当前位置: 仪器信息网 > 行业主题 > >

触针显微镜

仪器信息网触针显微镜专题为您提供2024年最新触针显微镜价格报价、厂家品牌的相关信息, 包括触针显微镜参数、型号等,不管是国产,还是进口品牌的触针显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合触针显微镜相关的耗材配件、试剂标物,还有触针显微镜相关的最新资讯、资料,以及触针显微镜相关的解决方案。

触针显微镜相关的资讯

  • 岛津推出扫描探针显微镜在新能源及高分子材料中的应用文集
    纵观人类发展的历史,我们不难发现,生产技术每一次的革新都离不开材料的突破,材料决定了社会发展的进程。在这材料中,新能源材料与功能材料扮演着重要的角色。随着科技的发展,传统的不可再生能源已不能满足需求,需要发展像太阳能、氢能、核能、风能等新能源;单一功能的材料也不能满足发展的要求了,需要开发出具有特殊、多功能性的新材料,如万能材料石墨烯、碳纳米管以及具有无限可能的高分子材料。 扫描探针显微镜(Scanning Probe Microscopy,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜、静电力显微镜、磁力显微镜、扫描离子电导显微镜、扫描电化学显微镜等)的统称。它可以实现材料表面的结构与性质的测量,如对材料表面的形貌、粗糙度、电流电势分布以及磁畴分布情况进行测量,可以说它是材料科学领域中一个不可或缺的表征仪器。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终坚持 “以科学技术向社会做贡献”的创业宗旨、努力实现“为了人类和地球的健康”之愿望,不断钻研领先时代、满足社会需求的科学技术。扫描探针显微镜具有纳米级的分辨率,在生物、医学、材料、微电子等应用学科均有它的用武之地,它在新材料的应用以及今后的新材料发展中发挥着重要作用。为了更好的服务于岛津SPM客户,岛津公司分析中心也开展了新能源及高分子材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。
  • 《岛津扫描探针显微镜用户论文集》推出
    扫描探针显微镜SPM (Scanning Probe Microscope)是各种新型探针显微镜的统称,如扫描隧道显微镜 STM(Scannning Tunneling Microscope),原子力显微镜 AFM(Atomic Force Microscope), 磁力显微镜 MFM (Magnetic Force Microscope),摩擦力显微镜LFM (Lateral Force Microscope)及开尔文探针力显微镜 KPFM (Kelvin Probe Force Microscope)等等。 SPM 作为一项表面分析技术,不仅可以在纳米甚至原子级别分析样品表面三维形貌(横向分辨率 0.1 nm,纵向分辨率 0.01 nm),还可以表征多种物理性质,如粘弹性,摩擦力,电学及磁学性质等等。除了卓越的形貌分辨率及多功能化外,SPM 还可以在多样的环境中表征,如真空环境,大气环境,液态环境甚至低温,常温及高温环境下,均可运行。因此,SPM 被广泛应用于物理,化学,材料,微电子,生物及医药等等科学领域的研究。岛津公司作为世界著名的分析仪器厂商,在 SPM 研究开发领域,不断精益求精,锐意进取。从 SPM9500,SPM9600,SPM9700 到 SPM-8100FM,取得了极大的突破。最新的 SPM-8000FM 采用反馈更迅速的调频模式,极大地提高了SPM 在大气环境和液体环境的分辨率。为了更好地服务于岛津扫描探针显微镜 SPM 客户,我们汇总了各个学科领域的研究应用,以供阅读。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 150万!中南大学基础医学院扫描探针显微镜采购项目
    项目编号:HZ20220204-0018项目名称:中南大学基础医学院扫描探针显微镜采购项目预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:包号包名称是否核心产品分项项目名称(标的名称)是否接受进口产品数量交货要求代理服务收费标准备注时间地点1中南大学基础医学院扫描探针显微镜是扫描探针显微镜是1套合同生效后6个月以内中南大学基础医学院,或甲方指定地点按国家计委计价格【2002】1980号文规定标准的77%收取,按中标金额计算。 合同履行期限:具体内容详见本项目招标文件第五章“采购需求”。本项目( 不接受 )联合体投标。
  • 布鲁克推出新尺寸XR系列扫描探针显微镜
    p style="text-align: center "描述了原子力显微镜技术在纳米尺度量化方面的重大进展/pp style="text-align: center "img title="Dimension_IconXR.jpg" alt="Dimension_IconXR.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/9601dc97-b03c-499e-b9fe-a6bb0c2ae5d4.jpg"//pp  美国加利福尼亚州圣巴巴拉,布鲁克于当地时间2018年11月28日宣布推出Dimension XR™ 系列扫描探针显微镜(SPMs)。这些新系统包含主要的AFM创新,包括布鲁克专利独有的DataCube纳米电子模式,用于能源研究的AFM-SECM,以及新的AFM-nDMA模式,该模式首次将聚合物纳米力学与体动态力学机械分析(DMA)相关联。基于科学出版物中两种世界上最常用的AFM平台,Icon® 和FastScan® ,Dimension XR SPMs有三种配置,针对纳米力学,纳米电子和纳米电化学应用进行了优化。这些系统显着扩展了研究人员在空气,流体,电气和化学反应环境中量化纳米级材料特性的能力。/pp  “新的Dimension XR系统是多年创新的结晶,提供定量和易用的纳米机械,纳米电子和纳米电化学表征,”布鲁克AFM业务执行副总裁兼总经理David V. Rossi阐述道。“我们的目标是让研究界广泛使用这些首要和唯一的功能,使其突破性AFM发现可以实现新的纳米级信息。”/pp /p
  • 780万!上海交通大学低温强磁场扫描探针显微镜和原子力显微镜采购项目
    一、项目基本情况1.项目编号:0834-2441SH24A039项目名称:上海交通大学低温强磁场扫描探针显微镜预算金额:620.000000 万元(人民币)最高限价(如有):590.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1低温强磁场扫描探针显微镜1套1.4 *配备2路射频同轴电缆连接室温大气与扫描隧道显微镜,带宽10 GHz,高真空热隔绝腔与超高真空腔体间漏率10-8 mbar L/sec。 (详见第八章)签订合同后12个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同后12个月内本项目( 不接受 )联合体投标。2.项目编号:0834-2441SH24A037项目名称:上海交通大学原子力显微镜预算金额:160.000000 万元(人民币)最高限价(如有):160.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1原子力显微镜1台包含不少于三个全数字锁相放大器,能提供定量相位成像功能:-180°到+180°全线性相位成像。 (详见第八章)签订合同后6个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年02月21日 至 2024年02月28日,每天上午9:30至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市共和新路1301号D座二楼方式:详见其他补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:上海市东川路800号        联系方式:钟老师86-21-54747337,技术联系人:彭老师 86-21-68693117      2.采购代理机构信息名 称:上海中招招标有限公司            地 址:上海市共和新路1301号D座二楼            联系方式:林佳文、吴乾清 电话:86-21-66271932、86-21-66272327,13764352603@163.com、18930181850@163.com            3.项目联系方式项目联系人:林佳文、吴乾清电 话:  86-21-66271932、86-21-66272327
  • 一文解读扫描探针显微镜拓展模式(一)
