当前位置: 仪器信息网 > 行业主题 > >

超快激光仪

仪器信息网超快激光仪专题为您提供2024年最新超快激光仪价格报价、厂家品牌的相关信息, 包括超快激光仪参数、型号等,不管是国产,还是进口品牌的超快激光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超快激光仪相关的耗材配件、试剂标物,还有超快激光仪相关的最新资讯、资料,以及超快激光仪相关的解决方案。

超快激光仪相关的资讯

  • 全共线多功能超快光谱仪与高精度激光扫描显微镜,二维材料与超快光学实验必备!
    全共线多功能超快光谱仪BIGFOOTMONSTR Sense Technologies是由密歇根大学研究人员成立的科研设备制造公司。该公司致力于研发为半导体研究应用而优化的超快光谱仪和显微镜,突破性的技术可将光学器件和射频电子器件耦合在一起,以稳健的方式测量具有干涉精度的光学信号,真正实现一套设备、一束激光、多种功能。图1. 全共线多功能超快光谱仪BIGFOOT全共线多功能超快光谱仪BIGFOOT不仅兼具共振和非共振超快光谱探测,还可以兼容瞬态吸收光谱(Transient absorption (TAS))、相干拉曼光谱(Coherent Raman Spectroscopy (CRS))、多维相干光谱探测(Multidimensional Coherent Spectroscopy (MDCS))。开创性的全共线光路设计,使其可以与该公司研发的高精度激光扫描显微镜(NESSIE)联用,实现超高分辨超快光谱显微成像。全共线多功能超快光谱仪的开发也充分考虑了用户的使用体验,系统软件可自动调控参数,光路自动对齐、无需校正等特点都使得它简单易用。全共线多功能超快光谱仪BIGFOOT主要技术参数:高精度激光扫描显微镜NESSIEMONSTR Sense Technologies的高精度激光扫描显微镜NESSIE可用入射激光快速扫描样品,在几秒钟内就能获得高光谱图像。该设备可适配不同高度的样品台和低温光学恒温器,物镜高度最多可变化5英寸,大样品尺寸同样适用。NESSIE显微镜是具有独立功能,可以与几乎任何基于激光测量与高分辨率成像的设备集成在一起,也非常适合与该公司研发的全共线多功能超快光谱仪集成。图2. 高精度激光扫描显微镜NESSIE 高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。图3. 使用NESSIE在室温下测量的GaAs量子阱的图像。a) 用相机测量的白光图像。b) 用调谐到GaAs带隙的80MHz激光器(5mW激光输出)进行激光扫描线性反射率测量。c) 同时测量的激光扫描四波混频图像揭示了影响GaAs层的亚表面缺陷 BIGFOOT+NESSIE应用案例:1. 高精度激光扫描显微镜用于材料表征美国密歇根大学课题组通过使用基于非线性四波混频(FWM)技术的多维相干光谱MDCS测量先进材料的非线性响应,利用激子退相和激子寿命来评估先进材料的质量。课题组使用通过化学气相沉积生长的WSe2单分子层作为一个典型的例子来证明这些功能。研究表明,提取材料参数,如FWM强度、去相时间、激发态寿命和暗/局部态分布,比目前普遍的技术,包括白光显微镜和线性微反射光谱学,可以更准确地评估样品的质量。在室温下实时使用超快非线性成像具有对先进材料和其他材料的快速原位样品表征的潜力。图4. (a)通过拟合时域单指数衰减得到的样本的去相时间图,在图(a)中用三角形标记的选定样本点处的FWM振幅去相曲线【参考】Eric Martin, et al Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022). 2.二维材料中激子相互作用和耦合的成像研究过渡金属二卤代化合物(TMDs)是量子信息科学和相关器件领域非常有潜力的材料。在TMD单分子层中,去相时间和非均匀性是任何量子信息应用的关键参数。在TMD异质结构中,耦合强度和层间激子寿命也是值得关注的参数。通常,TMD材料研究中的许多演示只能在样本上的特定点实现,这对应用的可拓展性提出了挑战。美国密歇根大学课题组使用了多维相干成像光谱(Multi-dimensional coherent spectroscopy, 简称MDCS),阐明了MoSe2单分子层的基础物理性质——包括去相、不均匀性和应变,并确定了量子信息的应用前景。此外,课题组将同样的技术应用于MoSe2/WSe2异质结构研究。尽管存在显著的应变和电介质环境变化,但相干和非相干耦合和层间激子寿命在整个样品中大多是稳健的。图5. (a)hBN封装的MoSe2/WSe2异质结构的白光图像。(b)MoSe2/WSe2异质结构在图(a)中的标记的三个不同样本点处的低功率低温MDCS光谱。(c)图(b)中所示的四个峰值的FWM(Four-Wave Mixing)四波混频积分图。(d)MoSe2/WSe2异质结构上的MoSe2共振能量图。(e)MoSe2/WSe2异质结构的WSe2共振能量图。(f)所有采样点的MoSe2共振能量与WSe2共振能量【参考】Eric Martin, et al Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides, J. Chem. Phys. 156, 214704 (2022) 3. 掺杂MoSe2单层中吸引和排斥极化子的量子动力学研究当可移动的杂质被引入并耦合到费米海时,就形成了被称为费米极化子的新准粒子。费米极化子问题有两个有趣但截然不同的机制: (i)吸引极化子(AP)分支与配对现象有关,跨越从BCS超流到分子的玻色-爱因斯坦凝聚;(ii)排斥分支(RP),这是斯通纳流动铁磁性的物理基础。二维系统中的费米极化子的研究中,许多关于其性质的问题和争论仍然存在。黄迪教授课题组使用了Monstr Sense公司的全共线多功能超快光谱仪BIGFOOT研究了掺杂的MoSe2单分子层。课题组发现观测到的AP-RP能量分裂和吸引极化子的量子动力学与极化子理论的预测一致。随着掺杂密度的增加,吸引极化子的量子退相保持不变,表明准粒子稳定,而排斥极化子的退相率几乎呈二次增长。费米极化子的动力学对于理解导致其形成的成对和磁不稳定性至关重要。图6. 单层MoSe2在不同栅极电压下的单量子重相位振幅谱【参考】Di HUANG, et al Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer, PHYSICAL REVIEW X 13, 011029 (2023)
  • 魏志义谈2023诺贝尔物理学奖成果——阿秒光脉冲超快激光
    北京时间10月3日17时50分许,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2023年诺贝尔物理学奖授予美国俄亥俄州立大学名誉教授皮埃尔阿戈斯蒂尼(Pierre Agostini)、匈牙利-奥地利物理学家费伦茨克劳斯(Ferenc Krausz)和瑞典隆德大学教授安妮呂利耶(Anne L’Huillier),以表彰他们在阿秒光脉冲方面所做出的贡献。2023年每项诺贝尔奖的奖金也由去年的1000万瑞典克朗,增加到1100万瑞典克朗,约合人民币720万元。“阿秒”是时间单位,即10-18秒。按照时间长短划分,从秒开始依次是毫秒(10-3秒)、微秒(10-6秒)、纳秒(10-9秒)、皮秒(10-12秒)、飞秒(10-15秒)、阿秒(10-18秒)。而“阿秒光脉冲”就是指持续时间在阿秒量级的光脉冲。如此短的脉冲持续时间也为其带来了重要的应用。对此,诺贝尔奖给出的获奖理由如下:获奖理由:三位2023年诺贝尔物理学奖获得者因其实验而获得认可,这些实验为人类探索原子和分子内部的电子世界提供了新的工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier已经证明了一种制造超短光脉冲的方法,可以用来测量电子移动或改变能量的快速过程。当人类感知到快速移动的事件时,它们会相互碰撞,就像一部由静止图像组成的电影被感知为连续的运动一样。如果我们想调查真正短暂的事件,我们需要特殊的技术。在电子的世界里,变化发生在十分之几阿秒——阿秒如此之短,以至于一秒钟内的变化与宇宙诞生以来的秒数一样多。获奖者的实验产生了短到以阿秒为单位测量的光脉冲,从而证明这些脉冲可以用来提供原子和分子内部过程的图像。1987年,Anne L’Huillier发现,当她将红外激光传输通过稀有气体时,会产生许多不同的光泛音。每个泛音是激光中每个周期具有给定周期数的光波。它们是由激光与气体中的原子相互作用引起的;它给一些电子额外的能量,然后以光的形式发射出去。Anne L’Huillier继续探索这一现象,为随后的突破奠定了基础。2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲只持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,这种实验可以分离出持续650阿秒的单个光脉冲。获奖者的贡献使人们能够对以前无法遵循的快速过程进行调查。诺贝尔物理学委员会主席伊娃奥尔森表示:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解电子控制的机制。下一步将利用它们。”。在许多不同的领域都有潜在的应用。例如,在电子学中,理解和控制电子在材料中的行为很重要。阿秒脉冲也可以用于识别不同的分子,例如在医学诊断中。魏志义:我国激光产业发展迅速,未来可期实际上我国也一直在阿秒激光领域深耕,培养了一批杰出的科研人员。当前国内研究超快激光和阿秒激光的主要代表人物是来自中国科学院物理研究所的魏志义研究员,主要研究领域为超短超强激光物理与技术,包括飞秒激光放大的新原理与新技术、阿秒激光物理与技术、光学频率梳及应用等。魏志义研究员长期致力于超短脉冲激光技术与应用研究,主要成果有:提出了高对比度放大飞秒激光的一种新方法,得到同类研究当时国际最高峰值功率的PW(1015瓦)超强激光输出,创造了新的世界纪录;发明了同步不同飞秒激光的新方案,研制成功综合性能国际领先的同步飞秒激光器;建成国内首个阿秒(10-18秒)激光装置,得到了脉冲宽度小于200阿秒的极紫外激光脉冲;发展了新的光学频率梳技术,研制成功综合性能先进的系列飞秒激光频率梳;利用新的脉冲压缩技术与国外同事一起获得了亚5fs的激光脉冲,打破了保持10年之久的超短激光脉冲世界纪录;研制成功系列二极管激光直接泵浦的新型全固态超短脉冲激光,开发成功多种飞秒激光产品并提供国内外多家用户。仪器信息网在世界光子大会上有幸采访了魏志义研究员。魏志义表示,超快激光(即超短脉冲激光)领域激光领域前沿研究主要关注如何实现越来越窄的激光脉冲宽度,窄的激光脉冲可以用于物质中分子、原子甚至电子的运动过程研究,因为运动过程决定了物质的一些规律和属性。科研人员关注的另一方面是激光功率,更高功率的激光可能用于武器、加工、医疗等领域。功率方面的研究主要包括峰值功率和平均功率,其中峰值功率研究我国处于世界前列。魏志义在采访中表示其对高频功率非常关注和感兴趣。谈到国内在相关领域的前沿研究进展时,魏志义表示,我国在激光领域具有比较好的基础,与国外水平接近,虽然在整体上还有较大差距,但在部分领域有所领先。在超快脉冲激光方面,我国上世纪八九十年代与国际水平差距并不大,如西安光机所、天津大学、中山大学做得都非常不错。当前超快激光脉冲突破到阿秒量级,国内包括物理所在内的一些单位也拥有产生阿秒脉冲激光的能力,可以用来开展研究工作。在激光高频功率方面,上海光机所等单位在峰值功率研究上已达国际领先水平,并将国际水平推向了新的高度。据介绍,物理所十多年前在峰值功率方面取得了很好的研究成果,做到了当时国内最好也是国际上最高的的峰值功率。但在高频功率方面我国还是与国外有较大差距,特别是在产业方面。魏志义建议,接下来不仅要在极端指标方面,还要在可靠稳定性、高频功率方面做出突破,更好的提供给广大用户开展应用工作。魏志义也强调,我国当前在超快激光研究方面有些落后,但也在奋起直追,跟国际最高水平相比有一定差距,在高频物理方面,工业应用方面差距更大。但同时,魏志义表示这些年我国激光产业发展非常迅速,未来可期。
  • 正业科技:超快激光技术,为FPC精密加工增添新动力!
