当前位置: 仪器信息网 > 行业主题 > >

波导集成器

仪器信息网波导集成器专题为您提供2024年最新波导集成器价格报价、厂家品牌的相关信息, 包括波导集成器参数、型号等,不管是国产,还是进口品牌的波导集成器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波导集成器相关的耗材配件、试剂标物,还有波导集成器相关的最新资讯、资料,以及波导集成器相关的解决方案。

波导集成器相关的资讯

  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 《科学》发文!安徽大学发现新的光波导材料
    光波导是实现光电集成和光子集成的关键。近日,安徽大学先进材料原子工程研究中心朱满洲教授、陈爽副教授科研团队发现金属纳米团簇中的光波导行为。这是在金属纳米团簇材料中发现的重要光传播新现象,填补了纳米团簇光子性质研究的空白,丰富了有源光波导和偏振发光材料的研究,是材料科学前沿的重要研究成果。相关成果日前发表于《科学》。据悉,该论文是安徽大学首次以第一完成单位在《科学》正刊上发表的科研论文。 图为金属纳米团簇光波导 安徽大学供图研究团队发现,配体保护的两种金属团簇材料具有优异的光波导性能,光损耗系数低于大多数无机、有机和杂化材料,研制的两种金属团簇的晶体排列和分子取向导致了其极高的极化比,为有源波导和极化材料家族提供了新成员。这在未来信息储存、集成光学等领域具有潜在应用前景。光波导具有抗干扰能力强、保真度高等特点,其广泛应用于光电调制器、光子耦合器、光子电路等领域。在有源光波导系统中可以利用分子偶极矩取向影响光子传输方向形成偏振光波导。目前,多种光子纳米结构被开发用作光波导材料,但它们仍然存在着光学损耗高和制造工艺复杂等问题。而配体保护的金属纳米团簇具有原子精确的结构、良好的光学性质和较大的斯托克斯位移,这些特点使其非常适合用于光电器件,并且团簇的光学性质可以通过金属掺杂、配体调控、价态调整等手段进行调控。因此,金属纳米团簇非常适合用作光波导材料并探索其结构与性质之间的联系。此次研究中,研究人员设计并合成具有橙色和红色发光的Pt1Ag18和AuxAg19-x纳米团簇,两种纳米团簇的晶体都表现出优异的光波导性能,它们的光损耗系数低于大多数有机、无机以及杂化材料。并且,这种光波导性质在金属纳米团簇中具有一定的普适性,研究团队在AuCu14、Au4Cu6、Pt1Ag37等纳米团簇中都发现了这种现象。由于纳米团簇间的多种弱相互作用,纳米团簇晶体表现出一定程度的柔韧性,弯曲和分支状态的晶体仍然具有明显的光波导行为。由于Pt1Ag18和AuxAg19-x纳米团簇的晶体结构和堆积方式的差异,它们在光波导过程中表现出了不同的偏振发光。Pt1Ag18和AuxAg19-x表现出聚集诱导发射增强的性质,这使得它们的晶体能表现出更强的光致发光。光波导材料是光学器件和光学系统中的关键组成部分,在光通信、光学传感和光学计算等领域发挥着重要的作用。研究人员介绍,金属纳米团簇光波导行为的发现为开发配体保护的金属纳米团簇作为活性光波导材料提供了理论基础和应用前景,为构建基于团簇的小型化集成纳米光子器件提供了支持。
  • 兰州化物所柔性纸基集成器件研究取得进展
    p  柔性传感器可穿戴或植入人体,并可检测周围环境信息,在医疗健康领域受到广泛关注。然而,作为用电器件的传感器自身并不能独立工作,需要电源为其供电。平面型微型超级电容器(MSC)作为新型的微型电化学储能器件易与传感器或其它电子器件进行有效集成。一般的方法是将传感器与电源通过外接导线连接,但在柔性可穿戴技术中引起不便。如何将柔性和无线电源与传感器集成到同一芯片,是当前研究所面临的挑战。/pp  纸质材料成本低、可即用即弃,并具有多孔和粗糙的纤维结构,可以增强其与电子器件的结合力。由于纤维素孔隙引起的毛细作用使通过印刷技术印刷的墨水材料在纸基表面扩散,导致形成的图案质量较差。中国科学院兰州化学物理研究所清洁能源化学与材料实验室研究员阎兴斌团队通过丝网印刷技术,在滤纸表面形成金属Ni叉指化集流体,并结合后续的电镀技术增强集流体的导电性,并抑制金属Ni在纸基表面的扩散,形成了分辨率较高的图案化集流体。在Ni表面通过电化学沉积MnO2或者聚吡咯(PPy)活性材料,并滴凃凝胶电解质,形成了基于MnO2的对称性超级电容器,以及基于MnO2和PPy的非对称超级电容器。经过测试,表明该纸基超级电容器具有较好的电化学特性和很强的耐机械形变特性(弯折1万次后容量几乎没有衰退),其能量密度和功率密度皆位于同类型超级电容器的前列。/pp  基于在纸面印刷的金属集成电路,研究人员将MSC和紫外传感器或气体传感器集成到同一单片纸上,集成器件显示出良好的传感特性和自供电特性。未来有望将能量采集、能量存储和用电器件集成到同一纸基芯片。这种基于纸质基底的集成策略为便携式和可穿戴电子开拓了新的设计方法。/pp  该研究在线发表在Advanced Functional Materials上,研究工作得到了国家自然科学基金和研究所“一三五”重点培育项目的资助和支持。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201709/insimg/1ef655a3-bf7a-4a9f-b5ba-3c7d959f2d5a.jpg"//pp style="text-align: center "strong纸基自供电传感器的集成示意图与实物图/strong/pp /p
  • 基于“鲁棒-逆向” 设计的中红外超紧凑硫系光子集成器件的实现
    近日,浙江大学李尔平、林宏焘团队提出了一种新的“鲁棒-逆向”设计方法,并首次实现中红外超紧凑硫系光子器件。新的设计方法避免了传统的中红外光子学器件设计钟一直依赖于基于直觉的缺陷,同时也解决了传统逆向设计方法所面临的对于工作条件和加工误差敏感的低鲁棒性劣势。相关工作以“Compact Mid-Infrared Chalcogenide Glass Photonic Devices Based on Robust-Inverse Design”为题发表于期刊Laser & Photonics Reviews。浙江大学信电学院博士生林晓斌为论文第一作者,李尔平教授和林宏焘研究员为本文的共同通讯作者。中红外集成光学器件在红外成像、化学、生物传感,光通信等方面具有极高的应用价值。而硫族化合物玻璃由于其极宽红外透明度、极高的非线性系数,长期以来一直被视为中红外集成光子学的理想材料。传统的中红外硫系光子器件的设计依赖于规则的几何结构,停留在经验为主导的手工设计上。逆向设计能够使用更复杂的优化算法并自动搜索结构,虽然给器件的设计带来革命性地便利,但是也受限于优化时间过长、局部最优和低鲁棒性的缺点。而随着工作波长的增加和折射率的降低,相比于近红外的光学系统,硫系光子器件的发展受限于过大的器件尺寸和不完善的工艺体系。近年来,逆向设计方法在纳米光子学中得到了广泛的应用。其中,基于梯度的逆向设计方法虽然能够显著降低计算成本,但是由于优化问题往往是高度非凸,器件设计面临着局部最优的困境,设计的结果往往对于加工和工作条件敏感。在本文中,研究团队创新性地将逆向设计和鲁棒设计相融合,将加工误差、工作条件变化以概率密度函数的形式具现。通过在优化过程中引入扰动,在保证与传统逆向设计方法几乎相同优化时间的前提下,将器件设计的鲁棒性提升了十倍。图1. (a)“鲁棒-逆向”设计算法流程图;(b)”鲁棒-逆向”设计算法(红色区域)和逆向设计算法(蓝色区域)的鲁棒性分析对比图;(c)不同加工误差下鲁棒-逆向设计算法和逆向设计算法的器件性能对比。基于上述方法,研究团队展示了四种不同功能的超紧凑的中红外硫系光子器件:偏振分束器、波导偏振器、模式转换器件和波分解复用器。对于偏振分束器,团队实现了262 nm的宽带特性(消光比大于20 dB,插损小于1dB);对于波导偏振器件,团队展示了一个带宽为147 nm,消光比25.86 dB的器件设计;还实现了一种带宽为400nm的超宽度的中红外模式转换器件(插损小于1 dB)和一种连接近红外和中红外光波段的波分解复用器件(消光比大于20 dB;近红外:374nm;中红外:360 nm)。实验结果很好地证实了器件性能,同时也是上述该类型中红外硫系逆向设计器件地首次实现。图2. 中红外硫系光子器件结构示意图:(a)偏振分束器;(b) 波导偏振器;(c) 模式转换器件;(d) 波分解复用器该工作首次提出了一种“鲁棒-逆向”设计方法,并实验展示多种不同功能的中红外硫系光子学器件,不仅实现了极高的器件性能,同时保证了对于加工和材料误差的高鲁棒性,为中红外硫系光子器件的发展提供了一条通用的路径。此外,该方法适用于更多场景,有望在可重构器件、非线性光学、光计算等领域带来新的发展。该工作得到国家重点研发计划、国家自然科学基金、浙江省自然基金等项目的资助。西湖大学李兰研究员、北京大学胡小永教授、宁波大学戴世勋研究员等老师给予了该工作极大的支持。
  • Nanoscribe微纳加工技术应用于3D中空光波导微观结构研究
    光波导是集成光子电路的关键元素,影响了光子学的许多领域,包括电信,医学,环境科学等。对于小型几何尺寸结构而言,低折射率介质内部的高效波导对于各种需要光与物质间的强相互作用的应用都至关重最近,一个国际研究团队提出了一种全新的限制并引导厘米范围内无衍射光的芯片光笼概念。通过使用Nanoscribe的3D打印系统,科学家们实现了直接在硅基光子芯片上制作中空3D光波导的微观结构,即集成于芯片的用细条排列并围绕成中空的双环结构(见下图)。这项新颖的光笼研究成果能展现光与物质的强相互作用,并开辟全新的应用,例如基于气体和液体的检测以及生物分析和量子技术等。集成光子设备中光与气体、液体或者生物制剂之间的强相互作用能有效应用于环境监测和生物传感器中,而这依赖于先进的光学传感元件来增强光与物质的相互作用。为此,来自于布莱尼兹光子技术研究所(Leibniz Institute of Photonic Technology), LMU慕尼黑大学 (Ludwig-Maximilians-Universit?t Munich), 伦敦帝国理工学院(Imperial College London)以及德国耶拿大学奥托肖特材料研究所(Otto Schott Institute of Materials Research of theFriedrich Schiller University of Jena)的科学家们开创了一种新的3D光笼波导概念。该实验是通过波导借助微观细条捕获光,并借助光子带隙效应将其引导到数毫米距离上。光笼的开放式设计有利于光与物质(例如液体或气体分子)之间的强相互作用。SEM图片来源:Bumjoon Jang, Leibniz Institute of Photonic Technology微纳加工技术应用于3D光波导研究科学家们将细条排列成内外两个六边形结构,其中的中空芯用来引导光束。细条直径仅3.6 μm且细条之间的间距为7 μm,长度为5毫米,纵横比超过1000。该复杂的双环体系光笼微观结构需要直接能打印在硅芯片上。这个十分具有挑战性的制作通过使用德国Nanoscribe公司的3D打印系统成功得以实现。这个3D微观结构的设计能够通过细条之间的空间横向进入波导的核心区域。因此,分子可以从侧面进入中空芯并与核心区域的光进行相互作用。独特的侧面通过方式可将气体扩散时间至少缩短了10000倍。性能测试表明,通过3D光笼的波导效率很高,并且研究证明波导长度可达到3cm,纵横比超过8000。集成芯片使得光笼概念在诸如生物分析或量子技术等众多领域都有很好的应用前景。凭借着拥有极其复杂和超高精度的3D打印技术,Nanoscribe公司的3D微纳加工技术推动着光子电路的研究和创新。三维光子晶体,光子互联以及复合透镜系统和自由曲面耦合器的实现都得益于Nanoscribe的3D打印系统。相关文献:Light guidance in photonic band gap guiding dual-ring lightcages implemented by direct laser writing网址:https://pubs.acs.org/doi/10.1021/acsphotonics.8b01428HollowCore Light Cage: Trapping Light Behind Bars网址:https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-16-4016 更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印系统 Quantum X 双光子灰度光刻微纳打印系统
  • 微立体光刻3D打印125GHz倍频器的波导腔体
    太赫兹波是指频率在0.1THz~10THz内的电磁波,它的波长介于30~3000μm,在频谱中的位置处于微波和可见光之间,长波段部分与毫米波重合,短波段部分与红外线重合,在电磁波频谱中占据非常特殊的位置,具有很多特殊的性质:宽带性、互补性、瞬态性、相干性、低能性、投射性。相对于毫米波而言,太赫兹波的频率更高、波长更短,因此具有更高的分辨率、更强的方向性和更大的信息容量,同时器件可以更小;相对于光波而言,太赫兹波具有更强的穿透性,适合于云雾、硝烟等极端恶劣环境。太赫兹频率源是太赫兹技术发展的关键,其性能指标影响着整个太赫兹系统的性能,所以太赫兹频率源的获得至关重要。通过倍频的方式获得的信号源具有高频稳定性好、设备的主振动频率低、工作频段宽的优点,是目前获取太赫兹频率源广泛采取的方案。基于GaAs肖特基二极管的太赫兹倍频器因其高效率、低能量消耗和室温下可适用性,已广泛用于外差接收器中局部振荡器(LO)的可靠信号源。太赫兹倍频器具有广泛的实际应用,包括大气遥感、医学成像甚至高速通信。目前,用于封装太赫兹倍频器的波导腔体通常采用计算机数控(CNC)加工制造,该工艺成熟,可实现高精确度、高精密度和良好表面光洁度,能满足电子元件与波导腔体间严格的尺寸公差要求。近年来,3D打印凭借其小批量快速加工的能力,逐渐被用于加工被动微波器件。但是,兼具大的打印幅面以及高公差控制的打印设备较少,因此鲜少有3D打印制备超过100GHz频段的器件报道。3D打印的倍频器更是未见报道。图1. 125GHz倍频器的剖面图:(a)波导腔体的布局 (b)MMIC的特写图2. 微纳3D打印的波导腔体(左)和放置MMIC的波导通道(右)近日,英国伯明翰大学的Talal Skaik和Yi Wang等首次采用面投影微立体光刻(PμSL)3D打印工艺制备太赫兹倍频器的波导腔体。研究团队使用摩方精密科技有限公司(BMF)的nanoArch S140系统3D打印了波导腔体,打印材料为耐高温树脂(HTL),如图2所示,外形尺寸为30.4 mm×25.5 mm×19.1 mm,打印层厚为20μm以及光学精度为10μm。打印后在异丙醇中清洗,并进行30分钟的紫外线固化,最后在60°C下进行30分钟的热固化。制备的波导腔体通过光学系统检测并未发现缺陷,与MMIC(单片微波集成电路)配合的波导通道测量值为609μm,优于设计的630μm;同时超高光学精度打印保证了严格的尺寸公差,确保波导腔体的两部分能精确配合,避免MMIC电路的损坏。图3. 电镀后波导腔体的表面光洁度图4. 装配后的太赫兹倍频器为促进信号的传递以及减小外界干扰,在波导腔体表面镀上4μm厚的铜和0.1μm厚的金,平均表面光洁度约为1.4μm,如图3和图4所示,电磁仿真结果表明该粗糙度对变频损耗的影响可以忽略不计。图5. 3D打印与传统CNC加工的太赫兹倍频器的性能参数对比实验测试发现,3D打印制备的太赫兹倍频器与传统CNC制备的倍频器性能非常接近,相关性能参数如图5所示。3D打印的太赫兹倍频器在输出频率为126GHz下达到33mW的最大输出功率,在80mW~110mW的输入功率下转换效率约为32%,与传统CNC加工的倍频器具有相近的最大输出功率和转换功率。此研究成果以题为“125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography”发表在会议期刊《IEEE Transactions on Terahertz Science and Technology 》上。
  • 我国高频势阱原子波导研究获重大进展
