当前位置: 仪器信息网 > 行业主题 > >

电化学探头

仪器信息网电化学探头专题为您提供2024年最新电化学探头价格报价、厂家品牌的相关信息, 包括电化学探头参数、型号等,不管是国产,还是进口品牌的电化学探头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学探头相关的耗材配件、试剂标物,还有电化学探头相关的最新资讯、资料,以及电化学探头相关的解决方案。

电化学探头相关的资讯

  • 2010年上半年上市仪器新产品:电化学仪器类
    电化学分析是现代仪器分析中的一个重要组成部分,由于电化学分析法具有快速、灵敏、准确、所用仪器结构简单及使用方便等一系列特点,因而在科学研究、现代化学工业、生物与药物分析、环境监测等领域发挥着重要作用。  电化学分析仪器可以直接或间接地测量由化学传感器(电极)将化学量转换成的电信号,如电流、电压、电位、电导、电量等各种物理量,从而来研究、确定参与化学反应的物质的量。电化学的研究和技术发展,在一定程度上和电化学仪器的发展密切相关,它们是相互促进,不可分割的有机整体。以下将就2010年上半年上市的电化学新品做一简单介绍。  法国 Bio-logic公司最新推出的 SP-200便携式电化学工作站改变了以前对电化学工作站放置位置的限制,可以在条件比较恶劣的环境中进行电化学测试。  美国阿美特克新推出的电化学综合测试系统应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。  赛默飞世尔科技新推出的Orion Star LogR pH测量仪,无需另外的温度电极,即可进行pH温度补偿。  上海精科推出的PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度。  上海纳锘仪器推出的全新系列绿色pH电极采用了绿色环保材料完全符合RoHS指令规定。  英国Uniscan公司3100型多通道恒电位仪功率放大器使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。  美国哈希公司推出的MP测定仪是一款不需要使用探头的电化学测定仪,能够快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。  法国 Bio-logic SP-200便携式电化学工作站  SP-200便携式电化学工作站  SP-200是一台便携式的电化学工作站,其可以在条件比较恶劣的环境中进行电化学测试,允许此设备用于接地池、高压设备和手套室设备、现场腐蚀实验也可以应用,弥补了以前对电化学工作站放置位置的限制。  美国阿美特克电化学综合测试系统  Solartron Modulab(电化学综合测试系统)  Solartron Modulab最灵活方便的模块化电化学综合测试系统,仪器虽然小型化但是仍然能广泛的应用于电化学测试的各个领域。  Solartron Modulab的恒电位仪和恒电流仪中应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。采用目前最高效的频率响应分析仪,其频率响应范围从10μHz -1 MHz,保证测量过程的精度和准确度。  Solartron Modulab采用Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。这个特别适用于低频分析和测量随时间变化的不稳定的电池。  赛默飞世尔科技Orion Star LogR pH测量仪Orion Star LogR pH测量仪  新型Orion Star LogR 测量系列仪表采用独特的LogR 技术,配合专门的pH电极,通过电极膜电阻测量样品温度,提供了一种新的电极测量方法。测量仪将显示膜电阻值,用于电极故障判断,节省故障排除时间。使用Orion Star LogR 测量仪,无需另外的温度电极,即可进行pH温度补偿。  Orion Star LogR 测量仪目前有两种型号:一种用于pH 测量,另一种用于pH 和离子浓度测量。两种型号均可测量毫伏,温度和电阻(LogR 功能开启时)。  Orion Star LogR 测量仪将替代目前的Thermo Scientific Orion PerpHecT LogR™ 测量仪320, 350和370系列。Orion Star LogR系列测量仪改进了LogR校正程序,具有更多的优势和pH校正点,并能够显示膜电阻。  上海精科PHSJ-5型实验室pH计  PHSJ-5型实验室pH计  PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度,能满足用户精密测量水溶液的pH值和电位mV值。该仪器主要有五个特点:  一是触摸式大屏幕液晶显示屏,全中文操作界面,使用方便   二是可选择多种pH标准缓冲溶液标定仪器,利于用户建立自己的标液组   三是具有自动识别五种标准溶液功能   四是自动和手动温度补偿、自动校准、自动计算电极百分理论斜率   五是能储存、删除、打印、查阅,最多可储存200套测量数据,并有RS-232通讯功能。  上海纳锘仪器全新系列绿色pH电极  GS9106BNWP绿色pH电极  Orion推出全新电极—— 完全符合RoHS指令的全新系列pH电极。并采用了更环保的包装材料,堪称是真正的“绿色电极”。  英国Uniscan公司3100型恒电位仪功率放大器  3100型恒电位仪功率放大器  3100型多通道恒电位仪功率放大器是一款新一代的多通道高电流仪器,使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。  3100 型多通道恒电位仪功率放大器具有完全的直流性能。理想应用于宽广范围的电化学应用,其多通道性能允许多种测试速率和比传统设计更高的工作通量。  3100的创新的外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。  美国哈希公司MP测定仪  MP测定仪  不需要使用探头的电化学测定仪,快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。操作极其简便,只需两步即可完成测量:1. 灌满采样量杯、2. 按键读数。无需频繁校准,两周一次到每个月一次,并且校准简单,只需按一个按键,然后将仪器调节为标准值即可。高防护等级,IP67,防水防尘,可漂浮,浸没在水下1米处也完全可以操作。 了解更多电化学仪器请访问仪器信息网电化学仪器专场  了解更多新品请访问仪器信息网新品栏目
  • ITT Analytics推出电化学环境测试仪器系列新品——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访ITT Analytics中国区市场部经理刘炳灶先生的视频。  ITT Analytics是一家全球化的专业从事电化学分析领域的仪器供应商,旗下拥有美国Pinnacle、德国WTW、德国SIA、法国Secomam、德国Ebro、英国B+S、德国Sensortechnik Meinsberg、美国OI、美国Royce、美国Global Water以及挪威AADI等各行业非凡影响力的品牌。  在本届BCEIA展会上,ITT Analytics中国区市场部经理刘炳灶先生向我们重点介绍了德国WTW公司新款手持式测试仪(包括各种最新的数字探头),IQ Sensor Net在线多参数监测仪,德国Ebro公司EBI 11型温度记录器,德国SI Analytics公司新款滴定仪等几款电化学环境测试仪器新品。  具体内容请点击查看采访视频。
  • 【综述】电化学催化剂的透射电子显微学研究综述
    p  span style="color: rgb(112, 48, 160) "strong前言/strong/span/pp  能源问题一直是困扰人类生存发展的终极问题之一,随着时代的进步,不断革新的科学技术为解决这一问题带来了曙光。其中电催化是目前有效的手段之一,涉及诸多新能源和环境保护的研究方向,包括燃料电池、水裂解、制氢、二氧化碳资源化利用等。其中,研究电化学催化剂的微观结构,并监测电催化剂在电催化反应过程中的结构演变规律,对于设计新材料、开发新能源具有重要的意义。/pp  电子显微镜作为研究学者的“电子眼”,不但可以直接观察固体催化剂的形貌,而且可以在原子尺度提供催化剂的精细结构、化学信息和电子信息,对新型高效催化剂的发现、反应过程中催化剂结构演变及结构和性能之间关系的研究起到了重要作用。因此,电子显微学方法作为一种重要的表征技术在催化化学的发展中扮演着至关重要的角色。在过去20年中,电子显微学在电催化领域内也得到了广泛的应用。最近中国科学院金属研究所张炳森研究员课题组对电化学催化剂的透射电子显微学研究进行了总结,并指出了存在的挑战和未来发展方向。/pp strong span style="color: rgb(112, 48, 160) "1. 透射电子显微学方法对电化学催化剂的基本表征/span/strong/pp  与材料研究中其它表征技术(如:X射线衍射、X射线光电子能谱、Raman光谱等)相比,透射电子显微镜具有很高的空间分辨率,可以在纳米尺度甚至是原子尺度下对催化材料结构进行研究,极大地促进了催化化学的发展。透射电镜目前已经发展为综合型分析电镜,从催化剂的微观结构,到化学组成,以及电子结构等信息都可以利用透射电镜分析获得。/pp strong 1.1电化学催化剂微观结构表征/strong/pp  电化学催化剂的微观结构,如:颗粒形貌、尺寸、暴露晶面、表界面结构等,对催化剂的性能有非常重要的影响,利用高分辨电子显微术(HRTEM)可以获得这些信息。值得注意的是,在负载型金属催化剂中,很多情况中会有很小的纳米颗粒和原子团簇存在,利用高分辨透射电子显微术(相位衬度成像)观察时可能会忽略这些信息,而利用高角环形暗场-扫描透射电子显微术(HAADF-STEM,Z衬度像)可以很容易地观察到这些颗粒的存在。目前,亚埃尺度分辨的球差校正透射电子显微镜的发展,实现了更好地在原子尺度下观察催化剂表界面结构,同时也促进了单原子电催化剂的发展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f0f6b75a-dca5-4054-932d-4946fad9e0f5.jpg" title="1.jpg"//pp style="text-align: center "  strong图1. 纳米颗粒的HRTEM图片:(a)多面体/strong/ppstrongPtNix单晶纳米颗粒,(b,c)多晶PtNix纳米颗粒,(d)核壳结构Pt/NiO纳米线,(e)PtNi合金纳米线,(f)锯齿状的Pt纳米线。(a,c)图中右下角插图分别是对应PtNix纳米颗粒的形状模型图和原子模型图,(a-c,f)图中右上角插图为对应纳米颗粒的傅立叶变换图。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/da1074c4-9a68-49ef-ad5c-007b7e4e4f96.jpg" title="2.jpg"//pp  strong图2.