当前位置: 仪器信息网 > 行业主题 > >

超成像系统

仪器信息网超成像系统专题为您提供2024年最新超成像系统价格报价、厂家品牌的相关信息, 包括超成像系统参数、型号等,不管是国产,还是进口品牌的超成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超成像系统相关的耗材配件、试剂标物,还有超成像系统相关的最新资讯、资料,以及超成像系统相关的解决方案。

超成像系统相关的仪器

  • 超快光谱超快光谱探测技术被认为是自量子力学诞生以来,能够在相应非常短的时间尺度内探索微观量子性质的最有利工具之一,在研究超导材料的机理、非平衡物理及新奇量子态的诱导、量子态的外场调控等方面同样具有重要作用。很多新材料的研发需要借助超快光谱探测技术手段进行,如半导体磁性材料、超导体、绝缘体、复杂材料、太阳能电池等。在生物科学领域,NA、RNA等生物大分子在光激发后的反应过程和动力学过程,生物大分子的结构和生理机能探索,生物医学领域的基因工程等研究也需要超快光谱探测技术。显微超快光谱可以在微观尺度上探测样品的超快分子动力学过程,例如二维材料中边缘态动力学,载流子分布及扩散,光催化材料中的催化热点研究等等。卓立汉光的超快光谱测试系统,根据用户需求基于RTS显微系统,灵活搭建飞秒激光器、条纹相机、荧光寿命成像、飞秒瞬态吸收成像等超快模块,为超快化学及激发态动力学理论研究以及超快化学、物理和生物等交叉学科的研究提供更全面的数据支撑。超快光谱测试系统特点基于飞秒/皮秒激光器搭建,利用高能超短脉冲激发分子内部的动力学过程,监测过程中释放的超快荧光及瞬态吸收信号。激发光源可以自由切换,荧光显微系统使用高精度样品位移台,实现荧光寿命成像及荧光强度成像。条纹相机、光谱仪、显微镜构成联合诊断系统,提供超快空间-强度-时间分辨参数。飞秒瞬态吸收成像部分基于宽场显微镜搭建,可进行高通量快速成像。 超快光谱测试系统技术参数 荧光寿命成像光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-10μs空间分辨率≤1μm@100X物镜@405nm皮秒脉冲激光器条纹相机光谱测量范围200-900nm时间分辨率≤5ps, (最小档位时间范围+光谱仪光路系统)测量时间窗口范围500ps-100us(十档可选)工作模式静态模式,高频同步模式以及低频触发模式系统光谱分辨率0.2nm@1200g/mm单次成谱范围≥100nm@ 150g/mm宽场飞秒瞬态吸收成像成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景测量模式点泵浦+宽场探测(载流子迁移)宽场泵浦+宽场探测(载流子分布)仪器工作模式反射/散射新型二维材料中的边缘物理态研究(飞秒瞬态吸收成像系统)二维WS2中激子分布情况,激子寿命研究。从图中可以看出,二维WS2材料中多层的边缘具有更高激子密度和更长激子寿命。 ASE超快发光过程监测(条纹相机) 钙钛矿样品中的放大自发辐射(Ampl i f i ed Spontaneous Emission,ASE)发光过程研究。条纹相机可以监测到随着激光功率逐渐增大,样品从单纯的荧光发射(左图)变成荧光与ASE混合发光(中图),最后到只有ASE发光(右图)的全部过程。 钙钛矿荧光寿命成像(荧光寿命成像系统)钙钛矿样品不同寿命组分的寿命成像和相对振幅成像图。从图中可以看到两个寿命组分及其相对含量在样品中的分布情况。
    留言咨询
  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • 产品说明Super-resolution Ultrasound Microvascular Microscopy(SUMM)正在引领超声医学影像迈入全尺度血流高清成像时代,它尤其在微小血管的结构和血流功能成像方面独有专长 。SUMM系统可适用于如甲状腺、乳腺、神经肌肉、腹部脏器、肿瘤等众多部位的血流成像,相较于传统超声成像、MRI、CT等现有血流成像手段,具有安全性高、空间分辨率高、成像速度快等优点。超快超声计算成像系统能实现每秒数百帧甚至上千帧的超高扫描帧率,实现超声造影信噪比和信背比的双重飞跃。超分辨血流的重建和分析基于原始微泡造影信号,通过降低衍射极限造成的影响,在不损失成像视野的条件下可达到10倍空间分辨率增强,实现全尺度血流高清成像。应用实例临床用超声仪+LLMB: 兔子肌肉超分辨血管成像SUMM超分辨血流动态成像, 空间分辨率:40μm 肌肉血管3D超分辨重建无创、长时小鼠肿瘤发展监测:结构完整的4T1肿瘤血管高分辨3D成像实验参数:中心频率:15MHz 成像帧率:500Hz, 单切面采集帧数:1000,采集切面个数:30
    留言咨询
  • B超成像试验系统 400-860-5168转1451
    ImageSetB型成像是一种常用于医药或非破坏性材料测试的超声技术。与x射线或MRI成像类似,这种超声方法对技术对象或生物的内部结构进行断层扫描,但不将它们暴露于任何类型的辐射中。 使用我们的ImageSet,你在教室里就可以很容易地演示和掌握复杂的b型成像方法。 基于此目的,ImageSet包括了ImageBoxSchool -一种产生超声波截面扫描的现代测量和成像系统。ImageBoxSchool配有一个目前应用于医学诊断的阵列探头,和64个凸式单传感器。 该装置还包括ImagePhantom,它具有与人体组织相似的声学特性。内建模型模拟了一个15到17周的胎儿特性。 通过测量软件,可以检查比较典型胎儿的尺寸,包括冠尾长度,头部直径和头部股骨的周长和长度(大腿骨)。 ImageBoxSchool & ImageProbe尺寸:111 mm × 45 mm × 226 mm电源:外部电源,100-240 V, 50/60 HzPC连接:USB工作模式: B模式, 反射ImageProbe:包含64个单传感器元件的凸阵列探头 ImagePhantom尺寸:170 mm × 155 mm × 95 mm材料:聚氨酯&对比粒子声速:大约1460 m/s胎儿阶段:怀孕15 - 17周 ImageSetSonogramm of ImagePantom纵切面 人工超声波图像股骨后方的声学阴影 测量头围横切面
    留言咨询
  • 主要用途宽场荧光显微镜是进行神经元活动光学成像的重要手段。配合相应荧光探针,宽场荧光显微镜可以进行单色、多色(例如双层、三色)神经元活动荧光成像。自动对焦超微型显微成像系统为包含了微型光学器件、微型成像元件和微型镜体结构的微型化宽场荧光显微镜,可精确定位目标区域,极大的提高成像质量,是自由活动动物进行在体神经活动光学成像的理想方案。目前已经开始应用于国内外的神经科学研究中。工作流程及原理◆前期通过注射病毒表达GCaMP6或其它钙离子荧光指示剂,植入GRIN透镜并等待病毒表达。◆神经细胞的活动导致胞内钙离子浓度的升高,从而提高GCMP6等荧光探针的荧光强度,荧光通过埋植的透镜收集后,被CMOS转换为图像信号,并被高速图像采集卡采集。◆图像处理软件进一步分析神经细胞活动和行为的相关性。系统功能特点及优势◆系统组件包括显微镜镜体、固定板、GRN透镜、CMOS、图像采集卡及采集软件等。◆在单细胞分辨水平,记录一群神经元的钙信号;◆适用于自由活动动物的在体实验;◆通过植入GRIN透镜,可以实现深脑成像;◆系统体积小,重量轻,不影响小鼠自由运动和行为实验。 超微型显微成像系统&光遗传系统联用◆采集软件更新升级,体验感更佳;◆采用外置光源减轻了镜体重量,对实验动物的活动影响较小;◆基于全新的光学系统设计,进一步减轻镜体重量,减小了镜体体积,提高了照明光的质量;全新的照明光路设计,可实现更好的荧光激发光和光遗传刺激光的光斑质量,从而取得更好的成像效果;◆外置的光源端可以自由组合,根据不同的情况分别耦合不同的光源,可分别实现多色荧光成像、原位光遗传成像;◆可配视频同步行为学软件。
    留言咨询
  • 主要用途宽场荧光显微镜是进行神经元活动光学成像的重要手段。配合相应荧光探针,宽场荧光显微镜可以进行单色、多色(例如双层、三色)神经元活动荧光成像。自动对焦超微型显微成像系统为包含了微型光学器件、微型成像元件和微型镜体结构的微型化宽场荧光显微镜,可精确定位目标区域,极大的提高成像质量,是自由活动动物进行在体神经活动光学成像的理想方案。目前已经开始应用于国内外的神经科学研究中。 工作流程及原理◆前期通过注射病毒表达GCaMP6或其它钙离子荧光指示剂,植入GRIN透镜并等待病毒表达。◆神经细胞的活动导致胞内钙离子浓度的升高,从而提高GCMP6等荧光探针的荧光强度,荧光通过埋植的透镜收集后,被CMOS转换为图像信号,并被高速图像采集卡采集。◆图像处理软件进一步分析神经细胞活动和行为的相关性。 系统功能特点及优势◆系统组件包括显微镜镜体、固定板、GRN透镜、CMOS、图像采集卡及采集软件等。◆在单细胞分辨水平,记录一群神经元的钙信号;◆适用于自由活动动物的在体实验;◆通过植入GRIN透镜,可以实现深脑成像;◆系统体积小,重量轻,不影响小鼠自由运动和行为实验。 超微型显微成像系统&光遗传系统联用◆采集软件更新升级,体验感更佳;◆采用外置光源减轻了镜体重量,对实验动物的活动影响较小;◆基于全新的光学系统设计,进一步减轻镜体重量,减小了镜体体积,提高了照明光的质量;全新的照明光路设计,可实现更好的荧光激发光和光遗传刺激光的光斑质量,从而取得更好的成像效果;◆外置的光源端可以自由组合,根据不同的情况分别耦合不同的光源,可分别实现多色荧光成像、原位光遗传成像;◆可配视频同步行为学软件。
    留言咨询
  • 动物眼科超显微断层成像系统具有:1.高分辨率轴向成像2.大/小动物角膜、视网膜OCT/OCTA成像3.三维视网膜/角膜地形图4.全自动/手动视网膜分层,房角测量等5.高清视野探测模块添加,方便眼底OCT图像采集
    留言咨询
  • 超快高速太赫兹成像系统(0.05-0.7 THz)超快高速(5000帧/秒)太赫兹成像系统(0.05-0.7 THz)基于半导体技术研发出新一代半导体阵列探测器用于太赫兹成像。该探测器相比较于传统的探测设备具有以下诸多优势:在0.05-0.7 THz波段具有高灵敏度 像素可选。由该探测器芯片研制的太赫兹相机与太赫兹源等器件构成的整套设备是目前超高速太赫兹成像系统,主要可用作医学诊断、无损检测及太赫兹其它相关应用。关键词:太赫兹相机,太赫兹源,高功率太赫兹源,太赫兹探测器,太赫兹成像系统,高速太赫兹成像系统我们可提供的整套太赫兹成像系统产品主要涵盖(太赫兹相机、太赫兹源、太赫兹探测器、太赫兹光学器件等设备),产品系列丰富,功能齐全,是广大太赫兹研究领域不可或缺的工具。Ø 具体产品系列如下:A. 太赫兹相机:u 特点:宽谱范围: 50GHz ~ 0.7THz噪声等效功率: 1nw/√Hz成像速度高达5000帧/秒像素 256/1024/4096 可选1.5 x 1.5 mm 像素大小可提供客户定制u 主要应用:高速传送带工业应用可提供的太赫兹相机参数(高速、可定制的像素要求、专用软件及后续软件二次开发)像素:256 x 1Min探测功率/像素: 100 nw (at 5000 fps) 45nw (at 1000 fps) 14nw (at 100 fps)B. 亚太赫兹源u 特点:太赫兹频率(100GHz 和140GHz)高功率输出:80 mw、300 mw1MHz 线宽TTL 调制 (1 us 上升/下降 时间)高增益喇叭天线C. 可调谐太赫兹源 u 特点:输出频率范围可选:70-77 GHz,140-155GHz,280-310GHz(可调谐)连续波输出,可调制线宽小于300Hz功率达百mWD. 超快太赫兹探测器u 详细参数:Ultrafastastresponse time150 ps1 usSpectral range50 GHz-0.7 THz50 GHz-0.7 THzImpedance50 Ω50 ΩResponsivity0.5 v/w10 v/wNoise equivalent power2nw/√Hz1nw/√HzNo power supply√√除上述太赫兹设备外,我们还可以提供适用于太赫兹波段的相关光学器件,如:PTFE、TPX太赫兹透镜(直径:1-30 cm;焦长:50-300 mm);窗片、棱镜、衰减片、偏振片、分光镜等。我们提供的太赫兹产品系列丰富,功能齐全,是广大太赫兹研究领域不可或缺的工具。Ø 以上产品的主要应用:太赫兹质量检测(待测样品内部结构无损检测)太赫兹无线通信太赫兹医学成像太赫兹安检太赫兹科学研究