    我国高频势阱原子波导研究获重大进展对实现原子芯片高频势阱、微型原子激射器的连续运行和物质波干涉研究具有重要意义 记者近日从中国科学院上海光机所获悉,该所量子光学重点实验室王育竹院士领衔的“973”冷原子系综量子信息存储技术——高频势阱研究小组在国际上首次实现了中性原子的高频势阱囚禁和导引。该研究的重要进展将对实现原子芯片高频势阱、微型原子激射器的连续运行和物质波干涉研究具有重要意义。 早在2001年,为研究原子云在强场中的动力学行为,王育竹即提出了利用高频势阱导引和囚禁超冷原子的学术思想。研究组在理论上曾获得过理想的结果,但由于实验难度很大,当时未能实现实验验证。经过研究小组多年来的艰辛努力,在克服实验中的重重困难后,终于实现了高频势阱导引和囚禁超冷原子气体的实验。 利用高频势阱囚禁比传统囚禁超冷原子的势阱具有明显的优势。传统囚禁超冷原子的势阱主要有两类:光偶极势阱和静磁势阱。光偶极阱中存在着固有的原子自发辐射,它会导致加热原子;静磁场只能囚禁所谓的弱场追寻态原子,并且磁阱中存在漏洞,损失囚禁原子,限制了对原子运动状态操纵以及对静磁势阱设计的自由度。比如,在实现相干原子束的相干分束或导引时,就遇到较大困难。 利用高频电磁场导引原子的原理如下:有空间梯度的射频场混合在均匀强静磁场中原子的磁子能级,在静磁场和射频场的作用下,原子的本征态是缀饰态。这些缀饰态的本征能级随空间位置的变化给出了绝热的囚禁势。这种动静结合的综合势场提供了比纯粹的静磁场势阱多得多的优越性,在原子光学中展示出广阔的发展空间,它关联于非常广泛的冷原子系统,比如导引物质波原子激射器、一维原子气体和原子干涉仪。射频阱避免了在极深光势阱中的自发辐射等,与传统的静磁导引相比,射频波导还可以避免Majorana跃迁,在实现连续运行的原子激射器中具有优势。 在国家自然科学基金委和科技部支持下的高频势阱组,承担了国家自然科学基金重点课题“973”冷原子系综量子信息存储研究、磁陷阱中冷原子的参量冷却及超冷原子和BEC物理性质研究。该小组建立了我国第一套集光、机、电为一体的精密可调的高频微型势阱和波导实验装置,包括超高真空系统、光学系统、激光稳频系统、电磁机械系统、高分辨超冷原子成像系统和计算机程序控制系统等。课题组与上海光机所精密光电测控研究与发展中心合作,研制了一套消像差成像系统,用于对高频势阱囚禁的冷原子的成像探测。在这个实验装置上,首先实现了冷原子团穿越直径2毫米的金属铜小孔,并把冷原子团转移到了射频阱区域,转移距离大约40毫米,原子数目达到几百万个,为实现高频势阱创造好了条件。通过对系统的优化和射频网络的匹配,该小组实现了高频势阱对超冷原子云的囚禁和导引。通过改变高频场对原子跃迁频率的失谐量,不但可以导引弱场追寻态原子,而且可以导引强场追寻态的原子,导引的原子数峰值约300万个。 有关专家认为,高频势阱导引超冷原子研究的重要进展为实现原子芯片高频势阱、微型原子激射器的连续运行和物质波干涉研究打下了基础。高亮度的相干原子束对高精度精密测量、物质波刻蚀、物质波成像技术和原子光学研究具有潜在的应用价值。原子激光如同激光在光学应用中一样,具有根本性的重要意义,高频势阱囚禁冷原子实验成功对于开展物质波的相干操控迈出了重要一步。 (量子光学重点实验室供稿)
  • 赵玲娟:光子集成是光子技术的发展趋势
    p style="text-align: justify text-indent: 2em "10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。会议期间,中国科学院半导体研究所研究员赵玲娟研究员做了题为《InP基光子集成材料与器件及标准代工平台》的报告。/pp style="text-align: center text-indent: 0em "script src="https://p.bokecc.com/player?vid=D8139CACC0C50CC69C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: justify text-indent: 2em "电子和光子有很多不同,最典型的特征是电子由电场控制,电电相互作用强,可以存储,而光子是波导控制,光光相互作用弱,难存储,因此在集成方式大不相同。相比于电子集成,光子集成不仅需要改变材料和结构,还需要改变电子和光子相互作用,因此光子集成面临着两大挑战:一是高效的光电转换有源器件;二是低损耗的无源连接波导。而光子集成技术一般是通过半导体材料、微纳加工技术将不同功能的光子器件集成在单个衬底上,器件之间通过光波导连接,构成单片集成电路-片上光子系统。目前来讲,集成技术平台有硅基光子集成和InP基光子集成。赵玲娟认为,光子集成是光电紧密结合的产物,其终极目标是电子集成和光子集成融合实现片上系统。/pp style="text-align: justify text-indent: 2em "赵玲娟在报告中谈到,硅基光子和InP基光子集成技术各有不同的特点。硅基光子集成集成度高、规模大、生态成熟、有大企业支持,但缺乏有效发光和放大,且探测、调制带宽低于InP。而InP基光子集成功能全、器件性能优异,但集成难度大、生态不完善。此外,InP基光子集成有源无源耦合损耗低、能效高,而硅基光子集成需要外激光器,耦合损耗大、能效低,只能通过混合封装及异质外延解决。/pp style="text-align: justify text-indent: 2em "目前微电子集成主要以代工模式为主,在光子集成方面,硅光也是以代工(Fabless)为主,少数垂直整合制造(IDM)。硅光集成的部件包含有源器件,如激光器、调制器、探测器、放大器等,因此需要设计者与Foundry更紧密的融合。InP光子集成则呈现IDM和Fabless共存的局面,Fabless的主要代表是欧盟InP标准化代工平台JePPIX,而IDM的代表为Lumentum和Infinera。/pp style="text-align: justify text-indent: 2em "在应用领域方面,光子集成芯片不仅仅用于光通讯,在生物医疗、传感、激光雷达、光收发器等也有很好的应用,在5G、数据中心、光接入网中的应用也越来越多。在市场趋势方面,硅基光子集成芯片发展迅速,InP分立器件维持市场主导,InP集成器件增长潜力巨大。/pp style="text-align: justify text-indent: 2em "赵玲娟在报告中还详细介绍了光子集成技术研究组的发展方向、核心技术和应用领域,代表性光子集成芯片有多波长光发射芯片、多波长锁模激光器和新型光发射芯片。/pp style="text-align: justify text-indent: 2em "报告中总结到:光子集成是光子技术的发展趋势;InP基和硅基光子集成将在不同的领域发挥不同的作用;标准化光子集成技术平台是光子集成的发展方式;光子集成芯片的产业化主要是IDM或者与标准化平台紧密结合的方式。/p
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 中科院903万采购等离子设备 助力波导器件研发
    p style="text-indent:32px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"7/spanspan style="font-size:16px line-height:150% font-family:宋体"月span30/span日,中国科学院半导体研究所曝出仪器设备采购需求,将以span903/span万的价格采购两台等离子设备。两台设备分别为厚氮化硅感应耦合等离子体化学气相沉积台和硅基铌酸锂薄膜电感耦合等离子刻蚀机。前者用于/spanspan style="font-size:16px line-height:150% font-family: 宋体"光波导器件表面的氧化硅及氮化硅薄膜淀积,适用于波导器件中包层薄膜的沉积。后者用于坚硬材料刻蚀形成波导,专为刻蚀铌酸锂材料研发,也可刻蚀氧化硅等材料。/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"项目名称:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"2019/spanspan style="font-size:16px line-height:150% font-family:宋体"年中国科学院半导体研究所科研仪器设备采购项目(第三批)/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"项目编号:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"OITC-G190330983 /span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"采购单位联系方式:/span/strong/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"采购单位:/span/strongspan style="font-size: 16px line-height:150% font-family:宋体"中国科学院半导体研究所/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"地址:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"北京市海淀区清华东路甲span35/span号/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"联系方式:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"010-82304941/010-82304907/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构联系方式:/span/strong/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构:/span/strongspan style="font-size: 16px line-height:150% font-family:宋体"东方国际招标有限责任公司/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构联系人:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"010-68290507/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构地址:/span/strongspan style="font-size: 16px line-height:150% font-family:宋体"北京市海淀区清华东路甲span35/span号/span/pp style="text-indent:32px"span style="font-size:16px font-family:宋体"采购详情如下:/span/ptable border="1" cellspacing="0" cellpadding="0" style="border: none"tbodytr class="firstRow"td width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"包号/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"货物名称/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"数量(台span//span套)/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"是否允许进口/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"预算(万元)/span/strong/p/td/trtrtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"1/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"厚氮化硅感应耦合等离子体化学气相沉积台/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"1/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"是/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"398/span/p/td/trtrtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"2/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"硅基铌酸锂薄膜电感耦合等离子刻蚀机/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"1/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"是/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"505/span/p/td/tr/tbody/tablep style="text-indent:32px"strongspan style="font-size:16px font-family: 宋体"各设备工艺技术规格详情:/span/strong/pp style="text-align:center"strongspan style="font-size:16px font-family:宋体"厚氮化硅感应耦合等离子体化学气相沉积台/span/strong/pp style="line-height:150%"span style="font-size: 16px line-height:150% font-family:宋体"(1)/spanspan style="font-size:16px line-height:150% font-family:宋体"氧化硅薄膜沉积/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"*3.15.1.1/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率(span1550nm/span下测量)/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"1.44-1.52/spanspan style="font-size:16px line-height:150% font-family:宋体"可调/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.1.2/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.1.3/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率重复性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"*3.15.1.4/spanspan style="font-size:16px line-height:150% font-family:宋体"厚度/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体">span20/spanμspanm/span/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.5/spanspan style="font-size:16px line-height:150% font-family:宋体"样品尺寸/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3/spanspan style="font-size:16px line-height:150% font-family:宋体"英寸/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.6/spanspan style="font-size:16px line-height:150% font-family:宋体"沉积速度/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" 1500A/min/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.1.7/spanspan style="font-size:16px line-height:150% font-family:宋体"片内厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-3%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.7/spanspan