当前位置: 仪器信息网 > 行业主题 > >

电控升降台

仪器信息网电控升降台专题为您提供2024年最新电控升降台价格报价、厂家品牌的相关信息, 包括电控升降台参数、型号等,不管是国产,还是进口品牌的电控升降台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电控升降台相关的耗材配件、试剂标物,还有电控升降台相关的最新资讯、资料,以及电控升降台相关的解决方案。

电控升降台相关的论坛

  • 我这里原子吸收的升降台调整不了了,请各位大侠赐教

    我用的上海精科的4510[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],在手动把火焰原子化器更换为石墨炉原子化器后,升降台调整项里面的数字就变成0了,也就是说只能往一个方向调整,请问我该如何调整?

  • 【求助】比表面测试仪的升降系统问题

    各位大师帮帮忙,最近比表面仪的升降台出问题了:升降台在运行时,发出巨大噪音,并且升降速度受到影响,和厂商联系过,给升降螺母换了黄油,也更换了升降系统的控制主板,可是没用,他们也搞不清楚是怎么回事了。不知道是不是电机出问题了,可我这方面一点也不懂,哪位大师给支个招儿吧,谢谢啦。

  • SEM样品台无法升降

    1放样品放到样品台却看不到2.如图右下方红色所示,样品台无法升降,正常时候,红色标记是绿色的请问这种情况怎么解决呀?谢谢解答[img]https://ng1.17img.cn/bbsfiles/images/2021/02/202102092155194837_6974_5192605_3.png[/img]

  • 【分享】电控水力控制阀的工作原理及维护

    电动控制阀是一种以[color=#0000ff]电磁阀[/color][color=#0000ff]2W系列电磁阀[/color] 为向导阀的水力操作式阀门。常用于给排水及工业系统中的自动控制,控制反应准确快速,根据电信号遥控开启和关闭管路系统,实现远程操作。水力电动控阀并可取代闸阀和蝶阀用于大型电动操作系统。阀门关闭速度可调,平稳关闭而不产生压力波动。该阀门体积小、重量轻、维修简单、使用方便、安全可靠。电磁阀可选用交流电220V,或直流电24V,可根据各种场合选用常开或常闭型均可。电控水力控制阀结构特点和用途电控水力控制阀由主阀、电磁阀、针型阀、球阀、微形[color=#0000ff]过滤器[/color][color=#0000ff],风扇及过滤器FB-9804[/color]和[color=#0000ff]压力表[/color][color=#0000ff]数字式压力表SPG-063[/color]组成水力控制接管系统。通过电磁阀可以实现对阀门开启和关闭的遥控。加装附加装置后,可控制开启和关闭的速度。 电控水力控制阀利用导阀控制阀门的开启和关闭,节省能源。可代替其它阀门大型电动装置。电控水力控制阀产品广泛用于高层建筑、生活区等供水管网系统及城市供水工程。 电控水力控制阀工作原理 当阀门从进口端给水时,水流流过针型阀进入主阀控制室,当电磁导阀打开时,控制室内的水经电磁导阀、球阀流出。球阀开度大于针阀开度,主阀控制室内压力很低,主阀处于全开状态。 当电磁导阀关闭时,主阀控制室的水不能流出,控制室升压,推动膜片关闭主阀。 电控水力控制阀维护: 水力控制阀前要安装过滤器,并应便于排污的要求。 水力控制阀是一种利用水自润式阀体,无须另加机油润滑,如遇主阀内零部件损坏时,请按下列指示进行拆卸。(注:内阀内一般消耗损伤品为膜片和○型圈,其它内部零件损伤甚少)1.先将主水力控制阀前后端闸阀关闭。2.将主水力控制阀盖上的配管[color=#810081]接头[/color][color=#810081],铜制防水接头JG-T-M[/color]螺丝松开,释放阀内压力。3.将所有螺丝取下,包括控制管路中的必要铜管的螺帽。4.取水力控制阀阀盖和弹簧。5.将轴芯、膜片、活塞等取下,切勿损伤膜片。6.将以上各项东西取出后,检查膜片及○型圈是否损坏;如无损坏请勿再分自行争其内部零件。7.如发现水力控制阀膜片或○型圈有损坏,请将轴芯上的螺帽松脱,逐浙分解出膜片或型圈,取出后重新换上新的膜片或○型圈。8.详细检视主阀内部水力控制阀座、轴芯等是否有损坏,若有其它杂物在主阀内部将其清理出。9.依反向是顺序将更换后的零部件组合装好主阀,注意阀门不能有卡阻现象。

  • 液压升降平台如何调养?

    液压升降平台调养时: 如需使用擦拭质料和铁锤时,应抉择不掉纤维杂质的擦拭质料和击打面附着橡胶的公用铁锤。装配液压油箱加油盖、滤清器盖、检测孔、液压油管等部位,造成体系油道表露时要避开扬尘,装配部位要先彻底干净后才气关上。液压元件、液压胶管要当真洗濯,用高压风吹干后拆卸。如装配液压油箱加油盖时,先撤除油箱盖附近的土壤泥像,拧松油箱盖后,断根残留在接合部位的杂物,确认干净后才气关上油箱盖。选用包装齐备的副品滤芯。换油时同时洗濯滤清器,安置滤芯前利用擦拭质料当真干净滤清器壳内底部污物。

  • 【讨论】大家知道石墨炉的升降臂的光控开关有几个?

