当前位置: 仪器信息网 > 行业主题 > >

多片磨片机

仪器信息网多片磨片机专题为您提供2024年最新多片磨片机价格报价、厂家品牌的相关信息, 包括多片磨片机参数、型号等,不管是国产,还是进口品牌的多片磨片机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多片磨片机相关的耗材配件、试剂标物,还有多片磨片机相关的最新资讯、资料,以及多片磨片机相关的解决方案。

多片磨片机相关的资讯

  • Molecular Devices 膜片钳产品家族新成员——IonFlux™ 全自动膜片钳系统
    膜片钳产品家族新成员&mdash &mdash IonFlux&trade 全自动膜片钳系统我们非常荣幸的宣布&mdash &mdash Molecular Devices膜片钳产品家族又有了一位新成员&mdash &mdash IonFlux&trade 系统IonFlux 全自动膜片钳系统整合了专利的微流体灌注系统,体积小巧,可以放置在实验台上,设计简洁,类似读板机。方便且高性能的桌面实验平台:手动膜片钳的数据质量 - 稳定的G&Omega 封接灵活 - 兼容实验室常用的液体处理系统快速加样 - 可用于电压门控和配体门控的离子通道4 - 40° 温度控制 - 适于低温敏感通道的研究,及生理状态下通道活性研究 替代手动膜片钳:实惠 - 价格相当于手动膜片钳设备操作简单 - 无需专业的操作人员操作访问我们的网站 了解IonFlux系统更多独特的优点与技术。
  • 你知道怎么更换溶氧仪电极膜片吗?
    在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。那么你们知道溶氧仪电极膜片怎么更换吗?下面就由我来教大家怎么更换溶氧仪电极膜片:  1、如果仪表处于运行状态,应先切断电源,八点几从测量池中取出。  2、从分析仪上拆下电极,电极结构如图所示。  3、垂直握紧电极,使电极朝上,旋下膜压帽,把旧膜从膜压帽中取出,并用纯净水冲洗膜压帽和新膜。将新膜黑点朝上放在膜压帽内。   4、电极朝下,旋开电极侧面的密封螺丝,使电解液流出,然后再拧紧螺丝。  5、用纯净水冲洗金阴极,然后用软纸巾轻轻吸去金阴极表面附着的水珠。  6、将电极朝上,垂直电极,用注射器通过电极上面的孔往电极内注入电解液,直到有电解液溢流。这样可确保电极内没有气泡存在。  7、将膜压帽旋在电极上,用装膜工具拧紧膜压帽,然后拧松一点,再拧紧。  8、用纯净水彻底冲洗电极,并用软纸巾轻轻吸干电极和膜表面的水珠。特别注意不要用力电极膜。  注意事项:  1、请勿用手触摸金阴极表面,受伤的油脂回影响电极特性。  2、电解液中含有低于1%的氢氧化钾,尽量避免与眼睛接触,,若不慎接触眼睛,应迅速用大量清水冲洗。  3、短时间与皮肤接触并无伤害,用水冲洗即可。
  • Molecular Devices联合东乐自然基因举办第十二届膜片钳技术培训班
    Molecular Devices联合东乐自然基因举办第十二届膜片钳技术培训班(第二轮通知)尊敬的老师您好!为满足广大电生理科研人员的需求,由Molecular Device与东乐自然基因生命科学公司举办的第十二届膜片钳技术培训班将于2016年5月11-13日在北京大学医学部举行。届时将由多名著名电生理学家与您面对面交流,并配有五套膜片钳设备可在现场操作,改变传统的培训方式,使得理论与实践相结合,使您可以快速上手做实验。为保证教学质量本学习班名额有限,欢迎有兴趣的科研人员尽早报名!本届培训班我公司将与河北医科大学,北京大学医学部联合承办。 一、注册报到1、培训课程及安排:5月11日 08:00-09:00 注册报到09:00-12:00 膜片钳概述及基础理论 关兵才教授12:00-13:30 午餐(样机操作) 13:30-17:00 200B使用方法(样机操作) 关兵才教授5月12日 09:00-10:30 如何将电生理数据转化为高质量的图表 邹安若博士 11:00-12:00 如如何排除膜片实验中的噪音干扰 汪世溶博士12:00-13:30 午餐(样机操作) 13:30-16:00 700B的使用方法(200B/700B样机实践操作) 关兵才教授16:30-17:30 在体多通道记录技术 王远根5月13日 09:00-10:30 单细胞膜片钳与PCR 王升教授11:00-12:00 单通道膜片钳 张炜教授12:00-13:30 午餐13:30-16:00 200B/700B样机试用及现场答疑18:00-20:00 自助晚宴(每位报名缴费学员均可获得5月13日晚的自助晚宴券一张) 2、培训地点:北京市海淀区学院路38号北京大学医学部国家重点实验室2楼会议室 二、主讲人介绍:关兵才教授:现任河北医科大学基础医学院生理教研室教授, 1993年毕业于同济医大生理学专业,2004年~2008年在美国俄勒冈健康科学大学和新加坡国家心脏中心从事博士后研究。由于其扎实的电学、物化等电生理相关学科的知识, 关教授对电生理技术有极其深入的理解,并有较丰富的实践经验。主要从事初级感觉传入信息调制的研究,并首次将膜片钳技术应用于内耳微动脉段的原位细胞。主编《细胞电生理学基本原理与膜片钳技术》一书。 王升教授: 现任河北医科大学基础医学院生理教研室教授、学术带头人、博士研究生导师。2006年毕业于英国布里斯托大学生理系并获博士学位。2007-2012年分别在美国凯斯西储大学神经科学系和弗吉尼亚大学药理系任助理研究员,从事神经生物学方面研究。自2012年6月起任职于河北医科大学。主要从事循环和呼吸神经生理学领域的研究。 邹安若博士: 现任青岛海威磐石生物医药技术有限公司总经理,青岛大学创新药物研究院教授。1990年毕业于同济医科大学生理系获博士学位,1995年在犹它大学附属医院心血管专科从事博士后研究,师从世界著名电生理学家Dr.Michale Sanguinetti采用电生理学方法结合分子生物学技术研究遗传性和获得性(药物所致的)心律失常的机制(LQT syndrom)并取得了显著的成果。1999加盟安进生物制药公司(全世界最大生物制药公司)从事与离子通道有关的新药的开发研究。