当前位置: 仪器信息网 > 行业主题 > >

磁电阻随机

仪器信息网磁电阻随机专题为您提供2024年最新磁电阻随机价格报价、厂家品牌的相关信息, 包括磁电阻随机参数、型号等,不管是国产,还是进口品牌的磁电阻随机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁电阻随机相关的耗材配件、试剂标物,还有磁电阻随机相关的最新资讯、资料,以及磁电阻随机相关的解决方案。

磁电阻随机相关的论坛

  • 【原创大赛】薄膜材料磁电阻效应实验讲义

    薄膜材料磁电阻效应实验 王立锦 编 用巨磁电阻(GMR)和各向异性磁电阻(AMR)磁性薄膜材料制作计算机硬盘读出磁头和各种弱磁传感器,已经广泛应用于信息技术、工业控制、航海航天导航等高新技术领域。通过本实验能够使同学们对磁性薄膜材料的知识和磁电子学有所了解,并由此引起对纳米磁性薄膜材料研究和应用的浓厚兴趣。本实验仪器由我校教师设计搭建,采用高精度纳伏表和数控恒流源,计算机自动采集和显示数据,具有结实牢固、操作简便等优点,适用于大专院校教学和科研使用。以下略,详细内容请看附件。

  • 【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    2016国产磁测量好仪器系列之四:磁电输运测量系统ET-9000原创:刘小军、刘卫滨、李鹏飞 工程师,北京东方晨景科技有限公司推荐:陆俊 工程师,中科院物理所磁学室2016年9月25日一句话推荐理由:从引进吸收到成功集成改良的磁测量好仪器。一、引言电阻是人们借助电传输能量与信息时必须面临的基本物理现象,它导致电损耗及发热,因而几乎所有的电学材料都有必要考察其电阻率。对于电阻或电阻率的测量比较陌生的读者可以看一篇相关通俗意义的介绍“电阻测量的光与影”。本文要介绍的是磁场下电输运测量,根据加载磁场与电流的方向可以分为纵向磁阻(或简称磁阻效应)与横向磁阻(或简称霍尔效应)。进行磁电输运测量的意义在于磁自由度引入,通过电阻率随磁场的变化规律不仅仅可以用来测量磁场的大小,而且让电阻能展现出更深层次物质结构的信息(比如因晶格或拓扑等因素带来的电子自旋相关的能带结构变化)。其中最吸引人的是电子能量结构的量子化过程,竟可以只是通过简单的通过加磁场测电阻的方法予以揭示,参考图1,如1985年的诺贝尔物理学奖颁发给Klaus von Klitzing的量子霍尔效应、1998年的诺贝尔物理学奖颁发给崔琦等三位物理学家的分数量子霍尔效应、2007年诺贝尔物理学奖颁发给Albert Fert与Peter Gruenberg的巨磁电阻效应以及不久前中国刚公布的“未来科学奖”颁发给清华大学薛其坤的量子反常霍尔效应等奇特量子效应(也有可能在不久的将来获得诺贝尔奖)。因而磁场下进行电输运测量成为凝聚态物理学研究中的家常便饭式的手段。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612654_1611921_3.png图1 磁电输运测量相关的诺贝尔奖级别工作图示二、背景磁电输运测量相关的仪器虽然很轻松就能实现,但要达到在证明被研究物质的奇特量子性质并不容易。其中涉及到的主要技术不仅仅是电压与电流的稳定测量,还包括磁场的稳定与测量,此外还可能涉及到低噪声的低温甚至光学配件等,因而其综合性导致其从头开始的研发周期较长。几十年来,磁电输运测量仪器主要来自于美国的量子设计公司与Lakeshore两家公司。北京东方晨景科技有限公司从20世纪末开始引进代理Lakeshore公司设备,经过十多年的消化吸收,逐步掌握了国外公司在输运测量、磁场电源、低温等系统集成方面的技术,不仅如此,还针对国外公司在应用过程中的让用户感到不便的软硬件问题,进行了自主的改良研制,逐步形成ET-9000测量系统,系统照片如图2所示,该系统从2010年正式推出至今,明显的增加了国内外磁电输运测量仪器系统的比例(约从20%上升到40%)。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612655_1611921_3.png图2 ET-9000 型磁电输运测量仪器照片三、简介ET-9000系列磁电输运性质测试系统是集霍尔效应、磁阻、变温电阻、I-V特性等测试于一体的全自动化测试系统,其总体原理框图如图3所示。系统全面地考虑了集成一体性、屏蔽防干扰能力和操作人性化等用户经常忽略的问题,选取了美国Keithley的电测量仪表,高精度高稳定性电磁铁平台,配备灵巧的测量样品杆和快速插拔样品卡,加上全自动化的专用测试软件,能让用户快速方便地进行电输运测试,并获得准确可靠的数据。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612657_1611921_3.png图3 ET-9000磁电输运测量仪器的测试原理框图ET-9000根据不同的材料不同的测试需求分为多种型号,综合各类型号,其主要技术指标列表如下:物理学参数迁移率1 ~ 1 × 106 cm2/vs载流子浓度6 × 108 ~ 6 × 1023 cm-3霍尔系数±1 × 10-5 ~ ±1 × 1010 cm3/C电阻率5 × 10-9 ~ 5 × 106 Ω·cm电学参数电阻100nΩ ~ 100GΩ电流源±0.1pA~±1A(±1.05A@±21V, ±105mA@±210V)电压源±5μV~±200V(±21V@±1.05A, ±210V@±105mA)电流测量±10fA~±1.05A(10pA为最小分辨率)电压测量±1nV~±200V(0.1μV为最小分辨率)磁场环境室温磁场2.6T@10mm间距变温磁场2T@低温恒温器温度(选件)单点液氮盒77K闭循环恒温器4K~325K(4K型),10K~325K(10K型)高温炉325K~1000K其他样品最大尺寸50mm*50mm*3mm样品数量2个(增加选件可扩展到4个)光学配件[

  • 【分享】电阻应变片的定义原理

    电阻应变测量原理,是以电阻应变片作为传感元件,将其牢固地粘贴在构件的测点上,构件受力后由于测点发生应变,应变片也随之变形而使应变片的电阻发生变化,再由专用仪器测得应变片的电阻变化大小,并转换为测点的应变值。  根据不同的用途,电阻应变片的阻值可以由设计者设计,但电微型压力传感器阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。