    我用的石墨炉升降臂的皮带断了,接了以后,升降臂到了最高处,总是电机不停,继续向上升,把皮带振得“嘟嘟”响,最后找到原因是由于两个光电开关同时控制,有一个隐藏的光电开关一直都没有注意,所以电机不停与大家讨论一下,自己知道的石墨炉升降臂是如何控制的,如果是光电开关,请大家讨论一下它的位置在哪里

  • 急:购买电控万能材料试验机

    我们单位准备购买一台美国或德国生产的电控万能材料试验机,要求性价比高,在成都或重庆设有维修服务站为最好。详细技术指标将于近日确定。有意者请尽快与我联系。站内信联系

  • 新能源电控检测中列管式换热器故障说明

    新能源电控检测设备中的配件比较多,为了新能源电控检测更加稳妥的运行,新能源电控检测中的配件就需要避免一些故障,其中列管式换热器的故障比较常见,我们也需要尽量避免以上故障。  新能源电控检测换热器的管束的腐蚀、磨损造成管束泄露或者管束内结垢造成堵塞引起故障,循环水中含有铁、钙、镁等金属离子及阴离子和有机物,活性离子会使循环水的腐蚀性增强,其中金属离子的存在引起氢或氧的去极化反应从而导致管束腐蚀。同时,由于循环水中含有Ca2+、Mg2+离子,长时间在高温下易结垢而堵塞管束。为了提高传热效果,防止管束腐蚀或堵塞,采取了以下几种方法:对循环水进行添加阻垢剂并定期清洗;保持管内流体流速稳定;选用耐腐蚀性材料(不锈钢、铜)或增加管束壁厚的方式;当管的端部磨损时,可在入口200mm长度内接入合成树脂等保护管束。  新能源电控检测设备造成振动的原因包括由泵、压缩机的振动引起管束的振动;由旋转机械产生的脉动;流入管束的高速流体(高压水、蒸汽等)对管束的冲击。降低管束的振动常尽量减少开停车次数;在流体的入口处,安装调整槽,减小管束的振动;减小挡板间距,使管束的振幅减小;尽量减小管束通过挡板的孔径。  新能源电控检测列管式换热器除了平时多注意保养,注意操作,还需要选择质量靠谱的换热器,这样才能更好的运行新能源电控检测。

  • 1750℃升降式高温马弗炉

    产品概述:[color=#777777] 诺泰PT-M1750-12LZ-S1750℃升降式高温马弗炉采用多晶陶瓷纤维精制炉膛,炉膛表面涂有高温氧化铝涂层,有效提高加热效率,延长使用寿命;以美国康奈尔1800度优质硅钼棒为加热元件,最高温度可达1750℃;双层壳体结构,先进的真空隔热技术,大大降低箱体表面温度;炉腔四面加热,有效控制温场均匀性;升降式结构,方便取放料;B型双铂铑热电偶配以PID智能30段温控系统,并配有过温、断偶、过流保护等功能该炉具有温场均衡、表面温度低、升降温度速率快、节能等优点。[/color]主要用途:[color=#777777] [/color][color=#777777]诺泰PT-M1750-12LZ-S1750℃升降式[/color][color=#777777]高温马弗炉[/color][color=#777777]供实验室、工矿企业、科研单位、院校作元素析测定和一般小型钢件淬火、退火、回火等热处理时加热用,箱式高温炉还可作金属、陶瓷的烧结、解、分析等高温加热用。[/color]

