当前位置: 仪器信息网 > 行业主题 > >

单目显微镜

仪器信息网单目显微镜专题为您提供2024年最新单目显微镜价格报价、厂家品牌的相关信息, 包括单目显微镜参数、型号等,不管是国产,还是进口品牌的单目显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单目显微镜相关的耗材配件、试剂标物,还有单目显微镜相关的最新资讯、资料,以及单目显微镜相关的解决方案。

单目显微镜相关的资讯

  • 观察者—积木式显微镜结构设计的是与非
    对现代显微镜而言,基本功能可以拆解成三块:光学成像、图像采集、图像处理与分享。所谓光学成像,即尽量还原镜下样品的形态,色彩等信息;图像采集即将镜下观察结果转换为照片或视频;图像处理与分享,即对样品进行标注,测量并分享。现代显微镜生产商根据以上三功能,进行产品设计与研发:各厂商针对三功能进行再次拆解,开发部件:根据观察样本和应用方向的不同,各厂商开发了针对性的部件来满足用户要求,不同样本需要各个部件完美配合才能得到好的成像效果,以常见的免疫荧光观察为例,一套专业免疫荧光显微镜的构成,为荧光光源+萤石物镜+荧光激发块+高速高灵敏相机+荧光分析处理工作站,部件种类繁多,配置复杂,如果用户对显微镜不够了解,很容易配错。当前显微镜观察方式基本分为7种,各厂商针对性开发了不同部件,并且不约而同采用了模块化,积木式设计。模块化设计顾名思义,用户可以通过更换不同部件,来得到不同的功能,积木式设计则是为模块化设计提供一个基本光学显微底座,通过外接方式来实现功能扩展。如上图,积木式显微镜结构设计带来的好处是显而易见的。它可以用一个基本框架,实现尽可能多的功能,但是凡事都有两面性,积木式设计也有如下几个问题:1. 系统复杂,不易学习掌握 。2. 外置部件设计使系统庞大,接线多,占地空间大 。3. 搬运困难,需要专业人员拆卸装箱后才能搬运,搬运后还需要专业人员再次安装调试。我们可以参考一下,照相工具的演化如图:我们常用的照相工具,这些年来经历了三步演化,专业单反-微单-智能手机。对显微镜的未来而言,积木式设计肯定不会消亡,它服务于专精市场,同时集成式设计会是显微镜未来的一个主要方向,通过集成式设计,突出常用功能,简化机械与人机界面,实时数据分享,让显微镜变得易学好用,无缝实时传输图像。一体化极简设计:高清成像:实时图像分享:我们相信,集成化,极简化,网络化是显微镜的未来方向与目标。Echo Revolution全自动荧光显微镜Echo Revolution全自动荧光显微镜,将XYZ三轴全部实现电动化,从而实现自动完成多图拼接的大视野高分辨率成像,而电动化的Z轴可以帮助用户实现自动聚焦、自动定焦和Z-Stacking多层扫描大景深成像。Echo Revolution全自动荧光显微镜还添加了延时摄影功能,可以帮助用户实现长时间观察和时间回溯,使用户可以进行更全面的观察实验。▲ Echo Revolution全自动荧光显微镜|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 1000万!哈尔滨工程大学单光子计数共聚焦显微镜采购项目
    一、项目基本情况项目编号:2034-234GFZBGJ298项目名称:哈尔滨工程大学单光子计数共聚焦显微镜采购项目预算金额:1000.000000 万元(人民币)最高限价(如有):1000.000000 万元(人民币)采购需求: 序号产品名称数量简要技术规格备注1单光子计数共聚焦显微镜1套详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月05日 至 2023年11月10日,每天上午8:30至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:按本公告第4部分规定的方式方式:按本公告第4部分规定的方式售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:0451-82519862      2.采购代理机构信息名 称:宜国发项目管理有限公司            地 址:哈尔滨市道里区群力第四大道399号汇智广场中楼401            联系方式:佟龙、王金丹、朱国凤0451-55671212            3.项目联系方式项目联系人:佟龙、王金丹、朱国凤电 话:  0451-55671212
  • 蔡司显微镜上海客户中心隆重开幕
    p  4月7日, 蔡司显微镜上海客户中心在蔡司上海办公室隆重开幕。来自各高校科研院所生命科学领域、材料领域以及医学等领域的40余名专家和老师参加了此次开幕式。  /pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201704/noimg/b176c6da-20f8-4567-b2ee-72a08cb44c08.jpg" title="1115738909_meitu_1.jpg"//pp style="text-align: center "span style="text-align: center " /spanimg src="http://img1.17img.cn/17img/images/201704/noimg/109fdfe4-8633-42f7-9008-a2dd18093217.jpg" title="2_meitu_2.jpg" style="text-align: center "//pp 会议伊始,蔡司中国区总裁Maximilian Foerst致欢迎词,介绍了蔡司基本概况,以及在中国的发展历程及愿景。Foerst先生还提到,蔡司公司的基本理念是做最前沿研究,勇于承担社会责任。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201704/noimg/06ac5f13-ab18-4730-99db-ad417e55631e.jpg" title="3_meitu_3.jpg"//pp 接下来,蔡司集团显微镜事业部首席执行官兼财务官Justus Felix Wehmer为大家介绍了全球显微镜部门的相关情况。蔡司的价值观就是帮助客户成功,只有客户成功才算蔡司的成功,所以蔡司一直致力于技术的创新和研发。现场客户非常认同蔡司的服务理念,并回以热烈的掌声。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201704/noimg/9ab13b02-ac9c-47a2-994a-ec949b6ae2cb.jpg" title="4_meitu_4.jpg"//pp 蔡司亚太区显微镜客户中心总监蔡慧先生介绍了显微镜客户中心的全球架构,设计理念,以及中心配置的全系列显微镜,能够提供从微米到纳米全方位的成像解决方案。显微镜客户中心以为客户服务为宗旨,不仅具有演示功能,也是高阶知识交流和技术分享的平台。/pp style="text-align: center "   img src="http://img1.17img.cn/17img/images/201704/noimg/589922af-5818-42a5-90a5-cbdbcc0117c5.jpg" title="5_meitu_5.jpg"//pp style="text-align: center "span style="color: rgb(84, 141, 212) " span style="color: rgb(84, 141, 212) font-size: 14px "蔡司中国区副总裁张育薪博士主持了开幕仪式/span/span/pp style="text-align: center "   img src="http://img1.17img.cn/17img/images/201704/noimg/0603568c-61f6-4685-905b-8f431f654fd7.jpg" title="6_meitu_6.jpg"//pp style="text-align: center "span style="color: rgb(84, 141, 212) " span style="color: rgb(84, 141, 212) font-size: 14px "Foerst先生、Wehmer先生、边玮女士为蔡司显微镜上海客户中心揭幕/span/span/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201704/noimg/ccd1d542-7dd8-4b99-b6c9-fc881af09cc8.jpg" title="7_meitu_7.jpg"//pp style="text-align: center "   span style="color: rgb(84, 141, 212) font-size: 14px "在显微镜客户中心参观过程中,蔡司资深专家们为大家详细介绍仪器/span/pp  蔡司X射线显微镜资深专家曹春杰为大家展示了Xradia 520 Versa, 它拥有杰出的三维分辨率和衬度,能对大样品实现亚微米级的无损成像。广泛的应用领域引起了现场老师们的热烈探讨。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201704/noimg/adc02fd6-1d8b-4605-b2a6-651040a8c78d.jpg" title="8_meitu_8.jpg"//pp  蔡司应用经理史为介绍了Crossbeam 550 双束显微镜,它大幅地提升了成像分辨率,并具有高通量的加工能力,是全功能的纳米加工与分析表征实验平台。同时还用仪器现场雕刻了“Welcome to ZEISS Microscopy Customer Center Shanghai”,采用了两种不同的雕刻方法,直接画图进行加工和导入图片雕刻,均能得到出色的效果。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201704/noimg/b7b5bc3f-5e87-4727-8b76-f3542d880a0d.jpg" title="9_meitu_9.jpg"//pp  蔡司应用经理张彦为大家演示超高分辨率显微镜Elyra PS.1。2014年诺贝尔化学奖获得者Eric Betzig与蔡司合作促进了首款基于PALM技术的商用超高分辨率显微镜Elyra PS.1,其分辨率最高能达到20nm,为传统光学显微镜的10倍,能进一步促进亚细胞,乃至分子层面的研究,是助推单细胞研究的核心技术之一。同时,张彦还介绍了关联显微镜技术,能结合光镜及电镜的各自优势,以获得更多的样品信息。/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201704/noimg/7abb97d0-4ece-4db6-a8b0-48fcea867df7.jpg" title="10_meitu_10.jpg"//p
  • 123万!复旦大学和吉林大学显微镜分析系统采购
    项目概况复旦大学超高真空低温扫描隧道显微镜系统控制器采购 招标项目的潜在投标人应在通过招标人指定的复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)在线领购招标文件。 获取招标文件,并于2022年04月07日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:0705-2240 02028007项目名称:复旦大学超高真空低温扫描隧道显微镜系统控制器采购预算金额:59.0000000 万元(人民币)最高限价(如有):59.0000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1超高真空低温扫描隧道显微镜系统控制器1套控制器系统包括实时控制室、信号转换器、高压输出源、高压放大器、压电陶瓷驱动器、振荡控制器和配套软件,用于控制扫描隧道显微镜实现样品结构及性质的表征。预算金额:人民币59万元。合同履行期限:签订合同后5个月内交货。 合同履行期限:合同履行期限:签订合同后5个月内交货。本项目( 不接受 )联合体投标。项目概况吉林大学第二医院显微镜摄像分析系统采购 招标项目的潜在投标人应在吉林省长春市南关区亚泰大街3218号通钢大厦B座6层668室获取招标文件,并于2022年03月28日 14点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:CIGN22029项目名称:吉林大学第二医院显微镜摄像分析系统采购预算金额:64.0000000 万元(人民币)采购需求:序号品目名称数量是否接受进口产品简要技术参数备注01显微镜摄像分析系统4套是物镜转盘:六孔物镜转盘无合同履行期限:合同签订后30天内本项目( 不接受 )联合体投标。
  • 围观:用乐高积木打造出的真正显微镜(图)
    艺术家Carl Merriman用他的行动表明,乐高不仅是简单的玩具,还可以是实用的工具。  Carl Merriman用乐高积木打造一款功能齐全的显微镜,虽然不能和专业的设备相提并论,不过已经能够实现常规的显微镜操作,还可以切换不同的镜头。  用积木打造显微镜的工作,对于研究乐高创作27年的Carl Merriman来说并不难。Carl Merriman表示&ldquo 虽然你没法用它来进行高端的研究,但放大效果仍旧不错,外部旋钮带动内部复杂的机械结构,用起来很趁手。&rdquo   制作这款乐高显微镜的灵感来自于已经停产的LEGO X-POD套装。他发现X-Pod的造型很像培养皿,因此在研究其用途的时候第一时间就想到了显微镜。  经过长时间的调整,对整个系统的调焦进行了改善,使用者能够通过切换三组镜头来达到实验观察的目的,可以说这已经不再是玩具,而是真正的显微镜。
  • 相机显微镜应用于生命科学(显微镜成像系统)
    相机显微镜是一种将显微镜与专业显微镜相机结合在一起的设备,用于拍摄和记录显微镜下的图像。不仅能够帮助我们观察到微观世界,还能进行参数设置和数据采集,提供定量和定性的数据,也可以将图像投射到大屏幕上,供多人观察与分析,方便多人共览分析,是实验教学、科学研究及医学检验的理想工具。显微镜摄像头MHD800相机显微镜在生命科学领域的应用非常广泛,应用于细胞生物学、分子生物学、遗传学、免疫学等多个领域。例如,在细胞生物学中,显微镜成像系统可以用于观察细胞的结构、形态和功能,以及细胞之间的相互作用。在分子生物学中,显微镜成像系统可以用于观察DNA、RNA和蛋白质等分子的结构和功能。通过测量细胞的大小、形状和数量,我们可以了解细胞生长和分化的规律。通过观察蛋白质的分布和数量,我们可以了解蛋白质的功能和调控机制。明慧MingHui显微镜数码成像系统界面明慧MingHui显微镜数码成像系统功能特点:高分辨率:能够捕捉到更清晰、更准确的图像。自动对焦和自动曝光功能:能够快速准确地捕捉到目标物体。多种观察模式:如明场、暗场、微分干涉、荧光、偏光等,可以满足不同实验需求。配备分析软件:可以对图像进行定量和定性分析,为科学研究提供有力支持。应用广泛:适用于生命科学、医学、材料科学等多个领域的研究。产品清单:显微图像分析软件相机显微镜如果您需要一整套显微镜成像系统或者已有的显微镜需要升级拍照功能和安装,请与我们联系。
  • 超高分辨率显微镜:显微镜发展史上的新突破
