻合良好。 实际样品分析结果(单位:%)说明:样品3次分析结果极差满足标准不大于0.3%的要求。 结语岛津EDX-7000能量色散型X射线荧光光谱仪能够按照标准《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》的方法,对防腐木材和木材防腐剂中的氧化铜、三氧化铬、五氧化二砷含量进行分析,操作简单,无需化学前处理。为木材市场上标准的应对提供了良好的支持! 本文内容非商业广告,仅供专业人士参考。
  • 赫施曼助力防腐木材中季铵盐的测定
    ACQ木材防腐剂是由铜和季铵盐溶合而成的水溶性木材防腐剂,其中所含的铜和季铵盐能有效地杀灭和抑制真菌、蛀虫和白蚁等,能与木材纤维牢固地结合在一起,不易流失,对木材起到长期保护的作用。根据GB/T 27653-2011,防腐木材中季铵盐的分析方法是:两相滴定法。步骤如下:1.用Miragen电动移液器吸取5mL防腐木材提取溶液至100mL具塞量筒中再加入20mL蒸馏水。2.用瓶口分液器加入15mL三氯甲烷及10mL混合酸性指示剂液。3.用瓶口分液器加入5mL0.004mol/L十二烷基硫酸钠溶液。4.摇动具塞量筒。此时三氯甲烷层应该是粉红色,如果三氯甲烷层是蓝色的,则是十二烷基硫酸钠溶液不足,需再加入5mL十二烷基硫酸钠溶液。5.用0.004mol/L的海明1622标准滴定溶液经过赫施曼光能滴定器滴定。滴定过程中要充分混合,使反应完全。当滴至三氯甲烷层的粉红色褪去,出现淡灰蓝色时,即为终点。记录滴定所耗用的海明1622标准滴定溶液的体积。6.空白滴定:用Miragen电动移液器吸取0.1mol/L盐酸-乙醇提取液5mL至100mL具塞量筒中,再用瓶口分配器加入20mL蒸馏水、15mL三氯甲烷及10mL混合酸性指示剂溶液,用瓶口分液器加入在3和4步骤中加入的十二烷基硫酸钠溶液。然后重复5的操作,记录滴定所消耗的海明1622标准滴定溶液的体积。Miragen电动移液器和瓶口分配器是目前较为普遍的量筒和移液管的替换升级,将目视凹液面定容改为调整数值/刻度来确定体积,能够大大提升液体移取的效率、稳定性和安全性,实现精度也更有保证。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;而opus电子滴定器可通过触屏来进行灌液、预滴定(设定单次添加的体积)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 第16届国际木材无损检测大会在京召开
    10月12日,“第16届国际木材无损检测大会”在京拉开帷幕。本次会议由北京林业大学工学院主办、美国农业部林产品实验室协办。来自美国、中国等20多个国家的60多名业内专家、学者出席了会议。  会议期间,国内外相关领域的权威专家及专业人员将进行主题演讲和分组讨论。重点聚焦木材无损检测领域的最新研究成果,搭建学术交流平台,促进该技术的快速发展。  副校长姜恩来出席会议并致辞。他指出,北京林业大学作为一所以林学、生物学、环境工程学和材料学为特色的综合性全国重点大学,在木材无损检测科研方面已取得了显著成果。现建有木材无损检测实验室,配备了世界先进水平的测试仪器,专门从事人造板、单板、木结构建筑、古树名木等的检测与评估工作。部分教师从事相关研究工作,承担着多个国家林业局、北京市自然基金的科研项目。同时,与美国农业部林产品实验室合作开展相关课题研究。  据介绍,本次会议共收到论文90余篇,内容涉及活立木、木结构建筑、超声波、近红外、CT扫描等多个领域,介绍了当前木材无损检测理论、技术及检测仪器研究方面的相关研究成果。
  • 张家港检验检疫局木材实验室积极开展国际学术交流
    国家材种鉴定与木材检疫重点实验室位于全国最大的海运进口木材大港—张家港。实验室专业从事进口木材携带有害生物鉴定、木材材种鉴定及林产品检测等业务。实验室拥有1000余种有害生物标本和500余种10万号的进口木材实物标本,拥有多台德国蔡司生物显微镜、木材构造特征成像系统、组织切片机、荧光自检仪等先进仪器。编著出版了《进口木材原色图鉴》等4部专著,研制国家标准5项,承担省部级科研项目3项。实验室与木材流通协会、中国林科院、南京林业大学、广西大学等保持良好的技术交流和合作。  为开阔视野,提升科研质量水平,张家港检验检疫局国家材种鉴定与木材检疫重点实验室积极开展国际间学术交流,5月8日,该局特邀日本京都大学名誉教授、著名木材解剖学家伊东隆夫先生来局进行学术指导并做专题讲座。伊东隆夫教授主要从材种鉴定、遗迹出土木材、历史的建筑物、佛像雕刻、正仓院宝物等五个方面介绍了木材解剖学与木文化的最新动态和研究进展。  张家港局植检岗位相关人员以及来自20多家木材生产、加工、流通、贸易企业的代表共50余人参加了此次专题讲座,通过学习和交流,极大地丰富了木材领域的知识,开阔了眼界和思路。  实验室十分重视与国内外同行的合作与交流。目前已与国内众多科研院校开展友好合作,今后将继续拓展国际间合作关系,加强自身建设,与国内外同仁携手并肩,共同发展。
  • 我国木材鉴定开始使用分析仪器技术
    现行国家标准《红木》GB/T 18107-2000,其中被诟病最多的一点就是材质鉴定上的不够精确。由于鉴定技术的制约,全世界在树种鉴定上鉴定到&ldquo 种&rdquo 的准确性尚不足,所以有规定,鉴定机构对于红木材质只出具到&ldquo 类&rdquo 的报告。这就让一些不法商家钻了空子,利用这一点在同类木种间大做文章,同时,这也成为了《红木》国标始终被攻击的把柄。虽然目前红木的鉴定报告只能出具到类,但这并不代表目前我国的红木材质鉴定技术就只能鉴定到类。随着科技的发展,越来越多技术被运用在木材鉴定上,给鉴定结果的准确性提供了有力依据。笔者通过翻阅相关论文与文献,大致了解到目前红木材质鉴定技术的方法与研究方向。宏观识别与微观识别相结合《红木》GB/T 18107-2000中提到红木的识别和区分方法是:&ldquo 主要是以简便实用的宏观特征(如密度、结构、材色和纹理等)为依据,辅以必要的木材解剖特征来确定 其属种。本标准所依据正确定名的木材标本均保存在中国林业科学研究院木材工业研究所木材标本室。&rdquo 可见,宏观与微观相结合是传统的红木材质鉴定方法,也是 目前使用最广泛的方法。交趾黄檀实木横切面宏观识别是通过肉眼或放大镜,观察心边材、生长轮、导管、射线与轴向薄壁细胞的大小及排列方式等宏观解剖特征及表观特征,同时结合材色、纹理、结构、花纹、 气味、质量和硬度等进行综合判断;微观识别则是通过切片机将样本制成切片再置于光学显微镜下, 观察各类细胞与组织的形态与排列,与已经正确定名的木材标本的切片进行比对,确定木材类别。檀香紫檀木材微观构造照片宏观识别与微观识别相结合的方式需要识别者具有丰富的木材构造特征方面的专业知识,这种知识是建立在实践经验和科学基础上的。但是识别木材是一件复杂的事 情,即使是经验丰富的专家也会偶尔看错眼,因此会出现在两家不同的木材检测机构,同一样本检测出不同结果的现象,这种鉴定方式受人为的主观影响非常大。红外光谱分析技术红外光谱技术是利用物质对红外光区的能量的选择性吸收来进行定性和定量分析的方法,通常用于木材树种识别的是近红外光谱和中红外光谱。近红外光谱分析技术。近红外光谱处理技术,是对从样本表面采集的近红外光谱,经过一系列预处理,取样本的三分之二,采用软件独立建模分类(SIMCA)和偏 最小二乘判别分析(PLs&mdash DA)进行建模,对剩余的三分之一样本进行判别。由于各树种木材化学成分的相似性和差异性,同一类别木材的近红外光谱具有相近 的吸收峰和吸收强度,不同类别的木材则有明显不同之处。基于近红外光谱分析技术的木材树种分类效果明显,尤其对红木类木材的分类,与红木标准基本一致。4种红木的HPLC指纹图谱,LSHHT为卢氏黑黄檀,DFHHT为东非黑黄檀,DGZT为大果紫檀,YDZT为印度紫檀目前,国内外在近红外光谱分析技术上均取得不同进展。2003 年,日本专家利用近红外光谱分析技术识别了8 种木材,而我国近年来也开始进行研究。2007年,江泽慧、杨忠等人发表了《红木的近红外光谱识别技术》论文;2012年,江泽慧、杨忠等人又作了《红木 的近红外光谱分析》一文,在八类红木样本表面分别采集10条光谱用于红木的近红外光谱分析,利用相关方法可以将八类红木分成相应的类别,并能更直观地展现 八类红木的区别,这为红木的鉴定或识别提供新的方法和研究思路。2010年,中国林业科学研究院木材工业研究所已建立了20余种木材的近红外光谱数据库, 并申请了红木的近红外光谱识别方法的发明专利(20061014962310),但是该项技术还需更多的木材标本光谱数据,建立更有代表性的数学模型,加 速其商业化应用。中红外光谱分析技术。中红外光谱处理技术,主要是研究红 木样本的指纹图谱,选取特征吸收峰,计算有峰率和变异峰率等指标序列进行分析鉴别。在2012年张方达等人著的《基于红外光谱法的红木木材类区分与真伪鉴 别》论文中,其详细地阐述了如何利用中红外光谱,通过与杨木木质素的相关系数不同,对七类红木木材进行区分。同时对于两种珍贵的非红木类木材:榄仁木和亚 花梨木与外观相似的紫檀、黑酸枝、香枝木应用中红外光谱进行了客观、快速的真伪辨别。ZT、HL、HI、HO、WM、TW、JC和XZ分别代表《红木》国标中紫檀木、花梨木、香枝木、黑酸枝木、红酸枝木、乌木、条纹乌木和鸡翅木八类红木的近红外光谱除此外,还有如气相色谱&mdash 质朴联用技术(GC-MS)、高效液相色谱法和液相色谱(HPLC)&mdash 质谱联用技术等色谱指纹图谱方法,2012年沈明月等人的 《基于HPLC技术及模式识别方法鉴别四种红木》、2013年罗燕的《四种红木抽提物的FTIR与GC&mdash MS指纹图谱鉴别研究》都有提到用相关方法鉴别红 木种类。以上几类均为化学方法,有些方法已经可以鉴定到种,但是目前均处于研究阶段,还无法大规模推广和投入使用。DNA标记技术在《品牌红木》2014年3月刊上,中国林科院木材工业所研究员、中国林产工业协会红木分会秘书长殷亚方也撰文提到了DNA标记技术有望解决红木鉴定难题。 因木材树种和产地不同,其DNA也不同,是某种木材所特有的,对基因组序列差异的比较研究无疑为木材分类和鉴定提供了最本质的依据。2007 年,德国林业研究所已利用DNA 标记技术,成功进行了6种杨树木材的识别。目前,国内DNA分子标记技术应用于活体树木鉴定的技术已经成熟,然而,从经过长期存储、高温干燥或机械加工等 一系列处理后的木材以及成品家具木材中却难以提取高质量的DNA,因为木材组织中的DNA已经发生严重降解。经过研究人员的不懈努力,目前从干燥和加工后 的木材树种中提取DNA 的技术已有突破。中国林科院木材工业所的木材DNA识别新技术实验室已初步建立,并正在建立木材DNA 标记信息数据库。但是实现DNA 标记技术的商业化运用,还需要各国科技工作者进行大量的科学试验, 以得到更多重要树种和木材的DNA 标记信息及相关的数据库。此外,利用稳定同位素分析技术有望鉴别红木原产地。届时,红木不仅可以鉴定到种还可以鉴定原产地,让红木信息更透明化。结语目前,宏观识别与微观识别相结合的方式还是鉴定红木材质最常见、最具可操作性的方式,中国林科院也在不断完善红木树种木材标本。据笔者从最新的《红木》国标 征集意见稿中发现,其已经在草案中,补充完整了《红木》GB/T 18107-2000标准中原来没有的毛药乌木、白花崖豆木的三切面显微结构照片,让检测更有据可依。诚然,如红外光谱分析技术等化学方法以及如DNA标记技术等遗传学方法因为需要更专业的设备以及更专业的操作人员,再加上技术还不够成熟、投入的成本过高等 因素,多数还处于研究阶段,无法实现普及。但是我们也不难看到,这些方法客观、高效,鉴定结果受人为因素影响更小,也更准确,发展前景可观。就像我们想不 到短短几年时间,智能触屏手机快速地淘汰了键盘手机占据我们的生活一样,随着日新月异的科技发展,也许用不了多久,红木材质就能轻松鉴定到种,更简单、成 本更低的技术被运用到材质鉴定中,让红木可以名正言顺、明码标价地进行买卖。(原标题:木材鉴定技术知多少)
  • 无甲醛!无粘合剂!高性能全生物质仿生木材问世
    p style="text-indent: 2em "俞书宏院士团队提出了一种利用生物质天然纳米结构的全新的生物质表面纳米化策略,该策略巧妙地利用了木屑等生物质中天然的纤维素纳米纤维,使其互相交联从而构筑无需任何粘合剂的高性能人造木材。相关研究成果于12月12日发表在《国家科学评论》上。/pp style="text-indent: 2em "我国人造板年市场规模近万亿元。传统人造板主要通过含有甲醛的树脂等粘合剂将木屑等生物质原料粘结起来,不仅成本高,使用过程中持续释放甲醛等有毒有害的气体,有害人类身体健康。因此,发展高性能无甲醛绿色环保板材对传统人造板产业升级发展至关重要。/pp style="text-indent: 2em "?科研人员运用上述策略所制备的人造木材在各方向上具有相同的力学强度,且超越了实木材和传统人造板。新型人造木材自下而上的制备方式使其在尺寸上将不受限制,可以克服大块实木材料的稀缺性,大大拓宽了这类木质材料的应用范围。另外,其还表现出优异的阻燃性和防水性。微米级木屑颗粒的暴露着大量的纳米尺度的纤维素纤维,纳米纤维通过离子键、氢键、范德华力以及物理纠缠等相互作用结合在一起,微米级的木屑颗粒也被这些互相缠绕的纳米纤维网络紧密地结合一起形成高强度的致密结构,而无需任何粘结剂,各向同性抗弯强度和弯曲模量,远超天然实木的力学强度,显示出优异的断裂韧性、极限抗压强度、硬度、抗冲击性,尺寸稳定性以及优于天然木材的阻燃性。作为一种全生物基的环保材料,具有远超树脂基材料和传统塑料的力学性能。此外,通过将碳纳米管掺入木屑颗粒间的纳米网络当中,可以获得导电智能人造木材,基于其高导电性,可以实现传感、自发热以及电磁屏蔽等多种应用。/pp style="text-indent: 2em "专家表示,这种全新的生物质表面纳米化策略也可以扩展到其他生物质如、树叶、稻草和秸秆等,并可以实现多功能化,有望用于制造一系列绿色全生物质的可持续结构材料,进一步推动人造板行业向绿色、环保和低碳方向发展。/ppbr//p
