当前位置: 仪器信息网 > 行业主题 > >

超成像系统

仪器信息网超成像系统专题为您提供2024年最新超成像系统价格报价、厂家品牌的相关信息, 包括超成像系统参数、型号等,不管是国产,还是进口品牌的超成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超成像系统相关的耗材配件、试剂标物,还有超成像系统相关的最新资讯、资料,以及超成像系统相关的解决方案。

超成像系统相关的资讯

  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 630万!吉林大学采购超分辨共聚焦显微成像系统
    近日,某采购平台发布吉林大学2022年8至10月政府采购意向,其中预算630万计划采购一套超分辨共聚焦显微成像系统,要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。详细情况如下超分辨共聚焦显微成像系统项目所在采购意向:吉林大学 2022年8至10月政府采购意向采购单位:吉林大学采购项目名称:超分辨共聚焦显微成像系统预算金额:630.000000万元(人民币)采购品目:A02100301显微镜采购需求概况 :超分辨共聚焦显微成像系统,1套。要求为包括4个波长以上的激光光源、显微镜系统、成像检测器系统、操作软件、电脑主机、显示器。可实现进行细胞亚结构的动态成像,细胞或组织内部的超细微荧光特性解析,观察细胞或组织内部的微细结构和形态学变化,记录细胞的生理特性。实现“高清”、“动态”的活细胞高分辨观察要求。 具体要求详见采购文件。供货期:签订合同之日起,6个月货到采购人指定地点并安装验收完毕。(包括供货,安装,调试,验收合格所需时间)。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。预计采购时间:2022-10备注:本次公开的采购意向是本单位政府采购工作的初步安排,具体采购项目情况以相关采购公告和采购文件为准。
  • abbelight发布3D超分辨成像系统新品
    abbelight3D超分辨成像系统 abbelight是一款模块化的多功能的单分子定位显微镜(SMLM)系统,它独有的DASEY技术能够极大的提高定位精度的同时,还保持在较小的尺寸。该设备具有高度灵活性,能够搭载在绝大多数的倒置显微镜上,并且仅仅需要使用一个C-mount(CCD或CMOS所连接的部位)接口,即可将您的倒置显微镜直接升级为超分辨显微镜。并且改造过程不会破坏原有显微镜系统的光路和功能,不会与其它的显微镜改造相冲突。本设备既在配置上的选择也十分灵活。它既可以作为显微镜的一个升级配件来改造您的显微镜,也拥有完整的超分辨系统。让用户在获得专业的图像质量的同时,享受到最为经济合理的超分辨升级方案。 SAFe 180 超分辨模组 • 成像模式:PLAM、STORM、smFRET、SPT• 光源模式:Epi、TIRF、HILO• 25 nm的XY轴分辨率• 200 × 200 μm2的超大视野• 全自动化控制• 无需高功率激光光源• 可升级SAFe 360大视野3D超分辨模块 SAFe 360 超分辨模组 • 具有SAFe 180的所有功能• 15 nm的XYZ轴分辨率• 一次可同时采集1.2 μm深度图像信息• 最高图像深度:10 μm• 实时漂移矫正• 最高四色同时成像• 活细胞成像模式高精准3D超分辨显微成像模块 加装TIRFPALMSTORMSPTsmFRET...... 兼容ConfocalSpinning-DeskWidefieldSIMSTED Now We See...... 肌动蛋白 细胞足 网格蛋白 线粒体 配套试剂 Smart kitCompatible dyes• 10 doses per box• 200 μL per dose• 30 sec prepartion• 2 months in a fridge• 2 weeks on sample• Phalloidin-AF 488, WGA-AF 488• AF 532, CF 532, Cy3b• AF 555, CF 555, AF 568, CF 568, Cy5, MemBrite™ 568• AF 647, CF 647, AF 680, CF 680, MemBrite™ 640 发表文献列表 1.TADs are 3D structural units of higher-order chromosome organization in Drosophila, Science Advances 2018, Article reference DOI: 10.1126/sciadv.aar80822.Multicolor localization microscopy by deep learning, ArXiv 2018, Article reference arXiv:1807.016373.Primary fibroblasts derived from sporadic amyotrophic lateral sclerosis patients do not show ALS cytological lesions, Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2018, Article reference DOI: 10.1080/21678421.2018.14317874.Quantitative mapping and minimization of super-resolution optical imaging artifacts, Nature Methods 2018, DOI: 10.1038/nmeth.46055.Combining 3D single molecule localization strategies for reproducible bioimaging, BioRxiv 2018, Article reference DOI: 10.1101/3857996.Aberration-accounting calibration for 3D single-molecule localization microscopy, Optics Letters 2017, Article reference DOI: 10.1364/OL.43.0001747.Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring, ACS Nano 2017, Article reference DOI: 10.1021/acsnano.7b006228.Failure of daptomycin to kill Staphylococcus aureus: impact of bacterial membrane fatty acid composition, Antimicrobial Agents and Chemotherapy 2018, Article reference DOI:10.1128/AAC.00023-189.Localized Myosin II Activity Regulates Assembly and Plasticity of the Axon Initial Segment, Neuron 2017, Article reference DOI: 10.1016/j.neuron.2017.12.03910.Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy, Scientific Reports 2017, DOI: 10.1038/s41598-017-15433-2创新点:abbelight既可以作为显微镜的一个配件将您的显微镜升级至超分辨,也拥有完整的超分辨系统;独有的DAISY技术,使XYZ轴精度达到15nm,超精准定位;拥有200μ m x 200μ m的超大视野,最高可实现四色同时成像!3D超分辨成像系统
  • 315万!天津大学AIE研究院超快系统-共聚焦荧光显微成像系统采购项目
    项目编号:TDZC2022J0013项目名称:天津大学AIE研究院超快系统-共聚焦荧光显微成像系统采购项目预算金额:315.0000000 万元(人民币)最高限价(如有):315.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1超快系统-共聚焦荧光显微成像系统1该系统具有双光子成像和单光子共聚焦成像功能,能够对特定厚度材料及特定量子点探针进行激发成像,成像深度是普通单光子共聚焦10倍左右,在活体高分辨成像中广泛应用。单光子共聚焦具有高分辨成像能力,能够对材料、细胞及生物组织样品进行3D高分辨切片扫描及重构。应能够通过可见激光对,活细胞、组织和切片进行连续扫描,获得精细的单个细胞或一群细胞的各个层面结构(包括染色体等)的三维图像。可利用荧光标记测定细胞内如钠、钙、镁等离子浓度的比率、动态变化及pH值的动态变化。 合同履行期限:收到信用证后120天内交货及到货15天内完成安装调试并具备验收条件等本项目( 不接受 )联合体投标。
  • 10月高校采购意向汇总:70台套动物活体成像系统,总金额超4亿元
    近期政策利好消息推动国内高校、科研院所纷纷启动仪器设备采购工作。自国庆假期结束后,清华大学、北京大学等22所国内高校分别发布了科学仪器采购意向,据仪器信息网最新统计(截止时间2022年10月31日),总意向金额累计超过180亿元,高校科学仪器市场迎来又一波采购热潮。近年来,动物成像技术在生命科学、医药研究中发挥着越来越重要的作用,涌现出各种动物活体成像系统,为科学研究提供了强有力的工具。截至10月31日,北大、复旦等16所高校发布了动物活体成像系统的采购意向,总意向金额累计超过4亿元。兰州大学以采购总预算13001万元位居高校榜首,意向采购数量高达18套(台)。其次是北京化工大学,采购总预算达7365万元。排名第三的是中山大学,采购总预算达3940万元。另外,中南大学于10月16日发布了中南大学湘雅医学院动物实验平台采购项目,预算金额为11216万元,包含3套动物活体成像系统、2套超高频高分辨率小动物超声成像系统、1套小动物三维活体成像以及1套小动物Micro CT活体成像系统。16所高校意向采购动物活体成像系统项目详情如下:序号采购项目名称采购需求概况预算金额(万元)兰州大学1第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-小动物PET/MRI 成像仪项目详情 32002医学实验中心9.4T小动物PET/MRI采购项目项目详情 31003医学实验中心高分辨率小动物超声光声多模式成像采购项目项目详情 7634第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-小动物PET/CT成像仪项目详情 7365医学实验中心小动物PET成像系统采购项目项目详情 7346医学实验中心小动物光声成像采购项目项目详情 6707化学化工学院小动物活体成像系统采购项目项目详情 6008超高频高分辨率小动物超声成像系统采购项目项目详情 4509兰大二院超高频高分辨率小动物超声成像系统采购项目项目详情 45010医学实验中心小动物超声采购项目项目详情 45011公共卫生学院+重金属暴露与健康效应研究-IVIS Spectrum 小动物活体成像系统项目详情 38012医学实验中心宽光谱小动物活体成像系统采购项目项目详情 36013小动物活体成像系统采购项目项目详情 20014基础医学院小动物超声成像设备采购项目项目详情 20015兰大二院小动物活体成像系统采购项目项目详情 20016医学实验中心大动物CT采购项目项目详情 20017药学院高通量高灵敏小动物活体成像仪采购项目项目详情 18018基础医学院小动物视网膜成像系统设备采购项目项目详情 128共计13001中南大学1中南大学湘雅医学院动物实验平台采购项目(动物活体成像系统3套)项目详情 112162中南大学高等研究中心小动物活体三维多模式成像系统(三维光学成像和micro CT一体机)采购项目项目详情 650共计11866北京化工大学1分析测试中心小动物磁共振成像系统项目详情 14602科学技术发展研究院小动物磁共振成像系统项目详情 14603生命学院小动物磁共振成像仪项目详情 12004高分辨率小动物光声超声多模成像系统项目详情 6905低剂量小动物活体CT成像项目详情 5206全波长激光-小动物声学成像系统项目详情 5157超高频高分辨率小动物超声成像系统项目详情 4608小动物活体原位(In Vivo)细胞成像系统项目详情 4309小动物光学活体成像(二区)项目详情 21010动物磁粒子成像系统项目详情 21011近红外二区小动物活体成像系统项目详情 210共计7365中山大学1多模式小动物光声成像系统项目详情 7002化学学院小动物超声&光声二合一成像系统采购项目项目详情 6603超高分辨率小动物超声实时影像系统项目详情 5504化学学院单/双光子多模态小动物活体成像仪采购项目项目详情 4505小动物活体三维断层扫描成像系统项目详情 4206小动物活体Micro-CT成像系统项目详情 4007近红外一区&近红外二区小动物全身3D光声成像系统项目详情 3608小动物活体成像(深圳校区)项目详情 2009小动物活体成像系统项目详情 200共计3940华南理工大学1自旋科技研究院购置小动物核磁共振成像设备项目项目详情 12002三维小动物活体成像系统和小动物活体MicroCT系统项目详情 6603小动物活体成像仪项目详情 3504自旋科技研究院购置小动物近红外荧光活体成像设备项目项目详情 3005近红外全景小动物活体荧光成像系统项目详情 2206小动物彩色多普勒超声成像系统项目详情 220共计2950复旦大学1小动物高场磁共振成像系统项目详情 18002小动物活体成像仪项目详情 550共计2350中国医药大学1中国药科大学小动物PET/CT项目项目详情 10002中国药科大学小动物活体光声超声多模成像系统项目项目详情 9003中国药科大学跨尺度NIR-II高分辨小动物活体成像系统项目项目详情 3004中国药科大学小动物成像系统(镜头)项目项目详情 100共计2300四川大学1高分辨活体小动物X射线断层扫描系统 In-vivo Micro CT for small animal项目详情 4502小动物活体Micro CT成像仪项目详情 3503小动物活体成像系统项目详情 3204近红外二区小动物活体成像系统项目详情 1955小动物活体成像系统项目详情 180共计1495吉林大学1三维小动物光学活体成像系统项目详情 4502小动物活体Micro-CT成像系统项目详情 4003全光谱跨尺度小动物活体成像系统项目详情 2804小动物活体光学成像系统项目详情 246共计1376北京大学1北京大学医学部小动物超光声多模态成像系统采购项目项目详情 6502小动物四模态(PET/SPECT/CT/FMT)成像系统电子模块加工集成项目详情 415共计1065华中科技大学1小动物Micro-CT成像系统项目详情 3202小动物三维活体光学成像系统项目详情 330共计650南京农业大学1小动物活体三维多模式成像系统项目详情 650山东大学1活体成像系统项目详情 480浙江大学1小动物活体成像系统项目详情 170北京师范大学1近红外二区小动物荧光活体成像系统项目详情 170东北师范大学1小动物核磁共振检测系统项目详情 170相关推荐:1.近期高校采购意向汇总:40台套分子互作分析仪,总额超1.3亿元 (点击查看)2.仅18天超2.4亿流式细胞仪采购招标!近期高校采购计划汇总 (点击查看)