  • 电极接触电阻测量对电磁流量计的测量意义

    电极接触电阻测量对电磁流量计的测量意义 任何一款流量计在出厂前和使用的过程中都要做好专项的检查。对于不同的流量计可能检查的内容并不一样。对于电磁流量计来说,就有一项检测是电极接触电阻的测量,那么这个项目会对电磁流量计有何作用呢? 电极接触电阻测量主要是指测量电极勺液体接触电阻的数值。这种检测一般是电磁流量计发生故障之后进行的,有利于对电磁流量计内部状况做一个大致的了解。在测量的过程中,不需要从管道卸下流量传感器就可以完成对电磁流量计的内衬和电极的一些情况,分析是否出现故障。 由上可见,电极接触电阻测量是电磁流量计一个方便有效的测量的方法,当电磁流量计发生故障的时候可以快速有效的排除电极和衬里的问题,减少时间的浪费。

  • 【资料】名词解释:接触电阻

    接触电阻  ----接触,对导体件呈现的电阻成为接触电阻。  一般要求接触电阻在10-20 mohm以下。 有的开关则要求在100-500uohm以下。有些电路对接触电阻的变化很敏感。 应该指出, 开关的接触电阻是在开关在若干次的接触中的所允许的接触电阻的最大值。  Contact Area 接触电阻  在电路板上是专指金手指与连接器之接触点,当电流通过时所呈现的电阻之谓。为了减少金属表面氧化物的生成,通常阳性的金手指部份,及连接器的阴性卡夹子皆需镀以金属,以抑抵其“接载电阻”的发生。其他电器品的插头挤入插座中,或导针与其接座间也都有接触电阻存在。

  • 磁电式仪表在工业上应用

    磁电式仪表在工业上应用十分广泛,维修原则、维修方法都与温度仪表、压力仪表、智能仪表氧化锆氧量分析仪液位计较为相似。下边就给大家介绍下磁电式仪表的特点:(1)仅适用于直流。因为永久磁铁产生的磁场是不能改变方向的,只有通入直流电流才能使可动部分产生稳定的偏转。假若磁电式仪表通入交流电,则所产生的转动力矩也是交变的,而可动部分由于惯性作用,还来不及转过去,接着又得转回来,结果指针只能在零位左右摆动,不会发生偏转,可见,磁电式仪表反映是通过它的电流平均值。(2)灵敏度高。由于永久磁铁形成的均匀磁场可以很强,动圈中流过很小的电流,便会产生足够大的转动力矩。从S1=BNS/D中可知,磁感应强度B的数值大,测量机构的灵敏度S1就必然高。在指示仪表中可达到1UA/格以上,而在采用张丝结构及灯光指示的检流计中可达10-10A/格,甚至更高。(3)准确度高。由于磁电式仪表的永久磁铁具有很强的磁场,而且工作气隙较小,所以气隙中的磁感应强度比较高,可以在很小的电流下产生较大的转矩,因此可以削弱由于摩擦、温度及外磁场的影响,提高仪表的准确度。所以磁电式仪表的准确度能达到0.1-0.05级,这是温度仪表(双金属温度计)不能达到的精度等级。(4)仪表本身功率消耗低。由于磁电式仪表永久磁铁的磁场很强,动圈通过很小的电流就能产生很大的力矩,因此仪表本身所消耗的功率很低,接入电路时被测量的影响较小。(5)具有良好的刻度特性。由于电磁式仪表测量机构指针的偏转角同被测电流的大小成正比,所以磁电式仪表具有刻度均匀、读数准确、调整误差方便等优点。当采用偏置动圈结构时,还可以得到很长的线性标尺。(6)阻尼强。运用动圈内金属框架里的涡流,可以得到相当好的阻尼作用。压力变送器上也应用了阻尼作用。(7)过载能力小。因为被测电流是通过游丝导入和导出的,又加上动圈的导线很细,所以过载时很容易因过热而引起游丝产生弹性疲劳和烧毁线圈。磁电式仪表的测量机构应用十分广泛,在电工仪表中占有很重要的位置。--------------------------------------------------------------------------------其

  • 【分享】电阻器的分类

    电阻器按材料分可分为以下几个。 a、线绕电阻器由电阻线绕成电阻器 用高阻合金线绕在绝缘骨架上制成,外面涂有耐热的釉绝缘层或绝缘漆。绕线电阻具有较低的温度系数,阻值精度高,稳定性好,耐热耐腐蚀,主要做精密大功率电阻使用,缺点是高频性能差,时间常数大。   b、碳合成电阻器由碳及合成塑胶压制成而成   c、碳膜电阻器在瓷管上镀上一层碳而成,将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低、性能稳定、阻值范围宽、温度系数和电压系数低,是目前应用最广泛的电阻器。   d、金属膜电阻器在瓷管上镀上一层金属而成,用真空蒸发的方法 将合金材料蒸镀于陶瓷棒骨架表面。  金属膜电阻比碳膜电阻的精度高,稳定性好,噪声,温度系数小。在仪器仪表及通讯设备中大量采用。   e、金属氧化膜电阻器在瓷管上镀上一层氧化锡而成,在绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强 按用途分,有通用、精密、高频、高压、高阻、大功率和电阻网络等。

  • 铝壳电阻有何作用?什么是特种电阻?