  • 木材衍生的纳米纤维素纸半导体制成
    日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创建有用的微观和宏观结构并实现出色的功能和最终用途的多功能性,仍然具有挑战性。  纤维素是一种源自木材的天然且易于获取的材料。纤维素纳米纤维(纳米纤维素)可制成具有与标准A4纸张尺寸相似的柔性纳米纤维素纸(纳米纸)片材。纳米纸不导电,但加热可引入导电特性。不过,这种受热也可能破坏纳米结构。  大阪大学研究人员与东京大学、九州大学和冈山大学合作,设计出一种处理工艺,使纳米纸能够加热,又不会破坏从纳米尺度到宏观尺度的纸结构。  “纳米纸半导体的一个重要特性是可调性,因为这允许为特定应用展开设计。”研究作者古贺博隆副教授解释说,碘处理对保护纳米纸的纳米结构非常有效。将其与空间控制的干燥相结合,意味着热解处理不会显著改变设计的结构,并且可使用选定的温度来控制电性能。  研究人员使用折纸和剪纸技术来提供纳米纸在宏观层面的灵活性。他们将鸟和盒子折叠起来,冲压出苹果和雪花等形状,并通过激光切割产生更复杂的结构。这证明了新工艺可能达到的细节水平,以及热处理没有造成损坏。  成功应用的例子是,纳米纸半导体传感器结合到可穿戴设备中,以检测穿过口罩呼出的水分和皮肤上的水分。纳米纸半导体也被用作葡萄糖生物燃料电池的电极,产生的能量点亮了一个小灯泡。  古贺博隆表示,新研究展现的将纳米材料转化为实际设备的结构维护和可调性非常令人鼓舞,新方法为完全由植物材料制成的可持续电子产品的下一步发展奠定了基础。
  • 家具厂除湿机,家具厂木材干燥防潮除湿都少不了
    家具厂除湿机,家具厂木材干燥防潮除湿都少不了【新闻导读】在家具厂的整个生产加工过程中,经常会遇到家具或木材烘干房中湿气过重,降低烘干效率和品质;喷漆房或晾干房湿度过大,容易出现油漆发白的现象;还有就是仓库空气潮湿,存放在其中的木材及其家具成品会吸湿受潮,严重的还会出现发霉等一系列的问题!因此,在家具厂整个加工流程中的很多环节都是需要对环境进行合理的湿度控制的; 合理的湿度控制对提高工业生产效率和产品品质等,都是至关重要的一项工作内容;说到对室内环境的湿度控制方面,最简捷有效的方法毫无疑问就是使用工业除湿机;在家具厂中运用正岛ZD-8240C家具厂除湿机及ZD系列工业除湿机,可以快速有效的去除烘干房中的湿气,降低喷漆房或晾干房中的湿度,解决木材或家具仓库空气潮湿的问题;下面就为大家来介绍一下这方面的相关知识,希望对大家有所帮助! 在家具厂,木材的含水量保持在8%-12%是最适宜后续加工和长期储存的;因此,这就需要对木材进行适当的烘干或干燥处理,而在烘干房烘干的过程中,会产生大量的水气散发在烘干房内导致湿气过重,其烘干效率和品质就会大受影响。 针对这一问题,采取有效的除湿措施是必不可少;只要在烘干房内使用相应正岛ZD-8240C家具厂除湿机及ZD系列工业除湿机,就可以快速有效的去除湿气,即可大大提高烘干效率及其品质! 油漆发白,可以说是家具厂普遍存在的一个问题;油漆一旦出现发白现象就需要进行返工,既影响生产效率和家具的品质,还增加了生产成本;造成这一问题最主要的一个原因就是喷漆房或晾干房环境中的湿度过大; 因此,要想解决油漆发白的问题,在喷漆房或晾干房配上相应的正岛ZD-8240C家具厂除湿机及ZD系列工业除湿机来对湿度进行有效的控制是至关重要的一个环节!一般情况下,将湿度控制在45-65%RH之间是最为适宜的! 欢迎您来电咨询家具厂除湿机,家具厂木材干燥防潮除湿都少不了的详细信息!家具厂除湿机的种类有很多,不同品牌的家具厂除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。 正岛ZD-8240C家具厂除湿机技术参数: 型 号ZD-8240C控制方式湿度智能设定除 湿 量240升/天排水方式塑胶软管 连续排水适用面积180 ~ 240智能保护三分钟延时 压缩机启动电 源380V~50Hz活性碳滤网标 配运转噪音52dB自动检测有无故障 一目了然输入功率4900w适用温度5~38℃体积(宽深高)770X470X1650mm设备重量160 kg 正岛ZD-8240C家具厂除湿机及ZD系列工业除湿机产品六大核心配置优势: 优势一:【整机内结构精巧】 优势二:【高效节能压缩机】 优势三:【配套内螺纹铜管】 优势四:【大风量高效风机】 优势五:【微电脑自动控制】 优势六:【配多重安全保护】 核心提示:还有就是在家具厂木材或成品仓库内,经烘干或干燥后的木材含水率一般在8%-12%左右,如果库内的相对湿度过高,就很容易导致木材"返潮"现象的发生,从而使其含水率超过12%的上限范围,严重的甚至还会导致木材及其家具制成品受潮发霉等后果; 因此,在家具厂的木材或家具成品仓库内也是需要使用正岛ZD-8240C家具厂除湿机及ZD系列工业除湿机来进行防潮除湿,使库内空气相对湿度控制在50± 5%之间,从而使木材原木或家具制成品可以长期保存。以上关于家具厂除湿机,家具厂木材干燥防潮除湿都少不了的最新相关新闻资讯是正岛电器为大家提供的!
  • 木材无损检测仪问世
    人的心脏有问题了,可以做个心电图检测,查清楚心脏的情况,从而对症下药施治。那大树要是“肚子”里生虫子或者开裂了,除把树木锯开检查外,还有没有简单点的检查方法呢?  浙江林学院电子信息专业大三学生刘凯等3名同学和导师李光辉,花了3年的时间给大树研究了一个“心电图”检测仪——木材无损检测仪,这几天已经申请专利。价格是国外同类产品的十分之一。  “170微秒,和数据对比看看,好,健康。”刘凯与合作的同学一起,动作麻利地给一棵直径14厘米的樟树两边各插上了一个传感器,插好后,启动开关,手里的木材无损检测仪上就显示出树木内部应力波的传播速度。从给树木“穿衣服”,到数据显示后显示树木正常,这个过程一共历时3分钟。  “别看它小,可别小看它。”刘凯称手里的木材无损检测仪为“手持设备”,看着比家用的电视遥控器要厚2倍,宽1倍的样子,“虽然小,但它的测量精度、可靠性和灵敏度比国内外市场上的所有同类产品都高。”  “这个发明,最重要的是利用脉冲锤撞击树木,使树木内部产生应力波的传播。”李光辉教授介绍说,使用者就是通过测量应力波的传播时间和传播速度的变化,并计算木材弹性模量等参数,通过对比正常同类树种的相关数据,来判断木材内部有无缺陷。  在国外,同类产品最便宜的也卖到3000多欧元,折合人民币3万多元,而刘凯他们设计的这个仪器,价格则不到3000元。  活着的树木和古建筑中的木材适用  “有很多树木,外面看着是好好的,可里面的‘心’早都空了,这样的树特别容易引起火灾。”刘凯说,以往要给树木做检查,都要先把木材砍掉,再用锯子锯开才能了解木材的内部情况。如果是古建筑中的木材,所受的损伤则更大。因此,很多文物保护单位也希望能有简单的防范,提前知道古建筑中的木材内部有没有长虫子或开裂。从2007年初开始,刘凯、蔡步森等3名同学,在李光辉的指导下,利用电子信息、计算机软件开发等专业知识,开始就这一难题进行研究,最终并成功开发出了基于应力波原理的木材无损检测仪。  “要想不损伤木材进行检测,需要很庞大的设备。”刘凯说,在此之前,木材研究领域也有红外线检测法、超声波检测法、核磁共振检测法等检测方法,但因为设备实在太昂贵,操作程序又复杂而难以推广。  “这个木材无损检测仪既不破坏材料的原有特性,又能在短时间内连续获得检测结果。”据刘凯介绍,检测仪与被测木材之间不需任何的耦合剂,也不受木材尺寸和形状的影响,更不会对人体造成危害,“所以,活着的古树名木和古建筑中的木材更适合使用。”  对于学生的这项发明,浙江林学院木材研究专家、木材过程中心负责人马灵飞教授认为,该项仪器能够准确的检测、分辨出健康树木和有内部缺陷的树木,而且便于携带、使用方便,具有很强的实用价值,尤其是对木质文物保护、检测古树名木的健康状况等具有重要作用,该仪器还可以应用在林业管理、林业教学与科研等领域,应该具有广阔的市场前景。  本文来自: 中国木材网(www.chinatimber.org) 详细出处参考:http://www.chinatimber.org/news/28832.html
  • 美国木材甲醛排放又设新标准
    据报道,美国加利福尼亚州空气管理署(CARB)从今年1月1日开始对复合型木材中甲醛含量实施排放标准,出口到美国的产品如没有通过CARB认证,将会有被召回的风险。  据了解,CARB标准分两阶段实施,对各种板材的实施的时间分别从2009年、2010年、2011年和2012年开始。其中,率先于2009年1月1日生效的标准,涉及板材分别为胶合板(HWPW-VC)、刨花板、中密度纤维板及薄型中纤板。  SGS消费品检测部总监曾啸虎表示,尽管这是在加州实施的法规,但由于美国其他各州并没有相关的法规,所以各州可能参照执行。“实际上它有可能成为美国的一项联邦法规,甚至欧洲也将仿效,从而类似于欧盟的化学品法规(REACH)一样构筑起高高的"绿色壁垒”,可能改变整个人造板业及其相关产业如家具业、地板业等的国际贸易的格局。”曾啸虎说。  联邦国际质量管理经理袁国勇表示:新规的出台表明木材产品如没有通过CARB认证出口到美国,将会有被召回的风险。目前家具行业的利润率普遍较低,只为3%~8%。已经获得CARB认证的顺龙木业集团公司总经理谢建擎坦言:要达到新规标准,不仅研发技术要过关,成本也非常高。  据了解,对家具业而言,新出炉的CARB针对的是木材,而欧盟的化学品法规REACH则涉及供应链的每一个环节。“随着全球经济形势的持续恶化,会出现新一轮贸易保护主义浪潮。”  曾啸虎介绍,过去,企业往往是被迫去进行产品质量认证的,但近几年来特别是全球金融危机以来,中国企业已经从单纯为了应付订单而拿证,转变为为了可持续发展而进行自愿改进,更加重视管理体系的建设。
  • 应用 | 木材疏水表面的构建
    KRÜ SS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜ SS研究背景天然木材内因含有羟基等亲水基团,导致其吸水后产生膨胀、开裂、腐朽、变形等问题。一些环境因素,如湿度和酸雨,严重影响木材的耐用性和使用性能,对木制品造成损坏。将仿生疏水概念引入木材表面改良领域,在构建疏水表面的同时也赋予木材自清洁、耐化学性等特性,可提高木材在恶劣条件下的稳定性和耐久性,延长木材的使用寿命。本研究选择人工林杨木来制备疏水表面,通过自组装在木材表面构建TA-Fe III复合涂层,利用TA-Fe III复合涂层的高粘附性和二次反应活性将Ag+还原为Ag纳米颗粒沉积在木材表面,设计构建了物理化学特性稳固型木材疏水表面,并对其表面形貌结构、接触角及疏水表面的稳固性进行测试表征。 疏水木材的制备过程实验方法与仪器:本文采用KRÜ SS DSA25接触角分析仪DSA25S接触角分析仪图片结果与讨论1.接触角测试如图1所示,处理前后木材表面接触角的变化。未改性木材表面的接触角为52.0°,这是由于木材表面的有大量亲水基团和丰富的孔隙结构,使木材表现出较强的亲水性,随着接触时间延长,接触角迅速下降,水滴很快渗入到木材中。经过疏水处理的木材试样,在180s内均保持在138.0°以上,表现出了优异的疏水性能。随着自组装次数的增加,TA-Fe III/木材试件的接触角从138.2°增加到了143.7°,TA-Fe III/Ag/木材试件的接触角从142.3°增加到了146.7°。在相同的处理次数下,TA-Fe III/Ag/木材试件的接触角高于TA-Fe III/木材试件,证明Ag纳米颗粒在木材表面沉积构建了良好的表面粗糙度,使得木材表面疏水性能得到明显提高。图1 木材改性前后的接触角2.化学耐久性测试疏水木材表面的耐化学性是影响疏水表面的重要因素。研究表明,强酸、强碱、有机溶剂浸泡等恶劣环境下都会影响疏水木材的疏水效果,使得木材表面接触角降低,逐渐丧失疏水性能。将疏水木材分别浸没于不同的化学试剂中 ( pH=2. 0的HCI溶液,pH=12. 0的NaOH溶液,正己烷,丙酮,乙醇,DMF) 中24h,在紫外光照射以及用开水煮沸后,疏水木材接触角均高于135. 0°(图2) ,说明在恶劣环境下,疏水木材依然可以具有优异的稳定性和耐久性。将疏水木材进行超声清洗,木材表面的接触角几乎无变化,证明疏水涂层和木材间有稳固的粘合性能。以上结果证明,所制备的疏水木材即使在恶劣、严苛的条件下,也可以保持良好的疏水性,也证明了该疏水涂层的化学耐久性和环境稳定性。 图2 疏水木材耐化学性测试结论本研究基于TA-Fe Ⅲ多次自组装在木材表面构建疏水表面,在温和、环保且不会破坏试件本身的条件下,将涂层完全覆盖于基材表面。多次自组装和利用复合涂层二次反应活性还原Ag+粒子、接枝疏水长链,可以使得木材表面被涂层完全覆盖,并逐步完善木材表面的粗糙度,使得木材表面具有更加优异的疏水性能。随着自组装次数的增加,TA-Fe III /木材试件的接触角从138. 2°增加到了143.7°,TA-Fe III/Ag /木材试件的接触角从142.3°增加到了146.7°。此外,构建的仿生疏水表面具有优异的化学耐久性和环境稳定性,即使在经过恶劣环境后,疏水木材接触角均高于135.0°,依然可以保持优异的疏水性能。参考文献[1]傅敏,李明剑,何文清等.基于TA-Fe~Ⅲ还原Ag离子构建木材疏水表面[J].化学研究与应用,2023,35(01):75-82.