(a)Pt/[TaOPO4/VC]-NHT的TEM图片,(b)相同区域的HAADF-STEM图片 (c,d)球差校正透射电子显微镜获得的高分辨HAADF-STEM图片:(c)核壳结构PtPb/Pt纳米片和(d)MoS2负载单原子Pt(左下角插图是相应的构型模拟图)。/strong/pp strong 1.2电化学催化剂的化学成分及电子结构表征/strong/pp  双金属及多元金属催化剂是电催化中常用的催化剂,其化学组成及元素的分布对于催化剂的性能也有着至关重要的影响。X射线能谱(EDS)分析不仅可以对电催化剂的化学成分进行半定量分析,同时利用面扫和线扫,也可以得到相应元素在催化剂颗粒中的分布情况。除EDS表征手段,电子能量损失谱(EELS)对催化剂中的元素组分进行定性、定量和元素分布分析等也具有独特的优势,尤其在分析B、O、N等轻元素时,与EDS分析相比,会得到更精确的信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/45b9bfc5-c80a-4c25-b99d-f4a411601a16.jpg" title="3.jpg"//pp  br//pp strong 图3.(a)PtNix纳米颗粒的HAADF-STEM图和EDS面扫图,(b)核壳结构Pt/NiO、PtNi合金、锯齿状Pt纳米线的EDS线扫曲线(插图中绿线代表对应的线扫轨迹),(c)100 ?C水热条件下得到的B/P共掺杂有序介孔碳的TEM图片和B、C、O、P元素的能量过滤TEM图片。/strong/pp  影响电化学催化剂催化性能的另一个重要因素是催化剂中原子的电子结构。EELS除了可以进行成分分析,其另一个重要且常用的功能是分析催化剂中原子的电子结构,从而可以得到相应元素的价态、配位情况等,进而获取相关信息,例如:负载型金属催化剂中金属-载体间电子相互作用,纳米碳材料中掺杂原子的种类及电子结构等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/bcafabc9-8776-44d7-b3c5-0e6e40886088.jpg" title="4.jpg"//pp  strong图4.(a,b)Pt-CeOx样品中Ce-M45边和O-K边的电子能量损失谱,(c,d)N-掺杂石墨烯样品中N-K边和C-K边的电子能量损失谱,(e,f)三种B-掺杂类洋葱碳样品中B-K边和C-K边的电子能量损失谱。/strong/pp span style="color: rgb(112, 48, 160) "strong 2. “相同位置-电子显微学”方法(IL-TEM)用于电化学测试条件下电催化剂的结构演变研究/strong/span/ppstrong  2.1 IL-TEM方法简介以及其在商业Pt/C电催化剂稳定性研究中的应用/strong/pp  该方法通过将电催化剂分散在坐标微栅上,在透射电镜下准确记录反应前某一具体位置催化剂的微结构信息 随后将携带样品的微栅放到工作电极上,保证接触良好的前提下,将该工作电极置于反应环境中 待反应结束,将坐标微栅从反应体系中取出,并在透射电镜中根据具体的坐标定位追踪反应前记录的位置。通过反应前后、或反应中各个阶段相同位置催化剂结构对比和统计分析,揭示催化剂在反应条件下的结构演变规律,并结合性能测试结果精确阐述构效关系。IL-TEM方法最初应用于电化学反应体系,例如:德国马普Mayrhofer组和西班牙Feliu组等利用此方法研究了铂基催化剂在电化学处理过程中的微结构演变,如负载铂纳米颗粒的脱落、溶解、迁移、团聚长大以及碳载体的腐蚀等特征行为。通过对负载活性组分(纳米颗粒)以及载体(活性炭)结构演变的同时观察,并关联其性能,揭示了不同反应条件下催化剂的失活机制问题。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/571bfe7a-296b-4eef-a73c-e9eb15528350.jpg" title="5.jpg"//pp  strong图5.(a, b)IL-TEM方法在电化学三电极测试体系中的应用示意图,(c-f)利用坐标微栅在透射电镜下通过依次放大追踪相同位置催化剂的微结构信息。/strong/ppstrong  2.2 IL-TEM方法在电化学新材料体系中的应用/strong/pp  各类新型纳米碳材料,如纳米碳球、碳纳米管、石墨烯等,具有优异的导电性、耐酸碱性以及较高的比表面积和丰富的孔结构等特点在能源转化领域得到了广泛关注。其本身通过杂原子改性作为氧还原和二氧化碳还原反应电催化剂被大量研究。除此以外,利用表面改性纳米碳作为电催化剂载体调控活性组分与碳载体间相互作用也是近几年新兴的研究热点之一,通过使用IL-TEM方法跟踪负载纳米粒子在改性碳载体表面的迁移、团聚和溶解等行为直观揭示不同表面修饰对电催化剂的稳定作用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f57af8d7-c227-4571-8e0c-ed72ae77f569.jpg" title="6.jpg"//pp  strong图6. IL-TEM方法用于氮掺杂碳纳米球负载Pt催化剂在氧还原反应(左上)、氧官能团化和氮掺杂改性碳纳米管负载Pt催化剂在甲醇电氧化反应(左下)、及化学接枝法改性石墨烯负载Pt催化剂在氧还原反应(右)中的稳定性研究。/strong/ppstrong  2.3 IL-TEM方法拓展应用于传统液相催化反应/strong/pp  目前,IL-TEM方法已成功应用于电化学体系,直观揭示了不同反应条件中催化剂结构演变,以及碳材料载体表面性质对于负载金属电催化剂的稳定性影响及失活机制。而在环境电镜或原位透射样品杆中难以实现的传统液相催化反应体系中,IL-TEM方法也具有独特的优势。金属研究所张炳森、苏党生课题组在2016年底报道了此方法在液相催化反应(芳硝基化合物选择性加氢)中的应用,也是此方法第一次应用在传统液相催化反应体系中,通过研究反应条件下相同位置催化剂的结构演变过程,直观证明了氮物种的引入对负载的铂纳米颗粒的稳定性起重要作用,实现了铂-碳相互作用调节提升碳基负载型催化剂催化性能。该方法为精确研究液相催化反应中催化剂的构效关系,尤其是复杂液相催化反应体系,如固液、气液固等三相共存反应体系,探索复杂液相环境中催化反应活性中心的诱导产生、演变等行为规律提供了很好的手段,并更好地为新型高效催化剂的开发提供指导。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/64e15822-6ae3-433a-be3c-a0a0ff5988f2.jpg" title="7.jpg"//pp strong 图7. IL-TEM方法在液相反应体系中的应用示意图(左上) 氧官能团化以及氮掺杂改性碳纳米管负载高分散铂纳米粒子催化剂相同位置在反应前后的透射电镜对比图(左下) 氮掺杂碳纳米管负载高分散铂纳米粒子催化剂相同位置在不同反应时间的HAADF-STEM图(右图)。/strong/ppstrong  /strongspan style="color: rgb(112, 48, 160) "strong3. 原位电化学样品杆的应用前景/strong/span/pp  常规透射电镜表征,样品所处的环境是真空和室温,与实际电催化剂所处的液体环境差距较大,并且是对反应前后进行随机取样表征,不够直观准确且存在严重的滞后效应,因此需要开展原位表征。电化学原位透射样品台的出现为实时观察服役环境下电催化剂的微结构以及结构演变提供了有效研究手段,并通过与电化学工作站联用可以得到实时性能数据,为揭示电催化反应黑匣子提供重要参考依据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9dc78db6-8ef1-4d37-b32f-52ad3873eddb.jpg" title="8.jpg"//pp  strong图8.(a, b)电化学原位透射样品杆示意图,(c, d)电化学测试实时数据。/strong/ppstrong /strongspan style="color: rgb(112, 48, 160) "strong 4. 总结与展望/strong/span/pp  先进电子显微方法(分析型电子显微方法和高分辨电子显微方法)的发展提供了从微观尺度认识和理解电化学纳米催化剂结构特征的有效手段。该文通过大量研究工作全面系统地综述了透射电子显微术在揭示电催化剂纳米尺度形貌、原子尺度精细结构、化学组成以及电子结构等信息方面的重要作用,对新型高效电催化剂的设计研发、反应过程中的催化剂结构演变及结构性能间关系等的研究具有指导意义。“相同位置-电子显微学”方法的引入对于研究真实反应条件下催化剂的结构动态行为特征,揭示其稳定性和失活机理等方面提供了更直观准确的研究手段。同时,前沿性研究中电化学原位透射样品台的介绍,展望了将常规透射电镜对电催化剂的表征转变为在线可视化的电化学微型实验室的研究趋势 通过在电子显微镜中建立微纳米反应室,获取真实反应条件下催化剂活性位结构特征,使其成为电化学催化剂的创新工具。/pp style="text-align: center "---------------------------------------------------------------------br//pp  Liyun Zhang,Wen Shi,Bingsen Zhang, A review of electrocatalyst characterization by transmission electron microscopy, Journal of Energy Chemistry,DOI:10.1016/j.jechem.2017.10.016/p
  • 哈希新品Pocket Pro / Pro+ 电化学测试笔上市
    可以放进口袋的水质测量仪器,随拿随走随测。机身小巧,使用方便,数据可靠。产品分Pro/Pro+两个系列,Pro+系列可提供替换探头、背光显示及多参数测定等功能。适用于各类需要快速了解水质的应用场景。 满足日常饮用水测试、养鱼水、泳池水、温泉spa、咖啡\泡茶水等快速检测。水质数据即插即得,是您装在口袋里的水质实验室。 - 可测量参数:Pocket Pro和Pocket Pro+的多种水质检测笔可快速检测水质pH / ORP / TDS / 电导率 / 盐度 / 温度- 仪器特点:● 直接测量,无需换算Pocket Pro 和 Pocket Pro+水质检测笔可广泛应用于水质电化学参数快速检测。Pro/Pro+系列的 12 种水质检测笔可提供包括 pH、ORP、电导率、TDS、盐度和温度在内的简单易用且便携的解决方案,直接读数,无需换算。● 可靠的结果校准步骤简单,水质检测笔内置 pH 测定仪性能诊断功能,随时校准,保持仪器的准确测试。● 节省时间和成本水质检测笔可更换AAA电池,易使用样品杯,使得维护和测量更为简单。● 精巧便携,易于使用水质检测笔采用口袋式设计,配备LCD大屏,便携易用;Pro+型号更有背光设置和可替换传感器。
  • 探索砷(III)电化学检测影响机制中的进展
