当前位置: 仪器信息网 > 行业主题 > >

电化学装置

仪器信息网电化学装置专题为您提供2024年最新电化学装置价格报价、厂家品牌的相关信息, 包括电化学装置参数、型号等,不管是国产,还是进口品牌的电化学装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学装置相关的耗材配件、试剂标物,还有电化学装置相关的最新资讯、资料,以及电化学装置相关的解决方案。

电化学装置相关的论坛

  • 【原创】基于51单片机的简单电化学功能的实现装置

    【原创】基于51单片机的简单电化学功能的实现装置

    该装置可用于指定电位下对电化学反应产生的电流的测量,对于一定的传感器电极,可实现对待测物的测定。适合与两电极体系的丝网印刷电极配合使用。欢迎有兴趣的朋友交流。[img]http://ng1.17img.cn/bbsfiles/images/2008/10/200810042250_110981_1618618_3.jpg[/img]下图以一定值电阻代替电极进行测试[img]http://ng1.17img.cn/bbsfiles/images/2008/10/200810042256_110982_1618618_3.jpg[/img]

  • [讨论]请教诸位高手,有否搭建电化学抛光装置的经验?

    本人想搭建一简易的电化学抛光装置,类似高中化学中接触到的电解池,只是我们现在需要关注的是:阳极工件材料,阴极工具材料,极板面积,极间间隙,电解液配方,电压,电流等参数,用于电解抛光的场合。 请有志同道合的朋友,加我Q:75312805,进一步地探讨!

  • TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    [size=16px][color=#339999]摘要:电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/color][/size][align=center][size=16px][img=电化学热电池性能测试中的TEC半导体制冷片温度控制解决方案,600,379]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171026207841_631_3221506_3.jpg!w690x436.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 温差发电在固体材料与半导体材料的发展上均比较成熟,而近年出现了一种新型的电化学热电池(electrochemical thermcells)拥有更高的塞贝克系数,同时成本较低、能够适应复杂热源表面,因而具有一定的应用前景,成为当前研究的热点方向之一。如图1所示,这种电化学热电池的基本原理是利用电化学体系中的赛贝克效应,将冷热电极之间的温差直接转化为电势差而产生发电效果,因此温差环境是使用和测试评价电化学电池的必要条件。[/size][align=center][size=16px][color=#339999][b][img=01.电化学热电池原理图,450,396]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027053355_4631_3221506_3.jpg!w690x608.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 电化学热电池基本原理[/b][/color][/size][/align][size=16px] 电化学热电池中的电解质、材料和电极受温度的影响,以及整个热电池的相关性能测试评价,对测试过程中的温差形成有十分复杂的要求,具体内容如下:[/size][size=16px] (1)热电池的两个冷热端电极要处于不同温度以形成温差,两个电极温度要具有一定的变化范围以便在不同电极温度和不同温差条件下测试评价热电池的各种性能。[/size][size=16px] (2)对于冷端温度,可采用TEC半导体制冷片进行调节和控制,但热端温度普遍较高,采用制冷片无法实现高温加热,需采用电阻等加热。[/size][size=16px] (3)在热电池性能测试过程中,需要在冷热电极处实现台阶式或周期交变式可编程温度变化。这样一方面是能够测试不同电极温度和不同温差下的热电池性能,得到热电池最佳工作状态时的温度和温差条件,另一方面是测试考核热电池的疲劳衰减特性。[/size][size=16px] (4)新型的电化学热电池往往很薄,如各种可穿戴电子产品用热电池。在实际应用中,这类薄片或薄膜状热电池上形成的温差很小,这就要求热电池性能测量装置需要具备在冷热电极之间提供小温差的能力。[/size][size=16px] 根据上述要求可以看出,一旦电化学热电池形状确定,热电池性能测试装置的结构也基本确定,而测试装置中温度控制的关键是确定合理的加热方式和温控仪表。[/size][size=16px] 对于加热形式,采用电阻加热和TEC半导体制冷片两种形式,可满足绝大多数电化学热电池在任意温度和温差范围内的测试需要,对于温度不高的测试,可仅使用TEC半导体制冷片进行温度控制。电阻加热用于热电极处的高温加热,温度范围为50~150℃以上。TEC半导体制冷片加热用于冷电极处的低温加热和冷却,温度范围为-10~60℃。[/size][size=16px] 对于温控仪表,满足上述温度控制要求的控温仪表需具备以下功能:[/size][size=16px] (1)可对电阻加热和TEC半导体制冷片分别进行控制。[/size][size=16px] (2)可编程控制功能,可控制温度按照编程设定的温度折线进行变化。[/size][size=16px] (3)交变温度控制功能,可控制温度按照设定周期和幅度进行交替变化。[/size][size=16px] (4)带PID自整定功能,避免繁琐的人工调整PID参数,并可存储和调用多组PID参数。[/size][size=16px] (5)测量和控温精度高,特别是要满足薄膜热电池的温差控制,控温精度要达到0.01℃。[/size][size=16px] (6)带通讯功能可与上位机连接,由上位机进行设置、编程、控制运行、显示和存储。[/size][size=16px] (7)带计算机软件,无需编程,可通过计算机进行设置、编程、控制运行、显示和存储。[/size][size=16px] 从上述功能要求中可以看出,电化学热电池性能测试中对温度和温差形成的要求很高,特别是要求温控仪表具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能,而这些很多都是目前电化学热电池性能测试用控温仪无法具备的功能。为此,本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案设计的温控系统典型结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.电化学热电池性能测试温控系统结构示意图,690,343]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027488618_9875_3221506_3.jpg!w690x343.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 电化学热电池性能测试温控系统结构示意图[/b][/color][/size][/align][size=16px] 图2所示的解决方案示意图包含了电化学热电池性能测量装置和温度控制系统两部分。其中的电化学热电池测量装置示出的是对块状、板状或薄膜状热电池的测试结构,电极分别贴服在热电池的顶部和底部,顶部的阴极电极处通过TEC半导体制冷片进行低温控制形成冷电极,底部的阳极电极处通过电阻加热方式(电热膜和电热块)进行高温控制形成热电极,由此在热电池上下两端形成所需温差。需要说明的是,解决方案在冷电极处选择TEC半导体制冷片的主要目的是为了实现高精度的温度控制,这在测试评价薄膜式可穿戴用热电池中实现高精度小温差时非常重要。在热电极出选择电阻加热方式主要是为了满足更高温度的大温差测试需要。[/size][size=16px] 由于半导体制冷片和电阻加热是两种完全不同的发热制冷原理,它们的温度控制方式也完全不同,因此图2所示解决方案设计了两个独立的温控回路,两个温控回路采用的是相同的超高精度PID控制器VPC2021-1。选择使用VPC202-1这种PID控制器,是出于多功能和超高精度的考虑,此控制器可以满足前面所述的对温度控制器的所有要求。[/size][size=16px] 在TEC半导体制冷片温控回路中,使用了VPC2021双向控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动双向电源对TEC制冷片进行加热或制冷控制,由此实现高精度的温度控制。[/size][size=16px] 在电阻加热温控回路中,使用了VPC2021基本的温度控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动固态继电器进行加热,由此实现高精度的温度控制。这里需要注意的是,如果要在电阻加热中实现较高精度的温度控制,除了采用高精度的温度传感器(如铂电阻或热敏电阻)之外,还需要与相应的冷源配合以减小热惯性,如在电阻发热体下面配备冷却装置以便能够形成快速散热。如果是测量薄膜热电池,则无需这些考虑,只需在电阻发热体下面增加绝热层即可,因为热电池和电阻加热膜厚度很小,热惯性自然也小,冷电极的低温可以对热电极进行快速散热,有利于热电极处的温度高精度控制。[/size][size=16px] 为了实现热电池的温度交变试验,解决方案采用了VPC2021控制器的高级功能:远程设定点功能,即在辅助输入通道上接入外部信号发生器以生成各种周期性波形信号作为交变设定值,由此可控制热电极温度按照此设定波形进行周期性变化,从而形成交变温差。如图2所示,此远程设定点功能的选择可以通过一个外置开关进行选择,实现正常控温和交变控温之间的切换。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以满足绝大多数电化学热电池性能测试中的温差环境控制需要,为测试评价热电池性能和优化使用条件提供了便利的试验和考核手段。[/size][size=16px] 更重要的是高精度PID控制器配备了相应的计算机软件,采用了具有标准MODBUS通讯协议的RS485接口,与计算机一起可以组成独立的测控系统,通过计算机可方便的对PID控制器进行远程操控,设置控制器的各种参数,采集、存储和曲线形式显示PID控制器的过程参数,无需再进行任何编程即可进行测试试验,非常适应于实验室研究试验。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现多种物理量和波形的准确控制,更可连接上位机直接与中央控制器进行集成,与整个设备形成很好的配套。[/size][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】电化学工作站的原理和应用

