肿瘤组织芯片

仪器信息网肿瘤组织芯片专题为您整合肿瘤组织芯片相关的最新文章,在肿瘤组织芯片专题,您不仅可以免费浏览肿瘤组织芯片的资讯, 同时您还可以浏览肿瘤组织芯片的相关资料、解决方案,参与社区肿瘤组织芯片话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

肿瘤组织芯片相关的资讯

  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 中南大学陈翔/陈泽宇/赵爽《Small》:Transwell集成化类器官芯片用于模拟肿瘤转移
    肿瘤异质性一直被认为是阻碍个体化诊疗进步的一大障碍。其中,肿瘤转移性与肿瘤异质性密切相关,是恶性肿瘤的一种常见并严重的表现,对患者的生存率和生活质量有着极大的影响。肿瘤类器官是源自肿瘤组织中肿瘤特异性干细胞通过三维组织培养形成的细胞簇,它可模拟体内肿瘤特征及肿瘤细胞异质性,该技术的应用为肿瘤研究和治疗提供了可靠的模型,特别是为个性化肿瘤诊疗开辟了新的方案。目前,在体外利用肿瘤类器官技术评估肿瘤转移性的方法仍然十分缺乏。传统的评估细胞迁移能力的方法包括Transwell、细胞划痕等,这些方法无法模拟原发性肿瘤转移的过程,因此无法有效评估肿瘤的转移性。器官芯片技术能够模拟人体器官的功能,通过将微型芯片和生物材料组合,可以更加准确地研究和测试药物的效果、了解疾病的有关机制以及开发个性化诊疗方法等。但目前用于研究肿瘤转移的器官芯片大多仍采用传统的肿瘤细胞系构建模型,由于传统的肿瘤细胞系与患者来源的肿瘤细胞存在较大差异,因此难以重建真实的肿瘤转移过程,使得现有方法无法满足临床上的应用需求。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院、重庆大学三峡医院等研究团队在《Small》(IF=13.3)期刊上在线发表题为“Mimicking Tumor Metastasis Using a Transwell-Integrated Organoids On-a-Chip Platform”的原创性论著。该研究提出了一种用于评估肿瘤转移性的肿瘤类器官芯片。该芯片可以模拟人体内肿瘤生长和转移的生理过程,能够有效评估患者肿瘤细胞的侵袭能力和生长能力,为研究肿瘤的转移性以及相应的肿瘤治疗和药物研究提供了重要的工具。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。21级硕士研究生陈迈科和20级博士研究生单晗为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员、中南大学机电工程学院陈泽宇教授、重庆大学三峡医院印明柱教授为该论文共同通讯作者。首先,作者阐述了肿瘤异质性的原理以及肿瘤转移的过程,并在传统评估细胞迁移能力方法的基础上,提出了Transwell集成的肿瘤类器官芯片精准评估肿瘤转移策略。 图1 Transwell集成的肿瘤类器官芯片用于评估肿瘤转移和药物筛选然后,作者使用高精度3D打印技术(摩方精密nanoArch® S140,精度:10μm)制作了芯片腔室的六边形支架,并使用激光切割技术制造了芯片主体,最终装配成了集成Transwell单元的仿生肿瘤类器官芯片。图2 仿生肿瘤类器官芯片制造作者进一步使用肿瘤类器官芯片评估了患者来源的粘膜黑色素瘤类器官和肢端黑色素瘤类器官的肿瘤转移能力。通过在类器官芯片内建立营养梯度,使外侧腔室中的营养物质浓度高于中心腔室,中心腔室的肿瘤类器官会逐渐转移到外侧的腔室中。观察发现,两种黑色素瘤类器官展现出了不同的肿瘤转移能力。图3 肿瘤类器官芯片评估肿瘤转移接着,作者分别从蛋白和基因层面研究了转移出的细胞团簇与中心腔室中未发生转移的肿瘤类器官团的差异性。结果表明,转移出的细胞团簇中与转移相关的蛋白和基因表达均显著高于未转移的类器官团。这有效说明肿瘤类器官芯片评估肿瘤转移的能力。图4 肿瘤类器官一致性评估和流式分析图5 肿瘤转移相比蛋白比较图6 肿瘤转移相比基因比较 最后,作者利用类器官芯片进行了药物筛选测试。通过在类器官芯片内添加不同浓度的抗肿瘤药物,发现肿瘤类器官的转移性有所区别。随着药物浓度的提高,肿瘤的转移得到了明显抑制。图7 肿瘤类器官芯片药物筛选与其他用于评估细胞迁移能力的方法相比,该工作提供的用于评估肿瘤转移性的肿瘤类器官芯片,集成了仿生的Transwell腔室,能够高效模拟肿瘤转移的过程。另外,所设计的用于评估肿瘤转移性的肿瘤类器官芯片,使用了患者来源的肿瘤类器官进行肿瘤转移性评估,能够真实地反映人体内肿瘤生长和转移的生理过程。该工作在肿瘤患者个体化诊疗、精准医学等临床研究中具有良好的应用前景。