  • 采用电控针阀实现微量液体样品静态法饱和蒸气压高精度测量的解决方案

    采用电控针阀实现微量液体样品静态法饱和蒸气压高精度测量的解决方案

    [size=16px][color=#339999][b]摘要:针对目前静态法液体饱和蒸气压测量中存在测量精度差、自动化程度低以及无法进行微量液体样品测试的问题,本文提出了微量样品蒸气压高精度自动测量解决方案。解决方案基于静态法原理,采用了低漏率的测试装置和高精度电容真空计,微量样品测试装置和真空计整体放置在烘箱内进行加热,提高温度和蒸气压分布的均匀性,将饱和蒸气压测量精度提高到了1%以内。同时采用耐腐蚀的电控针阀,可实现整个快速测试过程的自动化。[/b][/color][/size][align=center][size=16px][color=#339999][b]====================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px]液体饱和蒸气压是指在密闭条件和一定温度下,与液体处于相平衡的蒸气所具有的压强。同一液体在不同温度下具有不同的饱和蒸气压,且随着温度的升高而增大。饱和蒸气压是液体的基础热力学数据,它不仅在化学、化工领域,而且在、电子、冶金、医药、环境工程乃至航空航天领域都具有重要的地位,而且是这些研究领域中必不可少的基础数据,尤其在工业化学品和石油行业的应用最为广泛。[/size][size=16px]目前有许多液体蒸气压测试方法,主要有但不限于静态法、沸点法、蒸腾法、逸出法等,通过这些方法以满足不同的压力状态、样品大小、温度范围和材料兼容性要求。但这些现有方法还是无法满足新材料研究的要求,一方面是测量精度较差,另一方面对于一些特殊工艺要求蒸气压测量时液体样品量小、测量精度高以及快速测量还是无能为力,最典型的就是采用迭代合成以获得所需的分子结构,这涉及到针对产物性质的最大数量化合物需使用最少量的合成质量进行筛选,由此对液体饱和蒸气压测量提出了以下三方面的要求:[/size][size=16px](1)微量液体样品(约0.5毫升)。[/size][size=16px](2)高精度测量,误差小于1%。[/size][size=16px](3)简单且自动化的测量装置。[/size][size=16px]为了解决诸如迭代工艺所需的蒸气压测量的上述特殊要求,特别针对高测量精度、短测量时间和微量液体样品用量,本文提出一种简便的静态法饱和蒸气压高精度自动测量解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px]解决方案的基本思路是基于传统的静态法,即将微量液体样品注入到样品管内,关键是将整个测量装置放置(包括高精度电容真空计)在烘箱内以保证整体温度和整体真空压力的一致性和准确性。整个微量液体饱和蒸气压高精度测量装置结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=微量液体饱和蒸气压高精度自动测量装置,690,523]https://ng1.17img.cn/bbsfiles/images/2023/10/202310071754271367_8815_3221506_3.jpg!w690x523.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 微量液体饱和蒸气压高精度自动测量装置结构示意图[/b][/color][/size][/align][size=16px]如图1所示,蒸气压测量装置主体由真空样品容器、两个316不锈钢卡套三通、真空样品容器、硼硅酸盐玻璃管、电容真空计和三只热电偶温度传感器构成。其中一个卡套三通用来向真有样品容器注入液体样品和抽气,另一个卡套三通用作连接电容真空计和抽真空接口。装置整体放置在烘箱内,以使得整个装置主体整体保持均匀的温度,以防止蒸汽在设置的任何部分冷凝,这是决定提高饱和蒸气压测量精度的关键措施之一,其中用了三只安装在不同位置处的热电偶检测装置主体的温度是否均匀。[/size][size=16px]装置中的一个卡套三通顶部连接一个电控针阀,此电控针阀用来控制液体样品的注入量并同时起到真空密封的作用;另一个卡套三通排气端也连接一个电控针阀,开启时抽取真空,闭合时起到真空密封作用。这两个电控针阀由一个真空压力控制器实施控制。[/size][size=16px]烘箱加热和温度调节由一个PID温度程序控制器控制,可以通过计算机软件进行不同温度设定点的编辑和自动程序控制。烘箱温度控制过程中,通过多通道数据采集器记录三只热电偶温度传感器的测量值以及电容真空计的真空压力测量值。[/size][size=16px]在蒸气压测量装置使用前,要使用氦气检漏仪来检测装置的漏率,即关闭顶部的电控针阀和开启右侧的电控针阀,开启真空泵对测量装置主体抽取真空,装置内的所有空气被泵出系统。然后关闭右侧电控针阀,并用检漏仪检测泄漏情况。整个测量装置要求具有很小的真空漏率,以免外部空气侵入,否则会对饱和蒸汽压准确测量带来严重误差。[/size][size=16px]微量样品饱和蒸气压测量分为以下几个步骤:[/size][size=16px](1)首先将液体样品瓶,或用透明玻璃管作为液体样品容器,连接到顶部电控针阀,调节此电控针阀的开度将约为0.5毫升的被测液体样品引入真空样品容器,然后关闭此电控针阀,即整个样品液体按照图1中的红色点线描绘的路径流动。[/size][size=16px](2)液体样品注入样品容器后,开启右边的电控针阀和真空泵抽取真空,气体按照图1中的橘黄色线描绘的路径排出。[/size][size=16px](3)当抽取真空达到极限真空度后,关闭右侧电控针阀使测量装置主体以及内部的液体样品处于室温和高真空状态。然后开启多通道数据采集器,分别采集三个位置处的温度和样品容器内的真空度。这三个位置处的温度应该基本一致,说明装置主体的温度均匀。这些温度值和真空度作为饱和蒸气压测量的起始值。[/size][size=16px](4)对温度程序控制器设置不同的设定点,设定点由小到大设置,且每个温度设定点需设置一定的恒温时间,然后使控制器控制烘箱温度按照设定程序进行变化。此时,数据采集器同时检测各个位置处的温度值和样品容器内的真空压力变化。在某一恒定温度下,样品容器内的真空压力变化过程如图2所示。随着烘箱温度按照设定程序的台阶式变化,通过多通道数据采集器可以获得一些列不同温度对应的图2所示真空压力变化曲线,由这些曲线的压力稳定值可得到对应的饱和蒸气压。[/size][align=center][size=16px][color=#339999][b][img=静态法饱和蒸气压测试过程,500,378]https://ng1.17img.cn/bbsfiles/images/2023/10/202310071756114873_5047_3221506_3.jpg!w690x522.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 静态法饱和蒸气压测试过程[/b][/color][/size][/align][size=16px]为了实现微量液体样品饱和蒸气压的高精度快速测量,具体实施过程中还需注意以下几点:[/size][size=16px](1)装置本体的设计和尺寸要首先保证装置温度的均匀性,以避免温度不均匀引起的蒸汽压力的非均匀性。同时,装置本体中的各个部件、电控针阀和任何接口都需要具有很好的真空密封性能,避免漏气对蒸气压的影响。[/size][size=16px](2)为了保证测量精度,真空计最好选择精度最高的可达到0.25%的电容真空计。[/size][size=16px](3)测量装置使用前和使用过程中,需采用纯蒸馏水和2-丙醇进行考核和定期校验,热电偶温度传感器也需进行定期校验。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px]综上所述,本文提出的解决方案尽管依然采用的是经典的静态法,但通过采用低漏率的真空结构、电控针阀、电容真空计和装置整体加热,很好的保证了温度均匀性和蒸气压测量准确性,减小了饱和蒸气压测量误差。本解决方案虽然设计用来测量微量液体样品,也可以推广应用到其它大容量液体的饱和蒸气压测量。[/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【转帖】现代Sonata电控发动机的检测与调整