    时代在发展技术在进步20世纪60年代第一台红宝石激光器诞生制造业进入“光”时代从纳秒、皮秒到飞秒人们对激光技术的探索未曾止步 时间换算:1秒=109纳秒=1012皮秒=1015飞秒时间越短,激光作用在材料表面的时间越短,对材料表面的影响越小,加工效果也更好,因此超快激光技术已成为制造业精密加工领域的热点话题。 在精密加工领域,传统纳秒激光加工设备仍占据了大部分市场。但是就加工效果而言,飞秒及皮秒激光加工更具优势与前景,可飞秒激光器由于自身的可靠性低、价格昂贵等原因,从科研到工业应用,还需一段时间。与纳秒激光相比较,皮秒激光加工具有更短的脉冲宽度、更高的峰值功率,能够达到更好更精细的加工效果,实现真正冷加工,基本无炭化,逐步成为主流选择。 ▲正业激光切割效果图(皮秒VS纳秒) 正业皮秒激光切割机 正业科技研发生产的皮秒激光切割机应用超快激光技术,适用于覆盖膜(CVL)、柔性板(FPC)、软硬结合板(RF)和薄多层板的切割成形。 01切割实例 02独特优势 1、真正冷加工,基本无炭化:激光脉宽小于10ps,炭化范围极小,基本看不到炭化现象。 2、切割效果更精细:采用小单脉冲能量,高频加工,精雕细作,加工面更加精细光滑,综合加工精度高达±20μm。 3、双台面,零上下料时间,效率高,速度更快:皮秒的重复频率非常高,可达兆赫兹,大幅度提升加工效率。 4、加工前预览功能:避免切板报废。 正业激光 正业科技在PCB行业历经22载,始终认为技术创新才是企业的立足之本,是企业长久生存和可持续发展的不竭动力,不断攻克激光技术难题,探索超快激光技术奥秘。 目前,正业科技承担的激光类国家重点计划项目有典型硬脆构件的超快激光精密智造技术及装备、激光高性能连接技术与装备和激光高精度快速复合制造工艺与装备。 未来,正业科技将不断增强核心竞争力,积极拓展激光技术应用产业链,满足市场及广大客户需求,通过做强“激光”助力制造业转型升级发展。
  • 先进超快(飞秒、皮秒)激光器
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"先进超快(飞秒、皮秒)激光器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"中科院物理研究所/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"方少波/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="172" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Renee_zlj@126.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"√技术转让 √技术入股 √合作开发 √其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"激光器被广泛运用于工业、农业、精密测量和探测、通讯与/spanspan style=" font-family:宋体"a href="https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86&tn=44039180_cpr&fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target="_blank"span style=" color:windowtext text-underline:none"信息处理/span/a/spanspan style=" font-family:宋体"、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒钛宝石激光振荡器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"TW/spanspan style=" font-family:宋体"级飞秒超强激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"高重复频率飞秒激光放大器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光纤飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态飞秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"全固态皮秒激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"低噪声光学频率梳/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"窄线宽及可调谐激光器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步及延时控制器/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"周期量级激光及其CEP锁定/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"用户定制激光器/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"部分产品和指标达到国际领先或国内首次的程度,包括:/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"同步飞秒激光器(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒PW超强激光(世界纪录)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"若干全固态飞秒激光(国际首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"紫外波段皮秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"红外波段飞秒激光(国际领先)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒激光装置(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒光学频率梳(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒参量激光振荡器(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒镁橄榄石激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒Cr:YAG激光(国内首次)/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"飞秒激光压缩器(国内最短脉宽)/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title="3.png"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超快:国内最短激光脉冲,3.8fs/可见光波段/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"超强:1.16PW峰值功率,当时的世界纪录/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"阿秒:160as/XUV极紫外波段,国内首次实现/span/pp class="MsoListParagraph" style="margin-left:60px text-align: left line-height:24px"span style=" font-family:Wingdings"Ø span style="font:9px ' Times New Roman' " /span/spanspan style=" font-family:宋体"光梳:稳定度~10-18 /秒,国际同类最高结果之一/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室,a href="http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target="_blank" title="激光脉冲"span style="color:windowtext text-underline:none"激光脉冲/span/a已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花…/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟……/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"已经申请相关发明专利23项。包括——/span/pp style="text-indent:28px line-height:24px"a title="高对比度飞秒激光脉冲产生装置"span style=" font-family:宋体 color:windowtext text-underline:none"高对比度飞秒激光脉冲产生装置/span/aspan style=" font-family:宋体"(申请号CN201210037173.1)/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"一种全固态皮秒激光再生放大器(申请号CN201210360026.8)/span/pp style="text-indent:28px line-height:24px"a title="飞秒锁模激光器"span style=" font-family: 宋体 color:windowtext text-underline:none"飞秒锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201410251367.0)/span/pp style="text-indent:28px line-height:24px"a title="基于全固态飞秒激光器的天文光学频率梳装置"span style=" font-family:宋体 color:windowtext text-underline:none"基于全固态飞秒激光器的天文光学频率梳装置/span/aspan style=" font-family:宋体"(申请号CN201410004852.8)/span/pp style="text-indent:28px line-height:24px"a title="全固态陶瓷锁模激光器"span style=" font-family:宋体 color:windowtext text-underline:none"全固态陶瓷锁模激光器/span/aspan style=" font-family:宋体"(申请号CN201310349408.5)等/span/pp style="text-indent:28px line-height:24px"span style=" font-family:宋体"曾获得国家自然科学二等奖/span/p/td/tr/tbody/tablepbr//p
  • 英国新型激光雷达系统,使超快的低光检测成为可能
    近日,英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。 在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3 m距离的受控高散射场景中,3D成像取得了成功。量子检测技术在陆地上的应用,较多见诸报道。其实这种技术在水下的应用,同样空间广阔。例如,利用它进行海底地形勘测、水下考古、海底设备检测等等。不过,将这种技术应用于水下,绝对不意味着将其直接“照搬”。以在海洋中的应用为例,需要考虑海水的腐蚀性、洋流的运动、海底光照条件等多种特殊因素。因此需要使用特殊的耐腐蚀材料,进行特殊的设计,以更加适应水下环境的应用。
  • 首届超快激光应用发展大会在东莞松山湖材料实验室开幕
    激光享有“最快的刀”、“最准的尺”、“最亮的光”等美誉,是20世纪最伟大的发明之一。超快激光作为激光领域重要的研究方向,一直是国际科技关注的研究重点,也是推动基础科学实现重大突破、驱动战略性新兴产业发展的动力源泉。10月26日,超快激光应用发展大会在东莞松山湖材料实验室新园区开幕。大会邀请近500名行业知名院士专家、企业代表,以技术交流、产业论坛、需求对接、项目路演等形式,共同探讨超快激光技术发展趋势、技术应用及前沿进展,展示我国超快激光领域优秀成果案例,加强超快激光政产学研用深度合作,推动超快激光产业高质量发展,助力制造强国、质量强国建设。本次活动由中国光学工程学会主办,东莞松山湖高新区管委会、中国光学工程学会激光技术及应用专业委员会、中国科学院物理研究所、松山湖材料实验室承办。英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院院士、松山湖材料实验室主任汪卫华,中国光学工程学会秘书长赵雪燕,东莞市委副书记、松山湖党工委书记刘炜,中国科学院西安分院院长赵卫,华南师范大学党委常委、副校长杨中民等领导嘉宾出席活动。国内首台先进阿秒激光设施筹建中,助推未来新质生产力加速生成超快激光兼具超短时间和高峰值功率特点,随着我国制造强国、质量强国战略的贯彻实施,超快激光已成为微加工领域的重要手段,正加速推动中国制造制造业实现转型升级。“今年的诺贝尔物理学奖颁给了阿秒激光领域的科学家,充分体现超快激光科学技术领域的重要位置。”开幕式上,大会主席、中国科学院院士王立军在视频致辞中表示,以皮秒、阿秒为代表的超快激光器,在新一代信息技术、增材制造、航空航天、海洋环境以及新能源汽车、新材料、生物医药等领域拥有广泛应用前景。在此背景下,首届超快激光应用发展大会迎运而生。王立军表示,希望与会嘉宾以此次大会为契机,聚焦超快激光技术发展,深化交流对接,推进务实合作。东莞作为海内外闻名的制造业城市,拥有超21万家工业企业、1.3万家规上工业企业、79家上市企业和3家千亿企业组成的先进制造体系,初步形成了激光与增材制造材料、激光器、整机装备、公共服务平台等协调发展的激光产业链,在超快激光的应用上有着非常广阔的前景。东莞市委副书记、松山湖党工委书记刘炜表示,松山湖科学城作为大湾区综合性国家科学中心先行启动区,是引领东莞高质量发展的核心引擎,当前集聚了中国散裂中子源等国家大科学装置、松山湖材料实验室等30家科研平台及新型研发机构、大湾区大学(筹)等6所高校以及华为、生益科技等一批龙头企业,初步构建起全链条、全过程、全要素的创新生态体系。“期待与各位科技大咖、产业专家一起,深入探讨超快激光的发展之路,推动更多科技成果、优质项目在东莞、在松山湖科学城落地。”“可以说,超快超强激光是拓展人类认知的重要工具之一,在某些方面甚至是独一无二、不可替代的研究手段。”中国科学院院士、松山湖材料实验室主任汪卫华表示,作为当前国际科技最重要的前沿方向之一,超快科学为解决室温超导材料制造、超高速计算,以及信息传输等关乎国家重大需求所涉及的底层共性科学问题提供了强大助力,也是未来形成新质生产力的关键。汪卫华表示,松山湖材料实验室将联合中国科学院物理所、西安光机所共建国内第一台先进阿秒激光设施,其中8条束线建设任务将落地东莞。目前松山湖材料实验室已组建了阿秒科学中心,引入了首席科学家魏志义,集聚了一大批国内外优秀的研究员和工程师,希望将来实验室能建成一个超快物质科学的研究中心,依托周边中国散裂中子源等大装置,在能源材料、信息材料等领域做出国际一流的成绩。超快激光产业链领军人物汇聚,数十场报告共论激光技术与产业新趋势近年来,随着全球加工行业精细化程度的不断提升以及我国制造业转型升级,超快激光凭借其精度高、热效应低等优势,在3C产业、增材制造、精准医疗、微纳加工、超快检测等领域拥有广阔的应用前景。大会报告环节,英国皇家工程院院士、中国科学院宁波材料技术与工程研究所激光极端制造研究中心主任李琳,中国科学院物理研究所研究员、松山湖材料实验室首席科学家魏志义,深圳技术大学教授唐定远,北京大学物理学院副院长、核物理与核技术国家重点实验室副主任颜学庆,中国科学院上海光学精密机械研究所研究员胡丽丽等业内专家,分别从飞秒激光纵波红外远场超衍射极限纳米加工探讨、超快激光科学研究对高新技术产业应用和大科学设施建设的推动、激光等离子体加速器应用与展望,应用于超快激光系统的玻璃及光纤材料研究等不同领域做主题报告,对超快激光发展与应用的若干热点课题进行了分享交流。本次大会作为业内重量级交流活动,吸引了来自全国近百所知名科研院所及高校的专家学者、近30家业内知名企业代表参加,超快激光产业链领军人物汇聚,覆盖激光产业政产学研金服用全领域。“目前国际激光加工产业应用中国做的是最好的,全球市场占比约30%,其中大湾区集聚了很多头部的激光上下游企业,为支撑我国激光制造和应用起到了很大的作用。”李琳院士是国际激光加工领域知名专家,除在大会上做主题报告外,他特别关注超快激光应用层面的新技术、新原理,以及包括激光器在内的工具层面的发展。“这次来参会很多还都是物理领域的科学家及工艺工程师,从激光光源以及激光关键器件、激光加工,激光测量以及其他科学研究,都有很多讨论。”李琳表示,此次500多人的参会规模也说明我国在这个研究领域非常活跃。另一方面,李琳对筹建中的先进阿秒激光大科学装置也非常期待。“这个装置未来对超快光学、超快物理、超快化学、超快工程学都会有很重要的促进作用,能够让全国各个大专院校,科研院所及企业申请使用这一国际上最先进的科学装置,我们也期待它早日建成,为科学进步起到推进作用。”“这次大会我实际是来学习取经,希望能在超快激光赛道上走得更远。”参会企业广东大族粤铭激光集团股份有限公司,是东莞本土成长起来的知名激光企业,该公司董事、总经理卓劲松表示,公司非常重视新技术研发,坚持每年以不低于销售收入10%的研发经费投入到产品研发中。他希望东莞的政府、企业、学校科研院所可以联动呼应,打造高端制造业的产业基础、人才支撑、学术氛围,互相联合进行产学研一体输出,更快推动超快激光产业大步向前。接下来两天时间内,大会还将围绕超快激光技术与产业两大专题,先后开展超20场专题研讨或主题报告,共同探讨新形势下的前瞻思想、创新成果,以及资本、技术、市场如何促进激光产业发展等关注热点。与此同时,大会多措并举共助成果转化落地,邀请各级产业链头部企业、重点科研团队、高校研究所等,集中展示优秀科技成果、应用案例,现场还将进行多场技术交流、项目路演、人才招聘、对接洽谈等活动。
  • 上海光机所在特殊波长的飞秒超快光纤激光器研制方面获进展