  • 肿瘤负荷监测|naica® 微滴芯片数字PCR系统定量ctDNA中特异性SV监测肿瘤治疗反应和复发
    荷兰乌得勒支大学,荷兰鹿特丹伊拉斯谟癌症研究院,荷兰癌症研究院等科学家团队在《Genome Medicine》(2021年影响因子11.117)杂志上发表文章“Optimizing Nanopore sequencing-based detection of structural variants enables individualized circulating tumor DNA-based disease monitoring in cancer patients”,提供了一种即时的、高灵敏的个体化疾病监测解决方案,基于癌症基因组三代测序技术实现潜在SV标志物筛选,随后通过naica® 微滴芯片数字PCR系统绝对定量检测转移性前列腺癌患者血浆中ctDNA(循环肿瘤DNA)的SV标志物,并实现持续监测。通过实时监控SV的变化,来评价肿瘤治疗的动态反应。通过四个病例的特异性SV的数字PCR监测,表明SV动态变化与已有的肿瘤治疗反应标志物如PSA具相关性并能更早发现复发。应用亮点1.naica® 微滴芯片数字PCR系统能够用于血浆ctDNA中的特异性SV生物标志物的检测。2. naica® 微滴芯片数字PCR系统三色荧光通道同时检测SV结构变异,上游野生型和下游野生型三个靶标位点。3.naica® 微滴芯片数字PCR绝对定量患者SV标志物,适用于肿瘤治疗反应监测,更早提示复发。三通道数字PCR绝对定量检测血浆cfDNA中肿瘤特异性SV实验设计A、血浆cfDNA中肿瘤特异性SV的数字PCR绝对定量检测路线。B、三通道数字PCR的引物和探针设计检测。野生型上游和野生型下游等位基因与变异等位基因。设计了三个标记不同荧光染料的探针,特异性检测变异等位基因或野生型上游和下游等位基因。循环肿瘤DNA循环肿瘤DNA(ctDNA):肿瘤细胞释放入血的游离DNA(cfDNA),大小约为160-180 bp。与正常的游离DNA(cfDNA)相比,ctDNA的不同之处在于携带肿瘤特异性的遗传学改变(SNV,CNV,Indel,SV),约占0.1-1%,ctDNA已被证明与肿瘤负荷呈正线性相关性。有多例病例报道,ctDNA在临床症状出现前几个月发现癌症复发,通过ctDNA的液体活检,有望监控肿瘤负荷,确定疗效和耐药性,检测微小残留病,并了解肿瘤异质性和克隆进化。结果与结论利用naica® 微滴芯片数字PCR系统进行4例前列腺癌患者两个时间点,即基线期和进展期时,血浆cfDNA中两个肿瘤特异性结构变异位点SV-A和SV-B的检测,VAF变异等位基因频率如图C,每mL血浆中变异等位基因拷贝数如图D。C、显示四例前列腺癌患者血浆ctDNA中SV-A和SV-B的VAF变异等位基因频率。D、显示四例前列腺癌患者每毫升血浆中SV-A和SV-B变异等位基因拷贝数。监测4名前列腺癌患者的血浆ctDNA中特异性SV变异水平,每个患者有两个SV,并与PSA和ALP等临床生物标志物进行比较。患者Pros1和Pros5的SV-A和SV-B的VAF监测结果显示与肿瘤负荷相关,患者Pros1和Pros4比PSA更早地提示疾病的进展。下图为患者Pros1血浆ctDNA中的SV持续监测结果。E、患者Pros1两种SV的VAF、治疗、实验室指标(前列腺特异性膜抗原(PSA)、碱性磷酸酶(ALP))和临床疾病进展(PD)。* Cabazitaxel:卡巴他赛,是一种紫杉烷类化疗药物,主要用于治疗激素难治性转移性前列腺癌。展望作者在文中表明:临床医生非常清楚癌症治疗方案动态监测的重要性,但缺乏即时监测肿瘤治疗反应的有效工具,因此尽管医生能够及时发现了病情变化并做出反应,但却为时已晚。本文提出了一种克服这些限制因素的新方法,并为即时个性化疾病监测提供解决方案。每个患者持续监测了两个SV,结果表明使用SV量化ctDNA以监测治疗反应具备潜在临床效用。这种方法可以提高疾病监测的敏感性,使其满足更智能治疗方法的要求。更多详情查看原文:DOI:10.1186/s13073-021-00899-7法国Stilla Technologies公司naica® 微滴芯片数字PCR系统,六色荧光通道,少量样本中获得更多生物信息,了解详情请点击:https://mp.weixin.qq.com/s/rVt1F50ILi3wFY9FdndyBwGenome Medicine影响因子:影响因子查询网址:https://www.iikx.com/sci/biology/18358.html