    现代Sonata电控发动机的检测与调整韩国现代Sonata1.8I、20iGL/GLS和Sonata 2.4iGLS型轿车,虽配置的发动机不同,但均采用HYUNDAI EC-MULTI电控多点燃油喷射系统,其主要部件的布置如图1所示。当电控系统发生故障时,仪表板上的CHECK警告灯会闪亮报警。一、故障码的读取与清除1.打开如图2.a所示的位于仪表板下方保险丝盒旁边的故障检测插座。HYUNDAI EC-MULTI电控多点燃油喷射系统,其主要部件的布置如图1所示。当电控系统发生故障时,仪表板上的CHECK警告灯会闪亮报警。2.将电压表正负表笔分别与插座内的A、B(见图2.b)插孔相连。3.接通点火开关,即可通过观察电压表指针的摆动规律读出故障代码。没有电压表时,也可用LED测试灯像电压表一样连接,通过闪烁规律读出故障代码。4.故障代码见表1。5.故障码的清除。当故障排除完毕后,可拆下蓄电池搭铁线15s以上,即可清除故障码。表1 现代Sonata轿车发动机故障码故障码 故障诊断 故障部位 11 氧传感器信号不正常 氧传感器损坏、线路断路、或短路、混合器太浓或太稀 12 空气流量计信号不正常 空气流量计损坏、线路断路或短路 13 进气温度传感器信号不正常 进气温度传感器损坏、线路断路或短路 14 节气门位置传感器信号不正常 节气门位置传感器损坏、线路断路或短路、怠速位置开关损坏 15 怠速控制阀位置传感器信号不正常 怠速控制阀位置传感器损坏、线路断路或短路 21 冷却液传感器信号不正常 冷却液传感器损坏、线路断路或短路 22 曲轴位置传感器信号不正常 曲轴位置传感器损坏、线路断路或短路 23 上止点位置传感器信号不正常 第一缸上止点传感器损坏、线路断路或短路 24 车速传感器信号不正常 车速传感器损坏、线路断路或短路 25 大气压力传感器信号不正常 大气压力传感器损坏、线路断路或短路 36 点火正时传感器信号不正常 点火正时传感器损坏、线路断路或短路 41 喷油泵线路不良 喷油泵损坏、线路断路或短路 42 电动燃油泵继电器线路不良 电动燃油泵继电器损坏、线路断路或短路 44 点火系统线路不良 点火线圈故障、线路断路或短路

  • 【资料】多通道正压式固相萃取仪(24孔)资料

    【资料】多通道正压式固相萃取仪(24孔)资料

    性能特点(*为本仪器独有特点) 一次可处理24个样品,可以对每个萃取柱提供相同的压力。 *独有的微调旋钮,使每一个萃取柱的流速可以独立自由调节,互不干扰。 适用萃取柱容量分别可为1mL, 3mL , 6mL, 10mL或15mL。使用不同容量小柱,只需简单的更换定位板。  *创新性的串联接口,可进行串联萃取,解决了需要大量吸附剂或几种吸附剂同时使用时萃取柱容量不够的问题。 气动升降台,控制样品架升降,同时提供良好气密性。 可使用压缩空气或氮气,配有10μm 的过滤器技术指标 萃取柱容量:1mL、3mL 、6mL、10mL 或15mL。 气体供应:氮气或压缩空气。 过滤器:10 μm空气过滤器 最大工作压力:0.5MPa[img]http://ng1.17img.cn/bbsfiles/images/2009/06/200906181845_156028_1638904_3.jpg[/img]