  • 中国科大研制出仿生人工木材
    p style="text-align: justify " 天然木材的独特取向孔道结构赋予其轻质高强的特点,有关仿木头结构的研究是国际上仿生材料研究领域的热点之一。然而,传统的仿木头结构材料是“徒有其型”,以往研究实现取向孔道结构的模仿,但其力学性能远不能令人满意。例如,目前开发的陶瓷基仿木头结构材料,密度高、强度低、缺陷多,且制备过程需要高温烧结(通常 1500℃)。因此,如何制备真正具有轻质高强特点的仿木材结构材料是仿生材料研究领域面临的挑战。/pp style="text-align: justify " 近日,中国科学技术大学教授俞书宏带领的科研团队,发展了一种冰晶诱导自组装和热固化相结合的新技术,以传统的酚醛树脂和密胺树脂为基体材料,研制出一系列具有类似天然木材取向孔道结构的新型仿生人工木材。该系列仿生人工木材具有轻质高强、耐腐蚀和隔热防火等优点。8月10日,相关研究成果以Bioinspired polymeric woods为题,发表在《科学进展》上,Science杂志科学新闻以This synthetic wood is as strong as the real thing—and won’t catch fire为题,对该成果进行报道。论文的共同第一作者为博士后于志龙和硕士生杨宁。/pp style="text-align: justify " 研究人员研制的一系列树脂基仿生人工木材,具有类似天然木材的取向孔道结构,并且壁厚和孔尺寸具有很好的可调控性(图1)。这种方法可以复合多种纳米材料以制备多功能复合人工木材,而且简单高效,容易放大生产。这种取向孔道结构的人工木材具有突出的机械性能,压缩屈服强度优于已开发的多种仿木结构的陶瓷材料,且与天然木材性能相当(图2)。/pp style="text-align: justify " 与天然木材相比,仿生人工木材最大的优势在于其耐腐蚀性、隔热和防火性能。研究中,由于选用热固树脂材料作为基体材料,所制备的仿生人工木材具有很好的防水、耐酸腐蚀的特点,在水和硫酸溶液中浸泡30天,其力学强度均没有衰减。得益于其取向孔道结构和孔壁中复合的纳米材料,与石墨烯复合的人工木材具有很好的径向(垂直于孔道方向)隔热效果,最低热导率可达20.8 mW/mK(毫瓦每米每开尔文)。考虑到人工木材的高比强度(压缩强度/密度),这种人工木材比其他工程材料和气凝胶材料具有更好的实用性。/pp style="text-align: justify " 易燃性是天然木材在实际应用中面临的最大问题,而防火阻燃则是人工木材最大的优点,通过复合不同的纳米材料可以进一步提高其防火隔热性能。这种人工木材具有很好的防火性能,在火焰引燃后能够迅速自熄灭,这正是天然木材无法克服的缺点(图3)。/pp style="text-align: justify " 作为新型的仿生工程材料,其多功能性优于传统的工程材料,这类人工木材有望代替天然木材,实现在苛刻或极端条件下的应用。此外,这种合成方法为制备和加工一系列高性能仿生工程材料提供了新思路,其功能的可设计性等优点将有助于拓宽该方法和制备的材料在多种技术领域中的应用。/pp style="text-align: justify " 研究工作受到了国家自然科学基金委创新研究群体、国家自然科学基金重点项目、国家重大科学研究计划、中科院前沿科学重点研究项目、中科院纳米科学卓越创新中心、苏州纳米科技协同创新中心、合肥大科学中心卓越用户基金的资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/c895eb45-70cf-43ff-aab8-0ff33f62ec9c.jpg" title="1.jpg"//pp图1.人工木头的制备过程示意图。(A)树脂聚合物的混合溶液;(B)取向冷冻和干燥后具有取向孔道结构的聚合物干胶;(C)固化后的树脂基仿生木材;(D)酚醛树脂基(上)和密胺树脂基(下)仿生木材实物照片/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/bfab837c-f8d1-4bf4-9074-6c413ea1b18d.jpg" title="2.png"//pp图2.仿生人工木材的照片、结构和力学性能。(A)酚醛树脂基人工木材与微观结构;(B)密胺树脂基人工木材与微观结构;(C)人工木材的力学性能与其他工程材料对比图。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/ae899219-4c1e-441d-8fb4-78eb4a0fd45c.jpg" title="3.jpg"//pp图3.人工木材的防火性能和巴尔杉木的易燃性对比。(a)CMF人工木材;(b)CPF人工木材;(c)CPF/GO复合木材;(d)巴尔杉木。/ppbr//p
  • 国检局木材实验室入选“国家队”
    近日,张家港检验检疫局材种鉴定与木材检疫实验室获国家质检总局批准筹建,成为全国首批28家“二次规划”重点实验室,同时升级为江苏检验检疫局Ⅰ级实验室。  据介绍,该局材种鉴定与木材检疫实验室立足专业从事进口木材携带有害生物、木材材种鉴定及林产品检测等业务。截至目前,实验室已拥有1000余种有害生物标本和500余种进口木材实物标本,拥有多台德国蔡司生物显微镜、木材构造特征成像系统、组织切片机、荧光自检仪等先进仪器。编著出版了《进口木材原色图鉴》等4部专著,研制国家标准5项,承担省部级科研项目3项。  今年以来,该局材种鉴定与木材检疫实验室新增加69个木材材种鉴定的扩项,使CNAS认可项目达到74项,并通过了国家认监委组织的杂草、昆虫2两大类4项能力验证,还以120分的高分通过江苏检验检疫系统动植物检疫实验室监督检查。
  • LAB-X5000用于应对木材处理行业的变化
    随着社会经济的发展和人们对生活品质的不断追求,防腐木材以其制作的园林景观越来越多的走进人们的生活。木材经过防腐处理后,不仅能够承受室外环境变化、延缓其变质和降解,还能够抵抗白蚁和霉菌。因此,防腐木材经处理后可以存续数十年。历史上,最常用于防腐处理的化学制品是五氯苯酚(简称为“Penta”)。由于Penta对健康和环境有潜在影响,因此Penta将在2021年结束前停产。这一变化使得业内开始关注新的处理方法,包括二氯辛基异噻唑啉酮(DCOI)。为什么是DCOI?Penta引起担忧,因为它对环境有不利影响,而且,一旦Penta被人摄入或者吸入,它会对人产生危害。事实上,2015年,《斯德哥尔摩公约》便将Penta归类为持久性有机污染物,随后Penta被全球许多国家都禁用。因此,我们需要一款替换产品,现在,DCOI已逐渐成为木材防腐处理作业的标准用品。DCOI是极其有效的木材防腐剂,对环境和人类健康的影响非常小。与Penta相比,DCOI在其使用寿命结束时有较多处置方法,这对用户而言也是另一好处。对木材处理行业的影响在木材防腐处理过程中,为有效处理、应对、处置被处理木材,对化学品滞留性的分析能力至关重要。多年来,能量色散x射线荧光光谱法(EDXRF)已被成功用于衡量CCA、铜唑、铜粉和Penta等最常见处理用活性物的滞留性。但是,由于成品中存在的DCOI含量相对较低而且这种产品的化学成分特殊,因此业内常用的传统正比计数检测仪器无法完成这种新产品的测量任务。这一发展可能使得旧版XRF仪器用户没有适当方法以达到最新行业标准。解决方案为了在这种不断变化的环境中具备竞争优势,请选择日立的LAB-X5000台式EDXRF,它包含您所需要的分析技术。这款仪器可快速、可靠地分析木材防腐剂和被处理木材。这款坚固耐用、结构紧凑的元素分析仪有助于在实验室、生产环境和流动作业中获得可复验的结果。它配有较大的工业触摸屏,能显示直观界面。它采用最*新型的软件及一键启动测量功能,使得任何操作人员均可轻松获得高质量的结果。高分辨率硅漂移探测器(SDD)允许同时分析多个元素,有助于快速进行分析,并提供这种应用领域所需的检出限。大气补偿功能有助于实现稳定的分析,无需使用氦气,能将分析成本降至最*低。样品旋转器可将不均匀样品(如锯屑)所造成的错误减至最少。您是否想要了解更多关于购买LAB-X5000的信息?立即联系日立,和日立一起讨论最适合贵公司的解决方案。
  • 中国木材认证不足1% 新规或致部分企业憾别欧盟
    2012年,家具产业刚刚崭露头角却迎来了严峻的考验。近期,欧盟发出“木材及木制品法规和新环保设计指令”,即所有出口欧盟的木材生产加工销售链条上的所有厂商,都必须获得森林管理委员会(FSC)森林认证的“身份证”。记者了解到,从全球范围来看,获得FSC认证的木材大约只有10%,而在国内市场,市面上获得认证的木材也不足1%,受此影响,重庆市家具出口企业面临生产成本大幅提升,利润空间收窄,价格优势减弱。  欧盟木制品新指令  3月3日,欧盟“木材及木制品法规和新环保设计指令”将强制实施。该指令要求今后出口欧盟的木材生产加工销售链条上的所有厂商,都必须获得FSC森林认证的“身份证”,即必须提交木材来源地、国家及森林、木材体积和重量、原木供应商的名称地址等证明木材来源合法性的基本资料。其范围主要适用于在欧盟内生产及从欧盟以外国家或地区进口的木材及其木制品。  中国市面上活的获得认证的木材不足1%  该份指令对于出口企业而言,又是一个新的“绿色壁垒”。从全球范围来看,获得FSC认证的木材大约只有10%,而在国内市场,市面上获得认证的木材也不足1%。  国内大部分企业或将憾别欧盟市场  我国对欧盟及美国的出口家具占家具总出口额的53.9%,为中国最大的家具出口市场。欧盟新规执行后,由于通过FSC森林供应认证的原材料本身就比较少,这将导致企业增加采购成本的同时,还要增加有关的检验、测试、认证和公关等手续以及其他相关费用,企业出口产品的成本将大幅上升,利润空间收窄,价格优势减弱,或将导致部分企业憾别欧盟市场。
  • 木材实验室团体标准研制取得新突破
    张家港检验检疫局木材实验室作为国家木材检测联盟的理事长单位,时刻关注标准制定的政策前沿。2015年联盟成立以来,木材实验室联合成员单位通力协作,完成了联盟内部技术文件的制定,并大力多方拓展渠道,致力于将技术文件上升为标准。日前,木材实验室作为牵头单位,申报中国林产工业协会的《主要进口珍贵木材材种鉴定》团体标准及中国检验检疫学会的《木材及木制品材种鉴定溯源认证规程》等5项团体标准已分别获得立项,接下来将积极联合联盟成员单位,严格按照标准制定要求,按时高质量地完成上述标准的制定工作。今后,木材实验室将继续贴近木材产业和行业的发展需求,以解决木材行业内亟待解决的技术难题和实际问题为宗旨,持续推进木材鉴定领域的标准化进程。  根据国务院《深化标准化工作改革方案》(国发[2015]13号)和质检总局、国家标准委《质检总局 国家标准委关于印发关于培育和发展团体标准的指导意见的通知》(国质检标联[2016]109号)的文件精神,我国标准化工作将改变政府单一供给的现有体系,鼓励社会团体制定严于国家标准和行业标准的团体标准,促进创新技术的转化应用,引领产业和企业的发展,提升品牌和服务的市场竞争力,快速响应市场对标准的需求,形成政府引导、市场驱动、社会参与、协同推进的标准化工作格局。  原标题:江苏张家港检验检疫局木材实验室团体标准研制取得新突破
  • 浙江农林大发明“木材无损检测仪”
    “我们已经用木材无损检测仪为故宫几百根木柱和木结构房进行了检测,发现大部分木结构保护都不错,但也有一些木柱子内部已有一定程度的腐烂。”近日,浙江农林大学孙林飞等四名师生正应邀用他们的最新发明——木材无损检测仪,为故宫和天安门的木柱和木质结构建筑做“心电图”。  故宫和天安门是我国首批重点文物保护单位,经过常年风雨洗礼,巨大的木柱以及其他木结构的建筑,或多或少会有腐朽、虫蛀等问题。全面掌握这些木结构建筑的健康情况,了解木材内部有没有长虫或开裂,对于保护和预防古建筑损坏具有重要意义。  然而受技术和成本的影响,以往检测木材需用锯子锯开、或者给木材打个洞取出样品,才能了解木材内部的情况,但这对古建筑无疑是一种极大的破坏。  有没有一种方法,能够在不损伤建筑的前提下,以比较简单的方法,掌握它们的健康情况呢?  浙江农林大学电子信息领域的李光辉教授了解到这一难题后,就开始指导孙林飞、刘凯等本科在校生,尝试利用电子信息、计算机软件开发等专业知识,掌握木材内部情况,最终成功开发出基于应力波原理的木材无损检测仪,解决了这个难题。  在木材无损检测仪发明以前,也有红外线检测法、核磁共振检测法等一些木材检测方法,但是设备昂贵、操作复杂,一直难以推广。浙江农林大师生发明的木材无损检测仪的最大特点,是既不破坏材料,又能在短时间内连续获得检测结果,而且使用方便,不受木材尺寸和形状的影响,比国外同类产品成本低很多。现在,这项发明已成功申请国家专利。
  • 461万!国林科院木材工业研究所仪器设备购置
    项目编号:TC221302P项目名称:中国林科院木材工业研究所仪器设备购置预算金额:461.0000000 万元(人民币)最高限价(如有):461.0000000 万元(人民币)采购需求:包号设备名称数量/套分包预算/万元分包投标限价/万元是否允许采购进口产品包1实验室拌胶机128.628.6是包210kN微机控制电子万能试验机11010否包3冷藏库122.822.8否包4数控开榫机等三项设备12020否包5实验热压机13131否包6冲击力学性能试验机1120120是包7木工带锯机11414否包8机器视觉平台13030是包9滑走切片机119.419.4是包10介电固化检测仪16565是包11喷淋型紫外光老化仪125.225.2是包12木材微细观表征测试仪17575是备注:1、每个包为最小的投标单位,投标人必须投完整包,不得仅对包内部分品目进行投标,也不得将几个包合报一个价格,参与多个标包时应分包制作投标文件。2、以上品种投标单价、总价须保留到小数点后 2 位。 合同履行期限:分包1:合同签订生效后4个月内交货;分包2:合同签订生效后2个月内交货;分包3:合同签订生效后1个月内交货;分包4:合同签订生效后1个月内交货;分包5:合同签订生效后3个月内交货;分包6:合同签订生效后4个月内交货;分包7:合同签订生效后1个月内交货;分包8:合同签订生效后4个月内交货;分包9:合同签订生效后4个月内交货;分包10:合同签订生效后3个月内交货;分包11:合同签订生效后2个月内交货;分包12:合同签订生效后3个月内交货。本项目( 不接受 )联合体投标。
  • 国家卫健委发布国标《GB4806.12-2022 食品接触用竹木材料及制品》标准解读及仪器选型推荐