肿瘤组织芯片相关的方案

肿瘤组织芯片相关的论坛

  • 深入了解组织芯片:制作与应用指南

    [font=宋体][font=宋体]组织芯片[/font][font=Calibri](tissue chip)[/font][font=宋体],也称组织微阵列[/font][font=Calibri](tissue microarrays)[/font][font=宋体],是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载体(使用载玻片最多)上,进行同一指标的原位组织学研究。该技术自[/font][font=Calibri]1998[/font][font=宋体]年问世以来,以其大规模、高通量、标准化等优点得到大范围的推广应用。其最大优势在于,芯片上的组织样本实验条件完全一致。节省时间、节省试剂更是显而易见的。[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri]TMA[/font][font=宋体]构建原理可以概括为以下四个步骤:[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]选取待研究的组织。人们利用组织芯片技术对人体各组织均有研究,包括肝脏,前列腺,心脏,乳房等等,据相关数据显示,在大脑组织中的应用最多。医学上常选取一些病变器官进行研究。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]经检测后标记出待研究的区域。组织微阵列的检测仪主要是高性能显微镜、荧光显微镜或共聚焦荧光显微镜。适用的检测技术有苏木精—[/font][font=Calibri]HE[/font][font=宋体]染色,免疫组织化学[/font][font=Calibri](IHC)[/font][font=宋体]染色,原位杂交[/font][font=Calibri](ISH)[/font][font=宋体],荧光原位杂交([/font][font=Calibri]FISH[/font][font=宋体]),原位[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体],寡核苷酸启动的原位[/font][font=Calibri]DNA[/font][font=宋体]合成([/font][font=Calibri]PRINS[/font][font=宋体])等。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]使用组织芯片点样仪将标记好的组织按设计排列在空白蜡块模上。首先要利用打孔机在已经标记好的靶位点上进行打孔,将组织芯转入蜡块模孔中,重复操作可转入上千个样品组织芯。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]使用切片机对阵列蜡块进行连续切片即获得组织芯片。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。后者可以克服上述前者的多种缺陷(含醛基的化合物)可能损伤[/font][font=Calibri]RNA[/font][font=宋体]或使目标抗原结构断裂或破坏抗原——抗体结合位点,另外,石蜡包埋乙醇固定过的组织也无法避免[/font][font=Calibri]RNA[/font][font=宋体]降解。[/font][/font][font=宋体] [/font][font=宋体]组织芯片的出现,与基因芯片配合使用在寻找疾病基因中有很好的互补作用。在肿瘤研究中发挥着重要作用。将基因芯片筛选出的基因作成探针,再将探针与组织芯片中众多的肿瘤组织进行荧光原位杂交,寻找肿瘤发生发展的相关因素。[/font][font=宋体] [/font][font=宋体][b]组织芯片应用:[/b][/font][font=宋体] [/font][font=宋体][font=宋体]组织芯片的应用范围十分广泛,涉及到生命科学的基础研究、临床研究、应用研究以及新药开发等多个领域。它可以应用于多种染色技术,如[/font][font=Calibri]HE[/font][font=宋体]染色、免疫组织化学染色、原位杂交、荧光原位杂交、原位[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]、原位[/font][font=Calibri]RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]以及寡核苷酸启动的原位[/font][font=Calibri]DNA[/font][font=宋体]合成等。此外,组织芯片还可以与核酸、蛋白质、细胞、组织、微生物等相关技术相结合,分别在基因、转录和表达产物的生物学功能这三个水平上进行深入研究。随着组织芯片的广泛应用,现代医药学、基因组学和蛋白组学的研究将得到极大的推动和发展。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/services/tissue-tma-array-service][b]石蜡组织芯片定制服务[/b][/url],更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/tissue-tma-array-service[/font][/font][font=Calibri] [/font]