    电阻是许多电路中有电阻的物理装置。为了提高对电阻的认识,本文介绍了电阻的铝壳电阻。通过这篇文章,您将了解铝壳电阻的作用、铝壳电阻和水泥电阻的差异以及特殊电阻。如果你对抵抗感兴趣,请继续阅读。  一、铝壳电阻与水泥电阻的比较  铝壳电阻和水泥电阻属于导线衰退电阻的范畴,但就电阻值而言,铝壳电阻与水泥电阻没有区别。水泥电阻是用水泥密封的线缠绕电阻,将电阻线缠绕在碱性耐热陶瓷上,然后用耐热、防潮和防腐蚀材料固定,将缠绕线的电阻体放在方形陶瓷盒内,用特殊的不可燃耐热水泥密封制成的。水泥电阻的外部主要是陶瓷材料。水泥制动电阻有普通水泥电阻和滑石瓷水泥电阻两种。  从功率的角度来看,铝壳电阻的功率可以更大,但水泥电阻最多只能达到100瓦,铝壳电阻是功率大的电阻,可以允许大电流通过。与普通电阻作用相同,但可以在电流大的情况下使用,例如与电动机串联连接,限制电动机的启动电流。阻力一般不大。水泥电阻器具有体积小、抗震、防潮、耐热、散热好、价格低等特点,广泛用于电源适配器、音响设备、音响分配器、仪器、仪表、电视、汽车等。  在热性能方面,最简单的比喻之一是铝壳电阻等于空调,水泥电阻等于风扇。铝壳热性能,过载时及时释放热量,电阻温度不会很高,即使在一定范围内,电阻值也不会改变,水泥电阻也可以散热。在制作过程中,铝壳电阻器内也含有特殊水泥材料,不同的是,外面包一个是铝合金,一个是瓷器。  二、铝壳抵抗的作用  1、分流和电流限制  铝壳电阻器和装置并联可以有效地分类,以减少该装置的电流。  实际上,经常使用铝壳电阻的并联电路构造分流电路以分配电路的电流。  2、分压作用  铝壳电阻与设备连接时,可以有效地划分电压,从而降低该设备的电压。  实际上,可以使用铝壳电阻串行电路来改变输出电压,例如收音机和扩音器的音量调节电路、半导体管工作点的偏置电路、降压电路等。3、阻抗匹配  铝壳电阻可以构成阻抗匹配衰减器,特性阻抗连接在其他两个网络之间,起到阻抗匹配的作用。  4、充电或放电  铝壳电阻构成部分元件和充放电电路,以达到充放电效果。  铝壳电阻按颜色分为两大类。一种是黄色,常被称为金电阻,也是另一种铝本色,最常用。铝壳由钝化加工制成,阳极氧化电镀处理后外形高档美观。  第三,什么是特殊抵抗?  简而言之,特殊电阻是一种不同于一般电阻的特殊电阻。  特殊电阻主要有热敏电阻、减压电阻、热敏电阻、保险电阻等。  1、热敏电阻  代码:RT  主要特性:恒温系数热敏电阻(也称为PTC组件),常温下只有几个欧姆到几十个欧姆的电阻值,如果通过的电流超过额定电流,几秒内就能上升到几百个[0x4e]  用途:正温度系数热敏电阻一般用于电机启动电路、彩色电视元件电路、自动保险丝电路。  负温度系数热敏祖先常用于温度补偿和温度控制电路。制造晶体管的偏置电阻,稳定晶体管的工作点。在电子温度计和自动温度控制系统(如空调、冰箱)中用作温度感应组件。  2、巴里斯特。  代码:RV  主要特点:电压超过压力感应电压VCMA时,电阻会迅速降低,电流会增加,从而抑制暂时的过电压。  用途:常用于防止家用电器或电子设备的暂时过电压。例如:显像管灯丝电路、整流电路和电源、防雷电路以及需要防止过电压的线路。  3、光敏电阻。  代码:RG  主要特性:阻力值与光照强度相关,光照越强,阻力值越小。一般来说,无光组时电阻在几十千欧姆以上,光组时电阻下降到几百欧姆或几十欧姆。  用途:主要用于光控制开关计数电路和各种光控制自动控制系统。4、保险阻力。  代码:RF  主要用途:在额定电流内起固定电阻作用。如果通过的电流超过额定电流,创芯为电子电阻丝温度迅速上升到500摄氏度,电阻丝会立即溶解,切断需要保护的电路,功率一般为0.25W - 20W。  用途:用于保护需要限流输出的各种电源电路中的电源或负载不受过流损坏。[b][url=https://www.szcxwdz.com]创芯为电?[/url][/b]主要从事各类[b][url=https://www.szcxwdz.com]电?元器件[/url][/b]的销售。提供[b][url=https://www.szcxwdz.com]BOM配单[/url][/b]服务,减少采购物料的时间成本,在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,免费供样!

  • 负载电阻箱的突出应用和使用范围

    负载电阻箱可以精确测试各类发电机组及UPS设备的输出功率与带载能力,随机配备的分析软件可以记录整个测试过程的各种数据变化,并自动生成测试报告,便于建立设备运行状况的历史数据管理档案。 负载电阻箱广泛应用于通信、民航、银行、证券、铁路局电务段等行业,是各类发电机工程验收与日常维护必备测试工具,是UPS设备工程验收与日常维护必备测试工具。 负载电阻箱的突出应用:   一、检测各类发电机输出功率与带载能力   1、新装发电机工程验收时,生产车间检测其能否达到设计要求。   2、发电机加装消声器等降噪设备后,检测其输出功率能否达到通信设备运行需要。   3、发电机经过修理后,检测其输出功率、带载能力等性能指标是否符合要求。   4、发电机的日常维护例行检测,根据新颁发的通信电源维护规程要求,每半年要对柴油发电机加载试机15-30分钟。   二、检测UPS设备的输出功率与带载能力   1、新装UPS设备的工程验收时,检测UPS设备输出功率及蓄电池能否达到设计要求。   2、UPS设备日常维护例行检测,根据新颁发通信电源维护规程要求,每年要对UPS设备进行核对性放电试验。   三、检测交流稳压器、逆变器、开关电源等通信交流设备的输出功率与带载能力。

  • 为什么要用上拉和下拉电阻

    1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。2、OC门电路必须加上拉电阻,才能使用。3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