    2022年7月28日,国家卫健委根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,正式发布了《食品安全国家标准 食品添加剂 丁香酚》(GB 1886.129-2022)等36项食品安全国家标准和3项修改单,其中包含3个食品接触产品的相关标准。本次新发布食品接触产品相关标准分别为:1、GB 4806.12-2022 《食品安全国家标准 食品接触用竹木材料及制品》。该标准的发布将改变食品接触用竹木制品一直缺乏相关的食品安全标准的现状,将于2022年12月30日实施。2、GB 4806.8-2022 《食品安全国家标准 食品接触用纸和纸板材料及制品》、3、《GB 31604.53-2022 食品安全国家标准 食品接触材料及制品 5-亚乙基-2-降冰片烯迁移量的测定》。 下面重点介绍GB4806.12-2022标准: GB 4806.12-2022《食品安全国家标准 食品接触用竹木材料及制品》是我国发布的首个食品接触用竹木制品的食品安全国家标准,将为我国食品接触用竹木制品的生产和使用提供合规要求与管控依据。标准主要内容见下表:表2 GB 4806.12-2022主要内容温馨提示: 此次新发布的标准GB 4806.8-2022和 GB 4806.12-2022 将为食品接触竹木制品与纸制品的生产加工企业控制产品风险提供有力指导,为政府监管部门提供执法依据,将对保障消费者健康、规范企业行为、维护良好市场秩序起到重要作用。 根据GB4806.12-2022检测方法之描述,小编向各竹木加工企业及各地质检中心、海关等单位推荐符合本检测方法仪器,型号为:ST109D的智能一体化水蒸气蒸馏仪。 本产品采用水蒸气蒸馏的方式,共设有6路蒸馏系统,国内独创蒸汽发生装置与烧瓶放置位一体化专利设计,可实现样品的预热功能,同时蒸汽输送管路极短,减少管路的热量损失,大大提高了蒸馏速率。产品特点:✤真正的一体化设计,主机内腔设计有独立的蒸汽腔,自动生成水蒸气;✤蒸汽加热腔具有温控防爆及防干烧设计,提高设备的安全性、可靠性;✤自动加酸设置,每路可独立控制,可设到加酸量,可进行加酸精度的校准、管路清洗等功能;✤具有烧瓶预热功能,可以提高烧瓶加热及蒸馏速率;✤设备设有独立的氮气流量控制阀,流量范围:200-2000ml/min;✤具有馏出液终点自动控制功能,可自动停止加热,并声光报警 技术规格:►额定电压:220V/50HZ►额定功率:3000W►外形尺寸:960*500*730mm►加热功率:500W/路►馏出液设定:1-1000mg
  • 澳大利亚农渔林业部修订桃金娘科木材进口条件
    该通知旨在提醒进口商针对桃金娘科(Myrtaceous)木材(植物病原体柄锈菌psidii的一类宿主-俗称番石榴锈)进口条件的变化。  澳大利亚农渔林业部(DAFF)称,在对生物安全风险进行审核后,对来自番石榴锈宿主国的桃金娘科木材货物的进口禁令已解除。因此,进口自番石榴锈宿主国的桃金娘科木材与进口自非番石榴锈宿主国的处理方式相同。  该修订已于2013年5月27日生效。
  • 利用固废制备土木材料国家重点实验室通过建设计划论证
    2010年6月8日,科技部基础研究司组织专家在北京召开了综合利用固废制备高性能土木材料国家重点实验室建设计划论证会议。科技部基础研究司、科技部基础研究管理中心、北京市科委有关负责同志以及依托单位的领导和实验室工作人员参加了会议。  与会专家听取了综合利用固废制备高性能土木材料国家重点实验室的建设计划报告,现场考察了实验室,并与实验室及其依托单位的同志们就实验室名称、研究方向、研究内容和重点、人才培养和实验室运行管理等内容进行了广泛的交流,经过质疑、讨论,形成了论证意见,一致同意通过了实验室的建设计划。同时,专家组还对实验室的建设和未来发展提出了宝贵的建议。  通过论证,实验室进一步明确了建设目标、建设措施以及建设经费的落实渠道,为实验室建设任务的圆满完成提供有力保障。
  • 携手同行,相约共赢!中国林业科学研究院木材工业研究所—岛津气味研究合作实验室正式成立!
    2023年7月19日,由中国林业科学研究院木材工业研究所(简称“中国林科院木材所”)与岛津企业管理(中国)有限公司(简称“岛津”)联合举办的中国林科院木材所-岛津人造板与木竹制品气味研究合作实验室揭牌仪式暨2023年首届人造板气味学术交流会在北京成功举办。合作双方的高层领导以及业内专家、学者和用户60余人出席并见证了这一时刻。会议现场会议由中国林科院木材所吕斌副所长及国家人造板质检中心副主任邹献武主持,吕斌副所长致辞。吕副所长首先对各位来宾的莅临表示热烈欢迎,并提到随着生活质量的不断改善,人们对居住环境、家具材料的要求也愈加严格,对木制品提出了更多更高的期待。中国林科院木材所作为木材加工行业的国家级研究团队,制定了一系列行业标准,也进一步形成了对气味检测的新方法。希望通过今天的会议,与在场专家、来宾就人造板及其制品中气味物质的测定等问题进行深入探讨,对推动木材加工行业发展起到积极作用。同时,对岛津提供的精准分析技术以及对本次会议的支持表示感谢。专家发表清华大学张寅平教授发表报告《人造板污染释放特性研究与展望》北京工商大学刘玉平教授发表报告《香气成分分析方法研究进展》国家人造板质检中心江京辉副研究员发表报告《木材热处理有机挥发物的取样与检测方法》国家人造板质检中心邹献武副主任发表报告《纤维板和刨花板中挥发性有机物的化学组成及气味特征分析》岛津发表岛津分析计测事业部市场部王子君女士发表报告《岛津气味分析系统的应用》,报告介绍气味分析的重点及难点,提出泛靶向分析在解决气味问题中的应用。介绍岛津气味分析系统如何实现嗅味化合物的定性和定量,以及在实际样品中如何解决气味问题。签约仪式随后,双方领导对合作实验室项目进行致辞、签约,并举行揭牌仪式。岛津分析计测事业部市场部高级经理陈志凌先生致辞陈志凌经理介绍了岛津的历史以及在国内的发展规模,并提到希望与中国林科院木材所以此次合作实验室的成立为起点,携手并进,在木材研究的应用方法开发、学术成果推广等各个方面进行更深入的合作,强强联合,实现双方更大的发展,共同提供更多符合中国市场需求的应用技术和分析方法。中国林科院木材所吕斌副所长致辞吕副所长首先对岛津在行业标准制定过程中提供的支持和做出的贡献表示感谢。并强调今天成立的合作实验室是检测实验、研究型实验室,以解决异味和香味问题为目标。岛津有针对气味研究的先进仪器,中国林科院木材所有先进的科学研究以及分析技术,希望充分运用二者的资源优势,共同探讨关于气味的科学问题。希望合作实验室成立后,可以对整个行业提供强有力的技术支撑。国家人造板质检中心邹献武副主任(右)与岛津分析计测事业部营业部区域经理姚建国先生(左)为合作实验室揭牌揭牌仪式后,与会者前往国家质检中心气味实验室参观。参观过程中,岛津人员向与会者讲解岛津仪器,并就仪器维护等事宜进行交流。大会合影本文内容非商业广告,仅供专业人士参考。
  • 280.2万!木材节约发展中心计划采购离子色谱仪等仪器设备
    一、项目基本情况项目编号:TC22080AH项目名称:木材节约发展中心木材与木制品检验检测实验室升级建设项目预算金额:280.2000000 万元(人民币)最高限价(如有):280.2000000 万元(人民币)采购需求:序号货物名称简要技术参数数量是否允许采购进口产品1体视显微镜光学系统:平行复消色差光路变倍系统。1套否2平推切片机切片厚度范围:5-60μm1套是3密度天平符合GLP/GMP/ISO输出的校正报告2套否4便携式显微镜LED光源主机,配10X目镜3套否5可温控超声仪仪器尺寸:700*550*800(mm)1套否6甲醛平衡舱内胆尺寸:舱内体积0.2m3 ,每套平衡舱内置小舱数量不少于6个。 3套否7高压灭菌锅自控型,微电脑智能化自动控制2套否8生物安全柜具备彩色高清LCD人机交互界面,实时显示监控流入/下降风速值、过滤器寿命值,风机、光照、紫外、电源接口的工作状态,并支持设备异常中文提示,具备日历和时间显示。2套否9精密摇床立式双层结构。1套否10旋涡混合器强有力的点振、连续、调速旋涡混合器。1套否11霉菌培养箱外壳需冷轧钢板制造,表面静电喷塑,内胆镜面不锈钢,搁板可以任意调节4套否12洗瓶机外壳材质,304不锈钢;内腔材质,316L不锈钢;内腔斜坡设计,便于彻底排水。1套否13酸逆流清洗机所有与试剂接触部分均采用聚四氟乙烯、PTFE、PFA等耐腐蚀材质,可耐120℃以上的浓硝酸、浓盐酸、浓HF,以及王水。1套否141立方米VOC气候箱内胆尺寸:舱内体积(1±0.02)m31套否15离子色谱仪泵头及管路均为不锈钢材质,适合pH为0~14的淋洗液及反相有机溶剂1套否16恒温恒湿系统恒温恒湿实验室:相对温度23±2℃,相对湿度50%RH±5%1套否17生物实验专用门门框材质 (不锈钢)T≥2MM1套否18全自动智能平行浓缩仪锥形底部设计,方便尽可能完全转移样品。1套否注:(1)产品信息以本表为准,未按本表要求投标的供应商,其投标将被拒绝。(2)投标人需对上表中的所有货物(产品)进行投标,不得拆分。(3)本项目不专门面向中小企业采购。★质保期:至少1年交货时间及地点:(1)时间:所有设备于2022年12月20日交货完成。(2)地点:采购人指定地点(北京市通州区马驹桥镇环科中路17号联东U谷西区22A)合同履行期限:所有设备于2022年12月20日交货完成。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:(1)在中华人民共和国境内注册,能够独立承担民事责任,有生产或供应能力的供应商,包括企业法人、其他组织或者自然人。(2)具备《中华人民共和国政府采购法》第二十二条关于供应商条件的规定,遵守国家、本项目采购人本级和上级财政部门政府采购的有关规定。(3)近三年内(本项目投标截止期前)不得在“信用中国”网站(www.creditchina.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单或在中国政府采购网(www.ccgp.gov.cn)被列入政府采购严重违法失信行为记录名单,或存在《中华人民共和国政府采购法实施条例》第十九条规定的行政处罚记录。(4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加同一项目的投标。(5)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标供应商,其投标将作为无效投标被拒绝。(6)从中招国际招标有限公司正式获得了本项目的招标文件。(7)法律、法规规定的其他条件。(8)本次招标不接受联合体。三、获取招标文件时间:2022年10月13日 至 2022年10月20日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:中招联合招标采购平台(http://www.365trade.com.cn)方式:本项目在线注册、发售并下载招标文件,详见其他补充事宜。售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年11月03日 13点30分(北京时间)开标时间:2022年11月03日 13点30分(北京时间)地点:北京市海淀区学院南路62号中关村资本大厦四层第五会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、招标文件获取方式:本项目采用线上发售招标文件方式,有意购买标书的潜在投标人,请务必于招标文件获取截止时间前按以下步骤操作完成招标文件购买:(1)首次注册供应商:登录“中招联合招标采购平台(http://www.365trade.com.cn)”(以下简称“平台”),点击“供应商入口”进行免费注册。(2)注册完成后,进入系统,点击页面上方“我的工作台”下拉菜单中的 “寻找招标项目”进行项目搜索,找到意愿参与的项目后,点击“立即投标”。勾选标包并填写相应信息后,点击“立即购标”;(3)审核通过后投标人选择支付方式、选中相应的费用信息并完善发票信息后,点击“提交支付”进行费用支付;招标文件每套售价500元人民币(本项目仅支持【网上支付】方式,标书款一经收取不予退还)。(4)支付完成后,点击页面上方“我的工作台”下拉菜单中的 “我参与的项目”进行招标文件下载。2、如有操作疑问请按以下方式与中招联合平台技术支持联系:客服电话:010-86397110、010-62108037(客服工作时间:周一至周五上午9时00分-11时30分,下午13时30分-17时00分)本项目需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业、扶持贫困地区发展等政府采购政策。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:木材节约发展中心     地址:北京市石景山区玉泉路59号中煤资源大厦         联系方式:戚士龙010-59771857      2.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦6层611A室            联系方式:马翔宇、师杉010-61954013、62108152            3.项目联系方式项目联系人:马翔宇、师杉电 话:  010-61954013、62108152
  • 高性能土木材料国家重点实验室通过建设计划可行性论证
    2010年6月13日,科技部基础研究司组织专家在南京对依托江苏省建筑科学研究院有限公司建设的高性能土木材料国家重点实验室的建设计划进行了可行性论证。科技部基础研究司、江苏省科技厅有关负责同志以及依托单位的领导和实验室工作人员参加了会议。  专家组听取了实验室建设计划汇报,进行了实地考察。专家组认为,该实验室围绕国家经济和社会发展的重大需求,确定的高性能结构工程材料、功能性土木工程材料、资源与环境友好型材料、土木工程材料现代测试技术等研究方向,定位准确,符合本领域相关产业可持续发展的需求。实验室建设计划合理可行,专家组一致同意通过该实验室的建设计划。并建议实验室进一步凝练研究方向,完善中长期规划,突出已有特色和优势。  2010年初,科技部发文批准了第二批56家企业国家重点实验室的建设申请。目前已完成了对地处北京、天津、河北、上海、江苏、湖北、湖南等地的26家实验室的建设计划可行性论证。待全部56家实验室论证结束后,科技部将统一发文对论证工作的结果予以确认,并通知有关主管部门组织开展企业国家重点实验室的建设工作。
  • 安徽省生态环境厅 安徽省市场监管局发布《木材加工行业大气污染物排放标准》等八项地方标准
    经安徽省人民政府批准,《木材加工行业大气污染物排放标准》《施工场地颗粒物排放标准》《固定源挥发性有机物综合排放标准 第1部分:涂料、油墨及胶粘剂工业》《固定源挥发性有机物综合排放标准 第2部分:农药制造工业》《固定源挥发性有机物综合排放标准 第3部分:有机化学品制造工业》《固定源挥发性有机物综合排放标准第4部分:印刷工业》《固定源挥发性有机物综合排放标准 第5部分:电子工业》《固定源挥发性有机物综合排放标准 第6部分:其他行业》为安徽省强制性地方标准,现予以发布。附件:批准发布的安徽省地方标准目录附件.pdf安徽省生态环境厅安徽省市场监督管理局2024年5月22日
  • Webinar | 摩擦学和划痕测试
    摩擦学和划痕测试你已经知道如何使用我们的摩擦测试仪了,但你想了解滑动速度和接触压力等测试参数是如何影响摩擦系数和磨损吗?或者您已经熟悉划痕测试,但想知道如何评估划痕抗力和优化薄膜涂层附着力测试的测试参数?请加入我们的摩擦学和划痕测试高级数字研讨会。研讨会分为四部分:第1课时中,我们将着重讲解不同测试参数对刹车片摩擦系数和磨损的影响,解释使用TRB3线性模块时获得的数据。第2-4课时重点介绍划痕测试:第2课时中,将学习如何对薄膜涂层进行附着力测试,以NST3测试聚酰亚胺涂层ITO玻璃为例;我们将在网络研讨会的最后两个课时上重点介绍MCT3,我们将首先简要介绍汽车透明涂层的耐擦伤性,然后介绍三种木材涂料的弹性恢复测定示例。在研讨会的最后一节中,我们将演示划痕法,以及更精确地确定锂离子电池阳极涂层的附着力。内容第1课时:15:00-15:45使用TRB3研究刹车片的摩擦磨损性能第2课时:15:45-16:15光学聚合物薄膜的附着力评估第3课时:16:15-16:35木材上油漆的耐刮擦性的测试第4课时:16:35-17:00锂离子电池涂层的附着力时间/报名时间: 2022-05-23, 15:00 - 17:00语言:English主讲人:Jiří Nohava, PhD., Mihaela Dubuisson, Maryam Bahrami, PhD.报名方式:点击“阅读原文”!注册:iphone手机需复制链接,浏览器打开安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 直播预告!iCEM 2023之电子显微学技术在材料领域应用篇