  • 【分享】日本拟修订升降机建造标准

    为防止工人在使用工业安全与健康法规定的升降机时发生事故,2011年5月,日本厚生劳动省(MHLW)发布升降机建造标准修订草案,对安装在特定行业工作场所的升降机,(安装在建筑工地的升降机除外)作出了如下规定:在工作场所新安装的新升降机必须安装车厢非故意移动保护(UCMP)系统*1和地震操作控制系统*2的责任(建筑工地安装的升降机除外)。1 一种在车厢门和所有升降机入口关闭之前自动防止车厢移动的安全系统。2 一种在升降机传感器捕捉到地震震动时自动将车厢停在入口处并打开车厢门的安全系统。

  • 高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    高速电主轴冷却系统中的电控针阀流量闭环控制解决方案

    [b][color=#990000][size=16px]摘要:为解决电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容可调节散热量的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。解决方案中的反馈式闭环控制系统主要包括非接触式位移传感器、高速电控针阀和高精度[/size][size=16px]PID[/size][size=16px]控制器,通过高速和高精度电控针阀对冷却介质流量进行实施调节,可快速改变作用在主轴上的散热量,使主轴轴向热变形快速达到最小值并始终保持稳定状态。[/size][/color][/b][align=center][size=16px][img=高速电主轴冷却系统中的电控针阀流量闭环控制解决方案,600,392]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060506528065_863_3221506_3.jpg!w690x451.jpg[/img][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 对于高速数控机床而言,热误差是机床最主要误差,而电主轴则是热误差的主要误差源之一。为有效降低电主轴发热的影响,研究工作主要集中在电主轴冷却结构和冷却控制方面,但仍存在以下两方面的技术难点需要攻克:[/size][size=16px] (1)冷却效果差:还需根据电主轴内部温度场的分布进行冷却结构设计以及差异化冷却。[/size][size=16px] (2)响应速度慢:缺乏主动热误差控制技术手段,需实现电主轴温度的自动闭环控制。[/size][size=16px] 目前国际上电主轴热误差控制的最高水平是瑞士FISCHER公司的电主轴及其主动式冷却技术,其关键是将冷却回路集成在主轴中而大幅降低了热误差,使轴向膨胀减少了70%。特别是响应速度极快,预热和冷却时间大幅减少,等待时间缩短五倍。其热误差控制效果如图1所示。[/size][align=center][size=16px][color=#990000][b][img=01.瑞士FISCHER公司电主轴冷却效果示意图,650,288]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060509497004_7930_3221506_3.jpg!w690x306.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 瑞士FISCHER公司电主轴冷却效果示意图[/b][/color][/size][/align][size=16px] 为解决国内电主轴热误差影响大以及预热和冷却响应速度慢的问题,本文基于改变冷却介质热容以调节散热的原理,提出了高速和高精度冷却液流量调节的闭环控制解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在电主轴冷却过程中,除了需要电主轴具有合理的冷却结构之外,还要求能将主轴所产生的热量及时带走,并使主轴受热引起的膨胀量快速达到最小值且保持恒定。[/size][size=16px] 针对国内电主轴冷却响应速度慢的问题,本文的解决方案是基于改变冷却介质热容的原理,即改变冷却介质流量来改变冷却介质热容,这意味着快速改变了作用在主轴上冷却量,由此来主动调节主轴温度并快速达到稳定。解决方案的实施采用闭环控制系统,闭环控制系统包括检测电主轴热膨胀位移量的非接触位移探测器、接收主轴热膨胀变形信号的高精度PID控制、受PID控制器驱动并对恒温冷却介质流量进行高速精密调节的电子针阀,此闭环控制系统结构如图2所示。[/size][align=center][size=16px][color=#990000][b][img=02.电主轴主动冷却闭环控制系统结构示意图,500,287]https://ng1.17img.cn/bbsfiles/images/2023/07/202307060510119009_2558_3221506_3.jpg!w690x397.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 电主轴主动冷却闭环控制系统结构示意图[/b][/color][/size][/align][size=16px] 在此解决方案中,闭环控制系统中每一个部件的精度和响应速度等技术指标都会影响到电主轴最终热误差的控制精度。[/size][size=16px] 对于非接触位移探测器而言,需要具有几个微米的测量精度和一秒量级的响应速度,对于高速高精度机场的电主轴则可能需要更高位移测量精度和响应速度。位移探测器一般选择激光式或电容式位移传感器。[/size][size=16px] 对于冷却介质流量的调节,需根据电主轴规格、发热量和冷却介质最大输出流量选择相应流量调节范围的电控针阀,但无论流量调节是什么范围,都要求电控针阀具有小于一秒的响应速度,并具有很好的线性度,为此在本解决方案中选择采用了NCNV系列电动针阀,可直接采用模拟信号0~10V进行控制,响应速度800ms,线性度0.1~11%,孔径范围为0.95~6.7mm,液体水的最大流量范围是0.94~62.4L/min,流量调节分辨率为0.1~2L/min,完全可以满足各种规格电主轴的快速冷却调节。[/size][size=16px] 对于PID控制器,解决方案选择了VPC2021系列超高精度PID控制器,此PID控制器具有24位AD、16位DA和0.01%最小输出百分比,可充分发挥位移探测器和电控针阀的高精度优势。同时此系列PID控制器还具有独立双通道控制、PID自整定、RS485通讯接口、串行控制和计算机软件等高级功能,可对两个冷却回路进行同时控制,便于进行调试以及后续的上位机通讯。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的直接冷却流量调节的闭环控制系统,结合合理的冷却结构设计,可大幅度减少电主轴的轴向膨胀,使预热和冷却速度更快,可大幅缩短等待时间。更重要的是采用了闭环控制方式,使电主轴始终处于稳定的热条件下,保证了加工精度的重复性,使得废品率更低。另外这种主动式冷却方案可有效散发主轴中产生的热量,提高了电机过载能力。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 电子万能试验机升降问题集锦