    【原创】电化学工作站的原理和应用

    电化学工作站的本质是用于控制和监测电化学池电流和电位以及其它电化学参数变化的仪器装置。 电化学池:原电池(Galvanic Cell): 化学能 →  电能电解池(Electrolytic Cell):电能 → 化学能 一个简单的电分析化学实验系统: 组成:工作(研究)电极(W), 参比电极(R),辅助(对)电极 (C), 电解质溶液,恒电势(位)仪(potentiostat), PC计算机(接口+软件)。[img]http://ng1.17img.cn/bbsfiles/images/2008/10/200810081543_111599_1604910_3.jpg[/img]

  • 生物芯片之电化学生物传感器

    前面已经讲过生物芯片是生物传感器的延伸,所以生物传感器的研究就是生物芯片的研究基础中的重要部分了!下面对电化学生物传感器方面的研究进行简单的介绍。须指出的是,生物芯片中用到的生物传感器与传统的电化学传感器有一些不同,但这并不妨碍我们将传统电化学传感器的认识应用到生物芯片的研究中去。电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 电化学已死,有事烧纸?

    电化学已死,有事烧纸?

    ——电化学论坛冷清所想起的很荣幸出任电化学版主。初来乍到,有请各位坛友理解、支持!不到之处多多谅解,敬请多多指教!初来,为论坛的冷清而扼腕;为“benny8254”版主和“离子分析”、“小五”专家的坚持和敬业所折服;为诸多坛友的到访而感欣喜。电化学可以说是一门相对比较古老的学科,但电化学已经过时了吗?电化学的发展已经圆满、停滞了吗?电化学没有发展空间了吗?衡量一门学科的发展状况,可以找到一个指标部分说明其发展状况:相关论文发表数量。CNKI中国知网是中国最大的学术论文平台。其中数据可说明一定问题。以“电化学”、“电化学腐蚀”、“电化学发光”……等十一个主题词为文章全文检索关键词,检索可得到近10年(2003-2012)论文发表数量的统计结果(见图1-12):http://ng1.17img.cn/bbsfiles/images/2013/05/201305221318_441034_1782539_3.jpg图1 检索关键词“电化学”

  • 【分享】电化学“十一五”学科发展规划

    在未来的5-10年内应重点围绕如下科学问题创造性地开展工作: 一 移动式电源和再生式能源是当今能源发展中的重要方面 1.高性能储氢/制氢和储锂新体系以及聚合物电解质中氢离子和锂离子的传输机理2.直接型燃料电池新体系和生物燃料电池;3.用轻元素及其化合物组成储/产氢材料及可充电多电子过渡金属化合物电极; 4.超级电容器和氧化还原液流电池等特殊电化学储电装置; 5.质子膜燃料电池的成流机理和衰退机理和新型质子膜材料;6.(公交)车用动力电池的衰退机理和循环及再生回收; 7.基于光电化学原理的新光伏电池体系和电池运行新型机制。 二 发展各类材料(特别是绿色化材料)的电化学制备新方法对持续发展具有重要意义 1.电化学方法制备新型环境友好和生物医用材料; 2.新型低能耗的电化学制备材料方法; 3.基于电化学原理的新型微米/纳米加工方法; 4.基于离子液体体系的电化学新方法等;5.材料保护、防腐、循环使用(包括材料表面处理)的电化学新方法。 三 基于生命体系中广泛存在(电解质)水和各类电荷传输的特点,电化学在生命领域所扮演的重要角色将日益凸现 1. 生物膜与仿生界面的电荷传输、物质传输与能量转换以及生物膜内源性电场的实验和理论; 2. 生命活动过程中的电生理现象(肌肉、神经、脑等等)的电化学机制探索; 3. 研究生物大分子的电子传递机制及分子间弱相互作用的(谱学)电化学方法; 4. 对细胞各种行为的影响和控制的电化学方法; 5. 生命活动过程电活性粒子(物质)的定向有序专一的传递、传导或转移。 四 电化学在信息和环境领域中的最大挑战是在微芯片、微传感器和微系统制造方面的研究工作 1.芯片、微传感器和微系统制造过程中的电化学技术和理论 2.结合微系统技术制备微电解池和微电池体系以及组合电化学体系; 3.基于微系统技术的电化学传感器微型化和集成化;4.超分子化学、自组装、分子印迹和分子遗传学等在电化学传感器的应用; 5.电化学法制备纳米器件或分子器件的探索。 五 电化学在以上学科交叉领域中所面临的挑战也对于电化学自身发展和解决本学科重大问题带来难得机遇 1.复杂电化学相界(如三相界、固-固、膜-液、液-液等)的结构、性质与过程; 2.微米/纳米尺度上的复杂(限域)电化学体系和相关过程的实验和理论方法; 3.复杂体系(凝聚相、膜、超微孔、凝胶)中的离子/电子输运过程的理论与实验; 4.电化学方法与现代物理表征技术和生物技术相结合的实验与理论等。