    显微镜技术经过长期发展,加之近年来物理学界接二连三出现的重大科研进展,终于,在2008年,显微镜发展史上的新成果&mdash &mdash 超高分辨率荧光显微镜为科学家所研制出。人们预言,它定会成为生物学家的好帮手。  Stefan Hell打破了物理学界的传统看法  自从1873年Ernst Abbe第一次发现光学成像具有衍射限制现象以来,物理学界就公认,显微镜的分辨率具有极限,该极限与光源的波长有关。直到一个多世纪之后,罗马尼亚物理学家Stefan Hell推翻了这一观点。他是首位不仅从理论上论证了,而且用实验证明了使用光学显微镜能达到纳米级分辨率的科学家。  罗马尼亚物理学家Stefan Hell,现任德国马克斯· 普朗克生物物理化学研究院(Max Planck Institute of Biophysical Chemistry)主任。  早在上世纪80年代中期,当时师从德国海德堡大学(University of Heidelberg)一位低温固态物理学家的Stefan Hell就已经发现,如果不是像常规那样使用一个透镜聚焦,而是将两个大孔径的透镜组合在一起聚焦,就可以提高光学显微镜的分辨率。Stefan Hell是首位发现这一现象的研究人员。  Hell于1990年顺利完成了他的博士学业,但同时,这也意味着他将无法再凭借奖学金的资助进行研究了。Hell最终决定独自一人继续在家研究以上的发现,并最终成功发明了4Pi显微镜。4Pi显微镜,超高分辨率成像中的一个步骤  时任美国马萨诸塞州坎布里奇市哈佛大学(Harvard University)化学系教授的Sunney Xie遇到了Hell,当他了解了Hell发明的4Pi高分辨率显微镜时,Xie对Hell勇敢地对传统物理学观点提出挑战的精神表示赞许。  随后,Hell带着他的发明来到了位于德国海德堡的欧洲分子生物学实验室(European Molecular Biology Laboratory, EMBL),并获得了德国科学基金会提供的奖学金。1991年,Hell在该实验室开始他的博士后研究工作。  起初,许多科学家,包括那些声名显赫的物理学家都认为Hell的工作对于提高光学显微镜的分辨率没有太大的意义。他们认为,Hell仅用他那少得可怜的科研经费来从事这项研究简直就是在冒险。但Hell却始终坚信他能够打破衍射极限。  Hell的努力没有白费,他的冒险终于获得了回报。1992年,Hell第一次用他的4Pi高分辨率显微镜证明了他的确能将传统光学显微镜的分辨率提高3~7倍。然而,尽管Hell提高了Z方向的分辨率,他还是没能突破衍射极限的限制。  此后不久,Hell又在芬兰土尔库大学(University of Turku)得到了他的第二个博士后职位。一个星期六的早晨,Hell正躺在研究生公寓的床上看一本有关光学量子理论的书,突然,灵光一闪,Hell脑海里浮现了一个想法:如果使用一种合适的激光,仅激发一个点的荧光基团使其发光,然后再用一个面包圈样的光源抑制那个点周围的荧光强度,这样就只有一个点发光并被观察到了。Hell给他的这项发明取名STED,即受激发射损耗显微镜(stimulated emission depletion)。有了这个想法后,Hell立即行动,冲进实验室进行相关实验。每当回想起当时的心情,Hell都会觉得那是他科研生涯中最激动的时刻。  曾在EMBL与Hell共事,并共同研发4Pi显微镜的Pekka Hanninen指出,Hell在土尔库大学进行研究工作时非常刻苦。那时,他经常被许多问题困扰。尽管如此,研究过程中还是有许多快乐萦绕着他们。Hell不仅是一名严谨的科学研究者,还是一名音乐爱好者,每当工作至深夜时,实验室走廊总会回响起Hell吹奏萨克斯风的动听乐声。由共聚焦显微镜(左图)和STED(右图)成像的一个神经元。  1994年,Hell在《光学快报》(Optics Letters)上发表了他关于STED的理论文章。不过直到多年以后,这项理论才得以在实践中被证实。在那段时间里,Hell一面继续研究工作,一面四处奔走筹集科研经费,还卖掉了他4Pi 显微镜的专利。  但是那个时候Abbe的衍射极限理论仍然在学界占统治地位,许多物理学家对Hell的理论都持怀疑甚至批评态度,因此他们也都将研究重点放在其它的成像技术上。尽管如此,Hell还是在1997年与马普生物物理化学研究所签订了一份长达5年的合同,以继续他的STED研究。  1999年,Hell将他的研究成果分别投给了《自然》(Nature)杂志和《科学》(Science)杂志,不过都被退稿。当时两位杂志的主编都没有意识到他的研究成果将会改变整个显微镜领域。  直到2000年,事情才终于有了转机&mdash &mdash 《美国国家科学院院刊》(PNAS)发表了Hell的科研成果。采用 Hell的STED技术,人们第一次得到了纳米级的荧光图像。Hell的工作由此获得了广泛的肯定,2002年,他获得了马普研究所的终身职位。从此,Hell一直在马普研究所从事成像技术的研究工作。  紧随STED这项开创性工作之后,世界各地实验室等研究机构内陆续出现了一批高分辨率的显微镜技术。例如,由珍妮莉娅法姆研究学院(Janelia Farm Research Campus)的物理学家兼工程师Mats Gustafsson领导的研究团队开发出了结构光学显微镜(structured-illumination microscopy, SIM)。果蝇卵母细胞内的肌动蛋白的3D SIM成像,该照片拍摄于完整的卵泡内。  SIM技术的原理是通过一系列光成像的图案对低分辨率莫尔条纹形式的精细结构进行成像,此类图像是采用其它技术所无法观察到的。然后再由计算机处理、分析这些条纹中包含的信息,最终就可以获得高分辨率的图像。  同年,Gustafsson小组得到了HeLa细胞中肌动蛋白细胞骨架的图像,他的图像相比传统显微镜的图像来说,在测向上的分辨率提高了2倍。随后,Gustafsson小组又使用非线性技术将整体分辨率提高了4倍。  科研竞赛  2006年,超高分辨率显微镜研究行业翻开了新的篇章。Eric Betzig、Harald Hess以及Lippincott-Schwartz小组、Samuel Hess小组以及庄晓威(音译)科研小组几乎同时报道了他们提高显微镜分辨率的科研成果,下面分别介绍这三个小组的研究情况。  Eric Betzig、Harald Hess以及Jennifer Lippincott-Schwartz小组  2005年夏天,细胞生物学家Jennifer Lippincott-Schwartz卸下了她在美国马里兰州贝塞斯达美国国立卫生研究院(HIV)暗室里的红色灯泡。Lippincott-Schwartz正在为赋闲在家的两位物理学家Eric Betzig和Harald Hess腾出空间,筹备实验室。正是这两位物理学家研制出了光敏定位显微镜(photoactivated localization microscopy, PALM),他们的这种新产品能将荧光显微镜的分辨率提升至纳米级水平。  接下来的整个冬天,Eric Betzig、Harald Hess以及Lippincott-Schwartz等人都一直在那间狭小的没有取暖设备的实验室里工作。现在就职于美国弗吉尼亚州阿士伯恩霍华德休斯医学研究所珍妮莉娅法姆研究学院(Howard Hughes Medical Institute&rsquo s Janelia Farm Research Campus in Ashburn, Virginia)的Hess承认,自己与Betzig对生物学的认识都不深。不过近15年来,他们一直都在努力,希望能运用生物学知识获取高分辨率的显微图像,但是没有取得明显进展。然而,当Hess和Betzig了解到Lippincott-Schwartz和George Patterson在2002年发明的光敏绿色荧光蛋白(photoactivatable green fluorescent protein)后,他们知道他们已经找到了解决问题的关键所在。  回想起当时的情形,Lippincott-Schwartz指出:&ldquo 他们当时非常激动。我还记得当我们得到第一张显微图像时,你根本无法看出那是什么东西。直到我看到他们将荧光图像和电镜图像叠加之后的结果才相信,我们成功了。我当时觉得这一切真是太神奇了。&rdquo   2006年,Eric Betzig、Harald Hess以及Lippincott-Schwartz小组在《科学》(science)杂志上发表了他们的PALM研究成果。使用PALM可以清楚得看到细胞黏着斑和特定细胞器内的蛋白质。  Samuel Hess小组  Samuel Hess小组是上述三个小组之一。Hess是美国缅因州立大学(University of Maine)物理系的助理教授。2005年夏天,Hess一直在和他们学校的化学工程师和生物学工程师,就如何提高观察活体细胞脂筏结构的分辨率等问题进行交流。  2005年的一个夏夜,Hess被邻居家举办舞会的声音吵醒。半睡半醒的Hess走下楼来,随手画了一副设计图,他的这种设计是需要借助荧光标记的蛋白质来显示细胞形态的。第二天早上,当Hess重新翻看这幅非清醒状态绘制的潦草的设计图时,不由得大笑起来。不过令人吃惊的是,他的这幅设计图竟然没有一点问题。于是他把这幅图拿给物理系的同事检查,但同事也没有发现任何问题。  接下来,Hess就按照他的设计图开始制作显微镜了。此时,他的科研经费所剩不多,而结题时间转眼就到。因此,Hess等人以最快的速度组装好显微镜,并进行了试验。同时,在不到两天的时间里,缅因州立大学表面科学技术实验室的同事就为Hess制备好供检验显微镜效果的蓝宝石晶体样品。  对于同事们的帮助,Hess总是不胜感激。  2006年,《生物物理学期刊》(Biophysical Journal)刊登了Hess小组的科研成果。他们将这项研究成果命名为荧光光敏定位显微镜(fluorescence photoactivation localization microscopy, FPALM)。2007年,Hess小组证明了FPALM可以分辨细胞膜脂筏上的蛋白质簇。  庄晓威科研小组  与此同时,另一个研究小组&mdash &mdash 哈佛大学霍华德休斯医学研究所(Howard Hughes Medical Investigator at Harvard University)的研究员庄晓威科研小组也在研究高分辨率成像技术。  通过3D STORM观察到的一个哺乳动物细胞内线粒体网状系统。传统荧光成像(左图) 3D STORM成像(中图),其中,采用不同颜色标记出z的位置 3D STORM成像中xy维图像(右图)。  其实,这三个小组都有一个共同的也是非常简单的理念,那就是先获得单分子荧光图像,再将成千上万个单分子图像叠加在一起,获得最终的高分辨率的图像。  早在2004年初,庄等人就已经意外发现了有一些花青染料可以用作光敏开关。这也就意味着这些染料既可以被激活发出荧光,也可以被关闭不发光,人们可以使用不同颜色的光束来随意控制这些花青染料的开和关。  从那以后,庄等人就一直在研究如何用光敏开关探针来实现单分子发光技术。他们希望能用光敏开关将原本重叠在一起的几个分子图像暂时分开,这样就能获得单分子图像,从而提高分辨率。Eric Betzig小组和Samuel Hess小组也都采用了同样的策略,只不过他们使用的不是光敏开关而是一种可以先被荧光激活继而被漂白失活的探针。  2006年,庄的科研成果在《自然-方法》(Nature Methods)杂志上发表,他们将这项成果命名为随机光学重建显微镜(stochastic optical reconstruction microscopy, STORM)。使用STORM可以以20nm的分辨率看到DNA分子和DNA-蛋白质复合体分子。  此后几年,超高分辨率荧光显微镜又得到了进一步的发展。现在,生物学家已经能够使用超高分辨率荧光显微镜在纳米水平上观察细胞内部发生的生化变化了。以往那些大小在200nm至750nm之间的模糊泡状图像再也无法对他们造成困扰了。尽管早在上世纪80年代,科研机构里就已经出现了超高分辨率显微镜的构思,但只是最近几年里这项技术才伴随着它的商业化进程获得了快速发展。现在,已经有几十家实验室安装了这种最新型的显微镜并投入了使用。正像Lippincott-Schwartz所说的,超高分辨率显微镜正在以飞快的速度被科研界接受,在生物学界更是如此。  超高分辨率显微镜的成绩  已经开始使用这些显微镜的生物学家对这项技术都表示出了极高的热情。Jan Liphardt这位在美国劳伦斯伯克力国家实验室(Lawrence Berkeley National Laboratory)工作的生物学家,还清楚地记得他2006年第一次在《科学》(science)杂志读到Betzig的那篇有关PALM技术的论文时的激动心情。当他看到那幅线粒体蛋白的图像时立刻想到了该技术可以用于他自己的微生物研究领域。  Liphard说道:&ldquo 通常,我们得到的大肠杆菌荧光图像都只有20像素,甚至更低,现在突然有一幅几千像素的图片摆在你面前,你可以想象那是一种什么感觉。&rdquo   Liphard现在正与Betzig以及其他一些研究人员一起研究大肠杆菌的趋化现象(chemotaxis)。Liphard还提到:&ldquo 我从没想到这项技术达到的分辨率有这么高,可以如此清楚地看到细胞内单个蛋白质分子的定位,甚至还能定量。而对我来说,每天的工作实际上就是在弄清楚这些蛋白质在什么位置,什么时候存在。而之前我们的研究主要采用间接方法。但超高分辨率显微镜这项新技术是我从事科研工作这么长时间以来,感触最深,获益最大的一项科技成果。&rdquo   美国丹佛市科罗拉多州立大学医学院(Medicine at the University of Colorado Denver)的助理教授Nicholas Barry也正在和Betzig合作,他们使用了一台蔡司的全内反射荧光成像系统(total internal reflection fluorescence imaging, TIRF)来研究肾细胞顶端胞膜上的蛋白质簇。  Barry指出,只需要一台蔡司显微镜和普通电脑,差不多就足够了。此外,他们还花费3万美元添置了两台激光发射器。现在,Barry等人可以在8分钟内得到一幅图像,这幅图像由10000帧图像合成,每一帧图像上显示10个分子。最后的图像文件大小大约是0.3GB。Barry等人还使用Perl语言自己开发了一套免费程序。Barry表示:&ldquo 这里面包含了每帧图像的资料信息,客户可以根据这些信息进行相关计算。&rdquo Barry充满信心地提到,很快就会有人为NIH的那套免费图像分析软件ImageJ开发出一套运算程序作为插件使用。  美国斯坦福大学(Stanford University)化学及应用物理系教授W.E. Moerner曾于1989年第一个在试验中使用光学显微镜得到了单分子图像。W.E. Moerner教授表示,这几年来,超高分辨率显微镜研究领域已经取得了巨大的进展,终于达到了纳米级单分子分辨率。他兴奋地说:&ldquo 经过了近20年对单分子成像课题的研究,我们终于取得了完美的成果。&rdquo   展望  自从2006年STORM技术和PALM技术问世以来,科技工作者就一直在不断努力,对它们进行改进、完善和提升。2008年,Lippincott-Schwartz的研究团队将PALM技术和单颗粒示踪技术(single-particle tracking)结合,成功地观测到活体细胞胞膜蛋白的运动情况。同年,庄小威研究组在《科学》(science)杂志上也发表了他们的3D STORM成像成果,该技术的空间分辨率比以往所有光学3D成像技术的分辨率都要高出10倍。论文中,他们展示了用3D STORM成像技术拍摄的肾细胞内微管结构图和其它的分子结构图。随后,他们又进一步将该技术发展成了多色3D成像技术(multicolor 3D imaging)。Gustafsson,还有其他一些科研工作者使用3D SIM技术(该技术使用3束干涉光,而不是常见的2束)观察到了共聚焦显微镜(confocal microscopes)无法观测到的哺乳动物细胞核内结构。位于德国的世界知名光学仪器制造公司蔡司公司进一步发展了SIM和PALM技术,不过他们将PALM称为PAL-M。蔡司公司预计将于2009年末推出全新的成像产品。  2008年,Hell小组使用STED技术通过抗体标记目标蛋白,观察到了活体神经元细胞中突触小泡(synaptic vesicles)的运动过程。同年稍晚些时候,他们又使用4Pi显微镜和STED技术得到了固定细胞内线粒体的3D图像,分辨率达到了40至50nm。最近,他们又使用超高分辨率显微镜成像技术对脑切片组织中的形态学变化进行了研究,并得到了活体神经元细胞树突棘(dendritic spines)的3D图像。