    01MFM(Magnetic Force Microscopy,磁力显微镜)磁力显微镜(Magnetic Force Microscopy,MFM)是一种专门用于成像样品表面的磁性分布的扫描探针显微镜,通过探针和样品之间的磁力相互作用来获得信息。MFM应用MFM主要用于研究材料的磁性特征,广泛应用于物理学、材料科学、电子学等领域。常见的应用包括:磁记录介质:研究硬盘、磁带等磁记录设备的磁性结构和缺陷;磁性材料:分析磁性薄膜、纳米颗粒、磁性多层膜等材料的磁畴结构;生物磁性:研究生物组织中天然存在的磁性物质,如磁性细菌。应用实例在自旋存储研究中,以斯格明子的研究为例,传统的磁存储单元受限于材料性质,显著影响自旋存储的高密度需求。斯格明子是一种具有拓扑性质的准粒子,其最小尺寸仅为3nm,远小于磁性隧道结,是理想的信息载体,有望突破信息存储密度的瓶颈。下图为通过MFM表征获取的斯格明子图像。[1]标准斯格明子M-H曲线 斯格明子图像在磁盘研究中,通过MFM可以获取磁盘表面的高分辨率磁性图像,详细了解其磁畴结构和分布情况。MFM具有高空间分辨率和灵敏度,为磁盘材料的研究和优化提供了重要的数据支持。下图展示了通过MFM测试获取的磁盘表面磁畴结构图像。电脑软盘磁畴图像02PFM(Piezoresponse Force Microscopy,压电力显微镜)压电力显微镜(Piezoresponse Force Microscopy,PFM)是一种用于研究材料压电性质的扫描探针显微镜,利用探针与样品表面之间的逆压电效应来成像和测量材料的压电响应。材料由于逆压电效应产生形变示意图 [2]PFM应用PFM广泛应用于材料科学和电子学领域,尤其是在研究和开发新型压电材料和器件方面。具体应用包括:铁电材料:研究铁电材料的畴结构、开关行为和退极化现象。压电器件:分析压电传感器、致动器和存储器件的性能。生物材料:研究生物组织中的压电效应,例如骨骼和牙齿。应用实例具有显著的压电效应,即在外加机械应力作用下产生电荷。这使其在超声波发生器、压电传感器和致动器中具有重要应用。在研究PbTiO3样品时,通过PFM,可以获取PbTiO3表面的高分辨率压电响应图像,详细了解其畴结构和分布情况,为PbTiO3材料的研究和优化提供了重要的数据支持。下图展示了通过PFM测试获取的PbTiO3样品表面压电力图像。PbTiO3垂直幅度图PbTiO3垂直相位图03EFM(Electrical Force Microscopy,静电力显微镜)静电力显微镜是一种用于测量成像样品表面的电静力特性的扫描探针显微镜。EFM通过探针与样品表面之间的静电力相互作用,获取表面电荷分布和电势信息。静电力显微镜(抬起模式)[3]EFM应用EFM广泛应用于材料科学、电子学和纳米技术等领域,常见的应用包括:电荷分布:测量和成像材料表面的电荷分布。表面电势:研究材料表面的电势分布和电特性。半导体器件:分析半导体器件中的电特性和缺陷。纳米电子学:研究纳米级电子器件的电性能。应用实例Au-Ti条带状电极片静电力04KPFM(Kelvin Probe Force Microscopy,开尔文探针力显微镜)KPFM是一种通过探针与样品之间的接触电势差来获取样品功函数和表电势分布的扫描探针显微镜。KPFM广泛应用于金属、半导体、生物等材料表面电势变化和纳米结构电子性能的研究。KPFM 获取 Bi-Fe薄膜样品表面电势 [4]KPFM应用KPFM在材料科学、电子学和纳米技术等领域具有广泛的应用,常见的应用包括:表面电势分布:测量和成像材料表面的局部电势分布。功函数测量:研究材料的功函数变化,特别是对于不同材料的界面和缺陷。半导体器件:分析半导体器件中的电势分布和电学特性。有机电子学:研究有机半导体和有机电子器件的表面电势。应用实例Au-Ti条带状电极片表面电势05SCM(Scanning Capacitance Microscopy,扫描电容显微镜)扫描电容显微镜(Canning Capacitance Microscopy,SCM)是一种用于测量和成像样品表面的电容变化的扫描探针显微镜。SCM能够通过探针与样品表面之间的电容变化,提供高分辨率的局部电学特性图像。这种显微镜适用于研究半导体材料和器件的电学特性,如掺杂浓度分布、电荷分布和界面特性等。SCM在半导体工艺和材料研究、故障分析以及器件优化中发挥着重要作用。通过SCM,研究人员能够获得纳米尺度的电学特性信息,从而推动半导体技术的发展和创新。SCM原理示意图 [5]SCM应用SCM主要应用于半导体材料和器件的研究,广泛应用于电子学和材料科学领域。具体应用包括:掺杂分布:测量和成像半导体材料中的掺杂浓度分布。电荷分布:研究半导体器件中的电荷分布和电场。材料特性:分析不同材料的电容特性和介电常数。06致真精密仪器自主研发的原子力显微镜科研级原子力显微镜AtomEdge产品介绍利用微悬臂探针结构对导体、半导体、绝缘品等固体材料进行三维样貌表征,纵向噪音水平低至0.03 nm(开环),可实现样品表面单个原子层结构形貌图像绘制。可以测量表面的弹性、塑性、硬度、黏着力、磁性、电极化等性质,还可以在真空,大气或溶液下工作,在材料研究中获得了广泛的使用。设备亮点● 多种工作模式● 适配环境:空气、液相● 多功能配置● 稳定性强● 可拓展性良好典型案例晶圆级原子力显微镜Wafer Mapper-M产品介绍利用微悬臂探针结构可对导体、半导体、绝缘品等固体材料进行三维样貌表征。样品台兼容12寸晶圆,电动样品定位台与光学图像相结合,可在300X300mm区域实现1μm的定位精度,激光对准,探针逼近和扫描参数调整完全自动化操作。可用于产线,对晶圆粗糙度进行精密测试。设备亮点● 多种工作模式● 适配环境:空气、液相● 可旋转式扫描头● 多功能配置● 稳定性强、可拓展性良好典型案例参考文献:[1]Li S, Du A, Wang Y, et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature[J]. Science Bulletin, 2022, 67(7): 691-699.[2]Kalinin SV, Gruverman A, eds. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Springer 2007.[3] https://www.afmworkshop.com/products/modes/electric-force-microscopy[4] https://www.ornl.gov/content/electrostatic-and-kelvin-probe-force-microscopy[5] Abdollahi A, Domingo N, Arias I, et al. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials[J]. Nature communications, 2019, 10(1): 1266.本文由致真精密仪器原创,转载请标明出处致真精密仪器拥有强大的自主研发和创新能力,产品稳定精良,多次助力中国科研工作者取得高水平科研成果。我们希望与更多优秀科研工作者合作,持续提供更加专业的技术服务和完善的行业解决方案!欢迎联系我们!致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 新品上市!致真精密仪器-科研级原子力显微镜
    产品简介原子力显微镜利用微悬臂下方的探针和样品表面距离缩小到纳米级,探针和样品表面的分子间作用力使得悬臂受力形变。探针针尖和样品之间的作用力与距离有强烈的依赖关系,即可以通过检测悬臂受力的弯曲程度,从而获得样品表面形貌信息。不同于电子显微镜只能提供二维图像,AFM能提供真实的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,电池材料,甚至活的生物组织。利用微悬臂探针结构对导体、半导体、绝缘品等固体材料进行三维样貌表征,纵向噪音水平低至0.03nm(开环),可实现样品表面单个原子层结构形貌图像绘制。AFM最大的特点是可以测量表面原子之间的力,AFM可测量的最小力的量级为10-14-10-16N。AFM还可以测量表面的弹性,塑性、硬度、黏着力等性质,AFM还可以在真空,大气或溶液下工作,在材料研究中获得了广泛的研究。产品由本公司自主研发,稳定性强,可拓展性良好,提供定制服务 可拓展横向力显微镜 静电力显微镜 磁力显微镜 扫描开尔文探针显微镜 刻蚀和纳米操作等。该产品作为高速、高精度物质形貌表征工具,可以为高端科研与企业生产研发提供更多的选择与助力。设备性能XY方向噪音水平:0.2nm闭环 0.02nm开环。Z方向噪音水平:0.04nm闭环 0.03nm开环。XY方向非线性度:0.15% Z方向非线性度:1%图像分辨率:128x128,256x256,512x512,1024x1024,2048x2048扫描范围:最大可达100μmx100umx10 μm样品尺寸:最大可达直径15 mm,厚度5 mm全自动步进电机控制进样系统:行程30mm,定位精度50nm/步 设备特色工作模式:包括接触、轻敲、相移成像(Phase-lmaging)等多种工作模式适配环境:空气、液相多功能配置:横向力显微镜 静电力显微镜 磁力显微镜 扫描开尔文探针显微镜 刻蚀和纳米操作
  • 一文带您了解扫描探针显微镜发展史