  • 【原创大赛】使用电阻表修复电源板

    【原创大赛】使用电阻表修复电源板

    前 言:仪器里面的电源板是最容易损坏的一个单元部件,尤其是遇到没有电路图的情况下更是让维修人员束手无策,尴尬万分。一般而言,电源板坏损大都是大伤和硬伤,最为突出的表现就是保险管爆断。为何称为“爆断”呢?主要是保险管里面的保险丝受到突然的过载电流的冲击,致使金属丝迅速燃烧升华而使保险管内壁涂上了一层棕黑色的氧化物。造成这种结果的原因主要是因为电路板里的某一个元器件被电流击穿而短路,从而致使保险管熔断。近期,我在没有电路图纸的情况下,使用普通万用表的电阻档,就成功地修复了一台紫外分光光度计的灯电源单元。为了活跃光谱版面和维护原创大赛的原创宗旨,特将此次的维修过程展现给有兴趣的版友。维修对象:某品牌分光光度计里面的灯电源电路板(由于是外购产品,故没有电路图)故障现象:故障表现为保险管F3烧断,钨灯和氘灯均不能被点燃。该电源板的外观见图-1所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478449_1602290_3.jpg图-1 电源板外观图检 查:(1)目前大部分仪器厂家为了省钱和稳定,对于仪器里的电源部件单元,均采取外购其他厂家成熟的电源成品的做法,所以在随机的维修手册里,则没有电源单元的电路图,故只能采用静态测量电阻的方法判断故障点。所谓静态检查法,就是利用万用表的电阻档,通过检查有关节点与其他参考点或者地端的电阻值的大小,来寻找故障所在地点。(2)本文所例举的电路板的作用是:利用输入的24V直流电压,经过变换处理,产生两个电压:一个是10V的钨灯电压;另一个是供给氘灯起辉的灯丝和阳极电压。为此首先找到一只与先前烧损的相同规格的保险管(1A)安插在F3的管座上;然后用万用表的电阻档测量该电路板的24V直流输入电压端子CN1-1、3间的正反向电阻后发现,CN1的正反向电阻值均为8Ω;按照常理,一个电源板的输入电阻的最低下限参照欧姆定律粗略的推算公式是:(输入电压÷保险管额定电流)=输入阻抗。现在该电路板的保险管的额定电流是1A,那么由此推算,此板输入电阻最小也应该是:24V÷1A=24Ω;而目前该板子的输入电阻却为8Ω,远远低于24Ω。这说明该电路板的确存在着严重的短路现象。测量端子见图-2所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478450_1602290_3.jpg图-2 测量输入端子的电阻(3)去掉保险管F3后,CN1输入端电阻变回为1357Ω了,说明其他电路正常;可是再测F3保险管座后面的电阻仍然为8Ω,这证明了短路点在F3以后的电路中;于是按照电路板上的元件实际排列,画出F3以后的电路示意图,见图-3所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478451_1602290_3.jpg图-3 电源变换电路(断开了保险管F3)(4)为了缩小故障范围,我采用了“节点检测”法,即将印刷电路板上的通往R47一路的覆铜连线用小刀割断,这样做的目的即可以免去焊脱R47的麻烦,又可以达到“分割而治之”的判断效果,一举两得。当覆铜板连线被割断之后,再测F3之后电路的电阻值仍然保持为8Ω,这进一步证明了故障点就在IC7或C29、C30方面。见图-4,图-5所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478452_1602290_3.jpg图-4 判断故障点的简化电路(断开了F3和通往R47的连线)http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478453_1602290_3.jpg图-5 割断通往R47的连线(5)根据以往的经验,半导体器件件最容易被电压击穿而造成短路,所以首先将电压转换器IC7的输入端②脚用电烙铁从电路板上焊开悬空;见图-6所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478454_1602290_3.jpg图-6 焊开IC7的输入端 此时,IC7的输入端与电路板完全脱离了;继而再用电阻表测量F3的后面电路,其阻值仍为8Ω;于是故障点被缩小到仅仅在电容C29和C30这两个范围啦! (6)通过百度查找TPS5420组件的实例得知,这两个电容是容值为 4.7μF的电解电容。根据以往的维修经验,电解电容也是比较容易被击穿的器件。于是通过用放大镜仔细观察发现,电容C30表面有绿色的锈迹。于是首先将C30 焊下,见图-7所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202102_478455_1602290_3.jpg图-7 焊下电容C30 电容C30焊下后,再用电阻表测F3以后的电路阻值时,阻值恢复到1357Ω啦!说明原来短路原因就是C30被电压击穿的缘故,正常的电解电容的阻值应该接近无穷大,如果阻值很小则说明此电容有漏电和被击穿的故障了。为了进一步证实C30电容是否被击穿,用电阻表仅测单体电容C30发现其阻值确实为8Ω,证明该电容已经处于被击穿状态了,这就是该电源板的故障根源所在。见图-8所示:http://ng1.17img.cn/bbsfiles/images/2013/11/201311202103_478456_1602290_3.jpg图-8 被击穿的单体电容C30的阻值(8Ω)(7)由于原型号的电容不易购到,故找来一只容值接近的电解电容换上,见图-9[font=宋体

  • 贴片电阻能否豁免?

    贴片电阻由塑料,金属,陶瓷等材料组成,但由于太小无法再拆分即认为是均质物质,但我公司测试了很多供应商的贴片电阻铅都是超过2000PPM,不知道到底符不符合ROHS的要求(ROHS对陶瓷中的铅的豁免的).如果无法提供组成贴片电阻的原材料测试,那让供应商提供声明贴片电阻的铅全部来自ROHS豁免的陶瓷可以吗?

  • 【原创】铠装热电阻 PT100热电阻

    一、概述铠装铂电阻作为一种温度传感器,它比装配式铂电阻直径小,易弯曲,适宜安装在管道狭窄和要求快速反应、微型化等特殊场合。其可对-200~600℃温度范围内的气体、液体介质和固体表面进行自动检测,并且可直接用铜导线和二次仪表相连接使用,由于它具有良好的电输出特性,可为显示仪、记录仪、调节器、 扫描器、数据记录仪以及电脑提供精确的输入值。铠装电阻外保护管采用不锈钢,内充满高密度氧化物质绝缘体,因此它具有很强的抗污染和优良的机械强度,适合安装在环境恶劣的场合。铠装铂电阻通常由铠装铂热电阻感温元件、安装固定装置和接线装置等主要部件组成。二、特点·热响应时间少,减小动态误差;·直径小,长度不受限制;·测量精度高;·进口薄膜电阻元件,性能可靠稳定;

  • 【原创】线绕电阻的优势特征

    线绕电阻,分为固定型线绕电阻和可调式线绕电阻,其主要功能都是使变压器受阻,耗散电流。在线绕电阻器中,有一种用陶瓷做骨架,在电阻器的外层涂釉或其他耐热并且散热良好的绝缘材料的大功率线绕电阻器,线绕电阻器的特点是耗散功率大,可达数百瓦,主要用作大功率负载,能工作在150℃~300℃温度的环境中。绝缘骨架是由陶瓷、塑料、涂覆绝缘层的金属等材料制成管形、扁形等各种形状。电阻丝在骨架上根据需要可以绕制一层,也可绕制多层,或采用无感绕法等。电阻丝一般采用具有一定电阻率的镍铬、锰铜等合金制成。线绕电阻的特点是工作稳定,耐热性能好,误差范围小。