在国际著名刊物(包括NATURE)上发表50多篇文章。现主要从事药物的心脏安全评估和新药的研发。 张炜教授: 2000年毕业于河北医科大学药理学专业,获硕士学位。之后进入中国协和医科大学药物研究所,攻读博士学位,从事钾离子通道新药开发工作。2003年获博士学位。同年来到耶鲁大学医学院从事博士后工作,主要研究,1)谷氨酸受体亚型AMPA受体通道特性研究;2)谷氨酸受体亚型kainate受体辅助调节蛋白的研究;3) 谷氨酸受体亚型NMDA受体通道动力学研究。共发表论文9篇。自2012年7月结束研究,重返河北医科大学工作。2014年入选中组部青年千人计划。 汪世溶博士:现任美国Sensapex公司亚洲区技术总监 。硕博连读于中科院神经所,导师周专,接受过全面、扎实的电生理培训。博士后就读于University of California, San Diego,主攻神经发育和干细胞研究。 王远根: 东乐自然基因生命科学公司市场部产品经理,主要负责在体多通道记录研究。三、培训班费用: 包括资料费、午餐费。 1、培训费1,500元人民币/人,含培训班讲义以及5月11-13日3天午餐。 2、学员住宿、交通、早晚餐自理。请学员提前安排好交通和住宿。 3、缴费方法(转账或汇款请注明汇款人姓名与单位并保留汇款凭证) 单位汇款:户名:北京金科颐科技发展有限公司 开户行:光大银行北京德胜门支行 账号:350 101 880 000 516 43 个人转账:户名:刘晓鸣 开户行:北京银行亚运村支行 账号:6210 3000 1783 4836 四、乘车路线及周边酒店:1、乘车路线:A、北京西站 地铁9号线六里桥站换乘地铁10号线西土城站下车,B口出向北800米到达;B、北京南站 地铁4号线海淀黄庄站换乘地铁10号线西土城站下车,B口出向北800米到达;C、北京首都机场 地铁机场线至三元桥站,换乘地铁10号线外环到海淀黄庄站,转10号线内环到西土城站下车,B口出向北800米到达,或乘坐机场大巴中关村线。 2、会场附近酒店:北京赢家商务酒店地址:北京海淀区学院路38号(北大医学部校内) 电话:010-82320101 汉庭北京中关村学院桥酒店(北大医学部西门斜对面)地址:北京市海淀区学院路31号6号楼(北四环学院桥西北角)电话:010-82326688 念家快捷宾馆地址:北京市海淀区学院路甲38号 (北大医学部西门向南200米)电话:010-62361668/62359969 3、周边旅游:鸟巢、水立方、奥林匹克公园线:地铁十号线西土城站上车,到北土城站换乘地铁8号线奥体中心下车。圆明园、颐和园线:地铁十号线西土城站上车,到海淀黄庄站换乘地铁4号线圆明园、颐和园站下车。长城、十三陵等其他一日游可致电北京康辉旅行社010-58302100/13810256751. 五、联系人:东乐自然基因市场部李小姐:010-62259284-231(200)邮箱:market@dlnaturegene.com六、注册报名回执表(附件/下载)东乐自然基因生命科学公司2016-3-31
  • Molecular Devices 第八届膜片钳技术培训班邀请函
    第八届膜片钳技术培训班邀请函 东乐自然基因生命科学公司(DL Naturegene Life Sciences, Inc.)从2006年开始,已在北京(2006年)、太原(2007年)、武汉(2007年)、南京(2008年)、成都(2008年)、哈尔滨(2009年)、南昌(2010年)等地共举办了七届膜片钳技术培训班。培训班授课内容、实验的演示与操作涉及到膜片钳技术的方方面面,有效地促进了我国膜片钳技术的发展,深受广大学员的欢迎。在此我们非常感谢北京大学医学部、山西医科大学、华中科技大学、东南大学、成都中医药大学、哈尔滨医科大学、南昌大学以及国内膜片钳技术的科研人员对我们培训班的大力支持和帮助! 为继续帮助国内广大从事膜片钳技术的实验人员、教师和学生学习膜片钳技术,解决膜片钳实验中的具体疑难问题,我公司联合中山大学生命科学院,决定于2012年11月25-27日在广州中山大学生命科学院举办为期3天的第八届膜片钳技术培训班。通过总结我们历次培训班的经验,以及根据广大学员们的建议,此次培训班定为初级培训班,主要讲述膜片钳技术的基础理论,目的是为刚入门的大学生、硕博研究生、希望巩固和拓展膜片钳技术基础知识的科研人员,以及国内相关公司的销售人员和售后技术工程师提供技术理论培训。另外,我们将在明年(2013年)陆续举办中级、高级膜片钳技术培训班,同时我们还不定期举办Axon膜片钳专题讲座,满足不同层次学员的需求。现特邀请您参加,并就培训班具体事项请见附件,请填写附件中的回执并发给东乐自然基因生命科学公司。主办单位: 东乐自然基因生命科学公司 中山大学生命科学院主讲人:刘振伟 博士(东乐自然基因生命科学公司市场部)刘 斌 博士(东乐自然基因生命科学公司市场部)培训费1,500元人民币/人,含培训班讲义、第1天(11月25日)晚宴以及25-27日3天午餐。学员住宿、交通、早晚餐自理。我们推荐的宾馆见后。请学员提前安排好交通和住宿。详细信息请见附件。附件:第八届膜片钳技术培训班邀请函联系人:东乐自然基因广州办事处:王天睿 女士(020-87670126,13826021549,teri.wang@dlnaturegene.com)东乐自然基因北京总部:李姝敏 女士(010-62226882,15101049590,ailis.li@dlnaturegene.com)
  • 河南:推动半导体封测、切片、磨片、抛光等专用设备产业化