    扫描探针显微镜(Scanning Probe Microscope,SPM)的发展历史是一段引人注目的科学进步历程,奠定了纳米科学和纳米技术的基础。自20世纪80年代以来,SPM的出现和保存,不仅使科学家能够以原子和分子的精度观察和操控材料,还推动了许多相关领域的研究。以下是SPM发展关键里程碑:1980年代初 - 扫描隧道显微镜(STM)的发明1981年:德国物理学家格尔德宾宁(Gerd Binnig)和海因里希罗雷尔(Heinrich Rohrer)在 IBM 苏黎世研究实验室发明了扫描隧道显微镜(STM)。STM 的发明标志着扫描探针显微镜技术的开端。[1]宾宁罗雷尔世界上第一台扫描隧道显微镜[2]1986年:宾宁和罗雷尔因发明 STM 获得诺贝尔物理学奖。他们的工作证明了 STM 可以以原子级分辨率成像,从而开启了对物质结构的新认识。1989年:IBM科学家展示了一项能够操纵单个原子的技术。他们使用扫描隧道显微镜,将35个单个氙原子排列在镍冷晶体基板上,拼出了公司首字母缩写的三个字母。这是原子首次被精确地定位在平面上。[3]用 35 个氙原子拼写出“IBM”1980年代中期 - 原子力显微镜(AFM)的发展1986年:格尔德宾宁、卡尔文夸特纳(Calvin Quate)和克里斯托弗格贝尔(Christoph Gerber)发明了原子力显微镜(AFM)。AFM 可以在非导电材料上工作,扩展了 SPM 技术的应用范围。[4] AFM 利用探针与样品表面之间的范德华力进行成像,可以在真空、空气和液体环境中操作,因此在材料科学和生物学研究中具有广泛的应用。第一台原子力显微镜原子力显微镜原理图1990年代 - 扫描探针显微镜的扩展与多样化1. 磁力显微镜(MFM):磁力显微镜(MFM)在20世纪80年代末至90年代初被发明,通过使用带有磁性涂层的探针,测量探针与样品表面磁力相互作用,实现了纳米尺度高分辨率磁畴成像。这一创新使研究人员能够深入了解材料的磁性特性。低温强磁场磁力显微镜在微结构缺陷中的研究2. 静电力显微镜(EFM):静电力显微镜(EFM)由斯蒂芬库尔普斯(Stephen Kalb)和霍斯特福尔默(Horst F. Hamann)在20世纪80年代末至90年代初发明,通过带电探针测量静电力变化,实现纳米尺度高分辨率电学成像。EFM被广泛应用于研究半导体材料、电荷存储器件和纳米电子学等领域。3. 近场扫描光学显微镜(NSOM 或 SNOM):近场光学显微镜(NSOM)由埃里克贝茨格(Eric Betzig)和约翰特劳特曼(John Trautman)在20世纪80年代末至90年代初发明。NSOM使用带有亚波长孔径的光纤探针,通过限制光在极小区域内并扫描样品表面,获取高分辨率的光学图像,广泛应用于材料科学、生物学、化学和半导体研究等领域。NSOM的一般原理2000年代至今 - SPM 技术的进一步发展和应用1. 高分辨率和高灵敏度:随着探针技术、控制系统和数据处理技术的发展,SPM 的分辨率和灵敏度不断提高。2. 多功能化探针:开发出具有特定化学、机械、磁性或力学性质的探针,使得 SPM 可以进行更为多样化的表征和操作。3. 多模式成像:结合多种成像模式,可以同时获得样品的多种性质信息。结合多种模式的扫描探针显微镜4.晶圆级成像:随着集成电路规模的急剧增加,需要对大型样品成像。加工在晶圆上的芯片5. 在生物学中的应用:SPM 在生物分子和细胞研究中的应用越来越广泛,可以直接观测生物大分子的结构和动力学过程。未来展望扫描探针显微镜的技术仍在不断发展,新的技术和应用不断涌现。由致真精密仪器研发的多功能原子力显微镜和晶圆级原子力显微镜支持大尺寸样品的表征,并集成集成磁力、压电力、扫描开尔文以及液相等多物性分析功能,具有极低的噪声水平,并具备基于深度学习的智能化数据处理分析。致真精密仪器未来将继续致力于更高分辨率、更快的成像速度和更强的多功能化的SPM设备研究,以满足科学研究和工业应用的需求。致真公司自主研发的多功能原子力显微镜AtomEdge集成AI的智能分析算法 高度及粗糙度、宽度、粒子智能分析参考文献:[1] Binnig, G., & Rohrer, H. (1982). Scanning tunneling microscopy. Surface Science, 126(1-3), 236-244.[2] https://commons.wikimedia.org/wiki/File:First_STM.jpg[3] https://en.wikipedia.org/wiki/IBM_%28atoms%29[4] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930-933.本文由致真精密仪器原创,转载请标明出处. 致真精密仪器一直以来致力于实现高端科技仪器和集成电路测试设备的自主可控和国产替代。 致真精密仪器通过工程化和产业化攻关,已经研发了一系列磁学与自旋电子学领域的前沿科研设备,包括“产品包含原子力显微镜、高精度VSM、MOKE等磁学测量设备、各类磁场探针台、磁性芯片测试机等产线级设备、物理气相沉积设备、芯片制造与应用教学训练成套系统等”等,如有需要,我们的产品专家可以提供免费的项目申报辅助、产品调研与报价、采购论证工作。另外,我们可以为各位老师提供免费测试服务,有“磁畴测试”、“SOT磁畴翻转”、“斯格明子观测”、“转角/变场二次谐波”、“ST-FMR测量”、“磁控溅射镀膜”等相关需求的老师,可以随时与我们联系。
  • 国产高端扫描探针显微镜突破,北大江颖团队实现成果转化
    近日,北京大学物理学院、轻元素先进材料研究中心江颖教授课题组与刘开辉教授课题组合作,自主研发了一台qPlus型光耦合扫描探针显微镜。该显微镜性能达到国际最好水平,其中原子力传感器振幅噪音和品质因子国际领先。相关技术细节发表在国际著名科学仪器杂志《科学仪器评论》(Review of Scientific Instruments)。相关专利技术已经成功实现转让,并完成了首台商业化样机。有望打破长期的国际垄断局面。图1. 自行研制的qPlus型光耦合扫描探针显微镜商业化样机由于技术受限和经验缺乏,我国的高端扫描探针显微镜多年来一直严重依赖进口。在这种被动的局面下,江颖课题组十多年来一直致力于研发扫描探针显微镜的核心部件以及高分辨成像和谱学技术,不断挑战扫描探针技术的探测极限。尤其是成功研发出一套具有自主知识产权的基于qPlus传感器的非侵扰式扫描探针显微术,该技术通过探测极其微弱的高阶静电力,刷新了扫描探针显微镜的空间分辨率,国际上首次实现了水分子中氢原子的直接成像,将水的微观实验研究带入一个全新的时代。图2. 自制qPlus型光耦合扫描探针显微镜的核心部件。A和B,光耦合扫描探头的三维设计图和实物图。C,qPlus原子力传感器。D,聚焦离子束刻蚀后的针尖。在关键技术获得突破的基础上,江颖课题组的程博伟博士、博士研究生吴达和边珂副研究员进一步与刘开辉课题组紧密合作,成功搭建了一台qPlus型光耦合扫描探针显微镜商业化样机(专利1)。该设备兼容超高真空和低温(液氦)环境,电路噪音背底低至5 fA/Hz1/2,针尖高度振动噪音峰小于200 fm/Hz1/2,热漂移小于0.1 pm/min,各项指标达到国际最好水平。同时,该设备的qPlus传感器具有极低的背底振幅噪音(~2 pm)和优异的品质因数(最高140000),达到国际领先水平。此外,该显微镜系统还具备独特性设计,其扫描探头上直接集成了可驱动光学透镜的三维纳米定位器(专利2),大幅提升了光激发与光收集效率,避免了激光聚焦光斑的微抖动问题,使得该显微镜兼备十分优异的光学兼容性,是研究多种分子和材料体系的结构、化学成分及动力学行为的理想工具。图3. 自制qPlus型光耦合扫描探针显微镜的原子力显微成像测试结果。A,qPlus力传感器频率扫描曲线。B和D,不同针尖高度下Au(111)表面二维冰的恒高原子力显微图像(频移图)。C,二维冰表面不同位置的力谱。E和F,二维冰的原子结构图。相关论文:Bowei Cheng, Da Wu, KeBian, Ye Tian, Chaoyu Guo, Kaihui Liu, Ying Jiang, A qPlus-based scanning probe microscope compatible with optical measurements. Review of Scientific Instruments 93, 043701 (2022).(https://doi.org/10.1063/5.0082369)相关专利:[1] 江颖、程博伟、边珂、吴达,一种基于qPlus的光耦合扫描探针显微镜,中国,202121333378.5,2021-09-03。[2] 江颖、程博伟、吴达、边珂,一种透镜三维移动装置,中国,202120697032.7,2021-05-07
  • 十月非光学显微镜中标盘点出炉
    据不完全统计,10月份中国政府采购网上与扫描电镜、透射电镜、扫描探针、电子显微镜和能谱仪中标相关的词条有31条,其中可统计到的非光学显微镜中标24套,中标金额超1.7亿。科研院所是10月份非光学显微镜采购的主力军,金额超过10月份非光学显微镜总金额的50%;10月份非光学显微镜进口率100%,FEI表现突出。详细情况如下:从非光学显微镜的采购单位看10月采购非光学显微镜的单位共有17家,高校最多,有10家,其次是科研院所,共7家,医疗机构和其他机构各1家。各类型采购单位的数量各采购单位金额占比 从数量和金额两个方面综合来考虑,科研院所仍旧是10月份非光学显微镜的采购主力,5家科研院所共采购5套仪器,中标金额共计9672.9768万元,约占10月份非光学显微镜市场总额的54%。单台最高出自科研院所,北京生命科学研究所以7379.2万元的价格购得FEI Krios G4冷冻电子显微镜及制样环境配套系统一套。高校共采购仪器17套,中标金额总计7628.434179万元,约占10月份非光学显微镜市场总额的43%,其他采购单位金额较小。从非光学显微镜的中标品牌看10月份能统计到品牌的中标仪器有24套,从数量上来说。赛默飞中标仪器的数量最多,共10套,其次是日立,4套,飞纳为3套。各品牌中标仪器数量各品牌中标金额占比 从中标仪器的金额上看,FEI在10月份所占市场份额最高,以9932.7万元的金额占据了10月份约55%的市场份额,除上述“单台最高”出自FEI外,单台第二也同样出自FEI,北京科技大学以2553.5万元的价格采购一套FEI Thermoscientific Spectra 300 双球差校正透射电子显微镜一套。其次是赛默飞,总中标金额为5877.4026万元,约占33%。 众做周知,FEI已于几年前被赛默飞收购,这就相当于赛默飞世尔公司的产品占据了10月份非光学显微镜88%市场份额,是10月份当之无愧的第一名。中标仪器产地金额占比 从中标仪器的产地看,10月份可统计的中标的非光学显微镜100%为进口仪器,总金额为17888.31098万元。从非光学显微镜的中标类型看10月份成交数量最多的非光学显微镜类型是扫描电镜,共成交15套,;其次是能谱仪和透射电镜,数量分别为4套、3套。各类型非光学显微镜中标数量各类型非光学显微镜中标金额占比 从中标金额上看,10月份中标金额最多的是非光学显微镜类型是电子显微镜,可统计总金额为7489万元,约占10月份非光学显微镜总金额的42%;中标金额占比第二的是透射电镜,总金额为5319.668万元,约占总额的30%。