  • 中科院科研装备研制项目 “非线性结构光照明超分辨显微成像系统”顺利验收
    p  6月1日,中国科学院条件保障与财务局组织专家在中国科学院生物物理研究所对中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”进行了验收。/pp  该项目由中科院苏州生物医学工程技术研究所与生物物理所在2014年联合申报,其中苏州医工所作为研制单位,生物物理所作为用户单位。研制工作由苏州医工所研究员李辉课题组具体组织实施,2016年9月李辉课题组将研制的非线性SIM超分辨显微镜送至生物物理所进行测试试用。在本套系统中,课题组提出了基于结构光激活+结构光激发的弱光非线性结构光照明超分辨成像方法,并采用铁电液晶空间光调制器替代机械光栅,结合FPGA并行同步控制系统,实现了更灵活的成像方式和更快的成像速度。同时课题组开发了能够适用于弱信号样品的SIM/NL-SIM超分辨图像重建算法和软件。利用该设备对荧光微球、细胞内质网、线粒体、细胞核以及细胞骨架等生物样品进行观测,实现了线性SIM模式下100nm横向分辨率,非线性SIM模式下62nm横向分辨率。/pp  专家组听取了项目工作报告、财务报告、用户使用报告,并进行了现场测试验收。经过现场测试并充分讨论后,专家组认为,项目各项技术指标均达到或优于实施方案要求,满足生物医学成像超分辨观测应用需求,一致同意“非线性结构光照明超分辨显微成像系统”通过验收。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/20efc081-6105-4bed-8fdd-1ed50217c97b.jpg" title="W020170606426930859631.png"/  /pp style="text-align: center "中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”通过验收br//ppbr//p
  • abbelight发布3D超分辨成像系统新品
    3D单分子荧光成像系统 abbelight SAFe360是一款基于单分子定位的显微成像(SMLM)的3D单分子成像系统,它独有的DAISY技术整合了散光技术和超临界角光技术,能够极大的提高定位精度,达到最高的xyz同时15nm的定位精度,可以提供清晰度最高的三维的亚细胞结构图像,最高同时四色成像观测,可以实时研究不同的结构功能蛋白的共定位信息,在单分子水平研究分子动力学反应以及细胞间的相互作用等。3D单分子荧光成像系统-SAFe 360 设备参数 + 成像模式:PALM、STORM、PAINT、smFRET 、SPT+ 光源模式:Epi、TIRF、HILO+ 最高分辨率:15 nm的XYZ轴分辨率+ 超大视野:200 × 200 μm2的视野+ 一次可同时采集1.2 μm深度图像信息+ 最高图像深度:10 μm+ 实时漂移矫正+ 最高四色同时成像+ 活细胞成像模式 加装TIRFPALMSTORMSPTsmFRET...... 兼容ConfocalSpinning-DeskWidefieldSIMSTED Now We See...... 3D线粒体结构核孔复合物老鼠海马神经元微管蛋白网络 配套试剂 Smart kitCompatible dyes• 10 doses per box• 200 μL per dose• 30 sec prepartion• 2 months in a fridge• 2 weeks on sample• Atto 488, WGA-AF488• AF532, CF532, Cy3b• AF555, AF594, CF555, AF568, CF568, Cy5, MemBriteTM 568, TMR• AF647, CF647, AF680, CF680, MemBriteTM 640, Actin-stain 670, SiR647 发表文献列表 [1] Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[2] Woodhams, Stephen G., et al. "Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain." Pain 160.11 (2019): 2641-2650.[3] Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[4] Denis, Kevin, et al. "Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease." Nature microbiology 4.6 (2019): 972.[5] Szabo, Quentin, et al. "TADs are 3D structural units of higher-order chromosome organization in Drosophila." Science advances 4.2 (2018): eaar8082. [6] Boudjemaa, Rym, et al. "Impact of bacterial membrane fatty acid composition on the failure of daptomycin to kill Staphylococcus aureus." Antimicrobial agents and chemotherapy 62.7 (2018): e00023-18.[7] Culley, Sian, et al. "Quantitative mapping and minimization of super-resolution optical imaging artifacts." Nature methods 15.4 (2018): 263.[8] Berger, Stephen L., et al. "Localized myosin II activity regulates assembly and plasticity of the axon initial segment." Neuron 97.3 (2018): 555-570.[9] Cabriel, Clément, et al. "Aberration-accounting calibration for 3D single-molecule localization microscopy." Optics letters 43.2 (2018): 174-177. [10] Bouissou, Ana?s, et al. "Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring." ACS nano 11.4 (2017): 4028-4040. [11] Sellés, Julien, et al. "Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy." Scientific reports 7.1 (2017): 14732.[12] Bourg, Nicolas, et al. "Direct optical nanoscopy with axially localized detection." Nature Photonics 9.9 (2015): 587. 创新点:SAFe 360是一款基于单分子定位的显微成像(SMLM)的3D单分子成像系统。它独有的DAISY技术整合了散光技术和超临界角光技术,能够极大的提高定位精度,达到最高的xyz同时15nm的定位精度,可以提供清晰度最高的三维的亚细胞结构图像,最高同时四色成像观测,可以实时研究不同的结构功能蛋白的共定位信息,在单分子水平研究分子动力学反应以及细胞间的相互作用等。3D超分辨成像系统
  • 文献速递|动物活体成像系统在载药纳米超声造影剂研制中的应用
    近日,中山大学附属第七医院肾泌尿外科中心庞俊教授团队在载药纳米超声造影剂研究中取得成果,在国际知名期刊《ACS Applied Materials & Interfaces》(IF=9.229,JCR1区)上发表研究性论文。图1|国际知名期刊《ACS Applied Materials & Interfaces》(IF=9.229,JCR1区)超声(US)由于其安全性、非放射性、实时监测和低成本而被广泛用于临床诊断成像。然而,传统的超声造影剂(UCAs)只能用于血池成像,且由于尺寸相对较大,无法实现肿瘤区域的血管外成像。此外,仅应用常规UCAs也不能达到预期的治疗目的。基于纳米粒子(NPs)的UCAs因其无创性、精确靶向、可见性和装载小分子的便利性而受到越来越多的关注。产生气体的NPs具有很高的回声敏感性,二硫键可以用于还原响应性NPs药物递送系统制备。目前,已报道的同时具有超声成像和治疗功能的医用NPs大多仅基于pH响应性药物释放,并且药物释放速率不完全。基于上述考虑,庞俊教授团队制备了包裹二硫聚合物、碳酸氢钠(NaHCO3)水溶液和化疗药物盐酸阿霉素盐(DOXHCl)的NPs(DOX@HADT-SS-NaHCO3NPs)。NaHCO3在酸性条件下能产生CO2,提供回声信息;更重要的是,双重pH/GSH响应性药物释放可以进行癌症治疗,最终实现前列腺癌US成像和治疗的一体化。图2|制造聚合物步骤和通过产生回声CO2气泡放大超声对比度并发挥按需治疗作用的NPs示意图文章中,标记Cy5.5的HADT-SS-NaHCO3NPs在C4-2荷瘤裸鼠体内的生物分布活体实验成像,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。当C4-2荷瘤裸鼠的肿瘤体积达到100mm3时,静脉给药注射游离Cy5.5和Cy5.5@HADT-SS-NaHCO3NPs溶液。活体结果显示用Cy5.5@HADT-SS-NaHCO3NPs处理的小鼠肿瘤中的荧光信号从0.5到4小时逐渐增加,并在4小时达到峰值,然后随着时间的推移逐渐减弱。相比之下,整个时期肿瘤部位未观察到明显的游离Cy5.5荧光信号,游离Cy5.5荧光信号主要出现在肝脏。定量荧光信号也证实了Cy5.5@HADT-SS-NaHCO3NPs在肿瘤和肝脏中分布的趋势,揭示了HADT-SSNaHCO3NPs通过EPR效应在肿瘤组织中的特异性积累。图3|负载Cy5.5的HADT-SS-NaHCO3NPs(A)和具有等效Cy5.5浓度(0.2 mg/kg)的游离Cy5.5溶液(B)在C4-2荷瘤小鼠中的体内生物分布。静脉注射后0.5、1、2、4、8、12、24、48和72小时,用AniView100获得的小鼠背部和前部的体内荧光图像,一列代表同一只裸鼠的正面和背面。(C)和(D)为肿瘤组织和肝脏荧光强度的定量分析US造影剂已广泛应用于肿瘤的诊断和鉴别诊断。商业US由于体积大,成像时间短,应用受到限制;同时,仅应用常规的US造影剂并不能达到预期的治疗目的。庞俊教授团队设计的HADT-SS-NaHCO3NPs在酸性pH条件下表现出明显增强的超声对比度和抗肿瘤效果,为前列腺癌的有效超声成像诊断和治疗提供了一种有效的潜在药物。文献链接:https://pubs.acs.org/doi/10.1021/acsami.1c00077
  • 450万!华南理工大学超多标组织多重成像系统采购项目
    项目编号:GZSW23156HG1037项目名称:华南理工大学超多标组织多重成像系统采购项目预算金额:450.0000000 万元(人民币)最高限价(如有):450.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求最高限价万元(人民币)1超多标组织多重成像系统1(套)该系统可实现单细胞及亚细胞水平的组织原位蛋白(Protein)和转录组(RNA)高靶标通量表达分析,可用于高分辨率解析组织空间细胞异质性和疾病发生、发展、耐药等分子机制,比如1)神经系统组织异质性和免疫微环境,2)肿瘤组织异质性和免疫微环境,3)组织病毒感染、组织损伤及其微环境, 4)其他各类与组织细胞空间分布相关的生物信号通路和机制研究。并在组织原位上进行生物标志物验证和发现,对疾病机理、药物预后研究等具有非常重要的意义。具体详见采购需求4501.经政府采购管理部门同意,本项目(超多标组织多重成像系统)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。2.本项目不分包组。3.本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名 称:广州顺为招标采购有限公司地址:广东省广州市越秀区环市中路205号恒生大厦B座自编B501-B505、B512-B525房联系方式:020-835922163.项目联系方式项目联系人:刘先生电话:020-83592216-835
  • 379万!ZEISS中标四川大学超分辨高速激光共聚焦成像分析系统采购项目
    一、项目编号:SCIT-ZG(Z)-2022110030(招标文件编号:SCIT-ZG(Z)-2022110030)二、项目名称:四川大学超分辨高速激光共聚焦成像分析系统采购项目三、中标(成交)信息供应商名称:成都极泰科技有限公司供应商地址:四川省成都市天府新区华阳新希望大道二段158号29栋7单元1层191号中标(成交)金额:379.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元)1 成都极泰科技有限公司 超分辨高速激光共聚焦成像分析系统 ZEISS LSM 980 1套 3790000
  • 迅数发布迅数HD5000 多谱超分辨菌落成像系统新品