    近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在特殊波长的飞秒超快光纤激光器研制方向取得重要进展。该团队首次报道了一种基于色散管理、全保偏九字腔的978 nm飞秒掺镱光纤激光器。相关研究成果以Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser为题,发表在《光学快报》(Optics Letters)上。978 nm掺镱飞秒锁模光纤激光器因独特的应用价值而备受关注。然而,由于Yb3+在978 nm波长附近的吸收截面近似等于发射截面,为了在这个波长获得高性能激光输出,必须克服978 nm处的激光自吸收和1030 nm附近的放大自发辐射(ASE)等问题。此外,Yb3+在978 nm附近的增益带宽相对较窄,这进一步增加了在该波长下获得飞秒激光脉冲的难度。因此,与1 μm以上的传统掺镱锁模光纤激光器相比,实现这种978 nm的飞秒光纤激光器面临着更大挑战。针对上述问题,研究团队采用基于九字腔结构的非线性放大环镜(NALM)技术实现了978 nm处色散管理孤子的稳定输出。实验中,通过控制激光腔内各色散元件的参数有效地管理了腔内总色散,并引入滤波器来抑制1030 nm的ASE,最终获得了具有14.4 nm光谱带宽和175 fs的高相干激光脉冲。此外,激光腔由全保偏光纤器件组成,能够有效抗温度、震动等环境扰动,确保了锁模脉冲的长期稳定性。数值模拟结果表明,978 nm色散管理孤子的光谱宽度主要受限于Yb3+在相关波长附近的增益带宽。未来,可以利用非线性效应在腔外进一步展宽光谱,从而在这个特殊波长实现更窄脉宽的激光输出。该研究实现的978 nm锁模脉冲是迄今为止报道的相关波长超快光纤激光器中能够输出的最短脉冲,在水下通信和太赫兹波产生等领域具有良好的应用前景。图1.978 nm九字腔色散管理孤子光纤激光器实验装置图图2. 978 nm九字腔光纤激光器输出脉冲参数。(a)光谱,(b)脉冲序列,(c)射频谱,(d)自相关信号,(e) 腔外压缩后的频谱和(f)自相关信号。图3. 数值模拟结果。(a、b)输出色散管理孤子的光谱和时间特性;(c、d)腔内脉冲的时频演化过程。
  • 空天院实现超快波长切换的宽调谐范围长波固体激光光源
    近日,在中国科学院科研仪器设备研制项目的支持下,中科院空天信息创新研究院激光工程技术研究中心基于声光偏转器(AOD)调谐技术和光参量振荡技术(OPO)实现了8.0-8.7μm长波激光的可调谐超快波长切换,波长切换时间优于100μs,波长个数≥70个,单个波长谱宽≤30nm。该激光器能够在长波波段快速扫频且具有极高的峰值功率,将为我国复杂环境中的毒性气体遥测、光电对抗等提供优质的激光光源。光参量振荡技术(OPO)是非线性光学频率变换技术。随着非线性红外晶体制备技术的提升,基于OPO产生高峰值功率高重复频率长波激光成为目前激光技术研究领域的热点。然而,OPO技术通常基于温度、晶体转动、泵浦源波长调节等方式实现激光波长的调谐。项目团队提出基于声光偏转器调节参量光角度和相位匹配条件,进而实现输出波长的快速调节。历时3年,该团队先后突破了2μm激光源、红外晶体及谐振腔镜损伤特性表征、行波腔调谐补偿等关键技术,完成了超快波长切换的宽调谐范围长波固体激光光源的技术验证。后续,项目团队将按照中科院科研仪器设备研制项目的既定目标,开展工程样机研制和应用示范工作。AOD驱动频率与输出的长波激光波长
  • 新型超小激光器只有一个病毒大小
    据物理学家组织网11月6日(北京时间)报道,美国西北大学的一个研究小组开发出一种只有一个病毒大小的超小型激光器。这种激光器具有体积小、室温下即可工作的特点,能够很容易地集成到硅基光子器件、全光电路和纳米生物传感器上,具有极为广阔的应用前景。相关论文发表在近日出版的《纳米快报》杂志上。  光子和电子元件的尺寸对超快数据处理和超高密度信息存储至关重要,因此,小型化是此类设备未来发展所必须攻克的一个难关。负责这项研究的纳米技术专家,西北大学温伯格学院艺术与科学学院以及麦考密克工程和应用科学学院材料学教授泰瑞奥多姆说,纳米尺度上的相干光源不仅能够用来对小尺度的物理化学现象进行探索和分析,同时也能够帮助科学家打破光的衍射极限。  奥多姆称,能够制造出这种纳米激光器,都要归功于一种3D蝴蝶结式的纳米金属空腔结构。这种激光腔的几何结构能够产生表面等离子激元,这是一种在金属介质界面上激发并耦合电荷密度起伏的电磁振荡,具有近场增强、表面受限、短波长等特性,在纳米光子学的研究中扮演着重要角色。当产生表面等离子激元后,由于金属表面电子的集体震荡,因而能够最大限度的突破阈值限制,让所有光子都以激光形式进行发射,不浪费任何光子。这种蝴蝶结状结构的使用与先前类似的设备相比有两个明显的好处:第一,由于其电磁特性和纳米尺寸的体积,这种结构清晰可辨认。第二,由于其离散结构,损失可以减到最少。  此外,研究人员还发现,当这些结构排列成为一个阵列时,3D蝴蝶结谐振器能够根据晶格的参数发射出带有特定角度的光。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 用户动态|祝贺中科院物理研究所完成基于相对论激光驱动的超快X射线衍射系统的研制
    在超快时间尺度上获得物质的动力学演化过程一直是人们努力的重要方向。基于激光等离子体相互作用产生的飞秒硬X射线源由于具有脉宽短、亮度高和源尺寸小等突出的优点,可广泛应用在瞬态微成像/相衬成像、时间分辨吸收谱学和X射线衍射等实验研究中。其中,激光泵浦--超快X射线衍射能为我们提供飞秒级时间尺度、亚埃级空间尺度上材料的结构动力学信息。图1. 超快X射线衍射装置示意图 中国科学院物理研究所/北京凝聚态物理国家研究中心光物理实验室L05组博士研究生朱常青(指导教师为原物理所陈黎明研究员、现上海交通大学物理与天文学院教授),利用L05组的高脉冲能量(100mJ)、低重频(10Hz)激光器,研制了一套飞秒时间分辨的X射线衍射系统。该装置工作在相对论的激光强度(2×1019W/cm2)下,可以有效地激发高Z金属材料的Kα射线,并且能够通过优化X射线多层膜反射镜,进一步提高X射线的聚焦强度。利用该装置对SrCoO2.5薄膜样品的瞬态结构进行了探测,结果表明该装置不仅可以用来分析样品的超快动力学行为,并且和KHz等小能量装置相比对于不同的特殊应用具有高度的灵活性。该装置有望将来在物理、化学和生物领域的超快动力学探测方面发挥重要作用。图2. 在光泵浦下超快X射线衍射信号随延时的变化:(a)泵浦光作用20ps后劳厄衍射斑的角移;(b)不同的泵浦-探针延时,所对应的光致拉伸度。 相关成果以“快速通讯”的形式发表于最近的Chinese Physics B上,并被选为该期的亮点文章。这也是该团队利用激光超快X射线源在成像和衍射应用方面,最新获得的创新成果。前序成果包括Rev. Sci. Instrum. 85 113304 (2014)、Chin. Phys. B 24 108701 (2015)等。文章链接:http://www.iop.cas.cn/xwzx/kydt/202110/P020211011413338249349.pdf我们提供专业、细致的技术论证只选取最优方案众星联恒作为德国Incoatec公司在中国的授权总代理,很荣幸为该超快X射线衍射装置提供了Montel多层膜镜片。在基于激光驱动的超快X射线衍射实验中,如何提升样品端的光通量?如何获得低发散角的单色光束?如何抑制飞秒脉冲的时间展宽?又如何能同时兼顾以上的实验要求?...... 这些都是需要考虑的问题。所以在实验前期,我们的技术团队与该小组成员就这些问题进行了深入的交流与探讨,详细的对比了四种常见(弯晶、多层膜镜、多毛细管和单毛细管)的光学组件和激光驱动X射线源的耦合效果,由于多层膜聚焦镜,单色性好、时间展宽较小、有效立体角大、Kα输出通量高的特点,最后选取了Montel multilayer mirror用于收集并聚焦Cu-alpha射线的技术方案。关于Montel的详细介绍可参考我们之前的文章:X射线多层膜在静态和超快X射线衍射中的应用。我们提供贴心、本地化的售后服务解决用户后顾之忧我们的售后工程师均为接受过原厂深度培训,经原厂认证的专业技术团队,为国内用户提供贴心、本地化的安装调试服务,同时在后期使用过程中提供持续的技术支持,为用户的实验保驾护航,解决用户的后顾之忧。此次我们也有幸参与,与用户就Montel多层膜镜片的安装、调试及与X射线源耦合进行了交流探讨,并与用户一起完成了镜片与光源的耦合。在这个过程中不仅进一步强化了我们售后工程师针对特定用户实验场景的镜片调试与耦合能力,也体会到了作为科研人的快乐。图3 我司售后工程师正在调试 Montel 多层膜镜片众星X射线实验平台等你来联在专业、敬业、拼搏的理念指导下,不断进取学习,时刻关注顶尖科学领域的发展和创新,北京众星联恒科技有限公司一直致力于引进高端的EUV/SXR/X射线产品、及新孵化高新技术产品给中国的同步辐射,研究所,高校及高端制造业的客户。作为制造商与中国科研用户的桥梁,我们尊重知识产权、接纳不同的文化习俗、信仰专业技术,在和制造商和用户的沟通中不间断在提升自己的技术能力,以给用户提供最优的产品及技术方案和快捷、专业的本地化服务。为了更好地为客户服务,满足客户试用需要,为客户提供更直观更专业的售前演示,众星正在搭建我们自己的X射线实验室(新实验室即将落成:众星联恒研发中心落户电子科大科技园 ),目前配备多台X射线源、各种光学镜片及探测器。可以实现X射线衍射,荧光及成像等多种实验配置。如果您有感兴趣的产品想体验产品性能如果你目前暂时没有经费支撑,想免费借用我们的产品如果您有新的idea想与我们共同实现如果你想加入我们以上所有请不要犹豫马上联系我们
  • 每秒4万亿帧 我科学家用超快摄像机捕获光的运动
    p  西安交通大学电信学部陈烽教授团队与香港城市大学王立代博士团队合作,提出一种全新“压缩超快时间光谱成像术”(简称超快压缩成像),在帧率、帧数和精细光谱成像等方面突破了现有超快成像技术的局限,成功捕获到光子的运动。相关成果近日发表在《物理评论快报》上。/pp  西安交大科研人员提出的这种新型的超快成像技术是探知各种未知瞬态过程的一项关键核心技术,如化学反应过程中原子的运动、超短激光脉冲作用材料时发生的瞬态非线性过程等。超快压缩成像通过对飞秒激光进行数字编码,并在时间和光谱维度上进行压缩和解压缩,从而能够同时实现高速度、高帧数以及高光谱分辨率。超快压缩成像的超高帧率可以达到3.85THz(1THz=1012Hz),和亚纳米级超高光谱分辨率。研究人员通过这种超快压缩成像技术实时记录了飞秒激光脉冲的传播、反射以及自聚焦等持续时间达到33皮秒的超快物理过程。/pp  超快压缩成像的基本原理是飞秒激光时间—光谱相互耦合原理,它的实现主要是通过3个关键步骤,首先是利用飞秒激光丰富的频率成分,通过色散将不同的波长在时域上拉伸,形成一个叫做“啁啾脉冲”的高速时间序列。第二步是这个拉伸的时间序列与测量的瞬态过程进行相互作用。这样,不同的波长成分就可以记录超快过程不同的时间信息。进而对这一时间序列进行二维的空间编码,并利用色散将不同的光谱信息压缩在一个二维平面上并采用CCD采集,最终利用算法将一幅二维的CCD图像重建成具有空间和时间维度的多幅超快图像。/pp  该成果使得长时间、宽光谱地记录飞秒影像成为可能,将推动更多涉及超快过程的极端物理、化学、材料和生物学的研究。/pp  此外,《自然》(Nature)以研究亮点(Research Highlights)形式对该研究成果进行了专题报道,文章标题为《4万亿帧每秒的速度去捕捉光的运动》。同时,美国物理学会官网《APS物理》(APS Physics)也做了焦点专题报道,文章标题为《聚焦:4万亿帧频的电影》。西安交通大学与香港城市大学联合培养博士生陆宇为本文第一作者,西安交通大学陈烽教授和香港城市大学王立代博士为本文共同通讯作者。西安交通大学是本文第一作者单位。/pp  《自然》报道链接:/pp  https://www.nature.com/articles/d41586-019-01625-5/pp  美国物理学会官网《APS 物理》报道链接:/pp  https://physics.aps.org/articles/v12/55/pp  《物理评论快报》原文链接:            /pp  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.193904/pp /p
  • 物理所在光激发VO2超快电子相变和结构相变的动力学解耦研究中取
    二氧化钒(VO2)是一种典型的强关联材料。在温度约为340K时,VO2会经历从绝缘性单斜相(M1-VO2)到金属性金红石相(R-VO2)的一级相变过程。强关联材料中电荷、晶格、轨道和自旋等自由度强烈地耦合在一起,这使得VO2绝缘体-金属相变存在多种相变机制。超快激光脉冲通过激发固体材料的价电子可以快速改变原子的势能面,因此激光辐射已经成为一种诱导强关联材料相变的有效途径,比如激光辐射可以使M1-VO2在500fs内发生非热的结构相变。但是实验上通常很难直接同时观测结构相变和绝缘体-金属相变中的超快原子和电子动力学,因此对于VO2的超快结构相变和绝缘体-金属相变的相变机制,以及两种相变能否脱耦仍然存在巨大争议。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员利用自主开发的激发态动力学模拟软件TDAP,研究了激光诱导M1-VO2到R-VO2的超快结构相变和绝缘体-金属相变,揭示了超快尺度上的非平衡相变机制。激发态动力学模拟可以追踪光诱导VO2结构相变和绝缘体-金属相变的超快过程,直接证明飞秒尺度上两种相变的解耦合行为。在这种动力学过程中,激光将M1-VO2 d||带上的价电子激发到导带上,d||带上产生的空穴可以引起V-V对的扩张和V-V-V扭转角的增加,从而驱动M1-VO2到R-VO2的结构相变(图1、图2)。计算模拟得到的结构相变速率与激发强度的依赖关系,与超快实验数据符合得很好。基于杂化密度泛函的激发态动力学模拟证明了在M1-VO2构型下可以出现等同结构的绝缘体-金属相变(图3)。M1-VO2中的空穴会引起间隙能级在带隙中的填充,从而引起带隙的消失。更高强度的光激发可以引起d||带的明显上移。模拟得到的结构相变和绝缘体-金属相变的激发阈值基本上是相同的,而结构相变和电子相变存在着数百飞秒的时间延迟,这导致了金属型M1-VO2瞬态和等同结构电子相变的出现(图4)。该工作揭示了VO2超快结构相变和绝缘体-金属相变过程中不同的超快机制,澄清了以往对于VO2是否存在等同原子结构的电子相变的争议,并提供了研究强关联材料非平衡动力学的新方法。相关成果近期发表在Science Advances上。研究工作受到国家重点研发计划、国家自然科学基金委和中科院的资助。图1 VO2原子结构图和光激发电子跃迁过程。(A)低温绝缘型M1-VO2和(B)高温金属型R-VO2的原子结构图。钒原子和氧原子分别以绿色和橙色显示。(C)脉冲电场强度E0为0.20 V/的800nm激光脉冲,以及其激发M1-VO2中的光生空穴密度随时间的演变。(D)光激发有效空穴密度与激光脉冲电场强度E0的关系。图2 光激发M1-VO2到R-VO2相变原子动力学。(A)不同激发强度下V-V长键和V-V短键平均长度的时间演变。(B)不同激发强度下平均V-V-V扭曲角的时间演化。(C)0.64 e/f.u激发强度下的差分电荷密度图。黄色区域对应于电子增加,青色区域对应于电子减少。(D)光激发结构相变时间常数与实验数据的比较。图3 光激发M1-VO2的电子动力学。(A)不同激发强度下M1-VO2的电子态密度。(B)杂化泛函非绝热模拟中电子激发量的演化。在E0=0.14 V/ 下t= 20 fs(C)和t = 40 fs(D)时的电子占据和态密度。图4 光诱导M1-VO2超快相变示意图。初始的绝缘相M1-VO2(t = -100 fs)在t = 0 fs时被激光脉冲激发。光激发诱导M1-VO2发生等同原子结构的绝缘体-金属相变(10 fs内),而结构相变在100至300 fs的时间尺度内发生。
  • 超快光谱用于拓扑材料高压超快动力学研究
    近期,中科院合肥研究院固体所计算物理与量子材料研究部与广东大湾区空天信息研究院、中科院合肥研究院强磁场中心等团队合作,研究了高压下拓扑绝缘体 Sb2Te3 的电子和声子动力学,探索了压力对该材料电声耦合强度、相干声子以及热声子瓶颈等的影响。 相关结果发表在 Physical Review B 上,固体所博士后张凯为论文第一作者,苏付海研究员为通讯作者。超快光谱可以飞秒时间分辨率记录激发态演化过程,进而获得热电子冷却、电声子耦合、相干声子激发等动力学信息;金刚石对顶砧高压技术可连续调控材料的晶格和电子结构,实现不同量子态的抑制或诱导。超快光谱和金刚石对顶砧相结合,对于探寻和理解高压下电子拓扑相变、金属-绝缘体转变等重要物理现象和机制具有重要意义。近年来,固体所计算物理与量子材料研究部研究人员已研制出基于飞秒激光的近红外至太赫兹波段高压超快光谱系统,并利用该技术在石墨烯、砷化镓等材料的热电子动力学压力调控方面取得了一定进展 (Appl. Phys. Lett. 117, 101105 (2020);Phys. Rev. Lett. 126, 027402 (2021);Optics Express, 29, 14058 (2021))。在此基础之上,研究团队以经典拓扑绝缘体Sb2Te3为研究对象,着重探究电子拓扑转变过程中的超快动力学效应。借助高压下飞秒泵浦-探测光谱,测量了不同压力下瞬态反射光谱,获得了Sb2Te3的热电子弛豫时间、相干声学声子寿命等参数和压力的关系,并观察到伴随电子拓扑转变的热声子瓶颈压制效应(图1)。结合理论计算,发现其电子能态密度在电子拓扑转变之上迅速增大,从而为热电子和热声子提供更多的弛豫通道,有效提高电声耦合强度,减弱热声子瓶颈效应。由于超快光谱可探测偏离费米面或能带极值点的高能载流子弛豫过程,反映电子和声子结构的色散细节以及高频光学声子相关的电声子耦合,因而高压超快光谱能够清晰直观地表征材料的电子拓扑及晶体结构转变(图2)。该研究首次揭示了高压下Sb2Te3材料在电子拓扑转变及晶格结构相变过程中的非平衡态电子和声子动力学,深化了对该体系材料中电声子相互作用的理解,为高压下拓扑相变探测开辟了新途径。该工作得到了国家青年基金项目、面上项目和基金委国家重大科研仪器研制项目等的支持。文章链接:https://doi.org/10.1103/PhysRevB.105.195109。 图1. 不同压力下的Sb2Te3的飞秒泵浦-探测反射光谱以及相干声子寿命、快时间、热声子瓶颈效应随压力的变化趋势图2. 不同压力下Sb2Te3的飞秒泵浦-探测反射光谱。
  • 微型激光测振仪在超声领域的应用