PALM在哺乳动物细胞内拍摄到的粘附复合物。  由于最近几年这些新技术的不断涌现,现在可以对活体细胞进行三维观察了。Gustafsson指出,随着PALM技术和STORM等新技术的出现,以前很多看起来不可能的事情现在都变得可能了。  尽管已有许多科学家从这项技术进展中获益,但是仍然可以进一步提高,以使更多的研究人员能够在自己的工作中使用它。到目前为止,那些成功应用此项技术的实验室都采取了正确的技术组合:研究人员可以很好地将物理学与生物学相结合&mdash &mdash 他们将显微镜装配并做适当的调节,然后用它对生物学样品进行检测。Moerner指出,软件的编写也不容小觑:对检测到的光子进行定位和报告需要进行准确计算,从而得到合适的分辨率。  仅仅是显微镜的价格就已经限制了它的普及性,Leica&rsquo s TCS STED显微镜高达100万美元。因此,如何获得相应的资金来购置显微镜仍然是摆在研究人员面前的一个难题,位于丹佛市的科罗拉多大学(University of Colorado)光学显微镜组主任Bill Betz这样说道。  Betz曾申请用于显微镜购置的资金,但遭到了拒绝。但他表示,他们已经计划再次申请相关资金。而Stefan Hell曾指出,激光领域的技术进展已经可以使得研究人员自己在实验室内构建一个STED平台,花费只需不到10万美元。  除了要将这一技术方法普及,使生物学家能够加以利用之外,该项技术的研发人员还表示,他们已经开始致力于研究更宽范围及更多样的荧光探针了。更好的探针当然能够为我们带来更高的分辨率及更快速的图像处理。美国纽约阿尔伯特&bull 爱因斯坦医学院(Albert Einstein College of Medicine)解剖学及结构生物学副教授Vladislav Verkhusha说到:&ldquo 为了对活体哺乳动物细胞进行研究,你就需要有一整套的荧光标记蛋白和可通过光控开关控制的蛋白质。&rdquo 他本人在荧光蛋白领域的研究工作就受益于PALM的出现。  庄晓威的众多项目之一便是与Alice Ting及其在麻省理工学院(MIT)的实验室合作,对蛋白标记技术进行研究,希望能够找到一种方法可以将小和明亮的光控开关可控的探针标记于细胞的特异蛋白上,从而可以对活细胞进行成像。她提到:&ldquo 将遗传标记方法与小而明亮且可被光控开关控制的探针结合在一起,将是今后发展分子级别超高分辨率成像的十分理想的一种方法。&rdquo   尽管研发人员还将继续努力,以进行相应技术的提高,但是超高分辨率荧光显微镜更加广泛的应用还是毫无疑问地成为新的一年的标志。Harald Hess说:&ldquo 这一技术的确会为生物学家的工作带来很大的帮助。同时,我们也在不断询问,&lsquo 你们想要用它做什么精彩的实验?&rsquo 事实上,我们也得到了许多精彩的答案。&rdquo
  • 220万!复旦大学附属肿瘤医院激光共聚焦显微镜采购项目
    项目编号:招2022-1333项目名称:复旦大学附属肿瘤医院激光共聚焦显微镜采购项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:激光共聚焦显微镜,1套合同履行期限:合同生效后90日内本项目( 不接受 )联合体投标。
  • 明美光电荧光显微镜在"华中科教仪器展" 受瞩目
    2016年11月10日-12日,“第八届华中科教仪器与技术装备展览会”圆满落幕。光电展上,广州明美参展的LED倒置荧光显微镜,科研级荧光显微镜等显微成像产品成为本次展会瞩目的焦点,展示过程中表现出的优异的荧光成像效果引来诸多参展人员的参观与体验,与此同时,明美的科研级相机也赢得了众多专业人士的关注和好评,其中不乏有来自湖北地区各大高校和科研所的教授,来到广州明美的展台前咨询明美显微镜成像特性以及软件功能,并亲身体验明美显微成像效果。明美也通过本次展会,进一步提升了公司品牌的知名度和影响力,同时未来也会充分地与前来参展的同行业佼佼者互相交流合作,学习先进,为客户提供更优质的显微成像产品与服务。 华中科教仪器展现场客户在体验明美显微镜成像效果
  • 复旦大学研究团队自主研发国产高端多光子显微镜!
    进入21世纪,脑科学领域受到越来越多的关注。脑科学研究的不断发展,让人类得以探索脑的基本工作原理,发现脑疾病的治疗新策略,为人类认知、学习、记忆、情感、行为等方面的理解提供基础支持。对脑科学家而言,观测神经元结构与功能是脑研究最重要的步骤之一。其中,多光子显微成像技术是进行活体深层成像的主要工具。7月底举办的中国神经科学学会第十六届全国学术会议上,复旦大学脑科学转化研究院的李博团队与工程与应用技术研究院(以下简称“工研院”)的董必勤团队,同蔡司联合推出一款中国自主创新研发的产品——DeepVision多光子成像与全息光刺激系统,致力于为活体深层组织成像提供多样化的解决方案。该系统采用多光子荧光激发技术,能够实现对深层组织的高分辨率成像,并配合全息光刺激技术,实现了对神经元的精确控制和调控,是神经科学、肿瘤免疫和药物代谢等研究领域的理想显微成像平台,将为脑科学研究和生命科学研究提供更精准和全面的观察方法。DeepVision多光子成像与全息光刺激系统(图片来源于复旦大学公众号)据董必勤介绍,市场上现有的高端科研显微镜基本由海外公司垄断,国内多光子成像市场空白,需长期引入海外公司的设备。这些设备大多是整机设计,各个部件无法定制细节。大脑是不透明的,目前的光学成像技术局限于观测最表面的皮层结构,光在组织中会产生强烈的散射,因此光学成像很难深入表皮直达内部,而多光子显微镜能够弥补光的这一短板。现有的多光子显微镜视野小、样品空间有限以及对新技术的兼容性低,已经很难满足生物医学前沿研究的需求。基于此,李博和董必勤团队决心研发一套全新设计的多光子显微镜。这款由模块化设计搭建起来的多光子显微镜,将各种各样具体的前沿技术做成一个个模块,在后期根据需求把这些模块拼装在一起组成整机,可以避免受制于光学系统复杂的整体性。李博介绍,大部分实验室需要双光子机型对脑部做浅层扫描,但也有相当一部分需要三光子机型的深层成像。多光子显微镜的模块化设计灵活,兼顾了实验室科研和市场需求。团队分别在双光子和三光子两个机型基础之上,在全息光刺激、载物台空间、多脑区成像等模块进行技术升级,并最终组建符合客户订单需求的成品。应用方面,除可用于脑部研究,该仪器在生命科学和医疗卫生领域的一些研究中也高度适用,例如观察肿瘤、胚胎或皮肤深层细胞以及扫描植物样品。此外还可广泛应用于材料、化学、物理等多个领域,帮助人们深入材料表层,观察内部结构细节。据了解,研究团队与蔡司合作,蔡司负责DeepVision多光子成像与全息光刺激系统的销售和售后工作,同时也会在产品搭建过程中根据客户需求提出建议,而核心研发工作由复旦大学科研团队主导。目前团队在攻克核心部件的生产技术,董必勤还在积极寻找多光子显微镜的关键零部件国产可替代品。写在最后:看到这个产品的推出,笔者脑中跳出一句话:国产高端光学显微镜的队伍又壮大了。曾有技术工作者告诉笔者,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作;北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。如今DeepVision多光子成像与全息光刺激系统的推出,对于脑科学和神经科学研究工作无疑又是一则好消息。
  • 李卫军:大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究
    p style="text-align: justify text-indent: 2em "传统全样分析方法包括离子色谱(IC)、气相色谱(GC)、高效液相色谱(HPLC)和电感耦合等离子质谱(ICP-MS)是气溶胶性质研究的最常用方法。然而,全样分析方法的局限性在于无法获得气溶胶颗粒的混合状态和表面等性质。气溶胶颗粒的混合状态对于理解颗粒的吸湿性、光学特性以及在大气中的老化过程等方面具有重要意义。为了弥补全样分析的这些局限性,以电子显微镜为代表的单颗粒分析方法在气溶胶性质研究中的应用越来越广泛。/pp style="text-align: justify text-indent: 2em "扫描电子显微镜(SEM)和透射电子显微镜(TEM)以及它们配备的X射线能谱仪(EDS)是单颗粒分析方法的主要仪器。SEM/TEM-EDS可用于获得颗粒的形貌、成分、粒径、混合状态和表面特征。基于这些信息我们可以分析颗粒的来源和老化过程,进而讨论颗粒对人体健康和气候变化的影响。/pp style="text-align: justify text-indent: 2em "颗粒物的大量排放是造成空气污染的直接因素之一。了解颗粒物的来源、组成及老化过程,对有效改善空气质量具有重要意义。本文主要介绍各类排放源(工业源、汽车尾气、生物质燃烧、家用燃煤和矿物颗粒等)排放的气溶胶颗粒在电子显微镜方面的研究进展。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 364px " src="https://img1.17img.cn/17img/images/202006/uepic/eb3f9ff3-cbb9-4bee-87d2-abd84618bba9.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 5.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 5.jpg" width="500" height="364" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.工业源span style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "。/span/span工业排放源主要包括燃煤电厂、钢铁厂、金属冶炼和炼油厂。飞灰(flyash,图1a)和金属颗粒(metal,图1b和c)是工业源排放的两种典型颗粒。飞灰颗粒由硅、铝及少量铁和锰等元素组成的球形颗粒,粒径小于200 nm。已有研究利用透射电镜在华北灰霾中发现大量飞灰颗粒。金属颗粒主要包括富铁、富锌、富铅和富锰颗粒,灰霾事件中观测到的金属颗粒的粒径小于500 nm。透射电镜观测发现污染大气中的飞灰和金属颗粒大多与二次气溶胶(例如硫酸盐、硝酸盐和有机物)内混。这些在传输过程中形成的酸性二次气溶胶促进飞灰和金属颗粒释放可溶性金属离子,危害人体健康和生态环境。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 298px " src="https://img1.17img.cn/17img/images/202006/uepic/27bed8be-d6c7-4599-93b0-61109d072cf6.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (21).jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (21).jpg" width="500" height="298" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "2.汽车尾气span style="color: rgb(0, 0, 0) "/span/span/strongspan style="color: rgb(0, 176, 240) "span style="color: rgb(0, 0, 0) "。/span/span汽车尾气是造成空气污染的重要来源,汽车尾气中近一半的一次颗粒中含有黑碳颗粒(soot或black carbon,图1d)。黑碳颗粒为含碳小球的链状聚合物。黑碳颗粒的混合状态可显著影响其光学吸收,进而影响地球辐射强迫。透射电镜可根据黑碳颗粒的特殊形貌区分黑碳颗粒的混合状态,对评估其对气候变化的影响有重要意义。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202006/uepic/66123eed-c584-4937-a4dd-07b36d48f876.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究8.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究8.jpg" width="500" height="334" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong3.生物质燃烧/strong/span。生物质燃烧是对流层气态和颗粒态污染物的重要来源。木柴和秸秆是世界各地取暖和烹饪的重要能源。同时,露天焚烧是处理农作物残留秸秆的普遍方式。自然的生物质燃烧(比如森林大火和草原大火)也会导致大量污染物排放。生物质燃烧的主要污染物包括:钾盐、一次有机物和黑碳。透射电镜研究发现,生物质明火燃烧排放的富钾颗粒主要成分为KCl,且与有机物和黑碳内混(图1e);在闷烧阶段,产生胶状有机物与富钾颗粒混合的内混颗粒(图1f)。在大气传输过程中,KCl可逐渐转化为K2SO4和KNO3,透射电镜可根据形貌、结构和成分确定其老化过程,进而反映其来源和吸湿性。焦油球(tar balls)是生物质燃烧排放的一类特殊有机物,具有较强的吸光能力。透射电镜表明焦油球是粒径为30至500 nm的无定形碳质球形颗粒。X射线能谱显示焦油球的主要成分为碳,并含有少量氧。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 270px " src="https://img1.17img.cn/17img/images/202006/uepic/80fb205b-b987-4d0a-8b69-7afe6f65f24e.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究7.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究7.jpg" width="500" height="270" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "4.家用燃煤/span/strong。燃煤取暖和烹饪是发展中国家空气污染的又一重要来源。由于燃烧效率较低且缺乏排放控制措施,家用炉灶的排放因子是工业锅炉的一百倍。家用燃煤可排放大量气态污染物(二氧化硫和挥发性有机物)和一次颗粒物(有机物和黑碳)。家用燃煤排放是造成华北严重灰霾事件的重要原因。利用透射电镜可获得不同成熟度煤炭排放的一次颗粒的形貌、成分和混合状态。低成熟度煤明烧状态下主要排放有机物和黑碳内混颗粒(图1g),中等成熟度煤排放大量有机物颗粒(图1h),高成熟度煤排放有机物和硫酸盐混合颗粒(图1i)。另外,透射电镜还发现煤炭燃烧也可排放大量与焦油球相似的球形有机物。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202006/uepic/e178791a-ff3c-4d6b-b90d-f48a9054eee4.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究9.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究9.jpg" width="500" height="333" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "5.矿物颗粒/span/strong。矿物颗粒主要来自沙漠、建筑和路边扬尘。扫描电镜和透射电镜均可直观观测到矿物颗粒的不规则形貌(图1j),且大多矿物颗粒的粒径大于2 μm。矿物颗粒的吸湿性对气候和大气环境有重要影响。