    留言咨询
  • ●检测模式: 微区反射/适射模式、激光扫描成像模式、CMOS成像模式●光谱探测器: 高速线阵CMOS相机、PMT+锁相放大器、高速面阵CMOS相机●激光扫描成像:最高4096x4096像素点,最大成像范围约2mm(取决于物镜放大倍数)●CMOS成像:最高480x360像素点,最大成像范围约2mm(取决于物境放大倍数)●最高空间分辨率: ≤1um●零点前TA信号抖动: ≤0.2 mOD●成像波长范围: 400-800nm●高速光学延迟线:光学延迟线最快速度 400mm/s,精度 0.1 微米●检测时间窗口: 8 ns●显微镜:标配奥林巴斯IX73倒置显微镜,兼容多种品牌、型号显微镜,可根据用户需求定制●数据采集/分析软件系统1)2D/3D数据分析模式,数据点平均、多曲线动力学比较2)Chirp-oorrection,零点时间矫正3)单指数、多指数、幂指数等多种模式数据拟合程序4)连续预览模式,预览所有延迟时间下的成像图谱5)Average Mapping 成像图谱查看6)定点动力学曲线查看7)单一延迟时间的成像图谱查看8)成像图谱扣除背景 TA成像系统原理图 TA成像系统应用实例 单层二硫化钼测试条件:采集频率1KHz;探测尺寸:30X45um采集时间:1s/p 激发波长:515nm;探测波长:660nm成像数据:任意一点动力学可提取整体系统展示图超快瞬态吸收显微成像系统以及其他模块应用实例:微区检测单层WSe2-MoS2二维材料异质结检测实例单层WSe2-MoS2二维材料异质结
    留言咨询
  • 聚焦超声暴露是一种无损的、超声治疗机技术,专门用于临床前科研;其应用包括非侵入性消融,药物输送,基因治疗和神经调节。 高精度聚焦超声使全世界的科学家能够探索新颖的药物输送和药物开发,以及研究针对肿瘤学,神经病学和心血管疾病的新疗法 LP-100是一款适用于临床MRI运行的多功能聚焦超声治疗系统。用于临床成像系统的非侵入性过高热、切除和血脑屏障打开的临床前研究用解决方案。 标准功能 兼容主要品牌(Phlips,Siemens,GE)的MRI系统(1.5和3.0 Tesla)非磁性压电陶瓷电机的3轴电动定位系统校准的聚焦超声换能器,具备可选的集成空化检测器任意函数发生器,用于连续或脉冲模式超声50瓦射频放大器(可升级至100瓦)定向射频功率计,用于监测正向和反射功率渗透板过滤器可消除MRI的射频干扰带有定制软件的PC,用于治疗计划和监测 其它可选项和自定义选项 血脑屏障(BBB)打开升级(包括带有集成水听器的传感器和高速数字化仪)热疗升级(包括带有3D打印扇形涡旋透镜的聚焦超声换能器以及用于温度测量处理和控制的自定义Matlab软件)大功率(100W)射频放大器 超声波换能器精确校准的定制聚焦超声换能器。 如果您有特殊需求,请与我们联系,我们很乐意开发出满足您研究需求的传感器。 聚焦超声暴露打开血脑屏障(BBB)LP-100可用于BBB的局灶性,短暂性和非侵入性开放 定制射频线圈 定制的防水接收线圈可在FUS曝光期间对目标组织进行高分辨率成像 移动系统机架式推车可以在MRI和实验室之间运输LP-100 坚固的设计LP-100专为从啮齿动物到大型动物的研究而设计,使其成为FUS研究计划的多功能平台。 立体定向框架 进行脑部研究时,使用自定义框架将颅骨重复放置在超声换能器上 图像引导定位软件可以导入DICOM MR图像,以图像为导向对FUS曝光进行定位
    留言咨询
  • 产品介绍S3000采用先进的三条纹转盘共聚焦成像技术,配合电动Z轴快速扫描,极大提高成像速度,满足活细胞动态观察研究需求。采用LED面光源激发时间更短,光毒性、光漂白性大大降低,适合连续观测。紧凑的新型共聚焦光路设计,既可灵活耦合在多品牌显微镜上,也可整机搭建,满足不同实验室需求。产品特点超快共聚焦成像采用结构光转盘技术,光通量比针孔式转盘提高数倍,允许LED激发光源共聚焦成像;根据相机配置、成像度可达20-40帧/秒;三种切片模式自由切换,实现快速成像和高质量成像的结合。全谱段探测一个LED光源可应对全普段检测应用,激发光:370-700nm,发射光:410-750nm;覆盖常见荧光染料的光谱范围;4位滤光块转轮,通道切换时间小于0.2s,滤光块免工具更换,可实现4+N多通道荧光拍摄。 模块化设计采用紧凑的共聚焦光路设计,仪器外形更小巧;无需庞大空间也可安装,共聚焦模块可灵活耦合在正置、倒置、体式等各种显微镜上,适应不同应用场景。高可靠性及可扩展性,兼容已有成像设备,让科学工作者从仪器维护中释放出来,把更多时间投入到科学研究本身。共聚焦动态成像模块超长时间观测采用安全的非激光光源(Laser-free confocol),超低光毒性及光漂白性,结合智能图像动态识别与分析算法,适用于生物活体样品的实时、动态、长时间观测。对跳动的斑马鱼胚胎心脏进行长时间连续成像(图示分别为共聚焦模式和宽场模式的观测效果)产品应用S3000为细胞生物学、微生物学、发育生物学、神经生物学及植物学等领域研究提供快速三维荧光成像的有力工具。3day幼虫三维动态成像髓母细胞癌细胞巨噬细胞与假丝酵母细胞中的纳米药物百合花芽
    留言咨询
  • 3D超分辨成像系统-单分子荧光成像,-单分子定位荧光显微镜是一种功能强大的技术,它可以对细胞内的特定生物分子进行定位和可视化。然而,传统的光学显微镜在横向尺寸(x-y)和横向尺寸(x-y)上受到光的衍射约为200纳米的限制最近超分辨率成像技术的出现使研究人员能够“打破”衍射屏障,将远低于200纳米极限的亚细胞结构可视化。高分辨率的方法是一系列被称为单分子定位显微镜(SMLM)1的技术。虽然SMLM能够在横向尺寸上精确成像10- 20nm,但它通常缺乏轴向分辨率,尤其是近焦分辨率。双螺旋主轴结合我们的3DTRAXTM软件,使成像超越衍射极限与扩展的3D detail3。它是基于专利双螺旋光工程™ method4,5设计的模块化附加工具。该方法的工作原理是在SPINDLETM模块中插入一个双螺旋相位掩模,该掩模从掩模库中选择,并根据不同的轴向范围、发射光谱和信噪比进行优化。主轴™ 为精密光学从头开始设计,与大多数商业上可用的科学显微镜、EMCCD和sCMOS相机一起工作,并提供了前所未有的横向(x-y)和轴向(z)精密成像的组合。双螺旋光工程™ 将单个分子发出的光分裂成两个叶瓣。两个叶瓣的中心对应发射体的横向位置,它们之间的角度编码发射体的z位置。这些额外的信息有助于在非常高的精度( 30nm)下进行横向和轴向尺寸的超分辨率重建。此外,重要的是,双螺旋结构还扩展了分子可以定位的场的深度。这种亚衍射光学成像与先进的三维信息的结合为生命和材料科学的研究人员带来了大量的可能性无与伦比的精度和深度三维成像和跟踪 双螺旋光学主轴使研究人员能够很容易地捕捉和分析细胞结构的三维图像到单个分子水平。 Current Light EngineeringTM Applications超分辨率:重建三维超分辨率图像的zui佳精度-深度组合和无轴向拼接。用于轴向和横向定位的纳米级精度.三维单粒子跟踪:延长的深度使捕获更长的粒子轨迹和更快的捕获兼容荧光珠,染料和光激活蛋白。主轴采用双螺旋光学专利光学工程技术为基础,可方便地安装在现有显微镜上,实现先进的三维成像和跟踪,具有超高分辨率的能力。内置旁路模式允许轻松返回到非3d实验。? 设计克服了传统的限制,使三维成像具有无与伦比的深度和轴向精度? 优化为您的三维实验所需的发射波长。? 与各种显微镜、物镜和照相机兼容即使在空间有限的环境中,占用空间小也可以方便地安装 输入和输出C-mount适配器为商用和定制的显微镜和相机提供了方便的支持。 高度可靠的系统,没有移动部件。可切换相位掩模墨盒,和辅助发射滤波器支架,以zui大限度地提高实验灵活性。模块化设计将您现有的系统发展成具有超分辨率功能的先进3D成像和跟踪系统。自定义设计的光学精密成像和跟踪? 转化率 95%? 内置校正光学,确保瞳孔平面对准您的显微镜和物镜? 易于安装,相位掩模在中继光瞳平面上的x、y和z位置保持稳定对齐 ? 3DTRAX™ Software, a FIJI plugin provides3d超分辨成像系统,3D单分子荧光成像系统,单分子定位- 3D 定位分子- 3D 渲染- 偏移- 追踪- 具象化
    留言咨询
  • 提供了展新的卓越界面,用来采集和分析钙离子、钠离子和PH值等比率成像的数据,同时获得细胞内离子成像。全面的成高速多波长像系统,配合Warp Drive 人机学控制面板,显著减轻了工作强度,轻松获得前所未有的影像质量。产品特点超快速成像多功能控制键盘数据采集引擎(PAE),增强数据采集速度无损的图像处理DeltaRAMTM照明光源技术,超快扫描速度:500nm/s
    留言咨询
  • 提供了全新的革命性界面,用来采集和分析钙离子、钠离子和PH值等比率成像的数据,同时获得细胞内离子成像。全面的成高速多波长像系统,配合独有的Warp Drive 人机学控制面板,显著减轻了工作强度,轻松获得前所未有的影像质量。产品特点超快速成像多功能控制键盘新的数据采集引擎(PAE),大增强数据采集速度无损的图像处理的DeltaRAMTM照明光源技术,超快扫描速度:500nm/s
    留言咨询
  • 纳米空间分辨超快光谱和成像系统 “空间和时间的结合”— 纳米分辨和飞秒别的光谱超快光谱技术拥有诸多特色,例如高的时间分辨率,丰富的光与物质的非性相互作用,可以用光子相干地调控物质的量子态,其衍生和嫁接技术带来许多凝聚态物理实验技术的变革等等。然而,受制于激发波长的限制(可见-近红外),超快光谱在空间分辨上受到了一定的制约,在对一些微纳尺寸结构的材料研究中,诸如一维半导体纳米线,二维拓扑材料、纳米相变材料等,无法地进行有效的超快光谱分析。 德国Neaspec公司利用十数年在近场及纳米红外领域的技术积累,开发出了全新的纳米空间分辨超快光谱和成像系统,其pump激发光可兼容可见到近红外的多组激光器,probe探测光可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)波段,实现了在超高空间分辨(20 nm)和超高时间分辨(50 fs)上对被测物质的同时表征。技术原理:设备特点和参数:→ 超高空间分辨和时间分辨同时实现;→ 20-50 nm空间分辨率;→ 根据pump光源时间分辨可达50 fs;→ probe光谱可选红外(650-2200 cm-1)或太赫兹(0.5-2 T)应用领域:→ 二维材料→ 半导体→ 纳米线/纳米颗粒→ 等离激元→ 高分子/生物材料→ 矿物质......应用案例:■ 纳米红外超快光谱分辨率为10nm的InAs纳米线红外成像,并结合时间分辨超快光谱分析载流子衰减层的形成过程参考:M. Eisele et al., Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, Nature Phot. (2014) 8, 841.稳态开关灵敏性:容易发生相变的区域,光诱导散射响应较大参考:M. A. Huber et al., Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams, Nano Lett. 2016, 16, 1421.参考:G. X. Ni et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene, Nature Phot. (2016) 10, 244.参考:Mrejen et al., Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow- gap semiconductor, Sci. Adv. (2019), 5, 9618.■ 范德华材料 WSe2 中的超快研究参考:Mrejen et al., Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging, Sci. Adv. (2019), 5, 9618.