    微型激光测振仪在超声领域的应用最近几年,超声技术在各个领域的应用越来越多,比如利用超声波原理进行医学治疗的设备也在临床实践中被广泛应用。医学超声设备主要是基于高频振动波(超声波)传入人体组织,并在局部产生热效应、机械效应和空化效应,引起目标组织的改变,从而达到治疗的目的。昊量光电全新推出的微型激光测振仪是一种非接触式的振动测量仪器,能够精确测试医学超声设备的超声振动特性和模态,在产品的研发、质检和性能优化过程中起到了至关重要的作用。激光测振仪在医学超声领域的应用具有如下优势:1、激光聚焦光斑小、空间分辨率高,能够快速定位并测量超声手术刀、洁牙器等小尺寸超声器件;2、采用非接触式的测量方法,高效便捷,可以快速检测产线上的超声设备性能,确保产品一致性,甚至可以检测超声设备在工作状态下的超声波输出特性,更加真实地反映设备的实际使用性能;3、超声检测带宽大,最高可检测5MHz左右的高频超声,同时能满足20pm以下的微弱振动分辨率要求,检测精度极高;4、集成式光学自研芯片,无需额外控制器,体积小巧使得安装测试变得更加便捷,提高测量精准性!一、 超声换能器测振超声换能器是一种将电磁能转化为机械能(声能)的装置,通常由压电陶瓷或其它磁致伸缩材料制成,常见的超声波清洗器、超声雾化器、B超探头等都是超声换能器的应用实例。针对超声领域应用需求,昊量光电全新推出了一套完整的台架式超声振动测量仪。作为这款测量仪核心部件的激光传感器,利用了集成光学技术将原有复杂光学元器件集成于微小芯片中,结合具有自主知识产权的调频连续波(FMCW)相干光检测原理,以小型集成化的设计模式,实现了传统复杂大型设备的测量能力。测试:20kHz 频率功率换能器,工作距离:375px振动图谱:在换能器在各个位置的测量结果。当换能器频率在 Mhz 附近时,幅度测量对测量精度的要求大大提高。结果显示,昊量测振传感器能很好的分辨振幅的实时波形,得到 nm 级的测量精度。二、 超声手术刀超声手术刀是一种通过激发20 kHz~60 kHz 超声振动的金属探头(刀头),对生物组织进行切割、消融、止血、破碎或去除的外科手术仪器。超声手术刀的工作性能一般与刀头的超声输出功率、频率直接相关,因此对刀头的超声特性探测至关重要。超声手术刀的刀头尺寸一般为5-10 mm,这种小尺寸结构很难采用接触式传感器测量其超声特性,而激光测振仪则可以轻松将激光聚焦到刀头位置,精确测量超声振幅与频率。三、 超声洁牙器 超声洁牙器主要工作原理是:将高频振荡信号作用于超声换能器,利用逆压电效应(或磁致伸缩效应)产生超声振动并传递至工作尖,工作尖受到激励产生共振,利用工作尖的超声波共振可以将牙齿表面的菌斑、结石或牙周表面的细菌等清除。依据我国医药行业标准(YY 0460-2009)和国际电工委员会标准(IEC 61205:1993),超声洁牙器工作尖的超声输出特性是重要的检测指标。常规超声洁牙器工作尖振动频率主要设计范围在18 kHz~60 kHz,其中以42 kHz工作频率最为常见。同时工作尖尺寸往往较小(<1mm),无法采用传统的接触式振动传感器进行检测。因此,对于超声洁牙器振动性能的检测,通常采用激光测振仪完成,其非接触式的检测方式便于开展产线上产品的逐个检测,是产品良率和一致性的有力保障。某品牌的洁牙器尖端测振四、 超声焊接 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。五.技术参数介绍昊量光电全新推出的微型超声测振仪光学元件集成化可以实现更加复杂的设计和更多的功能。集成光学芯片可以在一个单一的光学基底上包含数十到数百个光学元件,包括激光器、调制器、光电探测器和滤波器等。相对于传统基于分立器件的多普勒测振仪,MV-H以其低功耗、高性能、小型化的优势,为客户带来了低成本、便于集成的解决方案,也为激光振动传感器的广泛应用奠定了基础。1.产品参数指标2.软件功能完善3.丰富的配件可选上海昊量光电作为这款微型超声测振传感器在中国大陆地区蕞大的代理商,为您提供专业的选型以及技术服务。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 美开发出超快纳米级发光二极管
    据美国物理学家组织网11月16日(北京时间)报道,斯坦福大学工程学院的研究团队研发出一种超快的纳米级发光二极管(LED),能够以每秒100亿比特的速度传输数据,并比当前以激光为基础的系统装置能耗更低。研究人员表示,这是为芯片上的计算机数据传输提供超快、低能耗光源的重要步骤。相关研究报告发表在15日出版的《自然通讯》杂志上。  科研人员表示,低能耗的电控光源是下一代光学系统的关键,这能够迎合计算机行业日益增长的能源需求。传统上,工程师认为只有激光才能以极高的数据传输速率和超低能耗进行通讯。而此次研发的单一模式LED能发射单一波长的光,与激光十分相似,能像激光一样执行相同任务,且消耗的能量更低。  研究人员在新装置的中心,插入了若干座砷化铟“小岛”。当电脉冲通过时,它们能产生光。这些“小岛”的周围包裹着光子晶体(在半导体上蚀刻的微孔阵列),能像镜子一般将光线弹射聚集至装置的中央,使它们囚禁于LED内,并被迫按单一频率产生共鸣,从而形成单模光。  现有设备基本是由激光发光器与外部调制器两个装置构成。两种装置都需要消耗电力,而新款二极管将发光器和调制器的功能整合到一个装置内,大大降低了耗能量。科学家表示,新款设备可达到目前最高效设备能源效率的2000倍至4000倍。平均而言,新款LED装置能以每比特0.25飞焦(10-15焦耳)的耗能量传输数据,而当下典型的低能耗激光设备也需要消耗500飞焦来传输单个比特,其他技术则耗能更多。
  • 捕捉“最短”瞬间 超快光谱让微观世界越来越清晰 ——第十三届光谱网络会议超快光谱报告推荐
    人类一直在追求捕捉物体运动更快的画面,比如骏马疾驰,一直是令人赞叹的画面。然而,由于骏马奔跑时的速度实在太快,人类用肉眼很难捕捉到清晰的画面;再比如,一只小小的蜂鸟每秒可以拍打翅膀80次,然而对于人类来说只能感觉到嗡嗡的声音和模糊的翅膀动作…人类一直在探索自然界的瞬态过程,陆续达到毫秒量级、微秒量级、纳秒量级、皮秒和飞秒的时间分辨。纳秒量级约等于10的负9次方秒,皮秒约等于10的负12次方秒,飞秒等于10的负15次方秒。其中,观测分子的转动和振动过程、电子从激发态回到基态的弛豫过程,就需要皮秒到飞秒量级的时间分辨。更进一步,要观察电子甚至原子核内的运动过程,就需要时间分辨率进一步达到阿秒(10的负18次方级秒),甚至仄秒(相当于10的负21次方级秒)。回顾历史,诺贝尔奖的赋予更是加持了科学家对其的热爱。1999年,诺贝尔化学奖颁发给了致力于时间分辨率上的超快光谱探测技术的科学家;2023年,诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶三位科学家,以表彰他们在阿秒光脉冲方面作出的贡献。在阿秒研究中,我国科学家也取得了重大进展。据悉,2013年,中国科学院物理研究所魏志义课题组实现了160 as孤立阿秒脉冲测量实验结果,这是我国在阿秒科学领域的重大突破。随后,华中科技大学、国防科技大学和中国科学院西安光学精密机械研究所的研究团队也先后实现了阿秒激光脉冲的产生和测量……据了解,阿秒脉冲光技术是人类目前所掌握最快的时间尺度。它就像一把尺子,尺子刻度越细,可测量的精度就越精细。更重要的是,这为超快光谱探测技术提供了新的时间分辨率——依靠更快的速度,人类可以观测定格到更加清晰细小的微观世界。而所谓超快光谱探测技术,就是指利用脉冲激光器对样品进行激光刺激,并用激光对刺激后的样品进行探测,以研究样品在极短时间内的光物理、光化学和光生物反应的一种方法。超快光谱探测技术将人类自然科学的研究带入了一个更快的世界,已经成为研究物质激发态能级结构及弛豫过程的强有力工具,是研究反应动力学的科研利器,该测试技术近年在Nature、Science等国际顶刊上频频出现,已成为热点话题。那么,超快光谱目前的发展情况如何?可以解决哪些关键问题?有哪些最新的研究成果?2024年7月16-19日,由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国科学院物理研究所、中国遥感应用协会高光谱专业委员会、南通长三角智能感知研究院等协办的“第十三届光谱网络会议, 简称iCS2024”将拉开帷幕。会议期间,多位超快光谱相关专家将在云端开讲,超快光谱相关仪器技术及前沿应用不容错过。立即报名》》》中国科学院物理所 魏志义 研究员《超快激光及应用》(2024年7月16日开讲 点击报名)魏志义,中国科学院物理研究所研究员。1991年4月于中科院西安光机所获得博士毕业,1991年至1997年中山大学博士后并出站后留校工作。1997年5月调入中国科学院物理研究所,1999年晋升研究员。长期致力于超快激光技术及应用研究,曾先后在英国、香港、荷兰、日本等国家和地区合作研究,多项成果打破世界纪录,率先在国内开展了光学频率梳研究,首次在国内产生阿秒脉冲。迄今发表SCI论文400余篇,授权发明专利30余项,国际会议邀请报告100多次,作为第一完成人获国家技术发明二等奖(2018)及中国科学院科技进步二等奖(2000)、科技促进二等奖(2014)等奖项。是中国科学院青年科学家奖(2001)、国家杰出青年基金(2002)、胡刚复物理奖(2011)获得者。因在超高强度飞秒激光、超快光子学等研究方面的重要贡献,先后当选美国光学学会fellow及中国光学学会、中国光学工程学会会士。华东师范大学精密光谱科学与技术国家重点实验室 陈缙泉 教授《利用时间分辨手性光谱表征伴随激发态电子和能量传递过程中的手性产生和放大过程》(2024年7月17日上午开讲 点击报名)陈缙泉教授,本科毕业于南京大学,博士毕业于Ohio State University,毕业后分别在Montana State University 和Emory University开展博士后工作,2015年加入华东师范大学精密光谱科学与技术国家重点实验室。主要研究方向是发展高灵敏的多维时间分辨瞬态光谱技术,利用该技术研究生物大分子与功能染料分子中激发态动力学过程,重点关注分子体系中电荷/能量转移、系间穿越、电子自旋轨道耦合等过程的关联和相关过程的调控,并开发和设计新型的光动力学疗法药物,近年来工作已在 Science, Journal of the American Chemical Society, Angewandte Chemie International Edition, Chem等国际一流期刊发表,目前共发表论文130余篇。近5年主持了多项国家基金委面上项目和国家自然科学基金重大研发计划重点项目,入选2016年国家高层次人才计划,2019年上海市青年科技启明星计划。【摘要】手性的产生、传递和放大可视为手性物质与外界的一种能量交换方式,该方式一方面直接受其构型或构象影响,另一方面又与电子自旋翻转、电-磁场相互作用、电子/能量转移等物理过程息息相关。对于手性产生、传递、放大和调控的物理机制和规律的研究正由传统的宏观稳态层面深入到新兴的微观瞬态层面,理论研究还有待深入,实验研究还有待突破。为了解析分子和超分子体系中手性的产生和传递机理,该课题组研发了飞秒时间分辨圆二色吸收光谱(fs-TRCD)和飞秒-纳秒圆偏振发射光谱(TR-CPL)技术,实现了分子体系激发态手性产生和传递过程的精密测量。基于实验结果,发现和总结了分辨分子体系基态和激发态手性的光谱学方法,并阐明了不同分子体系中CPL产生和传递的物理机制,为后续多层次手性分子材料的精准构筑奠定了理论基础。中国科学院物理研究所 陈海龙 研究员《飞秒宽带瞬态荧光光谱仪及其应用》(2024年7月17日上午开讲 点击报名)陈海龙,中国科学院物理研究所研究员,博士生导师。2006年本科毕业于北京大学物理学院,2011年于中科院物理研究所获得光学博士学位,随后进入美国莱斯大学化学系从事博士后研究。2016年加入中科院物理研究所软物质物理实验室任副研究员,2022年起任中科院物理研究所研究员。主要研究方向为发展和建立多种先进超快光谱技术,并用以探索各类低维光电材料、纳米半导体光催化材料以及光合膜蛋白等体系内各种超快光转换动力学过程。在国际/国内核心期刊上发表论文100余篇。【摘要】基于非共线光参量放大原理的飞秒时间分辨瞬态荧光光谱仪具备高时间分辨、高增益、宽测量带宽以及低探测极限等诸多优点,是研究各类光化学及光物理等超快动力学过程的一个重要测量手段。参量超荧光环(即真空量子噪声参量放大信号)的强度涨落是非共线光参量放大飞秒瞬态荧光光谱仪的主要噪声来源,并因此极大限制其对微弱瞬态荧光信号的检测能力。他们将传统的荧光点状非共线光参量放大的光学构型升级为环状的锥形参量放大构型,即利用整个参量荧光环进行荧光放大。基于量子噪声涨落空间独立性的特点,新的光学构型可以将量子噪声进行全环空间平均以极大提高瞬态荧光光谱测量的信噪比。利用此技术,他们实现了对叶绿素分子激发态以及多种光合蛋白体系瞬态荧光光谱的实验观测,并以此揭示了其中的能量转移、电荷分离、振动冷却等多种超快动力学过程。振电(苏州)医疗科技有限公司 首席执行官/CEO 王璞 《超高灵敏瞬态吸收在分子互作上的应用》(2024年7月17日上午开讲 点击报名)王璞,博士,现任北京航空航天大学生物与医学工程学院特聘教授、生物医学高精尖中心研究员,博士生导师,入选第十四批国家海外青年人才项目。王璞本科毕业于复旦大学物理系,2009-2014年博士就读于普渡大学生物医学工程学院,师从于非线性成像专家程继新教授。博士期间主要工作是生物光子学医疗器械的开发以及非线性显微镜的开发与应用。已发表SCI论文20余篇,专利5项。王璞以第一或通讯作者在Nature Photonics,Science Advances,Light:Science & Applications, Nano letters等领域内一流期刊均有发表。王璞曾主持开展多项美国小企业创新奖励基金(SBIR/STTR award),并代领团队完成多项科研转化工作。其中包括相干拉曼显微镜的产业化,光声成像在乳腺以及心血管的器械转化等等。目前王璞教授主要研究工作为非线性拉曼显微镜的开发以及在先进材料、单细胞代谢的表征方案,以及光致超声器件在生物医学中的应用。同时担任振电(苏州)医疗科技有限公司CEO,致力于开发推广最先进的分子光谱成像技术。【摘要】蛋白分子互作检测是研究蛋白质与其它分子之间相互作用的一系列技术和方法。这些方法能够揭示适体分子如何结合并影响蛋白质。微尺度热泳(MST)是一种基于热泳现象的溶液中分子亲和性定量检测方法,通常所需样本量小,检测通量大,速度快,且样品处理步骤简单,但依赖于荧光标记或蛋白自发荧光来检测温度梯度下的浓度变化。中国人民大学化学与生命资源学院讲师王豪毅 博士《时间分辨光谱助力光合作用三重态光保护研究》(2024年7月17日上午开讲 点击报名)王豪毅,2013年于华东理工大学获得理学学士学位,2018年于中国人民大学获得理学博士学位。2018-2020年于中国科学院物理研究所从事博士后研究工作,2021-2023年于中国人民大学从事博士后研究工作,2023年任职中国人民大学化学与生命资源学院。主要从事自然光合作用体系超快激发态动力学行为,人工光合体系光电转换机理研究,关注超快激光光谱技术和方法。【摘要】光合作用是地球生命体中最为重要的生物化学反应,从微观层面揭示高效光合作用的物化反应机制,是光转换领域的重要课题。高等植物和藻类光合作用体系中捕光复合物II(LHCII)三聚体在猝灭过剩能量过程中扮演重要角色,其中的核心色素分子为叶绿素和类胡萝卜素。叶绿素单重态(1Chl*)经系间窜越转换到叶绿素三重态(3Chl*)的量子效率高于60%,而3Chl*敏化产生单线态氧1O2的效率接近于100%。所以,通过3Chl*向类胡萝卜素分子(Car)传能成为高等植物和藻类重要的光保护策略。本报告将讲解时间分辨光谱助力光合体系3Chl*特征的观测结果,此部分3Chl*会被O2猝灭形成活性氧物种(ROS),而此类ROS可作为生物适应性进化的信号分子而发挥正向作用。进一步揭示高等植物菠菜与海洋绿藻假根羽藻中,蛋白结构、色素组成与相应类胡萝卜素三重态3Car*猝灭性质的内在关联,并深入探究了相应3Car*猝灭受O2可及性的影响。为进一步认识3Car*光保护机制并深入理解光合生物光保护生理功能提供新认识。作为应用最广泛的仪器类别之一,光谱仪器及技术的发展一直备受业界的关注。特别值得一提的是,随着科技的发展,相关光谱新技术、新应用层出不穷,特别是拉曼、近红外、LIBS、太赫兹、高光谱,以及超快光谱、微型光谱等一直备受关注。不仅如此,现场快检、过程监控、实验室高通量分析在实践中的作用也越来越凸显。与此同时,随着大数据时代的到来,光谱技术与人工智能的结合也已经成为推动各行各业发展的强大引擎,开启一个全新的智能光谱时代!可以说,兼具实用和前沿,全球百亿光谱市场酝酿着无限的生机和活力。由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国科学院物理研究所、中国遥感应用协会高光谱专业委员会、南通长三角智能感知研究院等协办的“第十三届光谱网络会议, 简称iCS2024)”将于2024年7月16-19日召开。点击立即报名,免费参会》》》报名链接:https://www.instrument.com.cn/webinar/meetings/ics2024/
  • 超快光谱探测技术:捕捉"最短"瞬间
    10月3日,2023年诺贝尔物理学奖授予皮埃尔阿戈斯蒂尼、费伦茨克劳斯和安妮吕利耶三位科学家,以表彰他们在阿秒光脉冲方面作出的贡献。1阿秒到底有多短呢?举一个例子,我们都知道光速是最快的速度,然而一束光从房间的一端发射到对面的墙壁,时间却“达到”了惊人的100亿阿秒。1阿秒等于10的负18次方秒,是人类目前所掌握的最快的时间尺度。它就像一把尺子,尺子刻度越细,测量的精度就越精细。更重要的是,这为超快光谱探测技术提供了新的时间分辨率——依靠更快的速度,人类可以观测定格到更加清晰细小的微观世界。什么是超快光谱探测技术?超快光谱探测技术是怎么定格到微小世界的?未来又有哪些应用前景?今天,让我们共同关注。超快光谱探测技术应用原理示意图从“骏马在奔驰中是否四脚离地”说起关于人类第一次利用光学成像技术解决问题,要从“骏马在奔驰中是否四脚离地”说起。人们喜欢看骏马疾驰时的样子,然而,由于骏马奔跑时的速度实在太快,人类用肉眼很难捕捉到清晰的画面。关于马在奔跑过程中,是否会有四条腿同时离开地面的争论也一直都存在。直至1878年6月11日,英国摄影师艾德沃德迈布里奇开创了一种全新的拍摄方式。他在骏马的奔跑轨迹上连续设置了12组相连的相机装置,同时将地雷触发线连到相机快门上。当马蹄触及地面上的触发线时,相机快门就会被连续触发,从而获得一系列连续的照片。这种方法将马蹄的运动在多张照片中分解展现出来。最后,照片呈现的结果显示,马在奔跑时确实会四脚离地。这个创举改变了人类观察世界的方式,也引领了科学界对时间分辨能力的追问:如果未来拍摄比马移动更快的物体要怎么办?人类一直在追求捕捉物体运动更快的画面。后来,随着对自然界瞬态过程的不断探索,人类陆续达到毫秒量级、微秒量级、纳秒量级、皮秒量级和飞秒量级的时间分辨率。1999年,诺贝尔化学奖颁发给了致力于时间分辨率上的超快光谱探测技术的科学家。超快光谱探测技术将人类自然科学的研究带入了一个更快的世界。时至今日,超快光谱探测技术已经成为研究物质微观粒子动力学最重要的技术。所谓超快光谱探测技术,是指利用脉冲激光器对样品进行激光刺激,并用激光对刺激后的样品进行探测,以研究样品在极短时间内的光物理、光化学和光生物反应的一种方法。通俗地来比喻,超快光谱探测技术类似超快摄像机一样,让人们能够通过一帧一帧的“慢动作”观察处于化学反应过程中原子与分子的转变状态。目前,超快光谱探测技术主要依赖于飞秒激光,其优点在于能够瞬间获得样品状态,具有快速、高灵敏度、高分辨率的特点。通常情况下,激光的波长为可见光范围内的波长,使用时需要特别注意光能量对样品的影响。现如今,正在积极发展的新一代基于泵浦-探测技术的超快光谱探测技术,具备前所未有的时间分辨率,可以将超快成像的观测范围压缩到飞秒甚至阿秒的尺度。这意味着能在短短一秒钟内拍摄远超亿计的照片。在这极短的时间尺度下,即使光的速度也几乎“凝固”不动,仅能传播不到百万分之一米的距离。在这个基础上,一些瞬时的现象,往常难以被常规技术手段观测到的奥秘,如化学键的形成、量子隧穿、强关联物理等,将在这些高时间分辨率的成像中得以清晰呈现。超快光谱探测技术的出现,将极大地拓展我们对事物运行机制的认知。通过这种技术,我们有望揭示出许多过去被掩盖的现象和过程,这可能会催生出更多新的科学发现,甚至可能开创出全新的领域,为人类社会带来更多的创新和进步。揭示微观世界的奥秘一只小小的蜂鸟每秒可以拍打翅膀80次,然而对于人类来说,只能感觉到嗡嗡的声音和模糊的翅膀动作……对于人类的感官来说,快速的运动会变得模糊。