  • 扫描探针显微镜宽动态范围电流测量系统的研制
    成果名称扫描探针显微镜宽动态范围电流测量系统的研制单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度&radic 研发阶段 □原理样机 □通过小试 □通过中试 □可以量产成果简介:扫描探针显微镜(SPM)是研究材料表面结构和特性的重要分析设备,具有高精度和高空间分辨的优点,可以在多种模式下工作。其中,扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。SPM中用于探测针尖与样品间电流的关键部件是电流-电压转换器(I-V Converter),其作用是把探测到的微弱电流信号转换为电压信号以便后续处理。目前商用SPM设备中采用的是虚地型固定增益线性电流-电压转换器,典型灵敏度为108 V/A,其主要缺点是电流测量的动态范围较小,只能达到3~4个数量级,这使得目前SPM的电流测量能力被限定在10pA~100nA之间,阻碍了SPM在微纳电子学领域的应用。2012年,信息学院申自勇副教授申请的&ldquo 扫描探针显微镜宽动态范围电流测量系统的研制&rdquo 获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持,在项目资金的支持下,申自勇课题组开展了富有成效的工作,包括:(1)宽动态电流测量系统总体设计;(2)测量系统与SPM控制系统的接口设计;(3)测量系统加工制作和联机调试;(4)测量系统性能指标的测试评估与优化。此外,课题组还克服了皮安级微弱电流的高精度低噪声测量、反馈回路中用于非线性转换的双极结型晶体管的温度补偿等技术难题,所研制的测量系统取得了良好的效果。目前,该项目已经顺利结题,其成果装置已经在该课题组相关仪器上正常使用,并在向校内外相关用户推广。应用前景:扫描隧道显微镜(STM)和导电原子力显微镜(CFM)技术,通过探测偏压作用下针尖与样品间产生的电流,可以获得器件电学特性或材料表面局域电子结构等重要信息,成为目前微纳电子学研究领域的重要工具。
  • 新一代无液氦亚3K低温扫描探针显微镜研制获进展
    低温在凝聚态物理研究中扮演越来越重要的角色,是对多体系统中强相互作用的复杂行为开展深入研究的必要条件。随着液氦资源的日趋紧张和无液氦制冷技术的不断发展,基于无液氦制冷的设备将逐步成为低温科研仪器的主流方向。迄今为止,磁共振成像、超导磁体、综合物性测量系统等诸多仪器设备已实现了无液氦化。然而,具有亚原子分辨能力的扫描探针显微系统(SPM)对震动水平的要求极为苛刻,因此实现无液氦闭循环制冷技术在低温SPM领域的应用面临挑战。近十年来,世界上多个团队和公司尝试将制冷机安装在扫描单元附近实现无液氦低温SPM,而单级制冷的基础温度仅能达约5K水平,且制冷机震动对成像的影响仍然显著。中国科学院物理研究所/北京凝聚态物理国家研究中心郇庆研究团队(N13组)致力于高端科研仪器的研发与应用,在真空、低温、材料制备等领域核心关键部件、成套系统、电路控制系统方面取得了系列成果。高鸿钧院士团队(N04组)多年来致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要突破。N13组和N04组长期合作,陆续在尖端科研仪器装备自主研发方向取得一系列重要进展:一套商业化四探针SPM系统的彻底改造、超高真空光学-低温扫描探针显微镜联合系统的研制和应用于多探针显微镜的分时复用电路系统等。合作团队再次“仪器”携手,攻关新一代无液氦低温SPM技术。该研究研制了一套无液氦亚3K低温SPM系统。这一系统颠覆了现有无液氦SPM近端安装制冷机的方式,将低频大幅震动的制冷机安装在远端的独立制冷腔体。通过数月的连续测试验证,该设备实现了~2.8K的基础温度、接近±0.1mK的温度稳定性、约1pm震动水平、小于10pm/h的温度漂移,能够从低温到室温宽温区内连续变温成像。在非接触原子力显微镜原子级分辨成像、扫描隧道谱以及非弹性电子隧道谱的性能方面,该系统达到了与传统液氦杜瓦的湿式SPM系统相媲美的水平。相较已有无液氦SPM方案存在制冷机近端安装带来的诸多问题(不耐烘烤、磁场敏感、安装角度受限、橡胶波纹管透气结冰和难以升级等),这种闭循环远端制冷方案展现了多方面的优势:高性能:少量氦气(~10 L)实现3K以下基础温度,并可长时间连续运行,震动水平与湿式系统相当;拓展性:利用此远端液化4He方案预冷3He方便实现亚开尔文范围拓展;兼容性:与强磁场、光学通路等其他物理环境的良好兼容性,显著降低来自制冷机的电磁干扰;灵活性:便捷地将现有湿式SPM系统改造为无液氦SPM,并可应用在其他需求低温且对振动敏感的领域。这一闭循环无液氦低温SPM实现了TRL8级的技术就绪度。近期,相关研究成果发表在《科学仪器评论》上(Review Scientific of Instruments,DOI:10.1063/5.0165089)。该工作将为凝聚态物理研究、材料科学、生物医学等领域提供高性能的低温超低振动解决方案,并有望推动相关领域的研究取得更大突破。一位审稿人评价道:“在我看来,采用氦连续流低温恒温器和低温制冷机技术相结合的理念来解决无液氦低温扫描探针显微镜及相关领域长期存在的隔振问题,不仅具有创新性,而且鉴于世界范围内的液氦短缺困境,该技术方案的提出十分重要且及时。”研究工作得到国家杰出青年科学基金项目、中国科学院关键技术研发团队项目、国家重大科研仪器研制项目、国家自然科学基金青年科学基金项目和北京市科技计划怀柔科学中心项目的支持。图1. 新一代无液氦亚3K低温扫描探针显微镜的三维模型和原理图。图2. (a)基于连续流液氦恒温器的降温效果;(b)闭循环无液氦远端制冷的降温效果;(c)载入样品后的温度变化;(d)样品在4K温度的稳定性。图3. Au(111)和Ag(110)表面的成像测试和谱学表征。图4. Ag(110)表面CO分子的拾取和二阶谱学表征与谱学成像。图5. qPlus AFM探针在NaCl(100)表面的测试结果。图6. 已有基于液氦杜瓦的湿式SPM系统升级成远端制冷闭循环无液氦SPM的方案示意图。
  • 高鸿钧院士团队成果:多探针扫描隧道显微镜分时复用切换技术
    科学仪器的发展,不断促进对新材料的探索,从而直接或间接影响各科技领域的方方面面。工欲善其事必先利其器,深化与落实科学仪器的自主研发,更是科技攻关的桥头堡。扫描隧道显微镜(STM),及一系列扫描探针显微镜(SPM) :原子力显微镜(AFM)、扫描近场光学显微镜(SNOM) 等,掀起一场纳米技术革命,广泛应用于材料表面纳米尺度局域电子态、形貌以及分子振动等丰富物性的研究。电输运性质作为材料的关键参数,被广泛关注。集成多个独立STM的多探针STM系统,通过施加电/力等调控手段,实现纳米尺度、原位表征材料局域电子态与局域电输运性质,有望加速后摩尔时代新器件的基础研究。四探针 STM 可实现微观体系的四端法测量,有效消除接触电阻带来的测量误差,获得材料的本征电导率。多个独立探针的协同操纵和成像,往往需要相同数量的多套STM控制系统。随着STM探针/压电驱动部件的增加,多探针控制系统的成本和复杂度急剧增加。因此,发展低成本、高效率、可扩展的通用控制解决方案,实现STM控制系统分时操纵多个探针、乃至探针阵列的技术十分必要。中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧研究团队多年来一直致力于扫描探针显微学及其在低维量子结构方面的应用,在前沿科学研究取得一系列重要成果。同时,他们也在相关高精尖仪器自主研制方面不断积累,奠定了扎实的基础。物理所技术部郇庆/刘利团队一直致力于科研仪器设备的自主研发,与所内外多个课题组紧密合作,在核心关键部件、成套系统等方面取得了一系列成果(包括一台商业化四探针系统的彻底升级改造【Review of Scientific Instruments, 88(6):063704, 2017】、光学-低温扫描探针显微镜超高真空联合系统【Review of Scientific Instruments 89, 113705 (2018)】和新一代高通量薄膜制备及原位表征系统【Review of Scientific Instruments 91, 013904 (2020)】的自主研制)。两个团队再次密切合作、联合攻关,共同指导N04组博士生严佳浩(已毕业,爱尔兰科克大学博士后)、马佳俊、王爱伟(已毕业,国家纳米中心博士后)、马瑞松(已毕业,物理所关键技术人才)等同学成功研制并搭建了一台多探针STM分时复用切换系统,完成单个STM控制系统依次操纵多个探针在纳米尺度下的成像与定位,以及维持探针位置后的局域电输运测量。该系统采用的核心思路为研发团队首次提出,软硬件均完全自主研发,采用了ARM + DSP + FPGA多核数字平台来兼备复杂切换逻辑、多路高精度高速并行采样与数据处理,涉及C/C++与Verilog HDL编程语言,并提供图形操作界面以提高易操作性,具备多项独特优点:1)单个探针内大、小扫描管及多个探针间的无缝切换,无瞬态抖动;2)皮安级电流切换;3)任意单个探针具备毫米级移动范围与原子级空间分辨;4)多个探针可无限靠近,最小距离仅取决于针尖曲率半径;5)原位、纳米尺度、相同区域内,STM成像与电输运测量。该联合研发团队用6年多时间对系统进行了反复地设计优化和改进,并进行了全面性能测试。该研发成果所涉及的多项关键技术,如微弱信号的放大与切换、高稳定电压保持、复杂控制逻辑等,是未来大规模探针阵列应用的重要技术基础。分时切换的核心思路具有可扩展性强、成本低廉的特点,有望在材料基因组研究高通量表征领域有广泛的应用。该系统的详细介绍发表在近期的《科学仪器评论》杂志上【Review of Scientific Instruments 92, 103702 (2021) doi: 10.1063/5.0056634】。该工作得到了中国科学院关键技术研发团队项目(GJJSTD20200005)、国家自然科学基金国家重大科研仪器研制项目(11927808)和国家自然科学基金委青年基金项目(12004417)等的支持。图1:分时复用切换方案图2:分时复用系统硬件设计图3:分时复用切换系统软件架构图4:分时复用切换系统部分图形用户界面图5:单STM探针空间定位图6: 多探针切换与空间定位附:Rev. Sci. Instrum. 92, 103702 (2021).pdf