    HD5000 多谱超分辨菌落成像系统HD5000多谱超分辨菌落成像系统是迅数科技2020出品、软硬件顶级配置的旗舰机型,符合人体工学的全金属机箱设计,精致、坚固。独特设计的平皿莱因伯格照明系统,具有156种组合照明模式,可为平皿、多孔板菌落、细胞克隆、病毒蚀斑拍摄华美的影像,是图像数据保存、文献发表的有力工具。4/3英寸超大面阵CMOS传感器与大视场高清定焦镜头搭配,菌落影像通透、色彩细腻,完美展现培养基深层微小菌落,抑菌圈轮廓清晰、锐利,保证了图像分割的精度和重现性。软件功能丰富、易用,融菌落计数、抑菌圈测量、菌种筛选三大功能于一体。可实现:快速统计、多算法高级统计、网格滤膜、3M测试片、典型菌筛选、菌株特性描述、双圈分析、抑菌圈测量。。。 微生物平皿成像的“数字影棚” l “数字影棚”的光源控制 专业设计的平皿载样舱,可实现培养皿的雾光漫反射照明、悬浮暗视野照明、彩色凌透背光照明、多谱莱茵伯格照明,紫外激发照明,拍出不同寻常的科研级精美照片。 光源控制器采用隐藏式吸弹门设计,具6路照明选择开关、4通道无级亮度调节、双通道色温调节、12路彩色背景选择、12路莱因伯格光选择。 l 多谱莱因伯格照明多谱莱因伯格照明是迅数独创的平皿大视场暗域照明技术,12通道不同波长的可见激发光以环幕逆透射聚光照明菌落,辅以不同的彩色凌透光,可构成156种组合照明模式,使培养基形成均匀的背景色,菌落勾勒出鲜亮的自然色泽与轮廓。无需化学染色,即可使菌落或细胞克隆实现无损光着色,便于观察细微结构,识别、计数。莱因伯格照明实际样张: l 悬浮式暗视野照明 悬浮式暗视野由暗域轮廓光与黑色背景构成。柔和的白色LED轮廓光,使平皿中央到边缘的菌落得到均匀的照明,而光线几乎穿透培养基,形成黑色背景下的亮色菌落,菌落与培养基形成高反差,可清晰勾勒菌落轮廓。超分辨率 锐利展现菌落细节1.1英寸大视场高清定焦镜头,通过较大程度地控制多种像差,无论是暗视野照明、雾光漫反射照明、莱因伯格照明,都能呈现高分辨力、高对比度的画质。 2100万像素 4/3英寸超大面阵彩色SONY CMOS 传感器,采用双层降噪技术,具有极高的灵敏度以及超低噪声,能以无损图像品质呈现细微的色差和丰富的细节信息。 高保真镜头与大面阵相机的完美搭配,更能区分不同菌落、菌落与杂质、菌落与培养基之间的差异,从而提高菌落计数、筛选的精度。 更多图像算法 提高菌落计数精度 迅数创造性地研究出适合复杂菌落分割计数的快速活动轮廓模型、多相水平集活动轮廓模型等先进的图像分割技术,实现了复杂菌落、高难度平皿的准确计数。 (a) 水平集函数示意 (b) 曲线演化过程水平集活动轮廓模型的基本原理图像识别分割案例:多粘连细菌菌落计数 微小菌的识别计数:适合支原体、AMES 、嗜冷菌分析 真菌菌落计数滤膜菌落的识别计数 显色菌落的识别计数 高效、精确 菌种数字化筛选l 无损伤的多谱光学染色识别技术 通过多光谱莱茵伯格照明的光学染色技术,让菌落或克隆形成鲜艳的颜色,便于观察、辨别菌落的色彩和纹理细节,结合染色抗干扰精密统计技术,可以提高不同菌落识别的精度,减少培养基不平整、杂质干扰的影响。 l 不同菌群自动分类识别 微生物研究中有时需要在多菌混杂情况下把目标菌分类统计出来。不同菌种菌落的色泽、大小、轮廓存在微小特征差异。HD5000的“单色分类统计、指定多色筛选、多色自动聚类”工具可实现高精度识别某一类菌落,或自动聚类区分不同颜色的菌落。 l 双圈分析通过精确测量透明外圈直径和菌落直径,自动计算二者面积比和直径比,并根据比值的大小自动排序,定位出相应的菌落。适用于“抑菌圈、透明圈、变色圈、生长圈、水解圈、溶磷圈、排油圈、溶钙圈、溶血圈”分析,辅助抗生素、酶制剂、有机酸产生菌和石油、农药降解菌的高效筛选。 l 病毒滴度分析-蚀斑/噬菌斑计数 悬浮式暗视野照明使得敏感细菌菌层为白色,烈性噬菌斑形成的透明斑为黑色;莱茵伯格照明可让结晶紫或中性红染色的细胞层着色明艳,病毒空斑更易观察。影像的锐度与反差,帮助实现蚀斑/噬菌斑的准确分割和精确计数。 l 菌丝生长速率分析工具 菌丝生长速率、菌丝生长抑制率、对峙培养分析、室内毒力测定等实验常采用十字交叉法测量菌落直径。由于多数霉菌菌落蔓延、疏松、边缘发散不规则,测量的人为误差大,效率低。迅数“霉菌一键测量”模块,只需用“魔棒”在菌落边缘点击一次,即可瞬间测出大霉菌的面积、周长、长径、短径。 l 免疫学研究 迅数-多区域统计算法可以轻松实现任意多个区域的同步一键计数,可用于肺炎链球菌荚膜多糖特异性抗体调理吞噬杀菌试验(OPKA)和抗体依赖补体介导的体外血清杀菌试验(SBA) l 多孔板克隆计数 高分辨率的HD5000还可用于多孔板的克隆成像。莱茵伯格照明能使结晶紫染色的肿瘤或干细胞克隆鲜艳明亮;悬浮式暗视野照明,可使软琼脂克隆形成高反差的图像,自动计数大于50um的克隆或细胞团。 l Spot assay 点阵分析 Spot assay常用于检测不同培养液中细菌或酵母的生长率、培养液的连续梯度稀释或某个菌株基因突变型的高通量筛选 。“多区域动态调节统计”适用于此类分析。 抑菌圈自动测量l Szone 抑菌圈多模式测量技术抑菌圈测量常采用钢圈双碟法、纸片法、琼脂打孔法,由于试验环节诸多因素,如:抗生素溶液浓度、培养基质量、PH值、试验菌菌龄、培养时间等,使得最后形成的抑菌圈有些轮廓清晰,有些边缘模糊或不整齐并伴有破裂现象。 迅数“自动检测、拟圆逼近、三点定圆”三种算法,可适应不同类型抑菌圈的测量。 l 高对比、高分辨成像---保证测量精度 抑菌圈测量的关键是准确找到透明圈与底层菌的“边界线”。迅数专利设计的悬浮式暗视野,使得透明的抑菌圈构成“黑背景”,与周边灰白色的菌层形成高反差。 测量精度取决于数字影像画质,而镜头与相机的组合对画质至关重要。HD5000采用光学分辨率达150LP/mm的大靶面定焦镜头,将通透无畸变的光信号通过4/3英寸大面阵CMOS芯片相机,转为高清细腻的抑菌圈数字图像。 l 抗生素效价测定 提供一剂量法、二剂量法、三剂量法及合并计算。一剂量法符合美国药典,二剂量法和三剂量法符合中国药典2020版。仪器重复性自检,测量相对误差≤0.002mm;均匀性自检,相对误差≤0.1%。主要功能与技术指标一、 照明系统? 全封闭钢铝合金机箱(32×34×46cm):精密、坚固,确保光密闭? 平皿载样舱:下拉式铝合金隔断窗,消除环境杂散光干扰,阻断紫外泄露、避免灰尘进入? 雾光漫反射照明1) 96颗LED列阵与纳米反射材料构成嵌入式雾光系统, 360°连续漫反射,凸显菌落色泽和纹理,消除玻璃培养皿折射形成的光斑、光环。2) 色温变化范围:3100K-5800K 照度范围 50-—7000 Lux 3) LED寿命≧20000 小时? 悬浮暗视野照明白色LED光源,照度范围 100—5500 Lux 显色指数74%? 彩色(12色)凌透背光照明1) 可调式LED导光列阵,形成均匀、高亮的12种色彩透射光2) 照度均匀度大于90%,确保培养皿边缘与中间得到均匀照明? 多谱莱茵伯格照明1) 12通道可见激发光、环幕逆透射,与凌透背光可构成156种组合照明模式2) 多光谱模式可降低培养基不平整、色变的影响,减少琼脂杂质的干扰3) 无损光着色技术与抗干扰精密统计技术结合,增强菌落之间细微颜色差异辨别,显著提高菌落识别、筛选的精度? 紫外反射光源:254nm用于腔体消毒、紫外诱变 ;366nm 可用于荧光激发? 光源控制器1) 隐形弹吸式控制面板,6路照明选择开关、4通道无级亮度调节、双通道色温调节2) 照明组合 自由切换 二、 数字成像? 1.1英寸大靶面高清工业定焦镜头,镜头中央与边缘都保持150 lp/mm的分辨率? 超大面阵CMOS相机: SONY 4/3英寸彩色CMOS 传感器, 分辨率:2100万像素 单像素尺寸:4.54X4.54um三、 菌落分析模块1. 基本菌落计数功能? 平皿类型:倾注、涂布、膜滤、螺旋平皿、3M纸片 ? 全皿菌落统计:菌落总数统计,并按25档尺寸分类显示? 区域选择统计:可选择圆形、矩形、任意圈定区域进行统计? 多域平行统计:一次性多区域同步统计;多区域“镂空”统计? 直径分类统计:设置直径范围,统计特定大小的菌落? 鼠标点击统计:快速标记、添加菌落,适合培养皿边缘菌落的计数? 菌落粘连分割:自动分割相互粘连的菌落,链状菌落由用户选择分割或不分割2. 快速菌落统计? 滚轮参数调节统计(4种):均质平皿、背景不均、微小菌落、彩色背景? 一键响应统计(3种):单色统计、霉菌统计、反式统计3. 高级菌落统计? 动态调节统计:可对统计结果进行动态调节修正,快速获取最佳统计效果。? 偏差预估统计:适用于菌落颜色多且复杂的情况。? 水平集多模型算法:搜索运算,获取最佳图像分割效果,适应培养基背景变换? 特定菌落统计:根据菌落色泽、大小、轮廓特征,识别特定菌落? 反式统计:适合菌落类型极其复杂而培养基背景均匀? 高粘连菌统计:适合多重粘连菌的分割计算? 杂菌、杂质剔除:根据形态、尺寸、颜色的区别,进行自动杂菌、杂质剔除? 螺旋菌落统计:根据FDA标准自动计数螺旋平板,支持指数模式、缓慢指数模式、均一模式、比例模式、草坪模式等。兼容美国SBI、西班牙IUL螺旋接种仪。 4. 网格滤膜与3M测试片? 黑色实线网格一键统计? 3M细菌总数测试片、3M金黄色葡萄球菌测试片:一键统计? 3M大肠菌群测试片、3M大肠杆菌/大肠菌群快速测试片:一键统计+人工选择5. 典型菌筛选? 单色分类统计:根据颜色精度、扩散度和菌落大小、轮廓特征,筛选特定菌落? 多色自动聚类:根据颜色聚类精度,自动区分24种不同颜色的菌落? 指定多色筛选:一次筛选1-8种指定颜色菌落? 透明圈特性分析:适用于抑菌圈、水解圈、变色圈、溶钙圈、溶血圈、排油圈、溶磷圈分析? 双色圈自动筛选6. 菌落特征描述? 细菌、酵母:颜色、大小、形状、表面形态、边缘、光泽、透明度等特征,智能描述和排序? 霉菌、放线菌:正面颜色、反面颜色、大小、表面形态、边缘、质地等特征,智能描述和排序7. 微生物限度分析工具? 培养基适用性检查? 控制菌检查-菌落形态8. 专项分析? 防霉检测:定量分析防霉等级? 多区域串联统计:适合培养基背景不均匀的复杂菌落? 多区域并联统计:适合多孔板、OPKA、SBA分析9. 高级工具? 网格清除:消除滤膜网格背景干扰? 人工计数修正:添加或删除菌落? 排除污染区域:鼠标勾勒任意污染区域,自动剔除污染区域的菌落数? 背景文字清除:自动消除记号笔干扰? 人工粘连分割:手动分割多重粘连菌落? 参数自动换算:培养皿直径、样本稀释度输入,实现自动换算? 文字、图形标注:各类绘图工具和中英文文字嵌入10. 标定与测量? 仪器标定:仪器自带标定、人工修正标定? 一键式快速测量:一键测定大菌落,适合真菌、放线菌的单菌落分析? 全皿自动测量:全皿菌落的等效直径、面积、长短径、周长、圆度分析? 多向标尺测量、手动精确测量:长度、角度、弧度、面积、弧线、任意曲线11. 图像处理? 图像调节:灰度图、负相图转换;亮度、对比度、饱和度调节;RGB调节? 图像增强:锐化、自适应增强? 图像滤波:中值滤波、高通滤波、高斯滤波、低通滤波、队列滤波、高通高斯? 边缘检测:Sobel算子、Robert算子、Laplace算子、垂直检测、水平检测? 形态学运算:腐蚀、膨胀、开运算、闭运算四、 数据安全与管理1. “系统、数据、操作、复核”四重系统架构,分设职能与权限,确保数据信息的安全、完整和真实? 系统管理员(最高层):负责创建、管理所有操作员与审核员的账户和登入密码。确保操作员与操作员之间、操作员与审核员之间的账户隔离与数据隔离。? 数据管理员(副高层):负责全部测试数据的档案管理、以及计算机的数据库管理。封存所有审核通过的测试报告或将原始图片、测试数据备份、导出,保证了数据的完整性、安全性。? 操作员:负责培养皿菌落的测试、自检、修正、形成电子报告、递交审核、对审核通过后的文件进行报告打印。? 复核员:负责对操作员递交的测试报告进行审核。核查数据输入与处理过程,但无权修改;对存疑报告作“审核退回”处理,要求操作员重新测试;对“审核通过”的报告将永久性存档,无论审核员还是操作员都无权再删除,以确保数据的原始性和真实性。2. 数据存储与导出? 以电子数据为主,记录:样本来源、编号、稀释度、平皿图片、识别效果、计数值、所用统计工具、参数设置、修正情况,确保记录信息完整。? 满足质量审计,存储的电子数据能以PDF或Excell格式打印输出3. 水印签章技术、防篡改技术、测试流程智能重构技术,实现有效的审计追踪? 防篡改技术1) 采用多用户登入管理,所有操作员、审核员的名字,被系统自动记录在操作流程和测试报告中;所有操作日期、审核日期,由计算机自动生成,避免错填或伪造。2) 全部操作流程,包括:菌落图片、培养皿尺寸、样本稀释度、统计工具、所用参数、测试所得的菌落总数、自检修正后的菌落总数等,由计算机自动记录在数据库中,操作员无法进行改动,为后续审计提供全部真实数据。? 水印签章技术“审核通过”的测试报告会自动生成操作员和审核员的账户电子签名,并在报告上加印防伪的“审核通过”水印签章。? 测试流程的智能重构技术1) “复核员”打开“等待审核”的测试记录,计算机自动复原操作员的全部流程和测试环境,包括:当时所测的培养皿图片、测试结果、培养皿尺寸、样本稀释度、采用的统计工具及所用参数、测试所得的菌落总数、修正情况… … 2) 通过测试环境和测试流程的重现,复核员可以追溯操作员的全部操作,复核测试结果的准确性,达到审计追踪目的。五、 抑菌圈分析模块1. Szone 抑菌圈多模式测量技术? 自动检测:基于抑菌圈轮廓的精确边缘检测,适合边缘清晰、圆形抑菌圈? 拟圆逼近:基于抑菌圈轮廓的圆形拟合逼近,适合边缘破裂、非标准圆形抑菌圈 ? 人工检测:鼠标点击抑菌圈边缘上三点成圆,适合边缘模糊的抑菌圈2. 抗生素效价测定? 一剂量法效价检测:适合美国药典? 二剂量法、三剂量法及合并计算:适合中国药典2020版? 重复性自检:相对误差≤0.01%、重复测量精度 ≤0.002mm ? 均匀性自检:相对误差≤0.05%? 台间测量差异≤0.2%3. 舒巴坦敏感β-内酰胺酶检验? 纯水验证:根据(A)、(B)、(D)产生抑菌圈,D-C≧3, B-A≦3 ,判定系统成立? 自动检测三个平行样本的(A)、(B)、(C)、(D)抑菌圈,并数据导入? 自动计算平行试验平均值,智能判别结果的阴阳性。? 无效报告自动预警六、 仪器规格与配置? 多谱超分辨菌落成像系统主机1台? 菌落分析软件、自动抑菌圈测量软件、抗生素效价测定软件、舒巴坦敏感β-内酰胺酶检验软件? 高端一体电脑::双核四线程CPU/4G内存/1T硬盘/23"高清屏,Windows 10系统 杭州迅数科技有限公司 浙江省杭州市西湖区西湖科技园西园八路11号B座405室 邮编:310030 联系电话:0571-85125132、85020452、85124851 网址:www.shineso.com E-mail:shineso@shineso.com创新点:?全球首创的平皿大视场多光谱莱因伯格照明系统?具有156种组合照明模式?2100万像素4/3英寸超大面阵CMOS传感器与1.1英寸大靶面高清定焦镜头搭配,画质惊人迅数HD5000 多谱超分辨菌落成像系统
  • 华中科技大学自主研发脑成像系统被指“抄袭”
    据“生活科学”网站报道,近日,华中科技大学骆清铭教授小组研发的脑成像系统遭到抄袭质疑。  质疑声来自美国A&M大学的脑网络实验室,该实验室主任Yoonsuck Choe称其实验室早在十年前就开始这套脑成像系统的研制工作,他怀疑骆清铭小组抄袭了其设计并研制设备,然后将成果发表在《科学》杂志上。  目前,Choe所在实验室准备就此事正式致信《科学》杂志,而《科学》杂志也表示将严肃对待此事,对整个事件过程重新确认。
  • 国产超分辨iSTORM新品!力显智能于清华发布新品活细胞超高分辨率显微成像系统!