    2023年6月27-30日,仪器信息网(www.instrument.com.cn) 与中国物理学会电子显微镜分会(对外:中国电子显微镜学会/www.china-em.cn)将联合主办“第九届电子显微学网络会议(iCEM 2023)”。iCEM 2023会议围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家、重点邀请近来有重要工作成果进展的优秀青年学者代表线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电镜实验操作技术及经验分享、先进电子显微学技术及应用、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,中国电子显微镜学会参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2023 或扫描二维码报名“电子显微学技术在材料领域应用”专场预告(注:最终日程以会议官网为准)专场五:电子显微学技术在材料领域应用(上)(6月29日上午)材料专场召集人暨上半场主持人:明文全 海南大学 副教授报告题目演讲嘉宾LPBF成形高性能医用钴铬钼合金的组织与性能研究倪颂(中南大学粉末冶金研究院 研究员)拓扑磁结构原位观测及电操纵宋东升(安徽大学 教授)待定卡尔蔡司原子分辨的电子三维重构技术周继寒(北京大学 研究员)钛合金中的相变机制研究符晓倩(海南大学材料与工程学院 副研究员)专场六:电子显微学技术在材料领域应用(下)(6月29日下午)材料专场下半场主持人:周继寒 北京大学 研究员Phase stability and strengthening mechanisms in next-generation high-temperature structural materials with hierarchical microstructuresFlorian Vogel(海南大学 研究员)纳克微束FE-1050系列电镜及其在材料表征中的应用卢毓华(纳克微束(北京)有限公司 高级应用工程师)氧化物薄膜畴界器件的探索及研究刘中然(浙江大学 助理研究员)稀土元素Sc调控轻质高强铝合金性能微观机理的球差电镜研究王双宝(云南大学 副教授)基于原位透射电镜的少层石墨烯场发射特性研究唐帅(中山大学电子与信息工程学院 副教授)嘉宾简介及报告摘要(按分享顺序)材料专场召集人暨主持人:明文全 海南大学 副教授 【个人简介】明文全长期从事先进电子显微学技术理论和方法学研究,并将其应用于研究先进铝合金纳米析出相结构和性能的关系。研究内容包括:(1)先进电子显微学理论和方法;(2)铝合金工艺、性能和微结构的关系调控。在Ultramicroscopy、IEEE Transactions on Image Processing、Acta Materialia、Journal of Material Science and Technology等期刊上发表研究论文30余篇,其中第一作者和通讯作者论文十余篇,授权发明专利3项,主持了国家自然科学基金创新联合发展基金重点支持项目课题、国家自然科学基金青年项目,并作为骨干成员参与了国家基金重大科研仪器项目和国家自然科学基金重点项目。倪颂 中南大学粉末冶金研究院 研究员【个人简介】倪颂,教授、博士生导师。湖南省湖湘青年科技创新人才,中南大学创新驱动青年人才。主持国家自然科学基金面上项目、青年项目、湖南省自然科学基金、中国博士后科学基金海外引进项目、特别资助等10余项。指导硕士、博士研究生10余名,多人获评国家奖学金、湖南省优秀硕士学位论文、中国冶金教育学会优秀硕士学位论文。研究方向包括金属材料(钛、钴、镁及其合金)的塑性变形机制、马氏体相变机制,3D打印制备高性能金属材料及组织结构表征。报告题目:LPBF成形高性能医用钴铬钼合金的组织与性能研究【摘要】Cobalt-chromium-molybdenum (CCM) alloy is an attractive class of metal materials for biological applications that require superior mechanical properties. The initial phase and in-situ precipitation have long been known as critical in determining their mechanical performances, yet they are still not well understood and further not feasibly manipulated. In this study, by applying additive manufacturing, i.e., laser powder bed fusion (LPBF), we successfully endowed a classical Co25Cr5Mo5W alloy with a single face-centered cubic (FCC) structure, and realized controllable precipitation behavior at 900 ℃ that leads to better strength-ductility combination than most known CCM alloys prepared by traditional routes. State-of-the-art characterizations show that in the as-built state, the Co25Cr5Mo5W alloy features integrated networks of dense cell boundaries and stacking faults, which together contribute majorly to the yield strength of ~820 MPa. The full FCC matrix, which is ductile and metastable, is responsible for the plausible ductility of ~22.3 % Upon heat treatment, the heavy decoration of solutes Cr, Mo, W, and Si at cell boundaries triggers heterogeneous nucleation of Laves precipitates, which in turn deteriorates the overall ductility. It is not until the global onset of the intercellular precipitation after 15 mins of heat treatment does the strength increase rapidly, further boosting the yield strength to ~1170 MPa at a decent ductility of ~7.5 % when heat treated for 60 mins.宋东升 安徽大学 教授【个人简介】宋东升,安徽大学教授,博士生导师,国家海外高层次青年人才计划获得者(2021)。2012年本科毕业于北京科技大学材料学院,2017年博士毕业于清华大学材料学院,获评清华大学优秀博士论文,师从朱静院士。2017年-2020年先后在新加坡国立大学和德国于利希研究中心(Ernst-Ruska电镜中心),从事博士后研究,2020年11月任教于安徽大学。主要从事透射电镜磁性表征技术的开发,以及在磁性材料与器件中的应用。相关研究工作以第一和通讯作者发表在Physical Review Letters, Nature Communications, Advanced Materials, Advanced Functional Materials, Ultramicroscopy等期刊上。报告题目:拓扑磁结构原位观测及电操纵【摘要】拓扑磁结构(如斯格明子)是未来磁存储或磁逻辑器件的优良载体,因为它们具有纳米级尺寸、高稳定性和低临界电流密度。这里,我们利用高分辨定量透射电镜磁成像技术,研究并揭示了手性磁体中一些拓扑磁结构的形成和稳定机制。进一步,结合原位磁场-温度-电流的磁成像平台,研究了拓扑磁结构在电流驱动下的动力学行为,构建了拓扑磁结构速度、维度与电流密度、霍尔角之间的定量关系。周继寒 北京大学 研究员【个人简介】分别于2009年和2014年在北京大学获得化学学士和高分子化学与物理博士学位。其后在加州大学洛杉矶分校物理与天文学院从事博士后(2014-2019)以及助理项目科学家(2019-2020)研究。2020年11月加入北京大学化学与分子工程学院任助理教授、研究员,课题组组长(PI)。主要研究兴趣是发展高精尖的化学测量学技术,特别是原子分辨多维成像技术,用于精准获取物质在三维原子分辨尺度下组成、分布、结构与性质及其时空变化规律,从而解决物理、化学以及材料科学领域的传统难题。研究成果以第一作者或通讯作者发表于Nature (2),Nat. Mater.,Nat. Commun.等国际学术期刊。报告题目:原子分辨的电子三维重构技术【摘要】精确定位原子的三维位置,是认识物质原子分辨尺度结构与功能的关键。很多材料的功能直接与缺陷结构甚至完全无序的非晶结构有关。本报告将介绍原子三维重构成像技术,一种近期发展迅速的无需晶体学假设的通用重构成像技术。这种方法已经在研究晶体原子分辨早期成核以及非晶原子结构确定等领域取得了一系列的进展。符晓倩 海南大学材料与工程学院 副研究员【个人简介】符晓倩,海南大学材料科学与工程学院副研究员,硕士研究生导师。2020年毕业于浙江大学材料学专业,获博士学位,2020年10月至2022年9月在浙江大学电子显微镜中心进行博士后研究工作。主要从事先进结构材料的微观结构与性能研究,包括多尺度及多维度显微结构表征,显微结构演化等,揭示材料中缺陷结构、缺陷行为及其与材料性能的关联性。目前在Nature Materials、Materials Today Nano、Scripta Materialia等国际知名期刊发表论文十余篇;主持国家自然科学基金1项。报告题目:钛合金中的相变机制研究【摘要】利用原位电镜表征和计算机模拟技术研究两相TiMo合金中α-β相变过程,发现在相变初期α相中首先发生Mo的扩散形成纳米尺度的亚稳态超晶格结构团簇,其成分和结构既不同于α相,又不同于β相;随着超晶格结构中Mo浓度的升高,α相密排六方结构失稳,瞬间转变为体心立方结构,实现非经典形核导致的从α相到β相的结构转变。Florian Vogel 海南大学 研究员【个人简介】Dr. Florian Vogel为国家自然科学基金委外国优秀青年学者获得者,海南大学研究员。2014年获得德国柏林工业大学材料科学与工程博士学位,曾担任亥姆霍兹科学联合会-柏林材料与能源研究所三维原子探针(APT)实验室负责人。在三维原子探针、透射电镜等高分辨表征领域以及高温合金材料研究方面积累了13年多的经验。 以第一作者/通讯作者在 Nature Communications, Acta Materialia 等知名国际期刊发表SCI论文20余篇。主持有国家级项目3项,省级项目4项,参与1项三维原子探针(APT)国际标准的国际合作研究。报告题目:Phase stability and strengthening mechanisms in next-generation high-temperature structural materials with hierarchical microstructures【摘要】Understanding phase separation phenomena enables tailoring microstructures of high-temperature structural materials to develop better materials with improved properties. High resolution characterization techniques are used to understand the link between structure-property relationships and the 3D nanochemistry of hierarchical microstructures in high temperature structural materials. Hierarchical microstructures form when additional γ particles form within γ’ precipitates and pose a novel concept to strengthen high-temperature structural materials. However, these γ particles are metastable and two possible metastability pathways have been indentified: (1) continuous growth and split of γ’ and (2) Growth and dissolution, both resulting in a loss of the strengthening effect. This talk presents how high-resolution characterization techniques such as TEM, APT and synchrotron XRD are used to gain insight into microstructural behavior and phase stability. The combined results inform alloy design strategies to tailor fundamental properties of γ particles to enhance their temporal stability and thereby retain the strengthening effect. APT offers unique insights into the 3D nanochemistry of phases in hierarchical microstructures with γ’ precipitates only ~100 nm in size and nanoscale γ particles (~8 nm). The results suggest that by phase targeted alloying, supersaturation and evolution of phase separation can be controlled to tune the properties of such materials. To create new materials strengthened by hierarchical micrsotructures, the phase stability of γ particles needs to be enhanced.