任何测量都必须比目标系统发生明显变化的时间更快,才能得到测量的结果。借助超快光谱探测技术成像,我们得以捕捉到那些转瞬即逝的现象的具体形貌。在拍摄电影和广告中,很多特殊镜头的拍摄都会用到超快光谱高速摄影机,它能用特殊的视角展现出极为丰富的镜头效果,给大家带来更为丰富的视觉冲击。在拍摄荷叶时,我们可以捕捉到荷叶表面的细微纹理,进而分析荷叶超疏水现象背后的奥秘。可以说,超快光谱探测技术涉及人类生活的方方面面,已经被广泛应用于航天、工业和生物医学等诸多领域。在航天领域,超快光谱高速相机可以精确地捕捉航天器点火升空瞬间的所有细节,有助于查找和分析航天器设计中的潜在问题和疏漏。在工业领域,采用超快光谱高速相机观察产品受到冲击时内部的状态,可用来分析产品被破坏时物质的结构。在军事领域中,采用超快光谱高速相机来捕获炸药爆炸、子弹出膛、火箭发射等过程,以及应用于弹道分析、撞击分析、武器机械运动分析等。与此同时,随着物质微观体系的不断发展,人们对微观物质特征和物质本质认识的要求也越来越高。在人类探索和控制物质相关变化的瞬态过程中,超快光谱探测技术为人们探索发现新现象、新物质和阐述相关物理机制提供了重要参考。例如,在分子生物学研究中,可以利用超快光谱探测技术研究DNA、RNA等生物大分子在光激发后的反应过程和动力学过程,用来揭示这些生物大分子的结构和生理机能,对生物医学领域的基因工程等研究具有重要意义。而最新的研究表明,超快光谱探测技术正被看作是量子力学诞生以来,能够在相应时间尺度内探索微观量子性质的“武器”,在研究超导材料的机理及实验依据、非平衡物理及新奇量子态的诱导、量子态的外场调控等方面同样具有重要作用,被科学家们称为与“量子”的经典组合。此外,也有不少新材料在超快光谱探测技术的促进下产生。例如,在钙钛矿太阳能电池等光伏器件中,利用光伏效应收集光能并将其转化为可供日常生活使用的电能。借助超快光谱探测技术记录的光电特性演化过程,可为太阳能电池及光伏器件的设计制备提供指导,大幅改善光电转换效率、提高材料使用寿命。近年来,据《自然》杂志等期刊报道,钙钛矿太阳能电池的效率已超过26%,有望成为继多晶硅之后的新一代太阳能电池核心能源材料。半导体磁性材料、超导体、绝缘体、复杂材料、太阳能电池……人类的好奇心永无止境,相信随着超快光谱探测技术的时间分辨率越来越高,未来将会有越来越多关于微观世界的奥秘被一一发现。向着更快更清晰的未来前进对于超快光谱探测技术当前的研究进展,科研人员表示,该技术会更加注重快速、高效和精准:一方面,时间更快,即在超快的基础上提出更小的时间尺度,以便了解更多分子、原子里的电子的动力学过程;另一方面,空间分辨率更高,以便可以看到事物更小、更加清楚的动态过程。除此之外,也有国内外的科研人员在尝试把超快光谱拓展到不同的波长。例如从X光到太赫兹波甚至微波,以持续推动超快光谱前沿技术的应用拓展。而随着人工智能技术的不断完善,未来人工智能或将与超快光谱探测技术相结合。通过机器学习等方法,科研人员可以更加准确地分析和理解超快光谱数据,从而更好地探索材料和分子之间的微小变化,进一步挖掘出有价值的信息。“虽然超快光谱探测技术当前在科学研究中得到大家的青睐,但未来在其成为一种通用技术的道路上还有许多局限性。”也有不少科研人员指出了超快光谱探测技术现今存在的制约因素,如:采集数据的时间较长,需要专业人员分析数据,激光探测设备成本较高,等等。当前,皮秒甚至飞秒激光探测器费用可高达百万元以上,加上搭建激光探测器、光路和探测仪器等费用,一套仪器设备的投入耗资巨大,这些问题在一定程度上限制了当前超快光谱探测技术更大规模地应用于市场。综上所述,即使有发展局限,但不可否认,超快光谱探测技术已经成为分析化学、生物医学、材料科学等领域中的重要研究手段之一。随着对超快光谱探测技术认识的深入,其应用领域将会进一步扩大和深化。从拍摄骏马奔跑时四腿离地、定格昆虫扇动翅膀的瞬间,到看清子弹出膛的慢动作,再到观测电路中的电流变化,随着超快光谱探测技术的发展,人类定格世界的快门越来越快,看到了越来越清楚的微观世界。我们期待,借助该技术,人类未来能看到并揭示大千世界中更多令人心生好奇、心生向往的美妙瞬间!
  • 精确到纳米!国产高端数字化激光干涉仪冲破超精密测量技术“封锁线”
    南极天文望远镜、空间引力波探测装置、极大规模集成电路制造装备、光刻机… … 这一系列关键装备的加工制造,都需要依靠超高精度的测量仪器对大量光学元件的各项参数进行测量。以往,超精密测量技术受到国外封锁,成为制约高端装备制造发展的瓶颈问题。近日,由上海理工大学光电学院庄松林院士领衔的韩森教授团队与苏州慧利仪器有限责任公司共建联合实验室所研发的国产化高端产品——数字化激光干涉仪进展顺利。据介绍,该项目研究成果技术难度大、创新性强,取得了多项自主知识产权,部分产品填补国内空白,PV值测量等核心指标及相关技术达到国际领先水平。有装备制造的地方就需要精密的测量仪器“简单来说,干涉仪就是将激光分为两束,照射至需要测量的器件上,再汇合产生干涉,从而精确地测量出被测件表面的形貌误差,包括平面、球面、柱面或者自由曲面。”韩森向科技日报记者介绍,数字化干涉检测技术是结合光学干涉测量原理与计算机技术、能够实现纳米精度的非接触式测量技术,是超精密光学计量、国家大科学装置及工程、高端工业检测领域最重要的手段之一。中国装备制造要实现突破,首先要解决制造质量问题,其核心关键就是超精密测量能力。“有装备制造尤其是高端装备制造的地方,就需要精密的测量仪器,国内精密测量仪器不能照搬国外的那一套,我们必须把核心技术掌握在自己手中。”韩森说道。团队针对中国高端检测仪器和技术的需求,系统性地开展了模块化激光干涉仪设计以及应用的关键技术的研究与攻关。他们首先基于模块化设计思路开发了激光干涉仪的核心关键部件和测量软件,形成了多种型号高精密数字化激光干涉仪;接着在满足高精度相对测量基础上提出绝对检测算法和闭环自检技术,使平面面形检测精度提高5倍。在双重身份中缩短创新与市场的距离技术创新到市场,还有多远的路需要走?“最后一公里”是科技成果转化的普遍难题。“早在2018年,上理工就与苏州慧利仪器有限责任公司共建联合实验室,以人为纽带,让高校教授长期深度对接产业,更有利于盘活一系列资源。”韩森表示,在“大学教授”和“创业者”的双重身份下,高校的基础创新与企业的技术实践紧密绑定,提高了科研成果转化率和使用效益。目前,项目成果完成了数字化激光干涉仪的工程化,研制出多种口径的商业化检测仪器,实现“产学研用”的完美结合。相关产品及技术已经在国家计量单位、国家大科学装置及工程、高精密光学机械加工行业等多家企事业单位进行推广应用,有助于提升中国高端检测仪器在市场的占有率,推动高精密检测技术发展。项目团队还参与起草国家行业标准、国家平晶检测规程和数字式球面干涉仪校准规范工作,填补国内空白。项目授权发明专利5项、实用新型专利5项,发表论文10余篇,荣获中国产学研创新成果一等奖、日内瓦发明展特别金奖等多个奖项。
  • 激光雷达、飞秒激光器等超3.2亿中标项目公布
    p  近一个月内,来自高校、科研院所、医疗系统方面近20多家单位发布了激光、光学领域的招标需求,中科煜宸、相干、西南技物所等公司成功中标,中标总金额超3.2亿元。本文根据中国政府采购网公布的信息整理了部分内容,涉及激光成像仪、激光雷达、激光增材制造系统、飞秒激光器、光纤激光器等相关项目。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong中标项目/strong/span/pp style="text-align: center "strong干式激光成像仪/strong/pp  项目编号:HYEZ2J2018007/pp  项目名称:干式激光成像仪采购/pp  总成交金额:6.97 万元(人民币)/pp  采购单位名称:北海市华侨医院/pp  中标单位名称:江西伟晨医疗设备有限公司/pp style="text-align: center "strong密封式同轴送粉激光增材制造系统/strong/pp  项目编号:HBT-15170140-173892/pp  项目名称:武汉理工大学密封式同轴送粉激光增材制造系统采购项目/pp  总成交金额:208.85 万元/pp  采购单位名称:武汉理工大学/pp  中标单位名称:南京中科煜宸激光技术有限公司/pp style="text-align: center "strong原子吸收分光光度计及涡度相关系统/strong/pp  项目编号:CEIECZB03-17ZL144/pp  项目名称:中国农业大学原子吸收分光光度计及涡度相关系统采购项目/pp  中标金额:54.43万元/pp  中标供应商名称、地址及成交金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/25ce729c-a45e-4fbb-a265-ef3a8fa5909a.jpg" title="1.jpg"//pp style="text-align: center "strong大连工业大学信息学院光电实验室建设/strong/pp  项目编号:LNZC20171001868/pp  项目名称:大连工业大学信息学院光电实验室建设采购项目/pp  中标金额:54.18万元/pp  中标单位:大连万慧科技有限公司/pp  主要成交标的:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/873035c3-9e56-4a2c-a688-b42945e1365a.jpg" title="2.jpg"/  br//pcenter/centerp style="text-align: center "strong激光治疗系统/strong/pp  项目编号:Q5300000000617001570/pp  项目名称:昆明医科大学附属医院购置激光治疗系统采购项目/pp  中标金额:129万元/pp  中标供应商名称:贵州邦建医疗科技设备有限公司/pp  主要成交标的:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/0f8ffbb7-027e-4163-97f0-b6dd9e5142f1.jpg" title="3.jpg"//pp style="text-align: center "strong193nm 激光剥蚀进样系统等/strong/pp  项目名称:中国海洋大学/pp  项目名称:193nm激光剥蚀进样系统、多接收质谱仪、高纯锗伽马能谱仪、稳定同位素比质谱仪项目/pp  采购单位名称:中国海洋大学/pp  中标金额:1367.93612 万元/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/daa113be-02fd-4999-ae5c-05022aea1165.jpg" title="4.jpg"/  br//pcenter/centerp style="text-align: center "strong激光雷达项目/strong/pp  项目编号:JXBJ2017-J28802/pp  项目名称:南昌大学空间科学与技术研究院激光雷达采购项目/pp  采购单位:南昌大学/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/eaaf8200-e815-4296-aba6-c8c364d7ec20.jpg" title="5.jpg"//pp style="text-align: center "strong308准分子光治疗系统和激光光子工作站/strong/pp  项目编号:[350823]SHHY[GK]2017015-1/pp  项目名称:上杭县皮肤病防治院关于308准分子光治疗系统和激光光子工作站采购项目/pp  中标金额:169.9万元/pp  中标供应商:厦门海辰天泽仪器有限公司/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5f3b697b-e5bd-4a2f-a5a2-5a4f9971c740.jpg" title="6.jpg"//pp style="text-align: center "strong复杂曲面三维激光扫描系统/strong/pp  项目编号:LNZC20171201441/pp  项目名称:大连交通大学复杂曲面三维激光扫描系统采购项目/pp  中标金额:58.9万元/pp  中标单位:北京金鹰腾飞科技有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/ef6ee20b-870c-456e-a33b-0acb1241b3a4.jpg" title="7.jpg"//pp style="text-align: center "strong双光子激光共聚焦显微镜采购项目/strong/pp  项目编号:中大招(货)[2017]993号/pp  采购单位名称:中山大学/pp  中标金额:489.803430万元/pp  中标供应商名称:广州市诚屹进出口有限公司/pp  中标标的名称、规格型号、数量、单价、服务要求:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201802/insimg/7c940325-292e-43f8-9ee1-f901a38dc68d.jpg" title="8.jpg"/  br//pcenter/centerp style="text-align: center "strong超短强激光微纳制造实验室项目/strong/pp  飞秒激光放大器/pp  项目号:17A51870611-BZ1700401866AH/pp  项目名称:重庆邮电大学超短强激光微纳制造实验室项目飞秒激光放大器采购/pp  中标总金额:145.9万元/pp  中标供应商:相干(北京)商业有限公司/pp  成交产品的规格、型号、单价等:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/c46688d9-2e94-41a4-82ae-89b46c49c880.jpg" title="9.jpg"//pp style="text-align: center "strong便携式高分辨测风激光雷达/strong/pp  项目编号:OITC-G170321151/pp  项目名称:中国科学院大气物理研究所便携式高分辨测风激光雷达采购项目/pp  中标总金额:280.0 万元(人民币)/pp  中标供应商名称:西南技术物理研究所/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/d0c3d441-6015-45d7-ae63-7bef489181d6.jpg" title="10.jpg"//pp style="text-align: center "strong激光共聚焦拉曼光谱仪、数字综合试验箱/strong/pp  项目编号:ZX2017-12-13/pp  项目名称:西安工业大学激光共聚焦拉曼光谱仪、数字综合试验箱等采购项目/pp  中标金额:115.30万元/pp  中标单位:西安共进光电技术有限责任公司/pp  中标标的名称、规格型号、数量:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/1f8a05da-c6b9-4b1b-bcf3-85f56097a554.jpg" title="11.jpg"//pcenter/centerp style="text-align: center "strong激光共聚焦拉曼光谱仪/strong/pp  项目编号:OITC-G17031833/pp  项目名称:中国科学院苏州纳米技术与纳米仿生研究所激光共聚焦拉曼光谱仪采购项目/pp  采购单位名称:中国科学院苏州纳米技术与纳米仿生研究所/pp  总中标金额:155.7781万元/pp  中标供应商:雷尼绍(上海)贸易有限公司/pp  中标供应商名称、联系地址及中标金额:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/5295f90b-a6fc-4eb6-8cde-52eb73be0f2a.jpg" title="12.jpg"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong还有一个招标大单,注意关注哦!/strong/span/pp  招标项目华东师范大学高重复频率宽波段可调谐窄带宽激光器/pp  项目编号:0811-184DSITC0089/pp  项目名称:高重复频率宽波段可调谐窄带宽激光器(第二次)/pp  采购单位:华东师范大学/pp  预算金额:230.0 万元(人民币)/pp  采购内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201802/insimg/fa7045eb-d935-46c0-8ee6-90aff2739943.jpg" title="2018-02-07_091003.jpg"//pp  购买标书时间:2018年01月26日-02月02日/pp  投标截止时间:2018年02月28日/pp  联系方式:冯东海 ,021-62231151/p
  • 赵继民研究员团队成功研制在线原位高压超快泵浦-探测光谱装置