    2023年8月6日至12日,由清华大学蛋白质研究技术中心、生物医学测试中心、中国细胞生物学学会细胞器生物学分会联合主办的第四届活细胞与超高分辨成像高级研讨会在清华大学成功举办。众多领域专家学者、行业头部翘楚齐聚一堂,和来自全国各地的100余位青年学者一起见证了这场学术盛宴。研讨会邀请了北京大学席鹏教授、陈良怡教授、孙育杰教授,中科院生物物理所李栋研究员,中国科技大学唐爱辉教授,西湖大学章永登研究员、清华大学陈春来副教授等十数位在活细胞、超分辨、单分子成像等领域的知名专家进行报告,还邀请了尼康、徕卡、蔡司等公司就超分辨成像、一体化活细胞成像等仪器进行了专业介绍和体验展示。在本次研讨会上,力显智能科技联合创始人兼COO张猛博士就《单分子定位超高分辨率显微镜iSTORM在生物医学领域的应用》进行了相关报告分享。会议期间,力显智能科技研发的新品活细胞超高分辨率显微成像系统iSTORM VIVO在清华大学正式发布,更是为这场精彩盛宴增添了一抹亮色。现场,清华大学高级工程师王文娟老师与力显智能科技联合创始人兼COO张猛博士共同为活细胞超高分辨率显微成像系统iSTORM VIVO揭幕。揭幕仪式力显智能科技联合创始人兼COO张猛博士表示:非常感谢一路支持力显的各位朋友和老师,是大家的支持和帮助,促成了这次活细胞超分辨新品在清华大学的圆满发布,这是广大用户对力显超分辨的再一次肯定,也是力显智能科技自研国产超分辨之路的又一个重要里程碑。活细胞超高分辨率显微成像系统iSTORM VIVO作为目前国内唯一的商业化单分子超分辨显微系统,iSTORM成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及大分子复合物结构解析、生物大分子生物动力学等的研究成为现实。在原先标准版iSTORM的基础上,经光机系统、染料、算法协同开发,iSTORM VIVO在活细胞超分辨成像领域获得极大技术提高,提升原始图像拍摄速度,搭配高密度快速荧光定位算法,可以在维生条件下进行快速活细胞超高成像,以高精密度的成像能力解析活细胞的各种生命生理过程,极大弥补了传统STORM技术在活细胞超分辨成像领域的短板,给生命科学、医学等领域带来重大突破。
  • 大规模设备更新:预算超2000万!广东医科大学采购超高分辨率小动物超声成像系统等设备
    项目概况:广东医科大学购置科研设备一批项目招标项目的潜在投标人应在广东省政府采购网https://gdgpo.czt.gd.gov.cn/获取招标文件,并于 2024年04月08日 09时30分 (北京时间)前递交投标文件。一、项目基本情况项目编号:440001-2024-07058项目名称:广东医科大学购置科研设备一批项目采购方式:公开招标预算金额:22,950,000.00元采购需求:合同包1(超高分辨率小动物超声成像系统等设备):合同包预算金额:9,950,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表超高分辨率小动物超声成像系统1(台)详见采购文件5,500,000.00-1-2其他仪器仪表实验动物能量代谢检测系统1(台)详见采购文件3,000,000.00-1-3其他仪器仪表动物无创血压分析仪1(台)详见采购文件250,000.00-1-4其他仪器仪表清醒动物生理信号遥测系统1(台)详见采购文件1,200,000.00-本合同包不接受联合体投标合同履行期限:详见第二章采购需求。合同包2(透射电子显微镜等设备):合同包预算金额:5,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他仪器仪表小动物身体组分分析仪1(台)详见采购文件1,700,000.00-2-2其他仪器仪表透射电子显微镜1(台)详见采购文件3,800,000.00-本合同包不接受联合体投标合同履行期限:详见第二章采购需求。合同包3(酶联斑点图像自动分析仪等设备):合同包预算金额:2,200,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他仪器仪表微孔板化学发光检测仪1(台)详见采购文件450,000.00-3-2其他仪器仪表酶联斑点图像自动分析仪1(台)详见采购文件900,000.00-3-3其他仪器仪表蛋白液相分析系统1(台)详见采购文件850,000.00-本合同包不接受联合体投标合同履行期限:详见第二章采购需求。合同包4(分选型流式细胞仪等设备):合同包预算金额:5,300,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1其他仪器仪表分析型流式细胞仪1(台)详见采购文件1,500,000.00-4-2其他仪器仪表分选型流式细胞仪1(台)详见采购文件3,800,000.00-本合同包不接受联合体投标合同履行期限:详见第二章采购需求。二、申请人的资格要求:1.投标供应商应具备《中华人民共和国政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。2)有依法缴纳税收和社会保障资金的良好记录:投标文件中提供《资格条件承诺函》。3)具有良好的商业信誉和健全的财务会计制度:投标文件中提供《资格条件承诺函》。4)履行合同所必需的设备和专业技术能力:投标文件中提供《资格条件承诺函》。5)参加采购活动前3年内,在经营活动中没有重大违法记录:投标文件中提供《资格条件承诺函》。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求:合同包1(超高分辨率小动物超声成像系统等设备)落实政府采购政策需满足的资格要求如下:①本项目不属于专门面向中小企业采购的项目,本项目中小企业划分标准所属行业为:工业。②《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)、《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)、《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)、《节能产品政府采购实施意见》的通知(财库〔2004〕185号)、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)、《关于印发商品包装政府采购需求标准(试行)、快递包装政府采购需求标准(试行)的通知》(财办库〔2020〕123号)。合同包2(透射电子显微镜等设备)落实政府采购政策需满足的资格要求如下:①本项目不属于专门面向中小企业采购的项目,本项目中小企业划分标准所属行业为:工业。②《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)、《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)、《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)、《节能产品政府采购实施意见》的通知(财库〔2004〕185号)、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)、《关于印发商品包装政府采购需求标准(试行)、快递包装政府采购需求标准(试行)的通知》(财办库〔2020〕123号)。合同包3(酶联斑点图像自动分析仪等设备)落实政府采购政策需满足的资格要求如下:①本项目不属于专门面向中小企业采购的项目,本项目中小企业划分标准所属行业为:工业。②《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)、《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)、《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)、《节能产品政府采购实施意见》的通知(财库〔2004〕185号)、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)、《关于印发商品包装政府采购需求标准(试行)、快递包装政府采购需求标准(试行)的通知》(财办库〔2020〕123号)。合同包4(分选型流式细胞仪等设备)落实政府采购政策需满足的资格要求如下:①本项目不属于专门面向中小企业采购的项目,本项目中小企业划分标准所属行业为:工业。②《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)、《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)、《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)、《节能产品政府采购实施意见》的通知(财库〔2004〕185号)、《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)、《关于印发商品包装政府采购需求标准(试行)、快递包装政府采购需求标准(试行)的通知》(财办库〔2020〕123号)。3.本项目的特定资格要求:合同包1(超高分辨率小动物超声成像系统等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(https://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。合同包2(透射电子显微镜等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(https://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。合同包3(酶联斑点图像自动分析仪等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(https://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。合同包4(分选型流式细胞仪等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(https://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。三、获取招标文件时间: 2024年03月18日 至 2024年03月25日 ,每天上午 08:30:00 至 12:00:00 ,下午 14:00:00 至 17:30:00 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价:免费获取四、提交投标文件截止时间、开标时间和地点2024年04月08日 09时30分00秒 (北京时间)递交文件地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/开标地点:广东省东莞市莞城街道创业社区莞太大道120号金马大厦八楼806-809室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.本项目采用远程电子开标。供应商的法定代表人或其授权代表应当按照本招标文件载明的时间和模式等要求参加开标。供应商应当登录云平台进行在线签到及解密,不需要委派代表前往开标现场及现场提交纸质或电子光盘投标(响应)文件。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东医科大学地 址:广东省东莞市松山湖科技产业园区新城大道1号联系方式:0769-228961332.采购代理机构信息名 称:广东中元招标代理有限公司地 址:广东省东莞市莞城街道创业社区莞太大道120号金马大厦八楼806-809室联系方式:0769-236637613.项目联系方式项目联系人:杨自立电 话:0769-23663761广东中元招标代理有限公司2024年03月18日广东医科大学购置科研设备一批项目招标文件(2024031802).zip
  • 400万!福建医科大学孟超肝胆医院计划采购多色免疫荧光成像系统
    一、项目基本情况项目编号:[350101]FJKT[GK]2023003项目名称:金山院区多色免疫荧光成像系统采购方式:公开招标预算金额:4,000,000.00元采购包1(金山院区多色免疫荧光成像系统):采购包预算金额:4,000,000.00元采购包最高限价: 4,000,000.00元投标保证金: 40,000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100404-光学式分析仪器光学式分析仪1(项)是光学式分析仪4,000,000.00本采购包不接受联合体投标合同履行期限:自合同签订之日起90日二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:采购包1:无3.本项目的特定资格要求:采购包1:(1)根据《福州市财政局关于进一步推进政府采购领域优化营商环境工作的通知?》(榕财采[2021]52号)规定,投标人在投标(响应)时,按照规定提供相关承诺函(详见附件“资格承诺函”)的,无需再提交财务状况、缴纳税收和社保资金缴纳等证明材料。【注意事项:采购人有权在签订合同前要求中标人提供相关证明材料以核实中标人承诺事项的真实性。投标人应当遵循诚实守信的原则,不得作出虚假承诺,承诺不实的,属于提供虚假材料谋取中标、成交,依法追究相关的法律责任。】?投标人可自行选择是否提供本承诺函,若不提供本承诺函的,应按招标文件要求提供响应的证明材料。供应商可删减承诺事项(例:如删去承诺第1项的,则应按招标文件要求提供财务状况报告。)招标文件其他地方要求与本条款要求不一致的,以本条款要求为准。;(2)招标文件规定的其他资格证明文件?所投货物若属于医疗器械管理范畴,按照国家《医疗器械监督管理条例》,应符合以下标准,1、投标人为制造商的,须提供《医疗器械生产许可证》;投标人为经销商的,投标货物若属于三类医疗器械,须提供《医疗器械经营许可证》,投标货物若属于二类医疗器械,也可提供《第二类医疗器械经营备案凭证》,投标货物若属于一类医疗器械,则须提供《第一类医疗器械备案凭证》或医疗器械经营许可证;2、投标货物属于《医疗器械监督管理条例》规定的第一类医疗器械产品应提供《第一类医疗器械备案凭证》,属于第二类、第三类医疗器械产品应取得《医疗器械注册证》(如有注册登记表应提供)。所有证件必须在有效期内。;(3)投标人针对“财务状况报告(财务报告、或资信证明)”①投标人?提供的财务报告复印件(成立年限按照投标截止时间推算)应符合?