卢毓华 纳克微束(北京)有限公司 高级应用工程师【个人简介】卢毓华,男,博士,就职于纳克微束(北京)有限公司,进行扫描电镜的研发应用及表征方法研究。毕业于钢铁研究总院有限公司(原名:钢铁研究总院),硕、博期间在王海舟院士创新工作室进行课题研究,方向为材料高通量表征方法的研究和应用,期间采用高通量场发射扫描电镜建立了跨尺度γ´相的定量统计表征方法,并在GH4096高温合金中进行应用。对扫描电镜等设备具有多年的实操经验和使用经历。报告题目:纳克微束FE-1050系列电镜及其在材料表征中的应用【摘要】首先对纳克微束(北京)有限公司的基本概况展开报告,介绍了纳克微束这一品牌及公司的发展方向。随后重点引出纳克微束FE-1050系列国产旗舰电镜,围绕低电压下高分辨、兼容性强可扩展和操作智能易使用这三大特点对纳克微束FE-1050系列阐述,并展示了典型案例。最后以上市央企控股公司的担当和产品的稳定应用,体现安心稳定的服务质量。刘中然 浙江大学 助理研究员【个人简介】刘中然,浙江大学博士后,2015年本科毕业于浙江大学竺可桢学院、材料科学与工程学院,2021年博士毕业于浙江大学材料学专业。主要从事铁性材料的设计制备和微结构表征研究,针对铁性氧化物薄膜材料的微观机理,设计异质结构,开发原位观测、电荷探测等方法,研究铁电及多铁氧化物微结构变化与外场响应的耦合,调控薄膜中的铁电畴及畴壁。近5年发表SCI论文14篇,其中Nature第一作者1篇、Nature Communications共一作者1篇、Science 1篇、Advanced Materials 2篇;获批中国博士后科学基金第72批面上项目资助。报告题目:氧化物薄膜畴界器件的探索及研究【摘要】铁电、多铁等铁性材料,由于具有铁电、铁磁、压电、庞磁电阻等丰富可调的物理性质,在高性能存储领域展现了巨大潜力。结合异质结构与原位外场调控,带电畴壁等铁畴结构展现出了可被调控的导电性等物理特性,能够构筑新型量化晶胞级忆阻器,为高密度铁性存储器的设计提供了新的科学依据。王双宝 云南大学 副教授【个人简介】王双宝,博士,副教授,云南省“兴滇英才”支持计划-青年人才,硕士研究生导师。主要专长包括球差校正环境(原位)透射电子显微术及应用、轻质高强铝合金的微合金化、结构和性能调控、合金其催化剂表界面反应的原位电镜研究等。在Cell子刊CRPS、Acta Mater. 等核心期刊发表论文64篇 (第一/通讯作者31篇),他引1547次,H因子20,授权国家发明专利9件 (第一发明人7件)。报告题目:稀土元素Sc调控轻质高强铝合金性能微观机理的球差电镜研究【摘要】针对微合金化有效调控合金微观结构和性能的策略,设计开发了含稀土元素Sc的多组元轻质高强铝合金系统,研究了Sc对铝合金性能及析出强化的影响。以6000系Al-Mg-Si合金为例,研究结果表明:在时效硬化Al-Mg-Si(-Sc)合金中,B'相参与的β/β′相变,以及在硬化初期Sc时效动力学的加速。在无Sc合金中,随着时效时间的延长,峰值硬化β′′逐渐减少。B′相亚结构中Sc的存在有效地抑制了β′′/β′转变以及β′′和溶质团簇的横截面粗化,导致了峰值时效和过时效含Sc合金中以β′基针状物的主要析出组织。这最终导致在过时效含Sc合金中,针状物尺寸显著变长,析出物直径分布减小,热稳定性提高。唐帅 中山大学电子与信息工程学院 副教授【个人简介】唐帅,中山大学电子与信息工程学院副教授,光电材料与技术国家重点实验室—“微纳结构电子光子与器件”团队成员。分别于2012年和2017年在中山大学取得学士和博士学位。2018年4月-2022年5月任日本国立物质材料研究所博士后研究员。2022年6月加入中山大学。主要从事纳米结构场发射点电子源的制备与应用及基于原位TEM的纳米材料电学/场发射特性研究,近期开发的高亮度、低能散、超高稳定六硼化镧纳米锥场发射点电子源已在电子显微镜知名企业日本电子机器上取得应用验证。迄今发表36篇论文,其中以第一作者在Materials Today、Nano Research、Carbon等期刊发表论文17篇。申请国内外专利8项,其中2项已授权,另有1项申请中专利已获得相关企业使用许可预付费。多次在IVNC(国际真空纳电子会议)、中国电子学会真空电子学分会、中国电子显微学会等本研究领域国内外学术会议作邀请、口头及张贴报告,并获优秀报告奖和最佳张贴海报奖。2022年6月入选中山大学百人引进计划,兼任Nanomaterials期刊专题客座编辑,入选中国真空学会高级会员。报告题目:基于原位透射电镜的少层石墨烯场发射特性研究【摘要】石墨烯具有优异的导电、导热性能,原子级别的尖端以及二维结构的散热面积,有潜力应用在场发射器件中。但石墨烯的结构在高温、高电场下会发生变化,进而影响电子发射性能。我们实现了钨针尖衬底上单片直立少层石墨烯的可控生长,并基于原位TEM测试技术,揭示了焦耳热及强电场主导的少层石墨烯场发射过程的结构演化规律,厘清了实现场发射大电流的尖端单层及界面石墨层等关键结构因素及对应物理机制,获得了单个纳米材料最高级别的发射电流及电流密度,有效推进了石墨烯场发射器件的研究。会议联系会议内容仪器信息网杨编辑:15311451191,yanglz@instrument.com.cn中国电子显微镜学会汪老师:13637966635,1437849457@qq.com会议赞助刘经理,15718850776,liuyw@instrument.com.cn
  • 二维材料在芯片光子学中的应用
    p  光电应用比如光电探测器和发射器都依赖于其活性物质与光强烈相互作用,所以大家会质疑二维材料的性能这无可厚非。毕竟二维材料的横截面最多只能由几个原子构成,因而没有足够的物质与光相互作用。然而,即便随手在网上一搜便会得到许多有关石墨烯和二维光学材料论文和专利。那么是什么让这些材料如此有吸引力呢?/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201806/insimg/4cfd9cf9-f64c-40fe-b69f-ad42da2bcd7f.jpg" title="02.jpg"//pp strong 1. 超高速自由电子漂浮在石墨烯晶格上/strong/pp  石墨烯的原子结构是每个碳原子都会连结其他三个原子,这对于其性能有着非常深远的影响。这是因为这样的结构使得一大群自由电子以极快的速度移动产生了前所未有的电子迁移率。因此,在高频即便吸收少量的光便可有效地探测到变化。利用石墨烯的特性和一些巧妙的设计,已多次实现了石墨烯光电探测器在可见光和近红外光谱的极高响应率。然而,真正令人兴奋的进展是在1550nm左右波长的电信频率中石墨烯光电探测器已实现数万兆赫的操作速度!/pp  strong2. 钝化表面和晶格错配现象的消失/strong/pp  二维材料只在范德华力的基础上相互作用于表面(这些微弱的力量保持了石墨各层的结合!),因此它们不像传统材料在硅上沉积时会产生表面应力。当然他们的表面同样自然钝化,由于没有悬空键, 不仅最大程度降低损耗,也能降低光波导集成的难度。这些属性使得全球研究人员不仅可以在硬基板,而且在柔性基板和透明基板上,利用半导体二维材料提取光时都能产生较高量子产率(已经证明近似使用完美晶体的产能)。/pp  在未来几年,光发射器、调节器和光电探测器的研发浪潮必将到来。我们已经看到了石墨烯探测器与硅技术的集成方面的大量技术准备,但研究人员仍有大量机会将这种神奇的材料应用于集成电路芯片!/pp  牛津仪器愿与您携手持续改善我们的工艺和系统,通过开发设备制造解决方案推动这项技术的进步。我们很高兴能有机会与您进一步交流,更多详情欢迎与我们取得联系。/p
  • 直播预告!iCEM 2022之电子显微学技术在材料领域的应用专场篇
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位仪器信息网、中国电子显微镜学会参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022或扫描二维码报名以下为“电子显微学技术在材料领域的应用”专场预告(注:最终日程以会议官网发布为准)专场五:电子显微学技术在材料领域的应用(7月28日全天)上午专场主持人:葛炳辉 安徽大学 教授09:00--09:30高性能镍基单晶高温合金 “全寿命”的微观结构演化规律赵新宝(浙江大学 研究员)09:30--10:00布鲁克全新一代电制冷能谱仪陈剑峰(布鲁克(北京)科技有限公司 应用工程师)10:00--10:30水氧敏感二维材料的本征缺陷原子尺度研究林君浩(南方科技大学 研究员)10:30--11:00跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用卢毓华(钢铁研究总院/纳克微束(北京)有限公司 应用科学家)11:00--11:30高强韧铝合金纳米析出强化机理研究及高效设计李凯(中南大学 副教授)11:30--12:00显微学成像技术及其应用的研究葛炳辉(安徽大学 教授)下午专场主持人:谷猛 南方科技大学 研究员14:00--14:30具有离子导电性的半导体材料电致相变及阻变的电镜研究吴劲松(武汉理工大学 教授)14:30--15:00徕卡电镜制样在材料科学方面的应用与介绍武素芳(徕卡显微系统(上海)贸易有限公司 高级应用工程师)15:00--15:30镍基单晶高温合金的形变机理丁青青(浙江大学 副研究员)15:30--16:00COXEM台式扫描电镜在材料显微表征领域的应用沈宁(COXEM库赛姆台式电镜 产品应用专家)16:00--16:30结构功能一体化纳米多孔金属材料刘攀(上海交通大学 特别研究员)16:30--17:00用原位电镜研究NaYF4上转换发光材料的结构和发光性质鞠晶(北京大学 高级工程师)17:00--17:30固体电解质界面层的冷冻电镜研究谷猛(南方科技大学 研究员)嘉宾简介及报告摘要浙江大学研究员 赵新宝【个人简介】赵新宝,浙江大学“百人计划”研究员,博士生导师,浙江省杰出青年基金获得者,浙江大学材料学院院长助理、高温合金研究所副所长。主要从事航空航天、火力和燃气发电、舰船动力等领域用高温合金、耐热钢材料的研发、制备和产业化应用。先后主持国家自然科学基金重大研究计划重点项目、JWKJW基础加强计划重点项目课题、重大科技专项课题等20余项;参与国家973、浙江省重点研发计划项目、华能集团高精尖科研项目等10余项。先后获得某创新团队奖、教育部自然科学奖二等奖、浙江大学2021年度十大学术进展、华能西安热工研究院有限公司科学技术奖一等奖等。在Acta Materialia、Journal of Materials Science and Technology等金属材料顶级期刊发表论文80余篇,授权国家专利40余项。报告题目:高性能镍基单晶高温合金 “全寿命”的微观结构演化规律【摘要】 镍基单晶高温合金是航空发动机高压涡轮叶片的重要制备材料,其微观结构特征是影响合金关键性能的重要因素。以一种新型第四代镍基单晶高温合金为对象,考察了合金铸态、热处理态和高温低应力蠕变过程中的微观结构演化特征。镍基单晶高温合金的铸态组织为“十字”的枝晶结构,枝晶间和枝晶干存在尺寸不均匀的粗大γ′相和γ/γ′相共晶组织。通过多步阶梯固溶处理,回溶粗大γ′相和γ/γ′相共晶组织并减小偏析,通过两步时效处理获得组织均匀、立方度好的γ′相。在1100℃/137MPa蠕变条件下,获得了合金在不同变形过程中γ′相的筏排化过程、位错网的演化规律,结合断口裂纹的扩展规律,明确了其微观结构演化与蠕变性能的关联关系。南方科技大学研究员 林君浩【个人简介】林君浩,南方科技大学物理系副系主任,副教授,国家青年特聘专家,博士生导师,深圳市新型量子功能材料与器件重点实验室执行副主任。博士毕业于美国范德比尔特大学(Vanderbilt University)物理系,后赴日本任JSPS特聘研究员。林君浩博士主要利用高分辨扫描透射电镜和第一性原理计算作为研究工具,致力于实验与理论相结合的手段研究二维材料中原子结构与材料性能之间的关联,以期通过结构工程获得性能更优异的新型材料。近年来的主要研究兴趣为透射电子显微学新技的发展,以及新型二维铁磁与铁电材料缺陷的精确测量及其对磁性与极化的影响。近5年来,在Nature, PRL,Advanced Materials, ACS Nano等高影响期刊发表80余篇文章,总引用次数超过9700多次,H因子36。多次在国际学术会议及高校论坛做邀请报告,担任Nature, Nature Communication等期刊审稿人,承担多项国家与省市级科研攻关项目。入选《麻省理工科技评论》“35 岁以下科技创新 35 人”2021中国区榜单。报告题目:水氧敏感二维材料的本征缺陷原子尺度研究【摘要】 二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解本征缺陷的原子结构对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如单层铁电,单层铁磁,单层超导材料在大气环境下会迅速劣化,无法表征其本征缺陷。在这个报告中,我将报道定量衬度分析技术在二维材料缺陷表征中的应用,以及我们课题组搭建的大型氛围控制高通量生长与高精度表征联用系统的进展。我们利用该系统在直接观测二维敏感单层材料晶格原子结构与缺陷中取得的一些初步成果,包括单层WTe2的本征褶皱结构、点缺陷的分布,少层卤族铁磁反铁磁材料的直接CVD制备与无损表征,层状拓扑反铁磁绝缘体MnBi2Te4的自发表面重构现象等。中南大学副教授 李凯【个人简介】中南大学材料学博士及比利时安特卫普大学物理学博士,中南大学粉末冶金国家重点实验室副教授、博士生导师,中南大学高等研究中心材料微结构研究所副所长、湖南省电镜中心主任助理。作为第一/通讯作者在Acta Materialia、Journal of Materials Science & Technology、Scripta Materialia等行业高影响力SCI期刊上发表20余篇论文,研发的高强韧铝合金获授权专利2项且其中一项已实现重要应用,主持国家自然科学基金面上、青年、国际合作项目各1项并作为骨干参与国家自然科学基金重点项目2项,应邀为Taylor&Francis出版社的铝合金专著撰写1章节,所发表SCI论文被引用900余次。报告题目:高强韧铝合金纳米析出强化机理研究及高效设计【摘要】 纳米析出相的结构、尺寸、体积分数及力学行为共同影响铝合金强化效果。前期研究及文献报道均发现在200-300 keV的常规高能透射电子束下,铝合金亚稳析出相,如Al-Mg-Si合金的主要强化相β″,在几分钟内即发生结构损坏。