    电子万能试验机的升降问题看似是个小问题,可是有时候却不能忽视,因此熟悉升降的常见故障、故障产生原因及故障产生的后果,对用户来说百利而无一害。虽然很多厂家也针对这个问题进行了说明,但都只是简单介绍了产生的状况与故障的简单处理。济南凯锐通过一系列的实践经验,分别从现象,根由,影响等多个方面分别像大家介绍。一、故障现象1.停止不同2.只上升不下降或者只降不升3.上升与下降方向试验机升降的具体体现主要在试样的横梁上,横梁的移动状况直接就反应了设备的升降问题,而电子万能试验机产生的升降故障无非就是上面的三种情况。当然还有一种升降运行不畅的情况,但在用户的咨询记录中该现象几乎没有,所以这里不再说明。二、故障原因上面三种升降现象如果寻找根由的话主要可以从以下四个方面1.设备线缆是否接好,包括主机电源线,设备电源线,设备与主机的连接线等。2.电机线接反。特殊说明因为采用的电机都是交流伺服电机,因此这个问题出现的概率很低,但是对于有些直流电机的设备就要特别注意了。3.限位杆损坏,不起作用。正常情况下,电子万能试验机限位杆具有过载保护的作用,可是如果在运输或者用户的不恰当操作容易导致限位杆损坏。4.软件故障,或电脑故障。如电脑死机,设备不受控制时,或者软件按键不起作用,遇到这种情况,就能能按一下急停按钮,停止机器。三、故障影响记得在一次检查玻璃纤维的拉伸性能检测中,用户将试样的上端固定后,想要使横梁上升,以达到固定试验下端的高度时,在点击停止按钮后,设备依然处于上升状态,于是用户赶紧去弄限位,可是好像并没有起多大作用,最终导致该试样被夹具体顶出去很远,最后不得不按了急停按钮停止操作。还好这只是做的玻璃纤维的检测,如果做的是硬度较高的金属材料的检测,那么就有可能伤害到工作人员,或者直接损坏传感器、电机等。而出现这种情况的罪魁祸首就在限位杆上。因此小编在这里提醒一下用户,在使用设备之前,为安全考虑,用户每次做实验之前都要对设备进行试运行,来降低设备升降故障产生的可能性。

  • 安捷伦7900调机感度周期性升降

    背景:半导体行业,hot plasma(通He)与cool plasma(通H2+He)均有使用,由于机台背景值异常升高,整个排查过程中做了以下动作:进样管+雾化器更换的新的,雾化室+矩管进行浸泡清洗,采样锥+截取锥进行更换新的,离子透镜组件进行打磨清洗,八极杆进行异丙醇超声清洗,plate+deflect bias透镜进行打磨清洗现象:1ppb调机液,监控Co59,hot plasma(通He)与cool plasma(通H2+He)下,均出现感度周期性升降的现象,见附件问题:什么原因会导致此现象发生,该如何去验证,如何去调整机台?

  • 【讨论】电控调节微型气泵、微型真空泵流量的方法

    电控调节微型气泵、微型真空泵流量的方法(如何用电路调节微型气泵、微型真空的流量?)因仪器生产需要,我们希望能通过电调的方式调节我们仪器内微型气泵的流量。我们采用了改变微型真空泵工作电压的方式来调节流量。当然,只能在让泵的工作电压低于额定电压,而不能升高,否则可能烧坏电机。通过在成都气海公司生产的微型泵上测试,我们发现,降低工作电压,流量也随之降低,而且比较接近线性关系。但这种方法只能小幅度调节流量,大范围调节还是需要使用流量调节阀。而且,当工作电压低于额定值时,泵可能无法启动。试验发现,负载越大,泵所需要的启动电压越高,直至额定值,负载小的时候在欠压情况下可启动。泵欠压运行时有很多好处,噪音明显降低、寿命明显延长,长时间测试证明,电压越低,这两个优点越显著。缺点是当电压低到一定程度时流量脉动性就显现了,这点可用转子流量计监测到。我们把成都气海的泵昼夜不停地连续运转了三个月,试验中,泵的表现非常稳定可靠,并未发现欠压运行带来的其它弊端。其它国产品牌在同样试验中表现较差,或有些泵几天就坏了,或是工作不稳定、频繁故障。欠压运行有一点要千万注意:在挂负载的情况下,泵一定要能够正常启动!否则,输入的电能不能转化为动能,而全部转化成热能,使电机不断升温直至烧毁。当然不同的负载会有不同的启动电压,启动电压的最低值要根据自己的负载情况确定。