style="font-size:16px line-height:150% font-family:宋体"片与片厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-5%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.9/spanspan style="font-size:16px line-height:150% font-family:宋体"硅的应力span (/span以span1/span微米薄膜厚度测试span)/span/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" -300MPa /spanspan style="font-size:16px line-height:150% font-family:宋体"压应力/span/p/td/tr/tbody/tablep style="line-height:150%"span style="font-size: 16px line-height:150% font-family:宋体"(2)/spanspan style="font-size:16px line-height:150% font-family:宋体"氮化硅薄膜沉积/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.2.1/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率(span1550nm/span下测量)/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"1.8-2.2/spanspan style="font-size:16px line-height:150% font-family:宋体"可调/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.2.2/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.3/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率重复性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.4/spanspan style="font-size:16px line-height:150% font-family:宋体"沉积速度/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" 200A/min/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.5/spanspan style="font-size:16px line-height:150% font-family:宋体"样品尺寸/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3/spanspan style="font-size:16px line-height:150% font-family:宋体"英寸/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.2.6/spanspan style="font-size:16px line-height:150% font-family:宋体"片内厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-3%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.7/spanspan style="font-size:16px line-height:150% font-family:宋体"片与片厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-5%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.8/spanspan style="font-size:16px line-height:150% font-family:宋体"硅的应力span (/span以span1/span微米薄膜厚度测试span)/span/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" 100MPa /spanspan style="font-size:16px line-height:150% font-family:宋体"伸应力/span/p/td/tr/tbody/tablep style="text-align:center"strongspan style="font-size:16px font-family:宋体" /span/strong/pp style="text-align:center"strongspan style="font-size:16px font-family:宋体"硅基铌酸锂薄膜电感耦合等离子刻蚀机/span/strong/pp style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family: 宋体"(span1/span) 铌酸锂刻蚀工艺/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.1.1/spanspan style="font-size: 16px font-family: 宋体"刻蚀/spanspan style="font-size:16px font-family:宋体"材料/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"铌酸锂/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体"刻蚀结构/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"线宽span100nm-1/spanμspanm/span/spanspan style="font-size:16px font-family:宋体"波导/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.1.3/spanspan style="font-size: 16px font-family: 宋体"掩膜/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 200nm/spanspan style="font-size: 16px font-family: 宋体"厚/spanspan style="font-size:16px font-family:宋体"Cr/spanspan style="font-size: 16px font-family: 宋体"硬掩模。/span/ppspan style="font-size: 16px font-family: 宋体"所有刻蚀掩膜必须为挺直,侧壁角度/spanspan style="font-size:16px font-family:宋体" 80/spanspan style="font-size:16px font-family:宋体"° /span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.1.4/spanspan style="font-size: 16px font-family: 宋体"曝露面积/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体">/spanspan style="font-size:16px font-family:宋体"80%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".5/spanspan style="font-size:16px font-family:宋体"刻蚀深度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"300-700/spanspan style="font-size:16px font-family:宋体"nm/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".6/spanspan style="font-size:16px font-family:宋体"刻蚀速度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 30nm/min/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".7/spanspan style="font-size:16px font-family:宋体"片内刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"3%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"#/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".8/spanspan style="font-size:16px font-family:宋体"片与片刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"5%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".9/spanspan style="font-size:16px font-family:宋体"对应/spanspan style="font-size:16px font-family:宋体"硬掩模/spanspan style="font-size:16px font-family:宋体"选择比/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 5:1/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*3.15.1.10/spanspan style="font-size:16px font-family:宋体"侧壁倾角/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 75/spanspan style="font-size:16px font-family:宋体"° /span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*3.15.1.11/spanspan style="font-size:16px font-family:宋体"侧壁粗糙度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="26"pspan style="font-size:16px font-family:宋体"</spanspan style="font-size:16px font-family:宋体"10nm/spanstrongspan style="font-family: 宋体 " /span/strong/p/td/tr/tbody/tablep style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family: 宋体"br/(span2/span) 氧化硅刻蚀工艺/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.2.1/spanspan style="font-size: 16px font-family: 宋体"刻蚀/spanspan style="font-size:16px font-family:宋体"材料/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"氧化硅/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体"刻蚀结构/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"线宽span5-/span/spanspan style="font-size:16px font-family:宋体"10/spanspan style="font-size:16px font-family:宋体"μ/spanspan style="font-size:16px font-family:宋体"m/spanspan style="font-size:16px font-family:宋体"波导/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.2.3/spanspan style="font-size: 16px font-family: 宋体"掩膜/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 3um/spanspan style="font-size: 16px font-family: 宋体"厚/spanspan style="font-size:16px font-family:宋体"PR/spanspan style="font-size: 16px font-family: 宋体"。/span/ppspan style="font-size: 16px font-family: 宋体"所有刻蚀掩膜必须为挺直,侧壁角度/spanspan style="font-size:16px font-family:宋体" 80/spanspan style="font-size:16px font-family:宋体"° /span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.2.4/spanspan style="font-size: 16px font-family: 宋体"曝露面积/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 15%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".5/spanspan style="font-size:16px font-family:宋体"刻蚀深度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"6-15/spanspan style="font-size:16px font-family:宋体"um/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".6/spanspan style="font-size:16px font-family:宋体"刻蚀速度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 3000A/min/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"#/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".7/spanspan style="font-size:16px font-family:宋体"片内刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"3%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"#/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".8/spanspan style="font-size:16px font-family:宋体"片与片刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"5%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2./spanspan style="font-size:16px font-family:宋体"9/spanspan style="font-size:16px font-family:宋体"对应光刻胶选择比/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 3:1/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2./spanspan style="font-size:16px font-family:宋体"10/spanspan style="font-size:16px font-family:宋体"角度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="26"pspan style="font-size:16px font-family:宋体" 85/spanspan style="font-size:16px font-family:宋体"° /span/p/td/tr/tbody/table