    2月16日,河南省人民政府印发《“十四五”数字经济和信息化发展规划》(以下简称“《规划》”)。《规划》提到,要积极布局半导体材料产业,发展以碳化硅、氮化镓为重点的第三代半导体材料,提升大尺寸单晶硅抛光片、电子级高纯硅材料、区熔硅单晶研发及产业化能力,推进新型敏感材料、复合功能材料、电子级氢氟酸、半导体靶材研发及产业化,提升集成电路设计能力。充分挖掘省内产业基础,发展光通信芯片、电源管理芯片。支持郑州航空港经济综合实验区发展高端模拟与数模混合芯片,提升硅单晶抛光片产能,推进第三代化合物半导体生产线、高可靠集成电路封装测试生产线、工业模块电源生产线建设,加快实现规模化生产,推动半导体封测、切片、磨片、抛光等专用设备产业化。《规划》原文如下:河南省“十四五”数字经济和信息化发展规划  近年来,互联网、大数据、云计算、人工智能、区块链等技术加速创新,日益融入经济社会发展各领域全过程,数字经济发展速度之快、辐射范围之广、影响程度之深前所未有,正在成为重组全球要素资源、重塑全球经济结构、改变全球竞争格局的关键力量。为深入贯彻党中央、国务院关于大力发展数字经济的决策部署,加快推动数字产业化、产业数字化,做大做强数字经济,建设数字河南,推动全省经济社会高质量发展,按照《“十四五”数字经济发展规划》《河南省国民经济和社会发展第十四个五年规划和二○三五年远景目标纲要》总体部署,编制本规划。  一、发展基础和面临形势  (一)发展基础。近年来,我省以建设国家大数据综合试验区为牵引,培育壮大数字经济核心产业,加快推进数字化转型,积极发展新业态新模式,推动数字经济与实体经济深度融合,强化信息化赋能,数字经济发展和信息化建设呈现良好发展态势,正在成为全省经济社会高质量发展的新引擎。  1.政策机制基本建立。制定推进国家大数据综合试验区建设实施方案、若干意见、产业发展引导目录和促进大数据产业发展若干政策等,明确我省大数据发展思路、战略目标、主要任务和产业导向。根据国家数字经济发展战略部署,印发实施数字经济发展实施方案等政策文件,加快发展以数据为关键要素的数字经济。成立省委网络安全和信息化委员会、省建设国家大数据综合试验区领导小组,建立省促进数字经济发展部门协调联动推进机制,我省支持数字经济发展的政策体系基本建立,统筹协调政治、经济、文化、社会等各领域网络安全和信息化重大问题的能力显著增强。  2.数字产业快速发展。全面推进大数据、鲲鹏计算、网络安全、新一代人工智能等数字产业发展,引进华为、阿里巴巴、海康威视等一批龙头企业,搭建互联网医疗系统与应用国家工程实验室等60个省级及以上大数据创新平台和12个大数据双创基地,初步形成以龙子湖“智慧岛”为核心区、18个大数据产业园区为主要节点的“1+18”发展格局,郑州下一代信息网络、信息技术服务产业集群入选首批国家战略性新兴产业集群发展工程。大数据产业。争取获批建设国家社会信用体系与大数据融合发展试点省,交通、扶贫、金融、能源、旅游等领域大数据创新应用取得突破性成效,发展了一批行业应用型骨干企业。黄河鲲鹏计算产业。郑州中原鲲鹏生态创新中心、许昌鲲鹏制造基地、新乡鲲鹏软件园快速发展,许昌制造基地已具备年产“Huanghe”服务器36万台、PC机75万台、主板25万片的能力,成为华为鲲鹏国内重要生产基地。第五代移动通信技术产业。聚焦产业链关键环节开展专题招商,培育了5G芯片、智能终端、软件开发、关键材料等特色产品,郑州大学第一附属医院建成国内首个连片覆盖的5G医疗实验网,平顶山跃薪时代“5G+智慧矿山”已实现成熟应用和复制推广。网络安全产业。培育了信大捷安、山谷网安等骨干企业,构建了“芯片+软件+终端+平台+服务”的全产业链条,安全芯片、不良信息监测等领域技术水平全国领先,郑州金水科教园区获批国家网络安全创新应用先进示范区,产业规模达到200亿元。新一代人工智能产业。引进落地科大讯飞、寒武纪、释码大华等龙头企业,建成郑东新区智慧岛未来城市全景实验室等应用场景,其核心及相关产业规模突破300亿元。卫星通信产业。北斗应用已覆盖农业农村、智慧城市等领域,拥有一批高端研发机构,加快推进孵化器基地和产业园建设。区块链产业。全省注册区块链业务的企业达到339家,中盾云安进入全国区块链百强企业名录。  3.产业数字化转型持续推进。新一代信息技术的加速融合应用成为传统行业高质量发展的重要方式。农业数字化转型稳步实施。全省行政村益农信息社覆盖率达到85.8%,农业数字化设施加快部署,建成了一批大田种植、设施园艺等物联网示范基地,鹤壁市入选全国首批农业农村信息化示范基地。工业数字化转型快速推进。实施机器人“十百千”示范应用倍增工程,培育省级智能车间(智能工厂)571个、上云企业超过10万家,中信重工矿山装备、一拖现代农业装备等8个工业互联网平台入选国家工业互联网试点示范项目。服务业数字化转型全面展开。跨境电商、共享经济等新型服务模式特色突出,形成以中钢网为代表的B2B电子商务平台、以UU跑腿为代表的生活服务共享平台等一批平台经济企业,建成龙门石窟全国首个智慧旅游景区,物流信息全程监测、预警及需求对接服务平台覆盖全省国内物流量的86%,2020年全省电子商务交易额突破1.9万亿元,跨境电子商务进出口交易额达到1745亿元。  4.数字化治理能力不断提升。数字技术大规模应用,政府管理效率和服务能力大幅提高,民众满意度和获得感持续提升。数字政府服务高效便捷。建成全省一体化在线政务服务平台、“互联网+监管”平台和贯通省、市、县、乡、村五级的政务服务网,河南政务服务移动端“豫事办”上线运行,“最多跑一次”事项实现率达到90%。新型智慧城市建设提速。制定实施加快推进新型智慧城市建设的指导意见,组织开展郑州等8个新型智慧城市试点,统筹推动各地开展新型智慧城市建设,郑州市生态宜居、驻马店市惠民服务被国家评为新型智慧城市典型优秀案例。数字乡村建设全面推进。建成省、市、县、乡、村五级联网的乡村治理数字化平台,培育了一批数字乡村特色小镇,鹤壁市淇滨区、灵宝市、西峡县、临颍县入选首批国家数字乡村试点地区。  5.数字基础设施加快完善。全省通信网络基础设施全国领先,算力基础设施加快布局,为数字经济发展提供了有力支撑。通信网络基础设施。网络基础设施覆盖率大幅提升,在全国率先实现20户以上自然村4G和光纤接入全覆盖;累计建设5G基站4.5万个,实现县城及以上城区5G网络全覆盖;互联网省际出口带宽达到26416G,居全国第10位;郑州国家级互联网骨干直联点总带宽达到1360G,居全国第3位;郑州、开封、洛阳互联网国际专用通道建设开通宽带达到320G,实现自贸区全覆盖。移动物联网。物联网终端用户达到6655.7万户,居全国第7位,部分省辖市实现县城以上区域窄带物联网连续覆盖。卫星通信基础设施。