  • 【求助】耐高温电阻

    变压器输出交流电压 后接 7805 再变5v电压。先变压器输出电压过高(20v以上),所以7805非常的热,长时间使用容易损坏。但由于条件限制,不能修改变压器,不能加散热片。先将在变压器与7805间加一“耐高温电阻”做分压,将7805的输入电压控制在15V一下。(普通直插电阻不可以,因为通过电流在0.4A左右,时间长了普通电阻也会损坏)现在网上查了一些,如陶瓷电阻、碳膜电阻、水泥电阻、合金金属丝电阻————求助,较好的耐高温电阻是哪一种?

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.文章来源:http://www.firstsensor.cn/

  • 热电偶与热电阻的区别

    一 区别:1.虽然都是接触式测温仪表但它们的测温范围不同热电偶使用在温度较高的环境如铂铑30---铂铑6(B型)测量范围为300度~~1600度短期 可测1800度.S型测一20~~1300(短期1600)K型测一50~~1000 (短期1200).XK型一50~~600(800)E型一40~~800(900).还有J型T型等.这类仪表一般用于500度以上的较高温度因它们在 中低温区时输出热电势很小(查表可以看一下)当电势小时对抗干扰措施和二次表和要求很高否则测量不准还有在较低的温度区域冷端温度的变化和环境温度的变化 所引起的相对误差就显得很突出不易得到全补偿。这时在中低温度时,一般使用热电阻测温范围为一200~~500甚至还可测更低的温度(如用碳电阻可测到1K左右的低温).现在正常使用铂热电阻Pt100(也有Pt50100和50代表热电阻在0度时的阻值在旧分度号中用BA1BA2来表示BA1在0度时阻值为46欧姆在工业上也有用铜电阻分度号为CU50和CU100但测温范围较小在一50~~150之间.在一些特别场合还有铟电阻锰电阻 等)2.热电偶测量温度的基本原理是热电效应.二次表是一个检伏计或为了提高精度时使用电子电位差计.电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的二次表是一个不平衡电桥[font='Times

  • 【转帖】高阻电阻介绍

    【转帖】高阻电阻介绍

    这是在38度发烧论坛看到的。由于在一些分析仪器上比如气相色谱的FID检测电路,就有这种高阻。所以转了一下。高阻电阻1、高阻的意义弱电流的产生离不开高阻做采样,弱电流的测试也需要高阻作为反馈电阻。同样,测试高阻的时候,也同样需要微电流计。高阻与微弱电流就是这样紧密联系在一起的。常见的电阻阻值范围是1欧到10M,达到几十M、100M,就可以认为是高阻了。更高的电阻,用M来表示已经不够,就需要用G来表示,1G=1000M,这个与硬盘的容量的表示方法是一样的有的时候用G表示也不够了,我们就用T来表示,1T=1000G=1E12。2、高阻的特点最简单的弱电流测试,就是让弱电流流过一个高阻电阻,然后测试这个高阻上的压降。例如我们如果有个10G(也就是10,000M)的电阻,那么1pA的电流流过,就能产生10mV的电压,就很有可能测量出来。同样,假设我们要产生一个1pA的电流,也可以先得到10mV的电压,再加上一个10G的电阻就可以了。当要求的测试的电流越小,或者想产生更小的电流,就要求电阻的阻值越高,100G、1T的电阻也是经常能见到的。显然,电流的测试精度和产生精度直接取决于电阻的精度,所以这就对这些高阻提出了更高的要求。 我们知道,最好的电阻材料是金属,也就是金属箔电阻、线绕电阻所用的材料。但是,金属的电导率比较好,一旦电阻超过一定数值,就需要很细(比头发丝细得多)、很长(至少几公里)的线,这就不现实了。所以,高阻电阻都是采用电阻率超高的材料,例如金属氧化膜、有机材料。这些材料的温度系数很难找到好的,而且稳定性也很难做好,成为高阻电阻的一个挑战。上面说了,要想得到精确的电流,或者能精确的测试微小电流,就需要高精度的高阻。而恰恰是高阻电阻很难做到精确,所以微小电流的发生和测试,都不那么精确。高阻除了温度系数比较大、老化比较大以外,还有几个难于克服的弱点:a、湿度系数大。这主要原因在于很多电阻材料容易吸湿,而少许的吸湿就将大比例的改变高阻。另外,尽管很多高阻采取了密封措施,但表面泄露经常是更危险的,表面的脏污加上潮是,将彻底毁掉一个高阻。b、电压系数大。所谓电压系数,就是在不同电压下电阻是不同的。也就是说,在高阻的场合下,电流-电压曲线出现了非线性,不太遵从欧姆定律了。每变化1V,电阻可能改变几ppm、几十ppm甚至更多。越高的阻值这种现象越明显。c、响应时间很慢。这主要是分布电容造成的。如果有个10T的电阻,在10pF的分布电容下,时间常数就是不可思议的τ=100秒!而一般的测试都要等待3τ时间。因此,除非采取特殊措施,否则在T级别的电阻下,就必须忍耐超常的测试时间。3、高阻的使用鉴于此类原因,我们还在可能的情况下,尽量避免高阻的采用。能降低一个级别,就能提高一级性能。比如能采用1G的场合,就不用10G。aRKG) 要达到这一点,在电流发生的场合,就要减少电压。例如本来10pA的电流可以采用1V和100G来产生,要是降低标准电压到0.1V,那么只要10G就可以同样产生10pA电流。要是降低到10mV,那么只需要1G电阻了。同样,在电流的检测和反馈电路,本来10pA在100G上可以产生1V的电压。假设我们把这个满度电压降低到0.1V,就可以把电阻降低到1/10为10G当然,降低电压就需要放大器的Vos更小,也对调零电路、补偿电路提出更高的要求。值得注意的是,高阻往往与高压联系在一起的。原因是高压的发生、测试,都要求高阻;而高阻的测试,往往要用到高压。但是,一旦到了弱小电流领域,对高压、耐压就没什么要求,只要求体积小、性能好。只不过很多高阻为了照顾在高压下的表现,要兼顾两个方面的需求。一旦涉及高压,电阻的体积就比较大。即便不涉及高压的高阻,体积大点也容易做出。 4、虚拟高阻:模拟大电阻高精度实物高阻很难做,因此可以采用有源技术模拟出大电阻来。5、常见的实物高阻这个是国产的100M氧化膜电阻,特点是廉价,但温度系数非常之大,根本不能用于精密场合http://ng1.17img.cn/bbsfiles/images/2011/03/201103241529_284900_1786353_3.jpg 这个是日本的100M电阻,随手在日本买的(每只100日元),温度系数很小,30ppm级别http://ng1.17img.cn/bbsfiles/images/2011/03/201103241529_284901_1786353_3.jpg国产RHZ合成膜电阻。阻值范围很宽,特性一般,体积较大http://ng1.17img.cn/bbsfiles/images/2011/03/201103241529_284902_1786353_3.jpg 这是常见的国产真空电阻。内部也是合成膜的,温度系数一般,但由于彻底隔绝外界,因此稳定性不错的,也不受湿度变化的影响。http://ng1.17img.cn/bbsfiles/images/2011/03/201103241529_284903_1786353_3.jpgDale的真空电阻,30G的http://ng1.17img.cn/bbsfiles/images/2011/03/201103241529_284904_1786353_3.jpg HSK瓷管高阻。10T非常大了,所以能做到5%也很不容易。与玻璃比,瓷管密封的也是相当不错的http://ng1.17img.cn/bbsfiles/images/2011/03/201103241530_284906_1786353_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/03/201103241530_284907_1786353_3.jpg 日本的RHnHVS,指标还不错,都是1%。阻值是1-3.33-10步进的,从1M一直到1T,是某模拟高阻表上拆下来的最大的1T的,温度系数指标是0.1%/C,即1000ppm/C。http://ng1.17img.cn/bbsfiles/images/2011/03/201103241530_284909_1786353_3.jpg这是617内部的330G电阻,蓝色的涂层估计是防潮的http://ng1.17img.cn/bbsfiles/images/2011/03/201103241530_284910_1786353_3.jpg