  • “名家芯思维”-硅基光电子集成技术与应用研讨会暨第72期国际名家讲堂
    p  “名家芯思维”-硅基光电子集成技术与应用研讨会/pp  暨第72期国际名家讲堂/pp  2018年7月18日至21日,南京/pp  http://www.csoe.org.cn/html/list_1739.html/pp  一、活动介绍/pp  汇集行业内全球顶级专家,举办硅基光电子集成技术与应用系列活动,把大规模集成半导体工艺和光电子应用结合,实现高速万物互联。旨在为地区汇智聚力,推动我国硅电子集成技术高速发展,在核心芯片技术领域弯道超车。/pp  2018年,人工智能是产业发展的热门方向,活动促进人工智能与光电子信息领域的紧密融合和双向驱动,将为光联万物产业生态注入新的基因,为地区发展增添新的动力。邀请国内外知名科学家、行业领袖、产业精英等人共同参与,共话硅光子集成技术的发展趋势,以此来协助地方进行科技资源统筹和前沿产业化技术研究。/pp  二、组织机构/pp  主办单位/pp  工业和信息化部人才交流中心(MIITEC)/pp  比利时微电子研究中心(IMEC)/pp  承办单位/pp  中国光学工程学会、江北新区IC智慧谷/pp  协办单位/pp  南京江北新区人力资源服务产业园/pp  南京江北新区产业技术研创园/pp  Luceda Photonics/pp  南京集成电路产业服务中心(ICISC)/pp  三、活动内容/pp  (一)第72期国际名家讲堂-硅光/pp  1、活动时间:2018年7月18-19日(周三、周四)/pp  2、活动地点:南京江北新区产业技术研创园腾飞大厦A座5楼/pp  3、专家:Dries Van Thourhout(比利时根特大学教授)/pp  4、讲堂概况/pp  涵盖了硅光子技术的基本原理及其应用,包括光子技术、设计、封装和测试等方面。此外,它还强调了硅光子系统是如何开发和正在向市场过渡的。/pp  5、讲师介绍/pp  Dries Van Thourhout/pp  根特大学教授/pp  根特大学的工程物理学硕士和博士学位。美国新泽西州克劳福德山的贝尔实验室工作两年,致力于InP/InGaAsP单片集成器件的设计、加工和表征。现担任比利时根特大学全职教授,并成为合作UGent-VUB MSc光子课程的主席。/pp  他的研究重点是集成光子器件的设计、制造和表征,现在在研究电信、数据通信、光互连和传感的应用。已经提交了14项专利,发表和共同撰写了超过200篇期刊论文,其中包括几篇发表在高级期刊上,如自然光子学、自然纳米技术和NANO LETTERS。/pp  他在所有主要会议的领域(OFC, ECOC, APC, CLEO)提交了关于硅光子学的邀请论文和教程。已经协调了几个欧洲项目(FP6 PICMOS、FP7 WADIMOS、FP7 SMARTFIBER),在更多项目上做出了贡献,并拥有ERC资助(ULPPIC)。2012年,他获得了享有盛誉的“范· 德· 弗拉姆斯学院奖”。/pp  6、讲堂大纲/pp  (1)基础知识(波导光学原理、无源元件、有源器件、光纤耦合方法)/pp  (2)技术, 包括包装 (基本CMOS技术步骤硅光子学领域的关键技术挑战、不同类型的硅光子学平台、基本部件性能的测量方法、光纤接口、单光纤和光纤阵列、混合光源集成、热方面)/pp  (3)应用与市场前景 (数据通信、传感)/pp  (4)硅光子学技术的获取 (成本分摊访问模型、可用的技术、如何获取晶圆制造、包装和设计服务)/pp  7、注册费用/pp  报名截止日期为7月18日/pp  国信芯世纪南京信息科技有限公司为本期国际名家讲堂开具发票,发票内容为培训费。请于2018年7月18日前将注册费汇至以下账户,并在汇款备注中注明款项信息(第72期+单位+参会人姓名)。/pp  付款信息:/pp  户 名:国信芯世纪南京信息科技有限公司/pp  开户行:中国工商银行股份有限公司南京浦珠路支行/pp  帐 号:4301014509100090749/pp  或请携带银行卡至活动现场,现场支持POS机付款。/pp  (1)注册费用:4600元/期(2天)/pp  (2)芯动力合作单位、中国光学工程学会学员:4140元/期/pp  (3)学生福利:/pp  全国高校学生(本硕博)参加国际名家讲堂,享受标准注册费半价福利 /pp  全国高校教师(付费注册)可免费携带1名学生 /pp  在南京举办的国际名家讲堂,南京本地学校学生可享受专享注册费:1000元/人 /pp  (4)老学员福利:/pp  凡已付费参加任意一期2018年国际名家讲堂,均可本人半价注册费参加后续6个月内任意一期2018年国际名家讲堂/pp  报名地址:http://b2b.csoe.org.cn/meeting/show.php?itemid=10/pp  报名扫描二维码:/pp  (二)IC家园 - 硅光实操(免费参与,审核通过)/pp  1、活动时间:2018年7月20日(周五)/pp  2、活动地点:南京江北新区产业技术研创园腾飞大厦A座5楼/pp  3、专家:曹如平(Luceda光子公司大中国区负责人)/pp  陈昇祐(Mentor Graphics MEMS、物联网周边器件和硅光子方向负责人)/pp  4、讲堂概况/pp  可靠并且差异化的硅光设计制作 – 基于IPKISS和Tanner软件的硅光设计上机操作课程/pp  5、讲师介绍/pp  曹如平/pp  Luceda光子公司大中国区负责人/pp  曹如平博士就职于Luceda Photonics公司(比利时),担任应用工程师和亚洲业务发展经理,致力于帮助集成光电路设计者寻找并实施适当的设计自动化解决方案,以实现高效、可靠、易扩展的芯片设计流程。此前就职于Mentor Graphics公司,并从其与里昂纳米科技研究所(法国里昂中央理工学院)的合作科研项目取得博士学位。/pp  陈昇祐/pp  Mentor Graphics MEMS、/pp  物联网周边器件和硅光子方向负责人/pp  陈昇祐,毕业于清华大学电机工程学系,拥有18年半导体行业经验。硕士毕业后任职于台湾積体电路制造公司(TSMC),为21项国内外半导体器件已公告专利的唯一或主要发明人,2011年加入明导电子科技(Mentor, A Siemens Business),目前在IC设计方案事业部(IC Design Solutions Division)负责MEMS、物联网周边器件、硅光芯片(Silicon Photonics)方面与全球各大晶圆厂的合作。/pp  6、实操大纲/pp  (1)基础知识 (硅光设计流程、工艺设计套件(PDK)、元件建模和仿真的概念、版图设计、线路仿真、虚拟制造、物理验证(DRC))/pp  (2)硅光线路的全流程设计 (从线路布局到建模仿真:使用IPKISS.eda,Tanner S-Edit,L-Edit和L-Edit Photonics的线路原理图和布局布线、用Caphe工具进行线路建模仿真、使用Calibre DRC执行设计规则检查,包括擅长于验证光集成设计的Calibre eqDRC)/pp  (3)自定义光子元件设计 (参数化元件设计、元件物理仿真和优化、创造使用于IPKISS.eda和Tanner L-Edit的自定义元件库)/pp  7、背景介绍/pp  Luceda Photonics协助光子集成设计工程师享有像电子集成设计工程师一样的“首次即成功”的设计体验。/pp  Luceda Photonics的软件工具和服务,是基于五十多年的光子集成芯片设计经验的累积。全球的产业研发团队和科研机构已经使用Luceda团队的专长服务,包括工艺设计包PDK的开发、光子集成芯片的设计和验证。/pp  Luceda公司是比利时imec微电子研究中心、根特大学、和布鲁塞尔自由大学的分离子公司。Luceda是光子集成设计领域的领军企业,为全球的龙头企业服务,近几年的复合年均增长率(CAGR)超过100%。/pp  Mentor, A Siemens Business是电子硬件和软件设计解决方案的世界领导者,主要产品为集成电路芯片和系统开发的各种设计、仿真、验证、测试工具。领先的工具包括:芯片物理验证工具 Calibre ® 系列及OPC、芯片测试工具 Tessent ® DFT, SoC验证软件CDC ,Questa ® 及 Veloce ® 硬件仿真器、模拟电路仿真软件AFS™ ,硅光子及集成电路設計软件Tanner, FPGA设计软件, PCB 设计Xpedition® 及高速电路分析软件Hyperlynx。/pp  报名地址:http://b2b.csoe.org.cn/meeting/show.php?itemid=11/pp  报名扫描二维码:/pp  (三)名家芯思维-硅基光电子集成技术和应用(免费参与)/pp  1、活动时间:2018年7月21日(周六)/pp  2、活动地点:南京新华传媒粤海国际大酒店翔宇厅/pp  (南京市江东中路363号-南京国际博览中心东门)/pp  3、主题:“大规模集成半导体工艺与光电子应用结合,实现高速万物互联”/pp  4、会议议程(以现场日程为准):/pp  报名地址:/pp  http://b2b.csoe.org.cn/meeting/show.php?itemid=12/pp  报名扫描二维码:/pp  5、报告人介绍(部分):/pp  周治平,教育部长江学者,北京大学信息科学技术学院教授,博士生导师,1993年获美国乔治亚理工学院博士学位。1987年至2005年在美国留学工作。曾任美国乔治亚理工学院微电子研究中心资深研究员及CMOS工艺中心主任。2005年全职回国后,曾任武汉光电国家实验室(筹)主任助理,华中科技大学微纳光电子学系主任。研究领域包括微电子、纳米光电子、硅基光电子、光电子集成、光传感、及光通信等。在中国创建了一个晶体管厂,在美国创建了一个以CMOS芯片为基础的研究平台。/pp  OSA Fellow, SPIE Fellow, IET Fellow 中国光学学会荣誉理事,中国光学工程学会常务理事 IEEE中国武汉分会创会主席(2006-2008),Photonics Research创刊主编(2012-现在),Electronics Letters中国版主编(2008-2010)。承担过国家基金委重点项目,科技部973,863项目,以及工业界支持的多个横向项目。多次主持IEEE,SPIE,OSA, 及中国光学学会等举办的国际学术会议。主编出版中外物理学精品书系《硅基光电子学》 发表论文,书籍章节,特邀报告460余篇,专利20余项。/pp  余明斌,上海微技术工业院硅光子资深总监。他于1982获得西安理工大学物理学学士学位,分别于1989年和1995年获得西安交通大学半导体和微电子学硕士和博士学位。/pp  他在1998加入南洋理工大学任职研究员之前是西安理工大学的教授,物理系主任,理学院副院长。他于2000加入新加坡微电子研究院IME。在IME他的研究方向为硅集成工艺技术研发,Si的纳米电子器件,硅光子学集成和硅通孔(TSV)技术的发展和应用。是IME硅光集成方向的创始人和学术带头人。目前,他在SITRI从事硅光子集成和工艺开发和应用工作。/pp  他在国际学术期刊和会议上发表了300多篇论文和8项美国专利。他目前的研究兴趣包括硅光电子器件和集成电路技术,3D-IC TSV集成。/pp  余明斌因在硅光集成方面的工作,在2010年获得新加坡总统科技奖。2011年新加坡微电子研究院(工业工程)优秀奖。2011年新加坡工程师学会IES著名工程成就奖(杰出的硅光子学研究)。/pp  江伟,南京大学现代工程与应用科学学院教授,博士生导师。江苏省光通信系统与网络工程研究中心副主任。回国前任美国罗得格斯(新泽西州立)大学 (Rutgers, the State University of New Jersey)电子和计算机工程系副教授(暨终身教职)。长期致力于以硅基光子学研究。在硅片上做出了首个光子晶体高速电光调制器。被Nature Photonics, Laser Focus World等广泛报道。提出高密度波导集成的新思路和物理原理,并在硅基波导上实现,为高性能光学相控阵开辟了道路,受到Phys.org关注。获美国国防先进研究计划局(DARPA)青年教授奖(Young Faculty Award),美国电气与电子工程师协会一区(IEEE Region 1)杰出教学奖等荣誉。/pp  潘栋,博士,美国费吉尼亚大学博士后和麻省理工学院研究学者。SiFotonics创始人兼CEO,主要从事Ge/Si光电器件、高速模拟电路,单片100G/400G硅基光集成芯片和及其解决方案等产品开发。纳米量子器件红外探测和Ge/Si激光器的发明人,表论文30篇,专利20多项。/pp  四、参与机构(拟)/pp  五、酒店预订/pp  1、酒店名称:南京瑞斯丽酒店/pp  2、酒店地址:南京浦口区浦滨路207号近扬子科创中心/pp  (酒店距离江北新区产业技术研创园步行约5分钟路程)/pp  3、协议价格:/pp  奢华型大床/双人房 480元/间(发票由会务公司开具会议服务费)/pp  4、预定方式:请需要预订酒店的学员在7月17日12点前联系工作人员。/pp  预定酒店联系人:/pp  郁大鹏 18017813372/pp  邮箱:icqy@miitec.cn/pp  5、接驳车线路时间如下:/pp  (临江路地铁1号口有免费接驳车送至研创园,步行5分钟到达酒店)/pp  孵鹰大厦接驳线(临江路地铁1号线-孵鹰大厦)/pp  l 临江路地铁1号口-孵鹰大厦/pp  始发时间-依维柯-7:40/8:00/8:05/8:15/8:20/8:25/8:35/8:40/8:45/pp  大客车-7:50/8:10/8:20/8:30/8:40/8:50/pp  l 孵鹰大厦-临江路地铁1号口/pp  始发时间-依维柯-16:00/16:20/16:40/17:05/17:25/17:35/17:55/18:05/18:15/19:00/19:20/pp  大客车-17:10/17:20/17:40/17:50/18:10/18:20/pp  l 孵鹰大厦-临近路地铁1号口(晚班)/pp  始发时间-依维柯-19:40/20:00/20:20/20:40/21:00/pp  六、联系方式/pp  联系人:王海明/pp  邮箱:wanghaiming@csoe.org.cn/pp  电话:022-59013420,15900391856/pp/p
  • 广东:到2025年,半导体及集成电路产业营业收入突破4000亿元