■ 黑磷中的近红外超快激发黑磷的high-contrast interband性质使其具有半导体性质,在光诱导重组过程中表面激发的电子空隙对(electron-hole pairs)~50fs并在5ps内消失参考:M. A. Huber et al.,Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures, Nat. Nanotechnology. (2016), 5, 9618.■ 多层石墨烯中等离子效应衰减效应参考:M. Wagner et al., Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump?Probe Nanoscopy, Nano Lett. 2014, 14, 894.发表文章:neaspec中国用户发表文章超80篇,其中36篇影响因子10。部分文章列表:● M. B. Lundeberg et al., Science 2017 AOP.● F. J. Alfaro-Mozaz et al., Nat. Commun. 2017, 8, 15624.● P. Alonso-Gonzales et al., Nat. Nanotechnol. 2017, 12, 31.● M. A. Huber et al., Nat. Nanotechnol. 2017, 12, 207.● P. Li et al., Nano Lett. 2017, 17, 228.● T. Low et al., Nat. Mater. 2017, 16, 182.● D. Basov et al., Nat. Nanotechnol. 2017, 12, 187.● M. B. Lundberg et al., Nat. Mater. 2017, 16, 204.● D. Basov et al., Science 2016, 354, 1992.● Z. Fei et al., Nano Lett. 2016, 16, 7842.● A. Y. Nikitin et al., Nat. Photonics 2016, 10, 239.● G. X. Ni et al., Nat. Photonics 2016, 10, 244.● A. Woessner et al., Nat. Commun. 2016, 7, 10783.● Z. Fei et al., Nano Lett. 2015, 15, 8271.● G. X. Ni et al., Nat. Mater. 2015, 14, 1217.● E. Yoxall et al., Nat. Photonics 2015, 9, 674.● Z. Fei et al., Nano Lett. 2015, 15, 4973.● M. D. Goldflam et al., Nano Lett. 2015, 15, 4859.● P. Li et al., Nat. Commun. 2015, 5, 7507.● S. Dai et al., Nat. Nanotechnol. 2015, 10, 682.● S. Dai et al., Nat. Commun. 2015, 6, 6963.● A. Woessner et al., Nat. Mater. 2014, 14, 421.● P. Alonso-González et al.,Science 2014, 344, 1369.● S. Dai et al., Science 2014, 343, 1125.● P. Li et al., Nano Lett. 2014, 14, 4400.● A. Y. Nikitin et al., Nano Lett. 2014, 14, 2896.● M. Wagner et al., Nano Lett. 2014, 14, 894.● M. Schnell et al., Nat. Commun. 2013, 5, 3499.● J. Chen et al., Nano Lett. 2013, 13, 6210.● Z. Fei et al., Nat. Nanotechnol. 2012, 8, 821.● J. Chen et al., Nature 2012, 487, 77.● Z. Fei et al., Nature 2012, 487, 82.
    留言咨询
  • Vevo LAZR光声成像系统是加拿大VisualSonics公司研发的新一代的在体成像系统。Vevo LAZR采用光声成像技术,成像整合了光声信号和 超声的解剖学影像,兼具光学成像的高灵敏性与超声成像的高分辨率。Vevo LAZR支持2D和3D的实时在体成像,可追踪体内的快速变化,同时提供光声影像和超声影像的共配准,精确的给出光声信号的体内来源。Vevo LAZR可以测定体内的血氧饱和度、血红蛋白含量;结合造影剂和纳米颗粒,可以检测淋巴结、生物标志分子及基因表达等。 Vevo LAZR光声成像系统可用于肿瘤微环境、血流动力学、纳米医学材料、肿瘤标记物分子等领域的研究,为研究人员提供实时、高分辨率、高灵敏度的在体影像。 Vevo LAZR 主要特点:l 高分辨率超声结构成像与高灵敏度光声成像二合一l 实时共定位超声与光声图像l 多光谱分离技术成像动物体内的药物、材料等l 2D 与 3D 成像 Vevo LAZR 技术优势:Vevo LAZR采用的光声成像科技,能够得到高灵敏度、高特异性、高分辨率的光声与超声的实时在体影像。VevoLAZR 可对光声信号进行实时检测与定量、实现高分辨率功能性成像,为光声成像带来了显著性的进展。Vevo LAZR同时提供了高分辨率的解剖学影像,精确的定位出光声信号的来源及周围组织环境,为生物学研究提供了重要的信息。
    留言咨询
  • 富士 VisualSonics 公司作为临床前超声成像系统的生产商,自创立之初便致力于小动物专用先进影像平台的研发,其Vevo家族的成像产品现已遍布国内各大著名科研院所,Vevo技术更是成为了临床前高频超声成像界的金标准。 始终处于高速运转的富士 VisualSonics 如今更是不断完成一项项的技术革新与融合,在继拥有专利线性阵列式技术的 Vevo2100机型闻名全球市场后,又先后推出全球第一台专为心血管研究者量身打造的 Vevo1100、第一台临床前光声超声成像一体机Vevo LAZR以及第一台全触屏式临床前高频超声成像系统 Vevo 3100。使全球的Vevo用户享有最高端成像技术的体验是每一个 VisualSonics人为之奋斗的最大动力。 富士VisualSonics仍将在为提高用户使用价值之路上勇往直前。近期,全球首台临床人用超高频超声成像系统 VevoMD 发布,现已获得欧洲及北美地区的CE与FDA认证,并迅速完成了全球第一台的销售。VisualSonics 将全力推动临床转化研究的步伐。 富士 VisualSonics 目前国内的在售机型:Vevo2100、Vevo1100、Vevo3100 小动物高频超声成像技术的特点(主要提供结构信息,可延伸到分子成像,获得一些功能信息): ? 成像基础:超声波。超声在介质中以直线传播,有良好的指向性,这是可以用超声对生物体器官进行探测的基础。当超声在传播过程中会发生反射、折射、散射、衰减等,反射回来的超声为回声,检测这种回声并转化成影像即为超声影像 ? 实时、动态成像:最高可达10,000fps,提供无与伦比的时间分辨率 ? 高分辨率成像:图像分辨率最高可达30um,是临床人用超声探头无法匹敌的精度 ? 最安全的影像技术: 对人体:无核辐射、无X线辐射,无需防护,孕妇都可接受的影像方式 对小动物:非侵入式成像,同一实验动物在可控条件下的长时程成像,获得可靠、 可定量、可重复的数据 ? 成像范围广:除了对正常的肺成像困难外,其他部位一般均可,最擅长成像软组织脏器如心肾肝胆胰脾、病变组织如肿瘤等 ? 较其他影像技术操作简单,其机器本身维护也简单 ? 科研结果容易进行临床转化
    留言咨询
  • Vega超声系统是Revvity瑞孚迪公司领先的临床前活体成像技术平台的新进成员。凭借创新的设计,Vega成为一个免手持全自动超声检测平台,可以在短短几分钟内完成高分辨率的2D和3D成像。主要特点免手持全自动定位移动换能器三维宽场成像实现动物全身扫描高通量成像。。3只小鼠快速顺次成像剪切波弹 性成像(SWE)模式进行组织硬度定量独特的超声血管造影(AA)模式进行微血管成像图像易解析,简单易学
    留言咨询
  • 本产品是我公司自主研发的一款的标本成像系统,外观结构合理大气美观,显示屏更大更清晰,成像像素2600万,清晰度高;操作系统更加便利快捷,手势控制图像放大,缩小及拍照;成像系统采用了大口径光学变焦镜头,可在光线较暗的情况下拍出满意的图片;外壳安装有把手,便于上下左右移动。软件功能:①图像全景深自动叠加:自动拍摄多张不同焦点的照片,并进行叠加处理,扩展图片的景深,可实现全景深合成,使图片上下所有层次清晰可见,成像效果更加优秀。②支持实时取景显示、文字输入、自动定标、自动测量面积、长度、多重标注、切割标注。可对ESD标本形态大小、尺寸、面积进行实际测量,也可对病变位置、面积范围进行标注,病变位置复原和准确定位,描绘复原图。
    留言咨询
  • 应用范围用于眼科动物模型的疾病筛查、病理学、药理学、药效学等方面研究。适用于各项眼科疾病、糖尿病、动脉硬化、高血压、干细胞等研究中视网膜结构的定量变化及定性分析。可对活体动物神经细胞,神经纤维层、微血管等微观结构改变进行早期、实时及长期无损伤的评估。不同体型测量对象成像效果.优势超大视野成像,更方便找到病灶位置;高分辨率成像,实现更准确的病变及疗效评估;超高速率扫描,实时3D拟合;多种扫描模式,全方位观察病灶细节;独立的视网膜分析软件; 功能介绍1、三维快速实时扫描、运动配准、平衡去噪,输出图像更加平滑、层次更加清晰2、图像自动分层,实现视网膜8层厚度的自动分析,自动生成对比图表3、点对点测量4、用户自定义分层测量,实现脉络膜、感光细胞层更细分层次的厚度分析5、眼底视网膜实时拟合,真正实现视网膜三维的定性定量分析眼前节 OCT 成像及定量分析眼前节OCT适用于糖尿病眼病、白内障、青光眼等眼科病的检查。可应用于角膜、房角、晶状体等眼前节结构的生物测量和眼病研究。大视野眼底成像系统与常规50°视野角度相比,90°大视野系统单次扫描可以同时获取视乳头和视网膜后极部的断层结构信息,减少不必要的多次多位置采集,同时更容易找到病变位置,极大的减少实验者的工作量。
    留言咨询