下列规定:?a.成立年限满1年及以上的投标人,提供经审计的2021?年或2022年的年度财务报告。本招标文件中若有与此处不一致的,?以此处补充说明为准。。三、采购项目需要落实的政府采购政策进口产品:进口产品,适用于本项目。本项目“品目号1-1光学式分析仪”属于清单内允许采购进口产品的情形,同时满足需求的国内产品亦可参加投标(进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品)。节能产品:节能产品按本招标文件规定执行。环境标志产品:环境标志产品按本招标文件规定执行。信息安全产品:信息安全产品按本招标文件规定执行。信用记录:(1)(根据财库〔2016〕125号文件规定,供应商不得被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单,投标人针对“信用记录查询结果”可自主提供证明材料,未提供该证明材料的不视为投标文件无效。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随招标文件一并存档),视为查询结果未存在投标人应被拒绝参与政府采购活动相关的信息。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。(3)若此项规定与招标文件其他部分有矛盾的,以此项规定为准。四、获取招标文件时间: 2023-03-02 至 2023-03-09 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费五、提交投标文件截止时间、开标时间和地点2023-03-23 09:15:00(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:福建省福州市鼓楼区温泉公园路69号福州市行政服务中心三楼-六、公告期限自本公告发布之日起5个工作日。七、其他补充事宜无。八、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:福建医科大学孟超肝胆医院地址:福建省福州市鼓楼区西洪路312号联系方式:0591881162002.采购代理机构信息(如有)名称:福建康泰招标有限公司地址:福建省福州市鼓楼区湖东路169号中闽天骜大厦第十三层02A单元联系方式:0591-878035053.项目联系方式项目联系人:陈东英、原梁杰电话:0591-87803505网址: zfcg.czt.fujian.gov.cn开户名:福建康泰招标有限公司福建康泰招标有限公司2023年03月02日
  • 680万!山东大学超高频高分辨率多模态小动物光声-超声一体成像系统采购项目
    项目编号:SDJDHF20220549-Z316项目名称:山东大学超高频高分辨率多模态小动物光声-超声一体成像系统采购项目预算金额:680.0000000 万元(人民币)最高限价(如有):680.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高频高分辨率多模态小动物光声-超声一体成像系统 1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学超高频高分辨率多模态小动物光声.pdf
  • 250万!赣南医学院场发射扫描电子显微镜等超分辨显微成像系统等采购项目
    项目编号:HHZX22-186项目名称:赣南医学院场发射扫描电子显微镜等超分辨显微成像系统等采购项目(3包)采购方式:竞争性磋商预算金额:2500000.00 元最高限价:无采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2022F000799552赣南医学院场发射扫描电子显微镜等超分辨显微成像系统等采购项目(3包)1台2500000.00元详见公告附件合同履行期限:合同签订后120日内交付使用;本项目不接受联合体投标。
  • 超分辨光学显微成像研究取得进展
    p  近日,中国科学院深圳先进技术研究院研究员郑炜与美国国立卫生研究院教授Hari Shroff合作,成功研发出新型双光子激发的超分辨光学显微成像系统,该系统同时具备超分辨光学显微成像功能和大深度三维成像能力,使光学超分辨成像深度推进至破纪录的250微米,相应研究成果Adaptive optics improves multiphoton super-resolution imaging(《自适应光学提升超分辨显微成像》)最近发表在《自然-方法》(Nature Methods)上,郑炜是该文的第一作者兼通讯作者。br//pp  “看得细”和“看得深”是光学显微成像领域面临的两大挑战,经过科研人员几十年来的不懈努力,无论是在“看得细”还是“看得深”方面,都涌现了一批创新技术,取得了巨大成功,但是同时具备“看得细”和“看得深”这两项功能的光学显微成像技术却并不多见。/pp  在该项研究中,郑炜等人把具备深层生物组织成像能力的双光子显微成像技术(Two-Photon Microscopy, TPM)和具备超分辨成像功能的瞬时结构光照明显微成像技术(InstantStructuredIllumination Microscopy, ISIM) 有机结合起来,实现双光子激发的超分辨显微成像功能。同时,研究人员又利用自适应光学(Adaptive Optics, AO)技术成功克服了由生物组织引起的波前相位畸变问题,最终实现176纳米的横向分辨率、729纳米的纵向分辨率及250微米的探测深度的成像效果。利用该技术,可以对细胞、线虫胚胎及幼虫、果蝇脑片和斑马鱼胚胎开展高清晰三维成像研究,成像效果显著优于传统双光子成像质量。值得一提的是,由于该技术提高了光子利用效率,从而降低了所需激光功率,可以对线虫胚胎的发育过程开展长时间、高清晰的三维动态观测。在长达1个小时的连续三维成像过程中未对线虫胚胎发育造成任何影响,该技术对胚胎发育研究具有重要作用。/pp  该研究得到了国家自然科学基金、国家重点基础研究发展(“973”)计划和深圳市海外高层次人才创新创业孔雀计划的项目支持。(来源:中国科学院深圳先进技术研究院)/pp  a href="http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4337.html" target="_self" title=""论文链接/a/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201708/noimg/86d620c1-204c-489e-b896-ab006f4ab6e2.jpg" title="1.jpg" width="462" height="282" style="width: 462px height: 282px "//pp  左图为果蝇脑片在传统双光子成像(2P WF)、双光子超分辨成像(2P ISIM)和结合有自适应光学的双光子超分辨(2P ISIM AO)显微成像结果对比,右上图为位于胶原凝胶150微米深处细胞三维成像对比,可见无论是横向还是纵向,新技术的分辨率都有显著提升。右下图为线虫胚胎发育过程中连续1小时的三维观测,细胞正常分裂进程证明了该技术可用于胚胎发育动态研究。/ppbr//p
  • 国家重大科研仪器研制项目“光电融合超分辨生物显微成像系统”现场验收会在北京召开
    p style="text-align: center"img style="width: 500px height: 333px " src="http://img1.17img.cn/17img/images/201607/insimg/a958b6ad-b8e4-428c-ac59-22f50c57a8e8.jpg" title="" height="333" hspace="0" border="0" vspace="0" width="500"//pp 2016年6月21日,国家重大科研仪器研制项目(部门推荐)“光电融合超分辨生物显微成像系统”现场验收会在北京召开。国家自然科学基金委员会(以下简称基金委)副主任沈岩院士出席会议并讲话。基金委计划局局长王长锐、生命科学部常务副主任杜生明研究员、生命科学部副主任冯雪莲研究员、财务局副局长郝观玮及计划局、财务局和生命科学部相关工作人员参加会议。现场验收会议由杜生明研究员主持并担任项目管理工作组长。/pp  根据《国家重大科研仪器设备研制专项实施管理工作细则》和《国家重大科研仪器研制项目验收工作方案(试行)》要求,本次现场验收考核专家组由重大科研仪器专项专家委员会委员、科学部专家咨询委员会委员、管理工作组专家、科技财务评审专家及相关专业同行专家等共13位专家组成,分为仪器测试专家小组、技术文件档案专家小组和财务验收专家组,分别由北京大学程和平院士和中国科学院力学研究所龙勉研究员担任组长。/pp  会上,验收专家组分别听取了项目负责人中国科学院生物物理研究所徐涛研究员的项目工作报告和项目监理组长中国科学院动物学研究所孟令霞研究员的项目监理报告,对仪器技术指标进行了现场实地考察和仪器测试,对项目技术文件档案及归档情况、相关账务报告等进行了审核。经认真讨论,专家组认为,该项目研制原理正确,方案设计合理,通过自主研制核心功能模块,结合购置关键标准化部件,完成了设备级系统的研制,建议继续积极探索该项目研制的科研仪器的开放运行机制,尽快推动仪器使用以发挥其最大效益。/p
  • 开发“用得起”的超声成像技术
    英国纽卡斯尔大学的Jeff Neasham(左)和Dave Graham研制的超声设备造价仅为30至40英镑。 图片来源:纽卡斯尔大学  英国工程师最近开发出了一种物美价廉的超声波成像技术,这一技术将在全球范围内更广泛地应用于产前诊断以及其他领域。  这种低成本胎儿扫描仪由位于英格兰东北部纽卡斯尔大学的工程师研制。该仪器可以与任何计算机相连以显示胎儿的影像。  这是一款手持USB设备,大小近似于电脑鼠标,其工作环境与目前使用的超声扫描仪相当。工作原理是使用高频脉冲在计算机屏幕上构建胎儿图像。  不过,与大多数医院使用的造价在2万至10万英镑之间的超声技术不同的是,这款由Jeff Neasham和助理研究员Dave Graham研制的超声设备造价仅为30至40英镑。  因此,这款设备可以为那些在世界最贫困的国家工作的医疗队提供最基本的产前诊断信息,而有了这些信息就可以挽救数十万妇女和儿童的生命。  这款扫描仪通过了英国国家医疗保障体系医用物理学专家的全面测试。  虽然这款设备的输出功率仅为目前医院传统超声系统的1/10~1/100,但借助专业软件,它可以生成简单的有效图像。尽管这些图像可能达不到那些造价高昂的设备扫描所得到的清晰效果,但它可以为医务人员带来巨大的便利。  纽卡斯尔大学电气与电子工程学院声纳专家Neasham说:“在英国,对于这种有可能挽救生命的常规检查,我们已习以为常。但对全球许多其他地区的妇女来说,她们甚至都不能通过影像获知胎儿在子宫中的位置或发育情况等最基本的信息。”  “我们希望凭借超低的成本以及能在近十年来生产的任何计算机上运行,这款设备最终能使所有妇女都获得基本的产前超声诊断。”他补充说。  Neasham的初衷是制造出能负担得起的方便易用型设备,使其能够应用于发展中国家,以及英国本土的一些仍认为超声波成本过高的地区。  他说:“成本是关键。我们的目标是生产出价格相当于大多数社区助产士使用的手持多普勒设备(胎儿心脏监护仪)的产品。在价格为2万英镑的扫描仪被普遍视为低价时,完成这一目标实属不易。”  Neasham是一位水下声纳技术专家,他研制出了水下声纳成像系统和水下通讯与跟踪系统。他利用其在声纳信号处理方面的经验,在设计中将零部件和硬件成本压缩至极低的水平。工作原理是使用传感器手动在皮肤上进行扫描,与此同时计算机软件生成对焦图像。  “正是我为人父的经验促使我开始这一项目。在我和妻子通过屏幕看到孩子时,我们意识到我们可以通过这种方式看到孩子是多么地幸福,于是我妻子建议可以利用我从事声纳研究的经验使这一应用更加经济实惠。”这位两个孩子的父亲解释说。  这款扫描仪由英国工程与自然科学研究理事会提供资助。扫描仪只需通过USB端口与计算机相连。  Neasham说在很多情况下这款设备可以作为医院现役高性能扫描设备的补充,但不能作为替代产品。  他说:“显然,这款扫描仪很可能应用于产科之外像胆结石或其他通过超声成像易于诊断的病症。我们已经获得了广泛关注并正在与很多商业伙伴就如何继续推进这项研发成果进行磋商。”  据联合国统计显示,每年有超过25万妇女死于怀孕及分娩并发症,其中99%的死亡发生在发展中国家。研究人员指出,其中大部分的死亡是可以避免的,而缺少医疗设备是最重要的死因之一。
  • 【综述】超声红外热成像技术国内研究现状与进展