    8月9日,广东省人民政府发布通知,《广东省制造业高质量发展“十四五”规划》(粤府〔2021〕53号,以下简称“《规划》”)正式印发。根据《规划》制定的主要发展目标,到2025年,全省制造强省建设迈上重要台阶,制造业整体实力达到世界先进水平,创新能力显著提升,产业结构更加优化,产业基础高级化和产业链现代化水平明显提高,部分领域取得战略性领先优势,培育形成若干世界级先进制造业集群,成为全球制造业高质量发展典范。展望2035年,制造强省地位更加巩固,关键核心技术实现重大突破,率先建成现代产业体系,制造业综合实力达到世界制造强国领先水平,成为全球制造业核心区和主阵地。《规划》提出巩固提升战略性支柱产业、前瞻布局战略性新兴产业、谋划发展未来产业三大重点发展方向,大力实施制造业高质量发展“强核”、“立柱”、“强链”、“优化布局”、“品质”、“培土”六大工程。其中,战略性支柱产业具体包括新一代电子信息、绿色石化、智能家电、汽车、先进材料、现代轻工纺织、软件与信息服务、超高清视频显示、生物医药与健康、现代农业与食品。新一代电子信息方面,着力突破核心电子元器件、高端通用芯片,提升高端电子元器件的制造工艺技术水平和可靠性,布局关键核心电子材料和电子信息制造装备研制项目,支持发展晶圆制造装备、芯片/器件封装装备3C自动化、智能化产线装备等。加快建设新一代信息通信基础设施,推进5G商用普及,推动5G产业集聚发展。加快触控、体感、传感等关键技术联合攻关,提升终端智能化水平。加速推动信息技术应用创新,推进计算机整机、外部设备及耗材产品的研发和产业化,强化协同攻关和适配合作。推进人工智能芯片、算法框架等基础软硬件产品研发及行业应用,构建数字经济自主可控技术底座。到2025年,新一代电子信息产业营业收入达到6.6万亿元,形成世界级新一代电子信息产业集群。新一代电子信息重点细分领域发展空间布局包括半导体元器件、新一代通信与网络、智能终端、信息技术应用创新硬件,其中半导体元器件方面,以广州、深圳、珠海为核心,打造涵盖设计、制造、封测等环节的半导体及集成电路全产业链。支持广州开展“芯火冶双创基地建设,建设制造业创新中心。支持深圳、汕头、梅州、肇庆、潮州建设新型电子元器件产业集聚区,推进粤港澳大湾区集成电路公共技术研究中心建设。推动粤东粤西粤北地区主动承接珠三角地区产业转移,发展半导体元器件配套产业。战略性新兴产业具体包括半导体及集成电路、高端装备制造、智能机器人、区块链与量子信息、前沿新材料、新能源、激光与增材制造、数字创意、安全应急与环保、精密仪器设备。其中半导体及集成电路方面,推进集成电路EDA底层工具软件国产化,支持开展EDA云上架构、应用AI技术、TCAD、封装EDA工具等研发。扩大集成电路设计优势,突破边缘计算芯片、储存芯片、处理器等高端通用芯片设计,支持射频、传感器、基带、交换、光通信、显示驱动、RISC-V(基于精简指令集原则的开源指令集架构)等专用芯片开发设计,前瞻布局化合物半导体、毫米波芯片、太赫兹芯片等专用芯片设计。布局建设较大规模特色工艺制程和先进工艺制程生产线,重点推进模拟及数模混合芯片生产制造,加快FDSOI(全耗尽型绝缘层上硅)核心技术攻关,支持氮化镓、碳化硅等化合物半导体器件和模块的研发制造。支持先进封装测试技术研发及产业化,重点突破氟聚酰亚胺、光刻胶等关键原材料以及高性能电子电路基材、高端电子元器件,发展光刻机、缺陷检测设备、激光加工设备等整机设备以及精密陶瓷零部件、射频电源等设备关键零部件研制。到2025年,半导体及集成电路产业营业收入突破4000亿元,打造我国集成电路产业发展第三极,建成具有国际影响力的半导体及集成电路产业聚集区。半导体及集成电路重点细分领域发展空间布局:1.芯片设计及底层工具软件。以广州、深圳、珠海、江门等市为核心,建设具有全球竞争力的芯片设计和软件开发聚集区。广州重点发展智能传感器、射频滤波器、第三代半导体,建设综合性集成电路产业聚集区。深圳集中突破CPU(中央处理器)/GPU(图形处理器)/FPGA(现场可编程逻辑门阵列)等高端通用芯片设计、人工智能专用芯片设计、高端电源管理芯片设计。珠海聚焦办公打印、电网、工业等行业安全领域提升芯片设计技术水平。江门重点推进工业数字光场芯片、硅基液晶芯片、光电耦合器芯片等研发制造。2.芯片制造。依托广州、深圳、珠海做大做强特色工艺制造,广州以硅基特色工艺晶圆代工线为核心,布局建设12英寸集成电路制造生产线;深圳定位28纳米及以下先进制造工艺和射频、功率、传感器、显示驱动等高端特色工艺,推动现有生产线产能和技术水平提升。珠海重点建设第三代半导体生产线,推动8英寸硅基氮化镓晶圆线及电子元器件等扩产建设。佛山依托季华实验室推动建设12英寸全国产半导体装备芯片试验验证生产线。3.芯片封装测试。以广州、深圳、东莞为依托,做大做强半导体与集成电路封装测试。广州发展器件级、晶圆级MEMS封装和系统级测试技术,鼓励封装测试企业向产业链的设计环节延伸。深圳集中优势力量,增强封测、设备和材料环节配套能力。东莞重点发展先进封测平台及工艺。4.化合物半导体。依托广州、深圳、珠海、东莞、江门等市大力发展氮化镓、碳化硅、氧化锌、氧化镓、氮化铝、金刚石等第三代半导体材料制造,支持氮化镓、碳化硅、砷化镓、磷化铟等化合物半导体器件和模块的研发制造,培育壮大化合物半导体IDM(集成器件制造)企业,支持建设射频、传感器、电力电子等器件生产线,推动化合物半导体产品的推广应用。5.材料与关键元器件。依托广州、深圳、珠海、东莞等市加快氟聚酰亚胺、光刻胶、高纯度化学试剂、电子气体、碳基、高密度封装基板等材料研发生产,大力支持纳米级陶瓷粉体、微波陶瓷粉体、功能性金属粉体、贱金属浆料等元器件关键材料的研发及产业化。依托广州、深圳、汕头、佛山、梅州、肇庆、潮州、东莞、河源、清远等市大力建设新型电子元器件产业集聚区,推动电子元器件企业与整机厂联合开展核心技术攻关,建设高端片式电容器、电感器、电阻器等元器件以及高端印制电路板生产线,提升国产化水平。6.特种装备及零部件配套。依托珠三角地区,加快半导体集成电路装备生产制造。支持深圳加大集成电路用的刻蚀设备、离子注入设备、沉积设备、检测设备以及可靠性和鲁棒性校验平台等高端设备研发和产业化。支持广州发展涂布机、电浆蚀刻、热加工、晶片沉积、清洗系统、划片机、芯片互连缝合机、芯片先进封装线、上芯机等装备制造业。支持佛山、惠州、东莞、中山、江门、汕尾、肇庆、河源等市依据各自产业基础,积极培育特种装备及零部件领域龙头企业及“隐形冠军冶企业,形成与广深珠联动发展格局。
  • 有机核壳纳米线实现化学气体高效传感
    中科院化学所光化学院重点实验室的科研人员利用有机纳米光子学材料,实现了高效化学气体传感,相关成果发表在近期出版的国际期刊《先进材料》杂志上,并被作为即将出版的《先进光学材料》的内封面文章重点介绍。  据了解,光波导传感器具有普通传感器无法比拟的灵敏度高、体积小、抗电磁干扰、便于集成等优点,在气体与生物传感中扮演着越来越重要的角色。  中科院化学所光化学院重点实验室的研究人员近年来一直致力于低维有机光子学方面的研究,围绕光子学集成器件中所需要的光波导、微纳光源、光子路由器等开展了一系列探索工作。  近来,他们又在有机纳米材料电化学荧光转换方面取得突破,相关工作证实了低维有机材料在纳米光子学领域的巨大潜力,为实现有机纳米光子学传感器件奠定了基础。  最近,在国家自然科学基金委、科技部和中科院的支持下,科研人员在前期工作的基础上,通过超分子自组装方法制备出二元有机复合纳米带,利用荧光共振能量转移中受体的杠杆效应,制备出高效的酸碱气体传感器。他们进一步将有机金属配合物的单晶纳米线引入电化学发光传感体系,实现了对生物分子多巴胺的高效、灵敏检测,相关工作发表在《先进材料》杂志上。  在此基础上,研究人员与活体分析化学实验室合作,制备出有机核/壳纳米结构作为光波导传感器,利用核壳之间的消逝波耦合,有效地放大了波导材料对气体的响应,从而实现了对H2O2气体的快速、高灵敏、高选择性的原位检测。
  • 我国将起草臭氧生成器行业标准
    日前,记者从中国家电研究院了解到,《家用和类似用途臭氧生成器》行业标准起草工作组已经成立,预示着我国将对臭氧生长器制定行业标准。这项标准预计将于2011年开始相关内容的讨论,2011年年底将通过审定向工信部上报报批稿。  随着居民对健康生活的追求,越来越多的家电产品带有臭氧杀菌功能,消毒柜、空气净化器、带有消毒功能的洗衣机、有杀菌功能的冰箱和空调产品都应用了臭氧生成器装置。据了解,臭氧生成器对大肠杆菌、乙肝病毒等病菌的抑制有一定作用,但随着该部件在家电产品中应用日渐广泛,行业标准却一直缺失。  中国家电研究院鲁建国向中国家电网记者介绍,此次对臭氧生成器行业标准的制定一方面对产品技术和性能做出要求,规范产品的生产制造,同时也是完善我国家电标准体系、加强家电配件标准制定的一部分。据悉,臭氧生成器的行业标准将主要关注添加的臭氧浓度。
  • 中科大科学家成功实现按需式读取的可集成固态量子存储器
    我校郭光灿院士团队在量子存储领域取得重要进展。该团队李传锋、周宗权研究组首次实现了按需式读取的可集成固态量子存储器。该成果12月28日发表在国际知名期刊《物理评论快报》上。量子存储器是构建大尺度量子网络的核心器件。基于量子存储器的量子中继或量子U盘可以有效地克服信道损耗,拓展量子网络的工作距离。李传锋、周宗权研究组长期致力于基于稀土掺杂晶体的固态量子存储器的实验研究。为了提升量子存储器的存储容量,满足规模化应用的需求,研究组近年来发展了激光直写技术,在稀土掺杂晶体上制备可集成量子存储器。所谓按需式读取是指光子写入存储器以后再根据需求决定读出的时间,它对实现量子网络中的同步操作等功能至关重要。然而目前国际上已有的可集成固态量子存储器都是基于简单的原子频率梳方案,其读出时间是在光子写入之前预先设定的,无法按需读取。为了实现按需式读取,研究组采用了一种改进的量子存储方案,即电场调制的原子频率梳方案。它通过引入两个电脉冲,利用斯塔克效应实时操控稀土离子的演化从而控制存储器的读出时间。研究组首先使用飞秒激光在掺铕硅酸钇晶体表面制备出面上光波导,然后在面上光波导的两侧加工两个面上电极,从而能以TTL兼容的5V电压实时操控存储过程,实现按需式读取。实验中光波导的插入损耗达到1 dB以下,这是目前可集成固态量子存储器的最优水平。最终,基于该自制器件研究组在国际上首次实现了按需式读取的可集成固态量子存储器,存储保真度达到99.3%±0.2%。该结果接近研究组2012年在块状晶体中创下的量子存储保真度的最高纪录(99.9%,PRL108, 190505),表明这种可集成量子存储器具有极高的可靠性。实验光路图和显微镜下集成量子存储器照片(右侧插图)该成果对大容量量子存储和构建量子网络均有重要意义。审稿人对该工作给予了高度评价:“The present experiment is a remarkable achievement as, in previous experiments with rare earth doped crystals with integrated design, only predetermined or delayed retrieval had been shown. (这个实验很重要,因为之前可集成固态量子存储的实验都局限于演示提前确定的读取时间。) ” “The work demonstrates a significant advancement in the field and is of broad interest to the scientific community.(这项工作是量子存储领域的一个重要进展,并将引起科学界的广泛兴趣。)”。文章的共同第一作者是中科院量子信息重点实验室的研究生刘超和朱天翔。该工作得到了科技部、国家自然科学基金委、安徽省以及中国科学院青年创新促进会的资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.260504
  • Nature:基于集成光子张量核的并行卷积处理
    近日,科学家在《自然》发表题为《Parallel convolutional processing using an integrated photonic tensor core》的文章,介绍了基于集成光子张量核的并行卷积处理。据介绍,随着超高速移动网络和互联网连接设备的激增,以及人工智能(AI)的兴起,世界上需要以快速高效的方式处理的数据量呈指数级增长。因此,高度并行化、快速和可扩展的硬件正变得越来越重要。科学家们演示了一个针对特定计算的集成光子硬件加速器(张量核),它能够以每秒数万亿次乘法累加运算(每秒1012次MAC运算)的速度运行。张量核可以看作是专用集成电路(ASIC)的光学模拟。它利用相变材料存储阵列和基于光子芯片的光频梳(孤子微梳)实现了光子在存储器中的并行计算。计算简化为测量可重构和非谐振无源元件的光传输,并且可以在超过14ghz的带宽下工作,仅受调制器和光电探测器的速度限制。考虑到微波线速率孤子微调制器、超低损耗氮化硅波导、高速片上探测器和调制器的混合集成的最新进展,这种方法为光子张量核的全互补金属氧化物半导体(CMOS)晶圆级集成提供了一条途径。虽然本工作只是针对于卷积处理,但更普遍的是,实验结果表明,集成光子学在数据密集型人工智能应用(如自动驾驶、实时视频处理和下一代云计算服务)中具有并行、快速和高效计算硬件的潜力。
  • 重磅消息 | 响应贴息减税政策,成器智造助力高校科研单位创新
    No.1 国务院政策 9月7日,国务院总理李克强主持召开国务院常务会议,部署阶段性支持企业创新的减税政策,激励企业增加投入提升创新能力,期限截至今年12月31日。随后,9月13日国务院常务会确定专项再货款与财政贴息配套支持部分领域设备更新、改造、扩市场需求、增发展后劲。关键领域涉及:高校、职业院校和实训基地、医院、中小微企业等九大领域的设备购置和更新改造,新增贷款和实施阶段性鼓励政策,中央财政贴息2.5个百分点,期限2年。会议指出,今年第四季度,对高新技术企业购置设备的,允许一次性税前全额扣除并100%加计扣除;对现行按75%税前加计扣除研发费用的,统一提高到100%,鼓励改造和更新设备。对企业出资科研机构等基础研究支出,税前全额扣除。结合2022年国务院印发的《计量发展规划(2021—2035年)》,将大力促进国产仪器产业的发展。No.2教育部通知“十四五”规划提出,要形成以企业为主体、市场为导向、产学研用深度融合的创新体系。建设、完善创新体系始终离不开科研配置和人才资源。只有配置好、利用好、培育好、发展好各类科研配置和人才资源,才能快速形成产学研等创新主体的协同创新机制。提升科技创新率、把握创新规律,发挥技术活力。工欲善其事,必先利其器。作为主要创新阵地,高校需要建立完善科技创新体系,这对高校的科学研究配置提出了全新的要求。近日,教育部对于高校创新体系建设做出新指示。教育部科学技术与信息化司发布《关于抓紧做好科学研究重大仪器设备采购和配套设施建设项目储备工作的预通知》(以下简称《通知》),拟对高校科学研究所需重大仪器设备购置与更新、配套设施建设等新增贷款,鼓励支持国家和省部级各类创新平台的高校完善现有科研设备,开展重大仪器设备购置与更新、配套设施建设。在数字经济、人工智能、生物医药、现代能源等领域加快协同创新发展的今天,创新体系建设成为经济社会发展的核心议题。这就要求各类创新主体紧紧围绕国家科技战略导向,结合自身优势找准发力点,推进重点项目协同和研发活动一体化,提高科技成果转移转化成效。高校作为创新的主力军和生力军,开展科学研究重大仪器设备采购和配套活动是加快出创新研究脚步的良好开端。No.3中国制造在行动 9月以来,国家出台一系列配套政策支持相关领域仪器设备的更新改造,并支持科学仪器领域国产化,扩大补贴力度,支持贷款,减税,扩市场需求。2000亿贴息贷款强势出台,申请时间点截至今年底,多领域科学仪器采购需求或超预期。进入10月后,政策逐步在各行业开始落地。据了解,今年9月份后高校,教育方面的意向采购,项目报备量增加,10月至今已有23个省市合计贷款合同金额超536亿元。 据机构测算,科学仪器2025年国内市场空间近800亿元,但此前进口依赖度较高、国产渗透率低,为关键“卡脖子”技术,且相关应用场景涉及国民经济领域的近70%。分析师预期,今年四季度医疗、教育、实验室等领域科学仪器采购订单或将超预期,科学仪器在教育、科研、医疗等各个行业的市场空间将会扩大,国产化进程加速。No.4成器智造 成器智造Challenge IM 专注于生物制药领域工艺仪器设备高新技术开发和应用,是一家集研发、生产制造、销售、技术服务于一体的高科技公司。公司拥有多项自主知识产权,专业的研发团队硕博及双一流人员占比70%以上,及符合行业标准的生产制造车间建有2000㎡洁净区,在全国组建了专业销售团队和售前支持与售后服务团队,以高品质的产品及专业化、高效便捷的服务赋能生物制药发展。 我们以“成器智造,必成大器”为理念,以满足客户需求为核心价值导向,为客户提供专业的技术解决方案,志在成为行业数一数二、持续成长、受人尊敬的企业。
  • 集成太赫兹收发器在美问世
    据美国物理学家组织网2010年6月30日(北京时间)报道,美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。
  • 香港大学开发全新光学芯片生物显微传感系统 可用于细胞分析和药物研发