大气传输过程中,矿物颗粒表面发生非均相反应,改变颗粒成分和形貌,进而改变混合状态和影响云凝结核活性。透射电镜研究发现,矿物颗粒内的碱性成分(例如方解石和白云石)可与污染大气中的酸性气体(例如二氧化硫和氮氧化物)反应,在表面生成CaSO4以及Ca(NO3)2和Mg(NO3)2的亲水包裹层,增强矿物颗粒的吸湿性。长距离传输过程中的老化作用还会降低颗粒pH增加铁的可溶性和生物可利用性。可溶性铁沉降到海洋表面可促进海洋浮游生物的生长,进而影响海洋对碳的吸收,间接影响气候。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 282px " src="https://img1.17img.cn/17img/images/202006/uepic/6e145833-188d-45d4-af38-3ffdcd288d57.jpg" title="timg.jpg" alt="timg.jpg" width="500" height="282" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "6.生物气溶胶/span/strong。自然源的生物气溶胶(图1k)普遍存在于地球大气中,其在森林、农村及海洋环境中所占比例较高。扫描电镜和透射电镜可获得各类生物气溶胶的形貌和粒径。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/202006/uepic/9ce845fb-6a49-4565-bb45-0426f24adecf.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 6.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 6.jpg" width="500" height="375" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "7.海盐气溶胶/span/strong。海盐气溶胶来自于海浪中的气泡破裂。利用透射电镜可发现海盐的主要成分为镁盐和钙盐包裹的NaCl(图1l)。SEM-EDS发现海盐颗粒是由NaCl核与C、O和Mg元素包裹层构成。/pp style="text-align: justify text-indent: 2em "目前,扫描电镜和透射电镜现已被广泛应用于各类大气环境中的气溶胶单颗粒研究,例如:城区-北京、济南、吉林、香港、仁川、墨西哥等,背景点-长岛、青藏高原、日本冲绳,高山站点-庐山、泰山,海洋大气-北大西洋、黄海、北冰洋。未来,单颗粒分析方法将应用于更多区域。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/02700f9c-eaba-4981-8ab9-12e040344aff.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (3).jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究 (3).jpg"//pp style="text-align: justify text-indent: 2em "图1. 不同来源颗粒的TEM图。工业生产排放的飞灰(a)、富铁(b)和富锌(c)颗粒;(d)柴油机尾气中的黑碳-有机物内混颗粒;(e)玉米秸秆明烧产生的黑碳-有机物-KCl内混颗粒;(f)玉米秸秆闷烧产生的胶状有机物和KCl的内混颗粒;(g)低成熟度煤明烧产生的有机物-黑碳内混颗粒;(h)中等成熟度煤明烧产生的球状有机物颗粒;(i)高成熟度煤明烧产生的有机物-硫酸盐内混颗粒;(j)不规则矿物颗粒;(k)森林区域采集的生物颗粒;(l)海盐颗粒。图表结果来自于参考文献。/pp style="text-align: justify text-indent: 2em "strong参考文献:/strong/pp style="text-align: justify text-indent: 2em "1. Zhang, J., Liu, L., Xu, L., Lin, Q., Zhao, H., Wang, Z., Guo, S., Hu, M., Liu, D., Shi, Z., Huang, D., and Li, W.: Exploring wintertime regional haze in northeast China: role of coal and biomass burning, Atmos. Chem. Phys., 20, 5355-5372, 10.5194/acp-20-5355-2020, 2020./pp style="text-align: justify text-indent: 2em "2. Li, W., Liu, L., Xu, L., Zhang, J., Yuan, Q., Ding, X., Hu, W., Fu, P., and Zhang, D.: Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale, Science of The Total Environment, 719, 137520, https://doi.org/10.1016/j.scitotenv.2020.137520, 2020./pp style="text-align: justify text-indent: 2em "3. Yuan, Q., Xu, J., Wang, Y., Zhang, X., Pang, Y., Liu, L., Bi, L., Kang, S., and Li, W.: Mixing State and Fractal Dimension of Soot Particles at a Remote Site in the Southeastern Tibetan Plateau, Environmental Science & Technology, 53, 8227-8234, 10.1021/acs.est.9b01917, 2019./pp style="text-align: justify text-indent: 2em "4. Zhang, Y., Yuan, Q., Huang, D., Kong, S., Zhang, J., Wang, X., Lu, C., Shi, Z., Zhang, X., Sun, Y., Wang, Z., Shao, L., Zhu, J., and Li, W.: Direct Observations of Fine Primary Particles From Residential Coal Burning: Insights Into Their Morphology, Composition, and Hygroscopicity, Journal of Geophysical Research: Atmospheres, 123, 12,964-912,979, doi:10.1029/2018JD028988, 2018./pp style="text-align: justify text-indent: 2em "5. Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A. P., Shi, Z., Lv, S., Niu, H., Shao, L., Hu, M., Zhang, D., Chen, J., Zhang, X., and Li, W.: Morphology, composition, and mixing state of primary particles from combustion sources — crop residue, wood, and solid waste, Scientific Reports, 7, 5047, 10.1038/s41598-017-05357-2, 2017./pp style="text-align: justify text-indent: 2em "6. Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen, J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749, 2017./pp style="text-align: justify text-indent: 2em "7. Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki, A., Niu, H., and Chen, J.: A review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source, and heterogeneous reactions, J. Clean. Prod., 112, Part 2, 1330-1349, 2016./pp style="text-align: justify text-indent: 2em "8. Chi, J. W., Li, W. J., Zhang, D. Z., Zhang, J. C., Lin, Y. T., Shen, X. J., Sun, J. Y., Chen, J. M., Zhang, X. Y., Zhang, Y. M., and Wang, W. X.: Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere, Atmos. Chem. Phys., 15, 11341-11353, 2015./pp style="text-align: justify text-indent: 2em "strong作者简介:/strong/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left " src="https://img1.17img.cn/17img/images/202006/uepic/5ef00299-b5e7-46ff-ab5f-212e9a8e68f6.jpg" title="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究.jpg" alt="大气灰霾中不同来源气溶胶单颗粒的电子显微镜研究.jpg"/李卫军,浙江大学地球科学学院大气科学系研究员,国家优秀青年基金、中国化学学会环境化学青年科学奖和山东省杰青获得者。他主要应用透射电镜、扫描电镜和纳米二次离子质谱等手段研究我国大气雾-霾及沙尘暴期间大气气溶胶颗粒物,从微观角度揭示颗粒物表面及内部的物理化学特性。近年来促进了大气环境化学和地球科学的研究融合,已获仪器发明专利共5项,其中1项产业化。以第一作者或通讯发表成果在Science Advances, ES& T, JGR, ACP等大气相关领域的杂志上共40余篇,出版专著1部。/p
  • 登上《自然》封面!新型单分子化学反应成像显微镜在浙大问世
    化学创造着千变万化的物质世界,在这其中每一个单分子起到基本的作用。传统化学和生物学研究大量分子参与的反应和变化。著名物理学家埃尔温薛定谔曾评论过:“我们从来没有用一个单电子、单原子或单分子做过实验。我们假设我们可以在思想实验中实现,但是这会导致非常可笑的后果。”观察、操纵和测量最为微观的单分子化学反应是科学家面临的一个长久科学挑战。针对这一挑战,浙江大学化学系冯建东研究员致力于发展跨学科的单分子测量方法和仪器,实现多维度的溶液体系单分子物理和化学过程观测、新现象研究和应用建立。近期,其团队发明了一种直接可以对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术在化学成像和生物成像领域具有重要的应用价值,允许看到更清晰的微观结构和细胞图像。北京时间8月11日,这项研究成果作为封面论文刊登在国际顶级期刊《自然》。论文第一作者为浙江大学化学系博士生董金润和博士后卢禹先;论文通讯作者为浙江大学化学系冯建东研究员。 浙大团队的研究对象是电致化学发光反应。电致化学发光是利用电极表面发生的一系列化学反应实现发光的形式。相比于传统的荧光成像技术,由于不需要光激发,电致化学发光几乎没有背景,是目前对于灵敏度有着很高要求的体外免疫诊断领域的重要手段,其在成像分析等方向也具有一定价值。目前,电致化学发光存在两个重要的科学问题,其一是微弱乃至单分子水平电致化学发光信号的测量和成像,这对于单分子检测非常重要。其二是在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像,这一点对化学和生物成像具有重要意义。3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。首次实现了单分子电致化学发光信号的宽场空间成像;并在此基础上成功突破了光学衍射极限,第一次实现了电致化学发光的超分辨成像。这项单分子电致化学发光显微镜技术不需要光激发即可实现单分子超分辨成像,有望影响化学测量和生物成像领域的应用。 在时空隔离中达到单分子反应测量极限教科书上的化学反应都是以单分子形式进行概念描述,但传统实验中得到却是大量分子的平均结果。单分子实验是从本质出发解决许多基础科学问题的重要途径之一,是研究方法的质变。这也是化学测量学面临的一个极限挑战。电致化学发光过程中,为什么难以开展单分子信号的捕捉呢?这主要是因为单分子反应控制难、追踪难、检测难。冯建东介绍:“单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。” 图1:单分子电致化学发光信号的时空隔离和随机性。为此,浙大科研人员搭建了灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立“捕捉”到了单分子反应后产生的发光信号。“具体从空间上通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最高在1秒内拍摄1300张,消除邻近分子间的相互干扰。”博士生董金润介绍到。利用这套光电控制和测量平台,浙大科研团队首次实现了单分子电致化学发光反应的直接宽场成像。“由于不需要光源激发,这一成像的特点在于背景几近于零,这种原位成像将为化学和生物成像领域提供新的视野。” 在单分子空间定位中突破光学极限显微镜是物质科学和生命科学研究的重要研究工具,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“在这个标尺中,能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术仍然非常有限。”冯建东提到,主要原因在于光学成像分辨力不足,受到光学衍射极限限制。为此,冯建东团队接着着手从时空孤立的单分子信号实现电致化学发光的超分辨成像。 受到荧光超分辨显微镜(2014年诺贝尔化学奖)的启发,浙大研究者利用通过空间分子反应定位的光学重构方法进行成像。这就好比当人们夜晚抬头看星星时,可以通过星星的“闪烁”将离得很近的两颗星星区分开一样。“化学反应的随机性,通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,构建出化学反应位点的‘星座’。 ” 图2:单分子电致化学发光显微镜在微纳结构成像上的论证。 冯建东说,为了验证这一成像方法的可行性以及定位算法的准确性,团队通过微纳加工的方法在电极表面制造了一个条纹图案作为已知成像模板,并对之进行对比成像。单分子电致化学发光成像后的结果与该结构的电镜成像结果结构上高度吻合,证明了成像方法的可行性。单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。 图3:单分子电致化学发光显微镜固定(死)细胞成像。 研究团队进而将该技术应用于生物细胞显微成像,不需要标记细胞结构本身意味着电致化学发光成像对细胞可能是潜在友好的,因为传统使用的标记可能会影响细胞状态。团队进一步以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化。成像结果与荧光超分辨成像可以进行关联成像对比,定量上表现出可以同荧光超分辨显微镜相媲美的空间分辨率,同时该技术避免了激光和细胞标记的使用。 图4:单分子电致化学发光显微镜活细胞成像。 未来,这项显微技术将作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供新的可能,具备广泛的应用前景。在同一期上,《自然》期刊专门邀请了领域专家对这一突破性技术的前景进行了亮点评述和报道。 该研究受到了国家自然科学基金委(项目号:21974123)、浙江省自然科学基金委(项目号:LR20B050002)、中央高校基本科研业务费校长专项(项目号:2019XZZX003-01)和浙江大学百人计划的经费支持。