  • 大橡科技:国内首个类器官芯片数据助力实体瘤CAR-T药物临床许可

    近年来,细胞免疫疗法逐步成为治疗肿瘤的热点,其中CAR-T细胞药物不仅在血液肿瘤的治疗中大显身手,同时在实体瘤的治疗也逐渐崭露头角,蕴含巨大潜力。在细胞治疗药物的非临床研究阶段,由于存在种属差异、免疫缺陷等问题,传统动物模型很难准确评估细胞治疗药物在病人体内的真实药效。2021年,CDE发布《基因修饰细胞治疗产品非临床研究技术指导原则》,提出“当缺少相关动物模型时,可采用基于细胞和组织的模型(如二维或三维组织模型、类器官和微流体模型等)为有效性和安全性的评估提供有用的补充信息”。人源化、高仿生、标准化的类器官芯片模型已成为细胞治疗药物评价及转化医学研究的关键技术平台。据大橡科技表示,2023年06月28日,北京艺妙神州自研的新一代抗肿瘤药物IM83嵌合抗原受体T细胞注射液(IM83 CAR-T细胞注射液,简称“IM83”),获得国家药品监督管理局的药物临床试验许可,用于治疗晚期肝癌。作为艺妙神州的战略合作伙伴,大橡科技提供了基于肿瘤芯片模型的CAR-T药效评价服务,快速准确筛选出有效候选CAR-T药物,相关数据纳入IND申报数据包。至此[color=#c00000][b],IM83成为国内首个使用类器官芯片数据获批IND的细胞基因治疗(CGT)药物。[/b][/color][align=center][img=图片]https://img1.17img.cn/17img/images/202402/uepic/19f06f94-b496-44d9-88d2-f0ec551c921a.jpg[/img][/align]北京大橡科技有限公司(Beijing Daxiang Biotech Co., Ltd)是中国领先的研发和生产人体类器官和器官芯片的高科技公司,致力于推动和引领类器官和器官芯片在新药研发、疾病建模和个体化精准医疗等领域的广泛应用。大橡科技的器官芯片结合了“类器官”和传统“器官芯片”两种生命科学和工程学领域前沿技术,具有高通量、高仿生、标准化和可控的优势。基于自主研发的器官芯片目前已成功构建出数十种不同肿瘤、肝、肺、肾、肠、脑等各类人体生理及病理模型,并应用于国内外药企的管线开发中。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 生物芯片入门:生物芯片及应用简介

    一、简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因组计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。二、应用领域1、基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。2、基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3、药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。4、个体化医疗临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3~12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。5、测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。据未经证实的报道,近年有一种不成熟的生物芯片在15分钟内完成了1.6万个碱基对的测定,96个这样的生物芯片的平行工作,就相当于每天1.47亿个碱基对的分析能力!