建成启用建站技术标准最高、站点数量最多、密度最大、完全自主可控的省级北斗地基增强系统,形成由247个站点组成的卫星导航定位基准站网,建立了由1个省级数据中心、28个市级分中心组成的运行架构和数据处理分发服务体系。数据中心。建成国家超级计算郑州中心、中国移动(河南)数据中心、中国联通中原数据基地、中国电信郑州高新数据中心等一批新型数据中心,全省建成大型数据中心3个、中小型数据中心84个。  (二)面临形势。随着物联网、大数据、人工智能等新一代信息技术蓬勃兴起,世界经济已进入以数字化、网络化、智能化为显著特征的发展新阶段,数字经济快速发展,信息化快速推进,引发经济社会各领域数字变革,已成为打造经济发展新高地、应对国际激烈竞争、抢抓战略制高点的重要手段。面对世界经济复杂局面,特别是在新冠肺炎疫情期间,数字经济展现出顽强的韧性,远程医疗、在线教育、共享平台、协同办公、跨境电商等服务广泛应用,对促进各国经济稳定、推动国际抗疫合作发挥了重要作用。主要发达国家前瞻布局数字经济,加快推进信息化进程,加强对国际数字贸易新规则的控制权和话语权,数字与实体深度交融、物质与信息耦合驱动的新型发展模式加速形成,做大做强数字经济已成为构筑国家竞争新优势的战略选择。  发展数字经济和推进信息化建设是党中央、国务院全面分析世界经济格局变革新趋势,着眼中国经济社会迈入新阶段作出的重大战略部署。习近平总书记多次作出指示批示,强调要加快发展数字经济。《中共中央关于制定国民经济和社会发展第十四个五年规划和二○三五年远景目标的建议》明确提出,“十四五”期间要建设数字中国,发展数字经济,推进数字产业化和产业数字化,推动数字经济和实体经济深度融合,打造具有国际竞争力的数字产业集群。当前,我国数字经济和信息化正在转向深化应用、规范发展、红利释放的新阶段,数字技术快速推动各行业在生产方式、商业模式、管理范式等方面发生深刻变革,数字经济在国民经济中的地位进一步凸显,对经济增长的贡献率达到60%以上,日益成为推动经济快速增长、包容性增长、可持续增长的强大驱动力。  (三)机遇挑战。我省在发展数字经济和信息化方面具有突出的特色优势和较好的实践基础。当前我省正处于经济社会发展加速转型升级的关键时期,人力资源、应用市场、交通物流、产业集群等优势凸显,基础设施支撑和技术创新能力不断提高,为数字经济和信息化发展提供了良好环境。黄河流域生态保护和高质量发展、促进中部地区崛起等重大战略的深入实施,为我省发展数字经济和信息化带来了新的机遇,提供了持久动力,有利于推动构建定位清晰、任务明确、协同有序的数字经济和信息化新发展格局。我省有1亿多人口,以郑州为中心的500公里半径内(高铁1.5小时交通圈)覆盖4亿人口,随着这一区域的内需扩大和消费升级,优越的区位交通、万亿级的大市场、海量的数据资源将为数字经济发展和信息化建设提供巨大空间。  “十四五”时期,我省数字经济发展和信息化建设还面临一些挑战。各地加快抢占数字经济和信息化发展制高点,明确把建设数字经济强省作为重大发展战略,加强新型基础设施建设,布局发展5G、人工智能等新兴产业,全国新一轮竞争格局正在加速形成。虽然近年来我省数字经济发展和信息化建设取得了明显成效,但总体水平不高,与经济总量不匹配,数字经济龙头企业数量少、核心产业规模小、信息化建设相对滞后,缺乏有影响力的研发机构、创新平台和知名高校,大数据、云计算、人工智能等领域拥有核心技术的高端人才和团队数量较少,中小微企业、传统行业企业“不会转”“不能转”“不敢转”等问题比较突出,数据的权属界定、交易流通、开发利用等标准不完善,面临较大竞争压力。  二、总体要求  (一)指导思想。坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的十九大和十九届二中、三中、四中、五中、六中全会精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,紧抓构建新发展格局战略机遇,以推动高质量发展为主题,以国家大数据综合试验区为牵引,坚持数字产业化、产业数字化、数字化治理、数据价值化,着力实施数字化转型战略,推进“2143”重点工程,加强新型基础设施建设,抢先开展数据价值化试点,全面提升数字经济核心产业发展水平、数字社会和数字政府治理能力,推动数字经济、信息技术和经济社会深度融合,加快建设数字河南,打造数字经济发展新高地。  (二)基本原则。  1.创新引领、融合应用。坚持创新核心地位,加强技术、应用和商业模式协同创新,打造一批创新公共服务平台,强化创新人才引培,推进工业软件、半导体等“卡脖子”领域创新与产业培育,鼓励人工智能、量子信息、区块链等新兴信息技术研发投入和前瞻性布局。强化应用牵引,推动互联网、大数据、人工智能与实体经济、社会治理深度融合,打造一批应用场景,培育数字经济和信息化发展新业态、新模式、新路径。  2.重点突破、整体提升。充分发挥我省人口、交通、产业蕴藏的海量数据和丰富应用场景优势,在重点省辖市、重点领域谋划实施数字经济和信息化重点工程,推进试点示范,培育优势集群,打造典型应用场景。引导各地发挥比较优势,集中要素资源,加快发展特色产业,推动数字化转型,形成差异布局、分工合作、协同共进的良性发展局面。  3.开放带动、合作共赢。坚持以全球视野推进数字经济发展和信息化建设,主动融入国内大循环、国内国际双循环发展格局,在产业转型升级、数字化治理等领域加强与国内外的交流合作。用好数字经济峰会、“强网杯”、世界传感器大会等展示交流合作平台,推进与京津冀、长三角、粤港澳大湾区等优势区域及“一带一路”沿线国家和地区的战略合作,引进一批数字经济龙头企业,培育一批根植性强的数字经济新型市场主体。  4.共建共享、安全可控。坚持省级统筹,建立数字基础设施和数据资源开放共享机制,推进设施、数据、通用技术开放共享,充分发挥数据作为数字经济关键要素的重要作用,以数据资源价值挖掘激发经济发展新活力。建设数字经济安全保障体系,加强数字基础设施网络安全、数据安全防护,积极发展网络安全产业,加强个人信息保护,防范、控制和化解数字化转型过程中的风险。  (三)发展体系。以数字基础设施、数据价值化、数字产业化、产业数字化、数字化治理、网络安全体系为重点,建立数字经济和信息化发展体系。