    时间分辨泵浦-探测超快光谱由于其独特的优势(如超高的时间分辨率、费米面以上激发态的观测、相干玻色子激发等),被广泛应用于研究各种凝聚态物理(和其它科学),包括高温超导、复杂相变、多自由度耦合、相干调控、激光诱导新量子态和隐态等。高压技术通过直接改变晶格常数来调节电子能带结构和自旋特性等,提供了一种独特、干净的调控手段,也成为凝聚态物理(和其它科学领域)研究的重要手段。近年来,在上述丰富而深刻的基础科学需求的推动下,人们致力于将超快光谱和高压物理这两个领域结合起来,以研究高压条件下的超快动力学[Chin. Phys. Lett. (Express Letter) 37, 047801 (2020)]。研究挑战主要来自于实验仪器产生数据的可靠性。由于研究超快动力学的实验非常精细,压力变化也容易引起复杂的物理效应,保证仪器装置获取可靠精准的、有可比性的实验数据对于高压超快动力学这个交叉方向的开启和发展至关重要。例如,如果实验过程中将高压装置拿出光路进行加压、调压、校压之后再放回光路,可能会导致位置偏移和样品转动,将会引入人为实验误差,对于泵浦-探测这样的双光束实验的干扰尤为明显(把双光路光谱实验与高压技术相结合面临更多挑战)。从实践看,国内外目前已有的初步尝试,大多获得的是准粒子寿命信息,缺乏可靠的幅值信息,这为研究超快动力学带来了困难,例如量子材料的超导相变、CDW竞争序、拓扑相变等量子物性的标志特征之一是能隙的打开或闭合,能隙的变化直接对应于激发态超快光谱实验中的声子瓶颈效应(phonon-bottleneck effect),确认声子瓶颈效应需要幅值和寿命双方面的信息,仅有寿命信息不足以确认,于是同时获得可靠的幅值和寿命信息对于高压超快动力学这个交叉领域的开启、成型和顺利发展至关重要。这对仪器装置提出两个关键要求:(1)技术层面--研制可靠精准的在线原位(on-site in situ)高压超快泵浦-探测光谱实验装置,(2)标准层面--提出相应的标准描述,同行们在报道实验结果时最好明确是否为在线原位获得的实验数据,以保证学术交流中实验数据有可比性,从而从整体上提高数据的可靠性,减少不必要的人为误差甚至误导。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF05组赵继民研究员及博士后吴艳玲、博士生加孜拉哈赛恩和田珍耘与北京高压科学研究中心丁阳研究员及博士生尹霞合作,成功搭建了一套室温条件下工作的“在线原位(on-site in situ)”的高压超快泵浦-探测光谱装置(图1)。该仪器装置的搭建取得了重要突破:(1)技术方面,实现了on-site in situ 技术,在整个实验过程中高压DAC不拿出光路,在光路中即可加压、调压、校压,完全避免了复位误差(repositioning fluctuation)(图2),最大程度保证了实验过程中样品不发生(控制在CCD监控微调误差范围以内的)移动或转动,避免了实验过程中不必要的人为误差,在实验数据的精准可靠性方面实现了最大化;(2)标准方面,提出了on-site in situ标准描述,如果在文章中明确DAC是否移出及放回了光路,则可在学术交流中提高实验数据的可比性(图3),避免了不必要的对比误差和解读偏差(使用机械臂将DAC移出光路并复位的装置,在最好的情况下等同于在线原位的精度,一般也有可比性)。总之,基于上述两方面仪器研发的突破,研究团队获得了室温下的可靠的幅值和寿命双方面的超快动力学信息,提供了足够丰富和全面的物性信息,为获得量子材料的高压超快动力学、进一步理解复杂相变和高压引起的激发态超快动力学特性提供了可靠的保障。图1. “在线原位(on-site in situ)”高压超快泵浦-探测光谱实验装置原理图。图2. 复位误差(re-positioning fluctuation)若干情形举例:(a)样品有台阶、位错或晶畴边界引起的晶格变化;(b)样品表面有台阶引起的高度差;(c)样品中存在不均匀的掺杂或缺陷分布;(d)样品具有平面内的超结构或复杂晶格结构;(e)样品有转动,且动力学对晶格方向很敏感。图3. 采用“在线原位(on-site in situ)”超快实验装置和“非在线原位(off-site in situ)”超快实验装置对相同实验观测到的不同超快光谱实验数据之间的对比。其中(b)图与(c)图:在off-site实验中只看到一个变化特征,经过on-site条件的实验能够观测到两个变化特征,分别对应两个不同的物理特性(包括声子瓶颈效应及相变等)。相关工作近期发表在Review of Scientific Instruments上,获得了科技部国家重点研发计划、国家自然科学基金委、中国科学院创新交叉团队、中国科学院对外合作重点项目、中国科学院先导专项、北京市自然科学基金重点项目的支持。相关工作链接:[1] Y. L. Wu, X. Yin, J. Z. L. Hasaien, Z. Y. Tian, Y. Ding, and Jimin Zhao, On-site in situ high-pressure ultrafast pump–probe spectroscopy instrument, Review of Scientific Instruments 92, 113002 (2021).https://doi.org/10.1063/5.0064071
  • 亚赫兹激光器与超窄线宽测量技术
    成果名称亚赫兹激光器与超窄线宽测量技术单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:超窄线宽激光是光通信、光传感、高精度光谱学等应用中的一个关键技术,也是一些基本物理参数测量的重要工具,而超窄激光线宽测量是实现超窄线宽激光器所必需的辅助技术。在&ldquo 仪器创制与关键技术研发&rdquo 基金第三期项目中,北京大学信息学院李正斌教授申请的&ldquo 亚赫兹激光器与超窄线宽测量技术研制&rdquo 项目提出并研究了一种获得窄线宽激光器的新机制,即光路分形结构机制。课题组前期的实验发现,在单环有源光纤谐振腔中引入光路分形结构能够获得类似多谐振环耦合的特性,与相同长度的光纤谐振腔相比,其输出激光线宽明显变窄。基于这一发现,课题组在第三期基金的经费资助下,开展了深入的研制工作。其工作主要包括:(1)以理论与实验相结合为手段,以光纤结构为对象,探索利用光路分形结构设计和实现单纵模输出、高频率稳定、线宽赫兹(Hz)以下量级的超窄线宽激光器的原理和方法,并获得原理样机;(2)利用互拍以及光域鉴频的技术设计并搭建超窄线宽激光器的测试平台,实现赫兹(Hz)以下量级超激光线宽的测量。应用前景:目前,该项目主要工作已经顺利完成,项目成功通过验收。其研究成果为获得超窄线宽激光器提供新途径,也为光通信、光传感等研究和应用提供了新的手段,相关技术处于成果转化阶段。
  • 首块激光器和光栅集成的硅芯片问世
    据美国物理学家组织网8月10日(北京时间)报道,新加坡数据存储研究所的魏永强(音译)和同事首次构建出一种由一个激光器和一个光栅集成的新型硅芯片,其中的光栅能让光变得更强并确保激光器输出1500纳米左右波长的光,而通讯设备标准的操作波长正是1500纳米。  光纤在传输数据时需要让不同波长的激光束同时通过,但这些不同波长的光波容易相互串扰,因此需要对激光器进行精确谐调,让其发出特定波长的光以避免这种串扰。使用光栅可以解决这个问题。  科学家们之前使用传统方法试图将一个激光器和一个光栅集成于一块硅芯片中,但都没有获得成功。激光器一般由几层半导体薄层构成,而光栅则由硅蚀刻而成,所有的材料都必须精确地对齐。传统的方法是,将激光器和光栅种植于一块独立的半导体芯片上,整个过程大约需要50多步,而且要求硅晶表面的粗糙度非常低,小于0.3纳米。  在新硅芯片中,激光器置于一面镜子和一个弯曲的光栅之间。光栅就像一块具有选择能力的镜子,仅仅将某一特定波长的光反射回激光器中,这样就制造出了一个光共振腔,使激光活动只针对特定波长,因此提供了通讯领域要求的精确性。  魏永强对这款新芯片进行测试后发现,其性能优异,发出光的功率为2.3毫瓦,而且只发出特定波长的光。  魏永强表示:“从实际应用角度来考虑,我们需要将多光源激光器集成在一块芯片上,因此将多个激光器和光栅整合在一块硅芯片上将是我们下一步面临的挑战。我们计划通过利用能处理更广谱波长的同样的光栅结构来按比例扩展最新的单波长激光器。新设备标志着我们很快就能对集成在单硅芯片上的通讯设备进行商业化生产。”
  • 重大突破 | 国防科技大学实现反射层析激光雷达三维超分辨成像
    面对远距离小目标,常规探测手段往往只能对其定位,看到的目标只是一个点。而有些特殊需求下,需要掌握其面特征甚至体特征,实现运动目标认知,此时迫切需要发展超分辨成像手段。国防科技大学脉冲功率激光技术国家重点实验室主任胡以华教授团队,继2022年实现10千米距离上优于2厘米分辨率的国内外报道最高水平的反射层析激光雷达超分辨二维成像的基础上,近期实现了三维超分辨成像的重大突破。实现10千米距离2.0×2.0×3.5厘米分辨率的三维超分辨成像反射层析激光雷达实现二维成像的原理日趋成熟,国内外也开展了相关的实验研究,但是实现三维成像的原理和方法在国内外未见报道。团队创新性地提出了反射层析激光雷达三维成像技术架构,建立了激光探测的多角度多视场交叠取样、窄脉冲激光回波的高速高保真采集及图像重构融合处理方法,研制出反射层析激光雷达三维成像实验系统,在合肥紫蓬山地区开展了距离为10.38 km的外场实验,实现目标图像的三维超分辨重构。实验中,在山上(31°43′28″N, 116°59′55″E)的百米高实验塔上分别设置两类目标:1)高度75 cm、宽度30 cm的立体组合件,如图1 (a)所示;2)多块厚度1.7 cm、断面面积不同的块状体构成的从下到上间距9 cm到2 cm递减、面积渐小的60°倾斜角梯形立体分辨率测试靶,如图1 (b)所示。成像实验系统布置在该市华南城(31°46′20″N, 117°5′35″E)楼上,如图1 (c)所示。在多种实验环境和实验参数设置下,成功获得了如图2 (b)、图2 (d)所示的立体目标三维超分辨成像结果。图1 反射层析激光雷达三维成像实验实施图(a) 立体组合件;(b) 立体分辨率测试靶;(c) 反射层析激光雷达三维成像实验系统经第三方专家现场实测,在10.38 km距离上,环绕平面成像分辨率优于2 cm,环绕轴向分辨率优于3.5 cm。根据反射层析激光雷达成像的原理,只要激光脉冲回波信噪比足够,其三维成像分辨率与光学孔径、作用距离、激光发散角相对无关,因此,本实验为实现千千米超远距离微小目标的三维成像奠定了基础。该实验系统光学孔径为260 mm,相同孔径的光学成像系统衍射极限角约为5 μrad,对应10 km处常规光学成像的极限分辨率约为5 cm。本成果取得了超过同口径光学成像衍射极限的远距离小目标超分辨成像能力,其成像分辨率居激光成像领域国内外最优水平,特别是通过独创的技术手段和处理算法首次得到立体目标结构的十千米距离厘米级超分辨三维成像结果。图2 目标实物与成像结果(a) 立体组合件;(b) 立体组合件重构图像;(c) 立体分辨率测试靶;(d) 立体分辨率测试靶重构图像科研团队简介国防科技大学电子对抗学院胡以华教授科研团队长期致力于运动目标精确激光探测和光电对抗等领域方向理论与应用研究,围绕目标的激光三维成像、反射层析激光雷达成像、大气扰动激光探测、相干探测、光子探测以及量子纠缠探测方法,取得了一系列研究成果,为空天弱暗目标远距离探测、高精度定位和多维信息获取提供新型技术手段。团队先后出版专著《激光成像目标侦察》、《目标衍生属性光电侦察技术》、《Theory and Technology of Laser Imaging Based Target Detection》和《激光相干探测应用理论方法》,公开发表学术论文300余篇,授权发明专利70余项,获国家技术发明二等奖2项、国家教学成果二等奖2项、安徽省重大科技成就奖、省部级科技一等奖8项。团队带头人,国防科技大学电子对抗学院胡以华教授,脉冲功率激光技术国家重点实验室主任,光学工程学科首席专家,中国光学学会会士,安徽省科学技术协会兼职副主席。长期从事光电探测与对抗领域研究,取得多项系统性创新成果。
  • 超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。  新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。  这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。  太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。  研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。  另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。  研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 美利用超材料制成高定向太赫兹激光器
    美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列专利申请。这一进展发布在8月8日的《自然材料》杂志上。  新型太赫兹激光器突破了传统材料的限制,研究人员刻了一组亚波长光栅,直接加倍了超材料晶面的光流量,设备以3太赫兹(百亿赫兹)的频率发射光线(波长为100微米,在可见光谱中属于远红外线),大大降低了这些半导体激光器的散射角度,同时保持了光能的高输出功率。  这种超材料被直接嵌入光学设备的高吸收性砷化镓晶面上,在演示中能看到,人造光显示出深浅不同的微米光栅,各具不同的功能。浅蓝色的狭缝能将输出的激光功率加倍,导向并限定在晶体表面。  太赫兹射线(T—rays)能穿透纸张、衣物、塑料和其他一些材料,在探测隐匿武器和生物制剂方面非常理想,在做肿瘤成像检测时对人体无伤害和副作用,还能探测材料内部诸如断裂之类的缺陷,也可用于星际稀薄化学物质的高灵敏探测。  研究人员卡帕索表示,新的人造光学设备,从晶面上发出的激光器非常紧密,瞄准度非常高,高度凝聚使光能有效聚集,这是昂贵且笨重的传统透镜达不到的。  另一位研究人员林菲尔德说,新的太赫兹激光器还能用于海关探测非法药品,并能检验生产和存储的药物是否合格。这种超材料还能用作一种演示的工具,同时还具有一些神奇的潜在功能,如用来研发隐身斗篷、负折射和高解析图像。  研究的另一项重要意义就是这种超材料的光导作用。该设备产生的极强太赫兹光线,以直线光束导向激光晶面,这种超强的限定导向作用,还可应用于传感器和太赫兹光路。
  • 合肥研究院采用超快技术构筑GHz高频光弹调制器
    近期,中国科学院合肥物质科学研究院强磁场科学中心盛志高研究团队等采用超快时间分辨泵浦探测技术,在SrTiO3晶体中实现了由超快相干声子诱导的GHz频率的双折射调制,其工作频率远超现今商业光弹调制器的截止频率。相关研究成果发表在《先进科学》(Advanced Science)上,并申请了发明专利。具有双折射效应的特定材料能塑造光。基于双折射调制技术工作的光弹调制器是现代光学技术的核心元件之一。目前的光弹调制器多借助压电材料提供的机械应力,来驱动光弹晶体实现双折射调制,其工作频率受限于光弹/压电晶体的谐振频率,一般为kHz量级。随着高频信号处理和高频光通信的需求不断涌现,亟需研发具有GHz工作频率的双折射材料与调制技术。针对这一现状,盛志高课题组与合作者经过大量材料筛选与技术探索,借助强磁场磁光实验室中的超快泵浦-探测系统,在钙钛矿SrTiO3晶体中发现了由超快相干声子诱导的GHz光学双折射效应,并实现了对其进行光学操控。研究团队在换能器/SrTiO3异质结构中,使用超快激光脉冲产生了具有低阻尼的相干声学声子。经过系列材料筛选,研究发现LaRhO3半导体薄膜作为换能器层能获得相对较高的光子-声子能量转换效率。进一步,研究在优化的异质结构中发现,超快相干声学声子可以在应力敏感的SrTiO3晶体中诱导出具有GHz频率的光学双折射。同时,研究团队通过双泵浦技术实现了对相干声子及其诱导的GHz双折射的光学操纵。这揭示了超快光学双折射调制的一种机制,并为GHz高频声光器件的应用奠定了技术基础。研究工作得到国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金和合肥大科学中心高端用户培育基金的支持。左图:激光诱导的声学声子激发SrTiO3晶体GHz双折射原理示意图;右图:不同晶体取向的SrTiO3晶体GHz双折射调制。
  • 激光粒度仪2019Q3中标盘点 从一超到多强大变天?
    p style="text-align: justify text-indent: 2em "span style="text-indent: 28px font-family: 宋体 "strong仪器信息网讯 /strong本网系列重磅资讯——激光粒度仪中标盘点最新一期今日出炉!本期的中标盘点汇总了/spanspan style="text-indent: 28px "2019/spanspan style="text-indent: 28px font-family: 宋体 "年/spanspan style="text-indent: 28px "7/spanspan style="text-indent: 28px font-family: 宋体 "月/spanspan style="text-indent: 28px "-2019/spanspan style="text-indent: 28px font-family: 宋体 "年/spanspan style="text-indent: 28px "9/spanspan style="text-indent: 28px font-family: 宋体 "月与激光粒度仪有关的中标信息,涉及的细分仪器类型主要包括激光粒度仪和纳米粒度及/spanspan style="text-indent: 28px "zeta/spanspan style="text-indent: 28px font-family: 宋体 "电位仪。自本系列连载/spanspan style="text-indent: 28px "1/spanspan style="text-indent: 28px font-family: 宋体 "年多以来,我国激光粒度仪中标市场的主要品牌中标数量占比变化有限,然而在本期盘点的时间范畴内,整个中标市场却发生了较大变化,由一超独秀的局面转变为多强并起的“战国风云”,仪器信息网也对对其进行了条分缕析,并绘制、公布了/spanspan style="text-indent: 28px "2019Q3/spanspan style="text-indent: 28px font-family: 宋体 "明星仪器榜,以飨读者。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"(注:本文所收集信息全部来源于网络公开招标平台,受限于时间和渠道,或不能代表市场全貌,仅供读者参考,欢迎大家共同交流探讨)/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family:宋体"马尔文帕纳科霸主地位受挑战/span/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 272px " src="https://img1.17img.cn/17img/images/201910/uepic/2d626e52-9faa-4e4f-8abe-b0064355761d.jpg" title="1 激光粒度仪2019Q3中标盘点 从一超到多强大变天?.png" alt="1 激光粒度仪2019Q3中标盘点 从一超到多强大变天?.png" width="600" height="272" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongspan style="font-family:宋体"图/spanspan1/span/strongstrongspan style="font-family:宋体"左/spanspan:2019Q3/span/strongstrongspan style="font-family:宋体"中标激光与纳米粒度仪分布占比/span/strong/pp style="text-align: center text-indent: 0em "strongspan style="font-family:宋体"图/spanspan1/span/strongstrongspan style="font-family:宋体"右:/spanspan2019Q3/span/strongstrongspan style="font-family:宋体"国产/spanspan//span/strongstrongspan style="font-family:宋体"进口品牌中标数量占比情况/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"在本次的中标盘点中,中标的仪器以激光粒度仪为主,占比/spanspan85%/spanspan style="font-family:宋体",纳米粒度仪占比/spanspan15%/spanspan style="font-family:宋体",如图/spanspan1/spanspan style="font-family:宋体"左所示,而整体来看,中标的进口品牌数量达/spanspan67%/spanspan style="font-family:宋体",仍然占据绝对优势。