肿瘤组织芯片相关的资料

肿瘤组织芯片相关的仪器

  • 类器官芯片——肿瘤患者的试药替身 对于传统体外细胞培养(2D&3D)而言,细胞处于静止环境,加入药物后只由细胞单独承受药物带来的影响,无法再现体内血液流动和不同器官、组织和细胞间的复杂微环境,因此难以模拟器官间代谢物、激素以及免疫调节剂等化学物质的交换;对于动物模型而言,种属差异会带来细胞、遗传、免疫水平以及药代动力学等方面的巨大差异。因此,利用动物模型难以推断人体对药物吸收的真实反应。也正是由于动物实验的局限性,人们需要一种更加可控、可预测的实验方法,由此推动了类器官芯片技术的发展。因此,开发可靠和具有临床预测性的临床前模型对于筛选各类药物及免疫治liao方法至关重要。由于人体不同的器官、组织有着不同的血流速度,且流体剪切力会显著影响细胞的行为,为了更好的模拟人体内的血供环境,意大利React4life公司提出了一种将类器官芯片与仿生灌流技术相结合的技术,可以在仿生流体动力学条件下构建血管化的组织结构,创建具备流体动力学属性和临床相关性的人源化疾病模型。该系统旨在部分代替动物、人类进行药物测试,在临床前开发阶段测试药物对靶器官的毒性和药效,帮助在实验早期筛选更具前景的候选药物,为临床试验提供可靠的参考,助力药物研发提速。应用领域:疾病模型构建:癌症、肺、血脑屏障、肿瘤转移、细胞迁移肿瘤免疫学:免疫、肿瘤细胞互作药物评价:毒理、药效、吸收3D组织培养:再生医学、组织工程、干细胞产品优势:l 动态灌流体系:使体外药物测试结果更具临床预测性l 3D组织/患者活组织切片:提供更个性化的精准医疗l 多器官联动:评价出更具安全性的药物l 高通量:更快的药物测试l 易取样:细胞/培养基可从上、下层腔室轻松实现取样,并用于下游分子生物学分析l 光学等级透光材质:可在显微镜下直接观察
    留言咨询
  • 国产手动式组织芯片仪GYXW-TMA推入市场!组织微阵列芯片可以高通量、快速分析多样本组织微阵列芯片具有的并行化—样本的可比性强、准确性高;同时实验条件保持一致,便于设置各种实验对照,实验误差小;大量缩减研究费用。可以节省时间,节省染色试剂消耗,更可以减少实验操作上所造成的误差 (因所有检体在同一玻片上) ,以及更有效率的使用得来不易的检体。而要制作一块好的组织微数组蜡块,一组操作简易,容易上手的制作工具一定是不可或缺的。高品质材料耐腐蚀、 钻头丰富市面全,组织取样金标准。专业的服务!优良的品质! 长质保!技术参数:1.芯片仪可以满足组织芯片实验,也可以满足提取一般石蜡组织肉柱进行质控取样;2. 芯片仪采用一体式设计,长度为16厘米,重量仅150克,不限空间进行组织芯片使用;3.组织工具钻头更换简易,快捷;4.设备可供选择的钻头有1毫米/1.5毫米/2毫米/3毫米/5毫米,满足各种组织芯片制作尺寸的需要;5.搭配销售预制受体蜡块使用,组织可以直接提取后注入;6. 可以使用预制受体蜡块规格为5毫米,3毫米,2毫米,1.5毫米及1毫米,也可以使用可选择模具制作;7.操作组织芯片的取样高度可自行调节;8. 设备内的取样钻头在非人为损坏的情况下,出现损耗,免费给予更换。TMA 相关应用领域肿瘤基因、转录和表达产物研究肿瘤疾病不同发展阶段各基因与基因表达的动态变化肿瘤疾病相关基因的验证 ,肿瘤分子诊断肿瘤治疗靶点的定位抗体和新药物的开发与筛选肿瘤治疗过程的追踪和预后检查应用 TMA 的研究方法, 包括HE 染色免疫组织化学(IHC)染色原位杂交(ISH)/ 荧光原位杂交(FISH)原位( in-situ ) PCR, RT-PCR寡核苷酸启动的原位 DNA 合成(PRINS)