为解决该问题,本工作提出了耦合低能量/低剂量球差矫正透射电镜观察和能量-错配度理论计算的系统方法,为不耐电子束辐照的铝合金纳米析出相的晶体结构构建及界面、缺陷结构研究提供了新的范式,构建的Al-Mg-Si(-Cu)体系若干重要析出相如GP区、β″、B′的晶体结构模型夯实了铝合金集成计算材料工程的晶体结构基础,为析出相力学性质、热物理性质及力学行为的理论模拟提供了可靠依据。在另一方面,本工作通过原位TEM纳米力学实验、离位TEM及三维原子探针(3DAP)表征,从实验角度系统揭示了主强化相β″及次强化相β′被位错切过、碎片化及旋转等不同力学行为,并与多尺度微结构定量表征一起,为屈服强度模型提供了关键精准输入,实现了同时析出的不同强化相的强化效果的精确模拟预测。在以上实验研究及文献研究基础上,本工作抓住铝合金实际工业设计中的主要矛盾,提出了应用相图热力学计算指导高强韧铝合金高效设计的三个准则,研制的高性能铝合金得到重要应用。安徽大学教授 葛炳辉【个人简介】安徽大学教授,电镜中心主任,皖江学者特聘教授,入选2018 Nature Index Rising Star, Research杂志(Science合作期刊)副主编。主要从事:1)球差矫正电子显微学方法,像衬理论,电子晶体学方法研究;2)原位电子显微学:3)利用球差矫正电镜表征催化剂,热电材料和高温合金等材料微观结构,探索材料构效关系。近五年材料表征方面研究工作主要发表在EES,Joule, Nature communications,Advanced Materials,Angewandte等顶级杂志;另外,电镜方面工作发表在Ultramicroscopy, Microscopy and Microanalysis,Microscopy等期刊。应邀编写电镜类相关书籍2章(节)。报告题目:显微学成像技术及其应用的研究【摘要】 报告主要介绍三方面工作 1、iDPC技术在轻元素成像中的应用及其最佳成像条件的探索 2、Bi2Te3基热电器件断裂机制的原位研究 3、重型燃气轮机中雀斑缺陷形成机制的探索武汉理工大学教授 吴劲松【个人简介】吴劲松博士师从郭可信院士在中科院北京电镜实验室学习。随后在欧美的电子显微镜实验室(包括德国Juelich研究中心、美国亚利桑那州立大学、美国乔治亚大学,美国西北大学等)工作。吴劲松于2018年全职回国工作。他现任武汉理工大学纳微研究中心执行主任。他共发表科技论文150余篇,其中包括Science (2), Nature Nanotechnology (1), Nature Materials (1),Nature Communication (2), JACS (10), Advanced Materials (5), Nano Letters (4),ACS Nano (9)等。他曾获国际电镜学会、日本电镜学会、德国洪堡奖金等多项奖励。报告题目:具有离子导电性的半导体材料电致相变及阻变的电镜研究【摘要】 具有快离子导体特征的半导体材料如Cu2Se,Ag2Se等在外温度场和电场的作用下会由于铜和银离子的快速迁移,而产生独特的相变特征和物理性能。得益于原位透射电子显微学的迅速发展,能够对材料在外场作用下的结构动态演变进行直接观察。我们利用原位电子显微学来研究了具有离子导体特征的半导体材料在温度、外加电压作用下产生的相变和电阻变化,以探索它们的电阻变化机理。浙江大学副研究员 丁青青【个人简介】丁青青博士以浙江大学全链条高温合金研究平台和先进电子显微技术为依托,从事先进金属结构材料特别是应用于极端条件下合金的研发。研究方向包括合金成分设计及制备、显微结构和形变机理与性能的关系。申请人主持和参与浙江省自然科学基金、浙江省重大研发计划专项、国家自然科学基金重大研究计划项目、国家自然科学基金面上项目、中央高校基本科研业务费专项资金项目等多项, 在金属材料领域国内外重要学术期刊发表学术论文20余篇,其中第一或通讯作者论文发表于Nature、Materials Today、Applied Materials Today、Acta Materialia、Materials Today Nano等顶级期刊,多篇论文入选ESI热点和高被引论文(论文被引用2600余次)。报告题目:镍基单晶高温合金的形变机理【摘要】 镍基单晶高温合金是目前唯一应用于航空发动机涡轮叶片的材料,而理解不同力热耦合条件下镍基单晶合金的形变机理是优化单晶合金成分和性能的前提。结合利用扫描和透射电子显微镜,我们将二代镍基单晶高温合金不同力热耦合条件下力学性能与微观组织结构演变规律相关联,从原子到微米跨尺度揭示了不同力热耦合条件下二代镍基单晶合金的形变机理,阐明了形变过程中合金两相的竞争关系,发现高温形变时基体相是单晶合金的薄弱环节。因此,发展高性能镍基单晶高温合金需重点提高基体相强度。上海交通大学特别研究员 刘攀【个人简介】刘攀,上海交通大学材料科学与工程学院特别研究员、博导。长期从事结构功能一体化金属材料的原位/非原位电子显微学研究,主要研究功能导向三维微纳结构金属及其复合材料的相变热/动力学、表/界面结构特性、弹塑性行为的微观机制、设计制备及应用。累计发表论文114篇,其中包括第一/通讯作者论文Nat. Commun., Adv. Mater., Nano Lett., JACS, Angew. Chem. Int. Ed., Acta Mater.等31篇。论文共获SCI他引6718次,个人H指数42,ESI高被引论文16篇。授权国际国内发明专利13件。主持国家自然科学基金项目、军委科技委重点项目课题等6项。获北京市科学技术一等奖、上海市浦江人才和东方学者。报告题目:结构功能一体化纳米多孔金属材料北京大学高级工程师 鞠晶【个人简介】1996年获吉林大学理学学士,1999年获吉林大学理学硕士, 2003年获北京大学理学博士;2003-2009年在日本东北大学从事科研工作。2009年加入北京大学化学学院并任高级工程师。研究方向:1. 无机固体结构化学2. 原位电镜技术研究化学反应过程。报告题目:用原位电镜研究NaYF4上转换发光材料的结构和发光性质【摘要】 NaYF4是重要的上转换发光材料,广泛应用于医学诊断,成像和防伪技术等领域。本文利用原位电镜方法,系统研究了NaYF4纳米颗粒在加热条件下发生连续的氧化反应,结构从六方相向立方相转变的过程。利用SEM-CL方法研究了结构变化过程中纳米材料发光性能的变化。南方科技大学研究员 谷猛【个人简介】谷猛博士毕业于美国加州大学戴维斯,曾在美国西北太平洋国家实验室和陶氏化学公司任职。主要从事能源反应机理的显微学研究,共发表英文SCI论文170篇,引用超过12000次。2015年,由于谷教授在电子显微分析方面的突出贡献,被美国电镜协会授予Albert CREWE award奖项。2019年入选深圳市青年科技奖。报告题目:固体电解质界面层的冷冻电镜研究【摘要】 包括锂钠钾在内的碱金属是相应电池体系热力学上最理想的负极,但碱金属与电解液之间的不稳定性以及枝晶生长,会导致严重的电池容量衰减甚至内部短路。研究碱金属电化学沉积的行为,理清碱金属与电解液副反应的化学过程,对发展高容量锂电池和低成本钠/钾电池具有重要的指导意义。然而,碱金属及固体电解质界面(SEI)因为对水氧和电子束的敏感性而难以表征,无法得到原子尺度的精确分析。我们将深度结合冷冻电镜的制样与成像技术,系统研究电化学沉积碱金属的微观形态和SEI在原子尺度的精细结构,探索调控碱金属沉积行为和SEI结构的有效策略。布鲁克(北京)科技有限公司应用工程师 陈剑峰【个人简介】毕业于长春应用化学研究所,主要研究方向是高分辨电子显微镜在聚烯烃类高分子结晶中的应用,毕业即加入FEI中国,负责扫描电子显微镜的市场和应用等工作,后在安捷伦及赛默飞负责扫描电子显微镜的应用工作,2021年加入布鲁克公司,主要负责EDS,EBSD,Micro-XRF等产品的技术支持工作,对扫描电子显微镜有多年的实操经验和工作经历。报告题目:布鲁克全新一代电制冷能谱仪【摘要】 2022年布鲁克发布全新一代电制冷能谱仪,具有更高的输出计数和最优的结构设计,与WDS,EBSD和Micro-XRF一起高度集成于ESPRIT软件系统,为业界提供了全面的化学成分和组织结构分析解决方案。本次报告我们主要为大家讲解XFlash 7最新的技术和功能模块,以及在几个领域里的突出优势。钢铁研究总院/纳克微束(北京)有限公司应用科学家 卢毓华【个人简介】卢毓华,男,博士。毕业于钢铁研究总院有限公司(原名:钢铁研究总院),硕、博期间在王海舟院士创新工作室进行课题研究,主要研究方向是材料高通量表征方法的研究和应用,博士期间采用高通量场发射扫描电镜建立了跨尺度γ´相的定量统计表征方法,并在GH4096高温合金中进行应用。对扫描电镜等设备具有多年的实操经验和使用经历,目前主要进行高通量电镜的应用开发方面的工作。报告题目:跨尺度高通量定量统计表征方法研究及其在GH4096高温合金中γ´相的表征应用【摘要】 基于材料基因高通量表征的思想,采用高通量场发射扫描电镜,建立了跨尺度γ´相的定量统计表征高通量扫描电镜法,解决了多晶高温合金中一次、二次和三次γ´相的高通量获取、识别和表征问题。首次实现了采用高通量扫描电镜单次实验获得大尺寸高温合金部件的一次、二次和三次γ´相多参量跨尺度的定量统计信息。徕卡显微系统(上海)贸易有限公司高级应用工程师 武素芳【个人简介】武素芳,硕士研究生,毕业于北京航空航天大学。徕卡显微系统(上海)贸易有限公司,材料电镜制样高级应用工程师(Senior Application Specialist),从事电镜应用操作和电镜样品制备工作10年有余,具有丰富的电镜观察和样品制备经验,制备及观察样品种类繁多,对样品制备观察有丰富经验和独特见解。具有丰富的样品制备问题方案解决经验,曾为全国各地区高校、研究所、企业检测、研发中心及生产线产品问题缺陷检测、第三方检测等提供解决方案,培训相关技术及操作人员数千人。报告题目:徕卡电镜制样在材料科学方面的应用与介绍【摘要】 徕卡电镜制样在材料行业提供整套技术路线产品。样品表现出的性能往往不是表层或宏观能看到的,电镜观察是了解微观信息的重要手段,而专业的电镜制样可以将样品制备为符合电镜测试要求的状态,如200纳米以内薄片,无应力平整断面,含水样品的冷冻处理后样品的原位观察等。故好的制样是电镜成功的一半。COXEM库赛姆台式电镜产品应用专家 沈宁【个人简介】沈宁,库赛姆产品应用专家 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责库赛姆台式电镜市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。报告题目:COXEM台式扫描电镜在材料显微表征领域的应用【摘要】 扫描电子显微镜自商业化以来,由于其景深大、分辨率高,有利于观察物体的表面结构,越来越多的科研检测机构或企业将其应用在材料的分析表征。COXEM( 库赛姆)EM系列高分辨率台式( 桌面式)扫描电镜在1~30KV范围内连续可调,采用双聚光镜成像技术,与大型扫描电镜的成像方式一致,使用二次电子探测器作为基础成像单元,从而可以获得更高的分辨率(5nm),图像表面信息更丰富细腻,此外还可配置多种附件,例如EDS、EBSD、STEM、冷台和大面积拼图软件等,是真正意义上的高分辨率综合分析型台式扫描电镜。
  • 单分子蛋白质测序、单细胞代谢组学及体积电镜等上榜2023 年值得关注的七项技术 |《自然》长文
    《自然》选出将在未来一年对科学产生巨大影响的工具和技术。从蛋白质测序到电子显微镜,从考古学到天文学,本文将讲述七项有可能会在未来一年震动科学界的技术。  单分子蛋白质测序  蛋白质组体现了细胞或生物体制造的一整套蛋白质,可以提供关于健康和疾病的深入信息,但对蛋白质组的表征仍然是一项挑战性的工作。  相对于核酸来说,蛋白质是由更多的分子砌块(building blocks)组成的,约有20种天然存在的氨基酸(相比之下,组成DNA和信使RNA等分子的只有4种核苷酸) 因此,蛋白质具有更大的化学多样性。有些蛋白质在细胞中的含量较少 并且与核酸不同,蛋白质不能被扩增 ——这意味着蛋白质分析方法必须使用任何能用的材料。  大多数蛋白质组学分析使用质谱法,这是一种根据蛋白质的质量和电荷来分析蛋白质混合物的技术。这些谱图可以同时量化数千种蛋白质,但检测到的分子并不总能明确识别,并且混合物中的低丰度蛋白质常常被忽视。现在,能对样本中的许多(甚至全部)蛋白质进行测序的单分子技术可能即将问世,其中许多技术类似于用于DNA的技术。  德克萨斯大学奥斯汀分校的生物化学家Edward Marcotte正在研究一种这样的技术,称为荧光测序(fluorosequencing)[1]。Marcotte的技术报道于2018年,该技术基于一种逐步的化学过程,在此过程中,单个氨基酸被荧光标记,然后从表面偶联蛋白的末端逐个被剪切下来,此时摄像机会捕捉到所产生的荧光信号。Marcotte解释道:“我们可以用不同的荧光染料标记蛋白质,然后在切割时逐个分子地观察。”去年,位于康涅狄格州的生物技术公司Quantum Si的研究人员描述了一种荧光测序的替代方法,该方法使用荧光标记的“粘合剂”蛋白来识别蛋白质末端的特定氨基酸(或多肽)序列[2]。  其他研究人员正在开发模仿基于纳米孔的DNA测序技术,根据多肽通过微小通道时引起的电流变化来分析多肽。荷兰代尔夫特理工大学的生物物理学家Cees Dekker及其同事于2021年展示了这样一种方法,他们利用蛋白质制成纳米孔,并能够区分通过纳米孔的多肽中的单个氨基酸[3]。在以色列理工学院,生物医学工程师Amit Meller的团队正在研究由硅基材料制成的固态纳米孔器件,该器件可以同时对许多不同的蛋白质分子进行高通量分析。他说:“你可能可以同时观察数万甚至数百万个纳米孔。”  尽管目前单分子蛋白质测序只是概念上的验证,但其商业化正在迅速推进。例如,Quantum Si公司已宣布计划今年推出第一代仪器,并且Meller指出,2022年11月在代尔夫特举行的蛋白质测序会议上有一个专门针对该领域初创企业的讨论组。他说:“这让我想起了第二代DNA测序技术面世前的那些日子。”  Marcotte是德克萨斯州奥斯汀市蛋白质测序公司Erisyon的联合创始人,他对此持乐观态度。他说:“这已经不是个行不行的问题,而是这项技术几时能送到人们手上。”  詹姆斯韦勃太空望远镜  天文学家们从去年开始就翘首以盼,兴奋不已。经过20多年的精心设计和建造,美国国家航空航天局(NASA)与欧洲航天局和加拿大航天局合作,于2021年12月25日成功将詹姆斯韦布太空望远镜(James Webb Space Telescope,缩写JWST)送入轨道。因为仪器设备需要展开并确定第一轮观测的位置,全世界不得不等待了近七个月,JWST才开始正常工作。  等待是值得的。马里兰州巴尔的摩市太空望远镜科学研究所天文学家、JWST的望远镜科学家Matt Mountain表示,最初传来的图像超出了他的最高预期。“实际上天空并不空旷——到处都是星系,”他说,“理论上我们知道这一点,但真正看到这一景象带来了别样的情感冲击。”  詹姆斯韦布太空望远镜(James Webb Space Telescope)的6.5米主镜片(图中展示了18片镜片中的6片)可以探测数十亿光年外的物体。资料来源:NASA/MSFC/David Higginbotham  JWST的设计是为了接替哈勃太空望远镜的工作。哈勃望远镜可以看到令人惊叹的宇宙景象,但也有盲点:它基本上无法看见在红外范围内具有光信号的古老恒星和星系。