当前位置: 仪器信息网 > 行业主题 > >

数显控制仪

仪器信息网数显控制仪专题为您提供2024年最新数显控制仪价格报价、厂家品牌的相关信息, 包括数显控制仪参数、型号等,不管是国产,还是进口品牌的数显控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显控制仪相关的耗材配件、试剂标物,还有数显控制仪相关的最新资讯、资料,以及数显控制仪相关的解决方案。

数显控制仪相关的论坛

  • 数显温控仪的输出控制方式

    大家好:请问在没有说明书的情况下,如何辨别数显温度表的输出方式?位式控制和时间比例控制的输出现象有什么不同?

  • 【分享】SWK-B型可控硅数显温度控制器

    SWK-B型可控硅数显温度控制器 该控制器可与箱形高温电阻炉(马弗炉),双管定硫炉、灰熔点测定炉或其它电热设备配合,实现对炉内温度自动控制,以适应不同的试验对升温速度及控制温度的不同要求。 ◆SWK-B型控制器采用数字显示指示温度,炉温显示清晰准确。 ◆使用双向可控硅输出控制,切换无触电,具有寿命长、无噪声等优点。 ◆具有PID调节功能,能有效克服炉温过冲的现象,使得温度控制更准确。 ◆输出电压0~220V连续可调,可适应不同的升温速度要求。 ◆电源:AC 220V±10% ,50HZ ◆全导通输出电压可调 ◆最大允许负载5KW 使用说明书(节选)一、概述SWK-B型数显温度控制器用于配合箱形高温电阻炉、定硫炉及其它电加热设备,实现对炉内温度的自动控制,以适应不同的试验项目对升温速度和温度的不同要求。其主要特点有:1. 温度设定与测量采用数字显示,直观准确 2. 采用双向可控硅控制输出,切换无触点,具有使用寿命长,无噪音等优点。3. 具有PID调节功能,能有效克服炉温过冲现象,使温度控制更准确。4. 输出电压无级调节,可适应不同的升温速度要求。二、主要参数1. 输入电压:220V±10%,50HZ2. 输出电压:0~220V连续可调3. 最大允许负载:5KW4. 精度等级:0.5级5. 配用电偶:镍铬-镍硅,K值,0~1000℃6. 工作环境:0~40℃,相对湿度≯85%三、使用方法1. 使用前应首先检查控制器的内部接线是否脱落,如有松动应按原理图接好,可控硅管壳与散热器应接触良好,保证元件工作是散热正常。2. 控制器不应放置在具有剧烈震动的场合,控制器内部应保持清洁。3. 按电控器上所标输入(220V),输出位置,将电源与负载接好。4. 控制原理图见下图5. 打开电源开关键,工作指示灯亮,表示电源已接通。6. 顺时针转动电压调节选钮,使电压表指示到合适强度(220v),拨动”数显调节仪”右下方开关到设定(OFF)后, 顺时针转动开关上面的调节选钮,使温度显示到需要设定值;设定后,开关拨到测量(ON),绿灯亮开始工作,温度达到设定值后红灯亮,停止工作。四、常见故障及产生原因:......

  • 气相色谱仪机械控制系统简述

    气相色谱仪机械控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]随着色谱分析应用要求的日益提高,并且伴随着现代机械[/font][font=Times New Roman]-[/font][font=宋体]电子技术的发展,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url])色谱仪逐渐成为复杂的机械[/font][font=Times New Roman]-[/font][font=宋体]光学[/font][font=Times New Roman]-[/font][font=宋体]电子[/font][font=Times New Roman]-[/font][font=宋体]化学分析系统。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])系统中安装的自动进样器单元(包括液体自动进样器、自动阀进样器、顶空进样器、热解析进样器、吹扫捕集进样器、热裂解进样器等)、自动阀切换单元、风扇和柱温箱后开门部分在仪器运行工作中都需要进行精确地机械控制,这些单元需要精确控制的物理量有机械位置、机械位移、旋转角度、速度和加速度等。本文对机械控制系统的基本原理和方法给予简单叙述,希望对色谱工作者和色谱维修工作者的日常工作给予一定帮助。[/font][/font][align=center][font=宋体][font=宋体]简述[/font] [font=宋体]开环和闭环控制[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])分析系统中存在较多机械运动部件,系统需要根据分析方法的要求,在合适的时间和状态下对运动部件进行合适的控制,例如部件的空间位置和位移、部件的运行速度和角度以及部件运行的加速度。[/font][font=宋体][font=宋体]常见情况下,部件的基本控制方式分开环控制和闭环控制两种,图[/font][font=Times New Roman]1[/font][font=宋体]为开环控制的基本原理框图,控制系统由控制器、执行器(一般为电机或气缸)、传动机构和目标部件组成。信号由输入端向输出端单向传递,没有信号反馈形成闭环的回路,此种控制方式的特点为,输出量不会对输入量产生任何影响。[/font][/font][font=宋体]开环控制方式结构较为简单、调节方便、故障率低,控制器直接给出系统输入量,对系统中可能产生的干扰或者系统中参数变化均不给出补偿,在精度要求不高或者扰动影响较小的场合下较为适用。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱后开门角度的控制、柱温箱或其他部件风扇运转速度的控制或者色谱柱切换阀旋转控制,一般采用开环控制方式。[/font][font=宋体]开环控制方式的缺陷较为明显,当系统出现故障时,目标部件不能完成控制目标,单系统不能识别此故障。例如在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱后开门控制系统中,当执行器(电机)不能运转致使柱箱后开门不能开启,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱温度将会产生降温速度异常降低的故障,但系统并不会给出硬件报警信息。[/font][img=,483,40]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115130118_3723_1604036_3.jpg!w690x57.jpg[/img][font=Calibri] [/font][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]开环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]2[/font][font=宋体]为闭环控制系统原理框图,与开环系统相比,该系统增加了传感器测量回路,使闭环控制系统有较高的精度,但结构更为复杂,系统的分析与设计相应较为困难。[/font][/font][font=宋体]闭环控制的工作原理是基于偏差的控制,在系统工作过程中,系统将传感器反馈的目标部件的实际位置传递给比较器,控制系统将反馈量与设定量进行比较,如果发生正向偏差,系统将向执行器(电机)给出命令,使其旋转或者降低速度,最终减小偏差。[/font][img=,503,114]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115216501_132_1604036_3.jpg!w690x157.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]闭环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的温度、流量、进样器位置、角度、速度的控制一般采用闭环控制方式,用以实现高稳定性、高速、高准确性的控制。例如某些型号的自动进样器,可以对进样针的空间位置实现[/font][font=Times New Roman]0.01mm[/font][font=宋体]精度的控制。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 如何认识质量控制的特殊意义?

    [font=宋体][color=#222222]检测行业在经济社会发展、产品质量保证、健康安全和环境保护等领域扮演着中立性和公信力的角色,工作的主过程就是将客户的样品经过检验检测形成数据结果,再以报告的形式提供给客户的过程。但要保证数据结果的质量,需要管理活动保证作用和支持服务的支撑作用。按照通常的理解,机构的质量负责人应对数据结果的质量负责,其实,这是一个误区。[/color][/font][font=&][color=#222222][/color][/font][font=宋体][color=#222222]对数据结果质量负责,可以说包括最高管理者、技术负责人、实施实验室活动的所有人员都有责任。管理体系建立的目的,就是对影响结果有效性的所有要素进行分解,并采取适当的方法予以控制,以保证数据结果的质量,所有人员从不同过程参与其中,所以,每个人对结果有效性都负有责任。[/color][/font][font=&][color=#222222][/color][/font][font=宋体][color=#222222]因为操作人员处于质量控制的最佳位置,可以对操作的全过程实施控制,而质量控制只是对一些关键因素进行控制,不可能对所有活动进行全程监控,所以,操作人员必然是质量控制的第一责任人。质量负责人只是质量管理的组织者、策划者,不能将质量的重担全部交给质量负责人去实现。 [/color][/font][font=&][color=#222222][/color][/font][font=宋体][color=#222222]但质量控制有其特殊的意义。[/color][/font][font=&][color=#222222][/color][/font][font=宋体][color=#222222]进一步讲,我们应该能够认识到,检验检测数据结果的质量具有累积效应,每一个环节出现的质量问题如果不加以控制,会一直反映到最终的数据结果上,即使后续工作质量控制的再好也无法弥补,总体数据结果的质量取决于检验检测过程中质量控制最薄弱的环节(木桶理论)。比如,抽取的样品不具有代表性,后面所有工作的质量再好都没有意义;如果对样品流转过程控制不严,样品受到了污染,还会得出相反的结论。[/color][/font][font=&][color=#222222][/color][/font][font=宋体][color=#222222]质量控制的特殊意义,就是通过收集分析质量控制活动产生的大量数据,可以找到整个流程中质量的薄弱环节,对其实施改进,从而从整体上提升数据结果的质量。[/color][/font][font=&][color=#222222][/color][/font][font=宋体][color=#222222]质量负责人应策划适合本实验室的质量控制方案,应尽可能覆盖到对结果有效性有影响的所有要素,包括考虑人员技术能力,设备稳定性、使用情况,方法的稳定性和复杂性,再根据质量控制方案,制定具体的质量控制计划,通过实施质控计划,达到监控结果有效性的目的。[/color][/font]

  • 实验室内部环境和风险评估控制

    实验室要规范风险管理工作,就必须建立健全实验室内部风险控制体系。那么,如何来建立,怎么建立?要解决上述问题,需从以下几个方面着手。1.实验室内部环境内部环境是实验室整个内部控制的基础,是实验室有效实施风险管理与内部控制的保障,直接影响着实验室风险管理及内部控制的贯彻执行、实验室发展目标及整体战略目标的实现,内部环境主要包括组织架构、发展战略、人力资源、社会责任、文化以及法律事务管理等方面。2.风险评估风险评估是对实验室风险管理组织机构、风险识别、风险评估、风险应对等提出要求。依据这些要求,结合评估规则对实验室可能风险进行评估。实验室应考虑为满足持续运营和发展需要,考虑各利益相关方的利益诉求,设定业务和管理目标并作适当分解;要求按照风险结构及分类进行排查、辨识风险;要求开展评估分析工作,对风险进行排序,选择重点和优先控制的风险;要求选择风险应对策略,制定风险应对措施。3.控制活动控制活动是指实验室根据风险评估结果,采用相应的控制措施,将风险控制在可承受范围之内。实验室结合各类业务流程的分类,规定主要业务应遵循的内部控制要求。遵循实验室内部控制基本规范及要求,结合实验室主要业务活动及流程分类,对主要业务活动及流程进行描述,针对业务流程关键环节,提出内部控制标准和要求,引导各科室各岗位规范有序开展业务活动,使业务活动符合内部控制要求,合理控制风险。