    超声红外热成像技术具有选择性加热、可检测复杂工件裂纹缺陷的优点,是一种具有很大研究价值的无损检测方法。近期,南京诺威尔光电系统有限公司和上海复合材料科技有限公司的科研团队在《红外技术》期刊上发表了以“超声红外热成像技术国内研究现状与进展”为主题的文章。该文章第一作者和通讯作者为江海军,主要从事红外无损检测技术及图像处理方面的研究工作。本文介绍了超声红外热成像技术原理与系统组成,并对国内的发展历程、发展现状进行了回顾和总结。重点针对仿真研究、复合材料损伤、疲劳裂纹、金属构件裂纹、混凝土零件裂纹应用领域的研究现状进行了详细论述,最后展望了超声红外热成像技术的未来发展趋势。超声激励系统装置超声红外热成像系统一般包括超声激励源、红外图像采集系统、红外图像处理系统;超声激励源包括超声电源、超声换能器、超声枪,红外采集系统主要使用红外热像仪采集红外图像,超声红外热成像系统原理如图1所示。红外图像采集和超声激励之间需要同步,当超声枪头能量注入到试件表面时,红外热像仪开始采集图像,采集红外图像包括缺陷升温过程和降温过程。图1 超声红外热成像技术原理超声红外热成像检测技术最早由美国弗吉尼亚大学于1979年开始研究,2000年,美国韦恩州立大学的Lawrence Dale Favro等人首先使用超声波焊接发生器作为超声激发源进行金属疲劳裂纹检测。2003年,南京大学张淑仪等采用超声红外热成像技术对铝合金板疲劳裂纹进行了检测研究。近年来,国内有很多团队对超声红外热成像技术进行研究,研究重点包括理论仿真、金属裂纹检测、疲劳裂纹检测、航空发动机叶片裂纹检测、复合材料冲击损伤。北京航空航天大学研究人员主要研究复合材料脱粘/冲击缺陷;哈尔滨工业大学研究人员主要研究金属表面裂纹以及超声锁相红外热成像技术;陆军装甲兵学院研究人员主要研究仿真、超声激励参数(预紧力,夹具,激励方式,激励位置)对检测结果的影响,并将该技术引入到装甲设备缺陷检测;湖南大学研究人员主要对复合材料平底孔缺陷以及冲击损伤缺陷进行研究;火箭军工程大学主要研究合金钢裂纹缺陷、复杂型面裂纹缺陷、复合材料冲击损伤;福州大学研究人员主要研究超声激励参数(不同方向、频率、幅值)对金属焊缝裂纹缺陷的影响;西南交通大学研究人员主要研究超声激励对混凝土板裂纹的检测;南京水利科学研究院研究人员主要研究激发频率、功率、预紧力、声波吸收能力对混凝土裂纹检测的影响;中国南方航空工业有限公司和南京诺威尔光电系统有限公司研究人员主要研究航空发动机喷涂前和喷涂后叶片裂纹检测;武汉理工大学研究人员主要研究复合材料的螺栓连接件裂纹缺陷和分层缺陷的检测。超声红外热成像系统的核心是预紧力单元和夹具单元,预紧力单元一般靠机械弹簧或者气动系统产生预紧力;夹具单元需要根据检测试件的结构进行优化设计,夹具单元采用医用胶带或者刚性耦合方式把超声耦合进试件中,从而会使得各研究机构的系统装置有所差异,图2展示了部分研究机构的超声红外热成像系统装置。图2 超声红外热成像系统装置主要应用领域仿真研究金国锋对不同曲率复合材料裂纹缺陷进行仿真,仿真结果表明构件曲率越大,温升阶段斜率越大,缺陷信号越容易被激化。田干等用数值仿真方式研究了多模式超声激励形态,仿真结果表明多模式激励方法对于消除驻波非常有效,同时产生更为丰富的次谐波和高次谐波,可有效提高超声激励红外热成像技术的检测能力。徐欢等采用ANSYS和ABAOUS仿真软件对裂纹进行三维仿真,结合模态和谐响应分析手段,可以获取裂纹试件固有频率,对超声激励频率和裂纹生热提供了相关理论依据。郭怡等对宽度为10 μm钛合金裂纹进行了检测,并采用ANSYS模拟数值分析,与试验数据基本一致。蒋雅君采用ANSYS对混凝土板裂纹进行仿真,为混凝土裂纹检测提供了理论依据。复合材料损伤复合材料具有高比强度、高比刚度、耐腐蚀、耐老化、耐热性的优点,广泛应用在航空航天、新能源、建筑、汽车、体育等领域。复合材料在低速冲击下,承载能力弱、抗冲击性能差,容易出现基体开裂、分层、断裂等。J. Rantala、G. Busse等最早采用超声红外热成像技术检测复合材料内部缺陷。田干等采用超声红外热成像技术对航空复合材料进行数值仿真研究,建立含裂纹缺陷复合材料的有限元模型。金国锋、张炜等通过数值计算和试验研究了超声红外热成像技术对复合材料冲击损伤检测的适用性;吴昊等对复合材料螺栓连接件损伤检测,分析了螺栓预紧力对螺栓孔损伤生热特性的影响。李胤等研究了复合材料在不同冲击能量(24 J和29 J)的冲击损伤情况,检测结果与C扫进行对比,实验结果表明超声红外热成像技术具有检测速度快、检测精度高、结果直观的优点。杨正伟等研究复合材料在不同冲击能量(15 J和30 J)冲击下,复合材料分层损伤情况,检测结果与超声C扫进行对比,试验结果表明超声C扫损伤检测误差在30%,超声红外热成像损伤检测误差在5%。图3为作者采用超声红外热成像系统在不同低速冲击能量(10~50 J)下,复合材料冲击损伤检测图像,从图中可以看出冲击能量越大,损伤区域面积越大,且对于编织型复合材料,损伤裂纹具有延展性。图3 不同冲击能量试件检测图像疲劳裂纹闵庆旭等验证了超声红外热成像技术可用于金属疲劳裂纹的检测;高治峰等对航空航天7075铝合金疲劳裂纹进行检测,模拟和试验研究了激励参数和生热关系,并研究了检测参数对检测效果的影响;激励源距离裂纹15 mm时,检测效果最佳,侧面激励和正面激励都可以检测出7075铝合金疲劳裂纹,但侧面激励效果好于正面激励。郭伟等对喷涂层下基体疲劳裂纹进行检测研究,涂层厚度为300~400 μm,该方式可用于拉-拉疲劳载荷的二次拉伸制备的疲劳裂纹。韩梦等模拟裂纹开口宽度(5~30 μm)对激励后最高温度影响,开口宽度增加导致裂纹面接触降低和摩擦作用的减弱,导致开口宽度越大,最高温度反而越低,最后通过试验进行验证,如图4所示制作的宽度为20 μm疲劳裂纹以及检测结果。图4 金属疲劳裂纹检测金属构件裂纹金属构件,特别是异形结构的金属构件,其内部或者表面裂纹缺陷采用光激励红外热成像技术检测都难以实现检测。Guo等检测重型铝制飞机结构裂纹,发现该技术对闭合裂纹的探测效果良好。李赞等对金属构件裂纹发热情况开展研究,研究表明当激励于最佳位置时,裂纹发热最高。江涛等对汽车轮毂裂纹进行了检测,同时采用磁粉检测技术进行对比研究,对比研究发现超声红外热成像技术可以更好检测出轮毂内部裂纹以及看出裂纹延伸方向。敬甫盛等对35 kg重量的铁路机车钩舌进行裂纹检测,检测出中部L型裂纹和角端裂纹。冯辅周等对装甲车底板裂纹展开研究,表明该技术能够在3.5 s内实现对装甲车底板裂纹快速检测。作者采用超声红外热成像系统对8 kg锻钢块进行裂纹检测,裂纹位于试件端面,如图5所示,图5(a)为试件整体外观,图5(b)为试件端面图像,可以看出有一条无分叉的裂纹;检测结果如图6所示,展示了激励前后检测到图像的变化,对比激励前后图像可知,有一条裂纹信息,并且裂纹分叉了,存在一条隐裂纹,图6(c)中圈出部分,表明该技术可以探测到人眼看不见的裂纹信息。图5 锻钢块试件图6 锻钢块试件检测结果航空发动机叶片裂纹航空发动机叶片在交变拉应力、热腐蚀、扭转应力、高速冲击等复杂载荷的作用下,叶片容易生成裂纹。服役过程中,叶片裂纹在大应力作用下,小裂纹会扩展为大裂纹从而危害飞行安全。航空发动机叶片复杂,传统无损检测在复杂叶片时有各自的局限。借助超声红外热成像对试件形状不敏感的特点,国内外学者广泛开展了研究工作。Bolu等采用超声红外热成像技术对60个涡轮叶片进行检测,评估该技术对叶片裂纹检测的可靠性。寇光杰等采用ANSYS仿真模拟了合金钢叶片裂纹生热过程,采用激光切割预制裂纹进行检测,并分析了预紧力对检测效果的影响。苏清风对导向叶片和工作叶片服役过程中产生的裂纹进行检测,并测试预紧力对检测结果的影响。习小文等对航空发动机工作叶片进行研究,同时采用渗透检测进行比对,试验结果表明超声激励红外热成像可以检测出裂纹宽度为0.5 μm的裂纹信息,渗透检测无法检出,表明该技术对微小裂纹检测有优势。袁雅妮等针对2块无涂覆层和3块带涂覆层空腔叶片进行检测,并用荧光检测进行对比,结果发现荧光检测对于涂覆层空腔叶片容易出现漏检,表明超声红外热成像技术对受到叶片结构及涂覆层影响更小,能够检测含涂覆层空腔叶片裂纹。图 7为作者采用超声红外热成像系统对航空发动机工作叶片进行检测,同时采用渗透检测进行对比,图7(a)为工作叶片光学图像,图7(c)为超声红外热成像检测结果,可以看到叶片中部有一个裂纹,图7(b)为渗透检测结果,除了叶片中部裂纹,在叶片四周由于清洗渗透剂不干净,导致叶片边缘也会出现零星亮点区域。图7 工作叶片裂纹检测混凝土零件裂纹混凝土结构常见的缺陷是混凝土裂纹,裂纹严重削弱了混凝土结构的承载水平,加速了结构的老化程度,并严重影响了结构的安全性和耐久性。裂纹很难避免。一般来说,这项工作的主要目的是检测和处理裂纹。谢春霞等基于红外热像检测方法推导出了混凝土缺陷深度的定量计算公式;胡振华等以混凝土结构缺陷为检测目标,采用超声红外热成像检测技术对其进行了检测分析,证明了超声红外热成像缺陷检测技术对混凝土试件中肉眼不能发现的微小裂纹或隐裂纹的检测能力。Jia Yu等使用振动热成像技术检测混凝土零件中的裂缝,开发了声激励设备(声波和超声以及低功率和高功率激发设备),并研究了激发频率,功率和预紧力对声吸收能力的影响。Jia Yu等预制了充满标准微裂纹的预裂混凝土标本,以量化裂纹的可检测性,结果表明,超声激发热成像可以有效地检测出宽度为0.01~0.09 mm的混凝土裂缝。任荣采用ANSYS仿真研究V形裂缝混凝土板裂纹生热机理,并对激励位置、激励时间、激励频率等影响因素进行了模拟分析,图8所示为混凝土裂纹检测图像,圈出部分为裂纹区域。图8 混凝土裂纹检测发展趋势超声红外热成像技术在金属材料中可识别0.5 μm宽度的裂纹,在复合材料中可识别1.0 μm的裂纹,在混凝土材料中可识别10 μm量级的裂纹。超声红外热成像技术具有选择性加热的特点,仅对裂纹区域加热,正常区域不加热,可检测复杂结构试件,非常适合于金属裂纹、混凝土裂纹、航空航天叶片裂纹、复合材料损伤等材料的检测。超声激励方式与光激励方式不同,光激励方式系统比较统一;超声激励方式由于试件结构复杂,同时需要夹具固定试件并对激励头施加预紧力,例如金属疲劳裂纹夹具、航空发动机工作叶片夹具、航空发动机导向叶片夹具都不同,需要根据试件制作各自合适的夹具,系统比较复杂与多样,但如果针对同一类型的试件,可以制作统一的夹具、形成标准化的检测流程,因此超声红外热成像技术具有广阔发展前景,未来的研究重点包括以下3个方向:1)激励装置的优化。激励装置需要具备夹具单元和预紧力单元,夹具单元需要根据检测试件单独设计,预紧力单元有机械结构和气动结构。机械结构体积小、设计简单,但施加/释放预紧力需要手动旋转手柄;气动结构体积大、设计复杂,但可设计为自动施加预紧力和释放预紧力,从而可以实现集超声激励、自动装配、红外图像采集、红外图像处理一体化集成的超声红外热成像系统,以便适用于工业领域裂纹检测。2)检测标准化。超声激励与光激励具有很大不同,超声激励与检测人员经验有关,超声激励位置、超声激励时间、超声耦合效率都会影响检测结果。因此针对该技术形成统一检测规范和技术,可以加速该技术工程实践应用。3)缺陷检测自动化识别。超声红外热成像需要采集数百帧序列图像,从采集数百帧序列图像中识别出缺陷信息,相比于自动视觉检测,该方式需要人工判断、准确度依赖于检测人员主动判断,容易导致缺陷识别出现误检、漏检等情况。随着人工智能深度学习的兴起,深度学习模型具有图像特征信息感知能力,在大量数据训练的基础上,更容易实现缺陷的自动检测。结语与展望超声红外热成像技术经过几十年的发展,在生热特性、仿真研究、缺陷可检测性和检测材料应用领域取得了突出进展,但是在工业应用方面落后于光激励红外热成像技术;闪光灯红外热成像技术已形成国家标准,应用在飞机复合材料胶接质量、航天飞机耐热保护层脱粘检测、热障涂层缺陷检测等,并且有成熟的工业检测设备。目前超声红外热成像技术还基本处于实验室阶段,随着科学技术的发展,工业特别是航空航天对裂纹检测需求的提高,超声红外热成像技术也会从实验室逐步进入到工业、航天航天应用领域。论文链接:http://hwjs.nvir.c n /cn/article/id/6e1aff8c-e3f5-4c4d-aedd-d6074696f17a
  • 我国科学家实现单离子超分辨成像
    记者27日从中国科学技术大学获悉,该校郭光灿院士团队在冷原子超分辨成像研究中取得重要进展,该团队李传锋、黄运锋、崔金明等人在离子阱系统中实现单离子超分辨成像。该成果日前发表于《物理评论快报》。  冷原子系统包括离子阱中囚禁的离子和光场中囚禁的原子等,是研究量子物理的理想实验平台,也是量子模拟、量子计算和量子精密测量实验研究的重要物理系统。冷原子系统中的核心实验技术之一是高分辨单粒子成像。近十年来,冷原子系统的显微成像技术飞速发展,涌现出量子气体显微镜、光镊原子阵列、高分辨率囚禁离子成像等先进技术。然而,受限于光学衍射极限,这些技术分辨率只能达到光学波长量级,研究波函数细节相关的量子现象需要光学超分辨成像。此前,国际上对单原子(离子)直接的超分辨成像尚未取得进展。  中国科学技术大学团队借鉴经典成像领域的受激耗尽超分辨成像方法,结合冷原子系统的原子量子态初始化和读取技术,首次在离子阱中实现单个离子的超分辨成像。实验结果表明,该成像方法的空间分辨率可超越衍射极限一个量级以上,利用数值孔径仅为0.1的物镜即可实现175纳米的成像分辨率。为了进一步展示该方法的时间分辨率优势,团队同时实现了50纳秒的时间分辨率和10纳米的单离子定位精度,并清晰地拍摄了囚禁离子在离子阱中的快速简谐震荡,理论上通过相关操作可将空间分辨率提高至10纳米以下。  这一实验技术可扩展到冷原子系统的多体和关联测量。审稿人认为,该工作“填补了此前缺失的精密测量原子位置的重要工具,有潜力对高频运动的单个运动量子实现空间分辨”。
  • 西安光机所光学超分辨成像研究取得重要进展
    提要:超分辨光学成像技术是目前国际上光学领域的一个重要研究方向,在此领域的取得的研究成果使西安光机所在超分辨光学显微成像技术方面跻身于世界前列。该技术的成果转化将改变我国在超分辨光学显微镜市场没有自主知识产权高端科学仪器的局面。该技术通过与生物医学、材料化学等学科的交叉合作,将大大提高我国在该领域的研究水平。   众所周知,光学成像技术在人类探索和发现未知世界奥秘的活动中扮演着重要的角色。大到宇宙,小到分子,看得更远、更细、更清楚是人们不断追求的目标。但受限于光的衍射特性,传统光学系统的空间分辨率不可能无限小,存在着瑞利-阿贝物理极限。能否突破这个极限,继续提高光学系统的成像分辨率?成为当今光学领域公认的一个重大研究课题。  虽然电子显微镜、原子力显微镜等技术可以获得更高的分辨率,但由于各种原因和限制(如不能活体实时成像,样品制备复杂),光学显微镜仍然是当前生物医学、材料化学等学科研究中的主要观测设备。但普通光学显微镜的横向分辨率极限约为200nm,这对亚细胞结构和分子生物学研究还不够精细。为了突破衍射极限,近年来涌现出了不少光学超分辨方法,如光激活定位法(PLAM),随机光学重构法(STORM)、受激发射损耗法(STED)等。但受限于单分子定位算法或点扫描成像方式,这几种超分辨技术成像速度较慢,而且需要一些特殊染料标记样品。另外一种方式就是使用结构光照明的显微技术(SIM),它使用特殊调制的光场照明样品,通过空间频谱处理的方式获得超分辨图像。由于它属于宽场成像方式,因此成像速度很快。SIM技术目前只有美国、德国、英国、瑞士、日本等几个国家掌握,我国在这方面的研究相对滞后。  中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组长期从事光学微操纵技术和光学超分辨成像等生物光子技术的研究工作(其中光镊技术已产品化)。自2010年开始SIM成像技术以来,在科技部重大科学研究计划项目和国家自然科学基金项目支持下,开展了深入细致的理论和实验研究工作,掌握了其中的关键技术,并创新性地提出了与现有激光干涉照明SIM技术不同的方案(已申请国家发明专利),首次提出并实现了基于数字微镜器件(DMD)和LED照明的SIM技术。该技术与激光干涉照明SIM技术相比,具有更高的空间分辨率,更快的成像速度和更好的图像质量,而且大大降低了装置的复杂性和成本。经标定,系统的横向分辨率达到了90nm,这也是目前国际上同类技术的最好水平。  为了验证该技术和样机装置在生物医学上的实际应用效果,研究组与国内第四军医大学和德国康斯坦茨大学进行了联合实验研究,利用该系统成功获得了牛肺动脉内皮细胞(BPAE)线粒体和小鼠脑神经元细胞的超分辨图像,并且还实现了小鼠脑神经元细胞和植物花粉的三维光切片成像,其成像深度和成像速度比当前同类切片显微技术均提高了约十倍,这对深层生物样品的大面积快速三维成像提供了一种新的技术手段。该研究成果发表在1月23日出版的Nature子刊Scientific Reports上,论文题为DMD-based LED-illumination Super-resolution and optical sectioning microscopy。  超分辨光学成像技术是目前国际上光学领域的一个重要研究方向,本研究取得的成果使西安光机所在超分辨光学显微成像技术方面跻身于世界前列。该技术通过与生物医学、材料化学等学科的交叉合作,将大大提高我国在该领域的研究水平。同时该技术的成果转化将改变我国在超分辨光学显微镜市场没有自主知识产权高端科学仪器的局面。