    近期,中国科学院合肥物质科学研究院智能机械研究所仿生功能材料与传感器件研究中心&ldquo 973&rdquo 首席科学家刘锦淮研究员和中科院&ldquo 引进海外杰出人才&rdquo 黄行九研究员领导的课题组研究人员在探索砷(III)电化学检测影响机制上实现新突破。  长期以来,实现复杂环境中砷(III)稳定高效的电化学检测是困难且重要的问题。因其他离子如汞(II)、铜(II)和天然有机物等产生的干扰,一直是研究人员特别关注的问题。而此前的诸多报道对干扰的影响机制研究甚少,缺乏理论及实验依据。  合肥研究院智能所研究人员从实际应用的角度出发,依托内蒙古托 克托县兴旺庄村地下水为背景,借助于光谱法深入研究了腐植酸和铁(III)对砷(III)的电化学信号的影响。研究结果表明,腐植酸可以和水中砷 (III)发生络合,从而影响到检测信号;而铁 (III)的存在可以更强的作用力与腐殖酸结合,消除腐植酸与金电极或者As(III)的结合,从而实现砷(III)稳定高效的电化学检测。研究论文发表 在环境类期刊《危险材料》上(J. Hazard. Mater. 2014, 267, 153)。评审人认为&ldquo 相对于砷(III)的检测,该工作对干扰物对电化学信号的影响提出了比较深刻的理解&rdquo ;&ldquo 该工作具有新颖性,并且对消除这些对砷分 析产生影响的腐植酸的新的可能性带来一种思路&rdquo 。  近几年来,该课题组研究人员一直致力于探索纳米材料在电分析行为与吸附性能的相关性。 对此,他们利用氨基功能化氧化石墨烯和多孔双金属氧化物(氧化铈-氧化锆)纳米微球探究了水中重金属如砷(III)、砷(V)、钴(II)的吸附性能。相 关研究深入论证了表面官能团对去除重金属的重要作用。该研究成果也以全文发表在《危险材料》上(J. Hazard. Mater. 2013, 260, 498;J. Hazard. Mater. 2014, 270, 1)。  以上研究工作得到了国家重大科学研究计划项目、中科院&ldquo 引进海外杰出人才&rdquo 百人计划项目以及合肥物质科学技术中心方向项目等的支持。
  • 阿美特克发布电化学柔性探针新技术
    p  strong仪器信息网讯/strong 2016年6月14日,阿美特克集团科学仪器部在北京分公司召开“VersaSCAN微区电化学技术交流会”,并在此交流会上发布新技术——扫描电化学显微镜(SECM)柔性探针技术,仪器信息网作为特邀媒体参加了此次交流会。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/df310fa7-7498-4447-9824-d8d13bc1311e.jpg" title="现场.jpg"//pp style="text-align: center "strong交流会现场/strong/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201606/insimg/23d87ea2-0dc1-4803-b034-50c862613922.jpg" title="john.jpg"//strong/pp style="text-align: center "strong阿美特克公司科学仪器部微区电化学产品经理John Harper 博士/strong/pp  John Harper 博士为与会者详细介绍了此次发布的新技术。此次发布的扫描电化学显微镜柔性探针技术专用于“普林斯顿应用研究VersaScan”产品的柔性接触和等距测试,是由瑞士洛桑联邦理工学院的物理和电分析化学实验室(LEPA-EPFL)Hubert Girault教授课题组经数十年的研究而实现的。阿美特克科学仪器部与该实验室签署了独家合作协议,集成并销售其柔性探针技术。柔性探针使得广大研究者可同时进行等距离和等高模式的SECM测试,可分离3D表面电化学活性响应图中表面物理形貌和电化学响应的贡献。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/8b8cff7a-e52b-499e-a9c8-7301f57e1cc4.jpg" title="未标题-1.jpg"//pp style="text-align: center "strong柔性探针/strongbr//pp  与市场上常用的硬性探针相比,柔性探针具有以下优势:1)柔性探针等距SECM无需额外增加昂贵的控制与测量硬件 2)测量时无需为达到控制距离而预先测试样品表面的地形地貌 3)探针设计为与样品进行柔性接触,当与样品表面接触时,探针会发生柔性弯曲,避免探针自身被划伤以及探针对样品表面的损害 4)常规技术中硬性探针和样品直接接触会导致表面易损样品被损坏,如人体组织等。而柔性探针技术接触样品的接触力仅为常规硬接触探针的千分之一。/pp  未来,阿美特克集团科学仪器部与LEPA-EPFL还将共同致力于实现其它探针材料与技术的商业化,希望SECM柔性探针技术能帮助SECM成为标准电化学测试利器。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/2e21944f-8e7c-4060-bf35-cf3d26b32e96.jpg" title="颁奖.jpg"//pp style="text-align: center "strong阿美特克公司科学仪器部亚洲区经理杨琦女士(左)和浙江大学刘艳华博士(右)/strong/pp  为鼓励更多的用户致力于微区电化学的研究,此次交流会特设“普林斯顿应用研究微区电化学优秀论文奖”。本次奖项颁发给了浙江大学刘艳华博士,以表彰其使用VersaScan微区电化学测试系统在涂装材料研究方面所作出的贡献,由阿美特克公司科学仪器部亚洲区经理杨琦女士为其颁奖。/pp  随后的技术交流过程中,John Harper 博士、刘艳华博士和厦门大学林昌健教授针对微区电化学的技术和应用为大家进行了分享。/pp  VersaScan微区电化学测试系统是一个模块化配置的系统,可实现现今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试,包括扫描电化学显微镜、扫描振动电极测试、扫描开尔文探针测试、微区电化学阻抗测试、扫描电解液微滴测试、非触式光学微区形貌测试等。此次发布的柔性探针技术主要针对扫描电化学显微镜,目前阿美特克可提供有效直径15um的柔性碳探针。John Harper 博士还重点介绍了柔性探针技术的应用案例,包括癌细胞成像和黑色素瘤的分期变化(如皮肤癌)、电子应用-电沉积和成像、电催化等。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/42c2696e-55a0-4b85-a413-b27b8d2fcd46.jpg" title="刘.jpg"//pp style="text-align: center "strong浙江大学刘艳华博士/strong/pp  刘艳华博士介绍了扫描振动电极测试技术在涂层金属腐蚀研究中的应用。刘博士主要介绍了两项工作:一是采用电沉积技术合成了负载缓蚀剂的超疏水二氧化硅薄膜 二是构建了基于硅烷修饰的E-Sio2薄膜和环氧树脂的新型防护体系。在此两项工作中均利用了扫描振动电极测试技术来表征其微区耐腐蚀性能,与其它表征手段结果均有较好的吻合度。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201606/insimg/57ccfb9f-0203-43e8-9257-ca5e1f843bb5.jpg" title="林.jpg"//pp style="text-align: center "strong厦门大学林昌健教授/strongbr//pp  据了解,林昌健教授自1979年开始研究微区电化学技术,至今已有37年。林教授认为微区电化学之所以能发展到今天的水平,一是科研需求,越来越多的科研人员应用此技术使其成为热门研究领域 二是科技发展,科技水平的发展也使微区电化学技术有了显著的进步。未来,微区电化学技术发展很重要的一方面就是探针技术的发展。林教授重点介绍了其团队开发的新型探针。林教授发现,在空间分辨率足够高的情况下,除电流、电压信号外, pH值和氯离子浓度也可以很好的表征局部腐蚀程度,故其团队开发了可测量pH值和氯离子浓度的探针。未来此探针有望集成到VersaScan微区电化学测试系统上。/pp style="text-align: right "(编辑:李学雷)br//p
  • 第一届原位电化学显微分析论坛在厦门成功召开
    --蔡司携手超新芯发布创新原位液体电化学显微解决方案2023年4月6日,由中国化学会电化学专业委员会会刊《电化学》、蔡司显微镜与超新芯科技公司联合举办的第一届原位电化学显微分析论坛于厦门成功召开。本次论坛以“探微寻真‘液’视界”为主题,聚焦电化学与新兴的高时空分辨原位显微技术的结合。中科院院士、《电化学》期刊主编、厦门大学化学化工学院孙世刚教授,福建省化学会理事长、《电化学》期刊常务副主编、厦门大学化学化工学院林昌健教授,蔡司大中华区副总裁、显微镜事业部负责人张育薪博士,蔡司显微镜事业部材料科研解决方案总监黄铭刚先生,超新芯(CHIPNOVA)创始人、厦门大学化学化工学院廖洪钢教授与现场来自全国各地的电化学研究领域杰出青年学者共同探讨电化学显微分析研究创新成果与前沿技术。会上,蔡司显微镜携手超新芯(CHIPNOVA)发布了创新型原位液体电化学显微解决方案。此次双方合作,将定制化的原位液体电化学系统,与场发射扫描电镜集成,研发出兼具高品质成像和先进分析功能的原位液体电化学扫描电镜解决方案。该方案克服了液相密封安全性、液相对电子束的成像干扰、电学测量精准性、液相流控稳定性等方面的局限,实现了样品在液氛中电化学反应过程的实时动态高分辨表征,填补了电子显微领域原位电化学工况表征应用的空白。孙世刚院士表示,电化学是达成“双碳”目标的重要支撑学科,发展新能源最快的两大方向是储能和新能源汽车,这对电化学来说是一个很大的黄金时期。廖洪钢教授团队发展的方法,通过自己设计的芯片反应池和伺服系统,引入热场、流体场、电场等,不仅可以帮助我们认识电化学反应过程中的微观结构变化,还可以看到反应过程、传递过程,对发展电化学体系及力学、材料等都有非常重要的推进作用。希望大家以本次合作为契机,进一步推动国内基础研究,与产业和仪器公司密切合作,共同发展中国原创的新技术和方法,为全球的新能源产业发展贡献中国方案。林昌健教授表示,电化学作为百年发展的学科,随着新能源、双碳目标、芯片制造等高新科技的紧迫需求和国家战略意义,电化学迎来新一轮的黄金发展。对电化学过程的原位显微分析将进一步促进电化学的发展。张育薪博士表示,此次蔡司与超新芯的强强联合是蔡司中国本土化创新战略的落地,也是蔡司与国内新兴前沿技术的又一次深度合作,相信此次合作一定能促进海内外先进技术的融合,服务好国内用户的同时推向全球,惠及更多的国内外科研人员。 廖洪钢教授表示,经过10余年来不断的迭代提升,超新芯的原位显微设备已经覆盖液体、气体、力学、加热、冷冻五大系列,是一家原位显微领域全链条研究的创新科研公司。超新芯此次与蔡司合作,将充分利用双方在研发、技术、市场等各自优势领域的资源,将该技术推向全球,力争为更多电化学研究领域的用户提供专业服务,在高端科研仪器领域贡献中国力量。会上,与会人员围绕科研和产业发展需求进行了深入的交流和探讨。谷林、廖洪钢、曾志远、王得丽、王翀、王宇、袁一斐、王贤浩等专家分别介绍了钠电、锂电相关微观结构与电化学性能的关系,铂基、钯基等金属化合物在催化领域的新应用,电镀铜技术在芯片等行业的最新进展与挑战等,与会学者并对电化学技术在相关领域的应用前景进行了热烈的讨论。 本次论坛为电化学领域的资深专家、青年学者与仪器开发企业搭建了良好的交流平台,对深化相关领域产学研深入交流与合作,推动电化学学科更好更快地发展具有重要意义。【关于《电化学》期刊】1995年由厦门大学田昭武院士创办,现任主编为厦门大学孙世刚院士。《电化学》期刊是中国化学会电化学专业委员会会刊,由中国科协主管,中国化学会与厦门大学共同主办,是中国第一个、也是唯一的融基础理论研究与技术应用为一体的电化学专业学术期刊。【关于蔡司和蔡司显微镜】蔡司是全球光学和光电领域的先锋,致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。蔡司显微镜作为一家全套解决方案提供者,产品涵盖光学显微镜、电子显微镜、X射线显微镜以及成像和分析软件等完整产品线。蔡司通过这些解决方案,为生命科学、医学诊断、材料研究和工业等领域提供全方位、高品质的技术与服务。 在一百多年的时间里,蔡司共协助36位科学家站上诺贝尔奖的领奖台,领域涉及化学、物理学、生理学和医学等多个方面,促进了现代科学的进步。【关于超新芯(CHIPNOVA)】超新芯(CHIPNOVA)是早期原位芯片技术开发研究者、拥有MEMS芯片制造和原位电镜方面的资深团队,10余年来技术不断迭代升级,在电镜中实现了液、气体微环境引入及光、电、力、热等外场控制与高时空分辨显微研究。相关系统在材料、能源、环境、化学、生物等领域广泛应用,推动了相关领域的科技进步。