  • 高分辨率小动物超声影像系统MYLAB™ X5 VET X5 Vet是一款新型、便携式设计的高分辨率超声成像设备。主要用于大鼠、小鼠等啮齿类动物的心脏、腹部及浅表器官检查、诊断和教学,也适用于比格犬、猴子、兔子等多种实验动物。产品特色:快速响应、先进技术和易用界面可很大程度地提高实验室的诊断效率先进的成像质量可大幅提高诊断效果,提升您的诊断信心零点击技术可帮您节省诊断时间具备超分辨率和血流敏感性,适用于多种实验动物提供心内膜速度定量和心肌应变检测具备自动心功能测量功能提供超强的血流多普勒信号,灵敏度高内置双系统,高灵敏触控、可旋转屏多种型号可供选择,满足实验室的多样化的需求心脏超声功能的特色:拥有完整的心脏功能检测方案可建立动物心脏检测模型,如心衰模型可以准确测定相关心功能的指标,如射血分数-EF,心脏左室内径缩短率-FS,每搏输出量、血压等可分析心脏的形态学指标,如舒张末期左心室内径,收缩末期左心室内径,室间隔厚度,左室壁厚度、体积、重量等 主要性能特点:动物专用超声平台,内置动物专用的分析软件,全方位解决动物超声所遇到的问题;探头解决方案:只需一个探头,就可以进行完整的成像医学检查,简化日常诊断流程;高清晰超声影像:采用全新的软件和技术,在增强图像质量的同时,提供更多的诊断细节;XStrain2D和AutoEF:心脏病学的专业工具,技术好、价格适中;相应快速:开机时间不到15秒,极大的方便您的诊断进度;内置锂电池:主机自带电池,能够独立使用数小时,在提供不间断供电的同时,也可以便携式或移动式操作;零点击技术:系统内置优化程度,快速解决超声诊断中遇到问题,节约时间;便捷的操纵平台:可选配专用台车,高度可调,移动方便;触摸控制屏:分辨率1024*600,大触摸控制屏,方便使用;多种图像显示模式:一台机器完成多项工作,实时三同步成像,频谱多普勒,连续波多普勒;可旋转显示屏:19 英寸宽屏幕,全高清LED显示器,万向关节臂设计,能够大角度旋转;多种连接方式:网络接口LANRJ45,4个USB 接口,音频输入/ 输出接口,电生理ECG 输入口;X5 Vet超声影像系统设计上提供了很大的操作便利性,包括独特的内置触摸屏和一个可旋转及倾斜的显示器,符合人体工程学的创新设计,进一步方便了日常工作并提高了诊断效率。根据需要,还可以加配一辆台式推车。MyLab ™ X5VET- 图像优化:多角度多声束空间复合成像(M-View)采用多条声束多角度扫描与接收技术, 获XVIEW 自适应丽影成像技术:该技术可根据不同组织的穿透性、焦点及探测深度不同,全程智能斑点噪声自动去除,包括智能声束调整、信号斑点噪声抑制、像素优化调整等多种提升成像质量的技术。具有用户自定义功能,可根据扫查结构和探测深度实现声束多级可调。大大地增强了组织边界,提高了组织清晰度,提升了超声医生的诊断信心。 M-VIEW OFF M-VIEW ON 自适应丽影成像技术(XVIEW)该技术可根据不同组织的穿透性、焦点及探测深度不同,全程智能斑点噪声自动去除,包括智能声束调整、信号斑点噪声抑制、像素优化调整等多种提升成像质量的技术。大大地增强了组织边界,提高了组织清晰度,提升了超声医生的诊断信心。 左边是关闭XVIEW 效果, 右边是打开XVIEW 效果 可视化图文教程(Library Viewer)提供超声操作步骤、超声技术使用方法以及超声组织结构与组织解剖结构的对照图,帮助临床医生或初级超声医生更快适应超声图像的识别。可根据配置选择多种应用领域。 精细血流成像(X-FLOW):结合全新的纯晶成像平台和数据运算方法,以超宽频苹果探头为基础,采集血流背向散射信号,特别是针对细小血流,具有超强的血流多普勒信号灵敏度。 玉研仪器工程师在进行大鼠心脏超声成像操作大鼠心脏,小鼠心脏小鼠颈动脉,小鼠左心室长轴小鼠眼睛,大鼠卵巢多种探头可选:线阵探头: 型号SL3116SL3332L3-11L4 -15频率10 -22 MHz3-11MHz3 -11MHz4 -15MHz深度15mm-44mm22 -177mm22 -177mm22 -103mm 凸阵探头: 型号SC3421mC 3-11AC2541频率3 -7MHZ3- 11MHz1 -8MHz深度40 -230mm32 -186mmMAX 414mm角度60°20 °-94°17°- 63° 相控阵探头:型号SP2730P2 3-11频率1 -4MHz3- 11MHz深度44 -349mm44 -296mm角度14 °-90°18 °-90° 腔内探头: 型号SC3123频率4-9MHz深度186mm角度42°-91° 更多探头,请来电咨询! 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 高分辨率动物超声系统X8 VET主要应用:X8 VET超声多普勒成像系统是一款高端的超声成像设备。可用于大鼠、小鼠、兔子、猴子、比格犬、猪等各做实验动物的心脏、腹部及浅表器官的检查、诊断和教学。产品特色: 快速响应、先进技术和易用界面可很大程度地提高实验室的诊断效率 具备超分辨率和血流敏感性 提供超强的血流多普勒信号,灵敏度高 具备24 MHz探头,可呈现超高分辨率图像 心内膜速度定量分析&心脏变形检测 自动射血分数测量和计算 可进行组织弹性的无创评估 可进行超声造影(CEUS)成像 具备穿刺针增强技术-穿刺操作实践的得力助手 通过智能实时算法进行图像优化 高达5个探头连接端口,可实现快速探头切换以适应多种的临床环境型号:X8 VET主要性能特点: 动物专用超声平台,内置动物专用的分析软件,全方位解决动物超声所遇到的问题; 21.5英寸高清宽屏液晶显示器,配置自由旋转臂,全方位可调; 支持显示器触摸调节的背灯夜景照亮系统; 10英寸高清彩色液晶触摸屏,具备滑屏翻页功能; 全数字化超声平台,全数字多路波束形成器; 二维灰阶成像单元及M型显像单元; 具备彩色多普勒血流成像,能实现实时自动多普勒测量功能; 频谱多普勒(脉冲波及连续波)显示及分析单元; 一键启动自定义的操作流程,可自定义检查的模式和顺序,单键触发; 采用组织谐波成像技术,探头最多可具备8波段谐波可视可调; 梯形扩展成像技术,增大扫查视野,最大扩展角度达54度; 声束偏转扫描,偏转发射声束多级可视偏转,可应用于凸阵、线阵; 宽景成像技术,可应用于灰阶、彩色及能量多普勒宽景成像,配备缩放功能和测量计算。可应用于腹部、高频等探头; 高清实时/冻结放大高清多级成像,最大级别达50倍; 具备编码脉冲成像,根据不同检查深度,均衡发射脉冲频率,提高穿透性的同时提高远场分辨率; 采用斑点噪声抑制技术,作用每个像素,消除了图像的斑点和噪声; 实时多声束空间复合成像技术,多角度观察,可联合彩色模式、斑点噪声制技术、谐波技术及凸型扩展等技术应用; 智能图像扫描技术,一键优化,自动调节增益,成像、CFM和多普勒参数; 实时自动图像优化技术,优化组织特性,匹配不同组织的声阻抗,增加二维图像明亮度/对比度; 可选配血管自动追踪技术,自动优化取样框位置及取样角度,提高诊断效率; 方向性精细血流成像,采集血流背向散射信号,特别是针对细小血流,具有超强的血流多普勒信号灵敏度; 高清血流成像,应用双多普勒发射接收技术 提高血流信号的敏感性及空间分辨率有别于常规的彩色多普勒和方向性能量图功能; 微血管增强显像技术,在有效保证帧频的前提下,保证清晰可视细小血管和低速血流,具备5种成像方式显示; 组织多普勒成像技术具有多种应用模式,并可对室壁进行速度测量和分析; 采用心脏三线解剖M型成像技术; 具备左心功能自动测量技术,实时跟踪左心内膜,测定即时左心容量; 以曲线形式报告集成,同时参数显示左心功能、收缩期容量、舒张期容量及射血分数; 具备进一步的扩展功能,具有十余项可选配的血流成像优化技术;高端扩展功能: 穿刺针增强技术 心脏负荷超声成像 心肌应变成像 心肌4D应变成像,在获取标准的心尖视图的基础上创建左心室(LV)的容积成像 矢量血流用于研究心内血流 高回声结构的微增强技术 造影成像,与超声造影剂结合使用的对比谐波成像 弹性成像,分析肿瘤或其他病变区域与周围正常组织间弹性系数的差异、判别病变组织的弹性大小 点式剪切波弹性成像,对组织弹性进行定量分析 面式剪切波弹性,实时诊断组织的彩色定量弹性分析。多种彩色编码可视可调,具有动态控制和透明度 融合导航技术 在机定量分析系统,是集成在超声主机内 图文教程超声影像系统的图像优化:多角度多声束空间复合成像(M-View)采用多条声束多角度扫描与接收技术, 获XVIEW 自适应丽影成像技术:该技术可根据不同组织的穿透性、焦点及探测深度不同,全程智能斑点噪声自动去除,包括智能声束调整、信号斑点噪声抑制、像素优化调整等多种提升成像质量的技术;具有用户自定义功能,可根据扫查结构和探测深度实现声束多级可调;大大地增强了组织边界,提高了组织清晰度,提升了超声医生的诊断信心; M-VIEW OFF M-VIEW ON 自适应丽影成像技术(XVIEW)该技术可根据不同组织的穿透性、焦点及探测深度不同,全程智能斑点噪声自动去除,包括智能声束调整、信号斑点噪声抑制、像素优化调整等多种提升成像质量的技术。大大地增强了组织边界,提高了组织清晰度,提升了超声医生的诊断信心。 左边是关闭XVIEW效果,右边是打开XVIEW效果 可视化图文教程(Library Viewer)提供超声操作步骤、超声技术使用方法以及超声组织结构与组织解剖结构的对照图,帮助临床医生或初级超声医生更快适应超声图像的识别。可根据配置选择多种应用领域。 精细血流成像(X-FLOW)结合全新的纯晶成像平台和数据运算方法,以超宽频苹果探头为基础,采集血流背向散射信号,特别是针对细小血流,具有超强的血流多普勒信号灵敏度。 玉研仪器工程师在进行大鼠心脏超声成像操作小鼠心脏、小鼠睾丸的二维和彩色成像大鼠心脏和小鼠心脏小鼠颈动脉和小鼠左心室长轴小鼠眼睛,大鼠卵巢多样化探头:线阵探头、凸阵探头、相控阵探头、腔内探头等不同款式的多种探头可选,满足不同实验的诊断需求线阵探头 型号SL3116SL3332L3-11L4 -15频率10 -22 MHz3-11MHz3 -11MHz4 -15MHz深度15mm-44mm22 -177mm22 -177mm22 -103mm 凸阵探头 型号SC3421mC 3-11AC2541频率3 -7MHZ3- 11MHz1 -8MHz深度40 -230mm32 -186mmMAX 414mm角度60°20 °-94°17°- 63° 相控阵探头 腔内探头 型号SP2730P2 3-11SC3123频率1 -4MHz3- 11MHz4-9MHz深度44 -349mm44 -296mm186mm角度14 °-90°18 °-90°42°-91°ESAOTE动物超声系统部分文献: Meng Zheying,Zhang Yang,Shen E et al. Marriage of Virus-Mimic Surface Topology and Microbubble-Assisted Ultrasound for Enhanced Intratumor Accumulation and Improved Cancer Theranostics.[J] .Adv Sci (Weinh), 2021, 8: 2004670. Li Ning,Zhou Heng,Wu Haiming et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3.[J] .Redox Biol, 2019, 24: 101215. Zhang Xin,Ma Zhen-Guo,Yuan Yu-Pei et al. Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling.[J] .Cell Death Dis, 2018, 9: 102. Woitek Felix,Zentilin Lorena,Hoffman Nicholas E et al. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.[J] .J Am Coll Cardiol, 2015, 66: 139-53. Chen Ke,Gao Lu,Liu Yu et al. Vinexin-β protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway.[J] .Basic Res Cardiol, 2013, 108: 338. Hu Can,Zhang Xin,Zhang Ning et al. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity.[J] .Clin Transl Med, 2020, 10: e124. Zhang Bo-Fang,Jiang Hong,Chen Jing et al. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction.[J] .J Cell Physiol, 2019, 234: 18544-18559. Huang Si-Hui,Xu Man,Wu Hai-Ming et al. Isoquercitrin Attenuated Cardiac Dysfunction Via AMPKα-Dependent Pathways in LPS-Treated Mice.[J] .Mol Nutr Food Res, 2018, 62: e1800955. Zhang Xin,Lei Fang,Wang Xiao-Ming et al. NULP1 Alleviates Cardiac Hypertrophy by Suppressing NFAT3 Transcriptional Activity.[J] .J Am Heart Assoc, 2020, 9: e016419. Zheng Xiaolin,Peng Meng,Li Yan et al. Cathelicidin-related antimicrobial peptide protects against cardiac fibrosis in diabetic mice heart by regulating endothelial-mesenchymal transition.[J] .Int J Biol Sci, 2019, 15: 2393-2407.如果您需要更多技术细节,敬请来电咨询! 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 主要用于对7.5mm以下的显微标本进行叠加拍摄成像,配备5X,10X,20X高端物镜,全画幅CMOS图像传感器,4500万有效像素,采用我公司最新研发的照明系统,使标本所有层面、部位清晰可见。一体化设计,图像清晰,色彩还原真实,操作便利、快捷。