  • 2020亚太区高成长500强企业榜单揭晓,Park原子力显微镜入围
    p style="text-indent: 2em "span style="text-indent: 2em " /spanstrong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 2020年5月11日,原子力显微镜制造商Park原子力显微镜公司(Park Systems)宣布,该公司入选了英国《金融时报》/spanspan style="text-indent: 2em "(FT)/spanspan style="text-indent: 2em "近日发布的/spanspan style="text-indent: 2em color: rgb(0, 112, 192) "“strong2020亚太区高成长500强企业榜单”/strong/spanspan style="text-indent: 2em "。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 237px " src="https://img1.17img.cn/17img/images/202005/uepic/821f4ef6-098e-4eb2-8abf-97832f31f245.jpg" title="AC9137350E58DAB46A1725C45DB0471E3E7BA11C_size21_w640_h337.jpeg" alt="AC9137350E58DAB46A1725C45DB0471E3E7BA11C_size21_w640_h337.jpeg" width="450" height="237" border="0" vspace="0"//pp style="text-indent: 2em "《金融时报》(FT)依据各企业2015至2018年的年复合成长率(CAGR)排名,选出亚太地区500家成长最快的企业,他们分别来自亚太区域11个经济体,包括新加坡、马来西亚、印度尼西亚、菲律宾、澳大利亚、新西兰、印度、日本、韩国等。数据显示,今年上榜企业的最低平均增长率为8.3%。据悉,所有上榜企业的相关数据都通过了国家统计局的核查,不符合上榜标准的企业会被剔除。span style="text-indent: 2em "榜单由德国统计数据门户Statista编制。/span/pp style="text-indent: 2em "span style="text-indent: 2em "从榜单中企业行业分布来看,上榜最多的是科技行业企业,约有四分之一的上榜公司属于这一类别。/span/pp style="text-indent: 2em "span style="text-indent: 2em "《金融时报》表示,亚太企业和其他地区一样,深受全球疫情蔓延的影响,尽管榜单评选时尚未把疫情列入考虑,但仍有助判断哪些企业的缓冲能力较强,足以在疫情之中幸存下来。那些反应最灵敏、最具创造力的企业,将化危机为“创新的催化剂”,中期内有望各自快速发展。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202005/uepic/8e360a03-e5ef-40d5-933d-fec9e1f6d238.jpg" title="帕克原子力显微镜.jpg" alt="帕克原子力显微镜.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "Park原子力显微镜公司总部位于韩国水源/span/pp style="text-indent: 2em "2015年,Park原子力显微镜公司在KOSDAQ上市自首次公开募股以来,其销售额每年都创新高,Park原子力显微镜公司在2020年新冠疫情大流行的情况下,业绩再创新高,在英国《金融时报》500强韩国企业的排名中,span style="color: rgb(0, 112, 192) "排名第25位/span。/pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "Park原子力显微镜副总裁Keibock Lee/span/strong评论道:“我们很高兴能跻身亚太地区增长最快的公司前10%的行列。随着我们对原子力显微镜系统的创新设计,以及在资本资产、研发和人员方面的不断加大投入,相信我们能够在我们所服务的快速发展的纳米技术行业实现高速增长。/pp style="text-indent: 2em "我们在提供最精确、最高纳米分辨率的AFM技术优势方面有着悠久的历史,这一直是我们持续增长的不竭动力。”/pp style="text-indent: 2em "Park原子力显微镜成立于1997年,是AFM行业的全球市场知名品牌。公司拥有多项与AFM技术相关的专利,产品涵盖从用于研究的桌面AFM到用于半导体制造质量保证的带有机械臂的全自动AFM系统。Park原子力显微镜的主要客户包括全球数千所知名大学、国家实验室和行业领先企业,以及几乎所有领先半导体公司的AFM的主要供应商。/pp style="text-indent: 2em "近来,Park原子力显微镜推出系列新计划来推广期AFM产品,包括设立研究基金、奖学金等。如提供Park AFM奖学金项目;最近扩大在线学习项目,提供公司网络研讨会、现场演示和用户聊天;举办纳米科学研讨会,以推广应用和技术,促进科学发现等。/pp style="text-indent: 2em "strong关于Park原子力显微镜/strong/pp style="text-indent: 2em "Park原子力显微镜公司是目前世界上发展最快的原子力显微镜(AFM)制造商之一,为化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师提供了一系列完整的产品。 Park的客户包括20多家全球最大的半导体公司,以及亚洲、欧洲和美洲的国立研究型大学。Park 原子力显微镜是韩国证券交易所(KOSDAQ)的上市公司,公司总部位于韩国水原,地区总部位于美国加州圣克拉拉、德国曼海姆、中国北京、日本东京、新加坡和墨西哥墨西哥城。/ppbr//p
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 1570万!哈尔滨工程大学单光子计数共聚焦显微镜和全时域瞬态光谱仪采购项目
    一、项目基本情况1.项目编号:2034-234GFZBGJ298项目名称:哈尔滨工程大学单光子计数共聚焦显微镜采购项目预算金额:1000.000000 万元(人民币)最高限价(如有):1000.000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1单光子计数共聚焦显微镜1套详见招标文件合同履行期限:合同签订后12个月内完成所有设备到货,所有设备调试完毕并具备验收条件。本项目( 不接受 )联合体投标。2.项目编号:2034-234GFZBGJ299项目名称:哈尔滨工程大学全时域瞬态光谱仪采购项目预算金额:570.000000 万元(人民币)最高限价(如有):570.000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1全时域瞬态光谱仪1套详见招标文件合同履行期限:合同签订后12个月内完成所有设备到货,所有设备调试完毕并具备验收条件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月11日 至 2023年11月17日,每天上午8:30至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:详见国际招标公告方式:详见国际招标公告售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:0451-82519862      2.采购代理机构信息名 称:宜国发项目管理有限公司            地 址:哈尔滨市道里区群力第四大道399号汇智广场中楼401            联系方式:佟龙、王金丹、朱国凤0451-55671212            3.项目联系方式项目联系人:佟龙、王金丹、朱国凤电 话:  0451-55671212
  • 复旦大学附属肿瘤医院病理科 显微镜前书写生死报告
    据《劳动报》报道,在复旦大学附属肿瘤医院,有这么一群特殊的医生,他们数十年坚守在方寸之地的显微镜前,书写着关乎患者生死的一纸报告。他们的报告是判断一个肿块或者一个瘤子良恶性和疾病分期的唯一标准。也正因为如此,他们被形象地喻为病人的&ldquo 法官&rdquo 。  是的,这群特殊的医生就是由百余位医师和技术员组成的复旦大学附属肿瘤医院病理科团队,他们也是全国病理学界的&ldquo 领路人&rdquo 。  我们的工作就像&ldquo 破案&rdquo   走进肿瘤医院病理科,这里没有喧闹声,安静得连皮鞋发出的声音都听得很清楚,不少年轻医生正专注地坐在显微镜前,进行着病理诊断。在一个甲子的岁月里,经过几代病理人的共同努力和默默耕耘,如今科室已经成长为国家临床重点专科、卫生部临床重点学科,拥有乳腺、胃肠道、淋巴等近10个亚专科。全国各地患者纷纷慕名而来,科室每天处理的病例达150至200例之多。  病理科党支部书记王朝夫曾经是一名外科医生,转行到病理科后,他深深爱上了这个工作,&ldquo 说实话,在医院里,病理科是个较冷门的科室,责任大、风险高,吸引力小。不过,我们的工作就像"破案"一样,每当曾被判为恶性肿瘤的患者经我们诊断观察排除恶性,每当家属喜极而泣连声道谢时,我们都觉得特别有成就感。&rdquo   王朝夫清楚地记得,有一位父亲带着15岁的儿子来到肿瘤医院,当地医院确诊他儿子右下肢患了骨癌(骨肉瘤),需要马上截肢,对于刚刚长大成人的孩子来说,这是多么残酷的消息啊!整个家庭一下子陷入了绝望,不甘心的父亲怀着一线希望慕名来到复旦大学附属肿瘤医院。王朝夫在显微镜下仔细观察他儿子的病理切片后,对这位脸上写满焦急的父亲说:&ldquo 别担心,你儿子患的不是骨癌,是良性的,不需要截肢。&rdquo 原来,这个孩子在体育课上跳沙坑导致外伤,形成骨痂增生,却被误诊为骨癌。  开始这位父亲似乎不相信自己的耳朵,愣了一会儿,随即喜极而泣。第二天,父亲送来了一面锦旗,感谢病理科保住了孩子的腿,也保住了家庭的希望。  深夜10点这里依旧灯火通明  &ldquo 做好每张片子诊断,不放过一个蛛丝马迹&rdquo 是科室里从技术员到病理医师牢记的责任和使命。病理诊断工作可谓一个&ldquo 流水线&rdquo 工作流程。从巨检、包埋、染色、制片,到最后的读片出报告,每个步骤环环相扣。技术环节的好坏与医师是否能够做出清晰诊断有着紧密的联系。  最常见的手术标本在巨检室进行取材,标本要预先经过4%的甲醛(10%福尔马林溶液)处理,其挥发出来的刺激性气味经常将取材人员及记录人员刺激得眼泪鼻涕直流。后续的组织切片制作过程中,要大量使用石蜡、二甲苯、酒精等试剂,对人体也是一种相当大的损害。技术员们在如此艰苦的环境下,做好每项工作,确保没有一张病理切片因技术原因而被误诊。为了能更快更好地做好疾病诊断,众多病理医师经常未能赶上地铁&ldquo 末班车&rdquo 。深夜十点,走在医院长廊,病理科办公室依然灯火通明。2007年至2012年,肿瘤医院病理科各部门工作量均连续5年上升。平均每年冰冻病理7000余次,来自全国各地的病理会诊达26000例次(总量和日均会诊量居全国首位)。2013年他们的工作量再次飙升,冰冻病理达12556次,会诊量高达28803人次。就是在这种高负荷的压力下,他们仍保持着术中冰冻病理诊断和常规病理诊断符合率大于99%、常规病理诊断准确率大于99%这一极高的诊断率。  援疆六年留下一支带不走的医疗队  他们的脚步也曾在天山脚下驻足六年,为新疆医学事业的发展留下了一支带不走的医疗队,开创了从&ldquo 个人援疆&rdquo 到&ldquo 团队援疆&rdquo 的新模式。病理科于2008年9月起,连续派出2批11名专家作为中央组织部援疆干部,来到天山脚下,对新疆医科大学第一附属医院展开为期六年的&ldquo 医疗援疆&rdquo 工作。  在起初几年里,科室里一批又一批的援疆专家加紧编制完善工作制度,优化工作流程,建立完善技术、诊断和质量控制等一系列管理体系,进而从制度层面保证了病理诊断的&ldquo 金标准&rdquo 。与此同时,援疆专家根据先进的国际管理理念,邀请承担肿瘤医院病理科流程和空间设计的上海市卫生设计研究院的设计师来疆,优化空间布局。一个占地2000多平方米的集病理形态学诊断、免疫组化、分子病理检测于一体的现代化病理综合诊治平台正式建成,填补了当地空白。六年里,援疆专家先后赴和田、阿勒泰等地开展巡回医疗、学术讲座、病例分析等活动,迄今,共培养基层病理从业人员1200余人次。
  • 蔡司共聚焦显微镜巡展即将在全国拉开帷幕
    2010年6月,蔡司共聚焦显微镜即将在全国掀起一阵共聚焦技术浪潮。由蔡司光学仪器及北京普瑞赛司仪器有限公司共同开展的蔡司共聚焦显微镜全国巡展即将拉开帷幕,此次巡展将以哈尔滨为首站,随后陆续登陆长春、沈阳、石家庄、济南、天津、南京、上海、杭州、厦门等地,本次巡展受到了蔡司光学仪器领导的高度重视,在展出蔡司新技术的同时派出了强大的蔡司专家团队亲临巡展现场同用户进行研讨与交流。 一直以来,传统光学显微镜一直无法突破二维图像的束缚,也无法在分辨率与景深的制约关系中更近一步,而其在高度、深度、粗糙度方面的测量则更是一片空白。不过,蔡司共聚焦时代的到来的让这一切成为了历史。打破了光学传统限制的蔡司共聚焦显微镜以其高分辨率、大景深、三维成像及能够精准定量分析的出众技术优势让许多用户兴奋不已,一些用户甚至还希望通过蔡司共聚焦寻求到解决工作中观测瓶颈的办法。因此,在集中了全国各地用户的需求之后,此次蔡司共聚焦显微镜的巡展便在众多用户的需求声中应运而生。 为了让客户了解共聚焦显微镜的相关知识,切身体验高端共聚焦显微镜的卓越性能,同时感受蔡司共聚焦优于同类产品的出色图像,这次巡展将展出蔡司显微镜中的代表机型——激光共聚焦显微镜LSM 700。在现场,蔡司专家团队将解读共聚焦显微镜在各领域中的应用及其在某些领域中的不可替代性,还将会对应用激光共聚焦显微镜的用户做出全面系统的培训。与此同时,用户亦可以携带样品亲自上机进行操作,随时可与蔡司的专家就您所感兴趣的问题进行互动交流。 相信这次巡展会因为各界专家的指导加盟而成为中国第一个共聚焦技术的高峰论坛。届时欢迎广大用户前来参展,更多详情请关注中国材料显微镜网www.microscopy.com.cn 咨询预约热线:15010483021 魏经理
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。(作者系清华大学科学史系助理教授、“双校记:透过显微镜看哈佛与清华”展览策展人)
  • 快讯|2020年全国电子显微学学术年会开幕:贺中国电子显微镜学会成立40周年!