  • Gamry电化学公司参加第十八届全国固态离子学学术会议 暨国际电化学储能技术论坛
    第18届全国固态离子学学术会议于2016年11月3日~11月7日在广西壮族自治区桂林市举行。此次会议由中国硅酸盐学会固态离子学分会主办,广西师范大学承办。这是中国固态离子界学者的一次盛会,反映了我国在固态离子学领域基础研究和应用研究方面的最新进展与成果,探讨相关学科的最新发展趋势。内容包括固态离子材料及器件的最新成果,涵盖储能材料与器件、电化学传感器等研究领域。 美国Gamry电化学仪器公司和其合作伙伴广州普凡科学仪器有限公司作为本次会议的主要赞助商参加了本次会议,与参会代表就新型储能电池技术、能源材料与技术、离子导体及传感器体系中的离子输运等方面的新技术和新进展展开了广泛的讨论。美国Gamry电化学仪器公司目前在上海设有技术支持总部。 在本次会议上,Gamry向各位电化学储能技术方面的同行展示了适用于能源领域使用的多通道电化学工作站系统。Gamry通过引进接口电源集线器(IPH)改变了关于多通道恒电位仪的传统思维。IPH将台单独仪器,甚至是不同型号的仪器组合起来。每台仪器可单独使用也可作为一个整体来控制,这样既灵活方便,又降低了传统插板式多通道电化学工作站的固有高本体噪声。 此外,Gamry新推出Interface 5000系列电化学工作站也受到了广大与会人员的关注。Interface 5000系列电化学工作站具有测试电流大,抗噪声性能好等特点,最大电流达到5A,更适合于功率略大的能量转换体系测试使用。 Gamry也推出21电极的大电流工作站Reference 3000 AE, 多台联用可以扩展进行100A以上的电池测试需求,同时又保持低阻抗微欧数量级的准确测量。为了更好表征能源系统的电化学过程, GAMRY也提供系列旋转圆盘电极系统,石英晶体微天平系统,能源测试系统,温控系统和电化学动力学解析软件DigiElch软件。刚瑞(上海)商务信息咨询有限公司上海市杨浦区逸仙路25号同济晶度310室 200437电话: 021-65686006 传真:021-65688389微信公众号:Gamry电化学
  • 中国特种设备检测研究院934.96万元采购电化学工作站,热机械分析仪
    详细信息 中国特种设备检测研究院325mm涡流内检测器和406mm涡流内检测器公开招标公告 北京市-海淀区 状态:公告 更新时间: 2023-10-18 中国特种设备检测研究院325mm涡流内检测器和406mm涡流内检测器公开招标公告 2023年10月18日 15:52 公告信息: 采购项目名称 325mm涡流内检测器和406mm涡流内检测器 品目 货物/设备/仪器仪表/计量仪器/其他计量仪器,货物/设备/仪器仪表/分析仪器/生化分离分析仪器,货物/设备/仪器仪表/分析仪器/热分析仪,货物/设备/仪器仪表/分析仪器/分析仪器辅助装置,货物/设备/仪器仪表/分析仪器/光学式分析仪器,货物/设备/仪器仪表/分析仪器/热学式分析仪器,货物/设备/仪器仪表/分析仪器/电化学分析仪器,货物/设备/仪器仪表/光学仪器/其他光学仪器,货物/设备/仪器仪表/安全仪器,货物/设备/仪器仪表/其他仪器仪表 采购单位 中国特种设备检测研究院 行政区域 北京市 公告时间 2023年10月18日 15:52 获取招标文件时间 2023年10月19日至2023年10月25日每日上午:9:00 至 11:30 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 北京市海淀区西三环北路21号久凌大厦南楼15层 开标时间 2023年11月16日 09:30 开标地点 北京市海淀区西三环北路21号久凌大厦南楼15层会议室 预算金额 ¥934.960000万元(人民币) 联系人及联系方式: 项目联系人 桑工、周工 项目联系电话 13121879350 采购单位 中国特种设备检测研究院 采购单位地址 北京市朝阳区和平街西苑2号 采购单位联系方式 汤工 13810175046 代理机构名称 中金招标有限责任公司 代理机构地址 北京市海淀区西三环北路21号久凌大厦15层 代理机构联系方式 桑工、周工13121879350 项目概况 325mm涡流内检测器和406mm涡流内检测器 招标项目的潜在投标人应在北京市海淀区西三环北路21号久凌大厦南楼15层获取招标文件,并于2023年11月16日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0773-2341GNQGFWGK2685 项目名称:325mm涡流内检测器和406mm涡流内检测器 预算金额:934.960000 万元(人民币) 最高限价(如有):934.960000 万元(人民币) 采购需求: 采购需求: 包号 采购包预算金额 (万元) 数量 (台/套/件) 简要技术需求或服务要求 是否允许进口 1 185.82 3978 高精度磁性材料芯片及配套电子器件 不允许 2 99 检测器测试及配套工具 3 172.14 检测器主体结构材料及加工 4 146 325检测器探头结构材料及加工 5 164 406检测器探头结构材料及加工 6 168 检测器支撑结构加工服务 合同履行期限:合同签署日算起 2个月内,完成供货及安装调试; 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 节能产品强制采购;节能产品、环境标志产品优先采购;扶持不发达地区和少数民族地区;政府采购促进中小企业发展;政府采购支持监狱企业、戒毒企业发展;政府采购促进残疾人就业;政府采购信用担保;进口产品管理及招标文件中列明的其他政策要求等。 3.本项目的特定资格要求:/ 三、获取招标文件 时间:2023年10月19日 至 2023年10月25日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层 方式:网上购买 网上购买招标文件时,请将营业执照副本复印件、法人授权委托书、被授权人身份证原件及复印件,以上复印件文件均需加盖公章彩色扫描,发送至代理机构邮箱:zjzb_zx@126.com。代理机构确认资料无误后,通知投标人缴纳费用。代理机构收到文件费用后,发送电子版招标文件。报名资料原件于开标当日单独递交。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年11月16日 09点30分(北京时间) 开标时间:2023年11月16日 09点30分(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.投标人未被列入信用中国网站(http://www.creditchina.gov.cn)、中国政府采购网(http://www.ccgp.gov.cn)渠道信用记录失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的响应人; 2.单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一合同项下的政府采购活动; 3.为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的招标活动。 4.本项目招标公告在《中国政府采购网》上发布。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国特种设备检测研究院 地址:北京市朝阳区和平街西苑2号 联系方式:汤工 13810175046 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦15层 联系方式:桑工、周工13121879350 3.项目联系方式 项目联系人:桑工、周工 电 话: 13121879350 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:电化学工作站,热机械分析仪 开标时间:2023-11-16 09:30 预算金额:934.96万元 采购单位:中国特种设备检测研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中金招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国特种设备检测研究院325mm涡流内检测器和406mm涡流内检测器公开招标公告 北京市-海淀区 状态:公告 更新时间: 2023-10-18 中国特种设备检测研究院325mm涡流内检测器和406mm涡流内检测器公开招标公告 2023年10月18日 15:52 公告信息: 采购项目名称 325mm涡流内检测器和406mm涡流内检测器 品目 货物/设备/仪器仪表/计量仪器/其他计量仪器,货物/设备/仪器仪表/分析仪器/生化分离分析仪器,货物/设备/仪器仪表/分析仪器/热分析仪,货物/设备/仪器仪表/分析仪器/分析仪器辅助装置,货物/设备/仪器仪表/分析仪器/光学式分析仪器,货物/设备/仪器仪表/分析仪器/热学式分析仪器,货物/设备/仪器仪表/分析仪器/电化学分析仪器,货物/设备/仪器仪表/光学仪器/其他光学仪器,货物/设备/仪器仪表/安全仪器,货物/设备/仪器仪表/其他仪器仪表 采购单位 中国特种设备检测研究院 行政区域 北京市 公告时间 2023年10月18日 15:52 获取招标文件时间 2023年10月19日至2023年10月25日每日上午:9:00 至 11:30 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 北京市海淀区西三环北路21号久凌大厦南楼15层 开标时间 2023年11月16日 09:30 