要弥补这一点,需要一台高灵敏度的仪器,其灵敏度要能够探测到数十亿光年外发出的极为微弱的红外信号。  JWST的最终设计包括18个完全光滑的铍质镜片阵列,当其完全展开时,直径为6.5米。Mountain说,这些反射镜的设计非常精密,“要是把一块镜面等比放大到美国那么大,上面的隆起也不超过几英寸(高)。”这些反射镜配有最先进的近红外和中红外探测器。  这一设计使JWST能够填补哈勃望远镜的空白,包括捕获来自一个有135亿年历史的星系发出的信号,该星系产生了宇宙中最早的一些氧和氖原子。JWST也带来了一些惊喜,例如,它能够测量某些类型的系外行星的大气组成。  世界各地的研究人员都在排队等待观察时间。英国卡迪夫大学的天体物理学家Mikako Matsuura正在用JWST进行两项研究,调查宇宙尘埃的产生和破坏,这些尘埃可能会导致恒星和行星的形成。Matsuura说,与她所在小组过去使用的望远镜相比,“JWST拥有完全不同的灵敏度和清晰度等级”。她说:“我们看到了这些天体内部正在发生的完全不同的现象——这真令人叹为观止。”  体积电子显微镜  电子显微镜(Electron microscopy,EM)以其卓越的分辨率而闻名,但观察的主要是样本的表面。深入研究样本的内部需要将样本切成非常薄的切片,这对于生物学家来说往往不够。伦敦弗朗西斯克里克研究所(Francis Crick Institute)的电子显微镜学家Lucy Collinson解释说,仅覆盖单个细胞的体积就需要200个切片。她说:“如果你只有一个[切片],你就是在玩统计把戏。”  现在,研究人员正在将EM的分辨率应用于包含多个立方毫米体积的3D组织样本上。  此前,从2D的EM图像重建这样体积的样本(例如,绘制大脑的神经连接图)需要经历艰苦的样本准备、成像和计算过程,才能将这些图像转换为多图像堆叠。现在,最新的“体积电子显微镜”技术大大简化了这一过程。  这些技术有各种优点和局限性。连续切面成像(Serial block-face imaging)是一种相对快速的方法,它使用金刚石刀片在树脂包埋样品上切下一系列薄片,并进行成像,可以处理约1立方毫米大小的样品。然而,它的深度分辨率较差,这意味着生成的体积重建将相对模糊。聚焦离子束扫描电子显微镜(Focused ion beam scanning electron microscopy,FIB-SEM)能制备更薄的薄片样品,因此深度分辨率更高,但更适用于体积较小的样品。  Collinson将体积电子显微镜的兴起描述为一场“安静的革命”,因为研究人员专注于用这种方法得到的结果,而不是生成这些结果的技术。但这正在改变。例如,2021年,弗吉尼亚州珍利亚研究园区(Janelia Research Campus)从事电子显微镜中细胞器分割(Cell Organelle Segmentation in Electron Microscopy,COSEM)计划的研究人员在《自然》上发表了两篇论文,聚焦了在绘制细胞内部结构方面取得的重大进展[4,5]。“这是一个绝佳的原理论证。”Collinson说。  COSEM研究计划使用精密的定制FIB-SEM显微镜,在保持良好空间分辨率的同时,可将单个实验中可成像的体积增加约200倍。将这些仪器与深度学习算法结合使用,该团队能够在各种细胞类型的完整3D体积中定义各种细胞器和其他亚细胞结构。  这种样品制备方法费力且难以掌握,并且由此产生的数据集非常庞大。但这一努力是值得的:Collinson已经看到了该技术在传染病研究和癌症生物学方面产生的见解。她现在正在与同事们合作,探索以高分辨率重建整个小鼠大脑的可行性。她预计这项工作将需要十多年的时间,花费数十亿美元,并产生5亿GB左右的数据。她说:“这可能与绘制第一个人类基因组工作的数据量在一个数量级。”  CRISPR无限可能  基因组编辑工具CRISPR–Cas9作为在整个基因组的目标位点引入特定变化的首选方法,在基因治疗、疾病建模和其他研究领域取得了突破,无可非议地享有盛誉。但它的用途多受限制。现在,研究人员正在寻找规避这些限制的方法。  CRISPR编辑由短链向导RNA(short guide RNA,sgRNA)协调,sgRNA将相关的Cas核酸酶导向其目标基因组序列。但这种酶发挥作用还需要在靶点附近有一种叫做原间隔序列邻近基序(protospacer adjacent motif,PAM)的序列 如果没有PAM,基因编辑很可能会失败。  在波士顿的马萨诸塞州总医院,基因组工程师Benjamin Kleinstover利用蛋白质工程技术,从化脓性链球菌中制造出常用Cas9酶的“近乎不受PAM序列限制的(near-PAMless)”Cas变体。一个Cas变体需要由三个连续核苷酸碱基组成的PAM,其中腺嘌呤(A)或鸟嘌呤(G)核苷酸位于中间位置[6]。“这些酶现在几乎可以读取整个基因组,而传统的CRISPR酶只读取1%到10%的基因组。”Kleinstover说。  这种对PAM序列不太严格的要求,增加了编辑“脱靶”的机会,但进一步的蛋白质工程设计可以提高其特异性。作为一种替代方法,Kleinstiver的团队正在设计和测试大量Cas9变体,每个变体对不同的PAM序列表现出高度的特异性。  还有许多天然存在的Cas变体有待发现。自然条件下,CRISPR–Cas9系统是一种针对病毒感染的细菌防御机制,不同的微生物进化出了具有不同PAM序列偏好的各种酶。意大利特伦托大学的病毒学家Anna Cereseto和微生物组研究人员Nicola Segata梳理了100多万个微生物基因组,鉴定和表征了一组多样的Cas9变体,他们估计这些变体可能总共可以针对98%以上的已知人类致病突变[7]。  然而,其中只有少数能在哺乳动物细胞中发挥作用。Cereseto说:“我们的想法是测试许多种酶,看看是什么决定因素使这些酶正常工作。”从这些天然酶库和高通量蛋白质工程工作中获得的见解来看,Kleinstiver说,“我认为我们最终会有一个相当完整的编辑工具箱,能让我们编辑任何我们想要的碱基。”  高精度放射性碳测年  去年,考古学家利用放射性碳测年技术的进步,对维京探险家首次抵达美洲的确切年份——甚至是季节——进行了研究。荷兰格罗宁根大学的同位素分析专家Michael Dee和他的博士后Margot Kuitems带领的一个团队在加拿大纽芬兰岛北岸的一个聚落中发现了一些被砍伐的木材,通过对这些木材的研究,确定这棵树很可能在1021年被砍伐,而且可能是在春天[8]。  自20世纪40年代以来,科学家一直在利用有机人工制品的放射性碳测年法来缩小历史事件发生的时间范围。他们通过测量同位素碳-14的痕迹来做到这一点,碳-14是宇宙射线与地球大气相互作用的结果,在数千年中缓慢衰变。但这种技术的精确度通常仅为几十年左右。  加拿大纽芬兰省兰塞奥兹牧草地(L'Anse aux Meadows)木材的精确放射性碳年代测定显示,维京人于1021年在此地砍倒了一棵树。图片来源:All Canada Photos/Alamy  2012年,情况发生了变化,日本名古屋大学物理学家三宅芙沙(Fusa Miyake)领导的研究小组发现[9],公元774到775年之间,日本雪松年轮中碳-14含量显著升高。随后的研究[10]不仅证实了这一时期世界各地的木材样本中都存在这种碳-14含量的显著升高,而且还发现历史上存在至少五次这样的碳-14含量上升,最早的一次可以追溯到公元前7176年。有研究人员将这些碳-14峰值与太阳风暴活动联系起来,但这一假设仍在探索中。  无论其原因是什么,这些“三宅事件”的存在,能让研究人员通过检测一个特定的三宅事件,然后对此后形成的年轮进行计数,从而准确地确定木制文物的制造年份。Kuitems说,研究人员甚至可以根据最外圈年轮的厚度来确定树木被砍伐的季节。  考古学家现在正在将这种方法应用于新石器时代聚落和火山爆发遗址的研究,Dee希望用它来研究中美洲的玛雅帝国。在接下来的十年左右,Dee乐观地认为,“我们将对这些古老文明中的许多历史事件有真正精确到年代的完全记录,我们将能够以相当精细的时间尺度谈论这些历史发展。”  至于三宅,则还在继续寻找历史中的时间标尺。她说:“我们现在正在寻找过去一万年中与公元774到775年的事件相当的其他碳-14升高。”  单细胞代谢组学  代谢组学是研究驱动细胞的脂质、碳水化合物和其他小分子的科学,它最初是一套表征细胞或组织中代谢产物的方法,但现在正在转向单细胞水平。科学家们可以利用这些细胞水平的数据,理清大量看似相同的细胞的功能复杂性。但这一转变带来了艰巨的挑战。  代谢组包含大量具有不同化学性质的分子。欧洲分子生物学实验室的代谢组学研究人员Theodore Alexandrov说,其中一些分子存在的时间非常短暂,代谢周转率为亚秒级别。它们可能很难检测:尽管单细胞RNA测序可以捕获细胞或生物体中产生的近一半的RNA分子(转录组),但大多数代谢分析仅涵盖细胞代谢产物的一小部分。这些缺失的信息里可能包含了重要的生物学奥秘。  “代谢组实际上是细胞的活性部分。”伊利诺伊大学厄巴纳-香槟分校的分析化学家Jonathan Sweedler说,“在疾病状态下,如果你想知道细胞状态,你真的要研究代谢产物。”  许多代谢组学实验室使用分离的细胞,这些细胞被捕获在毛细管中,使用质谱法单独分析。相比之下,“成像质谱”方法获取了样本中不同位置的细胞代谢产物发生变化的空间信息。例如,研究人员可以使用一种称为基质辅助激光解吸/电离(MALDI)的技术,其中激光束扫过经特殊处理的组织切片,释放出代谢产物,用于随后的质谱分析。这种方法也能捕获样本中代谢物来源的空间坐标。  Sweedler说,理论上,这两种方法都可以量化数千个细胞中的数百种化合物,但要实现这一目标通常需要顶级的定制硬件设备,成本在百万美元左右。  现在,研究人员正在普及这项技术。2021年,Alexandrov团队报道了SpaceM,这是一种开源软件工具,它能用光学显微镜成像数据,使用标准商用质谱仪对培养的细胞进行空间代谢组学分析[11]。他说:“我们算是做了数据分析部分的体力活。”  Alexandrov的团队使用SpaceM对数以万计人和小鼠细胞中的数百种代谢产物进行了分析,并转向标准的单细胞转录组学方法将这些细胞分类。Alexandrov表示,他尤为热情的是后一项工作,以及构建“代谢组学图谱”的想法——类似于为转录组学开发的图谱,以加速该领域的进展。他说:“这绝对是一个前沿领域,并将对科学起到巨大的推动作用。”  体外胚胎模型  研究人员现在可以在实验室中制造出人工合成胚胎(下图),它与8天大的自然胚胎(上图)类似。来源:Magdalena Zernicka Goetz实验室  科学家们已经在小鼠和人类的细胞水平上详细描绘了从受精卵到完全形成的胚胎这一过程。但驱动这一过程早期阶段的分子机制仍不清楚。现在,“胚状体”模型的一系列活动有助于填补这些知识空白,让研究人员更清楚地了解可以决定胎儿发育成败的重要早期事件。  该领域一些最精细的模型,来自加州理工学院和英国剑桥大学的发育生物学家Magdalena Zernicka Goetz的实验室。2022年,她和她的团队证明,他们可以完全从胚胎干细胞(embryonic stem cells,ES细胞)中产生植入期的小鼠胚胎[12,13]。  与所有多能干细胞一样,ES细胞可以形成任何细胞或组织类型,但它们需要与两种类型的胚外细胞密切相互作用才能完成正常的胚胎发育。Zernicka-Goetz团队研究出了诱导ES细胞形成这些胚外细胞的方法,并表明这些细胞可以与ES细胞共培养,以产生胚胎模型,该模型的成熟度是以前的体外实验无法达到的。“它就如你能想象的胚胎模型那样。”Zernicka Goetz说,“我们的胚胎模型发育出一个头部和心脏——而且还在跳动。”她的团队能够利用这个模型来揭示个别基因的改变如何破坏正常的胚胎发育。  经过工程设计用于模拟胚胎8细胞期的细胞构成的胚状体。来源:M.A Mazid et al./Nature  在中国科学院广州生物医药与健康研究院,干细胞生物学家Miguel Esteban和同事们正在采取一种不同的策略:重新编程人类干细胞,以模拟最早的发育阶段。  Esteban说:“我们最初的想法是,实际上甚至制造合子也是可能的。”该团队没能完全实现这一点,但他们的确发现了一种培养策略,能使这些干细胞回到类似于8细胞期人类胚胎的状态[14]。这是一个至关重要的发育期里程碑,与基因表达的巨大变化相关,最终产生不同的胚胎细胞和胚外细胞谱系。  尽管还不完美,但Esteban的模型展示了自然状态下8细胞期胚胎中细胞的关键特征,并凸显了人类和小鼠胚胎如何启动向8细胞期阶段转变之间的重要差异。Esteban说:“我们发现,一种甚至在小鼠体内都没有表达的转录因子,调节着整个转化过程。”  结合起来,这些模型可以帮助研究人员描绘出仅仅几个细胞是如何发育为高度复杂的脊椎动物躯体的。  在许多国家,对人类胚胎的研究只能在发育14天以内进行,但在这些限制条件下,研究人员仍有许多工作可做。Esteban说,非人类灵长类动物模型提供了一种可能的替代方案,而Zernicka-Goetz说,她的小鼠胚胎策略也可以产生发育到第12天的人类胚胎。她说:“在这个我们能研究的胚胎阶段,仍有很多问题有待提出。”  参考文献:  1. Swaminathan, J. et al. Nature Biotechnol.36, 1076–1082 (2018).  2. Reed, B. D. et al. Science 378, 186–192 (2022).  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).  4. Heinrich, L. et al. Nature 599, 141–146 (2021).  5. Xu, C. S. et al. Nature 599, 147–151 (2021).  6. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. et al. Science 368, 290–296 (2020).  7. Ciciani, M. et al. Nature Commun. 13, 6474 (2022).  8. Kuitems, M. et al. Nature 601, 388–391 (2022).  9. Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. Nature 486, 240–242 (2012).  10. Brehm, N. et al. Nature Commun. 13, 1196 (2022).  11. Rappez, L. et al. Nature Methods 18, 799–805 (2021).  12. Amadei, G. et al. Nature 610, 143–153 (2022).  13. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458 (2022).  14. Mazid, M. A. et al. Nature 605, 315–324 (2022).  原文以Seven technologies to watch in 2023为标题发表在2023年1月23日《自然》的技术特写版块上
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制