    p style="text-indent: 2em "strong style="text-indent: 2em "中国电子显微镜学会、仪器信息网联合报导:/strongspan style="text-indent: 2em "2020年11月22日,由中国电子显微镜学会主办的“2020年全国电子显微学学术年会”在成都市新希望高新皇冠假日酒店璀璨厅盛大开幕。大会为期三天,吸引来自高校院所、企事业单位等电子显微学领域专家学者千余人出席。img style="max-width: 100% max-height: 100% width: 664px height: 224px " src="https://img1.17img.cn/17img/images/202011/uepic/63bfd973-0701-4d1c-a7fd-ce7e361cdc79.jpg" title="" alt="" width="664" height="224" border="0" vspace="0"//span/pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) "大会现场/span/pp style="text-indent: 2em "为庆祝中国电镜学会成立四十周年,本届年会的主题是“显微学激发新希望”。回顾四十年发展历程,电子显微学的研究领域至今已遍及各个学科,国际前沿的球差校正透射电镜安装已经超过160台,疫情之下,低温冷冻电镜及时解析了病毒突刺蛋白结构,为研制新冠疫苗和治疗药物提供了依据。/pp style="text-indent: 2em "会议学术交流内容包括球差透射电子显微学及应用、原位显微学技术(包括力学、物理、化学、生物等)及应用、高分辨扫描电子显微学、微束分析、扫描探针显微镜(包括STM、AFM等)、低温电子显微学和激光共聚焦显微学等。会议并包含这些技术在前沿物理科学、化学、地学、生命科学、结构生物学和信息科学等学科及新能源技术、热电材料、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用研究成果。会议将展示显微学相关仪器理论、技术和实验方法的最新进展,促进电镜及其它显微学仪器的使用、改进与维修经验的交流。促进大型仪器运行管理开放共享实验平台使用的经验交流等。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202011/uepic/4c7bfa4d-6541-43e2-8752-d1d3264ab7e8.jpg" title="" alt="" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "中国电子显微镜学会理事长韩晓东 主持大会开幕式/span/pp style="text-indent: 2em "韩晓东表示,正值秋尽初冬时节,很高兴在多方努力下,大家又一次相聚在全国电子显微学学术年会上,今年是特别的一年,疫情给我们的生活和科研带来了前所未有的考验,同时,中国电镜学会也正走过40年历程。/pp style="text-indent: 2em "span style="text-indent: 2em "接着感谢了大会主席张泽院士,德高望重的叶恒强院士、朱静院士,隋森芳院士和薛其坤院士,感谢了来自国际国内兄弟学会协会的贺词贺信、国内外友人的贺词贺信,最后感谢了会务组、各分会场联络人,及高校志愿者团队等的辛苦付出,促成本次会议在短短一个月时间的紧张准备下圆满召开。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 325px " src="https://img1.17img.cn/17img/images/202011/uepic/71530b79-9a9a-448f-80da-6f2af63e6dd1.jpg" title="" alt="" width="450" height="325" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "中国科学院院士、大会主席张泽 致开幕辞/span/pp style="text-indent: 2em "中国科学院院士、2020年全国电子显微学学术年会主席张泽在开幕致辞中表示,40年是一个漫长的历史过程,40年对中国电子显微镜事业意味着什么?接着以若干张珍贵的老照片为主线,与大家共同回顾中国电子显微镜学会这40年来的发展。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202011/uepic/bdf2a490-4cec-4a09-b2ae-fe4d21c62f58.jpg" title="" alt="" width="450" height="300" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "1980年11月初,首届电子显微镜学术交流会合影照局部图/span/pp style="text-indent: 2em "40年前11月初,中国电子显微镜学会的第一次学术交流大会在成都召开,当时二百六十余位代表参加会议。结合照片,张院士与大家回顾了钱临照、郭可信、柯俊、黄兰友、李方华等老一辈显微学领域专家学者为中国显微学的发展做出的贡献,在他们的带领下,为我国培养出一代又一代活跃在世界电子显微学领域的专家学者。/pp style="text-indent: 2em "张院士回顾道,刚到中科院金属所时,金属所只有一台日本电子的透射电镜,说明书是郭可信先生自己翻译的,操作也十分不便。再回看40年后的今天,国内仅仅高端的球差校正透射电镜安装已经超过160台。在过去的40年里,中国的电子显微学事业取得了突飞猛进的发展。/pp style="text-indent: 2em "改革开放的40年,中国电子显微镜学会也伴随中国的改革开放走过了40年,电子显微镜学会和改革开放一起共同成长,才有我们的事业发展。今天我们仍然面临机遇和挑战。 虽然我们电子显微学强大了,但在仪器方面还比较落后。40年后的今天我们有很好的条件,能不能走得更好,像老前辈们为我们做出的榜样那样,也是我们今天的同仁们有更好的发挥机遇和成长空间。最后期望大家能够继承老前辈们的优良传统,把我们的电子显微学事业做好,为国家的科学前沿探索和解决国家的重要问题作出贡献。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 330px " src="https://img1.17img.cn/17img/images/202011/uepic/65753fa4-d728-45fe-9c38-06bdec447631.jpg" title="" alt="" width="500" height="330" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "中国工程院院士姚骏恩 视频致辞/span/pp style="text-indent: 2em "姚骏恩院士是中国电子显微镜学会和《电子显微学报》主要创办人和负责人之一,任中国电子显微镜学会电子光学与仪器委员会主任长达20多年。在视频致辞中,姚骏恩院士为大家回顾了中国电镜事业的发展之路。/pp style="text-indent: 2em "1979年9月,由钱临照等31位发起人向中国科学技术协会提出《申请成立中国电子显微镜学会的报告》。经多方协商,由中国物理学会批准,成立本学会,作为中国物理学会的一个分会(对外:中国电子显微镜学会,英文:Electron Microscopy Society ) 。1980年11月1-5日在成都市召开了中国电子显微镜学会成立大会,同时举行首次全国电子显微学学术交流会。/pp style="text-indent: 2em "至今,中国电子显微镜学会走过了四十个春秋, 从当初的个位数电镜发展到现在的上万台,电镜拥有量走入世界前列。其产生的巨大影响已经从学术论文主战场发展到支撑国家重大需求,系统性解决相关领域重大和关键科学问题与难题。长江后浪推前浪,非常欣喜看到年轻一代的高水平快速成长和活跃于学术前沿!祝愿中国电子显微镜学会为科技创新强国,中华民族的伟大复兴再做贡献!/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/202011/uepic/c46311c3-75a1-4433-a765-c193e85acb8a.jpg" title="" alt="" width="450" height="299" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "国家纳米中心特聘研究员甘雅玲 代表全体会员贺学会成立四十周年/span/pp style="text-indent: 2em "甘雅玲在中国科学院动物研究所和国家纳米科学中心从事电子显微镜技术应用四十年,并参加了历届全部的电子显微学学术年会,四十年来应用电子显微镜,在显微与亚显微形态与结构学领域取得系列研究成果。甘雅玲回顾道,在1980年同样绚丽的金色秋天里,一群热爱电子显微镜事业的人们汇集到了美丽的成都,召开了中国电子显微镜学会成立大会,从此电镜人有了自己的大家庭。在钱临照院士、郭可信院士、李方华院士、叶恒强院士、张泽院士、丁明孝教授、韩晓东教授等历届理事长的领导下,坚持独立自主民主办会的原则和百花齐放百家争鸣的方针,弘扬尊重知识,尊重人才的风格,不忘初心,努力创新,一直在中国电子显微镜事业的道路上奋力前进,为电镜事业的明天不断贡献力量。/pp style="text-indent: 2em "今天,中国电子显微镜学会已拥有二十多名院士及一大批领域的专家、学者、工程技术人员,从事科研、教学、开发以及应用推广,学会从最初的288人发展到如今有会员5000余人,从4个学科专业委员会增加到10个学科专业委员会、5个工作组,并每年举办全国性学术大会及地方性学术交流会。/pp style="text-indent: 2em "甘雅玲表示,作为见证四十年中国电子显微镜学会发展的一位电镜工作者,再次汇集到美丽成都,回顾往事,展望未来,相信中国电子显微镜学会将一定携手中国电镜人共同创造出更加辉煌的下一个四十年!最后以贺诗结束:/pp style="text-indent: 0em text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "四十春秋尽芳华,五千俊杰多名家。/span/strong/pp style="text-indent: 0em text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "显微世界奇妙多,纳米空间乾坤大。/span/strong/pp style="text-indent: 0em text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "皓首穷经践初心,青丝奋进拓新涯。/span/strong/pp style="text-indent: 0em text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "喜获今秋满园果,笑迎明春遍地花。/span/strong/pp style="text-indent: 0em text-align: center "---------------------------------- /pp style="text-indent: 2em "本次大会主要由大会报告和10个分会场报告组成,11月22日大会报告特邀十二位著名学者、相关仪器设备厂商专家代表将依次为大家呈现精彩报告。/pp style="text-indent: 2em "11月23-24日开始,10个分会场精彩内容也将悉数呈现,分会场依次为:1.显微学理论、技术与仪器发展;2.原位电子显微学表征;3.功能材料的微结构表征; 4.结构材料及缺陷、界面、表面,相变与扩散;5. 先进显微分析技术在工业材料中的应用;6.扫描探针显微学分会场(STM/AFM等);7.扫描电子显微学(EBSD);8. 低温电子显微学表征分会场;9. 生命科学显微成像技术研究分会场;10. 中国电子显微镜运行管理开放共享实验平台分会场。/pp style="text-indent: 2em "同时,大会还将为叶恒强先生颁发中国电子显微学终身成就奖、颁发优秀青年学者奖、评选优秀学生论文奖与优秀Poster奖、为第十一届中国电子显微摄影大赛获奖者颁奖等。/pp style="text-indent: 2em "大会后续精彩内容,敬请关注后续报道a href="https://www.instrument.com.cn/zt/CEMS2020" target="_blank" textvalue="【点击报道专题链接】"strongspan style="color: rgb(0, 176, 240) "【点击报道专题链接】/span/strong/a/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 301px " src="https://img1.17img.cn/17img/images/202011/uepic/2cbc5da9-19af-4b6c-9d6f-07966e31f24f.jpg" title="" alt="" width="450" height="301" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大会前夕签到一角/span/ppbr//p
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。
  • 喜报!国仪量子电子显微镜单年出货超100台!
    场发射扫描电镜SEM5000SEM5000是一款分辨率高、功能丰富的场发射扫描电子显微镜。先进的镜筒设计,高压隧道技术(SuperTunnel)、低像差无漏磁物镜设计,实现了低电压高分辨率成像,同时磁性样品可适用。光学导航、完善的自动功能、精心设计的人机交互,优化的操作和使用流程,无论经验是否丰富,都可以快速上手,完成高分辨率拍摄任务。(点击了解)场发射扫描电镜SEM4000SEM4000是一款分析型热场发射扫描电子显微镜,配备了高亮度、长寿命的肖特基场发射电子枪。三级磁透镜设计,束流最大可达200 nA,且连续可调,在EDS、EBSD、WDS等应用上具有明显优势。支持低真空模式,可直接观察导电性弱或不导电样品。标配的光学导航模式,以及直观的操作界面,让您的分析工作倍感轻松。(点击了解)钨灯丝扫描电镜SEM3300SEM3300 是全新一代钨灯丝扫描电子显微镜,分辨率优于2.5 nm。特殊的电子光路设计,突破钨灯丝分辨率极限,在低电压1 kV 下,达到5 nm 的分辨率。拥有出色的成像质量、在不同的视场范围下均可得到高分辨率图像。大景深,成像富有立体感。丰富的扩展性,助您在显微成像的世界中尽情探索。(点击了解)钨灯丝扫描电镜SEM3200SEM3200是一款高性能、应用广泛的通用型钨灯丝扫描电子显微镜。拥有出色的成像质量、可兼容低真空模式、在不同的视场范围下均可得到高分辨率图像。大景深,成像富有立体感。丰富的扩展性,助您在显微成像的世界中尽情探索。(点击了解)钨灯丝扫描电镜SEM2000SEM2000是一款基础款的多功能分析型钨灯丝扫描电镜。20&ensp kV分辨率可以做到3.9&ensp nm,支持升级30&ensp kV电压,可观察亚微级尺度样品的微观结构信息。拥有比台式电镜更大的移动范围,适用于快速筛选待测样品,更多的扩展接口,可搭载BSED、EDS等附件,使应用领域更广。(点击了解)
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 显微镜相机助您轻松拍摄高质量的显微镜图像
    显微镜相机助您轻松拍摄高质量的显微镜图像显微镜相机可以将显微镜中观察到的微小物体放大并通过软件进行图像处理和分析,实时显示在电脑或手机屏幕上,让用户轻松地拍摄高质量的显微镜图像。显微镜相机能够满足高级科研应用的各类需求,具有高清晰度、高亮度和高分辨率等优点,让人们更加清晰地观察微观世界。显微镜相机应用领域:1.生命科学:显微镜相机可以用于细胞、组织和器官的结构和功能观察、组织切片、病理学等方面。2.材料科学:显微镜相机可以用于材料分析、表面形貌观察等方面。3.教育科研:显微镜相机可以用于学校实验室、科研机构等场所。针对不同的应用场景和需求,显微镜相机的参数也有所不同,常见的参数包括分辨率、帧率、像素大小等,可以通过显微镜摄像头定制,定制专属的光学参数和软件功能,获得更清晰、更准确的视野。△显微镜USB2.0 CMOS相机USB2.0与CMOS图像传感器相机(USB2.0 Advanced CMOS 相机);采用USB2.0作为数据传输接口;硬件分辨率横跨1.2M~8.3M等多种 实时8/12位切换,任意ROI尺寸。△显微镜USB3.0 CMOS相机采用Sony Exmor CMOS背照式传感器的C接口CMOS USB3.0相机;传感器采用双层降噪技术,具有超高的灵敏度以及超低噪声;分辨率横跨40万~2000万,图像传输速度快,随相机提供高级视频与图像处理应用软件;广泛用于显微图像的拍摄与记录。△显微镜USB3.0 CCD相机USB3.0接口CCD相机,其感光芯片采用索尼ExView HAD CCD芯片;采用SONY EXview技术的C接口CCD相机,分辨率有1.4M~12M等多种;IR-CU红外窗口,滤除红外,又起保护传感器的作用;在黑暗的环境下也可得到高亮度的照片;FPGA控制支持长达1分钟长曝光,保证捕获弱荧光图像;可用于弱光或荧光图像的拍摄与分析。△显微镜制冷相机高效制冷模块,大大降低了图像噪声,保证了图像质量的获取。双级专业设计的高性能TE冷却结构,散热速度快;温度任意可控,最高达50度温度降幅,确保在视频或图像噪声小的情况下尽可能高的光电转换量子效率;防结雾结构,确保传感器表面在低温情况下不会防结雾;支持触发操作模式,软件触发或外部触发,支持一次触发采集单张或多张图片。通过数码成像系统,可以直接在电脑上观察图像,还能将所成像在电脑上保存成图片,大大的方便了使用者将图像数据保存的要求,也更加方便了资料数据的管理和编辑。并且能通过专业的软件图像进行调整,标注,拼接,合成,测量等,形成图文文件,可互相传阅。≥≥≥更多显微镜相机款式型号≥≥≥更多显微镜相机款式型号 如需显微镜摄像头定制或者了解更多解决方案,请与我们联系!