开标地点 北京市海淀区西三环北路21号久凌大厦南楼15层会议室 预算金额 ¥934.960000万元(人民币) 联系人及联系方式: 项目联系人 桑工、周工 项目联系电话 13121879350 采购单位 中国特种设备检测研究院 采购单位地址 北京市朝阳区和平街西苑2号 采购单位联系方式 汤工 13810175046 代理机构名称 中金招标有限责任公司 代理机构地址 北京市海淀区西三环北路21号久凌大厦15层 代理机构联系方式 桑工、周工13121879350 项目概况 325mm涡流内检测器和406mm涡流内检测器 招标项目的潜在投标人应在北京市海淀区西三环北路21号久凌大厦南楼15层获取招标文件,并于2023年11月16日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0773-2341GNQGFWGK2685 项目名称:325mm涡流内检测器和406mm涡流内检测器 预算金额:934.960000 万元(人民币) 最高限价(如有):934.960000 万元(人民币) 采购需求: 采购需求: 包号 采购包预算金额 (万元) 数量 (台/套/件) 简要技术需求或服务要求 是否允许进口 1 185.82 3978 高精度磁性材料芯片及配套电子器件 不允许 2 99 检测器测试及配套工具 3 172.14 检测器主体结构材料及加工 4 146 325检测器探头结构材料及加工 5 164 406检测器探头结构材料及加工 6 168 检测器支撑结构加工服务 合同履行期限:合同签署日算起 2个月内,完成供货及安装调试; 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 节能产品强制采购;节能产品、环境标志产品优先采购;扶持不发达地区和少数民族地区;政府采购促进中小企业发展;政府采购支持监狱企业、戒毒企业发展;政府采购促进残疾人就业;政府采购信用担保;进口产品管理及招标文件中列明的其他政策要求等。 3.本项目的特定资格要求:/ 三、获取招标文件 时间:2023年10月19日 至 2023年10月25日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层 方式:网上购买 网上购买招标文件时,请将营业执照副本复印件、法人授权委托书、被授权人身份证原件及复印件,以上复印件文件均需加盖公章彩色扫描,发送至代理机构邮箱:zjzb_zx@126.com。代理机构确认资料无误后,通知投标人缴纳费用。代理机构收到文件费用后,发送电子版招标文件。报名资料原件于开标当日单独递交。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年11月16日 09点30分(北京时间) 开标时间:2023年11月16日 09点30分(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.投标人未被列入信用中国网站(http://www.creditchina.gov.cn)、中国政府采购网(http://www.ccgp.gov.cn)渠道信用记录失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的响应人; 2.单位负责人为同一人或者存在直接控股、管理关系的不同单位,不得参加同一合同项下的政府采购活动; 3.为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的招标活动。 4.本项目招标公告在《中国政府采购网》上发布。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国特种设备检测研究院 地址:北京市朝阳区和平街西苑2号 联系方式:汤工 13810175046 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦15层 联系方式:桑工、周工13121879350 3.项目联系方式 项目联系人:桑工、周工 电 话: 13121879350
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 普林斯顿发布VersaSCAN微区电化学柔性探针新技术
    2016年6月14日,阿美特克集团科学仪器部在北京分公司召开“VersaSCAN微区电化学技术交流会”,并在此交流会上发布新技术——扫描电化学显微镜(SECM)柔性探针技术,仪器信息网作为特邀媒体参加了此次交流会。 John Harper 博士为与会者详细介绍了此次发布的新技术。此次发布的扫描电化学显微镜柔性探针技术专用于“普林斯顿应用研究VersaScan”产品的柔性接触和等距测试,是由瑞士洛桑联邦理工学院的物理和电分析化学实验室(LEPA-EPFL)Hubert Girault教授课题组经数十年的研究而实现的。阿美特克科学仪器部与该实验室签署了独家合作协议,集成并销售其柔性探针技术。柔性探针使得广大研究者可同时进行等距离和等高模式的SECM测试,可分离3D表面电化学活性响应图中表面物理形貌和电化学响应的贡献。 与市场上常用的硬性探针相比,柔性探针具有以下优势:1)柔性探针等距SECM无需额外增加昂贵的控制与测量硬件 2)测量时无需为达到控制距离而预先测试样品表面的地形地貌 3)探针设计为与样品进行柔性接触,当与样品表面接触时,探针会发生柔性弯曲,避免探针自身被划伤以及探针对样品表面的损害 4)常规技术中硬性探针和样品直接接触会导致表面易损样品被损坏,如人体组织等。而柔性探针技术接触样品的接触力仅为常规硬接触探针的千分之一。 未来,阿美特克集团科学仪器部与LEPA-EPFL还将共同致力于实现其它探针材料与技术的商业化,希望SECM柔性探针技术能帮助SECM成为标准电化学测试利器。 为鼓励更多的用户致力于微区电化学的研究,此次交流会特设“普林斯顿应用研究微区电化学优秀论文奖”。本次奖项颁发给了浙江大学刘艳华博士,以表彰其使用VersaScan微区电化学测试系统在涂装材料研究方面所作出的贡献,由阿美特克公司科学仪器部亚洲区经理杨琦女士为其颁奖。 随后的技术交流过程中,John Harper 博士、刘艳华博士和厦门大学林昌健教授针对微区电化学的技术和应用为大家进行了分享。VersaScan微区电化学测试系统是一个模块化配置的系统,可实现现今所有微区扫描探针电化学技术以及激光非接触式微区形貌测试,包括扫描电化学显微镜、扫描振动电极测试、扫描开尔文探针测试、微区电化学阻抗测试、扫描电解液微滴测试、非触式光学微区形貌测试等。此次发布的柔性探针技术主要针对扫描电化学显微镜,目前阿美特克可提供有效直径15um的柔性碳探针。John Harper 博士还重点介绍了柔性探针技术的应用案例,包括癌细胞成像和黑色素瘤的分期变化(如皮肤癌)、电子应用-电沉积和成像、电催化等。 刘艳华博士介绍了扫描振动电极测试技术在涂层金属腐蚀研究中的应用。刘博士主要介绍了两项工作:一是采用电沉积技术合成了负载缓蚀剂的超疏水二氧化硅薄膜 二是构建了基于硅烷修饰的E-Sio2薄膜和环氧树脂的新型防护体系。在此两项工作中均利用了扫描振动电极测试技术来表征其微区耐腐蚀性能,与其它表征手段结果均有较好的吻合度。 林昌健教授自1979年开始研究微区电化学技术,至今已有37年。林教授认为微区电化学之所以能发展到今天的水平,一是科研需求,越来越多的科研人员应用此技术使其成为热门研究领域 二是科技发展,科技水平的发展也使微区电化学技术有了显著的进步。未来,微区电化学技术发展很重要的一方面就是探针技术的发展。林教授重点介绍了其团队开发的新型探针。林教授发现,在空间分辨率足够高的情况下,除电流、电压信号外, pH值和氯离子浓度也可以很好的表征局部腐蚀程度,故其团队开发了可测量pH值和氯离子浓度的探针。未来此探针有望集成到VersaScan微区电化学测试系统上。
  • 扫描电镜? NO! 电化学工作站? NO!
    重磅产品出炉——德国HEKA扫描电化学显微镜,看到名字大家可能比较陌生但是又似曾相识,如果你认为这款仪器是扫描电镜和电化学工作站的简单叠加,那么你就OUT了!HEKA ElProscan是一台扫描电化学显微镜,用于研究样品的电化学活性表面。它属于扫描探针显微镜(AFM, STM, SECM)家族的一员。由德国弗莱堡Albert-Ludwig大学材料研究中心的Dr.Jurgen Heinze(教授)合作开发了ElProscan仪器。2005年HEKA公司创立了ElProscan品牌,它包括传统的SECM实验方法及扩展功能。整个系统包括三个主要部分,定位系统,双恒电位仪,数据采集系统。定位系统控制微电极在溶液中电化学活性样品表面上进行三维扫描,因此ElProscan可用作传统的SECM仪器并且具有更多的功能。ElProscan与传统的SECM不同之处在于它不仅仅记录针尖的电流信号,而且在针尖上可实现任何电化学实验方法的应用(用可编程脉冲发生协议Programmable Pulse Protocol来完成)。在脉冲发生协议运行过程中,在样品上应用独立的电化学实验方法并同时在针尖上应用不同的方法。因此ElProscan还具有电化学活性表面修饰的功能。 图1、典型的实验配置图 超微电极(UME)在溶液中接近样品表面上方扫描,在电极表面由于氧化还原反应所溶解的物质形成法拉第电流 随着针尖向样品表面逼近,可测出电流的变化。电化学惰性表面抑制针尖表面的氧化还原物质扩散并导致针尖电流逐渐减小(正反馈) 图2、ELProscan反馈模式 当样品是电化学活性表面,针尖电流逐渐增大。这是因为在样品表面再生了反应后的氧化还原物质,并在针尖再次进行反应(正反馈)。 反射光成像透射光成像 图3、透射和反射光成像重叠成像 图4、表面形态(左)电化学活性表面(右)图5、仪器本尊ElProscan系统具有多重应用领域如:表面分析功能、金属沉积、导电聚合物沉积、酶活性成像、催化材料表面活性等,就像扫描电镜一样,我们能罗列的仅仅是其中的少数应用。后续会持续更新其在各领域的具体应用。
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 美国Gamry电化学参加 2016全国腐蚀电化学及测试方法学术交流会
    主题为“面向石油、天然气和海洋工程的腐蚀电化学”的2016全国腐蚀电化学及测试方法学术交流会于7月13日~7月15日在中国青岛顺利举行。本次会议由腐蚀与防护学会腐蚀电化学及测试方法专业委员会主办、中国石油大学(华东)协办,来自全国的腐蚀研究者共聚青岛,交流和展示最新成果,讨论腐蚀电化学学科的前沿和发展方向,探索如何进一步推动和拓展腐蚀电化学科学和技术在我国石油工程、天然气工程、海洋工程和水处理中的应用与发展。 美国Gamry电化学仪器公司是电化学专业仪器生产厂商。目前在中国的上海与北京有专门的技术人员与支持中心, 维修中心。 本次大会, 产品经理司国春与技术支持工程师谈天与到会的新、老客户进行了交流和互动。 针对腐蚀领域,Gamry将具有优异测试性能的Ref 600升级至Ref 600 Plus。升级后的Ref 600 Plus频率范围扩展至10μHz~5MHz,电流范围13个量程(600fA~600mA),仪器本身噪声低至μV,具有超高的阻抗测试范围和精度μΩ~TΩ(参考阻抗精度图),集恒电位计、恒电流计、ZRA为一身,可运行完整的直流技术、交流阻抗和电化学噪声测试。优异的浮地性能,轻松应用于石油、天然气管道在线监测,高温高压反应釜等领域。 Interface 1000是另一种最佳选择,包含应用腐蚀领域的各种直流、交流、噪声等测试方法,并可组成多通道,提高测试效率。Gamry多通道系统比较灵活,同型号或不同型号均可组成多通道,各个通道之间相互独立, 也可同时进行测试。 为了更好的让新、老客户了解和熟悉使用Gamry电化学工作站,Gamry计划提供系列培训方式,包括定期上海、北京培训,安装现场培训,网络在线培训以及阻抗/腐蚀专场培训(美国),各种培训详情请参考以下链接:http://cn.gamry.com/training-info.pdf 。诚挚欢迎新、老客户前来参加。