  • 预算656万,北京量子信息科学研究院采购扫描探针显微镜
    p style="text-indent: 2em "近日,华诚博远工程咨询有限公司受北京量子信息科学研究院委托,对科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目进行公开招标。详情如下:/pp style="text-indent: 2em "strong一、项目名称:/strong科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目/pp style="text-indent: 2em "项目联系方式:/pp style="text-indent: 2em "项目联系人:杨楠/pp style="text-indent: 2em "项目联系电话:18618127731/pp style="text-indent: 2em "strong二、采购单位联系方式/strong/pp style="text-indent: 2em "采购单位:北京量子信息科学研究院/pp style="text-indent: 2em "地址:北京市海淀区西北旺东路10号院西区3号楼/pp style="text-indent: 2em "联系方式:陈春融,010-83057516/pp style="text-indent: 2em "strong三、代理机构联系方式/strong/pp style="text-indent: 2em "代理机构:华诚博远工程咨询有限公司/pp style="text-indent: 2em "代理机构联系人:杨楠,18618127731/pp style="text-indent: 2em "代理机构地址: 北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A/pp style="text-indent: 2em "strong四、采购内容/strong/pp style="text-indent: 2em "货物名称:多功能超高真空低温扫描探针显微镜综合系统/pp style="text-indent: 2em "数量:1套/pp style="text-indent: 2em "简要规格描述:/pp style="text-indent: 2em "1.快速进样室/pp style="text-indent: 2em "… … /pp style="text-indent: 2em "1.2 配备直线型磁力耦合的存放装置,用于存储样品托和针尖托。/pp style="text-indent: 2em "… … /pp style="text-indent: 2em "简要技术需求:满足招标文件中的货物技术规格及要求说明/pp style="text-indent: 2em "strong五、招标文件的发售时间及地点等/strong/pp style="text-indent: 2em "预算金额:656 万元(人民币)/pp style="text-indent: 2em "时间:2020-04-21 09:30 至 2020-04-26 17:00(双休日及法定节假日除外)/pp style="text-indent: 2em "地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A/pp style="text-indent: 2em "获取招标文件的方式:现场领购/pp style="text-indent: 2em "strong六、投标截止时间/strong:2020-05-15 13:30/pp style="text-indent: 2em "strong七、开标时间和地点/strong/pp style="text-indent: 2em "开标时间:2020-05-15 13:30/pp style="text-indent: 2em "开标地点:北京市海淀区中关村软件园二期北京量子信息科学研究院620会议室/pp style="text-indent: 2em "strong八、附件/strong/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202004/attachment/9a5e9f05-15e3-46fa-8a09-e9366c609077.pdf" title="科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目-招标公告.pdf"科研仪器设备多功能超高真空低温扫描探针显微镜综合系统采购项目-招标公告.pdf/a/ppbr//p
  • 530万!深圳湾实验室双光子显微镜采购项目
    项目编号:0733-22204537项目名称:深圳湾实验室双光子显微镜采购项目预算金额:530.0000000 万元(人民币)最高限价(如有):530.0000000 万元(人民币)采购需求:序号标的名称数量单位简要技术需求1双光子显微镜1套深圳湾实验室双光子显微镜采购项目,具体要求详见招标文件。合同履行期限:签订合同后 90 天(日历日)内。本项目( 不接受 )联合体投标。
  • 186万!华东师范大学扫描探针显微镜采购项目
    项目编号:2051-224211040212 /2022-0212-ud项目名称:扫描探针显微镜预算金额:186.0000000 万元(人民币)最高限价(如有):186.0000000 万元(人民币)采购需求:序号/ No.货物名称Name of the goods数量/Quantity简要技术规格/Main Technical Data1扫描探针显微镜Scanning probe microscope1配置清单:1、原子力显微镜主机2、控制器 3、防震平台 4、隔音罩 5、导电模块 6、变温模块 7、外加磁场模块合同履行期限:合同签订后至履行完成合同约定的全部工作。本项目( 不接受 )联合体投标。
  • “扫描探针显微镜漂移测量方法”国际标准发布
    日前,由中国科学技术大学工程科学学院黄文浩教授主持制订的国际标准“扫描探针显微镜漂移测量方法(ISO11039:2012)”已由国际标准化组织正式发布。  自20世纪80年代扫描探针显微镜(Scanning-probe microscopy,SPM)发明以来,由于其具有原子量级的分辨能力,极大地促进了纳米科学技术的发展,并已逐步形成了一种高新技术产业。SPM的工作原理是通过微小探针在样品表面进行扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像。由于扫描速率较慢,漂移现象在扫描过程中普遍存在,这制约了SPM在纳米测量和纳米加工方面的进一步应用。  黄文浩教授近二十年来一直从事纳米技术与精密仪器领域的研制工作。在2006年,他向国际标准化组织ISO/TC201(表面化学分析技术委员会)提出了“扫描探针显微镜漂移速率测量方法标准”的提案,目的是要将SPM工作时纳米/秒的漂移大小和方向测量出来,以规范这类仪器的使用方法。2007年该提案正式立项,黄文浩教授被指定为该项目工作组的召集人。经过四年多的努力,SPM漂移测量方法标准的最终草案于2011年经全体成员国投票后顺利通过,并于2012年正式发布。  该标准定义了描述SPM在X、Y和Z方向的漂移速率的专业术语,规定了SPM漂移速率的测量方法和测量程序,对仪器的功能和工作环境以及测量报告内容均作了严格要求。该标准为SPM仪器生产厂家制定了漂移速率的有效参数规格,并且能帮助用户了解仪器的稳定性,以便设计有效的实验。该标准不仅适用于基于SPM测量图像的漂移速率评价方法,对其它纳米级测量仪器稳定性的评价也有着重要参考价值。  相关研究工作受到国家自然科学基金、中科院知识创新工程重要方向性项目和科技部973项目资助。  背景资料:黄文浩教授 博士生导师  1968年毕业于清华大学精密仪器及机械制造系精密仪器专业。1978年至今在中国科技大学精密机械与精密仪器系任教,现任教授,博士生导师。其中1989-1991年,西班牙马德里自治大学, 1993-1994年日本东京大学访问学者。主要研究领域:微纳米制造和测量技术 SPM科学仪器技术 飞秒激光微纳米加工技术 纳米技术与标准化。曾承担国际科技合作项目有: 中-日大学群合作先进制造领域中方负责人(1996-2002),中国-西班牙国家级科技合作项目(2001-2004) “纳米技术与仪器”负责人。主持国家自然科学基金面上项目、重点项目、973子课题等多项。在国内外刊物发表论文200余篇。现任国家纳米技术标准化委员会委员,国际标准化组织ISO/TC201/SC9/WG2召集人。《光学 精密工程》《纳米技术与精密工程》杂志编委。2011年担任国际纳米制造趋势论坛NanoTrends2011组委会主席。2011年当选国际纳米制造学会会士(Fellow of ISNM)。