以培育壮大先进计算、智能终端、软件等重点产业为引领补强数字产业化短板,以加速农业、制造业、电商物流、文旅等重点领域智能化发展为突破全面推进产业数字化转型,以强化数字政府、智慧城市、数字乡村建设以及重点领域数字化管理服务为主要途径提升政府数字化治理水平,以高水平新型基础设施体系建设为现代化河南建设提供新平台、新支撑,以数据共享开放为核心推进数据价值化,以安全设施建设、安全技术应用等为重点健全网络安全保障体系,加快建立数字经济和信息化发展生态体系。  1.新型基础设施体系。优化升级5G、千兆光纤、移动互联网、卫星互联网等通信网络基础设施,统筹布局以数据中心、边缘计算中心、人工智能计算中心为核心的算力基础设施和新技术设施,加快推进传统基础设施智能化升级,前瞻布局创新基础设施。  2.数据价值化体系。建立数据标准体系,建设数据资源池,构建数据资源体系,推进数据资源化。健全数据流通机制,推进数据标准制、确权、定价、交易、证券化和监管工作,推进数据资产化和资本化。开展数据采集、存储、清洗、开发、应用等全流程市场化服务,培育数据服务能力。  3.数字产业化体系。以新型显示和智能终端、物联网、网络安全为重点培育壮大优势产业,以先进计算、5G、软件、半导体、卫星和地理信息为重点攻坚发展基础产业,以新一代人工智能、量子信息、区块链为重点积极布局前沿产业。发展在线服务、共享服务、无人服务等服务新模式,培育平台经济新业态。  4.产业数字化体系。建设农业物联网,发展精准种植养殖,推广智能农机和数字营销,建设全国农业数字化发展典范。建设工业互联网,推进智能制造和服务型制造,建立健全工业数据发展体系。加快发展智慧物流、电子商务、智慧金融、智慧文旅、智慧养老等,推进服务业数字化改造。  5.数字化治理体系。加强政务网络、政务云建设,推广“一网通办”“一网通管”“一网通贷”等,持续打造“豫事办”政务服务品牌,建设高效透明的数字政府。建设新型智慧城市、数字乡村,打造利企便民惠民的数字社会。推进智慧交通、智慧健康、智慧教育、智慧养老、智慧人社等建设,提高数字化公共服务效能。推进智慧环保、智慧监管、智慧应急、智慧安防、智慧城管等建设,提升数字治理能力。  6.数字安全保障体系。完善网络安全保障制度,加快重点领域、复杂网络、新技术应用、大数据汇聚、互联系统等各类型条件下网络安全保障制度建设。构建网络安全保障应急体系,建立网络安全事件快速响应和应急处置机制。  (四)主要目标。经过五年努力,全省数字经济和信息化发展水平明显提高,关键技术自主创新能力显著增强,数字经济核心产业规模实现倍增,数据价值化试点在全国率先推进,产业数字化水平进入全国先进行列,数字基础设施支撑和安全保障能力显著增强,数字治理和服务能力大幅提升,数字经济生态系统持续完善,郑州成为国家重要通信枢纽、信息集散中心,郑洛数字经济创新发展试验区成为具有国际竞争力的数字产业集群,基本建成全国数字产业化发展新兴区、产业数字化转型示范区。  1.新要素:数据价值化抢先推进。通过实施数据价值化工程,在全国率先开展数据价值化省级试点,数据价值体系和数据产业生态基本形成,实现政务数据有序开放共享、政企数据高度融通、市级数据全面接入,数据作为生产要素参与生产分配试点有序推进,农业、物流等优势领域数据价值化应用走在全国前列。  2.新产业:数字产业化实现突破性发展。通过实施数字经济核心产业发展工程,数字经济核心产业增加值较2020年翻一番,新一代信息技术产业营业收入突破万亿元,网络安全、先进计算、物联网等产业规模和综合竞争力位居国内前列。  3.新特色:产业数字化特色发展成效显著。通过实施重点领域数字化转型工程,建成全国农业数字化发展典范,打造一个跨行业、跨领域的综合性工业互联网平台,电商物流、智慧文旅、智慧金融等服务数字化水平大幅提升。  4.新治理:数字化治理能力显著提升。通过实施数字化治理工程,政务数据“聚、通、用”成效显著,基本建成利企便民惠民的数字政府和数字社会,新型智慧城市试点成效显著,智慧县城、智慧社区建设有序推进,争取建成一批国家级新型智慧城市、数字乡村试点。智慧交通、智慧教育、智慧健康等重点领域数字化治理能力显著提升。  5.新支撑:新型基础设施和网络安全设施全面领先。全省数字基础设施建设规模和水平位居全国前列,重点区域“公专互补”“固移结合”“天地协同”的一体化网络基本完善,网络基础设施建设全面领先,建成以郑州为中心的数据中心集群;交通、能源、水利等领域基础设施感知网络基本建成,管理智能化水平全面提升。建成网络安全保障应急体系,实现网络安全事件快速响应和应急处置。  (五)空间布局。围绕国家大数据综合试验区建设,统筹规划空间布局、功能定位和产业发展,发挥郑州、洛阳等地的引领和先发优势,支持各地规划建设一批数字经济园区,推动一批传统优势产业开发区数字化转型,构建“一中心多基地”发展布局。“一中心”即创建具有国际影响力的郑洛数字经济创新发展试验区,强化郑州、洛阳对周边城市的引领和辐射带动能力。“多基地”即支持各地根据区域特点和产业特色创建省级数字经济示范园区、省级数字服务出口基地,布局建设“智慧岛”,推动传统产业园区全面升级;支持创建省级数字经济发展示范县(市、区),加快推动县域数字经济发展,提升社会治理能力和数字乡村建设水平。加快推进园区智慧化建设。  1.建设郑洛数字经济创新发展试验区。以打造具有国际竞争力的数字产业集群为目标,建设服务全球数字化转型的“服务车间”“智造工厂”,开展区域级数据价值化示范,打造数据价值化的“试验基地”,推动政策先行、要素集聚、机制创新,建设我省数字经济发展的“先行示范区”。  2.创建省级数字经济示范园区。坚持分类分行业,以服务为着力点,认定一批省级数字化服务企业和数字经济示范园区。积极扩大数字服务出口,加快服务出口数字化转型,认定一批省级数字服务出口基地,申建国家数字服务出口基地。  3.创建省级数字经济发展示范县(市、区)。实施省级数字经济发展示范县(市、区)培育计划,在全省遴选20个左右县(市、区)开展示范,推动县域数字经济特色发展。  4.加快智慧化园区建设。推动先进制造业开发区、现代服务业开发区智能化升级,建设集约共享、泛在先进的信息基础设施,构建智慧园区综合服务平台。