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在0001方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 新型电化学方法让海水提铀能力提升8倍
    美国斯坦福大学教授崔屹22日接受科技日报记者采访时透露,该团队日前开发出一种基于半波整流交流电的电化学方法,可从海水中高效提取铀,较之传统的物理化学吸附法,提取能力提升了8倍,速度则提升了3倍。相关成果发表在最新的英国《自然能源》杂志上。  目前,海水中铀的蕴藏量约45亿吨,是陆地上已探明铀矿储量的2000倍,如果能将海水中的铀全部提取出用于核电站,发电量将足够全世界用上一万年。  崔屹告诉记者,目前海水提铀普遍采用的是物理化学吸附法。由于吸附材料的表面积有限,而海水中铀浓度偏低,且盐度很高,用于吸附铀离子的材料吸附能力很快饱和,无法有效地提取足够的铀,提铀成本也比陆地铀矿提炼成本高很多。  论文第一作者、斯坦福大学材料科学与工程学院博士后刘翀介绍,该团队开发的这种基于半波整流交流电的电化学方法(HW-ACE),将对铀有着很强选择性和吸附性的偕胺肟材料负载到导电基底上,导电后,电场使铀离子迁移到电极并诱导铀化合物的电沉积,形成电中性铀化合物。和传统方法不同,电沉积不受限于吸附表面积的大小,为此铀提取容量可以大大提升。而交替变化的脉冲电压防止了其他阳离子阻碍活性位点,并避免了水裂解的发生。  崔屹表示,由于该方法提取铀的容量超大,理论上提取能力非常强。随着未来提取过程中耗电量的减少,提取成本有望低于现有海水提铀技术,与陆地铀矿提取成本持平,甚至更低。
  • 电化学合成与科研创新
    科研的核心精神是什么?创新、创新、创新!!! 如何创新?这是一个重大课题。不如看看Phil. S Baran的现身说法。1 Phil.S Baran,他是谁? ? 美国斯克利普斯研究所(Scripps)教授? 美国科学院院院士,2017年? 麦克阿瑟天才奖得主,2013年(MacArthur Fellowship)? 主页:http://baranlab.org/? 研究方向:有机合成? 发表文章130多篇,其中11篇Nature,7篇Science2 Phil.S Baran为什么尝试电化学合成? 套用Phil. S Baran的原话,主流合成化学领域中尝试做电化学都是出于一种原因:绝望。譬如:单体之间的N-N键结成二聚合分子,只能用电化学方法合成烯丙位氧化,CH弱键可以被氧化,但是所用催化剂量大,昂贵,不环保产率低如何突破传统合成的瓶颈?传统合成的研究从1840年发展到现在,要创新谈何容易?!那是否可以在方法创新?!电化学合成方法进入他的视线了。3 Phil. S Baran用电化学合成法同时上Nature和Science 1. 《Nature》上发表的文章为:电化学方法氧化烯丙位碳氢键(C-H键)。(Scalable and sustainable electrochemical allylic C–H oxidation. Nature, DOI: 10.1038/nature17431)2. 《Science》上发表的文章为:烷基-烷基交叉偶联的电化学方法(A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 2016, DOI: 10.1126/science.aaf61234 电化学方法氧化烯丙位碳氢键(C-H键)框架解读1. Nature文章电化学方法氧化烯丙位碳氢键的背景:烯丙基的氧化是有机合成中的经典反应,传统方法需要借助高毒性的氧化试剂,如铬和硒;还有很昂贵的催化剂,如钯和铑,难以放大工业级别的合成,如下图1-a、b所示。这篇文章改用电化学氧化的方法,结果到底如何呢? 电化学烯丙位的氧化早在1968年就有报道,电化学氧化α-蒎烯(1),如下图1-C(2)所示,直到1985年才有个重大的提升,可以直接实现氧化,如图1-C(3),只是产率比较低,都在13%-24%之间。图片来源:Nature, DOI: 10.1038/nature174312.Phil. S Baran实验室对电化学合成条件做的优化、扩展。第一步:选择合适的电极Phil. S Baran实验室未采用昂贵的金/铂电话,改而采用比较经济的,惰性也非常好的石墨电极和网状玻碳电极(RVC电极)。但是石墨电极有一定的吸附作用,回收率偏低。而RVC电极表现出更稳定的反应性能。第二步:筛选最佳的反应媒介和共氧化物,如Fig.2所示 图片来源:Nature, DOI: 10.1038/nature17431第三步:从朱栾倍半萜烯丙位的氧化扩展到烯丙位的氧化的通用电化学合成方法 图片来源:Nature, DOI: 10.1038/nature17431 第四步产量升级:100g规模的合成 图片来源:Nature, DOI: 10.1038/nature174315 从“电化学方法氧化烯丙位碳氢键(C-H键)”中看到的社会价值 1. 更经济、环保:从昂贵、有毒金属催化剂到经济、环保“电”催化的转变2. C-H氧化批量生产药物/化学品:从不可能变成可能3. 电化学合成方式或可创造一个全新的合成世界!这还不是尾声,Phil. S Baran还有更大壮举:虽然发表了Nature,也带来了巨大的社会价值,但是实验中还有小小遗憾。当时做C-H氧化电化学合成设备,全部都是自行搭建,恒电位仪、电极、反应管、电极固定夹、数据分析和记录器等等10多项产品,即便专业人员也需要耗费超40min的时间才可以完成搭建,且合成反应的重现性很差。他能否弥补这份遗憾? 2017年8月22日,美国秋季化学会上,Phil. S Baran带给大家更多的惊喜:一份对电化学合成不一样的解读 + 一个全球标准化的电化学合成仪“ElectraSyn 2.0”。点击视频,了解更多关于美国秋季发布会现场情况。Phil.S Baran 发布会现场
  • 2010科学仪器优秀新品入围名单:环境监测仪器、电化学仪器
    第五届“科学仪器优秀新产品”评选活动于2010年3月份开始筹备,截止到2011年2月28日,共有234家国内外仪器厂申报了497台2010年度上市的仪器新品。经仪器信息网编辑初审、2011中国科学仪器发展年会新品组委会初评,在所有申报的仪器中约有四分之一进入了入围名单。  本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议,并且首次邀请20位资深用户参与评审。最终获奖的仪器将在“2011年中国科学仪器发展年会”上颁发证书,并在多家专业媒体上公布结果。  现公布“环境监测仪器、电化学仪器”“入围名单,2010年度共申报了34台环境监测,其中10台入围;共申报了27台电化学仪器,其中13台入围;以下排名不分先后。环境监测仪器仪器名称型号创新点上市时间公司名称亚氯酸盐测定仪CS 300创新点2010年12月英国百灵达有限公司北京代表处SERVOFLEX MiniMP (5200 Multipurpose)便携式气体分析仪5200 Multipurpose创新点2010年1月仕富梅亚太业务中心SX716-E型便携式大量程溶解氧测定仪SX716-E创新点2010年12月上海三信仪表厂AMS全自动间断化学分析仪Smartchem200创新点2010年1月AMS FRANCE水质综合毒性在线监测仪TOX-2000创新点2010年6月聚光科技(杭州)股份有限公司便携式臭氧快速测定仪ⅠS—30-1创新点2010年5月深圳市清时捷科技有限公司LumiFox 2000手持式发光细菌毒性检测仪LumiFox 2000创新点2010年2月深圳市朗石生物仪器有限公司新一代专家型总有机碳/总氮分析仪multi N/C ?2100创新点2010年10月德国耶拿分析仪器股份公司Cyclops-7探头式水中油检测仪C-7创新点2010年1月(北京沃特兰德科技有限公司代理)NanoTek 2000便携式重金属测定仪NanoTek 2000创新点2010年7月深圳市朗石生物仪器有限公司电化学仪器仪器名称型号创新点上市时间公司名称Orion Star LogR pH测量仪LogR创新点2010年4月赛默飞世尔科技光谱电化学分析仪DZ-709创新点2010年12月上海精密科学仪器有限公司MP测定仪MP测定仪创新点2010年1月美国哈希(HACH)公司864全自动样品称量滴定系统864创新点2010年8月瑞士万通中国有限公司  本次新品申报得到广大仪器厂商的积极响应,申报仪器数量较去年大幅增加。需要特别指出的是,有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器没有被纳入进来。  所有入围新品的详细资料都可以在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况并不相符,或并非2010年上市的仪器新品,请您于2011年4月5日前向“年会新品评审组”举报和反映情况,一经核实,新品评审组将取消其入围资格。  传真:010-82051730  Email:xinpin@instrument.com.cn  点击查看所有仪器新品
  • 飞纳电镜即将出席全国电化学制造技术论坛2018