  • 高低温试验机中线性升降温和非线性升降温的区别

    在进行温度试验时,有些试验会对高低温试验机的升温和降温速率做出明确要求,而升降温速率又分为线性和非线性,两者有何区别呢 线性升降温是指高低温试验机在升降温过程中,它的升温速率和降温速率是不变的,举例说明:试验要求升降温速率为3度/分钟,那么升温和降温过程中,温度变化的速率就是3度每分钟,是恒定的,不会多也不会少,匀速进行温度的变化。 非线性升降温是指高低温试验机在升降温过程中,在高低温试验箱在某段时间内工作的升温度或降温速度是有变化的,它取的是一个平均升温值或降温值;例如:在某段时间内,高低温箱的升温度度刚开始是2度每分钟,一段时间内是3度每分钟,又一段时间内是是4度每分钟,但在整个时间段内,它平均是以3度每分钟来进行升温或降温。非线性是指平均下来是3度每分钟,在温度变化过程中会有浮动。

  • 快温变试验箱要满足极限升降温速率的要求

    快温变试验箱是一种在短时间内提供高、低温快速变化的环境设备,升降温速率一般为5~10℃/min或更快,主要用于适用于国防工业,航空工业、自动化零组件、汽车部件、电子电器仪表零组件、电工产品、塑胶、化工业、食品业、制药工业及相关产品等设备在周围大气温度急剧变化条件下的适应性试验(冲击)和作温度快速变化或渐变条件下的适应性试验及应力筛选试验以便对试品在拟定条件下的性能、行为作出分析及评价(快速变化)。快温变试验箱除了要满足升降温速率的要求外,还对试验箱能够实现快速的线性变温以及防止温度的过冲和保持温度的稳定性有一定的要求,因此对控制系统便提出了较高的要求。

  • 电子万能试验机升降有问题怎么办

    电子万能试验机的升降问题看似是个小问题,可是有时候却不能无视,因而了解升降的常见毛病、毛病发生缘由及毛病发生的结果,对用户来说百利而无一害。尽管电子万能试验机许多厂家也对准这个问题进行了阐明,但都仅仅简略分析了发生的状况与毛病的简略处置。济南思达经过一系列的实践经验,分别从表象,渊源,影响等多个方面分别像我们分析。一、毛病表象1.中止不一样2.只上升不下降或许只降不升3.上升与下降方向试验机升降的详细表现首要在试样的横梁上,横梁的挪动状况直接就反响了设备的升降问题,而设备发生的升降毛病无非就是上面的三种状况。当然还有一种升降运转不畅的状况,但在用户的征询记载中该表象几乎没有,所以这里不再阐明。二、电子万能试验机毛病缘由上面三种升降表象若是寻觅渊源的话首要可以从以下四个方面1.设备线缆能否接好,包罗主机电源线,设备电源线,设备与主机的连接线等。2.电机线接反。特别阐明由于选用的电机都是沟通伺服电机,因而这个问题呈现的概率很低,可是关于有些直流电机的设备就要特别注意了。3.限位杆损坏,不起效果。正常状况下,电子万能试验机限位杆具有过载维护的效果,可是若是在运送或许用户的不恰当操作简单招致限位杆损坏。4.软件毛病,或电脑毛病。如电脑死机,设备不受操控时,或许软件按键不起效果,遇到这种状况,就能能按一下急停按钮,中止机器。三、电子万能试验机毛病影响记住在一次查看玻璃纤维的拉伸功能检测中,用户将试样的上端固定后,想要使横梁上升,以到达固定试验下端的高度时,在点击中止按钮后,设备仍然处于上升状况,所以用户赶忙去弄限位,可是如同并没有起多大效果,结尾招致该试样被夹详细顶出去很远,最终不得不按了急停按钮中止操作。还好这仅仅做的玻璃纤维的检测,若是做的是硬度较高的金属材料的检测,那么就有能够伤害到工作人员,或许直接损坏传感器、电机等。而呈现这种状况的元凶巨恶就在限位杆上。因而小编在这里提示一下用户,在运用设备之前,为安全思考,用户每次做试验之前都要对设备进行试运转,来下降设备升降毛病发生的能够性。

  • 丝杆升降机在使用过程中需要注意什么呢?