  • 【转帖】超声波在电化学中的应用

    电化学是从研究电能与化学能的相互转换开始形成的。随着科学技术的发展,特别是能源、计算机、新材料和生物技术的发展,电化学学科获得了进一步的发展与提高[1]。电化学是一门重要的边沿科学,与其它学科如电子学、固体物理学、生物学等学科有密切的联系,出现了电分析化学、催化电化学、量子电化学、半导体电化学、腐蚀电化学、生物电化学等分支。   超声波是指频率范围在20~106kHz的机械波,波速一般约为1500m/s,波长为10~0.01cm。超声波化学又称声化学,主要是指利用超声能量加速和控制化学反应,提高反应产率和引发新的化学反应,是声学与化学相互交叉渗透而发展起来的一门新兴的边缘学科,是声学和化学的前沿学科之一。超声化学的主要研究领域包括超声电化学、超声合成化学和超声高聚物化学等。   超声电化学将超声辐照与电化学方法相结合,兼有两者的优点。它可以通过控制电流的大小、反应温度的高低、超声功率的强弱等各种参数达到控制纳米材料的尺寸和形状的目的。最近以来,科学家发现超声电化学是一种高效的合成纳米材料的新方法,已合成Zn、Cu、Cu-Zn、Ni-Fe等金属及合金纳米粒子。Reisse和他的合作者在1995年首次用超声电化学的技术制备了金属超细粒子,用这种技术他们也合成了MnO2和CdTe。Gedanken课题组用这种方法合成了MoS2纳米材料。朱俊杰等制备了Pb-Se和各种形态的银纳米粒子(包括球形、棒状、枝晶、纳米线)。Mastai等用脉冲电化学法合成CdSe纳米粒子。这种方法可有效地控制材料尺寸和形状、加速传质、提高反应速率、清洁电极表面。由于该方法简单、快速、无污染,已成为合成纳米材料的一种有效手段。近年来,超声波诱导电化学反应研究发展很快,已成为超声化学和电化学的前沿研究领域之一。1    超声波作用原理   超声波的波长远大于分子尺寸,它不能直接对分子起作用,而是通过周围环境的物理作用转而影响分子,所以超声波的作用与其作用的环境密切相关。超声波是由一系列疏密相间的纵波构成的,并通过液体介质向四周传播。超声波在介质中传播时的平均声功率可以由下式计算:   W=1/2ρCV2S=1/2PAV0S式中:W是声波在介质中传播时的平均声功率,w ρ是介质的密度,kg/m3 C是声波在介质中的传播速度,m/s V是介质质点的振动速度,m/s S是垂直于声波传播方向的介质面积,m2 PA是交变声压幅值,Pa V0是介质的体积,m3。由此式可知,超声波具有比普通声波强大得多的功率,这就是超声波在众多领域中能够获得广泛应用的重要原因之一。超声波在液体介质中的巨大能量能使介质质点获得很大的加速度,还能引起空化作用。超声空化是指在声波作用下,存在于液体中的微小气泡(空穴)所发生的一系列动力学过程:振荡、扩大、收缩乃至崩溃。声空化过程是集中声场能量并迅速释放的过程。空化气泡的寿命约0.1μs,它在爆炸时可释放出巨大的能量,并产生速度约110m/s,具有强烈冲击力的微射流,使碰撞密度高达1.5kg/s。空化气泡在爆炸的瞬间产生约4000K和100Mpa的局部高温高压环境,冷却速度可达109K/s。超声波的空化作用和传统搅拌技术相比更容易实现介质均匀混合,消除局部浓度不均匀,提高反应速度,刺激新相的形成,对团聚体还可以起到剪切作用。超声空化是许多超声波应用的物理基础,特别是声化学反应的主动力。2    超声波作用类型     超声辐照作为一种辅助实验手段,大体可分为两种类型:直接超声和间接超声。两种类型装置各有优缺点。2.1    直接超声此类型反应器为探针系统,亦称为号角系统,也称变幅杆式声化学反应器。这种设备是将超声换能器驱动的变幅杆的发射端(也称探头),直接浸入反应液体中,使声能直接进入反应体系,而不必通过清洗槽的反应器壁进行传递。其优点是能够将大量的能量直接输送到反应介质,通过改变输送到换能器的幅度加以调制。其缺点是探针尖的侵蚀和凹陷,使反应溶液污染。2.2    间接超声  此类型反应器为超声浴槽,主要用于清洗反应器皿和电极等。经典的超声浴槽将换能器附接在浴底,也可将换能器浸在浴槽中。超声浴槽比较方便和廉价,广泛应用于超声化学研究中。与直接超声相比,使用间接超声到达反应器皿的超声功率相对较小。此外,由于到达反应介质的功率在很大程度上依赖于样品在浴槽中所放的位置,所以实验重现性差。使用浴槽体系的另一个缺点是反应器皿周围的流体的耦合使温度增加,使保持等温条件困难。3    超声波对电化学反应的影响   在应用电化学领域,超声波在电有机合成、电化学分析、有毒化合物的降解和废水处理等方面有着广泛的应用前景。一般认为,超声波对电化学反应的影响主要有以下几个方面:1)通过超声空化微射流形成对溶液的强烈搅拌作用,从而提高电极表面的传质速率 2)由于空化产生的瞬间高温高压而使反应物分解成活性较高的自由基 3)改变反应物在电极表面的吸附过程 4)空化泡崩溃产生的微射流对电极表面形成连续的现场活化。由于超声波能够强化电化学的传质过程,提高电极电流的响应效果,因此在微量组分的分析方面可以提高其检测范围。

  • 电化学分析的优缺点及与其它方式的比较

    电化学原理是到底是怎么一回事咧?有些气体监测装置是这个原理的,我都不太明白他跟激光红外具体有什么区别?请教如果你很懂,也可以加我QQ 1794138312 跟我讲解下。

  • 【讨论】电化学该何去何存?被人遗忘的电化学!!!