    留言咨询
  • 组织芯片-手动组织芯片仪器行业标准组织微阵列芯片可以高通量、快速分析多样本组织微阵列芯片具有的并行化—样本的可比性强、准确性高;同时实验条件保持一致,便于设置各种实验对照,实验误差小;大量缩减研究费用。可以节省时间,节省染色试剂消耗,更可以减少实验操作上所造成的误差 (因所有检体在同一玻片上) ,以及更有效率的使用得来不易的检体。而要制作一块好的组织微数组蜡块,一组操作简易,容易上手的制作工具一定是不可或缺的。病理实验室的标准组织芯片制备仪UNITMA Quick-ray (UT-06)手动式组织芯片制备仪, 具备特制钻头与预铸腊块, 是制作 TMA 的关键, 也是使用效益与制片成功率的保证 ! 是病理实验室的标准组织芯片制备仪 特制钻头坚固耐用的钻头 (puncher) , 确保长久使用,节省使用成本. 有别于其他厂商的钻头, 容易损坏, 容易破坏珍贵的组织。具有五种不同钻头,1 mm, 1.5 mm, 2.0 mm, 3.0 mm, 5.0 mm. 使用者可依样本大小取样的需求自行做更换. 无论取样或打样,能确保组织肉柱型态的成功率, 提高制片的效率.使用简易快速, 成本低预制受体蜡块(Recipient Block) UniTMA 的预制受体蜡块组织芯片核心蜡块 !UNITMA 预制蜡块 ( Quick-Ray Recipient Block ) 能维持在70℃温度下40- 60 分钟, 慢慢融化的特性能让蜡 100% 完全渗入组织,同时能让组织维持在固定位置整齐排列着. 加上取样打样的钻头锋利设计. 不会有类似其他传统方法产生的缺失, 气泡, 破损, 裂解, 折点, 组织分布不均 .. 等等问题.一般白腊只能进行过表面处理加热,只做到一部分的表面平整, 会在蜡块内部产生许多空气泡, 因此, 在大概切片30~50片后,就必须要重新做表面平整,会浪费相当多的供体组织, 至少超过50% 的损耗.传统上, 完成的受体蜡块, 在融解过程, 使用40度C, 加热超过5分钟后, 或者是温度高过40度C, 就会产生肉柱倒塌的问题. 自己做的白腊块内一定会有气泡且无法排除(除非加热时间够久,但是会出现前面的问题. 造成供体损失或者肉柱型态破损..订购组配 :Quick-Ray UT-06 手动式组织芯片制备仪, 每套包含一个 手动式组织取样器 ( puncher )五个不同尺寸的钻头 (1.0, 1.5, 2.0, 3.0, 5.0 mm )五个相对应钻头尺寸的预铸蜡块.一个 1mm 专用辅助导引盘可指定购买特定钻头尺寸及数量.TMA 相关应用领域肿瘤基因、转录和表达产物研究肿瘤疾病不同发展阶段各基因与基因表达的动态变化肿瘤疾病相关基因的验证 ,肿瘤分子诊断肿瘤治疗靶点的定位抗体和新药物的开发与筛选肿瘤治疗过程的追踪和预后检查应用 TMA 的研究方法, 包括HE 染色免疫组织化学(IHC)染色原位杂交(ISH)/ 荧光原位杂交(FISH)原位( in-situ ) PCR, RT-PCR寡核苷酸启动的原位 DNA 合成(PRINS)
    留言咨询