    [font=微软雅黑][color=#333333]对于电动升降机产品的应用已经受到了广泛的关注,那么,我们使用电动升降机的过程中应该注意什么呢?一起来了解一下吧。[/color][/font][font=微软雅黑][color=#333333]1、电动升降机在使用时,工作台面应保持水平状态。[/color][/font][font=微软雅黑][color=#333333]2、室外作业,环境恶劣时,使用人员应系安全绳。电动升降机有滑动摩擦机构和滚动摩擦机构之分。滑动丝杠螺母机构结构简单,加工方便,制造成本低,具有自锁功能,但其摩擦阻力矩大、传动效率低。[/color][/font][font=微软雅黑][color=#333333]3、机器升降过程中,严禁人员攀爬。[/color][/font][font=微软雅黑][color=#333333]4、固定式电动升降机升起后不得移动,四个支腿未撑紧不得起升作业。[/color][/font][font=微软雅黑][color=#333333]5、使用过程中严禁超载作业,所载物品应妥善放置。[/color][/font][font=微软雅黑][color=#333333]6、所用润滑油应保持清洁,不得混入水及其它杂质,一般每半年更换一次。[/color][/font][font=微软雅黑][color=#333333]7、[/color][/font][font=微软雅黑][color=#333333][font=微软雅黑]维修维护时或出现故障时,应及时切断动力电源,升起后应将电动升降机固定牢方可进行。电动升降机低速、低频率:主要用于大负荷、低速与无需频繁[/font] [font=微软雅黑]工作的场所。[/font][/color][/font]

  • 升降温速率最快的DSC?

    就个人所知,目前升降温速率最快的是梅特勒-托利多推出的Flash DSC,看产品介绍上说升温速率可以达到10的7次方数量级(K/min),降温速率可以达到10的6次方数量级(K/min),但是仪器的温度范围最低只能到-95度,(1)为什么不采用液氮制冷,使温度范围可达到更低呢?(本人主要关注低温温区的),(2)这款仪器是采用了什么技术才使得升降温速率可以达到这么高啊?(3)这款仪器的价格貌似不菲(不知道具体多少),而且测量成本也很高,一般实验室貌似承受不起。对于常规型的DSC,是不是貌似就属PE的DSC可以达到的升降温速率最快了?如果有更快的,还请达人推荐。

  • 【求助】关于LEICA显微镜

    如题:公司一台LEICA显微镜升降台出了问题。不知道国内有没有LEICA显微镜的技术服务中心或维修机构,如果有的话请留个联系方式,谢谢!

  • 论搅拌器升降方式的重要性

    论搅拌器升降方式的重要性

    不知道,用过混凝试验搅拌器的朋友们有没有发现到,搅拌器的升降方式对整个混凝沉淀实验的影响至关重要,以下就是小生所总结的一个心得:近年来混凝试验搅拌器的市场竞争愈来愈激烈,市场上也相继涌现了很多不同的品牌、不同的型号,从当前的混凝试验搅拌器的升降系统来看,可以划分两种,一种是垂直升降式混凝试验搅拌器,一种是翻转式混凝试验搅拌器,那么什么是垂直升降式搅拌器和翻转式搅拌器呢? 它们又有什么优势呢?? 下面就让小编来给大家仔细分析一下吧:相信,大家已经从字面意思上大概了解了两种搅拌器的主要区别了,没错,垂直升降式搅拌器和翻转式搅拌器在这里均指其搅拌轴的复位方式的差异,垂直升降式搅拌器:主要是指六根搅拌轴在工作完成后其不同搅拌轴的归位方式均呈垂直升降式自动复位,这种搅拌器的主要优势是,容易保护矾花的形成。因为,这种搅拌器的搅拌轴中线心是铅锤于每个搅拌杯的,所以当搅拌工作完成后,其杯中的水流状应该处于漩涡式,如果搅拌轴在中心位置自然上升,自然不会破坏其水流状态,就更容易保护矾花的形成。[img=混凝试验搅拌器,690,517]http://ng1.17img.cn/bbsfiles/images/2017/06/201706011402_01_3192191_3.jpg[/img]而翻转式搅拌器,用过的朋友们可能都知道,这种搅拌器在搅拌轴复位时间上占了一定的优势,也就是说它的搅拌轴在复位时速度很快,但是,这种搅拌器的复位方式会破坏实验中的水流状态,进而会影响到矾花的形成,其次这种搅拌器无法自动翻转,试想一下,如果实验结束后,没有及时对其进行翻转,而杯中矾花却已经在逐渐形成,那么,如果再次进行翻转的话,就会直接影响到整个实验的沉淀时间和矾花形成。[img=,644,393]http://ng1.17img.cn/bbsfiles/images/2017/06/201706011400_01_3192191_3.jpg[/img]总结:以上就是不同升降式混凝试验搅拌器的主要区别和优势,作为混凝实验其主要的目的就是,在不受外界其它因素影响下,能够观察到整个混凝沉淀和矾花形成的过程,而混凝实验中矾花则是用来衡量混凝沉淀实验的效果的重要因素,矾花越密实、越大则表明混凝沉淀效果好。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制