  • 天美公司电子显微镜合肥宣讲会圆满落幕
    将最先进的技术应用在最前线&mdash &mdash 2012年天美公司电子显微镜合肥宣讲会圆满落幕 为答谢安徽省电镜用户对天美公司的认可和支持,4月19号我公司一行人来到合肥江南春大酒店,在这里举行了一场电镜宣讲会,就日立新型电子显微镜的特点及用途向用户做了讲解,此次活动受到了安徽省电镜用户们的热烈欢迎,安徽省电镜协会理事长李凡庆老师,秘书长刘先明老师等领导亲临本次宣讲会,并对此次活动给予高度评价。中国科学技术大学、安徽大学、合肥工业大学和安徽农业大学等高校老师也参加了本次宣讲会。安徽省电镜协会理事长李凡庆老师为本次宣讲会致开幕词 华东区总经理彭燕红代表天美公司向各位专家和老师的到来表示热烈欢迎 本次宣讲会主要是针对合肥市及周边地区的电镜用户,会议中首先由日立公司销售工程师武田豪先生介绍日立电镜的发展历史,他生动幽默的汉语表达赢得了在场用户的欢迎和肯定!日立公司销售工程师武田豪先生正在用汉语向用户介绍日立电镜的发展历史 然后,由日立公司应用工程师罗琴主讲了日立新型冷场发射扫描电子显微镜SU8020,详细地介绍了SU8020的特点、功能和应用,从专业的角度上为用户提供了技术支持。报告完成后,罗工耐心地回答了用户提出的各种问题。罗琴工程师正在向用户介绍日立新型冷场发射扫描电子显微镜SU8020 接着,由我公司应用工程师原剑从PARK公司的创建历史为出发点,深入浅出地向用户介绍了PARK原子力显微镜(AFM)的技术特点和应用领域。特别提到了AFM在科研上的应用,并向客户展示了科研工作者利用AFM作为分析手段发表在Nature和Science上的两篇文章,一些从事科研工作的用户对此很感兴趣,并向原工探讨了AFM科研应用的相关问题。此图为天美公司电子显微镜合肥宣讲会现场,与会用户认真听课的场景。 最后,由我公司应用工程师唐凯向用户介绍了日立新型台式扫描电镜TM3000,用户们被TM3000尺寸小,操作维护简单的特点所吸引,夸奖TM3000不仅结构紧凑小巧,而且功能强大,是一款性价比非常高的电镜产品。 宣讲会结束后,我公司在酒店餐厅宴请了与会的用户,以感谢用户们一直以来对我公司的认可和支持!用户们对此次宣讲会十分满意,希望我公司能多举办几次类似的宣讲会,把最先进的电子显微镜技术与大家分享。听到用户们对此次宣讲会的认可,我们感到由衷的高兴,同时也感到责任重大,用户的支持和信赖就是我们前进的最大动力,天美公司会继续奉行&ldquo 以质量求生存,以信誉求发展&rdquo 的营销理念,为广大用户提供最一流的产品和最优质的服务! 此次宣讲会不仅为安徽省的电镜用户提供了一个很好的技术交流平台,而且通过本次宣讲会让安徽省更多的高校和企业了解天美公司,更加信赖天美公司的产品和服务。
  • 关于显微镜你所不知道的故事
    生物课上,一台显微镜、一片菜叶子加上一只青蛙或者鲫鱼,一场生物显微解剖课开场了。各自不免兴奋,显微镜是多么神奇的一个东西!它让我们能够看到流淌江水中的各种微生物,能够知晓细胞内形形色色的细胞器,能够区分出猩猩有24对染色体而人却只有23对。  这都要归功于16世纪一个叫Zacharias Jansen的荷兰人,我们不清楚他如何想到将两个镜片叠在一起并放在管子的两头,但是这个奇怪想法催生出的工具,却能够在压缩最小的时候放大3倍,拉到最长时可以放大达到10倍。他在孩童时期的嘻哈把玩,将我们带进了令人瞠目结舌的微观世界。  ▲玩出来的显微镜  很奇怪,做出显微镜的第一人不是生物学家,而是一个观星的人&mdash &mdash 现代物理学与天文学之父伽利略。1609年,在听说了这个孩子的发明后,他不仅研究明白了这些镜片在一起能够放大很多倍的原理,还制造出了一台更为精密的工具,并将其命名为occhiolino(也被称为little eye)。从此,现代意义上的显微镜走进人们的视野。  然而,显微镜真正发展成为一个学科,成为窥视微观世界的独门兵器,还是要等到17世纪六、七十年代。列文虎克,这个出生于1632年的荷兰小伙子,在稚嫩的年纪就不得不面对父亲的去世,被迫来到阿姆斯特丹的一家干货商店当学徒,在那里他接触到放大镜,产生极大的兴趣。闲暇之余,他便耐心地磨起了自己的镜片。或许是太无聊,或许是太好玩,他一生中竟然磨制了400多个透镜,放大倍数竟然可以达到300倍!利用自制的显微镜,列文虎克为我们展现了一个全新的微观世界,他第一个发现并描绘了细菌,展现了一滴水中的世界,准确地描述了红细胞,证明了马尔皮基推测的毛细血管层是真实存在的,他成为了微生物学的奠基人。  与列文虎克同期的,还有一个叫做罗伯特&bull 胡克,被称为&ldquo 伦敦的莱奥纳多&bull 达&bull 芬奇&rdquo 的英国博物学家。你说对了,&ldquo 胡克定律&rdquo 就是以他名字命名的。他不仅提出了弹性材料的胡克定律,万有引力的平方反比关系,设计了真空泵,还利用自制的显微镜发现了软木中的&ldquo 小室&rdquo ,并将&ldquo cell&rdquo 一词深深地刻进了现代人的脑海中。从此,显微镜的发展进入了快车道,出现了形式多样、拥有不同功能的各色显微镜。  ▲光学显微镜  灯泡的发明让那些狂热的显微镜粉丝们欣喜不已,终于可以在晚上也可以使用高倍镜片来触摸微观世界了。但是当他们将光源经聚光镜投射在被检样本上后,却发现在视野中除了有那些小东西,竟然还发现了灯丝的影像。直到1893年,一个叫柯勒的年轻人,发明了二次成像技术,成功地将热焦点落在了被检样本之外,不仅光线均匀了,而且也不会损伤样本。这种被称为柯勒照明的光源系统,成为了现代光学显微镜的关键部件。  显微镜的变革,也使细胞学迎来了最为辉煌的发展时期。细胞器、染色体等细胞染色方法的出现,使人们对于细胞这一生命最基本单位有了相当深入的认识。但是,染色毕竟影响甚至杀死了细胞,跟一堆死细胞玩真是太没意思了!直到20世纪二、三十年代,弗里茨&bull 泽尔尼克在研究衍射光栅的时候,发明了相差显微技术,这一情况才被彻底改变。  再后来,出现了各种形形色色的显微镜,按照设计方式的不同,有正立的、倒立的,还有解剖显微镜,按照目镜的个数,有单目镜的、双目镜的,还有直接数码相机采集图像的,有使用偏振光作光源的,还有不将光直接射入样本的暗视野显微镜,还有选定特定波长的光波照射样本,以产生荧光的荧光显微镜。  ▲瓶颈所在  十八世纪,光学显微镜的放大倍数已经可以达到1 000倍,直到现在人们也只能将其提高到1 600倍左右这个极限了。不是因为技术不够,而是因为显微镜的最大分辨率受到光源波长的限制。  光在传播途径中,如果碰到的障碍物或者小孔的尺寸远大于光的波长时,就会被反射回去或者穿透过去,可以看作是沿直线传播。但是当物体尺寸与光波差不多甚至还要小的时候,光波就会发生衍射现象并绕过去。不论我们怎样磨镜片,或者使用油镜来提高清晰度,显微镜的分辨率最多也只能达到光波长的一半。而我们肉眼通常能感知的可见光,波长范围在0.39&mu m ~0.76&mu m,即便使用0.39&mu m左右的紫外光,理想状况下,也就能达到0.2&mu m的分辨率。所以,要想提高分辨率,只能改变光源,并且改用仪器来探测放大的图像。  ▲新时代的骄子  当人们意识到用光学显微镜看不到原子般细微的物质,那么就会想法进一步提高显微镜的分辨率,别的办法行不通,那就只能寻找比光波波长还短的光源。还有哪些波的波长比光波还短?当然是电子。注意,是电子,不是家里电线中220 V的电&hellip &hellip   1924年,德布罗意提出了波粒二象性的假说,根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。接着汉斯&bull 布什又开创了电磁透镜的理论。这些使人们产生了制作显微镜的新想法:为什么不用具有波动性的电子做&ldquo 光源&rdquo ,再用电磁透镜来放大呢?于是,1932年德国工程师恩斯特&bull 鲁斯卡和马克斯&bull 克诺尔制造出了第一台透视电子显微镜,这是近代电子显微镜的先导,鲁斯卡也因此获得了1986年度的诺贝尔物理奖。  电子显微镜有着与光学显微镜相似的成像原理,它的神奇之处在于用电子束代替光源,而电磁场也化身成了透镜:高速的电子束在真空通道中穿越聚光镜再透过样品,带着样品内部的结构信息投射在荧光屏板上,最终转化成可见光影像。另外,由于电子束的穿透力很弱,用于电子显微镜的标本,需要用超薄切片机制成厚50纳米左右的超薄切片,稍微厚一点,电子就可能做无用功。如果给飞奔的电子再来一马鞭,电子显微镜的放大倍数最高可达近百万倍,分辨率可以达到纳米级(10-9 m)。  用电子束代替光看起来已经是一个反常规的奇妙主意,但让人想不到的还在后面。1983年,IBM公司苏黎世实验室的两位科学家格尔德&bull 宾宁和海因里希&bull 罗雷尔,发明了扫描隧道显微镜,这是一种利用量子理论中的隧道效应探测物质表面结构的仪器。这种显微镜比电子显微镜更激进,它的出现完全抛开了传统显微镜的概念。  最神奇的是,扫描隧道显微镜没有镜头!没有镜头也敢叫&ldquo 显微镜&rdquo ?没错,这不是山寨的时候出了问题,它原原本本就是这么设计的。扫描隧道显微镜依靠&ldquo 隧道效应&rdquo 进行工作,如同一根唱针扫过一张唱片。一根有着原子般大小的探针慢慢通过被分析的物体,当探针距离物体表面很近时(大约在纳米级的距离),电子会穿过物体与探针之间的空隙,形成一股微弱的电流。如果探针与物体的距离发生变化,这股电流也会相应改变,通过测量电流我们就能知道物体表面的形状。所以,当电流经过一个原子,便能极其细致地描绘出它的轮廓,通过绘出电流量的波动,我们就可以得到单个原子的美丽图片。  电子显微镜的出现,&ldquo 神马&rdquo 细菌、病毒、DNA、蛋白质大分子、原子核、电子云啥的,都得规规矩矩老实听话,要不,来探针下现个原形?  ▲未知的微观世界  对人来说,安全电压是36 V,可是对于电子显微镜下的观测样品,其接收到的辐射剂量等同于10万吨当量的氢弹在30米远处爆炸的辐射量!当生物标本暴露于电子束中时,细胞结构和化学键将迅速崩溃,所以电子显微镜虽然精妙却无法用于活细胞的观察。  麻省理工大学Mehmet教授的研究小组提出,通过使用量子力学的测量技术可以让电子束被约束起来,在稍远的距离感应被观察的物体,一次扫描样品的一个像素,并将这些像素组合起来拼出整个样品的图像,从而避免损坏实验样品。倘若研究成功,它可以使研究人员看到分子在活体细胞内的活动,比如酶在活细胞中的功能或是DNA的复制过程,用以揭示生命和物质的基本问题。  看电影,你一定希望看到3D的画面。同样的,长期的2D显微镜成像,也让人们感到审美疲劳,于是3D图像技术如雨后春笋般发展起来。共聚焦显微镜已经能够通过移动透镜系统对一个半透明的物体进行三维扫描,通过计算机系统的辅助,对实验材料从外观到内在、从静态到动态、从形态到功能进行观察。  同时,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都在提高。例如近几年的大屏幕倒置显微镜,直接通过液晶显示器来观察,研究细胞结构就像在电脑上看电影,大大减轻了显微镜观察时的疲劳。
  • 直播预告!帕克原子力显微镜上海实验室开幕式&云参观报名开启
    为了向客户提供更出色的产品和服务,Park对2019年成立的上海实验室进行了扩建。扩建后的上海实验室占地更加广阔,设备也更加齐全。全新的多功能半导体机台和研究机台将为用户提供精准的demo实验。为此,Park将于5月16日在上海实验室举办开幕式,并进行线上直播。届时Park大中华区总裁将在直播间带来Park的全新产品,并介绍Park公司未来的发展蓝图;Park公司中国区售后总经理张华新将在直播间分享中国区售后服务工作规划。此外,开幕式上将举办全新的Park上海实验室剪彩仪式,也将组织上海实验室云参观活动!诚邀各位关注和喜爱Park的用户莅临直播间!直播时间:5月16日直播平台:仪器信息网视频号韩国驻上海领事馆领事金根模先生 开幕致辞届时韩国驻上海领事馆领事金根模先生将为开幕式做精彩致辞,欢迎大家扫码预约收看。开幕式直播间帕克原子力显微镜上海实验室外景一角帕克原子力显微镜在开幕式直播间欢迎您的到来!