    [color=#00008B][B]序言:[/B]电化学分析是仪器分析的一个重要分支,也是很大的一类,在之前也是大家广泛研究的对象。而电化学本身是建立在溶液电化学性质基础上的一类分析方法,即利用物质在其溶液的电化学性质及其变化规律进行分析。然而其他的分析化学都在不断的向前发展,而电化学缺停步不前,面临着逐渐被人忽视的尴尬境界,面对如此的情景,您觉得我们的电化学该何去何存?我们的电化学该研究些什么内容?电位分析?电解?库仑?极谱?伏安?电导?欢迎大家前来讨论~也欢迎您申请电化学的斑竹~[/color][B]电化学性质:[/B]是指溶液的电学性质(如电导、电量、电流等)与化学性质(如溶液的组成、浓度、形态及某些化学变化等)之间的关系。[B]其主要内容:[/B][color=#DC143C][B]电位分析、电解、库仑分析、极谱分析、溶出伏安法、电导分析等[/B][/color]。

  • 【原创】氟离子溶液中的电化学实验

    求助:有人在氟离子溶液中做过电化学实验吗?? 因为使用的玻璃仪器(盐桥、甘汞电极)在氟离子溶液中容易腐蚀。请问你们怎么搭建三电极体系的装置避免这种问题?请赐教!多谢了!

  • [我国电化学仪器的开拓者]——荣仁本

    我国电化学仪器的开拓者——荣仁本 (1916— ) 沙鸿荃 施美芬 ----------------------------------------------------------------   荣仁本,电化学分析仪器专家,我国电化学仪器的开拓者。50年代初期制成我国第一台玻璃电极酸度计,并以此为突破口,运用电位、电导、电量等原 理开发出一系列电化学分析仪器产品,为创建我国自己的电化学分析仪器工业体系作出了突出的贡献。   荣仁本,1916年10月生于江苏省无锡市。40年代初,荣仁本在大同大学化学系任分析化学和理论化学实验的助教。当时国际上仪器分析作为一门专门学科还刚刚开始,国内也没有专测电导或pH的仪器,所以作为理论化学实验课程,测定电导率和pH值时,仅作原理性示范,用惠司登电桥和电位差计来达到实验目的,1943年,荣改变了老办法,自己动手做成了一台兼测电导和pH值的装置,供他在震旦女子文理学院讲授理论化学时作实验之用,收到了较好的教学效果。用专门设备作为分析手段,即所谓“仪器分析”,当时在国内尚属首创。这事引起了反响,也启发他立志去发展仪器分析,并且应用到科研和生产实践中去。   荣仁本业余爱好无线电技术,造诣深厚。在汉利化工厂工作时,为参与研制摄影用的感光底片,对于感光材料下过苦功。他掌握英、德、日三门外语,便于搜集国外科技信息。他不仅善于用脑,而且善于动手,在实干中学会了钳工,简单的零部件能自己动手加工。此外,在管理实验室时,还练出了一手玻璃灯工手艺。他那双灵巧的手,老工人也为之折服。雄厚的实力促成他在发展分析仪器的道路上成果累累,业绩辉煌。

  • 请问 电化学工作站 如何消除磁场屏蔽?使测量电压稳定

    我们用电化学工作站,但是旁边我们还要加其他装置,那个装置里有电机,一开电机,电压就超量程,是否是磁场干扰引起?我们用铝箔将电极附近包裹好,仍过了200s就超量程,还是没有太大用处。真是苦恼,怎么才能让电化学工作站的电压稳定呢?这样才能测极化曲线。请教各位大侠!

  • [电化学专题]:电 动 势 测 定

    [电化学专题]:电 动 势 测 定 背景知识一、关于电池、电极和盐桥 电化学是研究电现象与化学现象之间内在联系的一门学科,其最基本的要素是电极和溶液。电极能传导电子,常为金属,也可以是半导体。电池是原电池和电解池的通称,电池由至少两个电极及相应的电解质组成,它依靠离子导电,通常是水溶液,也可以是非水溶液、熔盐或固体电解质。1、电极反应:在电极-溶液界面上产生的伴有电子得失的氧化或还原反应。2、电池反应:电池中各个电极反应、其它界面上的变化以及由离子迁移所引起的变化的总合。其中必进行氧化还原反应。3、阳极:负离子趋向或正离子离开的电极。在阳极上产生失电子的氧化反应,电流由电极进入溶液。4、阴极:正离子趋向或负离子离开的电极。在阴极上产生得电子的还原反应,电流由溶液进入电极。5、正极:电势高的电极。6、负极:电势低的电极。7、原电池:将化学能转变为电能的装置,池内发生  0的自发反应,运行时两电极间产生的电势差形成了对外做功(输出电能)的本领。又称之为伽伐尼电池。8、电解池:将电能转化为化学能的装置,池内发生  0的非自发反应,运行时电池消耗从外界输入的电能。当通过电极的电流为零,电池达到电化学平衡时,原电池与电解池也就没有区别。9、可逆电池:满足热力学可逆条件的电池,其两端的电势差为该可逆电池的电动势。形象地说,电动势是促使电荷流动的势头。可逆电池须满足以下三个条件:(1)电极和电池反应本身须可逆,这样在电池充电时,可使放电反应的物质得到复原。(2)在充或放电过程中,通过电极的电流须无限小,此时电极反应在接近电化学平衡的状态下进行,电池能作最大的非体积功。这样在电池充电时,可使原放电时的能量得到复原。(3)电池工作时,无其他不可逆过程(如扩散)存在。10、可逆电极:可逆电池要求其各个相界面上发生的变化都是可逆的,亦即电极/溶液界面上的电极反应同样须是可逆的,此即可逆电极。11、标准电池:作为电动势测定时校验之用,它具有稳定的电动势,且其温度系数很小。韦斯顿发明的镉汞电池常作为标准电池,这种电池具有高度可逆性。韦斯顿标准电池多为饱和式,有H管型和单管型两种,如图1所示。对于H型标准电池,负极为镉汞齐(含12.5%Cd),上部铺以CdSO4∙ H2O(s),正极为纯Hg上铺盖糊体状的Hg2SO4(s)和少量CdSO4∙ H2O(s),两极之间盛以CdSO4的饱和溶液,管的顶端须密封,并留一定空间以供热膨胀之用,两极的底部各接一铂丝与电极相连。做标准电池所用的各种物质须极纯。 [img]http://ng1.17img.cn/bbsfiles/images/2005/11/200511181830_10378_1604910_3.gif[/img]

  • 请问:自制电极用于电化学传感器,该用什么样的电化学仪器检测?