  • 吉林大学采购159.401 万元扫描霍尔探针显微镜
    扫描霍尔探针显微镜项目(项目编号:JDCG2016-212) 组织评标工作已经结束,现将评标结果公示如下:  一、项目信息  项目编号:JDCG2016-212  项目名称:扫描霍尔探针显微镜  项目联系人:王晓平  联系方式:0431-85095975  二、采购人信息  采购人名称:吉林大学  采购人地址:吉林省长春市人民大街5988号即吉林大学东区继续教育学院楼517室  采购人联系方式:王晓平 0431-85095975  三、项目用途、简要技术要求及合同履行日期:  见招标文件  四、中标信息  招标公告日期:2016年06月08日  中标日期:2016年06月30日  总中标金额:159.401 万元(人民币)  中标供应商名称、联系地址及中标金额:  QUANTUM量子科学仪器贸易(北京)有限公司  159.401万元  评标委员会成员名单:  王玲、王智宏、李敏、马鸿佳、徐娓  中标标的名称、规格型号、数量、单价、服务要求:  扫描霍尔探针显微镜  五、其它补充事宜  无
  • 150万!中国科学院金属研究所扫描探针显微镜采购项目
    项目编号:22CNIC-031692-017项目名称:中国科学院金属研究所扫描探针显微镜采购项目采购方式:竞争性磋商预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:名称:扫描探针显微镜数量:1套简要技术参数:实现在微纳米尺度上观测样品表面的三维形貌,获得样品尺寸、厚度以及粗糙度等信息,同时可对样品表面的力学、电学性能等物理化学特性进行研究。扫描范围,扫描器X,Y轴扫描范围不小于80μm×80μm,Z轴扫描范围不小于10μm;至少内置两个全数字双频锁相放大器,可实现在扫描过程中,同时在共振峰的两侧施加两个振动频率以实时追踪共振频率的变化,自动调整探针驱动频率与共振频率保持一致,实现高灵敏的压电信号检测;工作带宽20MHz。导电性原子力显微镜模块:通过测量探针与样品之间的超低电流可对样品的导电性进行成像和I/V曲线测试,具有pA级分辨率,最大测量电流不小于10μA合同履行期限:合同生效后6个月内本项目( 不接受 )联合体投标。
  • 中科院成功研制“防震”原子分辨率显微镜
    p style="text-indent: 2em "对物质进行原子级别的观测,是很多前沿性科研的基础。然而,在追踪单个原子时,轻微的抖动也会让追踪变得困难,让追踪原子消失在视野中。/pp style="text-indent: 2em "近期,中科院合肥物质科学研究院陆轻铀研究员团队使用新技术,在国际上首次研制出混合磁体极端条件下的原子分辨率扫描隧道显微镜,可在强震动环境中获取高质量的原子分辨率图像。br//pp style="text-indent: 2em "强磁场是探索科学前沿的一种极端实验条件,在发现新现象、催生新技术方面具有不可替代的作用,自1913年以来在高温超导、量子材料、生命科学等领域屡有重大发现,已有19项相关成果获得诺贝尔奖。/pp style="text-indent: 2em "2017年我国在合肥建成重大科技基础设施“稳态强磁场实验装置”,该装置拥有3台场强创世界纪录的水冷磁体,以及场强排名全球第二的混合磁体。但由于混合磁体运行过程中产生的强震动干扰,只能用其开展宏观尺度的观测,难以实现微观尺度的观测。/pp style="text-indent: 2em "“追踪一个原子,要求观测仪器极其稳定,稍微晃动一下,原子就会在茫茫的微观世界中消失难觅。”陆轻铀说。/pp style="text-indent: 2em "近期,陆轻铀团队基于小尺寸的“蜘蛛马达”,用新方法设计出一种新型原子分辨率扫描隧道显微镜。它采用蓝宝石绝缘材料加工,外径仅8.8毫米,可直接插入到混合磁体的孔径中并真空密封。经测试,他们成功地在混合磁体30特斯拉的超强磁场下,获得了石墨的高品质原子分辨率图像。/pp style="text-indent: 2em "以上技术方案是在真空环境下实现的,难以对活性生物体进行观测。为此,陆轻铀团队进一步深入研究,又成功搭建出一套室温大气环境下的抗恶劣条件扫描隧道显微镜。经测试,可在27.5特斯拉的混合磁体超强磁场下实现原子分辨率成像。/pp style="text-indent: 2em "日前,国际知名学术期刊《超显微术》和《科学仪器评论》分别发表了这两项研究成果。/p
  • 光学显微镜、电镜用于地震灾区石棉粉尘检测
    2013年4月20日上午八时零二分,四川省雅安市芦山县地区发生7.0级地震,地震造成重大人员伤亡和财产损失。地震发生后,科技部紧急研究部署四川雅安地震抗震救灾科技工作,并在科技部门户网站发布抗震救灾实用技术手册,供地震灾区选用。在抗震救灾实用技术手册中,发布了地震灾区石棉粉尘检测技术。具体信息如下:  灾后各灾区的损坏建筑的清理、拆除、重建工作非常繁重,在这个过程中,粉尘的污染是个十分重要的问题,特别是很多建筑使用了或多或少的石棉材料,由此产生的石棉粉尘会对人体健康造成危害。本手册内容为针对石棉粉尘的分析监测技术和使用了石棉材料的建筑物的拆解及石棉废弃物的安全处理处置操作技术,以备地震灾区在工作中参照采用。  地震灾区使用了石棉材料的建筑物的安全拆解及石棉废弃物的处理处置应遵循专人按章操作,严密防护,安全、妥善贮存运送,指定地点集中处置,在整个过程中均设立明显示警标志,确保在拆解、处理处置过程及处置后的环境安全的原则。在工作过程中,要针对工作现场及周边进行石棉纤维污染的监测,防止造成污染,确保人体健康。  石棉纤维的检测方法有多种,主要有光学显微镜法、电镜法、X-射线衍射法等。其中光学显微镜法原理简单、所使用光学显微镜较为常见。而电镜法则准确度比较高,可以检测出较为细小的石棉纤维颗粒。  一.固体样品的检测  可参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》的分析方法。主要方法如下:  1.样品的采集  固体材料中石棉检测工作的样品采集方法如下。  在材料的不同部位取下样品若干块,取样量约50-200克左右。  2.样品的预处理  1)被测样品中有机物质的去除。采用高温烘烤方法,在马弗炉中在400-500℃的温度下加热2小时左右,除去被测样品中的有机物质。  2)块状样品的粉碎。采用机械手段进行破碎和研墨至粉末状。(若使用破碎机,粉碎时间不要太长。不然会造成石棉纤维成为细小颗粒,无法辨别)  3)纤维束状和絮状样品。用剪子剪碎后,可用研钵稍做研磨,以使缠绕成团的纤维和过粗的纤维束可以分离舒展。或用镊子等工具从边缘剥离少许。  4)将粉碎或研磨好的样品进行充分的混匀待用。  3.样品的分析  采用光学显微镜法分析参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》。  采用扫描电镜检测参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。  二.空气样品中石棉纤维的检测  1.光学显微镜法  样品采集就是将含石棉尘的空气抽取通过采样滤膜,石棉尘于滤膜上透明固定后,在相衬显微镜下计数,根据所采气体体积计算出每立方厘米气体中的石棉尘的根数。  采样及测定方法参照HJ/T41-1999《固定污染源排气中石棉尘的测定-镜检法》。  2.扫描电镜法  样品采集及测定可参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。  样品采集时可使用适用于扫描电镜观测的0.2微米或者0.4微米孔径的核孔膜。采样流量5-10L/min.。采样时间根据粉尘污染情况确定,以不造成颗粒物重叠为宜。  参照ISO 14966-2002 标准,在2000倍下进行观察和计数,计数规则参照上述标准。  技术来源  单位名称: 国家环境分析测试中心  联系地址: 北京朝阳区育慧南路1号 邮编:100029  联系人: 董树屏  联系电话:13601358418  e-mail: yrhuang@cneac.com  石棉的定义及可能含有石棉材料的建筑材料  石棉定义:石棉主要有两类,一类指属于蛇纹岩类的纤维状矿物硅酸盐,即温石棉(白石棉) 另一类是指闪石类纤维状矿物硅酸盐,即阳起石、铁石棉(棕石棉、镁铁闪石-铁闪石)、直闪石、青石棉(蓝石棉)、和透闪石。  石棉粉尘是指环境中悬浮在空中的石棉微粒。直径小于3微米,长度与直径之比大于3,纤维测量长度大于5微米的石棉纤维对人体的危害最大。  我国建筑材料中使用的主要是温石棉。可能含有石棉材料的建筑材料包括:石棉水泥瓦,钢丝网石棉水泥波瓦,石棉水泥平板,TR建筑平板,石棉硅酸钙板,石棉水泥管,石棉纱、线,石棉绳,石棉布,石棉带,热绝缘石棉纸,衬垫石棉纸、板,保温石棉板,泡沫石棉,石棉衣著,石棉被等。在这些材料中水泥制品比较坚固稳定,而保温石棉板、绝缘材料、泡沫石棉的材料较为松散易碎,更易于进入空气中造成污染。
  • 如何用显微镜拍出良好的图片?