  • 新起点 新征程!帕克原子力显微镜上海实验室开幕式顺利举行
    仪器信息网讯 5月16日,帕克原子力显微镜(以下称为Park Systems)上海实验室举行了开幕式。为了向客户提供更出色的产品和服务,Park Systems对2019年成立的上海实验室进行了扩建。扩建后的上海实验室占地更加广阔,设备也更加齐全,相信对于Park Systems进一步开辟中国市场将发挥重要作用。Park Systems上海实验室开幕式Park Systems中国区首席代表张菲博士介绍到场嘉宾韩国驻上海领事馆商务领事金根模先生致开幕词Park Systems全球执行副总裁Dr. Sang-Joon Cho致祝贺辞Park Systems亚太区销售经理Terry Yang部长致辞Park Systems中国区销售总裁张家荣介绍中国市场发展现状和发展蓝图Park Systems中国区销售总裁张家荣首先介绍了Park公司经历的三个冒险阶段,第一阶段是1988-1997年,当时Park Systems的创始人Sang-il Park(朴尚一博士)博士是美国斯坦福大学的研究人员之一,见证并参与了第一台原子力显微镜的发明。随后在1988年,第一台商用原子力显微镜问世,至1997年短短十年间就在全世界卖出了几千台原子力显微镜。第二阶段是1997-2022年,Sang-il Park博士回国创立Park Systems公司,并将目标转向了工业界,在经历了最初一段相对艰难的时期后,经过与IMEC的合作,最终在半导体市场取得了巨大的成功。2015年,Park Systems公司在韩国上市,直至2023年市值已经达到约1兆韩元。Park Systems在北京、上海、广州等多地布局,随着国内市场的繁荣,Park Systems公司也决定进一步地扩大上海实验室的规模。随后就在2023年,Park Systems公司进入了第三个冒险阶段,Park Systems公司推出了全自动的原子力显微镜FX40。对于国内市场而言,全新的自动化的原子力显微镜FX40必将掀起一轮新的革新。此外,Park Systems公司也在尝试结合不同的光学光学方法开发更多更好的原子力显微镜应用。Park Systems中国区售后经理张华新介绍中国区售后服务规划Park Systems中国区售后经理张华新介绍道,Park Systems售后团队的主要工作是机台的安装、培训、调试以及机台的维护保养等,目前中国区售后工程师已经突破了30人,并在武汉、合肥、北京、青岛、无锡、上海、广州等地设置了售后服务点。此外,Park Systems总部也有约10名售后工程师随时援助中国区售后团队,其中大部分都会说中文。Park Systems在国内还有充足的备件,在武汉、上海、合肥、武汉等地都有备品仓库,这些备品能够让Park Systems售后团队更快地解决客户发生的问题,特别是工业级的客户。今年Park Systems还计划在广州和青岛建立两个备件仓库,用来支援华中和华南两地。Park Systems在国内还有两个维修服务中心,这两个维修服务中心能够缩减备品返修时间,提高备品供应的效率。Park Systems在上海实验室布置了NX10和NX20两个科研型的演示机台,还新增了工业设备NX-Wafer,这些演示机台不仅具有演示作用,售后团队也可以利用演示机台进行内部培训,提高工程师的售后能力;演示机台也可以辅助售后工程师进行故障排查以及新应用和新功能的评估。Park Systems中国区销售经理魏晓冬致闭幕辞魏先生表示,Park Systems上海实验室位于上海虹桥核心区域,建筑面积接近500平米,现拥有12英寸的NX-Wafer全自动在线机台、兼容工业和科研的8英寸的NX20以及研究型的小样品机台NX10,近期还会再进驻全自动的研究型机台FX40,不久的将来Park Systems新收购的德国Accurion在线椭偏仪和主动隔振平台产品也都将亮相上海实验室。这些产品和应用方案可以给客户从购买设备之前的调研考察到售后阶段的各种应用需求提供完备的技术支持,从而帮助客户在各自的量测领域应用中解决面临的问题,提升工艺水平,提高研发效率。Park Systems中国区销售经理魏晓冬、Park Systems亚太区销售经理Terry Yang部长、Park Systems中国区首席代表张菲博士、Park Systems全球执行副总裁Dr. Sang-Joon Cho、韩国驻上海领事馆商务领事金根模先生、Park Systems中国区销售总裁张家荣、Park Systems全球市场部副总裁Jessica Kang常务、Park Systems全球技术支援部副总裁Peter Kang部长(从左至右)参加剪彩仪式Park Systems上海实验室参观
  • 浅谈显微镜未来发展的方向
    自从1673年列文胡克发明显微镜,至今已经历了大约三百多年的历史,显微镜也从过去的单目变为双目乃至三目,由简单的观察变为可拍照,由初始的放大300倍左右到现在放大1000倍左右。 最近10年,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都出现了很大的发展。显微镜的外观上出现了一些革命性的变化,性能上有了进一步的提高。全球显微镜生产商都为此做出了不懈的努力。通过对一些特色产品的比较分析,不难发现显微镜设计上的一些特点,从中可以判断出未来显微镜的发展方向。 一、 拍得更清晰 显微镜目的就是为了更好地观察微生物,要求看得更清楚。显微镜厂商为此开发出各种各样的显微镜镜头来消除各种色差和场曲。最近,在显微镜上普遍采用了UIS2光学系统,它充分体现了无限远校正方式的优越性。光线通过物镜后成为平行光束通过镜筒,并在结象透镜处折射或完成无相差的中间象。UIS2无限远光学系统的物镜具有在宽波长范围内(由紫外至近红外区)具有一致的高透过率。同时具有更高的信噪比,不需要额外补偿就可以得到更为清晰的图像。例如美国AMG公司的EVOS fl大屏幕数码荧光显微镜所拍出的图像已经接近于激光共聚焦的水平。 二、 放大倍数更高 对于大多数显微镜来说,对样本的物理放大倍数是物镜放大倍数与目镜的放大倍数乘积。通常情况下,目镜的放大倍数为10倍或者16倍。以40倍物镜为例,也不过是放大400倍或者是640倍,如今却能够将放大倍数提高到840倍。例如美国AMG公司开发的倒置显微镜,在物镜下采用了21倍的光学放大,使得我们能够通过40倍的物镜就可以观察到放大倍数更高的图像了。如果换成100倍的油镜,就可以通过显示器观察到放大到惊人的2100倍甚至更高的图像,无不让人赞叹技术的发展之快。 三、 更为人性化的设计 一提到显微镜,我们的第一印象就是:弯着腰,低着头,抬着手臂,眼睛盯着目镜来观察。对于长期从事显微镜观察的科研人员来说,这一&ldquo 固定姿势&rdquo 往往会引起身体上的疲劳,肌肉损伤。曾经有一位科研人员因为长期观察显微镜而落下了颈椎病。因此改变传统的显微镜观察模式成为一项非常有必要而且紧迫的任务。 不过最近,各大显微镜厂商相继推出了一些更为人性化的显微镜,如美国AMG公司推出了大屏幕倒置显微镜系列,Nikon推出的Coolscope 显微镜,Olympus推出的智能生物导航仪FSX100,leica推出的DMD108等,均是无目镜的显微镜,直接通过液晶显示器来观察,实现了观察细胞就像玩电脑,就像看电影,大大减轻了显微镜观察时的疲劳。 四、 一体化的显微镜 也许现在我们接触到的显微镜大多是机械式的,需要手动来调焦距、调光源、调样品的位置,特别是针对细胞培养,出现了大量连续培养过程中显微观察的要求。为此,各个显微镜厂商设计了能够用于连续培养显微观察的显微镜或配件,如Nikon公司的显微活细胞工作站Biostation IM和Biostation CT,其中Biostation IM是专门针对35mm细胞培养皿设计的,系统中包含了温控系统,CO2气体系统和显微成像系统,可以实现自动化控制,连续培养显微成像。Biostation CT则是更为大型的系统。AMG公司整合了美国Ibidi公司开发的连续细胞培养配件,在其倒置显微镜上也可以实现温控和CO2的供气,从而实现细胞连续培养显微观察,它可以连续观察达60个小时,所采集的图像可进行视频连续播放,从而观察细胞生长过程中形态的动态变化。德国显微镜厂商Leica和Zeiss也开发了自己的连续培养显微观察配件。 五、 专门的网络化显微镜 在临床医学上,专家远程会诊,病理资源共享将会为疑难杂症的诊断和对症治疗提供更大的可能性,这就需要能够实现自动化远程操作的显微镜来观察病理切片。Nikon公司的Coolscope和Leica公司的DMD108为临床远程病理会诊提供了方便,它们专门为载玻片显微观察设计,自动转换物镜,自动对焦,得到的图像可直接通过网络发送到异地进行专家会诊。 六、 光源的革新 对于荧光显微镜,其稳定的激发光源对样本数码成像起着关键性的作用,到现在为止绝大多数显微镜还在使用卤钨灯或者是高压汞灯,一方面这类光源使用寿命短,需要3到4各月更换一次,每次更换后都需要专业工程师进行位置校准;另外一方面,这类光源的强度会随着使用寿命而衰减;还有一方面,这类光源对于显微镜操作来说需要预热来等待光源强度稳定,而且光源关闭后需要等待30分钟左右才能重启,这就造成了使用上的极大不便。 现在LED灯成为大家公认的新一代照明产品,它具有能耗低、光强稳定、寿命长等优点。AMG公司的倒置显微镜系列全部采用了LED光源系统,完全消除了前面所提到的卤钨灯和高压汞灯的使用不便,而且AMG针对荧光倒置显微镜开发了专利的Light cube&ldquo 光立方&rdquo 单色激发光源系统,光源强度可调,不同的单色激发光源可自由更换,在显微镜光源方面可以说是一场前所未有的革命。Leica的DMD108和Nikon的Coolscope也采用了LED光源,因此可以预见未来将会有更多的显微镜厂商采用LED光源。 结束语:综上所述,可以看出最近几年是显微镜出现革命性发展的阶段,越来越多的更为人性化、自动化的理念应用到显微镜设计上,显微镜的性能也大大提高,不仅仅是看到图像,还可以看得更大、更清晰,操作上可以自动化,可以远程控制。还有一些很鲜明的显微镜特点如Olympus 的FXS100的智能化设计,AMG 的EVOS fl荧光成像时无需暗室的独特暗盒设计等由于篇幅有限,无法详细介绍。 以前,在显微镜领域全球一直是Nikon、Olympus、Leica和Zeiss这四家占据着绝大多数的市场,如今美国AMG公司凭借其在倒置显微镜方面的独特设计,开始在显微镜市场上暂露头角。中国内地也出现了很多显微镜生产商,也许在不远的将来,中国制造的显微镜也可以让显微镜领域耳目一新,精神一振,我们期待着这一天早日到来。 参考资料网络来源: 1.http://www.amgmicro.com 2.http://www.leica-microsystems.com/ 3.http://www.nikoninstruments.com/content/download/5113/47632/version/2/file/BioStation-IM.pdf 4.http://www.olympusamerica.com/files/FSX100_brochure.pdf 5.http://www.szsn.cn/szsn_Article_11468.html 欢迎选购,详情请联系东胜创新各地办事处咨询。   东胜创新公司www.eastwin.com.cn   北京:010-51663168,上海:021-64814661,广州:020-38331360
  • 1150万!全光谱激光扫描共聚焦显微镜、全光谱激光扫描共聚焦显微镜和激光共聚焦显微镜采购项目
    一、项目基本情况项目编号:GXZC2023-J1-001494-JDZB项目名称:超高分辨场发射扫描电子显微镜采购采购方式:竞争性谈判预算金额:275.0000000 万元(人民币)最高限价(如有):275.0000000 万元(人民币)采购需求:超高分辨场发射扫描电子显微镜1台。如需进一步了解详细内容,详见谈判文件。合同履行期限:自签订合同之日起120个工作日内完成产品安装、调试,通过验收并交付使用。本项目( 不接受 )联合体投标。1.采购人信息名 称:广西师范大学     地址:广西桂林市雁山区雁中路1号        联系方式:辛老师、0773-3696563      2.采购代理机构信息名 称:广西机电设备招标有限公司            地 址:广西桂林市七星区骖鸾路31号湘商大厦603            联系方式:郑雯峪、蒋仕波,0773-3696789转1            3.项目联系方式项目联系人:郑雯峪、蒋仕波电 话:  0773-3696789转1二、项目基本情况项目编号:ZBUSTC-GJ-06项目名称:中国科学技术大学苏州高等研究院全光谱激光扫描共聚焦显微镜采购项目预算金额:365.0000000 万元(人民币)最高限价(如有):365.0000000 万元(人民币)采购需求:包号货物名称数量主要功能是否允许采购进口产品采购预算1全光谱激光扫描共聚焦显微镜1套主要用来进行组织和细胞中荧光标记的分子和结构检测、荧光强度信号的定量分析、深层组织和细胞成像、亚细胞结构高分辨检测、荧光漂白及恢复实验以及其他生物学应用。是365万元合同履行期限:合同签订后 150 天(国内供货)或者L/C后 150 天(进口免税)本项目( 不接受 )联合体投标。1.采购人信息名 称:中国科学技术大学苏州高等研究院     地址:苏州市独墅湖高教区仁爱路188号        联系方式:秦老师;wangpeng1107@ustc.edu.cn      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯;王军;郭宇涵;010-68290530;010-68290508            3.项目联系方式项目联系人:李雯;王军;郭宇涵电 话:  010-68290530;010-68290508三、项目基本情况 项目编号:CBNB-20236027G 项目名称:宁波市中医院激光共聚焦显微镜采购项目 预算金额(元):5100000 最高限价(元):5100000 采购需求: 标项名称: 激光共聚焦显微镜 数量: 1 预算金额(元): 5100000 简要规格描述或项目基本概况介绍、用途:包含扫描检测系统、万能分光系统、荧光寿命传感成像分析系统等。详见招标文件。 备注:组成联合体的成员数量不超过2个。 合同履约期限:详见招标文件。 本项目(是)接受联合体投标。1.采购人信息 名 称:宁波市中医院 地 址:宁波市海曙区丽园北路819号(广安路268号) 传 真:/ 项目联系人(询问):郑老师 项目联系方式(询问):0574-87089099 质疑联系人:李老师 质疑联系方式:0574-87089098 2.采购代理机构信息 名 称:宁波中基国际招标有限公司 地 址:宁波市鄞州区天童南路666号中基大厦19楼 传 真:0574-87425373 项目联系人(询问):周旭坤 项目联系方式(询问):0574-87425380 质疑联系人:王莹巧 质疑联系方式:0574-87425583        3.同级政府采购监督管理部门 名 称:宁波市政府采购管理办公室 地 址:宁波市海曙区中山西路19号 传 真:/ 联系人 :李老师 监督投诉电话:0574-89388042
  • 教科书两次大改写,显微镜到底对地衣做了啥?
    南方地区连日暴雨已经接近尾声,很多土坡上都出现了这种橙黄色一根根的东西,虽然很常见,但大家知道这是什么吗?其实这是地衣的一种。科学家对于地衣的认知,经历过两次教科书改写级的大改写,都与显微镜有关,即使是生物达人的你可能也不知道,一起来了解下吧!洁地衣棒瑚菌1. 1868年前:地衣是植物看起来比较像植物的地衣在19世纪60年代,生物学家致力于把生物分类成一个个界限分明的独立物种,地衣被认定为一种植物。因为地衣形态上跟苔藓有相似之处,而且也能光合作用,因此被归类为植物,逻辑来说似乎也没毛病。2. 第1次改写:1868年现代光学显微镜证明,地衣是共生体地衣的三种型态:壳状a,叶状b,枝状c1868年,瑞士科学家西蒙施文德纳(Simon Schwendener)提出地衣是真菌和微型藻的共生体,挑战了“单一物种”的分类理论,引起了很大争议。明场观察下的地衣切片现代光学显微镜的出现,平息了这个争议。1866年,现代光学奠基人恩斯特卡尔阿贝,加入了显微镜行业,开始带领光学显微镜进入新时代,他为施文德纳提供了当时*尖的生物显微镜,结合施文德高超的切片制样能力,世界得以看清地衣的真面目:由真菌和藻类构成的共生体。念珠藻是地衣中常见藻类之一(明美显微镜MF52-N拍摄,40X相衬)地衣是由真菌与藻类或蓝细菌组成的共生体,真菌提供上下皮层和伪根,包裹藻类并吸收水分和无机盐等养分,保证藻类生存环境;念珠藻等藻类则进行光合作用,为真菌提供营养,两者是互惠互利的关系,“共生”关系自此进入了字典。3. 第2次改写:2016年荧光显微镜证明地衣是两菌一藻明美荧光显微镜MF52-N下的念珠藻自施文德纳以来一百多年,地衣学家都认为地衣里的真菌是单一的,大部分地衣真菌都来自子囊菌类群(常见霉菌就属于子囊菌),地衣学也以真菌名来分类和命名地衣,直到2011年斯普利比尔(Toby Spribille)和其他研究人员发现,同样子囊菌的地衣,出现了明显不一样的颜色和毒理性。电镜下的地衣,标尺=10μm研究人员用光学显微镜和电子扫描显微镜观察,但什么都没发现,因为形态学来看,就只是看到菌丝和被包裹的藻类。斯普利比尔用PCR检测检测子囊菌种类,只有一种明显反应,说明只有一种子囊菌,研究一度陷入停滞,灵机一动下,他把检测范围扩大到各种真菌,结果发现,两个地衣样本都有担子菌反应(常见蘑菇属于担子菌),反应明显的样本有更鲜艳的颜色和明显的毒性。荧光原位杂交染色的枝状地衣(图自Toby Spribille,et al. / Science(2016))于是他使用荧光原位杂交染色,把担子菌、子囊菌分别染色成了绿色和蓝色,加上藻类叶绿素自发红色荧光,结果发现,是担子菌、子囊菌共同了组成地衣的皮层,担子菌含量不同是同种子囊菌地衣出现不同外观的原因,改写了课本“地衣=1种真菌+1种藻类”的认知,也动摇了地衣学以子囊菌分类和命名地衣的区分逻辑。明美科研级荧光显微镜MF43-N 适用于明场、荧光、相差等观察方式由于地衣对空气质量非常敏感,因此有“空气质量监测器”的称号,石蕊、松萝等品种的地衣还是传统中药和重要药物活性成分来源,目前国内很多资料对地衣的描述还停留在“地衣=1种真菌+1种藻类”的阶段,相关研究还有待中国学者继续深入。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制