建立智慧园区数据资源共享机制,推动园区数据资源整合利用,实现园区内外部资源的多元共享。  三、加快建设新型基础设施,增强发展支撑能力  (一)优化升级网络基础设施。推进郑州国家级互联网骨干直联点、郑汴洛互联网国际专用通道等关键枢纽设施扩容布局,积极申建新型互联网交换中心。实施“双千兆”建设工程,推进“全光网河南”升级,推进超高速、大容量骨干网升级改造和5G独立组网网络规模部署,推进千兆无源光网络规模部署,打造千兆城市和行业千兆虚拟专网标杆,推进农村家庭百兆光纤、乡镇以上区域和重点行政村5G网络全覆盖。加快下一代互联网规模部署,提高互联网协议第六版(IPv6)活跃用户和流量占比。统筹移动互联网和窄带物联网(NB—IoT)协同发展,完善支持NB—IoT的全省性网络。推进区块链与工业互联网协同创新,积极申请“星火链网”超级节点、骨干节点。推动卫星通信、卫星遥感、卫星导航定位基础设施升级换代,积极探索天地一体化、第六代移动通信技术等未来网络布局建设。  (二)统筹布局算力基础设施。积极引进基础电信运营商以及互联网、银行、证券、保险、物流等重点企业的全国性或区域性数据中心,争取在能源、农业种业、交通物流、黄河生态、卫生健康、计量等领域布局国家级行业数据中心,支持在工业、车联网等领域按需布局边缘数据中心,推进云边协同发展。拓展国家超级计算郑州中心特色应用,在生物育种、精准医学、气象环保等领域培育一批超算重大应用,提升运行效能。开展人工智能计算中心布局,搭建公共算力服务平台,优化算力算法,推进人工智能、区块链基础设施建设和集成应用。争取国家工业互联网大数据分中心、国家北斗导航位置服务数据中心和一批国家级行业大数据中心布局,建设国家(郑州)数据枢纽港。支持大数据中心等用电大户配套建设储能设施。  (三)有序建设融合基础设施。推动交通物流、清洁能源、生态环境、城乡发展基础设施智能化改造,集约共建公共服务平台,进一步发挥新一代信息技术对经济社会各领域的赋能作用。推进重要路段和节点的交通感知网络覆盖,建设面向自动驾驶、车路协同、无人运载工具等新技术新装备应用的专用试验场地与平台。建设智慧能源基础设施,完善省能源大数据中心功能,推进能源互联网建设,推动电网基础设施智能化改造、智能微电网和充电桩建设,强化电力、天然气、热力、油品等能源网络信息系统互联互通和数据共享。持续推进防汛、抗旱等水利基础设施智能化改造,加强大数据、人工智能等技术与堤防、闸坝、水库、水文观测站等设施融合。建设“智慧黄河”数字化平台,强化水文、气象、地灾、雨情、凌情、旱情等状况动态监测、数据共享和科学分析。积极谋划布局互联网医院、远程医疗、互联网教育、电子商务平台、数字孪生体等融合基础设施新业态。  (四)前瞻布局创新基础设施。围绕国家战略科技力量建设,集中优势资源,全面加大高水平实验室、大科学装置、产业创新平台建设力度,提高创新基础设施比重。加大省实验室建设力度,重塑重点实验室体系。加快嵩山实验室、神农种业实验室、黄河实验室建设,力争在种质创新等领域创建国家实验室,在网络空间先进防御、黄河流域生态保护和系统治理、药物化学、动物免疫学、极端材料、分子催化与能源转化、纳米光电材料与器件、矿山安全科学与工程等领域择优培育创建5家国家重点实验室。谋划建设超短超强激光平台、量子信息技术基础支撑平台、交变高速加载足尺试验系统、智能医疗共享服务平台、优势农业种质资源库、国家园艺种质资源库等科技基础设施项目,实现大科学装置零的突破。推进国家生物育种产业创新中心、国家农机装备制造业创新中心等重大平台建设,在光通信、诊断检测、地下装备、网络安全、高端轴承等优势领域创建国家工程研究中心、技术创新中心、产业创新中心,支持具备条件的省级创新平台晋升为国家级。  四、抢先培育数据生态,探索数智赋能新领域  (一)努力构建数据资源体系。制定全省统一数据规范和管理标准,建设省大数据中心,以政务数据为基础链接行业、社会数据资源,集约建设省、市两级数据资源池体系,推进数据资源化。到2025年,建成政务数据有序开放共享、政企数据高度融通的省级数据资源池,实现市级数据资源池全面接入,实现政务、工业、农业、交通、教育、医疗、金融、文旅等重点领域数据有序汇聚和安全调用,畅通企业、个人数据汇聚通道。  1.建立数据标准体系。制定全省统一的政务数据规范,明确政务数据技术标准、数据管理标准和数据应用标准,引导行业、社会数据标准化,逐步规范数据采集、汇聚、存储、加工处理、开放共享、数据管理、定价交易以及软硬件服务行为,形成一批地方标准。建设省级大数据标准化服务系统,开展数据标准化评估,发展数据标准化试验验证、检验检测、标准认证等公共服务。支持有条件的地方先行探索建设市级数据标准体系,鼓励建设数据标准化示范基地,重点围绕电子政务、城市治理、产业应用等开展数据标准化试点示范。  2.建设数据资源池体系。基于省大数据中心和各地政务数据中台,支持打造高质量政务数据资源池,鼓励建设一批行业、经济、社会数据资源库,并加强与政务数据资源池的融合对接。按照分领域、分地域原则,支持建设行业级、区域级的“数据字典”,推进数据清洗、去冗余,建立全生命周期的数据治理闭环,提高数据质量和应用效率。推动市级数据资源池与省级数据资源池有效衔接。  (二)探索建立数据价值体系。开展数据要素价值化试点,加强数据标准制定、确权、定价、流通、资本化、监管研究,探索建立数据流通机制、应用体系、监管与安全体系,推进数据由资源化向资产化、资本化过渡,建设数据价值化试验基地。到2025年,数据价值体系基本建成,数据作为生产要素全面参与生产分配,在政务数据开放应用以及农业、物流、文旅等优势行业领域数据价值化应用全国领先。  (三)加快培育数据服务能力。推进数据产业化、产业布局联动发展以及数据技术和工具共研共享,做大做强数据服务业,发展数据采集、存储、清洗、开发、应用等全流程市场化服务。到2025年,全省数据服务能力全面提升,数据标注、数据安全等产业规模全国领先。  1.数据采集与数据存储服务。统一数据采集规范,支持人工采集、系统日志采集、网络数据爬虫、数据库采集等多种技术应用和企业发展,大力发展数据采集产业。