    留言咨询
  • HD5000(AI)多谱超分辨菌落成像系统HD5000(AI) 多谱超分辨菌落成像系统是迅数科技融入神经网络AI技术的最新旗舰机型,全金属机箱、软硬件采用顶级配置。独特设计的平皿莱因伯格照明系统,具有132种组合照明模式,可为平皿、多孔板菌落、细胞克隆、病毒蚀斑拍摄华美的影像,是图像数据保存、文献发表的有力工具。4/3英寸超大面阵CMOS传感器与大视场高清定焦镜头搭配,菌落影像通透、色彩细腻,完美展现培养基深层微小菌落,抑菌圈轮廓清晰、锐利,保证了图像分割的精度和重现性。新软件功能丰富、易用,融AI菌落计数、抑菌圈测量、菌种筛选三大功能于一体。可实现:一键式AI批量极速统计、典型菌筛选、菌株特性描述、双圈分析、抑菌圈测量……HD5000M融合拟红外薄层干涉技术,更适合微孔滤膜的分析。 AI图像算法 高速、高精度菌落计数迅数科技创立20年,汇集的菌落图库覆盖:制药、食品、自来水、环境、公共检测、科研等各行业。科研团队通过精心筛选、处理、归纳,建立了强大的图像数据集,历经上百次神经网络训练、模型参数调整,获得高精度、高鲁棒性的模型,并最终形成易用、可靠的工程软件。 l 高通量快捷计数迅数AI菌落分析系统采用极简化设计,用户无需选择算法参数,点击:拍摄、分析按钮,即可实现菌落图像的批量分析。完成100个平皿计数仅需60秒。 l AI人工智能解决疑难平皿大数据的广泛代表性、有效性,是决定AI精度的重要基础。迅数AI菌落分析系统凭借经典菌落仪20年的推广,积累了海量的用户菌落图像,经神经网络训练,形成高速、高精度、运行稳定的大模型。疑难平皿AI菌落计数案例半透明菌落与灰白菌落粘连混合平皿壁上菌落(处于高亮平皿底部折光圈外)标签及文字干扰云雾状奶制品中的菌落 小菌落叠加在大菌落上 放线菌、细菌混合(透射成像) 微生物平皿成像的“数字影棚”l “数字影棚”的光源控制专业设计的平皿载样舱,可实现培养皿的雾光漫反射照明、悬浮暗视野照明、彩色凌透背光照明、多谱莱茵伯格照明,拟红外薄层干涉照明,拍出不同寻常的科研级精美照片。光源控制器采用隐藏式吸弹门设计,具5路照明选择开关、3通道无级亮度调节、单通道色温调节、11路彩色背景选择、11路莱因伯格光选择。 l 多谱莱因伯格光染色多谱莱因伯格照明是迅数独创的平皿大视场暗域照明技术,11通道不同波长的可见激发光以环幕逆透射聚光照明菌落,辅以不同的彩色凌透光,可构成132种组合照明模式,使培养基形成均匀的背景色,菌落勾勒出鲜亮的自然色泽与轮廓。无需化学染色,即可使菌落或细胞克隆实现无损光着色,便于观察细微结构,识别、计数。 莱因伯格照明实际样张: l 悬浮式暗视野照明悬浮式暗视野由暗域轮廓光与黑色背景构成。柔和的白色LED轮廓光,使平皿中央到边缘的菌落得到均匀的照明,而光线几乎穿透培养基,形成黑色背景下的亮色菌落,菌落与培养基形成高反差,可清晰勾勒菌落轮廓。 l 拟红外薄层干涉(HD5000M)微生物薄膜过滤法通常采用白色滤膜,导致灰白色的微小菌落难以观察,滤膜的网格线也会对统计形成干扰。“迅数”独创的拟红外薄层干涉与莱因伯格照明组合,能使膜形成均匀背景色,类白色微小菌落以近红色立体突显,提高了自动识别计数的精度。 超分辨率 锐利展现菌落细节 1.1英寸大视场高清定焦镜头,通过较大程度地控制多种像差,无论是暗视野照明、雾光漫反射照明、莱因伯格照明,都能呈现高分辨力、高对比度的画质。2100万像素 4/3英寸超大面阵彩色SONY CMOS 传感器,采用双层降噪技术,具有极高的灵敏度以及超低噪声,能以无损图像品质呈现细微的色差和丰富的细节信息。高保真镜头与大面阵相机的完美搭配,更能区分不同菌落、菌落与杂质、菌落与培养基之间的差异,从而提高菌落计数、筛选的精度。 高效、精确 菌种数字化筛选 l 不同菌群自动分类识别微生物研究中有时需要在多菌混杂情况下把目标菌分类统计出来。不同菌种菌落的色泽、大小、轮廓存在微小特征差异。HD5000的“单色分类统计、指定多色筛选、多色自动聚类”工具可实现高精度识别某一类菌落,或自动聚类区分不同颜色的菌落。 l 双圈分析通过精确测量透明外圈直径和菌落直径,自动计算二者面积比和直径比,并根据比值的大小自动排序,定位出相应的菌落。适用于“抑菌圈、透明圈、变色圈、生长圈、水解圈、溶磷圈、排油圈、溶钙圈、溶血圈”分析,辅助抗生素、酶制剂、有机酸产生菌和石油、农药降解菌的高效筛选。 l 病毒滴度分析-蚀斑/噬菌斑计数悬浮式暗视野照明使得敏感细菌菌层为白色,烈性噬菌斑形成的透明斑为黑色;莱茵伯格照明可让结晶紫或中性红染色的细胞层着色明艳,病毒空斑更易观察。影像的锐度与反差,帮助实现蚀斑/噬菌斑的准确分割和精确计数。 l 菌丝生长速率分析工具菌丝生长速率、菌丝生长抑制率、对峙培养分析、室内毒力测定等实验常采用十字交叉法测量菌落直径。由于多数霉菌菌落蔓延、疏松、边缘发散不规则,测量的人为误差大,效率低。迅数“霉菌一键测量”模块,只需用“魔棒”在菌落边缘点击一次,即可瞬间测出大霉菌的面积、周长、长径、短径。 l 免疫学研究迅数-多区域统计算法可以轻松实现任意多个区域的同步一键计数,可用于肺炎链球菌荚膜多糖特异性抗体调理吞噬杀菌试验(OPKA)和抗体依赖补体介导的体外血清杀菌试验(SBA) l 多孔板克隆计数高分辨率的HD5000还可用于多孔板的克隆成像。莱茵伯格照明能使结晶紫染色的肿瘤或干细胞克隆鲜艳明亮;悬浮式暗视野照明,可使软琼脂克隆形成高反差的图像,自动计数大于50um的克隆或细胞团。 l Spot assay 点阵分析Spot assay常用于检测不同培养液中细菌或酵母的生长率、培养液的连续梯度稀释或某个菌株基因突变型的高通量筛选 。“多区域动态调节统计”适用于此类分析。 抑菌圈自动测量 l Szone 抑菌圈多模式测量技术抑菌圈测量常采用钢圈双碟法、纸片法、琼脂打孔法,由于试验环节诸多因素,如:抗生素溶液浓度、培养基质量、PH值、试验菌菌龄、培养时间等,使得最后形成的抑菌圈有些轮廓清晰,有些边缘模糊或不整齐并伴有破裂现象。迅数“自动检测、拟圆逼近、三点定圆”三种算法,可适应不同类型抑菌圈的测量。 l 高对比、高分辨成像---保证测量精度抑菌圈测量的关键是准确找到透明圈与底层菌的“边界线”。迅数专利设计的悬浮式暗视野,使得透明的抑菌圈构成“黑背景”,与周边灰白色的菌层形成高反差。测量精度取决于数字影像画质,而镜头与相机的组合对画质至关重要。HD5000(AI)采用光学分辨率达150LP/mm的大靶面定焦镜头,将通透无畸变的光信号通过4/3英寸大面阵CMOS芯片相机,转为高清细腻的抑菌圈数字图像。 l 抗生素效价测定提供一剂量法、二剂量法、三剂量法及合并计算。一剂量法符合美国药典,二剂量法和三剂量法符合中国药典2020版。仪器重复性自检,测量相对误差≤0.002mm;均匀性自检,相对误差≤0.1%。 l 纸片法药敏分析内置CLSI抗微生物药物敏感性试验(CLSI M100 Ed 33)标准数据库,选择细菌类别、抗菌药物即可自动判别细菌耐药敏感性:敏感(S)、剂量依赖型敏感(SDD)、中介(I)、耐药(R)。 主要功能与技术指标一、 照明系统Ø 全封闭钢铝合金机箱(32×34×46cm):精密、坚固,确保光密闭Ø 平皿载样舱:下拉式铝合金隔断窗,消除环境杂散光干扰,阻断紫外泄露、避免灰尘进入 Ø 雾光漫反射照明1) 96颗LED列阵与纳米反射材料构成嵌入式雾光系统, 360°连续漫反射,凸显菌落色泽和纹理,消除玻璃培养皿折射形成的光斑、光环。2) 色温变化范围:3100K-5800K 照度范围 50-—7000 Lux 3) LED寿命≧20000 小时Ø 悬浮暗视野照明白色LED光源,照度范围 100—5500 Lux 显色指数74%Ø 彩色宽场凌透背光照明1) 可调式LED导光列阵,形成均匀、高亮的11种色彩透射光2) 照度均匀度大于90%,确保培养皿边缘与中间得到均匀照明Ø 多谱莱茵伯格照明1) 11通道可见激发光、环幕逆透射,与凌透背光可构成132种组合照明模式2) 多光谱模式可降低培养基不平整、色变的影响,减少琼脂杂质的干扰3) 无损光着色技术与抗干扰精密统计技术结合,增强菌落之间细微颜色差异辨别,显著提高菌落识别、筛选的精度Ø 拟红外薄层干涉照明(HD5000M)嵌入缝隙式可调光源,通过薄层干涉效应 凸显滤膜表层的微菌落Ø 紫外反射光源:254nm用于腔体消毒、紫外诱变 Ø 光源控制器1) 隐形弹吸式控制面板,5路照明选择开关、3通道无级亮度调节、单通道色温调节2) 照明组合 自由切换 二、 数字成像 Ø 4/3英寸大靶面超清镜头,镜头分辨率180 lp/mmØ 超大面阵CMOS相机: SONY 4/3英寸彩色CMOS 传感器,分辨率:2100万像素 单像素尺寸:4.54X4.54um三、 菌落分析模块1. AI智能菌落计数Ø 适用各类平皿和测试片:倾注、涂布、膜滤、接触皿、3M测试片 Ø 全自动AI智能菌落计数,一键启动,无需参数设置Ø 疾速统计,单皿菌落计数仅需0.5秒Ø 高通量计数,可一次批量分析几十至几百平皿,100个平皿影像平均分析时间为60秒Ø 统计精度:标准菌株的计数精度达98%以上;菌落数300CFU以内、无蔓延菌落生长的平板,计数精度可达95%以上Ø 校验眼:闪现切换标记,验证菌落识别精度Ø AI技术解决常见疑难样本:长链状菌落的分割;水雾、标签文字的干扰;培养基色泽、透光性、干裂、厚薄不匀的变化;菌落大小不一、深浅不一、形态不一、高度粘连;杂质、微溶性物质的背景干扰……Ø 样本登记、数据处理,报告生成导出2. 高级菌落统计Ø 动态调节统计:可对统计结果进行动态调节修正,快速获取最佳统计效果。Ø 偏差预估统计:适用于菌落颜色多且复杂的情况。Ø 水平集多模型算法:搜索运算,获取最佳图像分割效果,适应培养基背景变换Ø 特定菌落统计:根据菌落色泽、大小、轮廓特征,识别特定菌落Ø 反式统计:适合菌落类型极其复杂而培养基背景均匀Ø 高粘连菌统计:适合多重粘连菌的分割计算Ø 杂菌、杂质剔除:根据形态、尺寸、颜色的区别,进行自动杂菌、杂质剔除Ø 螺旋菌落统计:根据FDA标准自动计数螺旋平板,支持指数模式、缓慢指数模式、均一模式、比例模式、草坪模式等。兼容美国SBI、西班牙IUL螺旋接种仪。 3. 典型菌筛选Ø 单色分类统计:根据颜色精度、扩散度和菌落大小、轮廓特征,筛选特定菌落Ø 多色自动聚类:根据颜色聚类精度,自动区分24种不同颜色的菌落Ø 指定多色筛选:一次筛选1-8种指定颜色菌落Ø 透明圈特性分析:适用于抑菌圈、水解圈、变色圈、溶钙圈、溶血圈、排油圈、溶磷圈分析Ø 双色圈自动筛选4. 菌落特征描述Ø 细菌、酵母:颜色、大小、形状、表面形态、边缘、光泽、透明度等特征,智能描述和排序Ø 霉菌、放线菌:正面颜色、反面颜色、大小、表面形态、边缘、质地等特征,智能描述和排序5. 微生物限度分析工具Ø 培养基适用性检查Ø 控制菌检查-菌落形态6. 专项分析Ø 防霉检测:定量分析防霉等级Ø 多区域串联统计:适合培养基背景不均匀的复杂菌落Ø 多区域并联统计:适合多孔板、OPKA、SBA分析7. 高级工具Ø 网格清除:消除滤膜网格背景干扰Ø 人工计数修正:添加或删除菌落Ø 排除污染区域:鼠标勾勒任意污染区域,自动剔除污染区域的菌落数Ø 背景文字清除:自动消除记号笔干扰Ø 人工粘连分割:手动分割多重粘连菌落 Ø 参数自动换算:培养皿直径、样本稀释度输入,实现自动换算Ø 文字、图形标注:各类绘图工具和中英文文字嵌入8. 