    工作电极由自己设计制备,即要求检测仪器允许更换电极,并能控制一定电压,检测电流变化。我对电化学仪器不太了解,接触到的一些仪器(如电导率仪、酸度仪)的电极都是固定的。据说电化学工作站能够满足要求,但似乎有点大才小用,不知有没有便宜一点能满足我实验要求的仪器?希望不吝赐教,先谢了。

  • 电化学参考书目

    电化学参考书目----------------------------------------------------------------1.《 IUPAC电分析化学报告选 》--------[ 国际纯粹与应用化学联... ] [1984年 ] 2.《 IUPAC电分析化学报告选.第一辑 》-[ 国际纯粹与应用化学联... ] [1984年 ] 3.《 癌症的电化学治疗 》--------[ 辛育龄主编. ] [1995 ] 4.《 半导体光电化学 》--------[ (苏)古列维奇(Гу... ] [] 5.《 半导体与金属氧化膜的电化学 》--------[ (美)莫里森(Mor... ] [] 6.《 超微电极电化学 》--------[ 张祖训著. ] [1998 ] 7.《 地电化学基础及其应用 》--------[ 温佩琳等编著. ] [] 8.《 地电化学勘探法 》--------[ (苏)雷斯(Рысс... ] [1986 ] 9.《 地球电化学勘查及深部找矿 》--------[ 罗先熔著. ] [1996 ] 10.《 电池电化学 》--------[ 文国光主编. ] [1995 ] 11.《 电法勘探中的电化学研究译文集 》--------[ 何继善等译. ] [1987 ] 12.《 电分析化学 》--------[ (美)瓦索斯(Vas... ] [1987年 ] 13.《 电分析化学 》--------[ 李启隆编著. ] [1995年 ] 14.《 电分析化学 》--------[ 蒲国刚等编著. ] [年 ] 15.《 电分析化学导论 》--------[ 高小霞编著. ] [1986年 ] 16.《 电分析化学实验 》--------[ 陆光汉编著. ] [2000年 ] 17.《 电化学 》--------[ (日)小久见善八编著... ] [] 18.《 电化学:适用于电镀专业 》---[上海轻工业专科学校编] [1978 ]19.《 电化学保护在化肥生产中的应用 》--------[ 陈其忠等著. ] [1975 ] 20.《 电化学擦削技术 》--------[ 向显德编著. ] [1994 ] 21.《 电化学测定方法 》--------[ (日)藤〓昭等著;陈... ] [1995 ] 22.《 电化学测量 》--------[ 周伟舫主编. ] [1985 ] 23.《 电化学测试技术 》--------[ 刘永辉编著. ] [1987 ] 24.《 电化学传感器与波谱计算机检索 》--------[ 姚守挫著. ] [] 25.《 电化学的实验方法 》--------[ (英)塞勒(Sell... ] [1985 ] 26.《 电化学动力学 》--------[ 吴浩青,李永舫编. ] [] (点击:171次)27.《 电化学方法:原理及应用 》--------[ (美)巴德(Bord... ] [1986 ] 28.《 电化学方法及其在土壤研究中的应用 》--------[ 于天仁等编著. ] [1980 ] 29.《 电化学分析 》--------[ 方惠群等编著. ] [1984 ] 30.《 电化学分析 》--------[ 化学工业部人事教育司... ] [1997 ] 31.《 电化学分析 》--------[ 阎锋,韩可心编著. ] [年 ] 32.《 电化学分析法实验与习题 》--------[ 张绍衡主编. ] [年 ] 33.《 电化学分析法在环境监测中的应用 》--------[ 高小霞著. ] [1982 ] 34.《 电化学分析基础 》--------[ (波)加卢斯(Gal... ] [] 35.《 电化学分析—溶出伏安法 》--------[ 王国顺等译著. ] [] 36.《 电化学分析实验 》--------[ 许国镇编. ] [] 37.《 电化学分析仪器 》--------[ 方建安,夏 权编著. ] [] 38.《 电化学分析原理及技术 》--------[ 谭忠印,周丹红编著. ] [2001 ] 39.《 电化学分析在环境监测中的应用论文集 》-[ 咸阳市秦都区城乡建设]40.《 电化学工程基础 》--------[ 何卓立编著. ] [] 41.《 电化学和电分析化学 》--------[ (美)安森(F.Am... ] [1983 ] 42.《 电化学基本原理及其应用 》--------[ 沈慕昭编. ] [1987 ] 43.《 电化学基础 》--------[ 陈永言编著. ] [1999 ] 44.《 电化学基础 》--------[ 杨文治编著. ] [1982 ] 45.《 电化学教程 》--------[ 郭鹤桐,覃奇贤编著. ] [2000 ] 46.《 电化学抛光工艺 》--------[ 李云飞著.2版. ] [1978 ] 47.《 电化学实验方法进展 》--------[ 田昭武等编著. ] [] 48.《 电化学式分析仪器 》--------[ 杨孙楷等著. ] [1983 ]49.《 电化学数据手册 》--------[ 朱元保等编. ] [1985 ] (点击:28次)50.《 电化学析法 》--------[ 钟洪辉主编. ] [] 51.《 电化学研究方法 》--------[ 田昭武著. ] [1984 ] 52.《 电化学原理 》--------[ 李荻主编.修订版. ] [1999 ] 53.《 电化学原理和方法 》--------[ 张祖训,汪尔康著. ] [2000 ] 54.《 电化学中的光学方法 》--------[ 林仲华等编著. ] [] 55.《 电化学中的仪器方法 》--------[ 英国南安普顿电化学小... ] [年 ] 56.《 电化学阻抗谱导论 》--------[ 曹楚南,张鉴清 ] [2002年 ] 57.《 电世界的奇葩:话说电化学 》--------[ 谢乃贤著. ] [1998 ] 58.《 分析化学手册.第四分册,电分析化学 》--------[ 彭图治 ] [2001 ] 59.《 腐蚀电化学 》--------[ 胡茂圃主编. ] [] 60.《 腐蚀电化学 》--------[ 中国腐蚀与防护学会主... ] [] 61.《 腐蚀电化学研究方法 》--------[ 宋诗哲编著. ] [] (点击:24次)62.《 腐蚀电化学原理 》--------[ 曹楚南编著. ] [1985 ] 63.《 光电化学太阳能转换 》--------[ (俄)Ю.В.波利斯... ] [1996 ] 64.《 光谱电化学方法:理论与应用 》--------[ 谢远武,董绍俊著. ] [] 65.《 海船电化学保护 》--------[ (苏)Н.Н.毕毕柯... ] [1975 ] 66.《 合金相电化学 》--------[ 姜晓霞,王景韫编著. ] [1984 ] 67.《 环境监测中的电化学分析法 》--------[ 杜宝中 ] [2003 ] 68.《 辉光放电化学热处理 》--------[ (苏)巴巴得-扎哈亮... ] [1985 ] 69.《 金属电化学保护 》--------[ 李启中主编. ] [1997 ] 70.《 金属电化学和缓蚀剂保护技术 》--------[ 郑家乐编. ] [1984 ] 71.《 金属腐蚀电化学热力学:电位-PH图及其应》-[ 杨熙珍,杨 武编著] 72.《 金属与合金的电化学热处理 》--------[ (苏)基 金(Кид... ] [] 73.《 可变电荷土壤的电化学 》--------[ 于天仁等著. ] [1996 ] 74.《 理论电化学 》--------[ (苏)L.I.安特罗... ] [1982 ] 75.《 理论电化学 》--------[ 郭鹤桐,刘淑兰编著. ] [1984 ] 76.《 理论电化学导论 》--------[ 龚竹青编著. ] [] 77.《 量子电化学 》--------[ (美)博克里斯(Bo... ] [] 78.《 硫化矿物浮选电化学 》--------[ 冯其明,陈 荩编著. ] [] 79.《 硫化矿物颗粒的电化学行为与电位调控浮选技》--[ 覃文庆[著] [2001 ] 80.《 漫谈氧化-还原与电化学 》--------[ 徐伟念编著. ] [] 81.《 煤脱硫浮选电化学 》--------[ 朱红著. ] [1999 ] 82.《 摩擦和切削及润滑中的电物理和电化学现象 》--[ 波斯• 特尼柯夫(S.] [1983 ] 83.《 配合物电分析化学 》--------[ 卢小泉等编著. ] [2000 ] 84.《 生命科学中的电分析化学 》--------[ 彭图治,杨丽菊编著. ] [1999年 ] 85.《 生物电分析化学 》--------[ 金文睿等编著. ] [1994年 ] 86.《 生物电化学.生物氧化还原反应 》-------[ (意)米拉佐(Mil... ] [] 87.《 实验电化学 》--------[ 陈体衔编著. ] [] 88.《 手表零件电化学工艺 》--------[ 《手表零件电化学工艺... ] [1987 ] 89.《 土壤的电化学性质及其研究法 》-----[ 于天仁等编著.2版. ] [1976 ] 90.《 稀土农用与电分析化学 》--------[ 高小霞著. ] [1997年 ] 91.《 现代电化学 》--------[ (日)小泽昭弥主编;... ] [1995 ] 92.《 现代电化学 》--------[ 曾振欧,黄慧民编著. ] [1999 ] 93.《 压电化学与生物传感 》--------[ 姚守拙著. ] [1997 ] 94.《 冶金电化学 》--------[ (德)费希尔(Fis... ] [] 95.《 冶金电化学 》--------[ 蒋汉瀛. ] [1983 ] 96.《 冶金电化学研究方法 》--------[ 舒佘德,陈白珍编著. ] [] 97.《 液━液界面电化学 》--------[ (法)塞 克(Sek... ] [] 98.《 医学生物电化学方法 》--------[ (捷)考利达(J.k... ] [1983 ] 99.《 仪器分析.一,电化学分析 》--------[ 徐培方主编.2版. ] [年 ] 100.《 应用电化学 》--------[ (苏)库特利雅夫采夫... ] [] 101.《 应用电化学 》--------[ 邝生鲁等编著. ] [1994 ] 102.《 应用电化学 》--------[ 覃海错编著. ] [] 103.《 应用电化学 》--------[ 杨辉,卢文庆编著. ] [2001 ] 104.《 应用电化学 》--------[ 杨绮琴等编著. ] [2001 ] 105.《 有机电化学合成与机理研究指南 》---[ 桂伟志,桂彪著.] [1992 ] 106.《 有机电化学及其工业应用 》--------[ 陈松茂编. ] [] 107.《 有机物的电化学分析 》--------[ 王昌益编著. ] [] 108.《 渣金反应的电化学控制研究 》--------[ 鲁雄刚[著]. ] [2001 ]