结合数据中心发展布局,推进互联网数据中心、内容分发网络、云租赁、数据代维等数据存储服务及关联产业发展。  2.数据处理服务。培育数据清洗中小企业,支持开发专业、细分领域的通用数据清洗技术和工具,提升数据清洗公共服务能力。推广“众包”“众包+工厂”“机器+人工”等数据标注发展新模式,发展数据标注产业。充分发挥人力资源优势,推进数据标注产业集聚发展,建设一批数据标注乡(村)。推动行业数据和城市大数据开发利用,探索建立数据要素开发利用机制,规范有序挖掘数据价值。  3.数据交易服务。以国家大数据综合试验区建设为牵引,依托中原龙子湖“智慧岛”等重点园区,形成涵盖数据工厂、数据加工、数据技术、数据确权、数据定价、数据创业“六数”数据交易生态。支持郑州、洛阳等数据要素活跃地方探索建设数据要素交易流通市场,支持新乡、濮阳等地联合国内成熟大数据交易机构开展数据交易,引导数据要素交易生态加速汇集,形成基础夯实、布局合理、特色鲜明、协同高效数据交易生态圈。  五、提升发展核心产业,夯实数字强省建设根基  (一)培育壮大优势产业。  1.新型显示和智能终端。坚持龙头带动、屏端联动、集群配套,发展新型显示产业,提升智能终端产业发展水平。重点发展高世代薄膜晶体管液晶显示器、大尺寸有源矩阵有机发光二极体面板、中小尺寸柔性折叠屏、车载显示屏等产品。巩固高端手机产能,大力引进知名品牌手机企业,推动智能手机产业高端化、品牌化发展。围绕生产制造、文化教育、医疗健康、娱乐消费等领域智能化发展需求,积极发展基于5G技术的数字影音、智能家居、智能安防、智能可穿戴设备、虚拟现实/增强现实等新型智能终端产品。  2.物联网。巩固提升气体、热释电红外、气象等传感器竞争优势,积极发展基于微机电系统的新型智能传感器,丰富智能传感器、射频卡、嵌入式芯片、传感网络设备等物联网产品体系,做优车联网、医疗物联网、家居物联网产业,协同发展云服务与边缘计算服务,构建信息感知、网络传输、平台建设、应用示范,涵盖“云管端”的物联网闭环生态圈。建设智能传感器产业共性关键技术创新与转化平台,补齐以特色半导体工艺为代表的技术短板。推动智能传感器材料生产、设计制造、封装测试、系统集成和重点应用全产业链发展,打造智能传感器材料、智能传感器系统、智能传感器终端产业集群,建设中国(郑州)智能传感谷和洛阳、新乡智能传感器基地。  3.网络安全。建立产学研用一体化网络安全产业生态体系,支持骨干企业建设公共技术支撑平台,搭建高端网络安全产品交易展示中心、网络安全体验中心,加强与重点院校合作,突破低功耗物联网安全芯片设计、安全态势感知、网络主动防御、大数据安全、量子密钥分发等关键核心技术,培育发展安全芯片、安全软件、安全可控智能终端、云安全、工控系统安全等产品和服务,吸引带动产业链关联企业集聚发展,支持郑州建设国家网络安全产业园,打造全国重要的网络安全产业集群。完善网络安全产业发展配套服务,推进网络安全学院、攻防实验室、实战靶场、产品检测认证中心、协会联盟、产业基金等生态体系建设,发展网络安全规划咨询、安全集成、产品检测、风险评估、身份认证、应急响应、容灾备份等安全服务。  (二)攻坚发展基础产业。  1.先进计算。加强基于鲲鹏架构的关键环节核心技术攻关,加快中原鲲鹏生态创新中心建设,做大做强黄河鲲鹏硬件制造基地和鲲鹏软件产业,培育2—3家行业领军企业,打造“Huanghe”本土品牌,构建全国领先的鲲鹏计算产业链和价值链。大力引进培育计算产业优势企业、研发平台和人才团队,建设一批服务器、计算机整机及配套产品生产基地,加快计算产品在政务、基础、产业、社会等重点领域的应用示范,打造千亿级计算产业集群。  2.5G。培育引进一批5G智能终端、通信模组、天馈线、5G小型化基站设备、5G高频元器件等制造企业和项目,加快形成5G关键器件及材料生产能力。建设5G产品监测、认证、入网检测等公共服务平台,搭建5G创新中心,提高产业发展综合服务水平。实施5G融合应用工程,重点推动5G在工业互联网、车联网、智慧城市、智慧农业、智慧医疗等领域融合应用,打造一批5G标杆应用场景。  3.软件。加快软件与互联网、物联网、5G、大数据、云计算、人工智能等新一代信息技术的融合创新应用,围绕政务、金融、医疗、教育、工业等重点行业需求构建软件产业生态体系。提升操作系统、数据库、中间件等基础软件开发能力,布局开发深度学习算法、知识图谱、量子计算等领域软件。推进工业软件发展“云化”新业态,鼓励企业开放应用开发平台,支持有条件的企业发展云原生产品。建设鲲鹏软件小镇等一批软件产业园,引进落地一批行业骨干企业,推动软件产业集聚发展。规范软件园区建设发展,开展首版次软件产品认定,支持有条件的地方创建“中国软件特色名城”。  4.半导体。积极布局半导体材料产业,发展以碳化硅、氮化镓为重点的第三代半导体材料,提升大尺寸单晶硅抛光片、电子级高纯硅材料、区熔硅单晶研发及产业化能力,推进新型敏感材料、复合功能材料、电子级氢氟酸、半导体靶材研发及产业化,提升集成电路设计能力。充分挖掘省内产业基础,发展光通信芯片、电源管理芯片。支持郑州航空港经济综合实验区发展高端模拟与数模混合芯片,提升硅单晶抛光片产能,推进第三代化合物半导体生产线、高可靠集成电路封装测试生产线、工业模块电源生产线建设,加快实现规模化生产,推动半导体封测、切片、磨片、抛光等专用设备产业化。  5.卫星和地理信息。突破位置信息挖掘与智能服务、高性能组合导航等关键技术,研发芯片、模块、天线等关键部件,开发北斗卫星导航定位及位置服务软硬件产品。支持省连续运行卫星定位导航服务系统管理中心、郑州北斗云谷、北斗产业园建设,打造北斗导航产业数据挖掘、研发创新、终端制造和应用服务产业链。推动省自然资源卫星应用技术体系建设,提升卫星遥感应用保障能力,发展高中空飞机、低空无人飞机、地面遥感等遥感系统,建成多源遥感数据一体化综合服务平台。完善基础测绘体系,推进地理信息公共服务平台建设,开展实景三维河南建设,引导测绘地理信息产业融合发展,探索“北斗+5G”示范应用,推进地理信息技术和产品在社会治理、国土空间规划、生态保护、乡村振兴、智慧城市等领域深度应用。  (三)积极布局前沿产业。  1.新一代人工智能。