然而具体到细分的各个生产商品牌,则出现了近/spanspan1/spanspan style="font-family:宋体"年以来中标盘点中从未出现的现象。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 360px " src="https://img1.17img.cn/17img/images/201910/uepic/89d6d156-0685-440c-ade8-2528b6acc600.jpg" title="2 激光粒度仪2019Q3中标盘点 从一超到多强大变天-0?.png" alt="2 激光粒度仪2019Q3中标盘点 从一超到多强大变天-0?.png" width="600" height="360" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongspan style="font-family:宋体"图/spanspan2/span/strongstrongspan style="font-family:宋体":/spanspan2019Q3/span/strongstrongspan style="font-family:宋体"激光粒度仪主要品牌中标数量分布/span/strongbr//pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"分析以往数据,在/spanspan2018/spanspan style="font-family:宋体"年上半年的中标盘点中,马尔文帕纳科中标数量占比高达/spanspan30.7%/spanspan style="font-family:宋体",领先第二名超过/spanspan15/spanspan style="font-family:宋体"个百分点。在/spanspan2018/spanspan style="font-family:宋体"年随后的/spanspan7-8/spanspan style="font-family:宋体"月、/spanspan9/spanspan style="font-family:宋体"月,马尔文帕纳科的中标数量占比分别为/spanspan37%/spanspan style="font-family:宋体"、/spanspan30%/spanspan style="font-family:宋体"都遥遥领先第二名的品牌。而在/spanspan2019/spanspan style="font-family:宋体"年上半年马尔文帕纳科激光粒度仪的中标数量高达/spanspan38%/spanspan style="font-family:宋体",超过第二名/spanspan20/spanspan style="font-family:宋体"个百分点(strongspan style="color:#00B0F0"以上详情请参看文末延伸阅读/span/strong)。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"而在/spanspan2019/spanspan style="font-family:宋体"年/spanspan7-9/spanspan style="font-family:宋体"月(/spanspanQ3/spanspan style="font-family:宋体")所有公布中标品牌的信息中,在中标数量的维度,马尔文帕纳科的占比跌破/spanspan20%/spanspan style="font-family:宋体",占比约/spanspan19%/spanspan style="font-family:宋体",而国产激光粒度仪品牌丹东百特强势崛起,与马尔文帕纳科并驾齐驱,两品牌分享了头把交椅的位置。而欧美克和麦奇克则各占比17%和/spanspan15%/spanspan style="font-family:宋体"紧随其后,美国布鲁克海文也有/spanspan10%/spanspan style="font-family:宋体"的占比。应该来说仅就/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"阶段来说,我国的激光粒度仪市场由前半年的一超转变为多强并起的局面,如图/spanspan2/spanspan style="font-family:宋体"所示。/span/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 325px " src="https://img1.17img.cn/17img/images/201910/uepic/ff2e1a7b-48dc-4258-9cf3-7f2e50dbf0b7.jpg" title="3 激光粒度仪2019Q3中标盘点 从一超到多强大变天0?.png" alt="3 激光粒度仪2019Q3中标盘点 从一超到多强大变天0?.png" width="600" height="325" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strongspan style="font-family:宋体"图/spanspan3/span/strongstrongspan style="font-family:宋体":/spanspan2019Q3/span/strongstrongspan style="font-family:宋体"激光粒度仪主要品牌中标金额分布/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"不过,从中标金额的维度看,排名前列的仍然是进口品牌,马尔文帕纳科仍然排在第一位,但是优势并不明显,占比约/spanspan23%/spanspan style="font-family:宋体";德国新帕泰克以极高的单台均价攀升至第二的位置,占比约/spanspan20%/spanspan style="font-family:宋体",/spanspan2019Q3/spanspan style="font-family:宋体"期间,所统计到的德国新帕泰克中标激光粒度仪加配置基本超过/spanspan80/spanspan style="font-family:宋体"万元。麦奇克排名第三,占比也接近/spanspan20%/spanspan style="font-family:宋体",布鲁克海文占比约/spanspan13%/spanspan style="font-family:宋体"排名第/spanspan4/spanspan style="font-family:宋体"。而国产方面的龙头丹东百特则以/spanspan10%/spanspan style="font-family:宋体"的占比排名第/spanspan5/spanspan style="font-family:宋体",详情如图/spanspan3/spanspan style="font-family:宋体"所示。应该说,就我国高端激光粒度仪市场而言,进口品牌仍然占据着较大的优势。/span/pp style="text-indent: 28px text-align: justify "strongspanQ3/span/strongstrongspan style="font-family:宋体"明星仪器榜公布/span /strongstrongspan style="font-family:宋体"捕捉激光粒度仪最闪耀的星/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"根据/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"各主要中标品牌和型号的数据信息,仪器信息网绘制了/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"激光粒度仪中标市场明星仪器榜,现公布如下:/span/pp style="text-align: center text-indent: 28px "strongspan style="color:#00B0F0"2019/span/strongstrongspan style="font-family:宋体 color:#00B0F0"年/spanspan style="color:#00B0F0"Q3/span/strongstrongspan style="font-family:宋体 color:#00B0F0"激光粒度仪中标市场明星仪器榜(排名不分先后)/span/strong/ptable border="1" cellspacing="0" cellpadding="0" style="border: none" width="NaN" align="center"tbodytr class="firstRow"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "strongspan style="font-family:宋体"仪器类型/span/strong/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175" align="center"p style="text-align: justify "strongspan style="font-family:宋体"仪器品牌/span/strong/pp style="text-align: justify "strongspan style="font-family:宋体"(点击了解品牌详情)/span/strong/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "strongspan style="font-family:宋体"仪器型号/span/strong/pp style="text-align: justify "strongspan style="font-family:宋体"(点击了解产品详情)/span/strong/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none color: rgb(0, 176, 240) "a href="https://www.instrument.com.cn/netshow/SH100646/"span style="text-decoration: none font-family: 宋体 "马尔文帕纳科/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none color: rgb(0, 0, 0) "a href="https://www.instrument.com.cn/netshow/SH100646/C142974.htm"Mastersizer 3000/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100350/"span style="text-decoration: none font-family: 宋体 "丹东百特/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "spana href="https://www.instrument.com.cn/netshow/sh100350/C16758.htm"BT-9300ST/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100350/"span style="text-decoration: none font-family: 宋体 "丹东百特/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "spana href="https://www.instrument.com.cn/netshow/sh100350/C277103.htm"Bettersize2600/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100350/"span style="text-decoration: none font-family: 宋体 "丹东百特/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "spana href="https://www.instrument.com.cn/netshow/sh100350/C247285.htm"Bettersize3000/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100150/"span style="text-decoration: none font-family: 宋体 "麦奇克/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100150/C12443.htm"S3500/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100150/"span style="text-decoration: none font-family: 宋体 "麦奇克/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100150/C284014.htm"sync/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"纳米粒度及/spanspanZeta/spanspan style="font-family:宋体"电位仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100165/"span style="text-decoration: none font-family: 宋体 "美国布鲁克海文/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100165/C10134.htm"NanoBrook 90Plus/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"纳米粒度及/spanspanZeta/spanspan style="font-family:宋体"电位仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100165/"span style="text-decoration: none font-family: 宋体 "美国布鲁克海文/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100165/C182333.htm"NanoBrook Omni/a/span/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100546/"span style="text-decoration: none font-family: 宋体 "欧美克/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "a href="https://www.instrument.com.cn/netshow/C231134.htm" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="text-decoration: none "LS-609/span/a/p/td/trtrtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="173"p style="text-align: justify "span style="font-family:宋体"激光粒度仪/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100645/"span style="text-decoration: none font-family: 宋体 "新帕泰克/span/a/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="175"p style="text-align: justify "span style="text-decoration: none "a href="https://www.instrument.com.cn/netshow/SH100645/Search.htm?sType=0&Keywords=HELOS"HELOS/BR/a/span/p/td/tr/tbody/tablep style="text-indent: 28px text-align: justify "span style="font-family:宋体"就几大主要品牌的中标型号进行分析,马尔文帕纳科主要中标的产品为其近年来的主打产品/spanspanMastersizer 3000/spanspan style="font-family:宋体",就型号而言,/spanspanMastersizer 3000/spanspan style="font-family:宋体"也是/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"所有激光粒度仪中标信息中,中标数量最多的产品型号。而国产巨头丹东百特则全面开花,从中低端产品/spanspanBT-9300ST/spanspan style="font-family:宋体"到中、高端产品/spanspanBettersize2600/spanspan style="font-family:宋体"、/spanspanBettersize3000/spanspan style="font-family:宋体"都取得了喜人的成绩,特别是/spanspanBettersize3000/spanspan style="font-family:宋体"在福建一家政府机构的招标中,以/spanspan46.5/spanspan style="font-family:宋体"万的价格夺取标的,单台的售价达到进口高价位仪器的水准。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"麦奇克在/spanspan2019/spanspan style="font-family:宋体"年刚刚被弗尔德收购,不过今后仍将由大昌华嘉独家代理,其传统优势的/spanspanS3500/spanspan style="font-family:宋体"和/spanspan2018/spanspan style="font-family:宋体"年推出的将粒度粒形分析功能一体化的新品/spanspansync/spanspan style="font-family:宋体"都延续了此前的强劲表现,麦奇克在这两款产品的驱动下,也继续成为中国激光粒度仪市场上的最有力竞争者之一。