    细胞功能与结构解析一直是生命科学研究的关键,而其中活细胞无标记检测技术开发一直是生物分析科学发展的核心热点。然而,现今的技术经常需要耗时的准备步骤、高度依赖复杂的检测仪器且与其他设备很难兼容集成,从而限制了其在生物监测领域的功能拓展和广泛应用。由香港大学(港大)电机电子工程系褚智勤博士与机械工程系林原博士、南方科技大学李携曦博士领导的研究团队针对上述问题,开发了一种基于GaN光学芯片的高度集成、低成本微型光学显微传感系统,实现了在空间受限的情况下,高湿度细胞培养箱内无标记细胞活动的监测与分析。团队并成功将新技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这款装置将为细胞生物学和药物研发的基础研究提供新的见解,并有助于新一代生物传感器的开发。团队已为发明申请美国临时专利。相比于传统的以荧光分子、核素等标记分子为基础的有源标记检测技术,无标记检测技术可以最大程度地减少对靶分子、细胞或者组织的功能和结构产生影响,从而揭示检测样本本征状态下的信息。目前,主流商业化的无标记活细胞检测技术包括以电阻抗测量为基础的微电子传感技术,该技术利用活细胞与检测板孔中微电极相互作用,产生电阻抗的改变来定量活细胞状态。然而,这种微电场可能会给一些电信号敏感的样品(神经,心肌)带来潜在的环境干扰。近些年以倏逝波为基础的生物友好、无标记光学传感技术(表面等离子谐振SPR,共振波导光栅RWG等)引起了人们极大的兴趣,并被广泛应用于生物分子相互作用和活细胞活动检测。然而,这种高精密的光学测量手段对设备搭建、场地尺寸及测试环境的要求很高,极大地限制了它在多场景、复杂环境下的推广应用。团队合作开发的光学芯片,是高度集成及低成本的微型光学显微传感系统,能够实时定量芯片表面细胞活动引起的折射率变化并对细胞形貌进行在线成像,实现了对细胞培养箱中无标记细胞活动的监测与分析。该系统核心是一种单片绿光“发光二极管 - 光电探测器(LED-PD)”光电集成器件。其采用的垂直堆栈的分布式布拉格反射镜设计,能够有效提高芯片的发光收集效率。该芯片具有片上光电探测能力,能够实时读取芯片表面集群细胞活动引起的折射率变化。同时通过集成一个微型微分干涉显微镜,实现对细胞形貌和运动的在线追踪。该系统结合对此类细胞的实时折射率和细胞形态的分析,能够定量识别分析细胞的沉降、黏附、伸展、收缩等行为,并成功将此技术应用于药物活性分析筛选和免疫细胞分化进程的实时定量追踪。这个研究拓展了GaN光学芯片在生物测量领域的发展,特别是这种基于芯片传感和光学成像结合的策略形成的光芯片显微传感系统(chipscope),将为生物传感器的设计和发展提供新的思路。研究结果经已在Advanced Science 刊登 “A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities”论文连结: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202200910
  • 首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级
    meta charset="utf-8"/meta http-equiv="X-UA-Compatible" content="IE=edge"/meta name="viewport" content="width=device-width, initial-scale=1"/meta name="SiteName" content="国际科技频道"/meta name="SiteDomain" content=""/meta name="SiteIDCode" content="N0000083288"/meta name="ColumnName" content="今日视点"/meta name="ColumnDescription" content=""/meta name="ColumnKeywords" content=""/meta name="ColumnType" content=""/meta name="ArticleTitle" content="首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮"/meta name="PubDate" content="2020-10-23 10:57:52"/meta name="Keywords" content=""/meta name="Description" content="从电子到磁振子,量子计算元器件再升级"/meta name="others" content="页面生成时间 2020-10-23 10:57:52"/meta name="template,templategroup,version" content="386,32,2.0"/title首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮-今日视点-国际科技频道/titlemeta name="keywords" content=""/meta name="description" content="首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮"/meta name="baidu-site-verification" content="8VsUZuJwJp"/link href="/cxzg80/xhtml/css/bootstrap.min.css" rel="stylesheet" type="text/css"/link href="/cxzg80/xhtml/css/xwpd_xq.css" rel="stylesheet" type="text/css"/p/p!--link rel="stylesheet" type="text/css" href="http://www.cis2016.org/cis2016/xhtml/css/tupk.css"--link href="/cxzg80/xhtml/css/xwpd_list.css" rel="stylesheet" type="text/css"/script src="http://push.zhanzhang.baidu.com/push.js"/scriptscript src="https://hm.baidu.com/hm.js?d11e62e2e2c8d774bb326bab95dd0a4d"/scriptscript src="/cxzg80/xhtml/js/jquery.min.js"/scriptscript src="/cxzg80/xhtml/js/xwpd.js" type="text/javascript"/scriptscript src="/index/xhtml/js/jquery.PrintArea.js" type="text/javascript" charset="utf-8"/scriptscript src="/index/xhtml/js/article.js"/scriptscript src="/index/xhtml/js/common_detail_zhxx.js"/scriptscriptwindow._bd_share_config = {"common": {"bdSnsKey": {},"bdText": "","bdMini": "2","bdMiniList": false,"bdPic": "","bdStyle": "0","bdSize": "24"},"share": {},"image": {"viewList": ["qzone", "tsina", "weixin"],"viewText": "分享到:","viewSize": "24"}} with(document) 0[(getElementsByTagName(' head' )[0] || body).appendChild(createElement(' script' )).src = ' http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion=' + ~(-new Date() / 36e5)] /scriptscript src="http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion=445429"/scriptp/p!--[if lt IE 9]script src="//cdn.bootcss.com/html5shiv/3.7.2/html5shiv.min.js"/scriptscript src="//cdn.bootcss.com/respond.js/1.4.2/respond.min.js"/script![endif]--div cdata_tag="style" cdata_data=".rightFloat {width: 360px }" _ue_custom_node_="true"/divlink href="http://bdimg.share.baidu.com/static/api/css/share_style0_24.css" rel="stylesheet"/link href="http://bdimg.share.baidu.com/static/api/css/imgshare.css?v=754091cd.css" rel="stylesheet"/link href="http://www.stdaily.com/cxzg80/xhtml/css/f_header.css" rel="stylesheet" type="text/css"/div class="container " style="position:relative "div class="article" style="background:#fff padding:15px "div class="pages_content" id="printContent"div class="content"p style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "近日,在追求更小、更节能的计算机方面科学家取得重要进展。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "为了解决电子移动产生的焦耳热限制,科学家们充分利用波的潜力,开发出一种磁振子电路,用自旋波来传播和处理信息。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "这种磁振子电路采用极简的二维设计,所需的能量比目前先进的电子芯片少约10倍,将来有望在量子计算和类脑的神经网络计算等领域获得应用。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "span style="font-weight: bold "磁振子,电子的替代品/span/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "电子器件中信息的传输和处理是通过对电子的操控完成的,但是电子移动所产生的焦耳热限制了电子器件向小型化和低功耗方向的发展。于是科学家不断寻找电子的替代品,例如光子或磁振子。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "在量子力学的等效波图中,磁振子可以被看作是量化的自旋波。利用磁振子开发磁控器件组件,包括逻辑门、晶体管和非布尔计算单元,已经获得成功。但作为电路组成部分的磁定向耦合器,由于其毫米尺寸和多模频谱始终无法实用。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "现在,德国凯泽斯劳滕工业大学和奥地利维也纳大学的科学家成功开发出一款亚微米尺寸的磁定向耦合器,并通过波的非线性效应设计了一个易于加工的基于二维平面的半加器,实现了用自旋波来传播和处理信息。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "科学家们开发的这个集成磁振子电路尺寸极小,采用了极简的二维设计,所需的能量比目前最先进的电子芯片要少约10倍。相关成果发表在《自然· 电子学》上。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "span style="font-weight: bold "充分利用自旋波的波动性/span/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "研究负责人、维也纳大学的安德列· 丘马克教授说:“最初计划的磁振子电路非常复杂,现在的版本比最初的设计至少好了100倍。”他把这归因于论文的第一作者,来自中国的王棋。/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "博士毕业于德国凯泽斯劳滕工业大学,目前在维也纳大学从事博士后研究的王棋介绍说:“该研究源自我博士期间的一个项目,从概念提出、理论计算、仿真设计以及实验制备和测试,整个工作持续了近4年时间,光是仿真设计就重复了几百次,现在这个设计已经是第四个版本。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "接受科技日报记者采访时,王棋介绍说:“目前的电子设备,信息都是用电子携带的,但是电子的定向移动会导致焦耳热,功耗高。我们现在用自旋波(磁振子)来携带信息,进行计算,可以大幅降低功耗。而且由于磁振子是一种波,波的一些特性可用来简化设计,从而降低器件的尺寸。简单地说,波的基本量有振幅和相位,我们的研究中主要用波的振幅来携带信号,即振幅大,信号为1;振幅小,信号为0。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "王棋说:“起初我们的思路是模仿电子设备,通过构造14磁振子晶体管实现半加器,后来发现结构太复杂而且不容易实现。我们意识到还没有充分利用自旋波的波动性。因此,在最新的设计中我们利用了波的干涉,使用了自旋波导之间偶极作用与自旋波能量相关这个非线性效应来实现了半加器的设计。不过出于成本的考虑,整个半加器是在一个二维平面上加工的。目前这个设计只是功耗更低,速度还没有电子芯片快。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "span style="font-weight: bold "自旋波研究有重要意义/span/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "王棋表示,这种磁振子电路的特殊之处在于,其信息由自旋波携带,信息的传播和处理过程中没有电子的参与,因此没有焦耳热,极大地降低了能量损耗。另一方面,通过利用波的干涉、衍射和非线性效应,又极大地简化了器件的设计。王棋说:“典型的半加器在电子芯片中需要14个晶体管,而我们的设计中只需要3根彼此靠近的纳米线。”/pp style="margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt "王棋说:“目前的计算机都是建立在布尔体系(逻辑运算)之下的,我们的研究让人们看到了波的波动性的潜力,对于非布尔体系的计算,波比电子有很大的优势。目前的研究思路还是在和布尔体系下的电子计算机相比,这种情况下波的优势没有完全显现出来,将来我们要跳出布尔体系。”/pp style="line-height: 1.5 text-indent: 2em font-family: 宋体 font-size: 12pt margin-bottom: 0.5em "丘马克教授认为,磁振子电路在量子计算和类脑的神经网络计算等方面有广阔的应用前景。自旋波无热耗散、容易实现室温玻色-爱因斯坦凝聚等宏观量子效应的优点正在得到越来越多的关注。基于自旋波的信息传输、逻辑计算有可能成为后摩尔时代信息传输、处理的重要方式之一。因此,自旋波研究具有重要的科学意义和应用潜力。/p/div/div/div/divlink href="http://www.stdaily.com/index/xhtml/images/ico/icon.ico" rel="icon" type="image/x-icon"/link href="http://www.stdaily.com/index/xhtml/images/ico/icon.ico" rel="shortcut icon" type="image/x-icon"/link href="http://www.stdaily.com/index/xhtml/css/f_footer.css" rel="stylesheet" type="text/css"/
  • Mol Cell|北大伊成器课题组开发新型RNA编辑技术RESTART