标定与测量Ø 仪器标定:仪器自带标定、人工修正标定Ø 一键式快速测量:一键测定大菌落,适合真菌、放线菌的单菌落分析Ø 全皿自动测量:全皿菌落的等效直径、面积、长短径、周长、圆度分析Ø 多向标尺测量、手动精确测量:长度、角度、弧度、面积、弧线、任意曲线9. 图像处理Ø 图像调节:灰度图、负相图转换;亮度、对比度、饱和度调节;RGB调节Ø 图像增强:锐化、自适应增强Ø 图像滤波:中值滤波、高通滤波、高斯滤波、低通滤波、队列滤波、高通高斯Ø 边缘检测:Sobel算子、Robert算子、Laplace算子、垂直检测、水平检测Ø 形态学运算:腐蚀、膨胀、开运算、闭运算四、 数据安全与管理1. “系统、数据、操作、复核”四重系统架构,分设职能与权限,确保数据信息的安全、完整和真实Ø 系统管理员(最高层):负责创建、管理所有操作员与审核员的账户和登入密码。确保操作员与操作员之间、操作员与审核员之间的账户隔离与数据隔离。Ø 数据管理员(副高层):负责全部测试数据的档案管理、以及计算机的数据库管理。封存所有审核通过的测试报告或将原始图片、测试数据备份、导出,保证了数据的完整性、安全性。Ø 操作员:负责培养皿菌落的测试、自检、修正、形成电子报告、递交审核、对审核通过后的文件进行报告打印。Ø 复核员:负责对操作员递交的测试报告进行审核。核查数据输入与处理过程,但无权修改;对存疑报告作“审核退回”处理,要求操作员重新测试;对“审核通过”的报告将永久性存档,无论审核员还是操作员都无权再删除,以确保数据的原始性和真实性。2. 数据存储与导出 Ø 以电子数据为主,记录:样本来源、编号、稀释度、平皿图片、识别效果、计数值、所用统计工具、参数设置、修正情况,确保记录信息完整。Ø 满足质量审计,存储的电子数据能以PDF或Excell格式打印输出3. 水印签章技术、防篡改技术、测试流程智能重构技术,实现有效的审计追踪Ø 防篡改技术1) 采用多用户登入管理,所有操作员、审核员的名字,被系统自动记录在操作流程和测试报告中;所有操作日期、审核日期,由计算机自动生成,避免错填或伪造。2) 全部操作流程,包括:菌落图片、培养皿尺寸、样本稀释度、统计工具、所用参数、测试所得的菌落总数、自检修正后的菌落总数等,由计算机自动记录在数据库中,操作员无法进行改动,为后续审计提供全部真实数据。Ø 水印签章技术“审核通过”的测试报告会自动生成操作员和审核员的账户电子签名,并在报告上加印防伪的“审核通过”水印签章。Ø 测试流程的智能重构技术1) “复核员”打开“等待审核”的测试记录,计算机自动复原操作员的全部流程和测试环境,包括:当时所测的培养皿图片、测试结果、培养皿尺寸、样本稀释度、采用的统计工具及所用参数、测试所得的菌落总数、修正情况……2) 通过测试环境和测试流程的重现,复核员可以追溯操作员的全部操作,复核测试结果的准确性,达到审计追踪目的。五、 抑菌圈分析模块1. Szone 抑菌圈多模式测量技术Ø 自动检测:基于抑菌圈轮廓的精确边缘检测,适合边缘清晰、圆形抑菌圈Ø 拟圆逼近:基于抑菌圈轮廓的圆形拟合逼近,适合边缘破裂、非标准圆形抑菌圈 Ø 人工检测:鼠标点击抑菌圈边缘上三点成圆,适合边缘模糊的抑菌圈2. 抗生素效价测定Ø 一剂量法效价检测:适合美国药典Ø 二剂量法、三剂量法及合并计算:适合中国药典2020版Ø 重复性自检:相对误差≤0.01%、重复测量精度 ≤0.002mm Ø 均匀性自检:相对误差≤0.05%Ø 台间测量差异≤0.2%3. 纸片法药敏分析(科研)Ø 支持反射光、暗视野透射光下的双模式清晰抑菌圈自动测量;模糊抑菌圈人工测量Ø 23种图像处理工具,提高轻微生长、云雾状生长、溶血、色素扩散等情况下的影像清晰度、对比度Ø 内置CLSI抗微生物药物敏感性试验(CLSI M100 Ed 33)标准数据库,选择细菌类别、抗菌药物等参数,自动判别细菌耐药敏感性,包含:敏感(S)、剂量依赖型敏感(SDD)、中介(I)、耐药(R)Ø 药敏标准数据库可随CLSI最新标准及时更新Ø 原始图像与测量数据可保存、导出六、 仪器规格与配置Ø 多谱超分辨菌落成像系统主机1台Ø AI菌落计数软件、菌落分析软件、自动抑菌圈测量软件、抗生素效价测定软件、纸片法药敏分析软件Ø 计算机:i7 CPU/32G内存/1T硬盘+512G SSD/2G独立显卡/27"高清屏,Windows 11系统
    留言咨询
  • 本产品是针对小微标本及ESD标本(即在显微成像下较大而标本成像下较小的标本)拍摄成像而设计的一款拍摄系统。特点图像全景深自动叠加功能:自动拍摄多张不同焦点的图像,并进行叠加处理,扩展图片的景深,可实现全景深合成,使图片上下层次清晰可见,成像效果更加清晰。采用微距镜头,2倍放大,最近拍摄距离60mm;放大倍率高,清晰度高,色彩还原真实无变形;自动对焦,拍摄速度快。拍摄成像系统、电脑、显示器一体化设计,操作便利快捷,硬件功能齐全,软件功能强大。无影背板灯及左右双侧补光灯,无极调光均匀无闪频。软件可快速对拍摄物体进行实时测量、标注、文字输入、自动定标、自动测量面积、周长、长度、多重标注、描绘ESD标本复原图等。 用途主要用于消化道胃黏膜标本组织的拍摄,医学小标本组织的拍摄、学校及实验室动植物昆虫标本、小白鼠脏器解剖、考古、电子器件、珠宝等的拍摄留档。
    留言咨询
  • 多模态超分辨显微成像系统MS4000提供出色的STED超高分辨率和共聚焦成像品质,还可实现FED、NFOMM等点扫描成像方法;在探测路采用多通道并行探测,可进行airysplit成像、VIKMOM成像。可实现横向分辨率1/2到1/30波长的多色超分辨三维成像。满足不同的应用需求。 主要特点:l 集成多种成像模式:共聚焦、FED、FLIM 、STED、NFOMM 探测路增加并行探测,可进行airysplit成像、VIKMOM成像l 成像分辨率:通过选择不同的模式,可以覆盖1/2到1/30波长 STED模式:X,Y横向分辨率(XY):~20nm,Z轴轴向分辨率(Z):~50nml 成像软件:包括控制、检测、分析功能,支持多种成像模式 多模:用户可在共聚焦、FED、FLIM 、STED、NFOMM之间轻松切换 主要技术参数:MS4000多模态超分辨显微成像系统光源超连续白光光源STED抑制光波长775nm脉冲激光器,相较于连续光抑制,可减少对样品的光漂白效应光强调节AOM调节声光调制器(AOTF)激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度可调。空间光调制器2个,用于实现不同成像模式下的光斑调制,软件控制实现相位图加载STED模式空间分辨率横向:1/8λ-1/30λ成像速度1fps @ 512×512 pixels图像尺寸8192×8192 pixels,94μm×94μm @ 100X 物镜共聚焦模式空间分辨率横向:1/2λ-1/3λ成像速度4fps @ 512×512 pixels图像尺寸8192 x 8192 pixelsFED模式空间分辨率横向:1/3λ-1/4λ图像尺寸8192 x 8192 pixels
    留言咨询
  • 基于结构光照明的超分辨显微成像系统,具备300Hz超分辨成像能力、“所见即所得”的实时超分辨成像能力、86nm的光学超分辨能力和60nm的计算超分辨能力。可以让您对苛刻实验条件下培养的活细胞进行实时超分辨图像重构,满足低光毒性的要求。主要特点:超高分辨率:X,Y横向分辨率(XY):86nm,计算分辨率达60nm。Z轴轴向分辨率(Z):270nm。超低光毒性:长时长活细胞连续拍摄,更低的激光功率获得更高的图像信噪比高速实时:实时超分辨,所见即所得多种成像模式:荧光宽场、TIRF宽场、2D SIM/2D SIM Stack、TIRF SIM、3D SIM/3D SIM Stack、上述模式多角度控制、实时SIM拍摄 超强适配性 :采用了标准显微镜镜体,并支持已有显微镜的升级 主要参数:G-SIM结构光超分辨显微成像系统激光器激光405nm(50mW)、488 nm(50mW)、561 nm(50mW)、640nm(50mW)可选白激光的激发光波长从440纳米到790纳米声光调制器(AOTF)每个激光器由声光调制器(AOTF)协调控制,实现各通道激光的高速独立调节;激光强度调节范围为0.01%-100%,最小调节步进精度为0.01%。超分辨模块SIM照明器SIM专用结构光照明器,通过条纹照明,获取两倍于传统显微镜的光学分辨率光学分辨率XY方向86nm,计算分辨率60nm,Z方向270nmSIM拍摄速度120 fps @512×512 pixels(2D-SIM & TIRF-SIM)208 fps @512×200 pixels(2D-SIM & TIRF-SIM)72 fps @512×512(3D-SIM)SIM成像视野1536×1536 pixels,94μm×94μm @ 100X 物镜SIM成像模式TIRF-SIM、2D-SIM、3D-SIM,多角度控制实时超分辨功能可单通道成像可四通道高速分时成像sCMOS相机Hamamatsu ORCA Flash 4.0分辨率:2304×2304,单像素大小:≥6.5×6.5μm,帧速≥89frame/s,峰值QE≥95% @ 550nm共聚焦模块1标准探测器波长:400-750nm,探测器:4个高灵敏度PMT透射探测器1个PMT图像尺寸8192 x 8192pixels扫描模式X-Y,X-Z ,Y-Z, X-Y-Z,X-Y-Z-T扫描速度4fps@512 x 512 pixels1. 共聚焦模块为选配项。
    留言咨询
  • 全聚焦(TFM)重构算法模型依据全聚焦(TFM)重构算法模型,利用基于信号处理芯片的高速硬件成像技术,实时地计算出全聚焦(TFM)图像结果,图像刷新率可达35fps。64个全并行的相控阵硬件通道具有64个全并行的相控阵硬件通道,可实时采集多达4096条A型波的原始全矩阵(FMC)数据,采样深度可达1.2m。实时全聚焦(TFM)成像检测支持复合材料、高铁线路对接焊缝、电力机车轮辋轮轴、风电叶片螺栓以及厚壁对接焊缝多种材料的快速成像检测。一次纵波全聚焦(TFM)模块基于一维线阵探头,实现对被检测材料母材的2D实时全聚焦(TFM)成像检测。3D纵波全聚焦(TFM)基于二维面阵探头,实现对被检测材料的母材的3D实时全聚焦(TFM)成像检测。快速C扫描成像基于2D全聚焦(TFM)结合编码器定位,可对被检测材料实现快速C扫描成像。3D横波全聚焦(TFM)模块基于二维面阵探头,配套相应楔块,可对焊缝区域实现实时检测,形成立体的3D图形显示;3D-TFM结合编码器可以对焊缝区域形成直观通透的4D检测图像。多种3D-TFM模式焊缝、铸件、锻件多种TFM解决方案;中厚壁奥氏体不锈钢焊缝RT检测理想取代方案。实时4D检测3D-TFM 结合编码器形成实时4D检测图像,扫查速度高达100mm/s以上。异形工件全聚焦(TFM)检测针对不同被检工件,自定义全聚焦模型,能够实现各种异型材料例如有机玻璃球壳、陶瓷等工件的有效全聚焦(TFM)检测。原始数据存储及生成报表系统提供原始全矩阵数据存储及检测结果保存,缺陷定位定量分析等功能,可根据用户所需报表格式提供检测报告。
    留言咨询