  • 气相色谱仪温度控制系统简述

    气相色谱仪温度控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]温度控制的准确和可靠,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的可靠性而言至关重要。尤其是环境分析、生命科学、食品安全、石化分析、电子工业等样品较为复杂、分析方法较为复杂或者分析要求较高的领域,样品分析保留时间重现性的要求较高,对色谱系统温度的要求也比较高。本文简述色谱温度控制系统的基本原理和参与温度控制的主要元器件。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]随着社会科技进步,分析工作者面临着日益增多的分析要求较高的工作,例如食品安全、环境分析、石化分析等方面存在较多复杂样品,一般对组分保留时间的重复性有较高的要求,这就要求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]有更好的温度控制系统。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统属于典型的反馈控制系统,控制装置对目标部件的温度施加的控制作用,是取自目标部件温度的反馈信息,用来不断修正设定温度与实际温度之间的偏差,从而实现目标部件的控制任务,温度系统的结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,503,129]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836001297_3118_1604036_3.jpg!w690x176.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]温度控制系统框图[/font][/font][/align][font=宋体][font=宋体]以[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱为例对控制系统的工作过程予以说明,在分析工作过程中,如果柱温箱的实际温度发生异常扰动,温度传感器将测定温度值反馈给比较点,温度控制系统将设置温度与测定温度的偏差[/font][font=Times New Roman]e[/font][font=宋体]发送给温度控制器,温度控制器向执行器发出对应的指令——调节加热功率和冷却部件,执行器接受指令使柱温箱温度恢复为设定值。[/font][/font][align=center][font=宋体]温度控制系统元器件组成[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制元器件组成如图[/font][font=Times New Roman]2[/font][font=宋体]所示,被控部件(柱温箱、进样口、检测器或者其他部件)内安装的温度传感器测定其实际温度传送给控制器,控制器调节执行器(包括加热器和冷却器)的工作,使加热器释放的热量与被控部件耗散热量(包括部件自身耗散热量和冷却器消耗热量)达到平衡,被控部件的温度即可达到稳定状态。[/font][/font][align=center][img=,323,158]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836089450_6453_1604036_3.jpg!w690x338.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]温度控制系统元件示意图[/font][/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]温度传感器[/font][/font][font=宋体]常用的温度传感器为铂电阻、热敏电阻和热电偶。温度传感器可以及时准确的测定被控部件的温度反馈给控制器。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]执行器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]通常使用加热器、柱箱风扇、冷却组件、冷却风扇、液氮或液体二氧化碳控制器作为温度执行器。[/font][font=宋体]加热器一般选用加热丝、加热棒等电阻式加热器为进样口、色谱柱、检测器或者其他部件提供加热源,以升高各部件温度。[/font][font=宋体]柱箱一般采用流动空气浴方式加热,柱箱风扇可以使柱箱内温度分布更加均匀,并加快柱箱升温降温速度。[/font][font=宋体]柱箱冷却组件包括柱箱后开门、后开门控制电机、风道、辅助降温风扇以及液氮、液体二氧化碳等部件,以降低柱温箱温度。[/font][font=宋体]某些特殊场合下,某些形式的进样口带有冷却风扇、液氮、液体二氧化碳部件降低进样口温度。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]控制器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制器通常情况下由晶闸管之类的电器元件和控制线路组成。色谱系统工作时,由控制器协调加热器和冷却器工作,以获得稳定温度。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]其他部件[/font][/font][font=宋体]保护器(温度熔断器、热电偶或温度开关),当温度控制出现严重故障时,迅速切换系统加热。[/font][align=center][font=宋体]温度控制系统的需要注意的问题[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]控制系统的时间常数[/font][/font][font=宋体]温度控制系统稳定工作需要传感器与执行器之间的响应时间配合良好,否则将会出现温度震荡的现象。色谱柱温箱要求控制系统响应速度较快,以满足高精度、高速度温度控制要求。一般需要选择响应速度快的薄膜铂电阻符合高速度的控制器工作要求。而检测器、进样口或者其他金属基体的部件,一般需要系统响应时间不要过快。[/font][font=宋体]以进样口为例,常见的进样口使用金属块作为基体,当温度传感器测量到进样口温度低于设定值,控制器发出指令使加热器提高加热功率提高进样口温度。但是进样口温度升高到设定值并不能瞬间完成,即进样口接收到加热指令直至温度上升到设定值之间需要一定的时间差异,如果系统控制时间常数过短,在此期间控制器仍旧发出加热指令,那么进样口温度就会较多超出设定值,降温过程也同样会存在此问题。色谱工作者就会观察到加样口温度在设定值附近发生震荡。[/font][font=宋体]进样口一般使用装配式铂电阻,感知温度也存在一定延迟,与金属块升温延迟都是进样口温度时间常数的重要组成部分,温控系统必须设定有良好的控制信号时间延迟。[/font][font=宋体]也就是说,对于进样口此类的加热惯性较大的部件,当温度控制系统检测到进样口温度发生偏差时,并非迅速给出加热或降温指令,而是首先延迟一段时间,然后再进行调节。[/font][font=宋体]柱温箱系统的加热惯性较小,温控系统需要较短的时间常数。[/font][font=宋体]温度控制不稳定,从而干扰色谱图基线和待测组分的保留时间,比较典型的结果是正弦波状态的基线。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]故障和保护[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度系统的基本原理和常用元器件功能。[/font]

  • 【讨论】能谱仪是如何控制电子束的

    在进行EDS分析中,可以在SEM图上进行选区分析,能谱仪是如何控制电子束进行选区分析的呀。选一个点进行分析时,是否电子束就是打在那个点上,而选一个区域进行分析时,电子束是否要进行扫描呀。菜菜问题!

  • 超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    超高精度PID控制器的特殊功能(2)——远程控制软件及其安装使用