    2022年12月14日,北京大学伊成器课题组在Molecular Cell杂志在线发表了题为CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons的研究论文,首次报道了名为RESTART(RNA Editing to Specific Transcripts for Pseudouridine-mediAted PTC-ReadThrough)的新型RNA单碱基编辑技术。该技术利用改造的guide snoRNA,招募细胞内源的假尿苷合成酶复合物,在RNA特定位点处实现高效、准确地尿苷(U)到假尿苷(Ψ)的编辑。在mRNA的无义突变位点精准引入假尿苷修饰,将提前终止密码子转换成ΨAA、ΨAG或ΨGA,以实现提前终止密码子的通读及功能蛋白的全长表达。无义突变(Nonsense mutation)是基因序列中编码氨基酸的密码子突变成终止密码子(TAA,TAG,TGA)的单碱基突变。无义突变产生提前终止密码子(Premature termination codon,PTC),导致翻译提前终止,产生较小、不具功能的蛋白产物。根据人类基因突变数据库(Human Gene Mutation Database, www.hgmd.org)的统计,无义突变占据了超过20%的疾病相关单碱基突变。目前有多种潜在的技术可用于治疗无义突变疾病,但仍存在局限性。例如:(1)CRISPR/Cas9依赖的DNA碱基编辑技术可实现精准的碱基修复,但是仍存在安全性问题。细菌来源的Cas蛋白可能会引发人体免疫反应;并且一旦出现基因组水平上的脱靶,将会是永久性的。此外编辑元件尺寸较大,使药物的体内递送受到限制。(2)RNA碱基编辑技术是在RNA水平上进行的,不会对基因组序列进行永久改变,因此安全性较高。但是,RNA编辑工具的脱靶效应仍存在安全隐患。因此,领域内亟需拓展新型RNA编辑工具,开发更加特异和安全的RNA编辑器。图一、RESTART技术原理研究表明,RESTART技术具有广泛的适用性。在多种不同组织来源的细胞系以及人的原代细胞——例如支气管上皮细胞和皮肤成纤维细胞中,RESTART都可以介导高效和精准的编辑。在对疾病无义突变修复和蛋白功能恢复的诸多应用尝试中,RESTART的高效性均得到了充分验证,反映了该技术在疾病治疗中的巨大潜力。例如,RESTART成功恢复了来源于Hurler综合征小鼠的α-L-艾杜糖醛酸酶缺陷细胞中IDUA蛋白的功能。该技术为无义突变疾病的治疗和RNA假尿苷修饰的基础研究都提供了一种全新的工具。传统的RNA编辑技术主要是通过脱氨反应(如A-to-I或者C-to-U)实现碱基编辑,其产生的脱靶会在RNA上引入突变,从而存在安全隐患。与这些技术不同,假尿苷修饰不会改变碱基互补配对,不会影响密码子的编码信息;RESTART产生的少量脱靶也不会影响RNA的稳定性和蛋白的翻译。此外,RESTART系统是由人源的snoRNA和修饰酶衍生而来的,理论上可以避免免疫原性。因此RESTART是一个高效且安全的潜在治疗技术。综上,RESTART技术作为一种可编程的不依赖CRISPR的RNA假尿苷编辑技术,拓展了RNA编辑的策略,可通过高效编辑mRNA上的无义突变位点介导翻译通读和蛋白功能的恢复,并且具有较好的安全性,展现了良好的疾病应用前景。在递送方面,RESTART适用于装载至腺相关病毒(AAV)等载体中进行递送;并且guide snoRNA可以通过体外转录和体外合成等多种方式制备,未来也可以与小RNA递送体系,例如GalNAc3进行偶联。除此之外,RESTART技术也将推动假尿苷修饰领域的研究,为该领域基础研究和无义突变疾病治疗领域都提供有利的工具。北京大学生命科学学院伊成器教授为该论文的通讯作者,课题组博士后宋靖慧(已出站)、博士生董利婷、孙含笑、罗楠、博士后黄强为共同第一作者。该工作得到农业部项目、科技部重点研发计划、国家自然科学基金等项目资助以及北大-清华生命联合中心、蛋白质与植物基因研究国家重点实验室等的支持。北京大学高性能计算平台,生命科学学院仪器中心及凤凰工程等多个平台对本项目提供了重要的技术支撑。原文链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(22)01100-5
  • 微电子所在SOT-MRAM的关键集成技术领域获进展
    磁随机存储器(MRAM)因具有非易失性、低功耗以及高访问速度等特点,在未来新兴存储领域颇具应用前景。尤其是基于自旋轨道矩(SOT)技术的MRAM存储器具有超高速、高耐久性的优势,更适用于高速缓存。然而,在SOT-MRAM集成中存在技术瓶颈,制约了其走向应用。隧道结的刻蚀工艺是关键的技术挑战和难点之一。在SOT隧道结(SOT-MTJ)刻蚀过程中,金属副产物的反溅使得MTJ的MgO隧穿势垒层(厚度~1 nm)短路,从而造成较低的器件良率。半导体研发机构和企业在SOT-MRAM刻蚀工艺上开展了研究,提供了良好的解决思路,而SOT-MRAM的刻蚀工艺依然是业界面临的重要技术挑战。为了更好地解决SOT-MRAM的刻蚀技术难题以实现SOT-MTJ的高密度片上集成,同时探讨不同的刻蚀工艺对器件磁电特性的影响,中国科学院微电子研究所集成电路先导工艺研发中心研究员罗军课题组开发出基于垂直磁各向异性SOT-MTJ的刻蚀“停MgO”工艺(SOMP-MTJ)。该工艺有效地解决了SOT-MRAM制造中的刻蚀短路问题。传统的SOT-MTJ刻蚀方法(NSOMP-MTJ)使刻蚀停止在底电极上,在刻蚀过程中MgO层极易附着金属,造成器件短路。刻蚀“停MgO”工艺使MTJ刻蚀终点精确地停止在~1 nm厚的MgO层上。由于隧穿层MgO的侧壁从未暴露,从而避免了MgO层的短路。利用“停MgO”刻蚀工艺制备的SOT-MTJ器件阵列,晶圆的电阻良率可提升至100%,同时提高了器件的TMR、电阻、矫顽力等关键参数的均匀性。另外,“停MgO”器件具有更高的热稳定性、更低的翻转电流密度以及高达1 ns的翻转速度。该成果为高速、低功耗、高集成度SOT-MRAM的刻蚀技术问题提供了关键解决方案。相关研究成果以Enhancement of Magnetic and Electric Transport Performance of Perpendicular Spin-Orbit Torque Magnetic Tunnel Junction by Stop-on-MgO Etching Process为题,发表在《电子器件快报》(IEEE Electron Device Letters)上。研究工作得到科技部、国家自然科学基金、中科院等的支持。
  • 上海光机所在太赫兹波电子加速研究中取得重要进展
    近期中国科学院上海光学精密机械研究所李儒新、田野和宋立伟团队在太赫兹波电子加速领域取得重要进展。研究团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用超强超短激光驱动丝波导产生毫焦耳级太赫兹表面波,并采用表面波进行电子加速,解决了高能量太赫兹波产生以及自由空间太赫兹波至波导能量耦合效率低等难题。该项研究将太赫兹波的产生、传输及耦合集成到波导上,并在波导管中5mm距离实现了最高1.1 MeV的电子能量增益和210 MV/m的平均加速梯度,较当前太赫兹波加速电子能量增益的世界纪录提升了近一个量级,同时为全光学集成化电子加速器研究开辟了崭新途径。相关研究成果于2023年7月13日以“Megaelectronvolt electron acceleration driven by terahertz surface waves”为题发表于《自然光子学》(Nature Photonics)期刊。   小型化集成化的电子加速器将极大地推动其在前沿科学与技术领域的广泛应用。利用太赫兹波驱动电子加速作为近十年来发展的新兴加速技术,能够提供比传统射频加速更高的加速梯度,是实现小型化、低成本加速装置的可靠途径之一,有望将加速器的应用推广向包括小型实验室、医院等在内的更多应用场景。   当前发展的太赫兹电子加速基于自由空间的太赫兹源技术,太赫兹波产生后,经收集、传输、偏振转换,再聚焦至用于加速电子的波导结构。实验上,为了尽可能提高波导内部的太赫兹加速梯度,需要太赫兹源提供足够的能量以弥补光路中散射、反射,以及模式转换的能量损耗。常见的太赫兹源,例如基于光学晶体产生的太赫兹辐射通常需要经过光学元件的收集及导引,并通过分段波片或相移片进行模式转换,不可避免地造成能量损失。相比自由空间的太赫兹辐射,束缚于介质表面的光学表面波,如表面等离极化激元(surface plasmon polaritons, SPP),为太赫兹的导引与模式转换提供了全新的思路。   研究团队近年来在小型化的激光加速电子源与辐射光源等领域长期探索,并于近期发现了太赫兹表面等离极化激元相干放大机制(Nature 611, 55–60 (2022)),能够实现高功率表面等离极化激元相干辐射源。围绕轴对称金属圆柱形波导上的太赫兹表面等离极化激元的索莫菲波属性,以及对低色散基横磁(TM)模式,研究团队进一步将此高功率的太赫兹表面等离极化激元直接与加速波导耦合,实现了85%的耦合效率,能有效将飞秒激光泵浦金属圆柱波导产生的毫焦耳级太赫兹能量与电子束作用,并最终在5mm长度上使电子获得最高1.1 MeV的能量增益及210 MV/m的平均加速梯度,将当前国际上太赫兹波驱动的电子能量增益最好结果提升了近一个量级。   未来,研究团队将基于这一太赫兹表面波模式驱动电子加速的全新方案进一步发展集成化的全光学电子加速技术,并拓展其在小型辐射源及材料检测等领域的交叉应用。   相关研究工作的合作团队包括北京航空航天大学与张江实验室等,该工作共同第一作者为上海光机所博士研究生余谢秋与特别研究助理曾雨珊,工作得到了科技部重点研发计划、中科院先导B、基础研究特区计划、中科院人才引进计划、国家自然科学基金、中科院青促会和上海市科技启明星扬帆计划等支持。图1 太赫兹表面波驱动电子加速实验示意图图2 实验测得的最大电子能量增益结果图3 自由空间(a)与金属圆柱波导(b)太赫兹耦合状态下,加速波导内的电场强度对比(c)
  • 天津大学打破博导终身制 由“资格”变为“岗位”
    天津大学:讲师也能当博导  198名新人上岗,85位原博导未上岗——这是天津大学2016年博士生导师岗位选拔的结果。3年前,该校全面启动研究生教育综合改革,实现导师遴选机制的学术自治,打破终身制,使导师由“资格”转变为“岗位”。  精密仪器与光电子工程学院刚过而立之年的讲师丁振扬,是这次改革的受益者。作为新机制下评选出的首批导师之一,他在2016年秋季学期迎来了自己的第一名博士生。尽管学生并不属于他一个人,而是属于他所在的“导师团”,但这足以让丁振扬感到欣喜:传统的“师兄”带“师弟”、“小导师”帮导师义务带学生的方式,终于画上了句号。  在我国高校中,博导岗位长期与高校职称“绑定”,导致青年教师无法施展拳脚,而已经具有资格的教授却动力不足。此外,“单打独斗”式的导师制已不能适应高校综合性、跨学科的科研、教育需求,不利于团队优势发挥。  为解决这些问题,天津大学此次改革着眼于只聘不评、规模放开、权力下放,让导师岗位选拔实现3个“脱钩”:导师规模与计划配置脱钩,导师岗位与职称体系脱钩,导师岗位与缓退制度脱钩。同时,新机制下导师“上岗”也有3种形式:独立指导、正副导师和导师团队。无论讲师还是教授,所有符合申请标准的教师都可以竞争上岗,具体选拔标准“一院一法”,“上岗”与否取决于各学院所属学位评定分委员会的评定。  改革的关键是考核。对正副导师或导师团队中任何一名导师为第一完成人、学生为第二完成人的学术成果,天津大学都在博士研究生学位申请时予以认定,这就解除了导师和学生双方的顾虑。“团队里每位老师都有自己的长处,随时可以请教一些细节的技术问题,氛围也更好。”2016级博士生芮小博说。  “有了‘名分’,权力大了,责任也就更大。”在精密仪器与光电子工程学院教授胡明列看来,有了自己名下的学生,青年导师做科研的劲头更足,同时新机制也催生了更多跨学科合作,“比如,我的研究方向是激光,化工学院巩金龙教授的研究方向是光电催化,我们经常探讨合作探索新方向的问题。虽然合作还没开始,但起码这项制度给了我们更多的想象和可能”。  经过3年改革实践,天津大学导师岗位选拔制度进一步健全。截至2016年底,该校博导队伍中,年龄40岁以下导师的占比由2014年的9.1%提高到28.2%。
  • 规模化制备高度集成微型超级电容器研究获进展
    p  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队与中科院院士包信和团队,以及中科院金属研究所成会明、任文才团队合作,采用丝网印刷方法规模化制备出高度集成化、柔性化、高电压输出的石墨烯基平面微型超级电容器,相关成果发表在《能源与环境科学》(Energy Environ. Sci.)上。/pp  微型化、柔性化电子器件的快速发展,让人们对与之匹配的微型储能器件的需求越来越大。然而,单个微型储能器件的输出电压和电流有限,难以满足需要高电压、大电流驱动的电子器件的应用需求,在实际中通常需要将多个储能器件进行串联和(或)并联集成来提高电压和(或)电流。目前集成化储能器件一般需要借助金属连接体,导致器件一体性、机械柔韧性差,加工过程复杂,以及性能难以定制。因此,急需发展新的规模化技术来批量化制备高度集成、性能可定制的微型储能器件。/pp  在该工作中,研究人员首先发展了一种具有优异流变学和电化学性能的石墨烯导电油墨,然后采用丝网印刷的方法,利用一步法实现了平面型及集成化微型超级电容器的集流体、图案化微电极和器件间导电连接体的制备,大大简化了制作流程,显著提高了集成器件的整体性和机械柔韧性。根据不同的实际应用需求,科研人员不仅可以对集成化微型超级电容器的形状和大小进行有效调控,而且能够实现任意数量平面微型超级电容器的串并联集成,进而有效定制输出电压(几伏至几百伏)和电流(纳安至毫安)。例如,由130个单器件串联得到的微型超级电容器模块,其输出电压可达到100V以上。该工作证明了石墨烯导电油墨可以同时作为集流体、导电连接体,以及高容量电极材料,丝网印刷技术可以高效、规模化地制备出高度集成化、一体化、高电压输出的平面微型超级电容器,获得的模块化器件具有出色的良品率、性能一致性、高电压输出等特征,具有广阔的应用前景。/pp  上述工作得到国家自然科学基金、国家重点研发计划、大连化物所科研创新基金等的资助。)/pp style="text-align: center "img title="W020181210353843556910.jpg" alt="W020181210353843556910.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/01dbcb67-90ca-4395-a863-2e1d7866840e.jpg"//pp style="text-align: center "规模化制备高度集成微型超级电容器研究获进展/p
  • Decagon公司水分吸附等温线自动生成器公司荣获国际食品技术IFT大奖
    Decagon公司的最新水分吸附等温线自动生成器 AquaSorp Isotherm Generator获2007国际食品技术创新大奖"2007 IFT Innovation Award"。 水分吸收等温线将复杂的、特定产品的水分和水活度之间的关系描绘出来。考虑到食品&ldquo 指纹图谱&rdquo ,这个曲线(通常是S型)可以显示出随着水分的增加或减少,水活度是如何变化的。 AquaSorp Isotherm Generator采用动态露点吸附等温线方法(DDI )DDI,可将特定产品水分以及水活度之间的关系自动生成曲线图。AquaSorp Isotherm Generator利用动态露点吸附等温线方法,可以在24小时之内给出高精确度的吸附和去吸附等温曲线。(手动生成一条等温线需要2-5周的时间)。等温曲线对理解及控制产品配方、稳定性、潮湿敏感度,温度效应、干燥特性等具有非常重要的意义。 吸湿等温线自动测绘仪详情请浏览:http://www.ift.org/cms/?pid=1001636,www.pynnco.com 或咨询培安公司:010-65528800。
  • 复旦大学魏大程团队研发半导体性光刻胶,实现特大规模集成度有机芯片制造