    全国电化学制造技术论坛是系列会议论坛,由中国化学会主办,旨在推动本领域技术的深度交流,促进创新和产业化发展。全国电化学制造技术论坛 2018 将围绕技术发展、工业应用以及需求趋势等展开专题讨论和交流,努力推动新成果转化。会议时间:2018年11月30日 - 12月2日会议地点:辽宁省友谊宾馆电化学电化学是研究两类导体形成的带电界面现象及其上所发生的变化的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现(如氧通过无声放电管转变为臭氧),二者统称电化学,后者为电化学的一个分支,称放电化学。由于放电化学有了专门的名称,因而,电化学往往专门指“电池的科学”。电化学如今已形成了合成电化学、量子电化学、半导体电化学、有机导体电化学、光谱电化学、生物电化学等多个分支。电化学制造是基于电化学原理与方法,进行产品、器件和材料的制备与制造,具有突出的技术优势和不可替代性。飞纳台式扫描电镜在电池领域的应用 隔膜: 陶瓷隔膜 正极材料: 三元材料 负极材料: 石墨 改性材料: 石墨烯、碳管 电池外壳 质量控制 缺陷分析正极材料锂电池正极颗粒的形貌控制、材料的均匀性和批次的一致性关系到整个电池的性能与稳定性。通过飞纳电镜,可以对颗粒晶体的生长方向、晶粒大小和晶粒堆积方式进行有效表征,通过这些信息调整生产工艺,优化电化学性/惰性界面的面积、应力释放路径、锂离子扩散途径,从而提升电池的倍率性能和循环稳定性。 锂电池正极材材料 锂电池截面:离子研磨负极材料锂电池负极材料的颗粒大小将会对材料的堆积产生直接的影响,进而直接影响到锂离子的脱嵌,从而影响到电池性能。颗粒的形状,粒径分布会影响浆料的流变特性。通过飞纳台式扫描电镜和颗粒统计分析软件,可以对颗粒的大小,形状,粒径分布进行全方位的分析。 锂电池负极材料 颗粒统计分析测量系统电池隔膜根据制造工艺不同,电池隔膜表面的孔洞孔径介于 30 至 200 纳米之间,因此放大倍数需要 2 万- 10 万倍。电池隔膜在电子束下很容易受到损伤,所以需要使用低电压成像。飞纳场发射台式扫描电镜可以满足表征要求,对隔膜孔径大小和孔洞均匀性实现有效表征。 电池隔膜 陶瓷隔膜 通过飞纳电镜的孔径分析测量系统,还可对电池隔膜进一步分析,获得每个孔径的属性参数,如孔径尺寸、长轴短轴比等。 孔径统计分析测量系统改性材料 石墨烯 碳纳米管飞纳电镜与手套箱的结合在手套箱众多行业的应用中,传统的方法始终难以避免将样品从手套箱中取出,再放到实验器材中观察分析。对于检测空气敏感型样品,如锂电池材料等,取出样品的过程即便时间再短,也无法避免材料的瞬间剧烈氧化反应,这会导致样品的形貌、成分发生严重破坏。飞纳台式扫描电镜成功地解决了这方面的问题,小巧轻便的体积使得电镜可以轻松放进手套箱狭小的空间中,扫描电镜所有的操作都可以在手套箱内进行,样品合成制备、制样清理、观察分析的全过程全部在手套箱中完成。得益于飞纳电镜的电路防护设计,电镜即使放置在充满氩气这种易电离气体环境的手套箱中也可以完全正常工作。飞纳电镜与手套箱锂电池材料在检测过程中,为了防止空气与锂电池材料的相互反应,往往需要在惰性气体环境下进行工作。氩(Ar)气手套箱是最常用的隔绝空气设备。飞纳电镜开创了扫描电镜在氩(Ar)手套箱内进行正常工作的先例。飞纳电镜电池行业对检测样品的分辨率要求较高,可以选择飞纳台式扫描电镜能谱一体机 Phenom ProX,或者飞纳台式场发射电镜 Phenom LE,为电池领域研究提供解决方案。 飞纳电镜操作简便,快捷,稳定,无需频繁更换灯丝,非常适合电池行业中的企业使用。 飞纳电镜体积小巧,是可以放到手套箱中使用的电镜。 飞纳电镜的颗粒系统及孔径系统软件可以方便快捷地对电镜行业进行分析(颗粒系统分析正负极材料颗粒,孔径系统分析隔膜孔隙。
  • 我国率先实现对重金属离子高灵敏的电化学检测
    p  中科院合肥物质科学研究院智能所黄行九研究团队利用表面具有大量氧空位的TiO2-x纳米片,实现对重金属离子高灵敏的电化学检测,对一直困扰人们的重金属离子检测干扰机制做了深入的探索,并提出了“电子诱导干扰机制”这一原理。相关成果日前已发表在美国化学学会的《分析化学》(Analytical Chemistry)杂志上。/pp  纳米材料已经被广泛的应用于电分析化学中。然而,对于纳米材料活性位点与电化学传感机制的构效关系,仍然缺乏一个原子层面的解释。由于电化学分析原理的内在原因,重金属离子之间的相互干扰在电化学检测领域中也是研究人员不可回避的一个问题。/pp  研究人员已经发现了二氧化钛TiO2表面掺杂氧空穴调控晶面的表面电子结构,激发了惰性半导体纳米材料对重金属离子的检测活性。在此基础上,研究人员通过调控反应物中氟化氢的比例,制备了具有大量表面氧空位的TiO2-x纳米片。通过高分辨透射电子显微镜(HRTEM),X射线衍射(XRD),拉曼,电子顺磁共振(ESR),X射线光电子能谱(XPS)等多种技术揭示了纳米材料活性位点与电化学传感性能的构效关系。实验证实,在离子共存体系中,研究人员利用同步辐射技术(EXAFS),从原子层面上系统的阐述了二价镉离子Cd(II)对二价铜离子Cu(II)的干扰原因。研究表明,Cd(II)能够促进电子从TiO2-x纳米片表面向Cu(II)的转移,同时,Cu(II)的存在增长了Cu-O的键长,导致解吸能降低。/pp  这些发现为从原子层面上发展高灵敏纳米材料和研究电化学检测干扰机制夯实了坚定的道路。/ppbr//p
  • 必达泰克公司推出新型光纤拉曼探头
    由于目前市面上现有的光纤拉曼探头只能简单的控制激光光路的开关,而无法控制采样检测,因此在实际的野外和现场检测采用手持采样时,往往需要一边将探头对准样品,一边在电脑上操作软件进行检测。为了克服这个缺点,必达泰克公司推出了一种新的拉曼光纤探头,在该探头上增加了一个电子触发开关,可以与本公司的全系列便携式拉曼光谱仪共同使用,直接利用该电子触发开关控制采样检测,从而使得手持采样更为方便稳定,大大提高了光纤拉曼探头在野外和现场检测的便利性和实用性,非常适用于考古,地质勘探,危险物检测或其他的野外和现场检测应用。  该探头需要在拉曼光谱仪上有一个控制接口,因此无法应用于本公司早前销售出的便携式拉曼光谱仪上,如要使用该探头需要对早期的拉曼光谱仪进行升级。如客户需要进行升级,请与必达泰克光电科技(上海)有限公司联系,电话: 021-64515208,Email: info@bwtek.cn
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 华洋科仪携Bio-Logic电化学产品参加第十九次全国电化学大会
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会于2017年12月1-4日在上海国际会议中心举行。全国电化学大会是国内规模最大、范围最广的电化学学术盛会和高水平的学术交流平台。本届大会主题是“电化学与可持续发展”,围绕电化学科学和技术发展中的基础、应用和前沿问题,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料等重要领域的应用,实现社会的可持续发展。 大会由南开大学、电化学会主席陈军院士致开幕词,大会主席上海电力学院校长李和兴致欢迎词。开幕式现场 华洋科仪作为电化学专业委员会委员,一直倾情支持和赞助全国电化学大会。已连续六届作为主要的赞助商之一参会。本届由华洋科仪赞助的大会最佳组织奖由厦门大学、南开大学和上海电力学院获得。 华洋科仪在三层展厅向电化学科学家们展示了可广泛用于电池,超级电容器,燃料电池,基础电化学,电分析,腐蚀科学等领域的法国Bio-Logic的高性能电化学工作站、电池测试系统、微区扫描电化学工作站、阻抗分析仪等电化学测量仪器,不但获得了新老客户的赞赏,也获得了众多科研工作者的关注。 为活跃会场气氛我司的幸运大转盘抽奖活动,吸引了众多与会人员参加。华洋科仪的暖心举动,让参会人员倍感温暖!颁奖仪式一瞥 展位一角李永舫院士莅临华洋科仪Bio-Logic展台 大会开幕式主持人徐群杰教授参观我司展位 幸运一等奖留念 给力的华洋科仪参会代表团 华洋科仪市场部 2017年12月6日
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 第19次全国电化学大会在沪召开
    p class="no-margin-top"/p  近日,由中国化学会电化学专业委员会主办、国家自然科学基金委员会支持、上海电力学院承办、复旦大学协办的第十九次全国电化学大会在上海国际会议中心召开。本届大会以“电化学与可持续发展”为主题。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、李永舫、孙世刚、陈军等出席,来自全国500多家高校、科研院所的2700余名代表参会。同时,大会与国际电化学协会(TheElectrochemicalSociety)共同举办“能源与环境国际电化学论坛”,邀请了46位国内外知名专家做专题报告。p  全国电化学大会是国内规模最大、范围最广的电化学学术盛会和高水平的学术交流平台,每两年举办一次。本次大会聚焦“电化学与可持续发展”,围绕电化学科学和技术发展中的基础、应用和前沿问题,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料、生命等重要领域的应用,实现社会的可持续发展。/pp  会议共收到论文1899篇,围绕纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等议题设置14个分会场,安排了550多场报告和讨论。近两年来,电化学基础研究如电催化、电分析、光谱电化学、纳米电化学、电池、光电等领域的发展成果丰硕。同时,电化学技术也一直服务于社会,支撑我国清洁化工、新能源电动汽车、储能等产业的快速发展。本次电化学大会的召开对于推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系具有重要的意义,对电化学与相关学科的融合发展具有重要的推动作用。/p
  • 第十八届全国电化学大会在哈尔滨召开
    p 由中国化学会电化学委员会主办、哈尔滨工业大学承办、黑龙江大学协办的第十八届全国电化学大会于2015年8月7日-11日在黑龙江省哈尔滨市举行。/pp  全国电化学大会是国内规模最大、覆盖领域最广的电化学学术盛会和高水平的学术交流平台,每两年举办一次。本次大会是以“支撑未来能源发展的电化学”为主题,围绕电化学科学和技术发展中的基础以及前沿问题,交流学术思想,全面展示中国电化学领域所取得的最新研究进展和成果,深入探讨电化学领域所面临的机遇、挑战和未来发展方向,推动中国电化学学科的发展和进步,加强科研合作和技术转化,促进电化学科学与技术在能源、环境、材料等重要领域的应用。/pp  出席大会的有来自全国240多家高等院校、科研院所、企业界的专家和学者,以及来自法国、日本、美国、英国、加拿大、新加坡和香港等7个国家和地区13所大学及研究机构的境外专家。会议共收到论文1796篇,涉及基础电化学、纳米与材料电化学、光电化学等六大领域。/p
  • 第十七次全国电化学大会在苏州大学举行
    第十七次全国电化学大会在苏州大学于11月16日隆重开幕,本届大会主席、电化学委员会主任万立骏院士,苏州大学朱秀林校长以及美国电化学会主席Prof. 分别致辞,开幕式上颁发了本届中国电化学杰出贡献奖、青年奖和团队参会组织奖。  华洋科仪冠名的参会组织奖由厦门大学、苏州大学和武汉大学获得,中国化学会电化学委员会主任万立骏院士,苏州大学校长朱秀林先生和华洋科仪董事长齐爱华女士分别为获奖单位颁发了奖牌和证书。开幕式现场获奖单位与颁奖嘉宾合影  本次会议以&ldquo 新能源和低碳经济中的电化学&rdquo 为主题,围绕电化学基础、应用及相关领域开展深入交流,对促进我国电化学科学和技术的发展,将起到重要而积极的作用。会议共收到论文1800余篇,总参会人数达2500余人,其中与会院士11名。参加人员涵盖全国所有的具有一定影响力的大学和重要的科研机构 会议还邀请了美国、加拿大以及港、澳、台地区从事电化学基础研究、应用研究、仪器开发以及产业界同仁,交流和展示最新成果,讨论电化学学科的前沿和基础问题,探索如何进一步推动电化学科学和技术在国民经济发展中的应用。  电化学大会创办至今有30余年,会议每两年召开一次,是国内规模最大、涉及领域最广和学术水平最高的电化学界的学术盛会,在促进学术交流、学科交叉与融合及科学创新方面做出了重要贡献。
  • 哈工大郑州研究院260.00万元采购电化学工作站,天平,高低温试验箱,探针台,超纯水器,电化学部件,...