    [b][color=#000099]摘要:远程控制软件是高级PID调节器随机配备的一种计算机软件,可在计算机上远程进行调节器的所有操作,并还具有过程曲线显示和存储功能。本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些最基本的重要操作和参数设置。[/color][/b][align=center][img=PID控制器远程控制软件及其安装使用,550,349]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202138407464_1087_3221506_3.jpg!w690x439.jpg[/img][/align][size=18px][color=#000099][b]1. PID控制器远程控制软件简介[/b][/color][/size] PID控制器在众多控制领域有着十分广泛的应用,但绝大多数控制器并未随机配备相应的远程控制软件,有些控制器也仅配置的简单的显示软件,这使得控制器的操作,特别是在调试阶段,还基本都是使用人员通过按键方式进行手动操作。目前只有比较高端的PID调节器会配备随机控制软件,这些控制软件的使用会带来以下优势: (1)一般PID控制器整体都十分小巧,如最大的标准面板尺寸为96mm×96mm,且大多采用面板式安装形式以便于人工操作和过程数据显示。由于要在如此小的面板上集成更多的数据、功能甚至曲线或图形,绝大多数PID控制器只给人工操作配置了3~4个操作按键,由此造成操作过程十分不友好。如对于功能强大的PID控制器,其按键操作过程往往是复杂的菜单式树状结构,由此造成在使用过程中,特别是在调试和更改控制参数时,操作人员需要仔细阅读使用说明,并对照说明书进行繁复的按键操作,还需经过多次重复操作才能熟练。如果隔段时间不用,还需重新上述学习步骤才能进行正常操作。采用远程控制软件则完全解决了操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作。另外,图形化的控制软件具有更友好的人机界面。 (2)PID控制器随机配套软件由于具有图形化人机界面,可使得操作人员更直观的熟悉和了解控制器的各种功能,可快速完成PID控制器的各种设置并投入使用,这在调试使用阶段十分有效。特别是对于还需要上位机与PID控制器进行通讯并与其他仪表一并集成后进行总体控制编程的开发人员而言,通过配套软件进行先期PID控制器调试运行后,可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,更有利于后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间。 (3)PID控制器随机配套软件除了具备所有设置功能之外,更是具有强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。曲线显示坐标可以根据需要进行改变,由此可观察各种曲线局部或整体的变化细节。 为了展示PID控制器随机软件的强大功能,本文主要针对VPC 2021系列超高精度PID控制器,介绍了随机配备的控制软件的安装和一些基本操作,本文同时也可做为软件使用说明书。[align=left][b][size=18px][color=#000099]2. 安装条件[/color][/size][/b][/align] 操作系统要求:WINDOWS 7或WINDOWS 10。 软件运行环境:需要安装MICROSOFT OFFICE(ACCESS)软件和VB6MINI软件,其中随机软件中带有可直接安装和运行的VB6MINI软件。 其他要求:计算机中不能用WPS,暂停360杀毒、360安全卫士等其他安全软件。[b][size=18px][color=#000099]3. 软件安装和计算机通讯接口设置[/color][/size][color=#000099]3.1 软件安装[/color][/b] 在VPC 2021系列真空压力和温度控制器系列中,配备了两个计算机软件,一个用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一个用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在VPC 2021系列真空压力和温度控制器系列中,配备了两套计算机软件,一套用于单通道程序控制器VPC 2021-1,对应的压缩文件名为“VPC 2021-1控制器软件.rar”;另一套用于双通道单点控制器VPC 2021-2,对应的压缩文件名为“VPC 2021-2控制器软件.rar”。 在上述相应压缩文件解压后,将解压后的JETR文件夹及其内容拷贝到C盘根目录下即可,在C:\JETR文件夹内的文件清单如图1所示。控制器软件分别为 vpc 2021-1 controller.exe 和 vpc 2021-2 controller.exe 可执行文件。[align=center][b][color=#000099][img=01.控制器软件文件夹内容,600,229]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202144285143_5595_3221506_3.jpg!w642x246.jpg[/img]图1 控制器软件文件夹内容[/color][/b][/align][b][color=#000099]3.2 串口通讯线连接和串口通讯参数设置[/color][/b] 在软件使用之前,需要先在计算机上插入USB转485串口通讯线,并将此通讯线另外一端的的两根引线分别接入控制器的11和12号通讯接线端子,其中12接T/R+,11接T/R-。 当计算机上插入串口通讯线后,在计算机“设备管理器”界面上能看到相应的串口通讯功能和端口编号显示,如图2所示。鼠标双击图1中所示的USB串口端口,进入此串口的参数设置界面,如图3所示。[align=center][b][color=#000099][img=02.485串口通讯,500,342]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202145480183_3300_3221506_3.jpg!w584x400.jpg[/img]图2 USB串口通讯端口[/color][/b][/align][align=center][b][color=#000099][img=03.串口通讯参数设置,462,376]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202146196471_3404_3221506_3.jpg!w462x376.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图3 串口通讯参数设置[/color][/b][/align] 在控制器软件中,默认的串口通讯参数是端口1,其他默认参数如图2中所示,参数设置的原则是要使计算机和软件的通讯参数设置为完全相同,如果要修改计算机的串口通讯参数,如提高波特率以加快传输速度,控制器软件也要进行相应修改。[b][size=18px][color=#000099]4. 软件的主界面[/color][/size][/b] 在控制器软件运行后,出现的软件主界面如图4所示。软件主界面有几个功能区域组成,下面将分别对常用的几个功能区域进行介绍。[align=center][b][color=#000099][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202156131241_560_3221506_3.jpg!w690x425.jpg[/img]图4 VPC 2021-1单通道程序控制器的软件主界面[/color][/b][/align][b][size=18px][color=#000099]5. 通讯端口参数设置[/color][/size][/b] 软件主界面中,进行通讯参数设置的“(一)通讯端口参数设置区域”如图5所示。[align=center][img=05.通讯端口参数设置区域,690,37]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147187832_3612_3221506_3.jpg!w690x37.jpg[/img][/align][align=center][b][color=#000099]图5 通讯端口参数设置区域图[/color][/b][/align] 在软件运行后,首先要在进行通讯端口参数设置,以在控制软件和控制器之间建立通讯以传输数据。首先要根据计算机插入RS485通讯线后形成的通讯端口编号,进行图5中通讯端口选择,可通过键盘数字输入或下拉菜单中的数字选择来设定相应的端口编号。 VPC 2021系列控制器的默认模块地址都为“1”,除非用软件进行多个不同地址的并联控制器的控制操作,则需要同时修改控制器和软件的模块地址。 VPC 2021系列控制器和软件中的“波特率”默认值为9600,若需要选择其他通讯速度,则需要更改控制器、计算机通讯接口和软件的波特率,使它们三者始终保持一致。 VPC 2021系列控制器和软件中的“校验方式”默认值为“偶校验”,同样,若需要选择其他校验方式,则需要更改控制器、计算机通讯接口和软件的校验方式,使三者始终保持一致。 当上述通讯端口参数设置完成后,可分别点击区域右边的“打开”或“关闭”名录按钮,从而在计算机软件和控制器之间建立通讯和断开通讯。[b][size=18px][color=#000099]6. 控制器的软件控制操作[/color][/size][/b] VPC 2021系列控制器的一些常用调试和操作,都可以在软件的第二个功能区域“(二)控制操作区域”内进行,第二功能区域如图6所示。[align=center][b][color=#000099][img=06.控制操作区域,690,44]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202147376474_9076_3221506_3.jpg!w690x44.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图6 软件的控制操作区域[/color][/b][/align] 在完成图5所示的通讯参数设置,并点击“打开”命令按钮激活通讯后,有以下两个特征: (1)COM 灯会由黄色背景变为绿色或红色背景,接收数据时背景为绿色并显示RXD字符,发送数据时背景为为红色并显示TXD字符。 (2)控制器内的当前参数(如PV、SV、OP值,手动/自动状态等)都会自动在图6中的相应数字框内显示。如果数字框内的显示数字与控制器面板上的显示数字不同,则表示出现了错误。 通过图6所示的控制操作区域内的数字框和命令按钮,可进行以下内容的操作: (1)用鼠标点击“手动/自动”命令框,可使得控制器在手动和自动之间进行切换,并在“手动/自动”命令框左边的兰色数字框内显示相应状态“手动”或“自动”的字符。当设置为“手动”状态时,PID控制器上的状态指示灯变为红色背景并显示M字符,表示控制器的当前状态为手动状态。当设置为“自动”状态时,PID控制器上的状态指示灯变为黄色背景并显示A字符,表示控制器的当前状态为自动状态。 (2)在设置为“手动”状态时,点击“SV1值”右边的白色输入框,在此输入框内输入设定值“10”数字,并点击随后出现的“修改SV1”命令框进行确认,此时“SV当前值”右边的数字框显示10,同时在控制器面板上会观察到SV值为10的显示。同样,在“手动”状态时,点击“OP值”的右边白色输入框,在此输入框内输入“5.01”设定值,并点击随后出现的“手动OP”命令框进行确认,此时“OP当前值”右边的数字框显示5,同时在控制器面板上也会观察到OP值为5.01%的显示。在手动状态下进行SV和OP值的设定,可以检查软件和控制器连接后是否工作正常。检查完毕后,可以将SV和OP值全部设为“0”。 (3)当需要进行“单点”控制时,首先需要输入设定值SV,然后启动自动状态,使控制器进行自动设定点控制。自动控制要达到准确控制需要合适的PID参数,这时需要在自动控制运行过程中用鼠标点击“主自整定”命令按钮,使控制器进行自整定,“主自整定”命令按钮左边的显示框内会显示自整定状体,此时控制器面板上的“AT”指示灯会发生红黄交替闪烁。当“AT”指示灯停止闪烁后,表示自整定已经完成,自整定得到的PID参数会输出显示到“(七)控制参数状态显示区域”。 (4)同样,用鼠标点击“单点/程序”命令框,可使得控制器在单点和程序控制之间进行切换,并在“单点/程序”命令框左边的兰色数字框内显示相应状态“单点”或“程序”的字符。 (5)同样,用鼠标点击“待机”命令框,可使得控制器切换到待机状态,同时控制器面板表上的状态指示灯会红黄交替闪烁并显示“STB”字符。 (6)同样,用鼠标点击“SV1/2”命令框,可使得控制器在SV1和SV2模式之间切换,并在“SV1/2”命令框左边的显示框内显示所切换的模式。这里SV1值代表控制器内置设定值,SV2值代表远程控制设定定。 注意:为保证以上操作和显示的正确性,还需进行后续控制器的输入/输出参数设置,否则显示数字位数和SV1/2等功能无法正常使用。具体设置参见下章内容。[b][size=18px][color=#000099]7. 控制器的参数设置[/color][/size][/b] VPC 2021系列控制器的所有参数设置和编制控制程序,都可以在软件的第四个功能区域“(四)各种参数设置区域”内进行,第四功能区域如图7所示。这里针对“CONFIG”中必须设置的几个重要参数“主输入设置、仪表参数设置和主输出设置”进行介绍。[align=center][img=07.控制器参数设置区域,689,41]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148015054_637_3221506_3.jpg!w689x41.jpg[/img][/align][align=center][b][color=#000099]图7 软件的参数设置区域[/color][/b][/align][b][color=#000099]7.1 主输入设置[/color][/b] 点击“CONFIG“命令框,首先进入如图8所示的仪表参数设定的“2.主输入设置”界面。[align=center][img=08.控制器仪表主输入设置界面,690,267]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148240223_2270_3221506_3.jpg!w690x267.jpg[/img][/align][align=center][b][color=#000099]图8 软件CONFIG界面的主输入设置[/color][/b][/align] 在图8所示的主输入设置中,依次进行如下设置: (1)输入类型设定:VPC 2021系列PID控制器是一款万能输入型仪表,可输入多达47种传感器信号。具体设置时,需根据所用传感器的输出信号类型和量程进行选择,如真空度传感器,一般选择“28:0V10(0-+10V)”设定,压力传感器一般选择“19:4MA20(4-20MA)”。输入量程的设定非常重要,这会关系到后续的测量值PV和设定值SV显示的小数点位数的选择。 (2)显示上限:显示上限的作用是规定出与传感器最大量程对应的控制器测量最大量程,如对应0-10V的传感器输入量程,显示上限可以选择10。在VPC 2021系列控制器中,显示上限的范围都是-10000至30000,这也就是说可以将传感器最大量程10V,最大放大到三千倍的数值30000。在实际应用中,一般是以十进制放大倍数进行设置,如对应于10V,选择上限为10000,放大一千倍。由此可结合后续的三位小数点位数设置,测量值PV和设定值PV就可以完整的显示0-10.000范围的数值,并都保持小数点后三位小数,从而可以高精度的测量和观察到测量值和设定值。 (3)显示下限:同样,显示下限的作用是规定出与传感器最小量程对应的控制器测量最小量程。对于一般各种物理量传感器最小0V的输出电压,显示下限选择“0”即可。而对于有些具有方向特征的传感器输入信号,如温差热电堆±10mV范围的电压信号,则需选择相应的非零的显示下限。非零显示下限的放大功能,与上述显示上限完全相同,但最好是选择相同的放大倍数。如对上述温差热电堆±10mV范围的电压信号,正负信号要保持相同的放大倍数,那么可选择显示上限为10000,显示下限为-10000。 (4)小数点:小数点位数总共有五种设置,从整数到小数点后面四位。小数点位数的功能正好与上述显示上限功能相反,起到一个测量值除以10的缩小功能。假如一个传感器输入的电压信号为5V,如果控制器显示上限设定为10,小数点设定为“0:XXXXX”的整数,那么控制器面板上的PV显示格式就是整数5;如果显示上限设定为100,小数点设定还是整数,则控制器面板上的PV显示格式就是整数50,但代表还是5V的真实电压信号。为了准确直观的显示5V信号输入,此时则需将小数点位数设定为“1:XXXX.X”,那么PV显示格式就是带一位小数的5.0V。以此类推,若显示上限设定为10000,则小数点位数设定应为“3:XX.XXX”,则PV显示格式就是带三位小数的5.000V。 (5)对于后续的“输入异常处理、输入异常预置值、修正偏移量、冷端补偿类型、输入多点曲线修正”等高级参数的设置,可参看控制器使用说明书内的详细介绍。在一般应用中较少会用到这些高级设置,它们的设置一般选择“0”或禁止。[b][color=#000099]7.2 辅输入设置[/color][/b] VPC 2021系列控制器有个强大的功能,就是具备双通道的功能,由此可衍生出众多应用,可通过对辅助通道进行设置来激活第二通道的功能。具体设置是选择“CONFIG“界面中进入如图9所示的仪表参数设定的“3.付输入设置”界面。[align=center][b][color=#000099][img=09.控制器仪表辅输入设置界面,690,102]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202148582742_2164_3221506_3.jpg!w690x102.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图9 软件CONFIG界面中的辅输入参数设置[/color][/b][/align] 辅输入参数设置基本与主输入参数设置相同,主要不同的是有一项“辅助通道功能”设置。辅助通道共有六种选择以实现不同的高级功能,需要根据具体使用情况进行选择。在大多数情况下会选择“禁止”,不使用辅助通道,但如果选择其他设置,所选择的功能需要查看使用说明书中的详细介绍。[b][color=#000099]7.3 仪器参数设置[/color][/b] 选择“CONFIG“界面中进入如图10所示的仪表参数设定的“1.Instrument”界面。[align=center][b][color=#000099][img=10.控制器仪表参数设置界面,690,316]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149212211_8085_3221506_3.jpg!w690x316.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图10 软件CONFIG界面中的仪表参数设置[/color][/b][/align] 在图10所示的仪表参数设置中,本文主要介绍红色方框标识的几个常用的重要参数设置。 (1)控制方式:VPC 2021系列控制器共有五种控制方式,而最常用的是“单输出”。其他如“双输出”等控制方式则是用于冷热控制等其他形式的控制。 (2)设定值上限SVHI:设定值上限的设定范围是-10000~30000,在具体设定时一般要选择与前述“显示上限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (3)设定值下限SVL0:设定值下限的设定范围同样也是-10000~30000,同样,在具体设定时一般要选择与前述“显示下限”完全一致的数值。只在某些特殊情况才会选择不同的数值。 (4)显示工程单位:VPC 2021系列控制器共有26种工程单位符号可选,但不可能覆盖所有需要用的工程单位,可根据需要进行定制。[b][color=#000099]7.4 主输出设置[/color][/b] 选择“CONFIG“界面中进入如图11所示的仪表参数设定的“9.主输出1设定”界面。[align=center][b][color=#000099][img=11.控制器仪表主输出设定界面,690,186]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149393277_7139_3221506_3.jpg!w690x186.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图11 软件CONFIG界面中的主控输出1的参数设置[/color][/b][/align] 主控输出1的参数设置是VPC 2021系列控制器重要的一个参数设置内容,详细设定如下: (1)输出方式设定:首先要根据外部执行机构可接受的控制信号进行输出方式的选择,如果外部执行机构是接收模拟信号(如4-20mA或0-10V)进行调节,则选择“0:线性电流输出”选项。在选配VPC 2021系列控制器时,都会明确规定输出方式作为技术指标,也就确定了相应的输出方式,因此这里的输出方式设定只需与控制器技术指标一致即可。 (2)输出作用方向:VPC 2021系列控制器具有“反作用”和“正作用”两种输出作用方向,因此需要根据实际控制需要进行选择。一般选择“反作用”用于进气或加热控制,“正作用”一般用于排气或制冷控制。 (3)输出信号类型:VPC 2021系列控制器具有六种输出信号类型,主要有模拟电流和模拟电压两类形式。同样,在选配VPC 2021系列控制器时,都会明确规定输出信号类型作为技术指标,这也就确定了相应的输出信号类型,因此这里的输出信号类型设定只需与控制器技术指标一致即可。 (4)输出上限:VPC 2021系列控制器规定的输出百分比范围是0.00~100.0%,特别需要注意的是最小输出百分比是小数点后面两位,即0.01%,由此可以提供更高精度的控制。在具体设定过程中,可根据需要选择输出上限,因为在很多具体控制过程中并不需要满功率输出,特别是在一些较低量程范围内的控制时,可选择较小的输出上限可达到很高的控制精度,选择较大的输出上限值反而会使控制精度受到影响。 (5)输出下限:在绝大多数情况下,输出下限会选择“0”。有些特殊控制,则会根据实际控制对象选择不同数值的输出下限,但前提是输出下限一定要小于输出上限。[b][size=18px][color=#000099]8. 控制器PID参数设置[/color][/size][/b] 在使用VPC 2021系列控制器时,一般通过在自动控制状态下运行“自整定”功能可获得满意的PID参数。但有时需要在自整定基础上对PID参数进行人工修改,此时就需要进行PID参数的设置。在控制器软件主界面上点击位于下方的“PID”功能按钮,进入如图12所示的PID参数设置界面。[align=center][b][color=#000099][img=12.PID参数设置界面,511,509]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202149545389_762_3221506_3.jpg!w511x509.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图12 PID参数设置[/color][/b][/align] 在PID参数设置界面上,有三组相应参数设置,一组是常用的PID1设置,这组PID1用于单输出方式下的反作用模式,第二组PID2设置则用于双输出方式下的正反向模式,第三组参数设置用于更精细的PID控制,具体内容参见说明书。 (1)输出比例带:P参数。 (2)输出积分时间:I参数。 (3)输出微分时间:D参数。 有关PID参数的调整,请详见使用说明书或其他PID参数调整相关资料。[b][size=16px][color=#000099]9. 图形显示和操作[/color][/size][/b] 控制器软件具有强大的图形显示功能,可在对各种测量值、设定值和输出值进行测量和监视的同时,并进行显示。图13为软件的图形显示界面。[align=center][b][color=#000099][img=13.图形显示操作区域,690,422]https://ng1.17img.cn/bbsfiles/images/2022/12/202212202150197729_5514_3221506_3.jpg!w690x422.jpg[/img][/color][/b][/align][align=center][b][color=#000099]图13 软件图形显示界面[/color][/b][/align] 需要说明的是,为了控制器测控曲线的正常显示,必须要事先安装好OFFICE套装中的数据库软件ACCESS,否则软件界面只能有三分之一区域能够显示变化曲线。 图形显示界面会自动显示测量值PV、设定值SV和输出百分比值OP随时间的变化曲线,并具有两套纵坐标轴。一个纵坐标轴是用于测量值PV和设定值SV的显示,此纵坐标可进行调整以优化显示效果;另一个纵坐标轴是用于输出百分比值OP的显示,其纵坐标最小值为固定值-10,最大值为固定值110%,并不可调整,以显示OP值在0~100%范围内的随时间变化曲线。 如图13所示,在图形显示界面的右上角,还设置了快捷功能区,可通过快捷功能键或鼠标点击进行图形的其他操作。 注:在软件激活通讯后,软件就开始在后台进行运行,并采集控制器仪表的相应数据。这些数据都随时存储在数据库软件的文件中。调用这些历史数据的方法,请咨询技术支持人员。[b][size=18px][color=#000099]10. 总结[/color][/size][/b] 采用远程控制软件彻底解决了体积小巧的工业用PID控制器面板操作不友好问题,即在与PID控制器建立了通讯的计算机上运行相应的配套软件,就可在计算机上完成所有PID控制器的操作,图形化的控制软件具有更友好的人机界面。 通过配套软件可快速熟悉PID控制器的相应功能及其底层规则,并找到合理的运行参数,非常后续集成控制程序的编写顺利,可节省大量繁复的控制器按键操作和程序调试时间,加快设备集成和开发速度。 PID控制器随机配套软件强大的监视、操作和图形显示功能,可完全采用软件来运行PID调节器,并可直观的显示设定值、测量值和功率输出百分比随时间的变化曲线,而这些曲线都被自动存储并可调用查看。由此,通过软件和计算机,与PID控制器可组成一个完备的控制系统。[align=center][/align][align=center]~~~~~~~~~~~~~~[/align]