  • 电阻炉小知识

    电阻炉是利用电流使炉内电热元件或加热介质发热,从而对工件或物料加热的工业炉。电阻炉在机械工业中用于金属锻压前加热、金属热处理加热、钎焊、粉末冶金烧结、玻璃陶瓷焙烧和退火、低熔点金属熔化、砂型和油漆膜层的干燥等。 自从发现电流的热效应(即楞茨-焦耳定律)以后,电热法首先用于家用电器,后来又用 于实验室小电炉。随着镍铬合金的发明,到20世纪20年代,电阻炉已在工业上得到广泛应用。工业上用的电阻炉一般由电热元件、砌体、金属壳体、炉门、炉用机械和电气控制系统等组成。加热功率从不足一千瓦到数千千瓦。工作温度在 650℃以下的为低温炉;650~1000℃为中温炉;1000℃以上为高温炉。在高温和中温炉内主要以辐射方式加热。在低温炉内则以对流传热方式加热,电热元件装在风道内,通过风机强迫炉内气体循环流动,以加强对流传热。电阻炉有室式、井式、台车式、推杆式、步进式、马弗式和隧道式等类型。可控气氛炉、真空炉、流动粒子炉等也都是电阻炉。    电热元件具有很高的耐热性和高温强度,很低的电阻温度系数和良好的化学稳定性。常用的材料有金属和非金属两大类。金属电热元件材料有镍铬合金、铬铝合金、钨、钼、钽等,一般制成螺旋线、波形线、波形带和波形板。非金属电热元件材料有碳化硅、二硅化钼、石墨和碳等,一般制成棒、管、板、带等形状。电热元件的分布和线路接法,依炉子功率大小和炉温要求而定。   电阻炉与火焰炉相比,具有结构简单、炉温均匀、便于控制、加热质量好、无烟尘、无噪声等优点,但使用费较高。

  • 【求助】求气谱铂电阻电路板维修视频

    昨天雷电交加,气谱正在运行中,窗外一个炸雷霹过来,气谱随即报警!当时也没敢仔细查看,立马关了电源,拔了插头。当时临近下班,安全起见就没再开色谱。今天打开色谱,设定好温度不一会就开始报警,查看了一下,提示升温加热器不能用了,想必是铂电阻电路板烧了。不知哪位大侠有这方面的维修视频,希望传上来看看!谢谢~~~

  • 原子荧光炉头电阻丝的电阻值

    原子荧光炉头附近没有温度探头,这样当使用者在软件中设置炉头原子化温度为200度的时候,仪器可以调节的只有电流。我查看了电路板,认为可能的情况是仪器电路由可控硅调节电流流量,通过控制电流来控制电阻丝的发热,这样的话电阻丝的电阻应该是恒定的,一批电阻丝的电阻应该在一个范围之内。我希望网友可以提供一下电阻丝的电阻值。我购买了一批电阻丝,但是由于实验室装修搬家,我得万能表不知道搬到什么地方去了,希望各位能够帮忙,我写文章用。