  • 基于电化学酶生物传感器的食品和药物分析的研究进展

    [font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 近年来,基于电化学酶的生物传感器已成为一种简单、快速、超灵敏的检测药物和食品样品中不同化合物的装置.本文介绍了酶的分类、固定化和抑制信息等方面的研究进展,对电化学酶基生物传感器进行了详细的论述,总结并列出了一些用于食品和药物分析的电化学酶生物传感器研究.[/color][/font]

  • 【转帖】生物电化学

    生物电化学人类在认识自然、改造自然的社会实践中创立了各门自然科学。随着认识的不断深入,以及深层次解决实际问题的需要,对许多基本问题必须作深入细致的研究。因此,自然科学的各门学科逐渐分化出许多分支学科。特别是进入20世纪以来,分化的速度愈来愈快。各门一级学科已分化出众多的二级、三级、甚至四级、五级学科等等。但是,由于实际要解决的许多问题非常复杂,所涉及的知识又是高度综合性的,如神经细胞跨膜释放神经传递物质的研究,就涉及生物学、化学、物理学、信息科学等多学科的知识,这样,便出现了高度分化的相对狭窄的学科难以解决高度复杂的实际问题的矛盾。从学科自身的发展来看,相对狭窄的研究领域,如不借鉴、利用相关学科的最新研究成果,则很难有大的突破,并可能最终致使学科发展无路可走。因此,无论是从学科自身的发展,还是从实际需要来看,都迫切需要多学科之间相互交叉、相互渗透。深层次交叉的结果是在多学科的界面上通过学科间的“碰撞”而生长出新型的“交叉学科”,或称“边缘学科”。生物电化学便是本世纪70年代由电生物学、生物物理学、生物化学以及电化学等多门学科交叉形成的一门独立的学科。电化学与生物电现象电化学是研究电子导体(或半导体材料)/离子导体(一般为电解质溶液)和离子导体/离子导体的界面结构、界面现象及其变化过程与机理的科学。生命现象最基本的过程是电荷运动。生物电的起因可归结为细胞膜内外两侧的电势差。人和动物的代谢作用以及各种生理现象,处处都有电流和电势的变化产生。人或其它动物的肌肉运动、大脑的信息传递以及细胞膜的结构与功能机制等无不涉及电化学过程的作用。显然,电化学是生命科学的最基础的相关学科。细胞的代谢作用可以借用电化学中的燃料电池的氧化和还原过程来模拟 生物电池是利用电化学方法模拟细胞功能 人造器官植入人体导致血栓与血液和植入器官之间的界面电势差这一基本电化学问题密切相关 心电图、脑电图等则是利用电化学方法模拟生物体内器官的生理规律及其变化过程的实际应用。由以上几个基本例子可见,交叉学科生物电化学的创立具有极其重要的基础理论意义和极强的应用背景。生物电化学由于近20年来生物电化学的发展非常迅速,所涉及的范围很广,要想系统全面地对生物电化学的研究领域进行归纳分类是一件很难的事情。下面仅就其研究领域进行简单介绍。1. 生物膜与生物界面模拟研究  (1) SAM膜模拟生物膜的电化学研究  由于生物电的起因可归结为细胞膜内外两侧的电势差,因此生物膜或模拟生物膜的电化学研究受到人们的广泛关注。LB(Langmuir Blodgett)膜和BLM(BilayerLipidMembrane,双层磷脂膜)是人们了解生物膜结构与功能机制的常用模型体系。但由于LB膜是亚稳态结构,稳定性不好,且LB膜中分子的取向是基于亲水疏水作用而限制了对LB膜外表面性质的选择控制,因此使其电化学研究受到限制。BLM的稳定性也不太好,难以承受高的电场强度。因此在80年代初,迅速发展起来的自组装单分子层(Self AssembledMonolayer,SAM)技术成为膜电化学研究的热点领域之一。  SAM是基于长链有机分子在基底材料表面的强烈化学结合和有机分子链间相互作用自发吸附在固/液或气/固界面,形成的热力学稳定、能量最低的有序膜[3]。组成单分子层的分子定向、有序紧密排列,且单层的结构和性质可以通过改变分子的头基、尾基以及链的类型和长度来控制调节。因此,SAM成为研究界面各种复杂现象,如膜的渗透性、摩擦、磨损、湿润、粘结、腐蚀、生物发酵、表面电荷分布以及电子转移理论的理想模型体系。有关SAM的电化学主要是用电化学方法研究SAM的绝对覆盖量、缺陷分布、厚度、离子通透性、表面电势分布、电子转移等。利用SAM可研究溶液中氧化还原物种与电极间的跨膜(跨SAM)电子转移,以及电活性SAM本身与电极间的电子转移。在膜电化学中,硫醇类化合物在金电极表面形成的SAM是最典型的和研究最多的体系。下面主要介绍与生物电化学有关的SAM研究。  长链硫醇在金电极上形成的SAM这种人工自组装体系对仿生研究有重要意义,因为它在分子尺寸、组织模型和膜的自然形成三方面很类似于天然的生物双层膜[4],同时它具有分子识别功能和选择性响应,且稳定性高。可用SAM表面分子的选择性来研究蛋白质的吸附作用 以烷基硫醇化合物在金上的SAM膜为基体研究氧化还原蛋白质中电子的长程和界面转移机制。如细胞色素c(Cytc)在ω 羧基烷基硫醇化合物修饰金电极(SAM/Au)上的电子转移动力学和电子传递机理的研究,得到Cytc的表面式电势为+215mV(vs.NHE),接近于其在生理膜上的电势值。SAM在酶的固定化及其生物电化学研究中也有很好的应用,Kinnear等利用SAM研究了大肠杆菌延胡索酸还原酶的电化学,Porter和Murray分别报道了卟啉衍生物SAM对氧还原过程的电催化作用,董献堆[3]研究了葡萄糖氧化酶在SAM上的固定化及其催化行为,并研究了DNA与SAM间的相互作用。  在硫醇SAM上沉积磷脂可较容易地构造双层磷脂膜。以SAM来模拟双层磷脂膜的准生物环境和酶的固定化使酶进行直接电子转移已在生物传感器的研究中得到应用。如以胱氨酸或半胱氨酸为SAM,通过缩合反应键合上媒介体(如TCNQ、二茂铁、醌类等)和酶可构成测葡萄糖、谷胱甘肽、胆红素、苹果酸等的多种生物传感器。随着研究的深入,膜模拟电化学将在生命过程的研究中发挥更大的作用。