另外值得一提的是美国布鲁克海文,该品牌基本统治了/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"期间的中国纳米粒度及/spanspanzeta/spanspan style="font-family:宋体"电位仪市场,主要中标的仪器型号为/spanspanNanoBrook 90Plus PALS/spanspan style="font-family:宋体"和/spanspanNanoBrook Omni/spanspan style="font-family:宋体"。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"中标数量名列前茅的欧美克在金额占比上则相对较少,中标的仪器大部分集中在低价位领域,/spanspanLS-609/spanspan style="font-family:宋体"是其斩获标的最多的型号。德国新帕泰克的中标情况与欧美克正好相反,数量有限,但仪器中标平均单价为各品牌之最,主要中标的产品型号为/spanspanHELOS/BR/spanspan style="font-family:宋体"。/span/pp style="text-indent: 42px text-align: justify "strongspan style="font-family:宋体"科研仍爱高价/span /strongstrongspan style="font-family:宋体"京鲁苏延续强势/span /strong/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 600px height: 210px " src="https://img1.17img.cn/17img/images/201910/uepic/afafe618-c4c4-4ff8-b987-5d822b9b67ca.jpg" title="激光粒度仪2019Q3中标盘点 从一超到多强大变天?.jpg" alt="激光粒度仪2019Q3中标盘点 从一超到多强大变天?.jpg" width="600" height="210" border="0" vspace="0"//pp style="text-align: center text-indent: 28px "strongspan style="font-family:宋体"图/spanspan4/span/strongstrongspan style="font-family:宋体"左:/spanspan2019Q3/span/strongstrongspan style="font-family:宋体"激光粒度仪招标单位类型分布/span/strong/pp style="text-align: center text-indent: 28px "strongspan style="font-family:宋体"图/spanspan4/span/strongstrongspan style="font-family:宋体"右:/spanspan2019Q3/span/strongstrongspan style="font-family:宋体"激光粒度仪中标价位分布/span/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"从招标单位类型来看,企业分析测试中心与上半年相比占比有所上升,达/spanspan21%/spanspan style="font-family:宋体",政府机构占比与上半年基本持平占/spanspan14%/spanspan style="font-family:宋体"。而大专院校/spanspan//spanspan style="font-family:宋体"科研院所在/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"仍然是主流,虽然占比同比上半年有所下降,但占比仍高达/spanspan65%/spanspan style="font-family:宋体",详情如图/spanspan4/spanspan style="font-family:宋体"左所示。由于这个原因,所以从价位方面看,/spanspan40/spanspan style="font-family:宋体"万以上的高价位激光粒度仪仍然是中标市场的主流占比高达/spanspan45%/spanspan style="font-family:宋体",且呈现随着价位分布的递减,中标数量也递减的趋势,详情如图/spanspan4/spanspan style="font-family:宋体"右所示。/span/pp style="text-align:center"spanimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/b5ab5001-4c2d-4392-a886-b63bab85e6b2.jpg" title="5 激光粒度仪2019Q3中标盘点 从一超到多强大变天?.png" alt="5 激光粒度仪2019Q3中标盘点 从一超到多强大变天?.png"//span/pp style="text-align: center text-indent: 0em "span style="font-family:宋体"图/spanspan5/spanspan style="font-family:宋体":strong激光粒度仪中标地域分布/strong/spanstrong/strong/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"从中标地域的角度看,各地中标分布整体较上半年更为平均,北京、山东、江苏延续了此前的强劲表现,北京、山东共列榜首,而浙江、陕西、辽宁则与江苏一起成为新的第二梯队。详情如图/spanspan5/spanspan style="font-family:宋体"所示。/span/pp style="text-indent: 28px text-align: justify "span style="font-family:宋体"总体而言,在/spanspan2019/spanspan style="font-family:宋体"年/spanspanQ3/spanspan style="font-family:宋体"期间的激光粒度仪中标市场上,科研用的高价位激光粒度仪仍然是主流,结合/spanspan2019/spanspan style="font-family:宋体"年上半年,北京、山东、江苏成为中标信息涌现最多的三个省市。具体到品牌维度,无论从中标数量还是从中标金额的角度,均呈现出与前半年颇不相同的多强逐鹿、难分伯仲之局。这究竟是因为各主流厂商业务流程不同所造成的暂时现象,还是我国激光粒度仪招标采购市场的整体格局发生了悄无声息的大变化,或是有其他诱导因素,目前尚无法定论,仪器信息网也会紧密关注我国激光粒度仪中标市场接下来的动态,实时与读者分享。/span/pp style="text-indent: 28px text-align: justify "strongspan style="font-family: 宋体 color: rgb(0, 176, 240) "延伸阅读:/span/strong/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20190710/488642.shtml" target="_self"span style="font-family: 宋体, SimSun color: rgb(0, 176, 240) "巴蜀地有玄妙 耕耘处觅新机—— 2019激光粒度仪中标年中盘点参上/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20180705/467016.shtml" target="_self"span style="font-family: 宋体, SimSun color: rgb(0, 176, 240) "管中窥豹:2018激光粒度仪中标半年盘点 国产37%喜忧参半/span/a/pp style="white-space: normal text-indent: 2em "a href="https://www.instrument.com.cn/news/20180831/470487.shtml" target="_self"span style="font-family: 宋体, SimSun color: rgb(0, 176, 240) "激光粒度仪7-8月中标盘点 ——金额超千万 药、农需求旺/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20181009/472614.shtml" target="_self"span style="font-family: 宋体, SimSun color: rgb(0, 176, 240) text-decoration: underline "激光粒度仪9月中标盘点 上海占头彩(附赠名单详情)/span/a/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "strong点击进入/strong/spanspan style="color: rgb(0, 176, 80) "strong style="text-align: center "span style="font-family: 宋体 "a href="https://www.instrument.com.cn/zc/470.html" target="_self" style="text-align: center "激光粒度仪、纳米粒度仪专场/a/span/strongstrong style="text-align: center "/strong/spanstrong style="color: rgb(0, 176, 240) text-indent: 2em "了解/strongstrong style="color: rgb(0, 176, 240) text-indent: 2em "更多相关信息/strong/pp style="text-indent: 2em "strong style="color: rgb(0, 176, 240) text-indent: 2em "br//strong/pp style="text-align: center text-indent: 0em "欢迎扫描下方二维码添加仪器信息网小材子官方微信号/pp style="text-align: center text-indent: 0em "进入材料检测交流群与业内同仁交流互动/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 300px height: 300px " src="https://img1.17img.cn/17img/images/201910/uepic/14283ab1-7dfd-47b5-8244-98779fad277e.jpg" title="微信图片_20190605094648.jpg" alt="微信图片_20190605094648.jpg" width="300" height="300" border="0" vspace="0"//p
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 与时间赛跑 和光谱同行——BCEIA 2019超快分子光谱高峰论坛在京隆重举行
    p  strong仪器信息网讯/strong 2019年10月24日下午,第十八届北京分析测试学术报告会暨展览会(BCEIA 2019)同期会议——超快分子光谱高峰论坛在北京国家会议中心举行。本次会议由中国分析测试协会与北京理化测试技术学会联合举办,参会观众近百人。/pp  超快分子光谱方法具有极高的时间分辨率,所涉及的工作波段包括红外,太赫兹,可见,紫外等 利用多束飞秒激光脉冲,能实现多种光谱形式测量,如泵浦-探测瞬态光谱,二维红外光谱,二维可见光谱等 对于物质激发态原处过程、材料中载流子过程、分子超快结构与能量传递动力学过程都具有非常高的灵敏性。/pp  清华大学教授孙素琴主持了本次会议。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 338px " src="https://img1.17img.cn/17img/images/201910/uepic/6f33000a-6697-4c1c-a45e-4c013ee63841.jpg" title="孙素琴.jpg" alt="孙素琴.jpg" width="500" height="338" border="0" vspace="0"//pp style="text-align: center "strong清华大学教授 孙素琴/strong/pp  中国工程物理研究所液体物理研究所教授杨延强作“分子晶体选键激发与振动能量转移过程的超快分子光谱研究”的报告,其中介绍了含能分子晶体在国防及经济建设中的应用,以及在安全性可靠性等方面的需求,并以此为牵引,报告了含能材料反应微观机制研究的最新进展情况,包括含能材料的VET过程的时间分辨振动光谱、IVR过程的相干拉曼光谱技术及研究进展、Shock-Raman光谱技术的应用等。研究工作中利用Fs-CARS技术,实现了分子振动模的选键激发、集体激发 利用时间分辨Shock-Raman技术,实现了对冲击驱动的分子内电子重分布过程的监测等,为新型含能材料的设计提供了建设性建议。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 367px " src="https://img1.17img.cn/17img/images/201910/uepic/40174eee-c009-407a-9576-2df710173afe.jpg" title="杨延强.jpg" alt="杨延强.jpg" width="500" height="367" border="0" vspace="0"//pp style="text-align: center "strong中国工程物理研究所液体物理研究所教授 杨延强/strong/pp  华东师范大学精密光谱科学与技术国家重点实验室教授徐建华作“精密光谱技术与应用”的报告,介绍了精密光谱技术在光学、生物学、化学、材料学等学科中的重要应用,包括基于Trp-X分子的荧光动力学与生物应用研究、基于荧光蛋白的荧光动力学与生物应用的研究、5-氮胞嘧啶及其衍生物的激发态动力学 展望精密光谱技术的产业化应用,如癌症预警传感器等 提出了精密光谱技术高分辨、高精度、高灵敏的发展方向。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 319px " src="https://img1.17img.cn/17img/images/201910/uepic/051af1d9-9909-4e3b-998f-784cfa58c2d5.jpg" title="徐建华.jpg" alt="徐建华.jpg" width="500" height="319" border="0" vspace="0"//pp style="text-align: center "strong华东师范大学教授 徐建华/strong/pp  中国科学技术大学教授张群作“超快光谱在凝聚相分子和微纳体系中的应用”的报告,介绍了凝聚相复杂体系中的激发态动力学演化行为和作用机制,包括电子行为、空穴行为、能量转移、激子效应、等离激元效应等,为相关功能材料的研发提供了机理方面的指导 并提出了未来几年的关注点,包括纳米体系各种动力学过程中新奇效应、机制、调控等。 /pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 386px " src="https://img1.17img.cn/17img/images/201910/uepic/a57fc2f1-4475-4b4a-a408-aa9806380dab.jpg" title="张群.jpg" alt="张群.jpg" width="500" height="386" border="0" vspace="0"/ /pp style="text-align: center "strong中国科学技术大学教授 张群/strong/pp  北京理工大学教授邹炳锁作“II-VI族稀磁半导体微纳米结构的微区光学性质研究”的报告,其研究工作表明微区发光可以反映磁性离子间的自旋耦合和磁性 自旋极化导致的激子凝聚态与相干激射有重要应用 反铁磁和顺磁离子也会极化激子,导致相干激射 瞬态光脉冲产生的高密度激子可能形成动态激子BEC态等。因此,超快微区光谱在揭示其凝聚与磁耦合机制方面有不可替代的作用。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/201910/uepic/aa35dd19-3b90-4525-ac5c-e7121d8215ba.jpg" title="邹炳锁.jpg" alt="邹炳锁.jpg" width="500" height="375" border="0" vspace="0"//pp style="text-align: center "strong北京理工大学教授 邹炳锁/strong/pp  中国化学院化学研究所研究员王建平作“生物和材料体系结构动力学与能量传递的飞秒二维红外光谱研究”的报告,介绍了超快结构动力学的2D IR研究以及在生物和材料体系结构动力学及能量传递过程中的最新应用 并提出了2D IR发展的三个挑战性技术问题:如何拓展激光脉冲的谱带、如何保障多个脉冲的相位稳定性、如何提高二维广谱的检测分辨率。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 411px " src="https://img1.17img.cn/17img/images/201910/uepic/3840a98f-d140-451c-b240-09ec7d9b856f.jpg" title="王建平.jpg" alt="王建平.jpg" width="500" height="411" border="0" vspace="0"//pp style="text-align: center "strong中国化学院化学研究所研究员 王建平/strong/pp  本次论坛,聚焦于现代超快分子光谱手段的发展现状,从先进光谱手段与技术出发,介绍了这一光谱方法在物理、化学、材料与生物等领域的重要应用。通过本次会议,学者们在会议当中进行了充分交流,加强了高校、科研院所与企业的交流合作,推动了我国超快分子光谱领域的方法创新和发展,会议取得了圆满成功。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制