  • HORIBA在拉曼光谱领域拥有50年的专业经验,新推出的LabRAM Soleil&trade 高分辨超灵敏智能拉曼成像仪结构紧凑、体积小巧,将带给您前所未有的体验。LabRAM Soleil&trade 只需较少的人工干预即可一天工作24小时,这得益于仪器的:高度自动化、高光通量、物镜自动识别、光学反射镜自动切换、SmartSampling&trade 和QScan&trade 提供的超快速成像、4块光栅快速全自动切换、光路自动准直以及LabSpec 6 智能软件功能。 结构紧凑型高分辨超灵敏智能拉曼成像仪LabRAM Soleil&trade 设计紧凑且保证激光安全,提供多种光学观察模式和高光谱成像功能: √ 占用面积1m2 √ 1级激光安全大样品室 √ 反射/透射照明 √ 明场/暗场/落射荧光/相位差和差分干涉差(DIC)显微镜 √ ViewSharpTM 超快速三维表面形貌技术 √ QScan&trade 激光矢量片层扫描技术——无需移动样品即可进行高质量3D共焦成像 √ XYZ 3D共聚焦成像,深度剖析(单点或QScanTM片层扫描) √ 标配低波数拉曼散射(30 cm-1) √ 光致发光(PL)、电致发光、光电流、上转换发光 √ 纳米空间分辨率光谱:耦合AFM和SEM可以实现NanoRaman&trade (TERS)、纳米PL和阴发光专注于您的工作,其它的交给仪器!忘掉拉曼成像前冗长乏味的准备操作!LabRAM Soleil&trade 提供先进的自动化功能,结合EasyImage&trade 易成像工作流技术,它大大减少了参数设置上花费的时间,并且大程度上确保了稳定性和再现性: √ 真正的自动操作系统 √ EasyImage&trade :有操作向导,简单快速 √ 自动校准:根据环境条件在几秒钟内自动检查并重新校准 √ SmartID&trade : 不用担心使用错误的物镜倍数或者错误的参数 √ 远程维护超快速成像:拉曼成像从未有如此之快!LabRAM Soleil的光学稳定性加上保护的显微图像-拉曼匹配精度,使得高质量拉曼成像速度可以提高100倍以上: √ SmartSampling&trade :基于新的成像法则,首先获取信号贡献多的样品点信号,将成像时间由几小时缩短为几分钟 √ TurboDrive&trade :光栅快速驱动,快至400nm/s √ 4种SWIFT&trade 功能 SWIFT&trade :普通超快速成像 SWIFT&trade XS:Ultra模式(快速拉曼成像,高达每秒1400条光谱)和高对比度模式(读出速率提升和信号增强) SWIFT&trade XR:多窗口扩展快速成像技术,适用于需要采集大范围PL光谱或大范围高分辨拉曼光谱,同时又要保证超快速成像的样品 Repetitive SWIFT&trade :信噪比增强快速成像技术,不断重复以改善信噪比解决各类分析问题从材料研究到聚合物研究,从生物分析到药物分析,LabRAM Soleil可以很轻松地应用于各个领域。得益于其先进的模块化和灵活性,LabRAM Soleil无论对于学术研究或者工业质量控制都是一套完美的显微拉曼系统。 √ 可配置4个内置激光器和6块不同的滤光片 √ 1分钟内可快速切换4块光栅 √ 标准低波数:低至30cm-1 √ 大样品室: 444(H) x 509 (L) x 337 (W) mm √ 具有很高的稳定性,维护操作简单LabSpec6软件:轻松驾驭LabRAM Soleil的全部功能!LabSpec 6软件将各种技术做成应用程序包,力求操作简便,可根据用户需要定制界面。软件的现代化和智能设计助您快速获取拉曼成像,即使您不是一个专家,也能轻松获取完美的拉曼成像图。 √ 先进的多变量分析方法MVAPlus&trade :轻松分析百万条光谱,即使是“困难”的样品,也能大程度地对其中的分子进行鉴别和定量分析。 √ ProtectionPlus确保符合FDA 21 CFR Part 11和GMP / GLP的要求 √ ParticuleFinder&trade 能自动对颗粒进行形态和化学分析,几秒内即可对颗粒进行分类 √ EasyImage&trade 自动化的工作流程使得用户只需一键点击即可获得拉曼成像技术指标光学设计高效率全反射式采用超宽带电介质反射镜共焦设计高效率全反射式采用超宽带电介质反射镜共焦针孔自动机械针孔三维空间滤波激光波长可选325nm、532nm、638nm、785nm等激光光路支持6路自动,独立优化控制激光偏转方向采用超宽带电介质反射镜光栅扫描速度400nm/s采用TurboDriveTM 闭环快速直驱光栅技术光栅数量不限支持4块光栅全自动切换低波数拉曼30cm-15cm-1可选Fast Alignment 新一代自动准直技术15s 光路准直时间内置PSD位敏探测器光谱模式多达6种全自动光谱模式拉曼、PL、ULF、上转换发光等等瑞利滤光片每个滤光片均由计算机控制激光阻挡优化成像多达8种光谱成像技术详情请咨询HORIBA销售工程师激光安全Class1 安全的激光安全等级尺寸898mm x 797mm x 806mm重量120Kg功耗满负荷运转时 600 W环保和安全设计1根电源线1根通讯线
    留言咨询
  • 蜂巢矩阵叶绿素荧光成像系统HEXAGON-IMAGING-PAM叶绿素荧光成像系统的“六边形战士”精度高,面积大,功能全,应用广,文献多,数据可视化!HEXAGON-IMAGING-PAM是德国WALZ公司最新推出的大型蜂巢矩阵叶绿素荧光成像系统。它凭借高精度的脉冲振幅调制(PAM)技术,可以对20×24cm的区域进行成像。分辨率高达1.2 MP(1000 x 1200 px, 2x2 binning技术,实际是2000×2400),像素尺寸3.45 x 3.45 µm。超高分辨率的基础是成像区域光场的均匀性,在设计过程中,光源阵列中LED的位置是经过精心布局的,以保证测量区域内无阴影,所有成像区域内的样品均匀照光,样品间的差异可以尽收眼底。大功率LED面板的冷却效果非常好,可以最大限度的延长LED的使用寿命。增加远红光(FR)LED 面板,可用于测量所研究样品的Fo' 值。HEXAGON-IMAGING-PAM采用蜂巢矩阵式LED面板拼接技术,单个六边形蜂巢矩阵单元之间LED的不平横可以独立补偿,初衷是为实现样品区域的理想照明提供最佳选择。尽管成像区域很大,但是它依然足够灵活,可以测量各种类型的样品,如盆栽植物,穴盘中培养的植物,培养皿上的植物或多孔板中的藻类悬浮液。滑动门设计,集成安全关闭功能,开门状态下,饱和脉冲的强度会被抑制以保护操作人员的眼睛。主要功能l 原位测量:活体植物叶绿素荧光成像,直观显示样品光合作用光能利用差异,可导出彩色图像。l 成像功能:对Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、PS/50=ETR、Inh等参数进行成像分析。测定调节性能量耗散Y(NPQ),反映植物光保护能力,测定非调节性能量耗散Y(NO),反映植物光损伤程度。l 程序测量功能:可自动程序测量荧光诱导曲线、快速光曲线和暗弛豫,也可手动测量;在测量过程中能自动分析所有荧光参数的变化趋势;可以预编程进行自定义实验流程,如模拟波动光。l AOI功能:可在测量前或测量后任意选择感兴趣的区域(AOI),程序将自动对选择的AOI的数据进行变化趋势分析,并在报告文件中显示相关AOI的数据。所有报告文件中显示的数据都可导出到EXCEL文件中。l 成像异质性分析功能:对任意参数任意时间的成像,可在图像上任意选取两点,软件自动对两点间的数据进行横向异质性分析,并可导出到EXCEL文件中。l 成像数据范围分析功能:对任意参数任意时间的成像,可分析任意两个荧光数值之间有多少个像素点,多少面积(cm2)。l 突变株筛选功能:可跟据成像结果快速筛选光合、产氢/油、抗逆(抗盐、抗旱、抗病等)等突变株。l 微藻毒理研究功能:可同时测量4块96孔板,即384个微藻样品(对照和处理组)的光合活性,软件自动给出处理组样品相对于对照组的光合抑制百分比。应用领域l 光合作用研究:可以在完全相同的条件下同时对大量样品进行成像l 植物病理学:病斑部位(包括肉眼不可见时)成像以及病斑扩散的时空动力学l 植物胁迫生理学:肉眼不可见生物/非生物胁迫损伤的早期检测l 遗传育种:出苗后大规模快速筛选高光合/抗旱/抗热/抗冻/抗病等植株l 突变株筛选:快速筛选模式植物的光合突变株、抗逆突变株、产氢微藻突变株等l 微藻毒理学:不同毒物浓度多个重复的样品一次测完,软件自动计算抑制比率l 其它多种扩展研究成像参数Fo, Fm, F, Ft, Fm' , Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), PS/50=ETR,Inh.等产地:德国WALZ参考文献数据来源:光合作用文献Endnote数据库,原始数据来源:Google Scholar。注:HEXAGON-IMAGING-PAM为最新产品,暂无文献发表,最新研究成果可参考M-IMAGING-PAM发表文章。Salguero-Linares, J., et al. (2022). "Robust transcriptional indicators of immune cell death revealed by spatio-temporal transcriptome analyses." Molecular Plant.Sandoval-Ibáñez, O., et al. (2022). "De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis." Nature communications 13(1): 4045.Gao, Y., et al. (2022). "Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation." The Plant Cell.Ma, L., et al. (2022). "SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato." The Plant Cell.Szechynska-Hebda, M., et al. (2022). "Aboveground Plant-to-Plant Electrical Signaling Mediates Network Acquired Acclimation." Plant Cell.Xing, J., et al. (2022). "The plastid-encoded protein Orf2971 is required for protein translocation and chloroplast quality control." The Plant Cell.Dahro, B., et al. (2022). "Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata." New Phytologist n/a(n/a).Ivanova, A., et al. (2022). "Mitochondrial activity and biogenesis during resurrection of Haberlea rhodopensis." New Phytologist n/a(n/a).Li, L., et al. (2022). "Genomes shed light on the evolution of Begonia, a mega-diverse genus." New Phytologist n/a(n/a).Moog, M. W., et al. (2022). "The epidermal bladder cell-free mutant of the salt tolerant quinoa challenges our understanding of halophyte crop salinity tolerance." New Phytologist n/a(n/a).Zhang, Y., et al. (2022). "CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis." New Phytologist n/a(n/a).Ashok, A., et al. (2022). "Food-chain length determines the level of phenanthrene bioaccumulation in corals." Environmental Pollution: 118789.Cai, W., et al. (2022). "CaSWC4 regulates the immunity-thermotolerance tradeoff by recruiting CabZIP63/CaWRKY40 to target genes and activating chromatin in pepper." PLOS Genetics 18(2): e1010023.Castro, P. H., et