  • 国产超分辨显微成像商业设备首次落地交付
    2022年5月7日,纳析科技为中国科学院深圳先进技术研究院等首批用户交付了Multi-SIM超分辨显微镜系统,为客户提供了性能优异的活细胞超分辨显微成像体验,获得了客户的广泛赞誉。纳析科技实现了国产超分辨显微成像设备的首次商业交付!纳析科技于今年3月完成天使轮融资后快速实现了超分辨产品商业化。纳析科技始终秉持求是与创新的理念,以深厚的源头技术创新积累,扎实推进生物显微成像新产品落地,完善核心部件国产化、丰富超分辨显微成像解决方案的产品管线、提供智能、定量的成像方案。纳析科技始终致力于为用户提供生物过程可视化全流程解决方案,包括细胞培养、样本标记、成像采集、图像重建、数据后处理分析、数据展示等步骤的全链式服务范式。用户评价中国科学技术大学/中国科学院深圳先进技术研究院 毕国强 教授表示:“我们非常高兴引入纳析科技研发的Multi-SIM系统,其优异的活细胞三维超分辨成像性能为我们研究神经突触等亚细胞结构的动态演变提供了有效的新技术手段,期待这一工具与冷冻电镜断层三维重构等方法的结合,将帮助我们更深入理解突触可塑性等脑认知功能的底层机制。”中国科学院深圳先进技术研究院 陶长路 副研究员表示:“Multi-SIM作为国产超分辨成像解决方案,其优异的成像效果,以及能够满足不同实验需求的多种成像模态,令人印象深刻;并且其易用性和稳定性,适于平台建设和运行。”
  • 设备更新选型指南丨超快荧光三维成像技术推荐
    市面绝大多数共聚焦显微镜采用点扫描式激光共聚焦技术,成像速度较慢,难以满足活细胞动态观测、大视野快速扫描等成像需求。长光辰英的S3000转盘共聚焦显微镜采用三条纹转盘共聚焦成像技术,配合电动Z轴快速扫描,将成像速度提高至少二十倍。同时采用LED面光源激发光线更均匀,光毒性、光漂白性大大降低,适合连续观测。作为超快荧光三维成像的革新者,长光辰英的成像产品为活细胞,细胞生物学、微生物学、发育生物学、神经生物学及植物学等领域研究提供快速三维荧光成像的有力工具。推荐产品 S3000超快三维荧光成像系统S3000 超快三维荧光成像系统 (qq.com) PRECI SCS-F荧光单细胞分选仪PRECI SCS 微生物单细胞分选仪 (qq.com) RAColony菌落原位多表型检测与挑取工作站RAcolony 菌落原位多表型检测与挑取工作站 (qq.com) SC-catcher单细胞光镊操纵与分选系统SC-catcher单细胞光镊操纵与分选系统 (qq.com)应用案例Daphnia活体内纳米塑料颗粒排出过程的动态成像Daphnia吃到肠道内的纳米塑料颗粒会产生红色荧光,用共聚焦模式进行拍摄随着Daphnia肠道蠕动,纳米塑料颗粒排出的全部过程。此动图由10min的实际时间缩时到12s。传统点扫描激光共聚焦显微镜很难对动态过程实现拍摄,S3000转盘共聚焦成像系统可以很好地捕捉活体样本的动态变化。斑马鱼活体全鱼3D荧光成像神经细胞转入GFP基因的3d日龄斑马鱼,在镜下进行长达2h的活体动态荧光扫描,整张图由8个视野,每个视野17层进行逐层扫描成像,可以在2分钟内进行斑马鱼活体全鱼的荧光扫描,实现了激光点扫描共聚焦无法达到的速度,更好的保持斑马鱼的活性,提供长时间拍摄的条件。肺组织切片的超大视野快速成像对小鼠肺叶组织切片进行共聚焦切片扫描,在其中橙色标明的气管ROI区域进行更大放大倍数的细节扫描。对常规荧光切片扫描仪难以捕捉及判断的信号进行高清成像。肠道微生物高分辨成像利用能够代谢标记肽聚糖的D型氨基酸荧光探针(FDAA)作为工具,通过使用红绿两种FDAA探针对小鼠进行序贯在体标记,随后,对肠道微生物进行取样,并使用S3000转盘共聚焦显微镜观察双色荧光在细菌上的分布,进而推测其增殖分裂模式。【文章链接:《mLife》丨基于共聚焦荧光成像的单细胞分选测序技术揭示肠道菌群中细菌的分裂模式及种属分类 (qq.com)】【拓展阅读:想知道共聚焦显微镜下的昆虫什么样子吗?(qq.com)】【拓展阅读:HOOKE S3000转盘共聚焦显微镜下的微观世界掠影 第二篇--植物系列 (qq.com)】【拓展阅读:共聚焦显微镜下掠影 第三篇《动物组织系列》 (qq.com)如果您对我们的产品和服务感兴趣,请随时联系我们
  • 开发深度学习超分辨显微成像方法 陌讯科技数字显微形态分析系统正式发布
    近日,陌讯科技正式宣布其自主研发的数字显微形态分析系统正式上线。陌讯数字显微形态分析系统是陌讯科技自主研发的科研形态分析系统。能够显示,编辑,分析,处理,保存,打印8位,16位,32位的图片。陌讯显微形态分析系统支持图像栈(stack)功能,即在一个窗口里以多线程的形式层叠多个图像, 并行处理。只要内存允许,陌讯显微形态分析系统能打开任意多的图像进行处理。除了基本的图像操作, 比如缩放,旋转, 扭曲, 平滑处理外,陌讯显微形态分析系统还能进行图片的区域和像素统计, 间距,角度计算, 能创建柱状图和剖面图,进行傅里叶变换。陌讯显微形态分析系统可计算选定区域内分析对象的一系列几何特征。分析指标包括:长度、角度、周长、面积、长轴、短轴、圆度、最佳椭圆拟合、最小外接矩形拟合以及质心坐标等。 陌讯显微形态分析系统首席工程师陈侃介绍说,我司通过“陌讯数字显微形态分析系统”项目研制的科研数字形态分析软件,目前已在多项科研实验中投入使用。陌讯显微形态分析系统在科研实验中支持神经元追踪、神经元分支统计、曲率计算与拟合、基于机器学习的自动细胞分割、图形的量化分析、3D细胞自动分割、线粒体网络形态分析、图像自动配准、细胞划痕实验分析、3D渲染动画生成、图像抖动自动校正、接触角测量、基于深度学习的细胞核自动分割、自动细胞计数、利用宏记录器自动化处理、自动统计气泡的面积直径、荧光共标细胞计数、荧光照片的合并分割、明场图片白平衡、荧光比率图的制作等一系列功能。 陌讯科技自主研发“陌讯数字显微形态分析系统”这一数字显微形态分析软件项目立项以来,项目科研团队历时5年攻关,全面突破在对显微镜图像进行定量分析时的一系列科研难题。支持荧光照片的平均荧光强度分析、径向平均荧光强度检测、荧光共定位分析、计算图片的孔隙率、分析脑片不同分层的灰度值、单个细胞平均荧光强度自动检测、3D体积与表面积测量、免疫组化分析、细胞膜荧光强度检测、Western Blot条带定量、面积测量综述、细胞计数综述等多种定量分析场景应用。还培养出一支集光学、机械、电子、计算机、软件、材料等领域的显微光学软件技术研发与工程化开发团队。业内专家认为,“陌讯数字显微形态分析系统 ”项目的成功实施,极大改善了国内显微成像软件自主研发缺失的状况,对满足中国生物医学等前沿基础研究的定制化需求、提升创新能力,以及推动中国显微成像分析软件行业转型升级具有重要战略意义。陌讯科技CTO赵卓然透露,下一步将结合该工程化及成果转化创新模式,实现“陌讯数字显微形态分析系统”项目科技成果在研发平台、工程化平台、产业化平台、市场平台的高效对接,通过系列化、组合化的产品布局,推动该项目显微形态分析系统实现工程化、产业化。
  • 深圳先进院高分辨率超声成像研究获系列进展
    p  近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。/pp  高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。/pp  邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。/pp  在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。/pp  高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。/pp  以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。/pp  论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity/pp style="text-align: center "img title="01.png" src="http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg"//pp style="text-align: center "strong图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图/strong/pp style="text-align: center "img title="02.png" src="http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg"//pp style="text-align: center "strong图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度/strong/pp style="text-align: center "img title="03.png" src="http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg"//pp style="text-align: center "strong图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图/strong/pp style="text-align: center "img title="04.png" src="http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg"//pp style="text-align: center "strong图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图/strong/pp /p
  • 红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所红外科学与技术全国重点实验室的科研团队在《红外与毫米波学报》期刊上发表了以“红外近场辐射探测及超分辨温度成像”为主题的文章。该文章第一作者为朱晓艳,主要从事红外被动近场成像方面的研究工作。本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知地是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之为近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步地研究。图1(a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距h,即可获得近场、远场混合信号(h 100 nm,称为近场模式)或单一的远场信号(h 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2(a)红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO₂衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长(~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO₂)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO₂强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14 μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14 μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO₂衬底)的(a)光学显微、(b)远场红外和(c)近场红外的图像及成像原理示意图另外值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO₂;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO₂。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4 (a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。总结与展望综上,利用SNoiM技术,可以实现物体表面的近场辐射探测及红外超分辨温度成像。该技术是目前国际上唯一能够进行局域电子温度成像的科学仪器,不仅突破了红外远场热成像的衍射极限限制,且首次实现了纳米尺度下通电器件中载流子输运行为与能量耗散的直接可视化。该研究内容均基于第一代室温SNoiM系统,目前,第二代低温SNoiM系统已被成功搭建,有望进一步突破后摩尔时代信息和能源器件的功耗降低及能效提升难题,探索物理新机制,并推动纳米测温技术新的发展。这项研究获得国家自然科学基金优秀青年基金的资助和支持。论文链接:DOI: 10.11972/j.issn.1001-9014.2023.05.001
  • 超快超分辨成像问题在列:2023年度15个重大科学问题、工程技术难题和产业技术问题