    显微镜是生物实验室中必备的设备,但显微镜的类型和配置众多,需求和配置如何相互对应?又该如何去选择适合自己实验室的显微镜?让我们跟随深蓝云一起,看看显微拍摄的设备需求吧。问题1:我经常需要观察细胞,应该用什么样的显微镜?回答:细胞种类众多,但是大多数活细胞观察时都是未染色细胞。未染色的细胞为透明状态,普通明场显微镜观察不到,这种情况下,需要使用相差的观察方式。相差模式将光波通过细胞折射率和厚度不同的各部细微结构产生的相位变化变为振幅差来观察活细胞和未染色的标本。问题2:我们课题组即需要对病理切片进行观察,也需要对培养的细胞进行观察,这两种方式需要什么样的设备?回答:切片类型的样本建议采用正置观察方式,即物镜位于载物台上部,而细胞一般放置于培养瓶、培养皿中,所需要的空间更大,更适合使用倒置观察方式。因此对常规显微镜就需要一台正置显微镜、一台倒置显微镜。不过ECHO正倒置一体显微镜,既可以正置也可以倒置,一台就可以满足两种需求啦。问题3:既需要明场拍摄也需要荧光拍摄需要怎么选?回答:▲荧光产生原理图▲ 荧光光路示意图单色相机拥有更高的灵敏度以及光通量,而彩色相机拥有更好的对比度和色彩还原能力。荧光观察时需要用特定波长的激发光激发材料产生荧光,并通过滤色片最终得到特定波长的荧光,而这种荧光一般较弱,观察时需要高灵敏度的相机,因此配置采用单色相机。单色相机无法识别真实颜色,不适合进行明场拍摄,因为明场拍摄需要更好的对比度,彩色相机才可以满足此需求。如果想获得最好的荧光与明场观察效果,最佳的选择是搭配双相机系统。这里说一下哦,ECHO正倒置一体显微镜突破了常规显微镜的设计,同时配置了双相机系统,自动切换,保证无论明场还是荧光都可以获得最佳的观察效果,同时满足您的多种需求。问题4:市面上荧光显微镜的光源多种多样,我该选择哪种?回答:大多数荧光显微镜的光源波长需求都在可见光范围内,在这个范围内,LED光源要明显优于其他光源,其在不同波长范围可以做到光强一致,且寿命更长,无需预热和冷却,作为冷光源,其可以做到随开随用,且光毒性低,适合大多数实验室配置。问题5:可供选择的荧光通道那么多,我该如何选择荧光通道?回答:对于荧光通道的选择,需要根据用户想要观察的荧光波长来进行确定,如用户后续需要DAPI染色,需要进行GFP蛋白的观察,这些观察都有其对应的荧光波长范围,符合该波长范围的荧光通道就可以选择,如DAPI通道,FITC通道。问题6:物镜该如何选择?荧光观察配置什么物镜?回答:▲ 物镜物镜的分类方式很多,这里先说一个根据色差校正进行的分类,色差校正能力由高到低分别是复消色差显微镜,半复消色差显微镜(萤石物镜),消色差物镜,消色差能力越强,带来的最直观提升是NA值越高,因此分辨率更好。半复消色差物镜的校正范围为400-500,是常见荧光发射光的波段,适合进行荧光观察,因此对于荧光显微镜,一般配置半复消色差物镜。以上是一些关于如何选择和配置显微镜的常见问题,后续我们还会更新一些更加深入的信息。部分图源:来自网络,侵删。
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 250万!华南理工大学扫描探针显微镜采购项目
    项目编号:0612-2241D2200397项目名称:华南理工大学扫描探针显微镜采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价/单价最高限价万元(人民币)1显微镜——扫描探针显微镜1台1.1扫描器★1.1.1XYZ三轴扫描器:XY方向扫描范围≥90um×90um;Z方向扫描范围≥9um;噪声水平:Z方向≤0.035nm;XY方向≤0.15nm。▲1.1.2闭环扫描器重复定位精度≤10nm或开环扫描器线性度≤千分之五。1.2控制器1.2.1内置≥三个锁相放大器;▲1.2.2可同时成像的通道数量≥8,每个通道可同时获得的数据点数≥4000×4000;250合同履行期限:境内货物:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外货物:收到信用证后(180)天内。本项目( 不接受 )联合体投标。
  • 美研发出手机显微镜 有望应用于医学领域
    显微镜已在医学领域广为使用。美国研究人员研发出手机显微镜,只要对手机稍加改装,就能让手机和显微镜一样用于检测血液和细胞样本。如果这一技术得以推广,显微镜有望走入寻常百姓家中。  稍加改进  美国加利福尼亚大学洛杉矶分校电子工程助理教授艾多安厄兹詹是这一技术的主要研究人员。他把自己开发的软件安装在手机上,同时对手机硬件稍作改动,手机显微镜便应运而生。  “我们把手机改装成能确诊疾病的工具,”美国《纽约时报》网站11月8日援引厄兹詹的话说。  厄兹詹介绍说,在使用手机显微镜时,只需将血液样本的显微镜载片插入手机的摄像头传感器,传感器便会“读”出载片内容,随后将信息无线传输给医院或当地健康中心。除此之外,手机显微镜能检测出病态血细胞或其他反常细胞,还能观察到白血球增多。  加利福尼亚大学伯克利分校物理和分子细胞生物学助理教授艾哈迈德耶尔德兹称赞手机显微镜为一个复杂的问题找到简单解决方法。  “它不贵,只要一个手机摄像头就能轻松取代显微镜和其他仪器……如果你在一个不易获得显微镜或医疗设备稀缺的地方,这真是个聪明的解决办法,”耶尔德兹说。  全息成像  相比传统显微镜,手机显微镜体积小巧,从血液样本中获得信息也更为全面,处理信息更为迅速。  来自杜克大学的电子和计算机工程教授戴维布拉迪解释说,由于手机显微镜使用电子放大功能,不再需要透镜来放大倍率,因而体积小巧。  布拉迪说,手机显微镜使用全息成像技术,利用发光二极管发出两束光束,一束射向感光片,另一束经载片反射再射向感光片,由此形成全息图。全息图包含大量信息,“使我们能在几秒内就了解很多东西。”  加州大学洛杉矶分校应用物理和电子工程教授巴赫拉姆贾拉利还指出,由于传统显微镜视场较小,使用者必须手动调整载片才能看清样本全貌,但全息图能同时将载片上所有细胞尽收图中,手机显微镜能让人在一堆健康细胞里一眼就找到病原体。  因此,手机显微镜处理血液和其他样本的速度“有望大大超过显微镜”,贾拉利说。  推广在即  为推广这一技术,厄兹詹在洛杉矶成立Microskia公司,希望显微镜能走入千家万户。  公司首席执行官内文卡尔洛瓦茨说,公司将把部分普通手机直接改造成手机显微镜。如果手机没有配置摄像头或手机体积太小不宜改造,公司将为它们定做一个带有感应芯片的小盒子,以便用户插入手机或通过联机线接入电脑。  目前,设备的具体价格尚未确定。  “我们的想法就是把这些仪器用到不同商品上,将这种成像和诊断平台商品化,”卡尔洛瓦茨说。
  • 《生命科学中的电子显微镜技术》正式出版
    由丁明孝、梁凤霞、洪健、李伯勤、王素霞、朱平领衔主编的《生命科学中的电子显微镜技术》,经过八年编著,于今日正式出版。它凝聚了国内外45位电镜专家的经验和智慧,是一部综合性、实用性、专业性极强的经典著作。本书以促进生物电镜实验水平和制样效率的不断提高为目的,主要介绍了当前各类生物电镜技术,侧重实验技术的难点要点,实验问题和解决途径,强调实验设计理念与具体操作细节。全书共分为8章,包括:常规生物电镜样品制备技术,电镜原位成分分析技术,电镜三维重构技术,光电关联显微成像技术,植物组织的透射电镜样品制备技术,医学电镜超微病理诊断及电子显微镜的结构、原理及操作要点等内容。这部著作凝结着编写组的知识和心血,代表着一代中国电镜工作者的最高水平,将成为我国生命科学电镜技术及电镜教育事业的里程碑。八年来,全国生物电镜工作者一起见证了它的酝酿和诞生。这部著作在当前特殊的国际形势下诞生,具有特别的现实意义和历史意义,是全体电镜人的骄傲。为庆祝这部著作的发行,且应广大读者要求,希望获得领衔作者丁明孝教授的寄语签名,经过与丁老师沟通,中镜科仪将准备100册,由丁老师集中签名。请需要购买的老师尽快在如下链接中进行登记。点击链接填表订书: https://f.wps.cn/fw/N0vNiDmQ/
  • 118万!华中科技大学采购扫描探针显微镜采购项目
    项目编号:HW20220248、ZCZB-2206-ZH076项目名称:华中科技大学采购扫描探针显微镜项目采购方式:竞争性磋商预算金额:118.0000000 万元(人民币)最高限价(如有):118.0000000 万元(人民币)采购需求:扫描探针显微镜/1台(允许进口产品的响应)合同履行期限:1 质保期:1年。2 交货期:合同签订后6个月内。3 质量目标:全新合格产品。本项目( 不接受 )联合体投标。
  • 170万!华中科技大学扫描探针显微镜采购项目