  • 美科学家首次使用激光束控制心脏跳动

    美国科学家首次使用激光束控制了心脏的跳动。这一发现为人类探索心脏奥秘翻开了新的一页,也使光控心脏起搏器的问世成为可能。普通的心脏起搏器是通过微弱的脉冲电流刺激心肌细胞,进而调整心跳的节律。早在1967年,电信号起搏器面市不久,科学家就发现光能够提高心脏的跳动频率,但由于条件所限,人们还不懂得如何控制它。直到2008年,日本的一个研究团队才使用一种近红外激光束,成功地控制了一团离体心肌细胞的搏动。但到目前为止,还没有人能够控制整个心脏。但有一个人还没死心。Michael Jenkins是美国俄亥俄州克利夫兰市凯斯西储大学的一名生物医学工程师,他阅读了1967年的发现之后,决计将这项实验继续下去。他和他的同事使用激光束照射一些鹌鹑的离体活胚胎,这些胚胎只有2~3天大,其心脏体积只有2立方毫米,比一团心肌细胞大不了多少,是非常合适的实验材料。

  • 【原创大赛】酸奶常见的品质缺陷及生产控制方法

    【原创大赛】酸奶常见的品质缺陷及生产控制方法

    文/熊子灵(华测检测) 自从“三聚氰胺”事件发生之后,我国相关职能部门对乳制品行业进行了严格的食品安全及质量管控,乳制品行业因此成为我国食品行业中发展快、消费大、从业水平高的一个重要行业。酸奶,以其营养价值高、口味好、促消化、益于健康等特点,成为了乳制品中市场份额占比较高的产品。近年来,我国酸奶市场增长率领跑全球,每年保持着两位数的高速增长。在这样的环境下,消费者和生产企业对酸奶的品质缺陷都非常关注。 影响酸奶品质的因素包括原料奶或奶粉的质量及卫生情况、加工环节卫生情况、均质工艺、菌种质量和投放工艺、接种工艺、发酵工艺和后熟控制等。本文将对酸奶的主要品质缺陷的成因及控制措施进行探讨。[align=center][img=,393,325]http://ng1.17img.cn/bbsfiles/images/2017/08/201708111453_01_3051334_3.jpg[/img][/align][b] 缺陷一:乳清析出[/b] 造成酸奶乳清析出的因素包括:原料奶含抗生素;原料奶的卫生情况不达标;原料奶的蛋白质含量较低;均质效果不好;接种温度不符合要求;发酵温度过高或过低等等。这些都是导致酸奶粘度低、乳清析出的原因。例如,原料奶含有抗生素或被其他微生物污染(比如噬菌体污染),则会使酸奶中产粘乳酸球菌受到抑制,导致酸奶粘性不够;又如,均质效果不佳,均质后的乳中没有形成颗粒较小和均匀的脂肪球,导致了酸奶储存过程中脂肪分离,使乳清析出。 为了防止酸奶在发酵和生产过程中乳清析出,应该做好以下几点:第一,规范原料奶管控,严格控制原料奶入场检验和储存;第二,加强工艺过程管理,保证均质效果,定期检查均质机工作情况,将接种和发酵温度设为关键控制点等等。此外,还可以在酸奶中合理使用稳定剂,以保持酸奶的质构和口感的稳定。[b] 缺陷二:颗粒感强[/b] 酸奶中的颗粒感会造成口感不佳,它可能来自于以下几个因素:配料工艺不恰当;杀菌温度控制不佳;均质效果不佳;噬菌体污染等等。例如,若用奶粉做为原料,则配料时必须对奶粉进行水合,不适宜或不充分的水合会让酸奶成品中出现“粉感”或颗粒感;又如,杀菌温度过高,会导致蛋白质变性,从而产生沉淀,造成颗粒感。 为保证酸奶的口感顺滑、无颗粒感,应严格控制原料奶的入场检验和储存和工艺过程(如将均质、杀菌设为关键控制点等)。[b] 缺陷三:口感过酸[/b] 酸奶中的酸味来源于发酵所产生的乳酸。虽然酸奶特殊的酸味是该产品的特点,但过酸会对其口感产生反效果。酸奶过酸的原因可能有:配料工艺不恰当;菌种使用不恰当;贮存温度过高等等。例如,所使用的菌种添加过量,其结果会导致产酸过多,引起酸奶过酸;另外,不同的菌种的特性不同,不适宜的菌种也会造成了酸奶过酸。 为使酸奶达到最佳的口感和酸度,企业首先应严格筛选适宜生产的菌种,并严格控制菌种投放工艺步骤,必要时可设置为控制点。另外,可根据实际情况控制蔗糖的添加,根据不同菌种对蔗糖的利用程度来控制蔗糖的添加量,使酸奶达到最佳口感。 除以上三种品质缺陷以外,酸奶中还有可能出现的品质缺陷包括发酵时间过长、酸度欠缺、质构过粘或过硬等。但控制方法与上述控制措施类似,严格控制原辅料验收、工艺过程和贮存,将能有效地避免这些品质缺陷。

  • 【讨论】检测数据质量控制图控制限的确定?

    在以内控样品平均值控制的质量控制图中控制限如何确定,有的是以多次测量平均值加减3倍标准偏差为控制限,请问控制限如何确定?有何依据?在以样品加标回收率做的质量控制图中,有的是90%-110%,有的是95%-105%,有的是98%-102%,请问控制限如何制定?有何依据?

  • 体外循环术中灌注流量的高精度自动控制解决方案

    体外循环术中灌注流量的高精度自动控制解决方案

    [align=center][size=16px][img=体外循环术中灌注流量的高精度自动控制,600,415]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271116037597_5912_3221506_3.jpg!w690x478.jpg[/img][/size][/align][size=16px][color=#990000][b]摘要:在目前的体外循环手术过程中,需要灌注师快速而精确地操作使得血液流速调节到期望的目标值。基于国外文献报道的血流量自动控制方法和装置,本文提出了技术改进且国产化解决方案。通过本解决方案中增加的国产系列电控夹管阀、电控针阀和具有远程设定值功能的超高精度PID控制器,可以使得体外循环过程中的静脉和动脉血流量控制真正实现高精度的自动化控制,在满足临床应用和研究需求的同时,可降低灌注师的操作难度和医疗事故。[/b][/color][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 体外循环(CPB)设备在心脏手术期间临时替代心肺功能,以维持体循环。心脏体外循环手术时,需要将手术病人静脉血从体内引出,通过体外循环机氧合后回输至体内动脉管道、静脉回流管、左心房引流管、心内吸引管、普通吸引管等管道,并维持血流量、静脉储库水平、氧气浓度、氧气血流量和血液温度,其中对血液流速的控制要求非常高,稍有错误就会导致循环障碍和大量空气栓塞,从而导致严重的医疗事故。[/size][size=16px] 在CPB具体操作过程中,需要灌注师快速而精确地操作三个装置(静脉侧阻隔器、动脉侧阻隔器和离心泵)来将血液流速调节到期望的目标值,不正确的操作会导致气栓并改变静脉储血水平而导致意外的血压波动,从而将患者置于危险之中。因此,需要开发一种有助于自动调节血液流速的装置以提高自动化控制水平和降低灌注师工作强度,为此文献[1]提出了一种体外循环过程中动脉侧血流量的自动控制方法和控制装置,其结构如图1所示。[/size][align=center][size=16px][color=#990000][b][img=体外循环血流量自动控制结构示意图,650,351]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271117325921_65_3221506_3.jpg!w584x316.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 体外循环血流量自动控制装置结构示意图[/b][/color][/size][/align][size=16px] 尽管文献[1]提出了一种体外循环过程中动脉侧血流量的自动控制方法和相应装置,但距离真正的临床应用还有一定差距,这些差距主要体现在以下几个方面:[/size][size=16px] (1)尽管文献[1]给出了静脉侧和动脉侧血流量调节用的手动和自动阻隔器的具体型号,但我们并未在阻隔器厂家官网上查到相应型号阻隔器的具体产品和相应技术参数。因此,为了真正实现临床应用还需进一步明确阻隔器产品,甚至是国产化替代。[/size][size=16px] (2)动脉侧血流量自动控制的目的是要自动调节动脉侧血流量的变化始终要与静脉侧血流量的变化保持快速同步和相同,但文献[1]给出的控制模型和控制策略过于复杂,较难真正的工程化实现。[/size][size=16px] 针对文献[1]技术方案存在的上述缺陷,本文提出了可真正实现临床应用的解决方案,能很好的解决上述问题,并可完全采用国产化相关产品予以实现。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 基于文献[1]所述的动脉侧血流量自动控制技术方案,我们进行了改进,并进一步明确和细化了相关所用部件,改进后的自动控制装置结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=改进后的体外循环血流量自动控制结构示意图,650,311]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271118025749_1493_3221506_3.jpg!w690x331.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 改进后的体外循环血流量自动控制结构示意图[/b][/color][/size][/align][size=16px] 解决方案的改进内容之一是采用国产的电控夹管阀来代替文献[1]中所用的阻隔器,这种电控夹管阀可以通过0~10V的直流电压信号来改变加持力以调节管路导通口径的大小,从而实现对管路中的流体流量进行调节。由此可见,这种电控夹管阀可以很方便的被用来进行静脉侧和动脉侧血流量的手动或自动调节。[/size][size=16px] 尽管电控夹管阀和自动阻隔器可以用来对体外循环系统中的血流量进行调节,但存在的问题是会带来的非线性,这种非线性会对自动控制精度带来严重影响,这也是文献[1]控制模型非常复杂的主要原因。文献[2]对这种非线性进行了研究和描述,发现操作值与开度之间呈指数关系。[/size][size=16px] 为了解决管夹形式所带来的非线性问题,解决方案提出的改进内容之二是采用NCNV系列的电控针阀。NCNV系列电控针阀具有非常高的线性度,且具有快速的响应速度以及不同的孔径尺寸,常用于气体和液体介质的真空、压力和流量的精密调节。尽管采用电控针阀可以很好的解决夹管阀非线性所带来的控制精度问题,但电控针阀存在的重要问题是针阀需要接触所调节的流体介质,不能像夹管阀那样与流体介质不发生接触。[/size][size=16px] 为真正使动脉侧血流量能快速与静脉侧血流量保持同步和相同,本解决方案提出的重大改进是采用具有远程设定点功能的VPC2021系列高精度PID控制器,控制器的具体特性和功能如下:[/size][size=16px] (1)具有两个输入信号接收通道,其中主输入通道接收动脉侧流量计信号,并由主控输出通道输出控制信号对动脉侧电控夹管阀/针阀进行调节;而辅助输入通道接收静脉侧流量计信号,此接收到的静脉侧流量信号则作为动脉侧流量控制的设定值。通过这种辅助输入通道的这种远程设定值功能,可使得动脉侧的流量控制始终以静脉侧的流量为跟踪控制目标。[/size][size=16px] (2)控制器具有超高的测量精度和控制精度,其中24位AD、16位DA和0.01%最小输出百分比,并采用了无超调的PID控制模式,这非常适用于体外循环装置中的高精度血液流量控制。[/size][size=16px] (3)控制器具有RS485通讯接口,并执行标准的MODBUS协议。控制器自带测控软件,在计算机上运行软件可实现控制器参数设置、驱动运行、过程参数的采集、曲线显示和存储,无需再进行程序编写就可组成软硬件控制系统用于临床应用和研究。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 通过本解决方案中增加的国产系列电控夹管阀、电控针阀和具有远程设定值功能超高精度PID控制器,可以使得体外循环过程中的静脉和动脉血流量控制真正实现高精度的自动化控制,在满足临床应用和研究需求的同时,降低医疗事故和灌注师的操作难度。[/size][size=18px][color=#990000][b]4. 参考文献[/b][/color][/size][size=16px][1] Takahashi H, Kinoshita T, Soh Z, et al. Automatic control of blood flow rate on the arterial-line side during cardiopulmonary bypass[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021: 5011-5014.[/size][size=16px][2] Takahashi H, Soh Z, Tsuji T. Steady-state model of pressure-flow characteristics modulated by occluders in cardiopulmonary bypass systems[J]. IEEE Access, 2020, 8: 220962-220972.[/size][align=center][size=16px][color=#990000][b][/b][/color][/size][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 干货丨怎样做好实验室内部质量控制?