    为进一步加强科技前瞻研判,引领原创性科研攻关,打造学术创新高地,推进科技自立自强,按照《中国科协办公厅关于征集2023重大科学问题、工程技术难题和产业技术问题的通知》 (科协办函创字[2023]8号)文件要求,中国光学工程学会面向国内外科技组织和科技工作者,共征集58个全球共同关注的前沿科学问题、工程技术难题和产业技术问题。经过专家委员会函评和终审评议,共评选出15个前沿科学问题、工程技术难题和产业技术问题。本次评选出的5个前沿科学问题中,第一个就是超分辨率成像技术,该技术在近几年得到了快速的发展,目前已经有多项科研转化成果成功产业化。5个前沿科学问题1、如何突破时-空极限实现超快超分辨成像?How to break through the spatio-temporal limit to achieve ultrafast and super-resolution imaging?2014年诺贝尔奖授予了将光学显微带入纳米尺度的超分辨荧光成像技术,但其依赖于荧光标记,且时间分辨率较低。压缩超快成像技术兼具飞秒时间分辨率和极高数据压缩比,但以牺牲空间分辨率来观测超快动态过程。发展超快超分辨成像技术,在无标记宽场成像下实现时-空分辨率的协同突破,将极大推动人类对各类超快微观现象的认知,助力“追光捕快、察微显纳”的新成像体系建设。2、人们能以多高的自由度塑造光?How arbitrarily can light be shaped?自从认识光现象起,人们便尝试不断改变光的“造型”。从早期的透镜聚焦光能,到现代显微技术中的复杂结构光、激光雷达形貌测量中的点阵投影等,还有精细激光加工中超长焦深的贝塞尔光束、具有弯曲空间传播轨迹的艾利光束等。对光的塑造能力越高、对其利用程度也越高。为此,应从原理上探索塑造光的极限,即人们能以多高的自由度塑造光?3、光学系统的体积极限是多小?What is the volume limit of an optical system?光学元件的性能在很大程度上受到可用光学材料和结构设计的限制。基于超表面的平面光学器件以及各类新型微纳元件有望将核心光学元件缩小到几百微米级别,相比传统复杂光学系统体积显著减小了六个数量级。但如何确定具有特定功能的光学系统的体积理论极限还有待研究,从而进一步实现微型化、微型化与集成化,将在AR/VR、遥感探测及未来纳米科技等领域产生巨大影响。4、光电子芯片的集成度极限是什么?What is the limit of photonic integration? 面向未来十年或更长远时间,光电子芯片集成度的增长会遇到瓶颈,相应的容量要扩展到Pb/s量级会遇到许多根本性的限制。本科学问题涉及芯片容量、尺寸、功耗三个方面的理论和技术的极限,需要在超宽带透明光电材料、高集成度器件中的光场调控、高效率低功耗调谐机理等方面研究变革性的新原理和新技术。5、如何使光计算完备?How to make optical computing complete?采用光学方法来实现运算处理和数据传输是后摩尔时代算力、功耗问题极具潜力的解决途径之一。光子具有光速传播、抗电磁干扰等特性,以及具有天然的多维复用和并行计算优势,十分契合人工智能等应用领域大数据处理的需求。但目前光子计算面临着很多挑战,例如光子芯片的集成度仍有待提高;计算精度仍低于电子芯片,器件架构未优化,上述挑战亟需研究5个工程技术难题1、如何实现EW超强激光?How to create EW ultra-intense laser?依托我国神光装置,攻克甚多束超短脉冲激光高效优质相干合成、超高信噪比管控、等离子体压缩等核心难题,突破EW超强激光高增益、高品质、高负载三大受限条件,国际上率先实现EW级峰值功率激光输出,率先进入超相对论物理等前沿基础研究领域,辐射带动平均功率万瓦级超短激光技术发展和应用。2、如何构建超大型空间光学装置?How to construct the ultra-large space optical instrument?超大型空间光学装置是当前世界宇航企业重点发展的综合性大系统工程方向。在轨组装和维护则是构建超大型空间光学装置的重要技术途径,即将系统的各个组成模块发射入轨,再利用空间操控工具对各个模块进行在轨组合和装配。该技术的实现将引领弹性可重构光学遥感系统的跨越式发展,并为未来空间飞行器维护与服务奠定技术基础。3、如何实现高功能密度感存算一体光电集成芯片?How to realize that photoelectric integrate chip with high functional density sensing and memory integration?能够执行探查、识别、飞行、定向打击等任务的微型机器人对功耗、尺寸、功能要求十分苛刻。现有设备集成化程度低,处理数据量大,成像体制单一,无法实现一体化探查。为解决这些问题,可采用感存算一体化仿生架构,突破光电融合集成、智能感知处理等关键技术,挖掘低频有效信息,降低能耗压力,实现高功能密度、极小型化、极低功耗的一体化光电集成芯片。4、如何实现在原子、电子本征尺度上的微观动力学实时、实空间成像?How to achieve real-time and real-space imaging of microscopic dynamics on the intrinsic scale of atoms and electrons?原子、电子是自然界许多现象的核心,其结构及运动状态决定了所构成物质的宏观特性。原子、电子的运动发生在飞秒至阿秒的超快时间尺度以及皮米的超小空间尺度上,因此,需要同时具备“皮米空间分辨率”与“阿秒时间分辨率”的阿秒电子成像技术以实现对原子-亚原子微观世界中超快动力学过程的探测与控制,揭示材料中各种功能的微观起源。5、如何实现高时空分辨率的全球重力梯度测量?How to retrieval high time and spatial resolution global gravity gradient?地球重力场是地球的基本物理场之一,反映了地球表层及内部物质的空间分布、运动和变化,同时也决定着大地水准面的起伏和变化。利用高精度冷原子重力梯度仪对全球的重力梯度进行高时空分辨率的测量,可以更好地监测揭示海洋环流活动规律,全球陆地水储量变化,冰盖和大型冰川系统的质量平衡,为人类未来的生存和发展制定科学的应对策略。5个产业技术问题1、如何打造成熟的硅基光电异质集成工艺平台,支撑新一代信息技术发展的需求?How to build the accessible platform for optoelectronic heterogeneous integration based on silicon photonics, to facilitate the development of next-generation information technology?随着AI、下一代数据中心、激光雷达、卫星通信等战略应用迅速发展,单一集成光子材料已不能满足产业需求。以III-V半导体、薄膜铌酸锂为代表的硅基光电异质集成可融合多种光电功能材料的优势,将成为高端光子芯片在上述应用领域的重要解决途径。鉴于光电异质集成国际竞争态势,我国迫切需要提升高端异质集成光子芯片的研发及产业化能力,支撑产业发展。2、如何突破激光时空特性测试计量短板难题?How to break through the difficult problem of measuring the spatial and time domain parameters of lasers?2022年,激光产业销售收入大于800亿。然而,支撑我国激光产业发展的激光参数测试仪95%依赖进口,年高达3亿元。特别是激光时域和空域参数测试计量缺失,全部依赖德国、美国、加拿大等仪器。典型的包括:测量皮秒、飞秒和阿秒的自相关仪、FROG和SPIDER等;千瓦级功率激光光束质量测试仪等。测试仪器短板,风险大,是急需攻关的问题。3、中高端传感器如何实现自主可控?How to achieve self- production and controllability of medium and high-end sensors?传感器是物理与数字世界纽带,万物互联基石,对国力有重要影响。目前我国低端传感器产能过剩,中高端传感器自主可控率低。小到手机摄像头、大到汽车发动机,中高端传感器严重限制了我国产品市场竞争力。传感器专业点多面广,对材料、集成电路等基础工业水平要求高。如何实现中高端传感器自主可控是一个关键产业技术难题。4、如何谱写智能网联汽车的“中国方案”?How to compose the "Chinese Approach" for intelligent connected vehicles?智能化、网联化已成为各国汽车产业博弈未来的战略制高点,李克强院士提出了智能网联汽车的中国方案—“车路云一体化融合系统控制”的技术路线。在路侧通过将激光雷达、毫米波雷达和摄像头融合在一体,具备全天候全息环境感知能力,并有传输延迟低、覆盖范围广、数据精度高、易维护安装的特点,可以解决交通拥堵、交通事故两大核心痛点,进一步提升我国交通信息化、智能化。5、如何突破反谐振空芯光纤降损及大规模工业化制备难题?How to break through the loss-reducing and massive industrial manufacture of anti-resonant hollow-core fiber?作为近半世纪光通信行业基础媒介的实芯光纤正面临容量与时延两项限制。反谐振空芯光纤在理论损耗、带宽、非线性和介质光速等方面全面优于实芯光纤,将对光纤、光器件、光网络系统形成颠覆性变革,有望构建下一个50年的光通信生态。其理论损耗极限、将损耗降至可商用水平并实现大规模工业制备,是亟待突破的技术和产业问题。
  • 综述:太赫兹近场超分辨成像,不断突破衍射极限
    太赫兹(THz)辐射频率处于电子学和光学频率之间,因此具备多种光电子特性。THz成像作为THz辐射最重要的应用方面,在国防、通信、生物、医学和材料有着巨大应用潜力。THz 时域光谱系统(THz-TDS)被广泛用于角膜含水量测量、角膜瘢痕成像、蛋白浓度检测和细胞标志物检测等。然而受限于衍射极限存在,THz成像分辨率一般被限制在毫米量级。近场光学成像技术使用空间尺度极小探针直接探测样品表面亚波长尺度细节,可有效突破衍射极限,是实现THz超分辨成像的重要路径。目前,根据探针工作方式的区别,THz近场成像技术可分为孔径探针THz近场成像和散射探针THz近场成像。孔径探针THz近场成像方案需要平衡空间分辨率、截至频率和近场耦合效率之间关系,其成像分辨率仍无法突破至nm量级。散射探针THz近场成像分辨率与探针几何结构和探针-样品表面距离有关,截至目前其成像分辨率可以突破至0.3 nm。本文综述了THz超分辨成像的基本原理及最新进展,围绕孔径探针和散射探针两种主流的THz近场成像技术,详述其在成像原理、成像质量与成像分辨率等方面的突破,并对THz超分辨成像做出总结与展望。图1 THz近场成像及其应用场景孔径探针孔径探针THz近场成像主要利用亚波长结构形成THz辐射源或THz探测器在近场范围内扫描样品表面提升成像空间分辨率。依据孔径类型分类,孔径探针THz近场成像共有四种技术路线,分别是物理孔径、动态孔径、人工表面等离子激元和近场天线。物理孔径探针通常为锥形波导,可以将THz辐射局域成亚波长THz辐射源并扫描样品,提升空间分辨率。其优势在于:结构简单制备容易,可根据THz源设计波导几何结构提升THz耦合效率。图2 锥形物理孔径THz近场成像示意图动态孔径THz成像系统主要有两种实现方式。一种是基于光泵浦方案,该方案激发半导体材料形成特定分布的载流子,进而调制THz空间分布。另一种是基于飞秒激光成丝方案,该方案应用光丝对THz辐射强束缚作用,或是应用交叉光丝,形成动态微孔调制THz空间分布。动态孔径技术优势在于,一方面可以和压缩感知技术结合在保证空间分辨率情况下极大提升成像速度,另一方面基于飞秒激光光丝可以进一步提升成像分辨率至20 μm。图3 交叉光丝形成动态孔径实现THz近场成像人工表面等离子激元器件表面具有周期结构,通过改变材料表面等效介电常数实现THz波近场聚焦。常规调制方案包括金属锥形结构聚焦探针、金属周期结构THz超透镜和石墨烯THz超透镜等;其适用波长范围广、聚焦效率高具有一定的应用前景,尽管目前还处于实验室阶段,但是随着THz器件加工技术逐渐发展,相信在不久的将来其实用性会得到提升。图4 人工表面等离子激元器件实现THz近场成像近场THz天线这是一种微型近场THz探测器,优势为在提升空间分辨率同时能够保证时间分辨率,另一方面THz近场天线可以被集成至片上,拓宽了其使用场景。 图5 近场天线实现THz近场成像散射探针散射探针THz近场成像系统,是通过测量探针与样品表面在外场作用下的近场耦合效应反映样品表面信息。其适用于宽谱THz光源,成像空间分辨率与探针几何结构和探针-样品表面间距有关最高可以达到0.3 nm量级。由于背景散射信号强度远大于近场散射信号强度,散射探针THz近场成像系统主要技术难点在于信号收集与提取。目前,较为成熟的近场散射信号提取技术包括:自零差方案、正交零差方案、伪外差方案和合成光学全息方案等。在保障扫描时间的前提下,伪外差方案成像对比度高且具备相位分辨能力,因此被广泛采用。散射探针THz近场成像系统通常使用扫描隧道显微镜或者原子力显微镜作为提供近场条件的媒介,可将探针针尖与样品表面间距精确控制在20 nm范围内。基于扫描隧道显微镜的散射THz近场成像系统优势:1)其空间分辨率最高可以提升至0.3 nm;2)基于扫描隧道显微镜增强隧穿电流原理,可以增强近场散射信号。缺点:扫描隧道显微镜是通过测量针尖与样品表面隧穿电流实时反馈控制针尖与样品表面间距,故此种方案不适用于不导电样品。图6 基于扫描隧道显微镜搭建的近场成像系统及其一维扫描结果图基于原子力显微镜的散射THz近场成像系统原子力显微镜,因其和扫描隧道显微镜类似,具有卓越的空间分辨能力,是搭建散射探针THz近场成像系统的主力设备,同时能够通过检测针尖与样品之间相互作用反馈控制针尖和样品间距,故该系统可以适用于多种样品。图7 基于原子力显微镜搭建的近场成像系统及其扫描结果图散射探针THz近场成像不仅可以将THz成像分辨率提升至nm量级,还可以被应用于检测样品表面载流子运动。与光学波段和红外波段成像技术相比,有掺杂的半导体或者半金属材料对THz波段更加敏感,因此散射探针THz近场成像技术还被应用在nm量级表征载流子数目和分布情况。 总结与展望随着强THz产生技术和高灵敏THz探测技术的不断发展,超分辨THz成像技术得到了长足发展。孔径探针和散射探针THz成像方案各有侧重,在不同领域得到广泛应用。根据以上总结,从应用角度出发对近场THz成像技术作出展望:(1)成像速度。目前大多数超分辨THz成像方案都是采用逐点扫描模式,尽管成像分辨率得到很大提升,但是成像速度较慢。(2)装置集成化与轻量化。高效的桌面式近场THz成像系统能够助力此项技术得以推广。(3)样品多样性。目前,nm量级THz近场成像技术主要被应用于材料学研究,未来可以充分发挥THz辐射优势,将检测样品扩展至生物大分子甚至活体。(4)大范围成像。未来可以在平衡成像质量与成像速度前提下,实现nm量级大范围样品成像。综上所述,本文概括了超分辨近场成像技术的多个技术指标,分别是空间分辨率、时间分辨率、相位分辨能力、成像速度、成像对比度和装置复杂性。在保证空间分辨率的前提下,提升其他技术指标仍然任重而道远。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制