  • 【原创大赛】电阻测量技术发展

    【原创大赛】电阻测量技术发展

    复现电阻单位的技术发展概况电阻单位是电磁量单位中最重要的单位之一。国际单位制SI的7个基本单位中与电磁量有关的基本单位是电流单位安培。但在实际工作中要长期维持高度稳定的电流作为计量标准来使用是相当不容易的,而电压单位和电阻单位则可以用标准电池与标准电阻作为实物基准来进行保存,对于开展日常检定工作也很方便。另一方面,有了电压单位和电阻单位,就可用适当的实验方法导出所有的电磁量单位供实际工作使用。因此,各国的计量实验室均把电压单位和电阻单位作为保存和复现电磁量单位的实际手段。由于电阻单位的实际重要性,从19世纪起,科学家们已花了不少精力来探讨建立既科学而又实用的电阻单位的方法。第一个被国际承认并且实际采用的用于复现电阻单位的标准装置是“水银柱电阻标准”。人们为这种标准规定了合理的复现条件,可在各国的标准实验室复现统一的电阻单位,因此曾为各国的国家标准实验室广泛采用为复现电阻单位的标准量具。但亦应指出,用水银柱电阻标准复现的电阻单位并不是严格的MKSA单位制(后来发展成为SI国际单位制)中的电阻单位,后来查明两者之间存在万分之几的差别。所以一般把水银柱电阻标准复现的电阻单位称为“国际欧姆”,表明这是一种被国际上承认并采用的实用电阻单位,而把真正符合MKSA单位制中的单位定义的电阻单位称为“绝对欧姆”。随着生产和科学研究的发展,对电阻单位的准确性及严格性提出了越来越高的要求,因此1933年的第八届国际计量大会决定采用绝对欧姆代替当时通用的国际欧姆,以保证整个MKSA单位制的一致性及严格性。由于战争等原因,此决议未被及时执行。到1948年的第九届国际计量大会,再一次确认用绝对电单位代替“国际电单位”的原则,并要求在MKSA单位制基础上发展一种国际统一的科学单位制,即后来逐步形成的国际单位制SI。 但是,复现绝对电阻单位是一件相当困难的工作。在50年代,广泛采用“可计算电感法”复现绝对电阻单位,其主要内容是制作一个几何尺寸高度准确的自感线圈或互感线圈。由于在MKSA单位制或SI制中规定了真空磁导率 m0为一个等于4p×10-7亨利/米的无误差常数,因此可以从线圈尺寸的测量数据用电磁学公式计算出其自感或互感。再利用一个平衡方程为wL=R的电桥,即可从自感或互感量以及频率量导出绝对电阻单位来。这一方法构思巧妙,但在试图提高其测量准确度时遇到了困难。主要问题是线圈的几何形状相当复杂,要将其各方面的几何尺寸均准确地测量出来是极不容易的。尽管经过了不少人的努力,用“可计算电感法”复现绝对电阻单位时准确度始终停留在10-5到10-6量级。与此相比较,当时制作高稳定电阻的工艺已相当进步,可制造年稳定性优于10-7量级的电阻器。这样,人们就倾向于把保存在一组高稳定电阻器上的电阻量值作为保存的电阻单位,而各国的保存电阻单位间的一致性则通过国际比对来实现。国际计量局要求各国的国家标准实验室每三年一次把本国的保存电阻单位送到巴黎相互比较,结果以公报的形式公布。当然,用“可计算电感法”复现绝对电阻单位的实验也在多个国家实验室进行过,以观测保存电阻单位与绝对电阻单位之间有无重大差别。但由于“可计算电感法”的不确定度只能达到10-5到10-6量级,对改进保存电阻单位准确度的作用不是很大,甚至要根据“可计算电感法”的实验来判断保存电阻单位的稳定性也是困难的。相对于前面所述的“可计算电感法”而言,“可计算电容法”是相当成功的。此种方法成功复现了电阻的SI单位, 不确定度为10-7量级。澳大利亚的国家计量实验室NML曾用“可计算电容法”连续监视国际计量局的标准电阻器组的量值达24年,证实保存在国际计量局的电阻单位随时间线性下降,变化速率为-6.14×10-8/年。并且这一著名的实验结果成为后来决定量子化霍尔电阻的SI值的重要依据之一。但是从另一方面来看,各国的国家实验室保存的标准电阻器的成组平均

  • 【分享】接地电阻测试仪的历程

    你知道接地电阻测试仪的发展历程吗?你了解最初人们使用的接地电阻测试仪的测量方法是什么吗?如果不知道,那么我将带你去游历一下接地电阻测试仪的过去。  最初人们对接地电阻的测量是用伏安法,这种试验是非常原始的。在测定电阻时须先估计电流的大小,选出适当截面的绝缘导线,在预备试验时可利用可变电阻R调整电流,当正式测定时,则将可变电阻短路,由安培计和伏特计所得的数值可以算出接地电阻。      伏安法测量地阻有明显的不足之处,第一:繁琐、工作量大。试验时,接地棒距离地极为20~50米,而辅助接地距离接地点40~100米。另外受外界干扰影响极大,在强电压区域内有时无法测量。五六十年代苏联的E型摇表测量取代了伏安法测量。由于携带方便,又是手摇发电机,工作量比伏安法小。七十年代国产接地电阻测试仪问世,无论在测量范围、分度值、准确性还是结构、体积、重量,都要胜于"E"型摇表。因此,相当一段时间内接地电阻仪都以手摇表为典型仪器。手摇式表在使用时,应将设备自身接地体与设备断开,以避免接地体影响测量的准确性。上述仪器由于手摇发电机的关系,精度都很差。  八十年代数字接地电阻测试仪的投入使用给接地电阻测试带来了生机,虽然测试的接线方法同手摇表没什么两样,但是其稳定性远比摇表指针式高得多。在此基础上又出现了一种数字式接地电阻测试仪,测试时采用两线法在线测量,不必打辅助接地桩,把水管、暖气管道或交流电插座的零线做为辅助接地,能测量接地电阻、土壤电阻率、交流电压等指标,并有自动补偿功能,不仅提高了测量精度,还具有防误操作、智能提示等功能。这使接地电阻测量更方便和快捷。后又发展为3线法和四线法。其缺点是在一些无良好辅助接地或不能打地桩的环境下不能使用。真正接地电阻测试仪技术的一个创举是在九十年代---钳口式地阻仪的诞生打破了传统式测试方式。钳口式接地电阻测试仪称得上接地电阻测试的一大革命,钳口式接地电阻测试最大特点是使用快捷、方便,只要钳住接地线或接地棒就能测出其接地电阻。但钳口式地阻仪主要用于检查在地面以上相连的多电极接地网络,通过环路地阻查询各接地极接地情况,但不能替代整个网络的工频接地电阻测量。同时由于钳口法测量采用电磁感应原理,易受干扰,测量误差比较大,不能满足高精度测量要求。  接地电阻测试仪真实值为什么至今仍是一个悬而未解的难题?主要是没有理想的测量仪器,接地摇表由于众所周知的原因,测试值精度很差,有时同一个接地电阻成了一个抽象的物理量,使人很难捉摸。随着科学仪器的发展,先进接地电阻测试仪完全控制了接地电阻测试仪的领域,可以做到测试值正确无误。目前智能式接地电阻测试仪不仅功能强大,而且可以应付现场各种复杂情况,如有效地排除干扰、自动跟踪最合适测试条件、出现各种问题当即智能提示等等。可见随着科技的不断地发展,以前一些不可解决的问题,现在已经在慢慢的不断解决了。