    [color=#000000]来自农业检测的好文章,与大家分享学习一下~~~[/color][color=#000000]为了保证检测数据的准确可靠,有必要对检测过程及其各阶段中可能影响报告质量的各个因素加以确定,并采取相应的措施对这些因素进行管理和控制。确保检测环节的各个过程处于受控状态,以保证最终检测报告的质量。[/color]实验室的内部质量控制主要是指应用统计的技术方法对检测系统进行的过程控制。在实验室认可中,强调各个过程应处于受控状态,特别是关键过程。实验室内部质量控制的技术方法包括采用标准物质监控、方法比对、仪器设备比对、留样复测、空白测试、回收率试验以及实验室控制样品等。本文从质量控制计划、空白试验、重复检测、校准曲线的核查、加标回收和质量控制图等化学检测实验室领域的内部质量控制方式进行探讨。1.质量控制计划。GB/T27025-2008《检测和校准实验室能力的通用要求》和《检测和校准实验室能力认可准则》中,对实验室内部质量控制提出明确规定:实验室应建立内部质量控制程序,以监控检测的有效性,取得数据的记录方式应便于可发现其趋势。《实验室认可准则在化学检测领域的应用说明》对化学检测实验室的内部质量控制提出明确的要求。2.空白测试。[b]空白测试是在不加入待测样品的情况下,采用测定待测样品项目的方法、步骤进行定量分析,从而获得分析结果的检测过程。[/b][color=#333333]空白测试得到了结果是空白实验值,简称空白值。空白值一般反映的是测试系统的本底,包括测试仪器的噪声、环境及操作过程中的沾污、试剂中的杂质等因素对检测产生的综合影响,它直接影响到最终检测结果的准确性,一般可从样品的分析结果中扣除。通过这种扣除可以有效降低由于实际干扰或试剂不纯等因素造成的系统误差。[/color][b]实验室应建立和实施充分的内部质量控制计划,以确保并证明检测过程受控以及检测结果的准确性和可靠性。[/b]质量控制计划应包括空白分析、重复检测、比对、加标和控制样品的分析,计划中还应包括内部质量控制频率、规定限制和超出规定限制时采取的措施。质量控制计划应轮流覆盖申请认可或已获认可的所有检测技术和方法。3.重复测试。[b]重复测试也称平行样测试,指在重复性条件下进行的两次或多次测试。[/b][color=#333333]重复性条件指的是同一实验室,由同一检测人员使用相同检测设备,按照相同测试方法,对同一测试对象在短时间内相互独立进行检测的测试条件。该方法可以用于对实验室样品制备均匀性、测试方法精密度、检测设备或仪器稳定性、检测人员技术水平以及平行样间的分析间隔等进行检测评价。[/color][color=#333333]4.校准曲线的核查。[b]校准曲线用于描述待测物质浓度与检测仪器指示值之间的定量关系。[/b][color=#333333]实验室按照正常样品检测程序使用标准溶液进行分析处理,绘制得到标准曲线或工作曲线。此方法是实验室仪器分析中经常采用的。通常在待测样品组分浓度波动较大,并且样品批量较大的情况下采用此方法。在检测过程中会受到实验室的检测条件、检测人员的操作水平、检测仪器的响应性能等多种因素的影响,采用校准曲线定期核查可以验证仪器的响应性能,保证检测人员操作的稳定性,同时也可以得到绘制曲线时所用标准溶液的稳定性核查信息。[/color][/color][color=#333333][color=#333333]5.使用标准物质进行质量控制。[/color][/color][color=#333333]检测/校准结果的质量是实验室始终关注的重点。[/color][b]依据《实验室资质认定评审准则》要求第一条“定期使用有证标准物质”开展内部质量控制。[/b][color=#333333]实验室使用标准物质进行质量监控,利用测量标准物质的方法来评价测定方法或检测仪器的准确度,来验证检测结果的准确性。实验室在日常分析检测过程中使用有证标准物质或次级标准物质进行结果核查,标准物质给出的结果和证书上的给出值是否一致来进行判断,以此保证检测数据的可比性和可靠性。[/color][color=#333333][color=#333333][/color][/color][b][color=#c2c92a]5.1有证标准物质(CRM)的选择 [/color][/b]有证标准物质,是指附有证书的标准物质,其一种或多种特性值用建立了溯源性的程序确定,使之可溯源到准确复现的用于表示该特性值的计量单位,而且每个标准值附有给定置信水平的不确定度。实验室选择标准物质时应尽量做到标准物质的形态(液态、气态或固态)应与被测物品相同、基体与被测物品相同或相近、含量水平与被测物品的水平相适应。同时对于标准物质的储存严格按照规定条件,并做好有效期内的期间核查。标准物质的不确定度应与客户对准确度的要求相适用。[b][color=#c2c92a]5.2取样量 [/color][/b]通常情况下,标准物质的最小取样量,是指在规定的分析测试条件下,保证标准物质均匀性最好的样品量。如果标准物质证书中规定了最小取样量,那么用于测量时的取样量应不小于该最小取样量。因此选购标准物质时就应该考虑到最小取样量是否能够满足测量方法的要求。加标应在分析样品前,且添加物浓度水平应接近分析物浓度或在校准曲线中间范围浓度内,加入的添加物总量不应显著改变样品基体。在待测物浓度极低时,应按检测下限的量加标,任何情况下加标量都不得超过待测物浓度的2倍。严格按照标准物质证书中规定的使用和保存条件是确保结果准确性的必要条件。标准物质一般应符合贮存要求及分类存放。实验室设计使用《标准物质领用单》,列出标准物质一览表及其使用记录。为有效规避检测结果的风险,对标准物质进行期间核查,主动及时地发现有效期内的标准物质的异样,对于超出标准物质证书有效期的视为失效,如果遇到标准物质虽然在有效期内,但因产生泄漏或污染的,也因视为失效,立即对其进行处理。[b][color=#c2c92a]5.3用有证标准物质核查[/color][color=#c2c92a][img=,583,487]https://ng1.17img.cn/bbsfiles/images/2018/09/201809261559121229_7868_1502196_3.jpg!w583x487.jpg[/img][/color][color=#c2c92a][b][color=#c2c92a]5.4加标回收率[/color][/b][/color][color=#c2c92a][b][color=#c2c92a][img=,573,435]https://ng1.17img.cn/bbsfiles/images/2018/09/201809261600065809_4948_1502196_3.jpg!w573x435.jpg[/img][/color][/b][/color][b][/b][color=#c2c92a]5.5适用范围[/color][color=#c2c92a][b][color=#c2c92a][/color][/b][/color][/b]直接使用标准物质进行质量监控的适用范围包括新检测项目、新标准新方法、新上岗及在培人员、检测过程的关键控制点、操作难度大的项目、设备的校准及核查等。此方法的特点是可靠性高,但成本也高。[b][b][/b][/b]6.统计过程控制在质量监控中应用[b][b][/b][color=#c2c92a]6.1过程控制[/color][b][/b][/b]过程控制一般是指“使过程处于受控状态所采取的控制技术和活动。”在实验室管理中,首先应识别并确定过程,然后及时发现和排除检测过程中的异常变异,不使上一过程的问题带到下一过程中,以保证过程的稳定性及检测质量的一致性,这是一项以预防为主的工作。[b][b][/b][color=#c2c92a]6.2应用统计技术的作用[/color][b][/b][/b]统计过程控制是应用统计技术进行过程控制的活动,简称SPC。SPC的问世使质量管理从单凭传统经验主义的管理模式发展到过程管理的模式。统计技术作为发现问题和改进体系的手段,涉及检测过程的各个阶段以及质量管理的全过程。应用统计技术可帮助发现检测过程各阶段客观存在的变异,有助于实验室提高其质量管理体系的效率。通过统计数据分析作为决策的依据,可以更好地理解变异的性质、程度和原因,进而有助于解决由变异引起的质量问题,促进检测过程的持续改进。[b][b][/b][color=#c2c92a]6.3控制图的应用[/color][b][/b][/b]CNAS-CL10要求实验室应使用控制图监控实验室能力(适用时)。控制图由Walter Shewart博士于1924年首先提出,是用来评价和控制重复分析结果的统计学工具。质控图是指对过程质量加以测定、记录从而评估和监察过程是否处于空置状态的一种统计方法设计的图。[b][b][/b][/b]实验室对标准样品或控制样品的数据进行长期监控,分析数据应在实验室正常的可接受的偏差下呈现正态分布,以判断实验室的检测能力是否处于一个稳定水平。分析控制图是长期监控实验室内部质量常用的方法,它可以通过一段时间内的数据波动情况,分析是正常的随机波动还是异常因素的干扰,进而提升检测质量。[b][b][/b][/b]在GB/T4091-2001《常规控制图》中规定:检测实验常用的控制图可采用均值-标准差、极值-极差、单值-移动极差控制图等,可根据分析目的和测试性质等因素决定采用何种控制图。使用控制图进行质量控制时,应将待测样品和控制样品一同交给检测人员检测,要保证在常规的检测能力下进行,以免失去控制的真实性。[b][b][/b][color=#c2c92a]6.4质控图的制作[/color][b][/b]1)确定统计量,即控制样品监控的检测项目[b][/b][/b][img=,572,242]https://ng1.17img.cn/bbsfiles/images/2018/09/201809261603074319_811_1502196_3.jpg!w572x242.jpg[/img][b][b][/b]2)计算统计量,即根据选择的统计图类型进行计算[b][/b][/b]每间隔一定时间,用同一方法在同一时间内(如每天分析一次平行样)与检测样品同时测定,至少累计20个质控样品的检测结果,通过计算平均值、极差、标准差等统计量,按照质量控制图的制作程序,以统计值为纵坐标,测定次数为横坐标,确定中心线、上下控制限,以及上下辅助线和上下警戒线,从而绘制出分析用控制图。[b][b][/b]3)对控制图进行判定[b][/b][/b]做好质控图后即可进行质量控制。通过分析控制图判断测量过程处于稳定或控制状态后,就可以将分析用控制图转换为控制用控制图,并将日常测定的控制数据描点上去,判断是否存在系统变异或趋势。当积累了新的数据后,应绘制新的质控图,作为下一阶段的控制依据,以确保该项目长期处于受控状态。[b][b][/b][/b]实验室内部质量控制,要以客户为关注焦点,全员参与。全体员工是每个实验室的基础,实验室的质量管理不仅需要最高管理者的正确领导,还有赖于全员的参与。CNAS-CL01推荐的室内质控方法有以下几种:参加实验室间的比对或能力验证计划 使用相同或不同方法进行重复检验计划;对存留物品进行再检测或再校准 分析一个物品不同特性结果的相关性。实验室应在满足相关规定要求的情况下,充分结合本实验室的特点,合理选择内部质量控制方法,对本实验室进行科学有效的监督和管理。[b][color=#c2c92a][b][color=#c2c92a][/color][/b][/color][/b]