    近日,复旦大学高分子科学系、聚合物分子工程国家重点实验室魏大程团队设计了一种新型半导体性光刻胶。2024年7月4日,该成果以《基于光伏纳米单元的高性能大规模集成有机光电晶体管》(“Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors”)为题发表于《自然纳米技术》(Nature Nanotechnology)。光刻胶又称为光致抗蚀剂,在芯片制造中扮演着关键角色,经过曝光、显影等过程能够将所需要的微细图形从掩模版转移到待加工基片上,是一种光刻工艺的基础材料。传统光刻胶仅作为加工模板,本身不具备导电、传感等功能。该成果则报道了一种半导体性的光刻胶设计策略,通过掺杂光活性粒子进行光电功能化,可以通过微电子制造业通用的光刻技术进行光电晶体管的大规模高分辨率制备,实现了大规模有机光电芯片的集成,将集成度和光响应度提高了两个数量级以上。现代信息科技的飞速发展对功能芯片集成度的要求越来越高。目前硅基芯片的制程工艺已经达到了3纳米的节点,集成密度已经超过2亿个晶体管每平方毫米。硅基芯片单片集成的集成度从小规模集成度(SSI)、中规模集成度(MSI)、大规模集成度(LSI)、超大规模集成度(VLSI)和特大规模集成度(ULSI)(集成器件数量分别大于2、26、211、216、221)不断迈向更高的水平。相比之下,基于有机半导体材料的有机芯片克服了无机半导体固有的刚性,凭借其与软组织良好的机械相容性,在可穿戴电子学、生物电子学等新兴领域具有广阔的应用前景。然而,目前有机芯片的集成度远远落后于硅基芯片。通过溶液加工(丝网印刷、喷墨打印)或真空蒸镀等方法制备出的有机芯片,其集成度通常不超过大规模集成度(LSI)水平。这是因为有机半导体导电通道由范德华力堆叠形成,在复杂制造流程的溶剂和热处理过程中易受到损伤,导致芯片性能随小型化而急剧降低。尤其当特征尺寸降低到微米及以下时,小型化和性能的折中显著地限制了高集成有机芯片的发展。图1:(a)光刻胶组成;(b)光刻胶聚集态结构;(c)在不同衬底上加工的有机晶体管阵列;(d)有机晶体管阵列结构示意图及光学显微镜照片;(e)有机光电晶体管成像芯片(PQD-nanocellOPT)与现有商用CMOS成像芯片以及其他方法制造有机成像芯片的像素密度对比。在这项工作中,魏大程团队报道了一种新型半导体性光刻胶的设计策略,该材料包含光引发剂、交联单体、导电高分子,可以通过光交联形成纳米尺度的互穿网络结构,同时实现了亚微米级的光刻图案化精度、良好的半导体性能和工艺稳定性。这种半导体性光刻胶可以通过添加不同的活性粒子来功能化。为了实现高灵敏的光电探测能力,研究者开发了一种具有光伏效应的核壳结构纳米粒子,添加到半导体性光刻胶中。纳米光伏粒子在光照下会产生光生载流子,电子被内核捕获,对半导体导电通道产生原位光栅调控,大幅提升了器件的响应度。作为展示,研究者利用光刻技术在全画幅尺寸芯片上集成了2700万个有机晶体管并实现了互连,实现了特大规模集成度(ULSI)的制造水平。该阵列(4500×6000像素)集成密度达到3.1×106 units/cm2,光响应度达到6.8×106 A/W。研究者将高密度阵列转移到柔性衬底上,实现了仿生视网膜应用,在基于神经网络的图像识别算法中展现出比传统CMOS器件更高的性能。此外,该团队还研发出具有化学传感功能、生物电传感功能的光刻胶。由于开发的功能化半导体光刻胶使用半导体产业通用的光刻技术进行加工,所以与商业微电子制造流程高度兼容,具有很大的应用前景。未来该团队也会积极寻求产业界的合作,希望能够推动科研成果的实用化。图2:(a,b)人眼和仿生视网膜的结构示意图;(c)在5&thinsp ×&thinsp 5 晶体管阵列上展示光电突触性能;(d)基于神经网络的图像识别算法中仿生视网膜与传统CMOS光电探测器的性能对比。“我们正在积极寻求产业界合作,希望能够推动科研成果的应用转化。未来,这种材料一方面能够用于制造高集成度柔性芯片,另一方面由于其光刻兼容性,还有可能实现有机芯片与硅基芯片的功能集成,进一步拓展硅基芯片的应用。”团队负责人魏大程说。
  • 有交叉,才有高精尖---访现代光学仪器国家重点实验室
    记者:2008年1月,在547名两院院士投票评选出的2007年中国和世界十大科技进展新闻中,各有一条涉及“光子”这一领域。一条是中国科学家“实现六光子薛定谔猫态”,另一条是法国科学家“成功追踪到光子活动”。您怎么看这一“巧合”?   刘旭:我觉得有两层含义。一是呈现出光学工程学科发展的重要趋势。在国际光子学前沿领域中,一些新理论和新方法的发展拓展了光学工程学科前沿基础研究的领域及方向,光学工程学科将在微观与介观光学领域产生很多原创性的研究成果。同时,现代信息社会的发展对光学工程学科提出了更多、更高的工程技术需求,将促进光学工程学科高速发展,并呈现多元化发展的态势。   二是凸显出光学工程技术在信息化进程中的重要作用。因为具有比电子带宽宽、容量大、安全性高、电磁干扰小、速度快、材料廉价等多重优点,人们普遍认为21世纪是光的世纪。作为人类与信息的基本界面技术,光学工程技术被广泛应用于长距离,大容量光通信、光存储、光显示、光互联、光信息处理、光子医疗和军事武器装备以及先进防御系统中,预期还会在未来的光计算中发挥重要作用。    记者:在光学工程这些最前沿的领域,我们实验室开展了哪些研究?     刘旭:我们实验室一直是将发展国家急需的先进光学仪器技术作为主要工作。包括从应用研究层面开拓新型光学仪器技术研究、大力开展光学器件与仪器技术的产业化推广应用两个方面。因此,实验室始终把目标定位在将光学工程基础研究、应用基础研究与工程技术研究有机结合,拓展现代光学与光子技术及仪器技术的新领域、促进我国光学技术与光电产业的发展上面。目前,实验室主要有精密光学仪器与检测技术和微纳光子技术及器件两个研究方向。   记者:目前这些研究进展如何?   刘旭:近几年来,我们实验室在光纤传感关键技术、微纳光纤及其器件、负折射率介质和光子晶体、高清晰度液晶投影显示技术及系统、多功能高集成度光电子集成器件等方向上开展研究,取得了突出进展。   纳米光纤技术原创性研究成果在国内外产生重要影响,成为当前光子学方向的研究热点之一。现已在纳米光纤谐振腔以及增益介质型纳米光纤、微光纤激光等方面的研究取得突破性进展;在液晶投影光学引擎与元件技术研究上实现突破,研制出一系列填补国内空白的投影显示设备;在光子晶体与人工负折射介质研究中取得诸多进展,发表了大量高水平的研究论文;在生物光子检测技术上,在国内首次获得人眼底活体视网膜高分辨层析图像,取得了优于商业化产品(ZeissHumphrey第三代眼底OCT仪)的满意结果,成果属世界前列水平;在精密光学检测和加工设备方面,实验室与国际著名企业合作研制成功分辨率为1微米的12英寸硅片一次曝光镜头,填补国内空白并达到国际先进水平。   记者:国内大学很多实验室主要的工作是进行基础研究和应用基础研究,我们实验室把很多精力放在光学器件与仪器技术的产业化推广上,您是怎样考虑的?   刘旭:基础研究的成果不进行转化,不进行推广应用无异于纸上谈兵。学科建设与服务国家需求是密不可分的,特别是作为我国光学仪器领域唯一的国家重点实验室,只有将实验室的研究成果,转化成国家经济社会发展和国防建设迫切需要的技术和产品,推进相关产业的发展,才能起到示范和带头作用。一直以来,我们实验室以国家的需求为目标,从国家发展急需的先进光学仪器技术入手,确定研究方向,开展基础研究,攻克技术难题,再以取得的成果为国家和社会服务。   前面我介绍的几个研究方向都是我们紧密结合国家经济建设重大需求和学科国际前沿发展趋势,承担和完成的重大科研任务。像我们实验室研制完成的具有自主知识产权并为国家发展所急需的光纤传感技术和核心传感器件;液晶投影光学引擎与元件技术研究,推进了国家投影显示产业的发展,使我国成为投影显示光学元件产业的大国。国家计委产业化专项“数码彩色激光打印技术”,填补了我国数字图像彩扩与激光打印技术的空白,并且成功实现产业化,推进了我国数码产业的发展。   在推动地方社会经济发展方面,针对近几年长三角光学产业主要依靠承接国外光学加工订单,科技含量低、缺乏发展后劲的现状,我们实验室在精密光学检测和加工、数码彩扩、高分辨电光投影显示、光学相干层析成像技术(OCT)、正电子发射断层成像(PET)、阵列波导光栅(AWG)波分复用等光电集成器件方面开展研究,这些新的光学技术带动了区域光电产业的发展,成为区域经济新的增长点。我们实验室先后与与浙江舜宇集团、浙江水晶光电、富通集团、宁波永新、上海嘉光等国内主要的光学产业集团进行产学研合作,支持了长三角地区诸多光学产业的发展,形成了长三角光学产业群。   记者:那么,基础研究成果的产业化应用如何进一步推进科学研究和学科的发展?   刘旭:近5年,我们实验室共承担国家及省部级科研项目135项,100万元以上的重大横向科研项目14项,总经费逾亿元,其中国家级经费占一半。技术转化产生的经济效益达8亿元以上。   在这些重大项目的支持下,我们实验室得以成功组建了一支学位层次高、整体科研能力强、年龄结构合理的学术队伍。   记者:浙江大学现代光学仪器国家重点实验室是在光学工程国家重点学科点建立起来的,近年来学科的发展也非常令人瞩目。作为这个学科的负责人,您认为靠什么来保持实验室和学科不断进步的活力?   刘旭:浙江大学光学工程学科在近几年的评估中名次逐年上升,从2002年的全国第四名,2004年的全国第二名,到2006年的全国第一名。推进学科和实验室建设与发展的因素很多,我觉得最大的活力来自于我们成功组建了一支与学科发展相适应的人才队伍。   科学研究最重要的是人才。特别是由前沿研究方向的优秀人才组成的具有国际竞争力的高水平学术团队和学术素质高、科研水平好、视野与国际接轨、具有较强科学研究与工程应用原创能力的教学科研队伍至关重要。我们充分利用学校学科门类齐全的综合优势,注重引进不同学科背景的教师加盟,形成交叉综合的优势。我们还加强与校内计算机、化学、机械、农业及信息电子等学科的交叉研究,形成新的学科增长点,凝练新的学科发展方向。   记者:浙江大学光学工程学科被誉为“中国光学工程人才培养的摇篮”。实验室在人才培养方面的情况如何?   刘旭:优秀的硕士及博士研究生也是我们实验室的新鲜“血液”,在这里,他们既是学生,也是科研工作者,许多科研成果的取得,都有他们的功劳。在对他们的培养过程中,我们特别注重科研和动手能力的培养,依靠项目资助和自筹资金建立了研究生创新实验教育平台。我们建立了博士生读书报告制度,培养博士生跟踪和融入学科研究前沿的能力。重视加强研究生培养的国际化步伐,每年都会选派几名研究生到国际一流大学和研究机构进行联合培养。   同时,我们先后在宁波理工学院和浙江大学城市学院开办专业方向,为地方培养人才;为兵装集团开办培训班,促进军队现代化建设;开办光学设计、光学薄膜培训班,为全国企业人才提供深造机会。   记者:实验室的目标是建设成为在国内外具有重要影响的现代光学仪器研究基地。您觉得目前实验室与国际相关领域知名的研究机构相比还有哪些差距?怎样去缩小这些差距?   刘旭:应该看到我们仅仅是在主要点上达到了国际先进水平,在很多方面,如思想理念、研究人员队伍,以及科学研究的活力等与国际知名实验室相比,还有相当距离。   今后,我们以国际知名实验室为目标,加大实验室队伍人才培养的力度,加大对国际知名学校博士学位获得人员的引进力度,着力吸引著名高校特别是国际知名大学的博士加入研究人员队伍,改进我们的研究人员结构,促进队伍的建设与国际视野的进一步提高。同时,努力提高实验室研究实力与战略视野,通过更广泛的国际国内合作,提高科研水平与规模,努力寻求社会资源,使本实验室更好、更快的发展,为国家的经济建设与现代化事业做出更大的贡献。   编者按   现代光学仪器国家重点实验室在光纤传感关键技术、微纳光纤及其器件、负折射率介质和光子晶体、高清晰度液晶投影显示技术及系统、多功能高集成度光电子集成器件等方向上开展研究,取得了突出进展。   纳米光纤技术原创性研究成果在国内外产生重要影响,成为当前光子学方向的研究热点之一。现已在纳米光纤谐振腔以及增益介质型纳米光纤、微光纤激光等方面的研究取得突破性进展;在液晶投影光学引擎与元件技术研究上实现突破,研制出一系列填补国内空白的投影显示设备;在光子晶体与人工负折射介质研究中取得诸多进展,发表了大量高水平的研究论文;在生物光子检测技术上,在国内首次获得人眼底活体视网膜高分辨层析图像,取得了优于商业化产品(ZeissHumphrey第三代眼底OCT仪)的满意结果,成果属世界前列水平;在精密光学检测和加工设备方面,实验室与国际著名企业合作研制成功分辨率为1微米的12英寸硅片一次曝光镜头,填补了国内空白并达到国际先进水平。
  • 微波光子器件研究获突破 外媒评“或改变微波通信未来”
    国家973计划项目“面向宽带泛在接入的微波光子器件与集成系统基础研究”重点针对微波光子相互作用下的高带宽转换机理、高精细调控方法、高灵活协同机制等3个科学问题,在微波光子作用机理、关键器件与原型系统方面取得了重要突破,为未来发展提供了相应的理论与技术支撑。  在“高带宽”方面,研究团队揭示了新材料光学响应的增强机理与特性规律,首次实验发现了石墨烯等二维材料具有微波与光波类似的可饱和吸收特性,可用于实现更高带宽的调制器,相关成果被国外媒体报道并被认为是“石墨烯在微波光子学中崛起”、“可能改变微波通信的未来” 发明了倒梯形波导结构,攻克了高带宽、窄线宽、可调谐、高稳频等关键技术,研制成功了国际领先的30GHz模拟直调半导体激光器。在“高精细”方面,研究团队研制了精度2.2MHz、范围 112GHz的微波处理光子集成芯片,性能指标领先 实现了光域微波超宽带精细调控和大动态超宽带稳相微波光传输。在“高灵活”方面,面对宽带泛在接入的共性问题,研究团队首次提出了基于软件定义的微波光波资源统一调度与功能虚拟化的C-RoFlex模型 研制了覆盖L/S/Ku/Ka且子信道带宽 15-120MHz灵活可变的微波光子柔性卫星转发器样机 构建了分布式大动态可协同的智能光载无线(I-ROF)原型系统与研究平台。  该项目所取得的“宽带集成、稳相传输、多频重构”等创新成果在嫦娥三号X波段信标信号采集、北斗导航高轨卫星的轨道监测和微波光子柔性卫星转发器等国家重大工程中得到验证和技术应用。
  • 宁波材料所发表文章表明碳基Janus薄膜在柔性智能设备中的应用
    Janus薄膜由于具有不对称的结构和独特的物理或化学性质,在传感、驱动、能源管理和先进分离等方面表现出了巨大的应用潜力。   其中,仿生柔性皮肤由于兼具灵敏感知、驱动和功能集成等特点,已经引起了人们广泛的研究兴趣。为实现这些特定的功能,需要选择合适的活性功能材料并以可控的方式形成不对称的结构。碳纳米材料由于具有优异的导电和导热性能、本征机械柔韧性、高化学和热稳定性、易于加工等优点,是一种极具应用前景的活性材料。   碳纳米材料和功能聚合物以可控方式进行不对称结合可以促进高性能传感、驱动和集成器件的设计,从而推动智能软体机器人的发展。因此,迫切需要对碳基Janus薄膜的设计原则进行全面总结,并深入讨论表面/界面结构和性能之间的关系,以指导其在柔性智能设备中的应用。   中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员基于在碳基/高分子Janus薄膜的构筑及其柔性传感和驱动方面的长期研究基础,受邀在Accounts of Materials Research上发表题为“Carbon-based Janus Films Toward Flexible Sensors, Soft Actuators and Their Beyond”的综述文章(Acc. Mater. Res. 2023, DOI: https://doi.org/10.1021/accountsmr.2c00213), 系统总结了碳基Janus薄膜的制备策略、结构与性能关系以及传感和驱动及其一体化集成器件应用方面的研究进展,并对该领域的未来发展进行了展望。   在该综述中,作者首先讨论了几种常见的碳纳米材料(例如,碳纳米管、石墨烯、氧化石墨烯和还原氧化石墨烯、石墨和炭黑等)的基本性质和优缺点,以此来引导人们根据所需的性能和应用场景选择合适的材料。随后介绍了碳基Janus薄膜通用的制备策略,并根据制备过程中基底不同,将其分为固体支撑的物理和化学策略以及液体支撑的界面策略。其中,重点讨论了不同的设计原则和表面或界面结构以及性能之间的关系,以此来指导设计高性能器件。具有不对称功能耦合的碳基Janus薄膜进一步通过构建特殊表面微结构来实现高性能电子皮肤的开发,同时还能以支撑和自支撑构型用于非接触式感知。此外,由于碳纳米材料优异的光热转化以及湿度响应性能和聚合物层的功能可设计性,碳基Janus薄膜在高性能光热驱动、湿度驱动以及多刺激响应驱动器中取得了巨大进展。基于碳材料优异的导电和传感性能,碳基Janus薄膜还可以设计成自感知软体驱动器,极大推动了智能软体机器人的发展。   尽管碳基Janus薄膜在传感、驱动和一体化柔性器件的开发中得到了长足的发展,但仍然存在一些问题和挑战亟需解决。首先,碳纳米材料应用到植入式传感或驱动器件中时,需要考虑和生物相容性材料进行复合或者对器件进行封装来降低毒性风险。其次,为实现稳定的驱动和精确的传感信号反馈,需要进一步提高两相界面的结合强度。同时,赋予碳基Janus薄膜多功能性,例如自愈合、抗腐蚀、耐高温、抗冻等,以增强其在复杂、恶劣环境中的适应性。不仅如此,还需探索高效易得的方法以实现碳基Janus薄膜可控图案化,来构建高精度、定位传感器和可编程的多阶段驱动器。最后,为实现碳基Janus薄膜的大规模生产以及推动其在智能软体机器人中的发展,结合可扩展的界面制备策略和先进的打印以及卷对卷加工等技术似乎是一种不错的选择。   该论文得到了国家自然科学基金(52073295)、国家重点研发计划项目(2022YFC2805204、2022YFC2805202)、国家自然科学基金委中德交流项目(M-0424)、浙江(之江)实验室开放研究项目(No.2022MG0AB01)、中国科学院前沿科学重点研发项目(QYZDB-SSW-SLH036)、王宽诚教育基金(GJTD-2019-13)等项目的支持。基于先进制造技术构建碳基Janus薄膜用于传感、驱动及其一体化智能柔性器件
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制