    详细信息 哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目公开招标公告 河南省-郑州市 状态:公告 更新时间: 2023-10-22 哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目公开招标公告 一、项目基本情况 1.采购项目编号:豫教招标采购-2023-112 2.采购项目名称:哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目 3.采购方式:公开招标 4.预算金额:260万元 最高限价:260万元 序号 包名称 包预算(万元) 包最高限价(万元) 1 哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目 260 260 5.采购需求 5.1项目概况:根据哈工大郑州研究院需要,需对磁控溅射镀膜机、手套箱、电化学工作站等四十五项仪器设备进行采购,项目已具备采购条件,现对该批次仪器设备进行公开招标。 5.2采购内容包括:手套箱、电化学工作站、测试系统、恒温试验箱、电池封装机、切片机、高低温箱、压片机、旋转圆盘电极仪、超纯水机、冷冻干燥仪、超声机、电子天平、马弗炉、管式炉、鼓风烘箱、真空烘箱、分子泵、机械泵、抛光机、探针台、磁控溅射镀膜机等一批仪器设备的采购、运输、安装、培训等工作内容。 5.3资金情况:资金已落实。 5.4包段划分:不分包。 5.5交货期:合同签订后2个月内。 5.6交货地点:采购人指定地点。 5.7质量标准:符合国家或行业规定的合格标准,满足采购人提出的技术标准及要求。 5.8验收标准:满足采购人的验收标准及要求。 5.9质保服务要求:国产设备免费质保3年,进口设备免费质保1年(从验收合格之日起计算)。 6.合同履行期限:合同签订至质保期满。 7.本项目是否接受联合体投标:否 8.是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定: 1.1供应商须具有法人或者其他组织的营业执照等证明文件; 1.2供应商须具有良好的商业信誉和健全的财务会计制度,企业财务状况良好,没有财务被接管、破产或其他关、停、并、转情况的,须提供2022年度经审计的财务报告或其基本开户银行出具的资信证明; 1.3供应商须具有依法缴纳税收和社会保障资金的良好记录,提供本年度任意一个月的企业依法缴纳税收和社会保障资金的证明资料; 1.4供应商须具有履行合同所必需的设备和专业技术能力(自拟格式,自行承诺); 1.5参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明(自拟格式,自行承诺); 1.6其他要求:对参与投标竞争的单位,需承诺2020年1月1日以来供应商、法定代表人、项目负责人无行贿犯罪记录(由供应商出具承诺,格式自拟); 1.7根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)和豫财购〔2016〕15号的规定,对列入“失信被执行人”、“重大税收违法失信主体”和“政府采购严重违法失信行为记录名单”的潜在供应商,将拒绝其参加本项目招标采购活动; 1.8单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加本项目的投标【提供在“国家企业信用信息公示系统”中查询打印的相关材料并加盖公章(需包含公司基本信息、股东信息及股权变更信息)】。 2.落实政府采购政策满足的资格要求:无 3.本项目的特定资格要求: 无 三、获取招标文件 1.时间:2023年10月23日至2023年11月11日(北京时间)。每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)。 2.方式:供应商报名时需要将法人授权委托书、授权人身份证、被授权人身份证、营业执照副本扫描并发送至项目负责人邮箱291363822@qq.com,对报名合格的供应商在缴费完成后,通过邮箱发送招标文件电子版或供应商携带上述资料到招标代理公司现场购买。 3.售价:300元人民币 户名:河南省教育招标服务有限公司 账号:371903102310201 开户行:招商银行股份有限公司郑州分行农业路支行 联系电话:18736086547扶会计。 四、投标截止时间(投标文件递交截止时间)及地点 1.时间:2023年11月13日9:30(北京时间) 2.地点:河南省教育招标服务有限公司第一开标室 五、开标时间及地点 1.时间:2023年11月13日9:30(北京时间) 2.地点:河南省教育招标服务有限公司第一开标室 六、发布公告的媒介及公示期限 本公告在中国招标投标公共服务平台、河南省电子招标投标公共服务平台、河南省教育招标服务有限公司网、哈工大郑州研究院官网上发布,公告期限为5个工作日。 七、其他补充事宜 1.本项目需要落实的政府采购政策: 1.1执行《政府采购促进中小企业发展管理办法》(财库﹝2021﹞46号); 1.2执行《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库﹝2014﹞68号); 1.3执行《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库﹝2017﹞141号); 1.4执行《财政部、国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库﹝2004﹞185号)、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库﹝2006﹞90号);和《财政部、发展改革委、生态环境部、市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号); 1.5与招标人存在利害关系可能影响招标公正性的法人、其他组织或个人,不得参加投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标。 八、凡对本次招标提出询问,请按照以下方式联系 1.采购人信息 名称:哈工大郑州研究院 地址:河南省郑州市郑东新区龙源东七街26号 联系人:薛老师 联系方式:0371-61680818 2.采购代理机构信息 名称:河南省教育招标服务有限公司 地址:郑州市花园路116号河南省农科院院内西南角原农信楼 联系人:田老师、郭老师 联系方式:0371-56058511 3.项目联系方式 联系人:田老师、郭老师 联系方式:0371-56058511 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:电化学工作站,天平,高低温试验箱,探针台,超纯水器,电化学部件,切片机,手套箱,压片机,镀膜机 开标时间:2023-11-13 09:30 预算金额:260.00万元 采购单位:哈工大郑州研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南省教育招标服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目公开招标公告 河南省-郑州市 状态:公告 更新时间: 2023-10-22 哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目公开招标公告 一、项目基本情况 1.采购项目编号:豫教招标采购-2023-112 2.采购项目名称:哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目 3.采购方式:公开招标 4.预算金额:260万元 最高限价:260万元 序号 包名称 包预算(万元) 包最高限价(万元) 1 哈工大郑州研究院磁控溅射镀膜机等一批设备采购项目 260 260 5.采购需求 5.1项目概况:根据哈工大郑州研究院需要,需对磁控溅射镀膜机、手套箱、电化学工作站等四十五项仪器设备进行采购,项目已具备采购条件,现对该批次仪器设备进行公开招标。 5.2采购内容包括:手套箱、电化学工作站、测试系统、恒温试验箱、电池封装机、切片机、高低温箱、压片机、旋转圆盘电极仪、超纯水机、冷冻干燥仪、超声机、电子天平、马弗炉、管式炉、鼓风烘箱、真空烘箱、分子泵、机械泵、抛光机、探针台、磁控溅射镀膜机等一批仪器设备的采购、运输、安装、培训等工作内容。 5.3资金情况:资金已落实。 5.4包段划分:不分包。 5.5交货期:合同签订后2个月内。 5.6交货地点:采购人指定地点。 5.7质量标准:符合国家或行业规定的合格标准,满足采购人提出的技术标准及要求。 5.8验收标准:满足采购人的验收标准及要求。 5.9质保服务要求:国产设备免费质保3年,进口设备免费质保1年(从验收合格之日起计算)。 6.合同履行期限:合同签订至质保期满。 7.本项目是否接受联合体投标:否 8.是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定: 1.1供应商须具有法人或者其他组织的营业执照等证明文件; 1.2供应商须具有良好的商业信誉和健全的财务会计制度,企业财务状况良好,没有财务被接管、破产或其他关、停、并、转情况的,须提供2022年度经审计的财务报告或其基本开户银行出具的资信证明; 1.3供应商须具有依法缴纳税收和社会保障资金的良好记录,提供本年度任意一个月的企业依法缴纳税收和社会保障资金的证明资料; 1.4供应商须具有履行合同所必需的设备和专业技术能力(自拟格式,自行承诺); 1.5参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明(自拟格式,自行承诺); 1.6其他要求:对参与投标竞争的单位,需承诺2020年1月1日以来供应商、法定代表人、项目负责人无行贿犯罪记录(由供应商出具承诺,格式自拟); 1.7根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)和豫财购〔2016〕15号的规定,对列入“失信被执行人”、“重大税收违法失信主体”和“政府采购严重违法失信行为记录名单”的潜在供应商,将拒绝其参加本项目招标采购活动; 1.8单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加本项目的投标【提供在“国家企业信用信息公示系统”中查询打印的相关材料并加盖公章(需包含公司基本信息、股东信息及股权变更信息)】。 2.落实政府采购政策满足的资格要求:无 3.本项目的特定资格要求: 无 三、获取招标文件 1.时间:2023年10月23日至2023年11月11日(北京时间)。每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)。 2.方式:供应商报名时需要将法人授权委托书、授权人身份证、被授权人身份证、营业执照副本扫描并发送至项目负责人邮箱291363822@qq.com,对报名合格的供应商在缴费完成后,通过邮箱发送招标文件电子版或供应商携带上述资料到招标代理公司现场购买。 3.售价:300元人民币 户名:河南省教育招标服务有限公司 账号:371903102310201 开户行:招商银行股份有限公司郑州分行农业路支行 联系电话:18736086547扶会计。 四、投标截止时间(投标文件递交截止时间)及地点 1.时间:2023年11月13日9:30(北京时间) 2.地点:河南省教育招标服务有限公司第一开标室 五、开标时间及地点 1.时间:2023年11月13日9:30(北京时间) 2.地点:河南省教育招标服务有限公司第一开标室 六、发布公告的媒介及公示期限 本公告在中国招标投标公共服务平台、河南省电子招标投标公共服务平台、河南省教育招标服务有限公司网、哈工大郑州研究院官网上发布,公告期限为5个工作日。 七、其他补充事宜 1.本项目需要落实的政府采购政策: 1.1执行《政府采购促进中小企业发展管理办法》(财库﹝2021﹞46号); 1.2执行《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库﹝2014﹞68号); 1.3执行《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库﹝2017﹞141号); 1.4执行《财政部、国家发展改革委关于印发〈节能产品政府采购实施意见〉的通知》(财库﹝2004﹞185号)、《财政部环保总局关于环境标志产品政府采购实施的意见》(财库﹝2006﹞90号);和《财政部、发展改革委、生态环境部、市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号); 1.5与招标人存在利害关系可能影响招标公正性的法人、其他组织或个人,不得参加投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标。 八、凡对本次招标提出询问,请按照以下方式联系 1.采购人信息 名称:哈工大郑州研究院 地址:河南省郑州市郑东新区龙源东七街26号 联系人:薛老师 联系方式:0371-61680818 2.采购代理机构信息 名称:河南省教育招标服务有限公司 地址:郑州市花园路116号河南省农科院院内西南角原农信楼 联系人:田老师、郭老师 联系方式:0371-56058511 3.项目联系方式 联系人:田老师、郭老师 联系方式:0371-56058511
  • 德国ZAHNER电化学助力第十九次全国电化学大会顺利召开
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会于2017年12月1-4日在上海市举行。此次会议上我们展出了德国Zahner公司电化学工作站 Zennium E、Zennium、Zennium Pro 、Zennium X,CIMPS光电化学测试系统、CIMPS-fit瞬态光电响应测试模块、CIMPS-IPCE/QE光电转换效率测试系统等。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 会议邀请| PHI CHINA邀您参加第五届电化学能源技术前沿论坛
    点击上方蓝字关注我们提倡“将创新与智慧贡献于产品之中”,秉承“聚焦实用电池路线,凝聚共性关键问题,促进产业协同创新,推动行业健康发展”为指导思想的“第五届电化学能源技术前沿论坛”将于2021年10月18-20日在贵阳中天凯悦酒店举办,将邀请产业界、学术界和投资界的专家纵论实用化电化学能源体系的现状和发展趋势,凝聚行业发展的共性关键问题,探索内在影响机制并探讨解决方案。鞠焕鑫博士将代表PHI CHINA出席本次大会的分会场4,并现场带来主题为“先进表面分析技术在能源材料研究中的应用”报告。本报告将针对能源材料对检测分析技术的需求,从空间分辨、深度分辨和原位表征多个维度出发,介绍表面分析技术(XPS、AES和TOF-SIMS等)的最新进展以及在能源材料科学研究中的应用,包括对能源材料微区特征进行组分和化学态的空间分布研究;对膜层结构进行不同深度下元素组分和化学态的研究;对材料进行原位测试芯能级、价带和导带电子结构等;对器件进行对服役条件下的原位分析测试等。 欢迎各界专家、学者们前往参会,共同探讨!分会场4会议时间2021年10月19日 16:20-16:45会议地址贵州省贵阳市观山湖区中天路7号贵阳中天凯悦酒店主讲介绍鞠焕鑫 博士高德英特(北京)科技有限公司 报告题目:先进表面分析技术在能源材料研究中的应用 摘要:表面分析技术已经广泛应用于能源材料和器件的科学研究和高科技产业中,不仅有助于深入理解能源材料的基本物理化学性质,表界面特性和电子结构等关键科学问题,为材料性能的优化提供主要的实验依据,而且也为材料/器件产业生产中的新材料研发、质量控制和失效分析提供了强有力的工具。面对新能源材料/器件中的基础研究和技术创新,先进表征分析技术的发展和应用具有重要的意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制