  • 【资料】熊猫转贴--十大工业噪声源控制技术评述

    十大工业噪声源控制技术评述目前影响工人健康、严重污染环境的十大工业噪声源,它们是风机、空压机电机、柴油机、织机、冲床、圆锯机、球磨机、高压放空排气以及凿岩机。 这些噪声源设备,普遍使用于各工业部门,产生的声级高,影响面大。我国在控制这些噪声问题方面,虽已积累了相当丰富的经验但仍存在许多实际问题,尚待研究解决。 风机、空压机的消声器,国内目前已有较成熟的系列产品。但是在大型消声器,尤其是耐腐蚀、防尘埃、耐水气等特殊类型的消声器方面,尚有许多工作需要深入进行。低噪声风机虽有一些产品出现,但这方面的工作,在我国也仅仅算是一个开端。 电机噪声的系列消声隔声罩,在我国也已有生产,但对于大型电机的降噪,以及从声源上降低电机的噪声,也尚待进一步深入下去。 在石油输送管道系统以及其它一些地方,大型柴油机噪声问题仍然严重存在,需要解决。研制隔声性能与散热性能元气优 {带高效消声器} 、使用方便的隔声罩,是问题的关键。 近些年来,我国在有梭织机噪声控制上已取得许多经验。不少单位采取各种措施,在单机上可获得10dBA的降噪效果。问题在于这些技术措施目前尚很难全面推广。深入对已取得效果的各项措施进行分析、筛选和改进,并探讨控制织机噪声危害的其它途径,是当务之急。 冲床噪声的产生机理及控制途径,近十多年来,在国内有了一些新的突破。冲床噪声影响面大,但目前国内只有少数一些地方开展了降噪工作,许多实际问题尚待解决。 圆锯机产生的噪声一般在100dBA以上.木材加工行业发生的断指事故,常与此噪声密切有关.国内自八十年代以来,对圆锯机降噪进行了较系统的研究,其结果表明,通过对锯片开适当的减振槽,在锯片上贴阻尼片以及对机组施用隔声罩待综合措施,可导致圆锯在工作时整机噪声的明显降低. 对于球磨机噪声,目前国内有一些部门采用橡胶衬板的方法,或对球磨机筒体采用阻尼隔声层包扎方法,或对球磨机施用隔声罩方法来降噪,取得一定的效果.但同样在使用上,仍然存在不少问题,值得探讨解决. 对于高压放空排气噪声,目前,国内多采用多孔扩散消声器或小孔消声器.多孔扩散消声器是根据气流通过多孔装置扩散后速度降低的原理而设计的制造的一种消声器.小孔消声器是根据移频原理设计制造的一种消声器.这两种消声器对降低高压放空排气噪声都很有效.目前国内已有这方面不同规格的产品.值得深入做的工作是,在调研已有相当数量成功的消声器的基础上,将此类型消声器的设计工作进一步规范化. 风动凿岩机噪声在矿山井下高达120dBA,甚至更高,对操作工人危害很大.其噪声频谱较宽,主要呈中低频性.主要噪声源是: ⒈排气噪声; ⒉活塞撞击钎尾及钎头撞击岩石产生的撞击声; ⒊风动凿岩机零部件间的撞击、磨擦以及机件振动所产生的机械性噪声。其中排气噪声为主要成分。 解决风动凿岩机噪声的途径在于,研制高效的排气消声器,并对机械性噪声采取有效的减振阻尼措施。对于多机凿岩台车,应设隔声操作室。 本文逐项评述了上述噪声源产生噪声的机理、控制方法、目前所达到的水平以及存在的问题。 随着信号分析处理技术、声强测量技术在我国获得深入应用以及新型降噪材料和新型噪控装置的不断出现,上述十大工业噪声源的控制水平在九十年代可望进入更高的层次。

  • 伺服电机的控制方式简述

    一般伺服电机(http://www.vfe.cc/NewsDetail-1311.aspx)都有三种控制方式,即:速度控制方式,转矩控制方式和位置控制方式,其中速度控制和转矩控制都是用模拟量来控制的,而位置控制是通过发脉冲来控制的。本文详细介绍伺服电机的控制方式。一、伺服电机控制方式  一般伺服电机主要有三种控制方式,即速度控制方式,转矩控制方式和位置控制方式,下面分别对每种控制方式进行详细说明。1速度控制方式  通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位机控制装置的外环PID控制时,速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位机反馈以做运算用。速度模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。2转矩控制方式  转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为:例如10V对应5Nm的话,当外部模拟量设定为5V时,电机轴输出为2.5Nm,如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转。可以通过即时的改变模拟量的设定来改变设定力矩的大小,也可以通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备。3位置控制方式  位置控制方式一般是通过外部输入的脉冲的频率来确定转动速度的 大小,通过脉冲的个数来确定转动的角度,也有些伺服驱动器可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置,应用领域如数控机床、印刷机械等等。二、控制方式的选择  如何选择伺服电机的控制方式呢? 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。  如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。  如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。  如果对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,而且,这时完全不需要使用伺服电机。

  • 【原创大赛】简述“PDCA”在质量控制中的应用

    【原创大赛】简述“PDCA”在质量控制中的应用

    参加过一体化审核的人可能都知道“PDCA”是质量管理体系中的一种模式,然而它在很多领域中都得到了充分的利用,下面就将“PDCA”在实验室内外部质量控制中的引用做下介绍:1. “PDCA”的内涵“PDCA”指的是“策划-实施-检查-改进”的运行模式。主要含义是: 策划(Plan):建立所需目标和过程,以实现组织的质量方针所期望的结果; 实施(Do):对过程予以实施; 检查(Check):根据方针目标及其它法规要求,对过程进行检测和测量,检查是否达到预期效果; 改进(Action):采取措施以持续改进;http://ng1.17img.cn/bbsfiles/images/2016/07/201607190956_601097_1954597_3.jpg 图1—“PDCA”运行模式 注 “PDCA”是一个遵循渐进的过程,通过不断的循环,实验室的目标才得以提升。 http://ng1.17img.cn/bbsfiles/images/2016/07/201607190958_601098_1954597_3.jpg 图2—不断提升的噶un管理模式2. “PDCA”在质量控制中的应用 2.1 在实验室质量目标中不论是“准确”、“精准”还是“严谨”都是对操作及质量控制提出的目标,有的实验室甚至将质量操作准确率及培训率等进行了数字化的控制比如检测数据准确率100%等,这些都是我们的“Plan”。为了达到这个目标我们必须实施; http://ng1.17img.cn/bbsfiles/images/2016/07/201607190959_601100_1954597_3.jpg 图3—质量目标是改进的前提 2.2 实施是一个做的过程,在实验室内部一般年初都会定质量控制计划,这个计划就是质量总体目标的一个实施,有的也可以作为“Plan”中的一个分目标来提出。在这里作为总体目标实施的一个动作,我觉得也是可以的。只有计划制定我们才可以按计划要求进行实施,这种实施要结合实际尤其是外部质量控制,要看外部组织单位是否有组织的项目,内部质量控制是否有适合控制的方法,如设备对比要求实验室有两台以上检测同一个项目的设备,留样对比要求有合适的质控样品;在做的过程中可以通过不同的方式来完成包括:人、机、料、法、环等方法 2.2.1 人员操作的严谨,保证持证上岗是达到目标的一个方面 http://ng1.17img.cn/bbsfiles/images/2016/07/201607191006_601102_1954597_3.jpg图4—人员操作的准确率是达到目标的一个实施方面 2.2.2 设备的校准合格率也是保证检测结果的一个方面,只有校准合格的设备才能够用于检测,这个设备操作的保证http://ng1.17img.cn/bbsfiles/images/2016/07/201607191008_601103_1954597_3.jpg图5—设备校准是保证结果的重要因素 2.3 做了并不是完成了,做的效果要靠检查来判定,在实施的过程中有的不是一帆风顺,比如实施过程中因为有的质控样品有损坏,而无法进行留样再测;设备对比过程中因为设备临时性损坏,这些都会导致计划的失败。有的即使实施完毕也会因为判定结果的失败而需要未完成目标; 2.3.1 现场监督是检查的一种方式,通过监督可以发现质量控制运行中的问题,起到随时改进的目的; http://ng1.17img.cn/bbsfiles/images/2016/07/201607191018_601105_1954597_3.jpg图6—日常监督是保证操作准确定的基本方式 2.3.2 内审和外部审核是对整个体系的一种检查,主要是体系文件的审核,同时对参加过外部对比的结果进行的审核;http://ng1.17img.cn/bbsfiles/images/2016/07/201607191022_601106_1954597_3.jpg图7—内审是检查的一种方式 2.4 改进是实验室质量控制的最终目标,对于失败的情况我们要分析原因进行整改,而对于因特殊情况导致计划无法实施的,中心应有制定出相应的措施,更改控制方式或列举到下一年等形式进行补救,这一些都是我们的改进,相信这一点有很多单位没有做到;改进的方式可包括以下几种; 2.4.1 纠正/纠正措施:通过对发现问题的纠正或纠正措施可以对发现的问题进行改正;纠正/纠正措施是改进的一种方法2.4.2 管理评审:管理评审是对体系总体规划的一个总结改进;3. 总结 “PDCA”虽然我们有的不了解他们的含义,但是都在运用。不论是质量控制还是人员操作甚至是自己的生活方式。这些都是我们运用的机会。相信通过这次抛砖引玉的学习,我们会在各方面利用好“PDCA”模式。

  • 危险化学品的一般控制原则

    危险化学品的一般控制原则:1.操作控制:包括,隔离、替代、通风、个体防护、工艺变更等。2.管理控制:通过管理手段按照国家法律和标准建立起来管理程序和措施,是预防化学品危害的一个重要方面。