肿瘤组织芯片相关的耗材

  • 石蜡组织芯片制作模具
    组织芯片Tissue microarrays (TMAs)已经是癌症研究和新药研发的重要工具之一。目前用到的技术包括组合、打芯、装芯,都是非常耗时且需要配套昂贵的仪器。组织芯片制作模具是一款简单的手动工具,可以满足实验室快又好地制作出TMAs。利用蜡块制作模具Arraymold,可以在短时间内将60个样本安排在一个小小的载玻片上,这仅仅需要小量的实战训练。 套
  • 石蜡组织芯片手动制作工具盒Quick-Ray
    将多达150个组织块排列在一个小小的玻片大小的蜡块内,这就是组织芯片( tissue microarray ) ,与基因芯片,蛋白质芯片和细胞芯片等一样,是一种新型的高通量、快速分析多样本的研究工具。组织芯片上的样本的可比性强、准确性高,可以节省时间,节省染色试剂消耗,更可以减少实验操作上所造成的误差 (因所有检体在同一玻片上) ,以及更有效率的使用得来不易的检体。而要制作一块好的组织芯片蜡块,操作简易、容易上手的制作工具一定是不可或缺的。还是先来亮亮Quick-Ray Manual Tissue Microarrayer Set这组制作工具的使用流程,给大家更多感性的认识。1.在显微镜下标记好你要取的组织部位2.用Quick-Ray取样器取出组织柱,放入预铸蜡块recipient block3.将带有微芯的蜡块放入不锈钢底模base mold,注意方向:切面朝下.置入70度烤箱30-60分钟,待蜡块完全透明,取出4. 组织包埋盒至于蜡块上方,继续注蜡至盒底部完全浸入为宜.放置冷却.5. 置于切片机上切片Quick-Ray set套装包含的主要部件:one puncher一个取样器(带头)4 different sized tips四个单独头corresponding 5 recipient blocks五个预铸蜡块a base mold一个底模a guide for 1mm recipient block.一个预铸蜡块芯柱(1mm的)导入装置取样器独特的钻头设计,特殊不锈钢材质,刀锋锋利无比,长时间使用,仍保持锋利,这样确保取样与打点都非常精准,不会破坏组织.预铸蜡块 ( Quick-Ray Recipient Block ) 能维持在70℃温度下30- 60 分钟,慢慢融化的特性能让蜡 100% 完全渗入组织,同时能让组织维持在固定位置整齐排列着. 加上取样打样的钻头锋利设计. 不会有类似其他传统方法产生的缺失, 气泡, 破损, 裂解, 折点, 组织分布不均. (1mm x 120 wells, 1.5mm x 90 wells, 2mm x 60 wells, 3mm x 30 wells, 5mm x 20 wells).打算自制蜡块的需要蜡块制作模具,参见我公司模具(货号69130系列产品). 制作出的样子见下图:订购信息:货号产品描述规格62595-01Tissue-Tek? Quick-Ray? System盒62595-02Punch Guide, 1 mm个62595-03Quick-Ray? Punch Tip 1 mm个62595-04Quick-Ray? Punch Tip 2 mm个62595-05Quick-Ray? Punch Tip 3 mm个62595-06Quick-Ray? Punch Tip 5 mm个62595-07Quick-Ray? Recipient Block 1 mm个62595-08Quick-Ray? Recipient Block 2 mm个62595-09Quick-Ray? Recipient Block 3 mm个62595-10Quick-Ray? Recipient Block 5 mm个62595-11Quick-Ray? Basemold个 价格仅供参考,欢迎登陆海德公司网站或来电获取详细信息。
  • 瑞沃德人肿瘤组织温和酶解试剂盒
    瑞沃德人肿瘤组织温和酶解试剂盒优化酶解配方,高效、温和酶解人肿瘤组织,保护表面抗原表位的完整性数据支持各类人肿瘤样本活率检测使用瑞沃德小鼠通用组织温和酶解试剂盒、单细胞悬液制备仪、组织处理管,配合标准化程序获取单细胞悬液。检测结果显示总体细胞存活率通常90%。肿瘤组织细胞流式分析使用瑞沃德人肿瘤组织温和酶解试剂盒、单细胞悬液制备仪、组织处理管,配合标准化程序,通过表面标志物及流式细胞仪检测获得细胞悬液的细胞类群与表面抗原的保留情况。为提高数据可靠性,对结肠癌组织、黑色素瘤组织、肺癌组织、乳腺癌组织等多种人肿瘤组织进行检测,流式分析结果显示该试剂盒能通过表面标志物CD24、CD44、CD90、CD133,分离出对应肿瘤细胞亚群,保障细胞表面抗原标志物的保留。

肿瘤组织芯片相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制