  • 【求助】电化学溶液的配置和使用。

    请问各位大侠电化学溶液的配置,尤其是要加一些离子考察他们对腐蚀电化学的影响,比如氯离子,500ppm氯离子如何加,把它换算成KCl或者是NaCl。好像最近我做的实验,觉得加了和没加没什么影响。还有就是在做腐蚀电化学的时候,配一次1升的溶液,是不是测一个样品就得换溶液?有没有这么夸张?如果不是的话,那么1升的溶液能测几次呢?

  • 电化学科学的精炼介绍

    声明:本文转贴自“中国科技教育资源网”  电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现,二者统称电化学,后者为电化学的一个分支,称放电化学。因而电化学往往专指“电池的科学”。  电池由两个电极和电极之间的电解质构成,因而电化学的研究内容应包括两个方面:一是电解质的研究,即电解质学,其中包括电解质的导电性质、离子的传输性质、参与反应离子的平衡性质等,其中电解质溶液的物理化学研究常称作电解质溶液理论;另一方面是电极的研究,即电极学,其中包括电极的平衡性质和通电后的极化性质,也就是电极和电解质界面上的电化学行为。电解质学和电极学的研究都会涉及到化学热力学、化学动力学和物质结构。  1791年伽伐尼发表了金属能使蛙腿肌肉抽缩的“动物电”现象,一般认为这是电化学的起源。1799年伏打在伽伐尼工作的基础上发明了用不同的金属片夹湿纸组成的“电堆”,即现今所谓“伏打堆”。这是化学电源的雏型。在直流电机发明以前,各种化学电源是唯一能提供恒稳电流的电源。1834年法拉第电解定律的发现为电化学奠定了定量基础。  19世纪下半叶,经过赫尔姆霍兹和吉布斯的工作,赋予电池的“起电力”(今称“电动势”)以明确的热力学含义;1889年能斯脱用热力学导出了参与电极反应的物质浓度与电极电势的关系,即著名的能斯脱公式;1923年德拜和休克尔提出了人们普遍接受的强电解质稀溶液静电理论,大大促进了电化学在理论探讨和实验方法方面的发展。  20世纪40年代以后,电化学暂态技术的应用和发展、电化学方法与光学和表面技术的联用,使人们可以研究快速和复杂的电极反应,可提供电极界面上分子的信息。电化学一直是物理化学中比较活跃的分支学科,它的发展与固体物理、催化、生命科学等学科的发展相互促进、相互渗透。  在物理化学的众多分支中,电化学是唯一以大工业为基础的学科。它的应用主要有:电解工业,其中的氯碱工业是仅次于合成氨和硫酸的无机物基础工业;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;机械工业使用电镀、电抛光、电泳涂漆等来完成部件的表面精整;环境保护可用电渗析的方法除去氰离子、铬离子等污染物;化学电源;金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题;许多生命现象如肌肉运动、神经的信息传递都涉及到电化学机理。应用电化学原理发展起来的各种电化学分析法已成为实验室和工业监控的不可缺少的手段。

  • 前沿电化学研究的热点--微区扫描电化学新技术讲座

    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临!近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。http://img1.17img.cn/17img/images/201405/uepic/d1d0fc49-4aa6-4600-bac6-035a24653e58.jpg本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。Dr. John Harper (AMETEK GROUP 科学仪器部)http://img1.17img.cn/17img/images/201405/uepic/e684dcd0-3d7e-4ae9-962b-e4218d3a5918.jpgDr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用王佳教授 (中国海洋大学)http://img1.17img.cn/17img/images/201405/uepic/6fc401fa-573b-44b4-ade7-744995d7c789.jpg中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿