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 【原创大赛】中药质量控制综述

    中药是中国传统的药材,中国药文化源远流长、博大精深,既包含数千年中药文明又融合近现代西药文明所创造的中西药并举、独具特色的文化现象,是中国优秀文化的重要组成部分。中药为中华民族五千年来的繁荣发展和 休养生息发挥了巨大的作用!进入新世纪以来,出现了许许多多新的仪器和新的质控方法,下面把近年来中药质量控制方面的作如下综述 1.中药指纹图谱 是指某些中药材或中药制剂经适当处理后,采用一定的分析手段,得到的能够标示其化学特征的色谱图或光谱图。 中药指纹图谱是一种综合的,可量化的鉴定手段,它是建立在中药化学成分系统研究的基础上,主要用于评价中药材以及中药制剂半成品质量的真实性、优良性和稳定性。“整体性”和“模糊性”为其显著特点。 2.代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法 3、 中药谱效研究 中药谱效学是在中医药理论现代研究的基础上,以中药指纹图谱为基础,以效应及效应体学为主要内容,应用生物信息学方法,建立中药指纹图谱与中药质量疗效内在关系的一门学科。 目前,我国现行中药质量控制的基本模式是参照国外植物药的质量控制方法,借鉴化学药品质量控制的模式建立的,其中以化学定性鉴别与指标成分检测为主要内容。指纹图谱在天然药物鉴别及质量控制上的应用逐渐引起我国医药相关学者的关注,但在中药质量控制方面仅作为一种化学物质基础的鉴别项目,并且大多数研究者侧重于研究化学指纹图谱的获取方法,在建立指纹图谱时,只考虑某些已知的化学成分定性或定量,并未考虑药效的定性或定量。因此,中药的化学指纹图谱还不能有效控制中药的药效质量。要控制中药药效的质量,就必须建立中药药效的指纹图谱,只有以药物的疗效为前提,进行化学成分与疗效相关性研究,得到的生物活性与化学特征相关指纹图谱才能更好地反映中药的质量,以此作为中药质量的评价体系将可弥补目前中药指纹图谱的不足。“谱效结合”是解决中药质量控制基本问题的治本之策,现已得到广泛的认可,但目前尚未有统一的适用模式,研究者们开始了中药谱效学研究方法的探索,如通过建立组效关系数学模型,在获取中药化学分析数据和药效检测数据基础上,使用药物信息学方法,寻找发现关键药效组分,并通过多组分药效预测模型对药效组分配伍进行优化设计,进而构建药效作用的多因素调节网络模型,探索中药的多种药效组分协同作用机制。另外,建立与动物(人)“证”模型相对应的状态函数关系式的现代中医药数理表述体系,再根据与“证”相一致所对应的基因表达下特性蛋白质与效应体(药物)的齿合关系,按亲合色谱,以效应体靶向分离物-特性蛋白质为固定相,采用液相色谱-质谱质量或效应型检测器,建立质量或效应指纹图谱。根据效应体作用前后(体内药物浓度为零)效应值的变化趋势,研究该指纹图谱与生物体状态函数值变化关系,可揭示中药复方作用的物质基础,包括效应体(结合成分群)的数目及构成比,以及对机体的作用方向和程度。此外,结合现代的药理技术去解析中药药效的物质基础,将标示化学成分特征峰的中药指纹图谱与药效结果对应起来,从单一成分“微观分析”向群体成分的“宏观分析”发展,找出二者之间的科学规律,保证药效结果和指纹图谱分析结果的一致性等。4.薄层色谱——生物自显影5液质联用液质联用(HPLC-MS)又叫液相色谱-质谱联用技术,它以液相色谱作为分离系统,质谱为检测系统。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子量与结构信息的优点结合起来,在药物分析、食品分析和环境分析等许多领域得到了广泛的应用。总之,伴随着科技的发展,越来越多的新技术会用到中药质量控制这一方面。相信以后,中药质量控制体系会越来越完善!

  • 新型低成本低压电子束焊接技术及其精密真空控制装置

    新型低成本低压电子束焊接技术及其精密真空控制装置

    [align=center][size=16px][img=新型低成本低压电子束焊接技术及其精密真空控制装置,550,337]https://ng1.17img.cn/bbsfiles/images/2023/03/202303270934409402_5689_3221506_3.jpg!w690x423.jpg[/img][/size][/align][size=16px][color=#339999]摘要:新型低压电子束焊接加工技术具有凹型阴极、自聚焦和低造价的突出特点,不再需要高真空系统,也无需磁透镜和磁线圈进行电子束的聚焦和偏转,可进行微零件焊接和低熔点材料表面微结构改性。但这种新型技术对氩气工作气压的要求较高,需要在7~12Pa的低真空范围实现高精度的调节和控制。本文针对此高精度控制提出了解决方案,即在电容真空计作为传感器的基础上,采用了电动针阀和超高精度压力控制器,控制精度可达±1%。[/color][/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 电子束焊是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。目前,电子束焊通常分为高真空、低真空和非真空三种类型,但无论是那种类型,电子束都需要在高真空条件下产生,且还需要磁透镜和磁线圈系统用于聚焦和偏转电子束,这使得高真空装置是电子束焊接设备中的重要且高成本的部件。[/size][size=16px] 最近,波兰研究人员Aleksander Zawada和Piotr Konarski介绍了一种真正低压环境且无需磁透镜和磁线圈的电子束焊接技术[1,2],这种新的低压电子束焊接技术具有以下特点:[/size][size=16px] (1)采用凹形阴极作为电子束源,直接在氩气环境中产生并聚焦电子束。工作气体的存在和伴随辉光放电的发生允许表面电荷中和,这使得电子束可以直接轰击绝缘材料。[/size][size=16px] (2)可直接采用微波炉用变压器,电压输出为1~3kV,就能建立一个以凹形阴极作为电子源的低压电子束加工装置。[/size][size=16px] (3)阴极和阳极之间的间隙约为25mm,氩气气体绝对压力可在0.05~0.09Torr范围内调节,采用机械泵就可在此真空度范围内可以获得了稳定的辉光放电进行焊接和加工。通过改变阴极电压以及选择合适的真空度,实现电子束电流的调节,以满足不同工具加工和焊接需要。[/size][size=16px] (4)通过使用凹面阴极可直接获得直径1~3mm的聚焦点。虽然与很多高端的电子束加工设备相比,它的尺寸似乎太大,但它可用于微零件焊接和表面改性。[/size][size=16px] (5)由于采用微波炉小功率电源和旋片泵,使得整个装置结构简单和非常便宜,同时可用于微零件焊接和低熔点材料表面微结构改性,如不锈钢、铜、铝、氧化铝、氧化硅和玻璃等材料。如果加大功率,可实现更大功率的电子束焊机。[/size][size=16px] 从上述这种真正低压电子束焊接加工技术的特点中可以看出,这种技术对真空度的要求很高,需要在很窄的气压范围内(约5Pa)进行调节以满足不同的焊接加工要求,而相关文献也未涉及气压精密控制的具体内容。为此,本文将针对此问题提出相应的具体解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 波兰学者提出的新型低压电子束焊接加工装置结构如图1所示[1,2],其真空室只有5升的体积。真空系统包括了真空计、机械泵和泄漏阀三部分,进气用了高压氩气气瓶,还配备了一个气阀用来加工完成后导入空气打开腔门。[/size][align=center][size=16px][color=#339999][b][img=01.新型低压电子束焊机原理图,650,409]https://ng1.17img.cn/bbsfiles/images/2023/03/202303270937189274_6985_3221506_3.jpg!w690x435.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 新型低压电子束焊接机结构示意图[/b][/color][/size][/align][size=16px] 从图1所示结构可以看出,所进行的真空度控制应该还是手动调节方式,即固定机械泵抽速(一般是全开状态),然后通过调节泄漏阀的开度来达到不同的真空度,但这种手动控制方式很难保证真空度控制的准确性和稳定性,完全不能按照设计好的不同设定值对真空度进行控制。[/size][size=16px] 为此,本解决方案的目的是进行真空度控制的自动化改造,改造方案的具体结构如图2所示。解决方案是在原有的电容真空计基础上,增加了电动针阀和高精度的真空压力PID控制器,由真空计、电动针阀和真空压力控制器组成一个典型的闭环控制系统。其中各个部件的具体内容如下。[/size][align=center][size=16px][color=#339999][b][img=02.新型低压电子束焊机和真空控制装置原理图,650,401]https://ng1.17img.cn/bbsfiles/images/2023/03/202303270937405037_1825_3221506_3.jpg!w690x426.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 包含真空度自动控制的电子束焊接机结构示意图[/b][/color][/size][/align][size=16px][color=#339999][b]2.1 真空计的选择[/b][/color][/size][size=16px] 方案中选择1Torr量程的薄膜电容真空计覆盖0.05~0.09Torr工作压力范围,这种电容真空计具有0.25%的高精度。[/size][size=16px] 除了高精度之外,这种电容真空计还具有线性的0~10V直流电压信号输出,即真空度测量值与输出电压值呈线性关系,这非常有利于数据采集和处理,更能保证控制的准确性。[/size][size=16px] 对于0.05~0.09Torr的工作压力范围,尽管在理论上也可以选择0.1Torr量程的真空计,但实际真空度控制范围已接近真空计上限,这使得对0.09Torr附近的真空度较难控制,实际真空度稍微过冲就超出真空计量程,这很容易造成真空控制失效。[/size][size=16px][color=#339999][b]2.2 电动针阀[/b][/color][/size][size=16px] 工作压力自动控制的关键技术之一是图1中的泄漏阀要具备电动调节能力,这时的电动调节阀门就相当于一个电动执行器来根据要求调节进气流量的大小。[/size][size=16px] 解决方案是采用电动针阀代替图1中的泄漏阀。电动针阀是一种步进电机驱动的针型阀,阀门位移分辨率可达到12.7um,并具有很小的真空漏率和线性度,可直接用直流0~10V模拟电压进行调节,很适合真空度控制过程中的进气流量调节。[/size][size=16px][color=#339999][b]2.3 超高精度真空压力控制器[/b][/color][/size][size=16px] 对于低压电子束焊接加工装置的真空度控制而言,另一项关键技术就是需要解决超高精度的PID控制问题。如在选择1Torr真空计时,对应的电压输出为0~10V,那在实际测量0.05Torr真空度过程中所对应的电压输出则为0.5V。如果要达到±1%的控制精度,则需要PID真空度控制器具有5mV的测量精度,这是目前绝大多数工业用真空度控制器无法达到的精度要求。[/size][size=16px] 为了在0.05~0.09Torr范围内实现±1%的真空度控制精度,解决方案选用了VPC 2021系列超高精度真空压力控制器。此控制器的主要特点如下:[/size][size=16px] (1)超高性能指标:24位AD、16位DA和0.01%最小输出百分比,同时采用的是双精度浮点运算,这是目前国际上工业用控制器最高的性能指标。[/size][size=16px] (2)多功能:具有程序控制、PID参数自整定、RS485通讯、标准MODBUS通讯协议和多条设定曲线以及多组PID参数存储等功能。[/size][size=16px] (3)丰富的扩展能力:控制器带有远程设定能力,即通过外接可变电位器旋钮实现真空度设定值的手动调节和设定,为现场真空度的随时调节和控制提供了极大便利。[/size][size=16px] (4)配套软件:配套有计算机软件,可通过计算机进行控制器的所有设置和运行,并可直观显示和存储多个过程参数随时间变化的实时曲线,[/size][size=16px] (5)体积小巧:具有常用工业用控制器典型的小巧尺寸(面板尺寸96mm×96mm)。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 在波兰学者提出的低造价低压电子束焊接和加工新技术基础上,本文对此新技术中未涉及到的真空度精密控制技术进行了分析,并提出了实现真空度高精度控制的解决方案。解决方案以及所涉及到的电动针阀和超高精度PID真空压力控制器,经过了大量试验验证考核,并已经在多个领域内得到了广泛应用,技术成熟度很高,可为这种新型电子束焊接和加工技术的推广应用提供有效的技术保障。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] Zawada A, Konarski P. Electron beam generated in low pressure noble gas atmosphere–Compact device construction and applications[J]. 2013.[/size][size=16px][2] Chien C H, Zawada A, Konarski P, et al. Developing a desk-top electron beam micro-machining system in the low-pressure argon atmosphere[J]. Procedia CIRP, 2020, 95: 950-953.[/size][align=center][size=16px][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align]