al. (2022). "SUMO E3 Ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis." Plant Physiology.Che, L., et al. (2022). "Rubredoxin 1 Is Required for Formation of the Functional Photosystem II Core Complex in Arabidopsis thaliana." Frontiers in Plant Science 13.Chen, Q., et al. (2022). "Strategies of carbon use and photosynthetic performance of the two seaweeds Gracilaria chouae and Gracilariopsis lemaneiformis under different conditions of the carbonate system." Algal Research 64: 102713.Gao, S., et al. (2022). "The growth and photosynthetic responses of white LEDs with supplemental blue light in green onion (Allium fistulosum L.) unveiled by Illumina and single-molecule real-time (SMRT) RNA-sequencing." Environmental and Experimental Botany: 104835.He, J., et al. (2022). "The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis." Plant Physiology.Hsieh, W.-Y., et al. (2022). "THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis." The Plant Journal n/a(n/a).Kareem, H. A., et al. (2022). "Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages." Environmental Pollution 303: 119069.Li, J., et al. (2022). "Melatonin enhances the low-temperature combined low-light tolerance of pepper (Capsicum annuum L.) seedlings by regulating photosynthesis, carotenoid, and hormone metabolism." Environmental and Experimental Botany 199: 104868.Li, T., et al. (2022). "Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta)." Algal Research 66: 102778.Lin, S., et al. (2022). "Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress." Frontiers in Plant Science 13.Liu, K., et al. (2022). "Melatonin delays leaf senescence and improves cucumber yield by modulating chlorophyll degradation and photoinhibition of PSII and PSI." Environmental and Experimental Botany 200: 104915.Liu, Y., et al. (2022). "Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum." Environmental and Experimental Botany 201: 104990.Lu, S., et al. (2022). "VvERF17 mediates chlorophyll degradation by transcriptional activation of chlorophyll catabolic genes in grape berry skin." Environmental and Experimental Botany 193: 104678.Lynch, T., et al. (2022). "ABI5 binding protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.Lynch, T., et al. (2022). "ABI5 interacting protein2 inhibits ABA responses during germination without ABA-INSENSITIVE5 degradation." Plant Physiology.Okereke, C. N., et al. (2022). "Impact of heat stress of varying severity on papaya (Carica papaya) leaves: major changes in stress volatile signatures, but surprisingly small enhancement of total emissions." Environmental and Experimental Botany: 104777.Om, K., et al. (2022). "Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis." Plant Physiology.Pan, X., et al. (2022). "Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S." BMC Plant Biology 22(1): 44.Pandey, K., et al. (2022). "Coordinated regulation of photosynthesis and sugar metabolism in guar increases tolerance to drought." Environmental and Experimental Botany 194: 104701.Roach, T., et al. (2022). "Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation." Algal Research 64: 102699.Rotasperti, L., et al. (2022). "The barley mutant happy under the sun 1 (hus1): An additional contribution to pale green crops." Environmental and Experimental Botany 196: 104795.Shindo, A., et al. (2022). "Interactive effects of temperature and irradiance including spectral light quality on the photosynthesis of a brown alga Saccharina japonica (Laminariales) from Hokkaido, Japan." Algal Research 66: 102777.Sohail, H., et al. (2022). "Genome-wide identification of plasma-membrane intrinsic proteins in pumpkin and functional characterization of CmoPIP1-4 under salinity stress." Environmental and Experimental Botany: 104995.Song, W., et al. (2022). "Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum." BMC Plant Biology 22(1): 252.Szádeczky-Kardoss, I., et al. (2022). "Elongation factor TFIIS is essential for heat stress adaptation in plants." Nucleic Acids Research.Trainin, T., et al. (2022). "Physiological characterization of the wild almond Prunus arabica stem photosynthetic capability." Frontiers in Plant Science 13.Xue, S., et al. (2022). "Effects of enhanced UV-B radiation on photosynthetic performance and non-photochemical quenching process of intertidal red macroalgae Neoporphyra haitanensis." Environmental and Experimental Botany: 104888.Yang, L., et al. (2022). "Salt interferences to metabolite accumulation, flavonoid biosynthesis and photosynthetic activity in Tetrastigma hemsleyanum." Environmental and Experimental Botany 194: 104765.Yang, L., et al. (2022). "Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress." Frontiers in Plant Science 13.Zhang, J., et al. (2022). "Early evaluation of adjuvant effects on topramezone efficacy under different temperature conditions using chlorophyll fluorescence tests." Frontiers in Plant Science 13.Zhou, X., et al. (2022). "Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings." BMC Plant Biology 22(1): 30.Zhu, S., et al. (2022). "Cold stress tolerance of the intertidal red alga Neoporphyra haitanensis." BMC Plant Biology 22(1): 114.
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制