  • 热电阻的类型

    热电阻,经常被用来测温,而它是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。并且热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。那么现在小编就给大家说说热电阻的类型有哪几种?1、普通型热电阻:从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。2、铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。3、端面热电阻:端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4、隔爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。以上的内容是给大家简单的介绍了热电阻的类型,不同类型的热电阻用在不同的环境中具有特定的功效,所以热电阻被广泛应用于工业测温,而且被制成标准的基准仪。请注意,帖子内容不得含广告链接----热分析版

  • 【原创】复现电阻单位的技术发展概况

    [size=3][font=宋体]电阻单位是电磁量单位中最重要的[color=#000000]单位之一[/color]。国际单位制SI的7个基本单位中与电磁量有关的基本单位是电流单位安培。但在实际工作中要长期维持高度稳定的电流作为计量标准来使用是相当不容易的,而电压单位和电阻单位则可以用标准电池与标准电阻作为实物基准来进行保存,对于开展日常检定工作也很方便。另一方面,有了电压单位和电阻单位,就可用适当的实验方法导出所有的电磁量单位供实际工作使用。因此,各国的计量实验室均把电压单位和电阻单位作为保存和复现电磁量单位的实际手段。[/font][/size][size=3][font=宋体]由于电阻单位的实际重要性,从19世纪起,科学家们已花了不少精力来探讨建立既科学而又实用的电阻单位的方法。第一个被国际承认并且实际采用的用于复现电阻单位的标准装置是“水银柱电阻标准”。人们为这种标准规定了合理的复现条件,可在各国的标准实验室复现统一的电阻单位,因此曾为各国的国家标准实验室广泛采用为复现电阻单位的标准量具。但亦应指出,用水银柱电阻标准复现的电阻单位并不是严格的MKSA单位制(后来发展成为SI国际单位制)中的电阻单位,后来查明两者之间存在万分之几的差别。所以一般把水银柱电阻标准复现的电阻单位称为“国际欧姆”,表明这是一种被国际上承认并采用的实用电阻单位,而把真正符合MKSA单位制中的单位定义的电阻单位称为“绝对欧姆”。随着生产和科学研究的发展,对电阻单位的准确性及严格性提出了越来越高的要求,因此1933年的第八届国际计量大会决定采用绝对欧姆代替当时通用的国际欧姆,以保证整个MKSA单位制的一致性及严格性。由于战争等原因,此决议未被及时执行。到1948年的第九届国际计量大会,再一次确认用绝对电单位代替“国际电单位”的原则,并要求在MKSA单位制基础上发展一种国际统一的科学单位制,即后来逐步形成的国际单位制SI。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]但是,复现绝对电阻单位是一件相当困难的工作。在50年代,广泛采用“可计算电感法”复现绝对电阻单位,其主要内容是制作一个几何尺寸高度准确的自感线圈或互感线圈。由于在MKSA单位制或SI制中规定了真空磁导率 [/font][/size][i][size=3][font=Symbol]m[/font][/size][/i][sub][size=3][font=宋体]0[/font][/size][/sub][size=3][font=宋体]为一个等于4[/font][/size][i][size=3][font=Symbol]p[/font][/size][/i][size=3][font=宋体]×[/font][/size][size=3][font=宋体]10[/font][/size][sup][size=3][font=Symbol]-[/font][/size][size=3][font=宋体]7[/font][/size][/sup][size=3][font=宋体]亨利[i]/[/i]米的无误差常数,因此可以从线圈尺寸的测量数据用电磁学公式计算出其自感或互感。再利用一个平衡方程为[/font][/size][i][size=3][font=Symbol]w[/font][/size][size=3][font=宋体]L[/font][/size][/i][size=3][font=宋体]=[i]R[/i]的电桥,即可从自感或互感量以及频率量导出绝对电阻单位来。这一方法构思巧妙,但在试图提高其测量准确度时遇到了困难。主要问题是线圈的几何形状相当复杂,要将其各方面的几何尺寸均准确地测量出来是极不容易的。尽管经过了不少人的努力,用“可计算电感法”复现绝对电阻单位时准确度始终停留在10[sup]-5[/sup][/font][/size][size=3][font=宋体]到[/font][/size][size=3][font=宋体]10[/font][/size][sup][size=3][font=宋体]-6[/font][/size][/sup][size=3][font=宋体]量级。与此相比较,当时制作高稳定电阻的工艺已相当进步,可制造年稳定性优于10[/font][/size][sup][size=3][font=Symbol]-[/font][/size][size=3][font=宋体]7[/font][/size][/sup][size=3][font=宋体]量级的电阻器。这样,人们就倾向于把保存在一组高稳定电阻器上的电阻量值作为保存的电阻单位,而各国的保存电阻单位间的一致性则通过国际比对来实现。国际计量局要求各国的国家标准实验室每三年一次把本国的保存电阻单位送到巴黎相互比较,结果以公报的形式公布。当然,用“可计算电感法”复现绝对电阻单位的实验也在多个国家实验室进行过,以观测保存电阻单位与绝对电阻单位之间有无重大差别。但由于“可计算电感法”的不确定度只能达到10[sup]-5[/sup][/font][/size][size=3][font=宋体]到[/font][/size][size=3][font=宋体]10[/font][/size][sup][size=3][font=Symbol]-[/font][/size][size=3][font=宋体]6[/font][/size][/sup][size=3][font=宋体]量级,对改进保存电阻单位准确度的作用不是很大,甚至要根据“可计算电感法”的实验来判断保存电阻单位的稳定性也是困难的。[/font][/size]

  • 热电阻分类

    热电阻种类   1)普通型热电阻   从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。   2)铠装热电阻   铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。   3)端面热电阻   端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。   4)隔爆型热电阻   隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

  • 求助关于电阻电容测定问题

    我在测试电阻、电容因为其内部含有陶瓷故pb含量测得挺高的不知道大家如何测定另外不知道怎么判断什么是压片电容,不知道那些属于豁免条款谢谢。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制