  • 微激光束焊接中真空控制系统的压力调节解决方案

    微激光束焊接中真空控制系统的压力调节解决方案

    [color=#990000]摘要:本文针对微激光束焊接中真空控制系统的压力调节,介绍了相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、排气电动球阀和双通道高精度PID控制器,并采用上游和下游控制模式可实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000] [size=18px]一、背景介绍[/size][/color]微激光束焊接 (LBW) 也称为微焊接,是通过投射出的微小直径激光光束,产生微观焊缝将不同金属熔合在一起。最近有客户提出定制要求,要求在微激光束焊接的系统中,配备用于精确压力调节的真空控制系统。具体要求是焊接腔室内充入惰性气体,焊接腔室内的绝对气压在10Pa至一个大气压(0.1MPa)的真空范围内精确恒定控制,在任意控制点上的气压波动小于±1%。本文将针对上述客户对微激光束焊接中真空控制系统的压力调节技术要求,提出相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、出气电动球阀和双通道高精度PID控制器,并针对不同真空度量程分别采用上游和下游控制模式实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[size=18px][color=#990000]二、解决方案[/color][/size]微激光束焊接 (LBW) 真空控制系统的压力调节解决方案如下图所示。[align=center][img=微激光束焊接中的真空控制系统,400,555]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201618016926_439_3221506_3.png!w590x819.jpg[/img][/align]由于微激光束焊接所要求的气压调节范围(绝对压力)为10Pa~0.1MPa的真空度,并实现全量程任意设定真空度在恒定过程中的波动率小于±1%,而且还要求对焊接过程中所引起的气压波动进行快速调节并恒定能力,故本解决方案采用两个控制回路来覆盖全量程。第一个控制回路负责控制1kPa~101kPa范围的高气压,采用了1000Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第一通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动球阀,使得焊接室内的气压快速达到设定值并保持恒定。第二个控制回路负责控制10Pa~1kPa范围的低气压,采用了10Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第二通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动针阀,使得焊接室内的气压快速达到设定值并保持恒定。为保证控制精度和稳定性,此解决方案中要求电动针阀和球阀需要具有1秒以内的响应速度,并要求双通道PID控制器具有24位AD和16位DA的高精度。此解决方案已成功得到广泛应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 尿液分析仪在临床应用中的质量控制简要概述

    尿液质量控制的一般情况在常规试验中,虽然尿液分析仪的使用一般不受人为因素的影响,但尿液分析准确与否却受许多因素的影响。这些影响因素可以出现在分析前、中、后三个环节。分析前的质量控制(简称质控)主要包括样品的标签、收集样吕使用的容器和样品收集的时间、尿标本新鲜程度等。一般均应在取样后2小时内完成检测,否则可影响模块上所有检查项目结果的准确性。分析后的质控主要包括参考值范围的认可,判定试验结果是否受药物的干扰和病理物质的影响,报告单结果的书写和报告单回报时间等方面。分格中的质控主要包括化妆品和试带条的准确度、试带条的效期、仪器的校正、仪器操作正确程度和尿液标本中影响因素及处理等方面。

  • 风险评估和风险控制领域

    4.5.31检验检测机构的活动涉及风险评估和风险控制领域时,应建立和保持相应识别、评估、实施的程序。应制定安全管理体系文件,并提出对风险分级、安全计划、安全检查、设施设备要求和管理、危险材料运输、废物处置、应急措施、消防安全、事故报告的管理要求,予以实施。问题1:检验检测机构的活动涉及风险评估和风险控制领域时,应建立和保持相应识别、评估、实施的程序。有不涉及到风险评估和风险控制领域的实验室么?如果不涉及到是否本条款可以不适用!问题2:应制定安全管理体系文件。安全管理体系文件包括的内容就多了,这块一般怎么操作较为完善!问题3:内部风险和外部风险的控制方法有什么好的建议?问题4:环保和安全是否不用再保留程序文件了,统一到这个文件里面管理了!

  • 一般可采取的风险控制措施

    [font=-apple-system, BlinkMacSystemFont, &][size=16px]实验室在对发现的风险点进行风险分析及评价后,应由相关负责人组织制定和实施风险预防和控制措施。[/size][/font][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]针对在管理范畴内可控制的风险[/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=16px],如:化学试剂管理不当、电子天平使用环境不符合要求等,可采用规避的方式进行处理,使风险不再出现在日常实验室活动中。[/size][/font][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]对客观存在的风险[/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=16px],如:新上岗人员缺乏有效监督、对检测标准理解的偏差等,应提出管理和控制措施,并建立和保持管理体系文件化,规范操作和防护,消除已有的风险。[/size][/font][color=#3771bb][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]一般可采取的风险控制措施有:[/size][/font][/b][/color][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]1. 管理策划类措施:[/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=16px]如完善体系文件、更改质量目标、明确责任落实、完善内部制度等;[/size][/font][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]2. 技术资源类措施[/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=16px]:[/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=16px]如完善环境监控设施和仪器设备、细化审批流程、加强自动化和信息化、更改和完善作业指导书、增加人员、设备及空间等资源配置、增加防护性设施、采取有效的隔离措施等;[/size][/font][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]3. 意识教育类措施:[/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=16px]建立或加强内部风险管理意识,如组织或加强相关培训教育等;[/size][/font][b][font=-apple-system, BlinkMacSystemFont, &][size=16px]4. 其他措施:[/size][/font][/b][font=-apple-system, BlinkMacSystemFont, &][size=16px]如建立风险发生的应急处置预案并组织演习活动等。[/size][/font]

  • 危险化学品控制

    危险化学品的操作控制 —— 替代控制、 预防化学品危害最理想的方法是不使用有毒有害和易燃易爆的化学品, 但这一点并不是总能做到, 通常的做法是选用无毒或低毒的化学品替代已有的有毒有害化学品, 选用不可燃化学品替代易燃化学品。危险化学品的操作控制 —— 风通风是控制作业场所中有害气体、 蒸气或粉尘最有效的措施。 借助于有效的通风, 使作业场所空气中的有害气体、 蒸气或粉尘的浓度低于安全浓度, 保证工人的身体健康, 防止火灾、 爆炸事故的发生。

  • 【资料】煤矿开采沉陷防治和控制的技术

    一.沉陷的防治技术途径 沉陷破坏的防治技术途径可以从两方面考虑;(1)对开采沉陷的控制,即通过合理选择采矿方法和工艺、合理布置开采工作面、采取井下充填法、覆岩离层带空间充填等措施,来减少地表下沉,控制地表下沉速度和范围,达到保护地表和地面建、构筑物与耕地的目的。(2)开采沉陷破坏的恢复和整治,运用土地复垦技术和建筑物抗采动变形技术,对开采沉陷破坏的土地进行整治和利用。 1.1.1全部充填开采 在煤炭采出后顶板尚未冒落之前,用固体材料对采空区进行密实充填,使顶板岩层仅产生少量下沉,以减少地表的下沉和变形,达到保护地面建、构筑物或农田的目的。其中水沙充填是充填采煤法中减少地表下沉效果作好的方法,其次是风力充填和矸石自溜充填。但充填采矿法需要专门的充填设备和设施,还需要有充足的充填材料。矿井初期投资大,吨煤成本相应的增加。 1.1.2条带开采 根据煤层和上覆岩层组合条件,按一定的采留比,在被开采的煤层中采出一条,保留一条。由于条带开采仅是部分地采出地下煤炭资源,保留了一部分煤炭以煤柱形支撑上覆岩层。从而减少覆岩移动,控制地表的移动和变形,实现对地面建、构筑物的保护。但该方法采出率低、巷道掘进多,工作面效率低。 1.1.3覆岩离层带充填 根据采空区上方覆岩移动形成三带的岩移特性,在煤炭采出后一定时间间隔内,用钻孔往离层带空间高压注浆,充填,加固离层带空间,将采动的砌体梁结构加固为稳定性较好的连续梁结构,使离层带的下沉空间不再向地表传递,以减少或减缓地表下沉,保护地面建、构筑物或农田。但该技术难度大,再近一步研究。 1.1.4限厚开采 根据矿区地形、水文地质条件和建、构筑物抗变形能力,以不产生地表积水和满足建筑物所要求的保护等级为依据,确定可开采的煤层厚度,开采是仅回采这一厚度的煤,其余各煤层均不开采,以实现减少下沉保护地面建、构筑物及土地的目的。但该技术采出率低,仅在薄煤层中应用有一定的使用价值。 1.1.5协调开采 厚煤层分层开采时,合理设计各工作面的开采间距,相互位置与开采顺序,使开采一个煤层(工作面)所产生的地表变形和开采另一个煤层(工作面)所产生的地表变形相互抵消或抵消一部分,以减少采动引起的地表变形,保护地面建、构筑物。但该技术要保持一定的错距,因此组织生产难度较大。我国尚未开展这种工业性实验。 1.1.6 “采-注-采“三步法开采 充分利用覆岩结构对岩层移动的控制作用,应用荷载置换的原理,进行小条带开采-注浆充填固结采空区-剩余条带开采的三步法开采,有效的对岩层移动和地表沉陷的控制,解决了大面积开采地表沉陷控制、提高了煤炭的回采率,保护了地面建、构筑物,但也存在工艺复杂,成本较大等缺点。 二.土地复垦技术 2.2.1煤矸石充填复垦和粉煤灰充填复垦 (1)地下开采产生的大量煤矸石运到地表排放,既占地有污染环境。利用煤矸石作为充填材料,即可使采煤破坏的土地得到恢复,又能减少矸石的额占地。 (2)利用电厂的废弃物粉煤灰充填沉陷区复垦土地,可以化两害(沉陷区、粉煤灰)为三利(电厂、煤矿、农民三放面有利)。 2.2.2平地和修建梯田复垦 对积水沉陷区、潜水位较低的边坡地带,可采取平整土地、改造成梯田的方法复垦利用。梯田的水平宽度和梯坎高度,应根据地面坡度抖缓、土层薄厚、工程量大小、作物种类、耕种机械化程度综合考虑确定,田间坡度的大小和坡向,应根据原始坡度的大小、有无灌溉条件、复垦土地用途来决定。 2.2.3输排法复垦 开挖排水渠道,将沉陷区浅积水引入河流、湖泊、坑塘、水库等,作为蓄水用,是沉陷水淹地重新得到耕种。 2.2.4深挖垫浅复垦 运用人工或机械方法,将局部积水或季节性积水沉陷区下沉大区域挖深,适合养鱼、蓄水灌溉等,用挖出的泥土充填开采沉陷较小的地区,使其成为可种植的耕地。 2.2.5积水区综合利用技术 对地面大面积积水和积水深度很大的沉陷区,科学的综合利用,发展网箱养鱼、围栏养鱼、蓄洪作灌溉水源、建造水上公园等。 2.2.6固体微生物复垦技术 煤矸石添加适量微生物活化剂,经过一个植物生长期(约6个月)就可建立起稳固的植物生长层,形成熟化的土壤。 三. 结束语 开采沉陷是造成矿区环境地质灾害的直接原因,有效控制和减轻地面沉陷程度是避免开采沉陷环境灾害的基本途径。充填采煤法是减少地表下沉效果作好的方法,近年在山东有些矿区正在做膏体充填的实验,这种方法可使采场没有或减少垮落带,能更好的减少地表下沉。但它的技术含量很大,输送倍线大,管路易阻塞,如果成功那将是煤矿开采的一次技术革命。 开采沉陷对土地资源的影响和破坏是难以避免的,所以各个煤矿应该应用根据自己的实际情况和条件合理应用防止和控制开采沉陷技术和土地复垦技术,矿区生态复垦技术等多学科知识,对地表塌陷进行综合治理和开发利用,才能更好地保护地表、矿区的环境、农民的利益。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制