  • 金属的电化学保护方法

    电离、氮化和硝化电化学水处理技术  加拿大恩帕公司采用与目前流行的膜处理技术完全不同的工艺,成功开发出电离、氮化和硝化三种电化学水处理技术。  其中,电离法水处理技术废物去除率达85%,废水利用率从目前的70%大幅度提高到97%。同时,废水处理和水电软化处理一步到位,无需单独进行软化处理,提高效率,节约成本。另外,采用电离法处理金属尾矿或冶金废水时,尾矿中的金属可回收再利用,回收利用率比标准的酸性过滤法高两倍,且不需高温高压;氮化法可将溶解氨直接转换成氮气,而不是硝酸盐或温室气体;硝化法水处理技术可去除含水土层中90%的硝酸盐、70%的溶解氨,不受温度影响。目前,氮化处理系统已经在加拿大多个城市的水处理设备上使用。  气液混合放电可降解水中有机污染物  气液串联放电降解水中有机污染物的方法,是低温等离子体技术在环境污染控制领域的应用,是一种利用高压脉冲放电产生的高活性化学粒子降解水中有机污染物的装置及方法。该方法是让压缩空气或氧气通过玻璃管进入气室,利用液相产生的低温等离子体和气相产生的臭氧直接作用于有机污染物,预处理水溶液中的不锈钢金属阻挡网可提高臭氧的利用率。  气液串联放电降解水中有机污染物的方法是,在溶液中加入活性炭纤维和双氧水,通过活性碳纤维的吸附催化、光化学氧化与高压脉冲放电形成协同效应,从而大幅度提高有机污染物的降解率。  多维电极电催化处理高浓度有机废水  多维电极电催化污水处理装置主要应用于化工、制药、农药、染料、精细化工、石化、各种化工中间体等工业高浓度有机废水处理。  高浓度有机废水中污染物成分复杂,排入水体后,尽管已被高倍稀释,但其微量成分仍危害极大,对人类健康和生态环境构成严重威胁。对于这类高浓度有机废水,常规的生化、物化处理方法难以处理,与此相关的技术开发成为近年来研究的热点。  多维电催化高浓度工业废水处理设备具有多项创新设计,化学合成应用电化学技术原理,利用电解催化反应过程中生成的强氧化粒子,与废水中的有机污染物无选择地快速发生链式反应,进行氧化降解。设备的结构是在传统的二维电解电极间装填粒状工作电极,形成多维电极结构,与传统二维电极相比面积比大大增加,且粒子间距小,因而液相传质效率高,大大提高了电流效率、单位时空效率、污水处理效率和有机物降解效果,同时对电导率低的废水也有良好的适应性。  该设备适用于化学需氧量为每升几万至10万毫克的高浓度有机废水的前处理,经在企业的工业应用表明,该设备有机污染物去除率高,其中化学需氧量去除率30%~90%,kukdong连接器可无选择地将废水中难降解的有毒有机物降解为二氧化碳、水和矿物质,将不可生化的高分子有机物转化为可生化处理的小分子化合物;处理过程不需要添加药液,无二次污染;进水污染物浓度无限制;脱色、去毒效果显著,脱色率50%~80%Engineering Village;有机污染物降解处理的反应过程迅速,废水停留时间短,所需的设备体积小;可同时高效去除废水中的氨氮、总磷及色度;反应条件温和,常温常压下进行,操作简单、灵活,可控性好;占地面积小,建设工期短,运行成本低,处理费用省;非溶出型金属阳极,无电极腐蚀、钝化问题,具有高效、长寿命特点。  电催化——生物耦合技术使难降解有机物催化还原  中科院过程工程研究所采用电——生物耦合技术处理难被微生物降解的有机废水取得良好效果。该技术已申请国家发明专利。据介绍,硝基苯类,卤代酚、卤代烃、还原染料等都是重要的工业原料或产品,但它们都很难被微生物所降解。以前这类废水的处理一直是企业面临的一项难题。中科院过程工程研究所经过深入研究发明电——生物耦合技术,利用电催化反应将水中难降解有机物催化还原或氧化成生物易降解的有机分子,微生物则在一个反应中同时将它们彻底去除。以浓度等于100mg/L的硝基苯废水为例,经过10小时的处理,硝基苯去除率大于98%,化学需氧量去除率大于90%,出水达到国家排放标准,每吨废水处理成本不到2元。  电吸附除盐水净化与水回用技术  目前我国石化、化工等高耗水行业的污废水回用工程,还停留在将处理后的水回用作景观水或绿化灌溉等低端用途上,但一项名为电吸附除盐的水再生回用技术却将改变这一现状。污水经常规二次处理后再通过电吸附单元进行除盐处理,出水全面满足再生水要求,可直接作为循环冷却水等工业用水,真正实现污废水高端再生回用。电吸附除盐技术是利用带电电极表面吸附水中离子的现象,将水中溶解的盐类在电极表面富集浓缩实现除盐/淡化的新型水处理技术。相对于传统除盐技术而言,电吸附技术具有很好的技术经济性。齐鲁石化研究院与爱思特合作,率先建成世界首例千吨级炼油废水再生装置,其污水回用规模为每天2 400立方米,平均除盐率为62.3%,达到循环水补水水质要求。经估算,该装置的吨水处理成本仅为0.72元。太原化工集团对废水再生回用也十分重视,建成了万吨级废水再生处理装置,其回用水水质也达到化工用水标准,每吨优质再生水的成本为1.95元,远低于每吨4元左右的工业用水价格。据介绍,电吸附技术除了在污废水再生回用方面的应用外,在饮用水水质改善、海水淡化领域也都有着十分广阔的应用前景。本网凡注明出处为“《中国循环经济》”的所有稿件,版权均属本网站所有,未经授权不得转载。如需转载,请与010-82290313联系授权事宜;转载请务必注明稿件来源:"《中国循环经济》"。本网未注明出处和转载的,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,仅供读者参考,若据本文章操作,所有后果读者自负,本网站概不负任何责任。如转载稿件涉及版权等问题,请在两周内来电或来函联系。

  • 【分享】好书推介:电化学测量方法

    书 名: 电化学测量方法 作  者: 贾铮,戴长松,陈玲 编著出 版 社: 化学工业出版社出版时间: 2006-8-1 内容简介本书全面系统地介绍了进行电化学测量所需要的各方面知识,内容包括电化学测量的基本原则和步骤,电化学体系的数学描述,测量实验的基本知识,测量仪器的基本原理,各类稳态和暂态的测量方法。目前常用的电化学测量方法均给予了详细的介绍,包括稳态极化曲线的测量方法、控制电流阶跃暂态法、控制电势阶跃暂态法、线性电势扫描伏安法、脉冲伏安法、交流阻抗法、电化学扫描探针显微技术、光谱电化学技术及其它联用表征技术。重点介绍的是各类测量方法的原理、测量技术和数据解析方法,同时兼顾具体的实验细节。本书可用作高等学校化学工程与工艺、应用化学、工业催化、材料化学等专业的本科生和研究生的教材或教学参考书,也可供从事一切电化学应用领域生产和研究的科技人员参考。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制