    项目编号:HW20220073/ZWWH-22ZC-HW087项目名称:华中科技大学扫描探针显微镜采购项目预算金额:170.0000000 万元(人民币)最高限价(如有):170.0000000 万元(人民币)采购需求:扫描探针显微镜/1套(其他详细技术要求及商务要求见本项目招标文件第三章内容)合同履行期限:供货合同签订起至质保期满本项目( 不接受 )联合体投标。
  • 150万!中国科学院金属研究所扫描探针显微镜采购项目
    项目编号:22CNIC-031692-017项目名称:中国科学院金属研究所扫描探针显微镜采购项目预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:名称:扫描探针显微镜数量:一套简要技术参数:实现在微纳米尺度上观测样品表面的三维形貌,获得样品尺寸、厚度以及粗糙度等信息,同时可对样品表面的力学、电学性能等物理化学特性进行研究。*扫描范围,扫描器X,Y轴扫描范围不小于80μm×80μm,Z轴扫描范围不小于10μm;*至少内置两个全数字双频锁相放大器,保证在扫描过程中实时自动调整探针驱动频率与共振频率保持一致,实现高灵敏的压电信号检测,支持实现双频共振追踪等测量模式。合同履行期限:合同生效后6个月。本项目( 不接受 )联合体投标。
  • 深圳湾实验室生物影像平台:转盘共聚焦显微镜应用及管理心得(上)
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为深圳湾实验室生物影像平台助理工程师黄诗娴供稿。本文详述了转盘共聚焦显微镜的技术原理和优势、历史沿革、功能和主要应用。点击图片了解更多技术1987年,BIO-RAD公司推出了第一台商业化的共聚焦显微镜。随着激光器技术等各类技术的快速发展,共聚焦显微成像技术更加成熟完备,开始广泛应用于生命科学、材料科学等各个方面。传统的激光点扫描共聚焦显微镜使用逐点扫描,虽然隔绝了非焦平面的杂散光信号,提高了成像分辨率及信噪比,但是成像速度较慢。其光电倍增管检测器PMT的光电转换效率也比较低,需要较强的激发光。为了解决快速变化过程的共聚焦检测问题,实现活细胞长时间成像,发展了转盘共聚焦显微镜(Spinning-disk Confocal Microscopy,SDCM),解决了传统激光点扫描共聚焦显微镜成像速度相对较慢以及光毒性较高的问题。转盘共聚焦显微镜历史沿革和技术优势转盘共聚焦显微镜的概念最早是在1968年由Petrán提出的,在20世纪90年代由日本Yokogawa Electric公司发明了其核心技术:双转盘专利技术。双转盘装置包含了两个同轴排列的转盘,上转盘是带有微透镜阵列的转盘,下转盘是放置在物镜像平面上的带有约20000个阿基米德螺旋状针孔的Nipkow转盘,针孔及微透镜的位置是一一对应的,两个转盘的间距为微透镜的焦距。显微镜工作时,入射光经过微透镜阵列聚焦到Nipkow转盘针孔上,经针孔隔除杂散光后照射在样本上,无需移动载物台或使用扫描振镜,双转盘可进行多点同步扫描,旋转双转盘即可实现对样本的完整扫描,大大提高了采集速度。使用微透镜阵列聚焦激发光,照明光的透射率从使用单Nipkow转盘的4%-6%增加到40%-60%,进一步降低激发光的强度,即使是荧光蛋白表达量非常低的活细胞也可以轻松成像。Yokogawa Electric公司设计了转盘式显微镜目前最先进的共聚焦扫描单元(Confocal Scanner Unit ,CSU)(图1),其CSU-X1转盘最高旋转速度为每分钟10000转,理论上最大帧率高达每秒2000帧。较慢的CSU-W1转盘转速也有4000转,成像速度最大可达200帧/秒,非常适用于快速变化过程检测。图1:Yokogawa转盘共聚焦扫描单元结构示意图(图片来源:Carl Zeiss Microscopy Online Campus)转盘共聚焦显微镜的主要优势之一是使用面阵相机进行成像。激光点扫描共聚焦系统的PMT检测器的量子效率较低,通常为30%-40%,而SDCM使用EMCCD或背照式sCMOS等相机作为探测器,可以具有更高的量子效率,从而降低激发光功率,大大降低了对样品的光漂白和光损伤。为了让相机尽可能多地收集光子,获取高质量图像,应选择高灵敏度的相机。EMCCD相机低噪声、高灵敏,曾经是转盘共聚焦显微系统的第一选择。而如今背照式sCMOS的量子效率可高达95%,且具有与EMCCD相当的灵敏度,其被使用率开始逐渐高于EMCCD相机。此外,背照式sCMOS具有低噪声、高帧率、高动态范围、高分辨率、大靶面的特点,而且功耗更低、集成度更高,成本更低。因此,在未来的发展中,背照式sCMOS有望成为更加主流的图像传感器,应用于各类显微成像技术中。总而言之,转盘共聚焦显微镜因为双转盘技术和高量子效率相机的组合,可以高速运行并且具有非常高的信噪比。转盘共聚焦显微镜主要功能及应用转盘共聚焦显微镜因其成像速度快,层切能力好等特点,常用于多通道荧光成像、拼图及三维成像,如多荧光通道全脑片成像,斑马鱼、透明化小鼠等大组织厚样本三维拼图成像等。转盘共聚焦显微镜可以配置单相机或多相机,配置多个激光器及对应的滤光片组,快速成像多个荧光标记的样本。通过移动电动载物台实现多视野拼图成像,为避免出现拼痕,需做好仪器放大倍数校正、阴影校正及光照均匀度校正等,同时配置合适的拼图软件模块,得到所需大图。通过上下移动物镜或者压电陶瓷载物台实现Z stack三维扫描,结合三维重构软件模块,得到所需三维图像或最大投影图等。因转盘共聚焦显微镜成像采集速度快及光毒性低等优点,非常适合于活细胞成像及活细胞长时程成像,检测信号快速变化过程及信号长时间变化过程,满足细胞动力学、发育生物学等多方面的研究需求。活细胞成像需在显微镜上配置细胞培养装置,提供适宜的培养环境。配置使激光器照明和相机成像达成微秒级别同步的实时控制器,以降低光漂白和光毒性,使细胞在复杂的试验中保持健康的状态。仪器在进行XYT、XYZT成像,甚至是结合多视野、拼图、超分辨的时间序列成像时,需要配置超稳定的锁焦系统使样本始终处于聚焦状态,如Olympus的Z轴漂移补偿系统IX3-ZDC2,Nikon的完美聚焦系统PFS等。进行多视野的时间序列成像时,需要配置高精度的电动载物台,或确保载物台位移精度在可接受范围内。当载物台位移精度较低时,移动到每个成像视野会有较明显的位置偏差,导致成像结果视频中观察的样本出现肉眼可见的抖动现象,高倍镜成像时会更加明显,影响数据查看及成像分析。同时结合相应的分析软件,获得所需活细胞及时间序列的成像分析结果。高内涵细胞成像与分析系统大多使用转盘共聚焦显微成像技术。高内涵细胞成像与分析系统需同时具备自动化高速显微成像功能及自动化图像定量分析功能,可对多个样品快速成像,并从图片中提取大量的数据信息。转盘共聚焦显微成像技术既可以快速地获取多孔板大量的图像数据,并且相较于宽场荧光显微镜而言具有更高的图像分辨率及信噪比,可以提供全自动、高速和高分辨率成像筛选的多种解决方案,能满足药物发现和高通量生物学中多种需求。此外,使用转盘共聚焦显微成像技术还能进行z轴扫描获取三维图像,例如对类器官、组织或3D肿瘤球等三维样本成像,从而进一步分析更多的生理学相关问题。转盘共聚焦显微镜上可以添加各类功能扩展模块,例如超分辨成像模块和光刺激模块等。可以在转盘共聚焦显微镜上添加超分辨成像模块,如Olympus的超分辨技术OSR,是对共聚焦荧光显微镜截止频率附近逐渐减弱的高频信号,进行空间放大的空间频率滤波器,称为OSR滤波器。SpinSR10的SoRa转盘中,在50um针孔盘下添加了微透镜阵列,进一步缩小光斑,提升3~6倍的照明亮度。其可对细胞内深达100微米的区域进行成像,使用常规荧光染料即可在120 nm的分辨率下,采集到各种活细胞样品亚细胞结构的超分辨率图像。还可以在转盘共聚焦显微镜上添加光刺激或光操作实验模块,可进行荧光漂白后恢复FRAP、荧光漂白后缺失FLIP、荧光漂白后定位FLAP、光活化与光转换PA&PC等实验。下一篇作者将根据深圳湾实验室生物影像平台管理经验介绍生物影像平台设备管理心得及未来可提升空间,敬请期待!作者简介黄诗娴,深圳湾实验室生物影像平台助理工程师,南方医科大学生物医学工程硕士,主要负责管理激光共聚焦显微镜、活细胞成像系统、玻片扫描系统等显微成像设备,负责相关设备的管理维护、培训考核、开放共享、成像技术开发等工作。会议预告:12月20-22日生物显微技术大会火热报名中点击图片报名报名链接:https://www.instrument.com.cn/webinar/meetings/swxw2023/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制