加强人工智能关键共性技术攻关,重点突破图象识别感知、数字图像处理、语音识别、智能判断决策等核心应用技术,引进一批人工智能龙头企业,做强智能网联汽车、智能机器人、智能无人机、智能计算设备等智能产品,加快推进中原人工智能计算中心、中原昇腾人工智能生态创新中心建设。拓展“智能+”应用领域,推进无人驾驶、智能家居、智能农机、智慧物流等示范应用。举办国际智能网联汽车大赛,加快建设国家新一代人工智能创新发展试验区,打造“中原智谷”,建设具有全国重要影响力的人工智能产业创新发展高地。  2.量子信息。建设国际一流的量子制备中心、量子精准测量控制中心、量子技术应用探索平台,建设一批量子信息新型研发机构、创新平台,突破光学芯片、量子密钥分发及管理、量子存储器等关键技术,引进和培育一批量子通信元器件生产、设备制造、网络建设及运营服务企业。建设国家广域量子通信骨干网络河南段及郑州量子通信城域网,推动量子计算在人工智能、材料模拟、云计算、高性能计算和大数据等领域应用,率先在电子政务领域启动量子安全应用试点。  3.区块链。开展区块链技术创新,鼓励面向国产操作系统和芯片的区块链底层技术研发,突破加密算法、共识机制、智能合约、侧链与跨链等核心底层技术。建设一批区块链产业园区、孵化器和实训基地,培育壮大本土区块链龙头企业和研究机构,加快发展企业联盟链、私有链。推进区块链技术在金融、数据交易、信息保护、溯源、政务、物流等领域应用。  (四)大力发展平台经济。抢抓数字经济发展机遇,推广在线服务、共享服务、无人服务等新模式,培育平台经济新业态,构建多主体共治的平台监管模式,推进平台经济健康有序发展。  1.积极培育平台经济新业态。支持开展在线教育、在线办公、互联网医疗等线上服务试点,推动工业企业探索协同制造、柔性制造、个性化定制的商业模式和适用场景,加快共享出行、餐饮外卖、共享住宿等领域产品智能化升级和商业模式创新,推进员工、设备、创新资源、办公资源等生产要素的共享集约利用。支持在高危行业和恶劣工作环境建设智能工厂、无人矿山,探索发展无人配送、无人零售、无人餐厅、无人物流等服务业态,推动适应不同作物和环境的智能农机研发应用,建设一批新技术新装备应用的专用试验平台。支持各地围绕产业发展、交易、社交等引进培育一批平台经济企业,鼓励有条件的传统企业向平台型企业转型。  2.探索推进政府数据与平台企业数据融通发展。推动具有产业带动能力、产业资源集聚能力的平台企业打造数据基础平台,支持各地基于城市数据大脑、政务云等探索建立政务数据与平台企业数据互通机制,研究政府数据向平台企业有序开放机制和模式。加大政务数据推广应用力度,支持平台企业打通产业壁垒,推进重点区域电信、交通、物流、文旅、安全、健康等环节统一调度,推动政务数据公平公正赋能千行百业。  3.构建多主体共治的平台监管模式。坚持包容审慎原则,建立完善平台企业监管机制,明确平台责任,畅通用户和社会组织参与渠道,打造平台自治、政府监管、行业自律、社会监督广泛参与的立体化多元协同共治格局。强化平台企业治理,引导平台经营者切实担负数据安全和隐私保护、商品质量保障、劳动保护等方面责任。保护数字经济领域市场主体尤其是中小微企业和平台内经营者合法权益,规范各类市场行为。  六、加速推动产业数字化,赋能产业结构升级  (一)打造全国农业数字化发展典范。  1.农业物联网。实施农业物联网区域试验工程,加强5G、北斗导航和遥感技术应用,加快智能传感设备部署和改造,开展大田种植、畜禽养殖、质量安全追溯等方面的农业物联网试验,构建“天空地”一体化数据采集和监测预警系统。将农业物联网技术纳入全省农业重大技术推广计划,建设农业物联网应用示范基地,发展数字田园、智慧养殖、数字种业等高端农业,提高农业生产数字化水平。  2.精准种植和养殖。加强农业大数据综合应用,推进农业单品种生产、加工、流通等环节全产业链数据采集,建设智慧农业数据库,开展数据分析预判,指导农业精准生产。实施“一村九园”(数字村庄、数字田园、数字果园、数字菜园、数字茶园、数字菌园、数字药园、数字花园、数字牧场、数字渔场)数字农业示范工程,围绕大田种植、园艺作物、畜禽养殖、林特产品等领域,规划建设数字农业产业园等,提升现代农业精准管理、远程控制和智能决策水平。推进小麦、花生、生猪等领域精准种养试点示范,建设全国综合种养示范区。  3.智能农机。加快农机装备数字化改造,推动5G、北斗导航、智能监控等系统在农机上装载应用,推广农业机器人、植保无人机、无人驾驶拖拉机等新型装备。建设智慧农机平台,推进农机购置补贴、监理办证、农机调度等业务的统一数字化管理。加快国家农机装备创新中心、农业农村部航空植保重点实验室等建设,推进农机装备智能化领域技术创新,打造具有国际竞争力的智能农机装备产业基地。  4.数字营销。推动农村电子商务发展,支持推广村播、“短视频+网红”等新型营销模式,完善农产品网络销售的供应链体系、运营服务体系和支撑保障体系。健全农产品产销一体化信息系统,推动柘城县、淅川县“互联网+”农产品出村进城工程试点县建设,推进农产品产地冷藏保鲜设施建设,支持在豫西南肉牛优势特色产业集群区域建立低温直销配送中心。  (二)深化推进工业数字化转型。  1.工业互联网。加强工厂内外网建设,提高网络传输和感知水平,强化5G网络部署。以装备制造、食品等优势行业为重点推进标识解析二级节点建设,加快洛阳、许昌、漯河、郑州等工业互联网标识解析体系二级节点推广应用。深入实施工业互联网创新发展工程,推动“5G+人工智能+工业互联网”融合应用,建设“1+N+N”工业互联网平台体系,培育建设1个跨行业、跨领域综合性平台,N个细分行业、特定领域平台,N个优势产业集群平台,加快建设国家工业互联网平台应用创新推广中心。推进河南省工业互联网安全技术平台建设,建设工业互联网安全资源库、安全测试验证环境。持续推进“上云用数赋智”行动,鼓励中小企业业务系统向云端迁移,打造资源富集、良性互动的工业互联网平台生态。支持软件企业、工业企业、科研院所等开展合作,培育一批面向特定行业、特定场景的工业APP(应用程序)。建设河南省工业互联网大数据中心,争取建设国家工业互联网大数据分中心。  2.智能制造。研究制定智能制造分级评价指标体系,面向规模以上工业企业探索开展分级评价评估,引导企业制定智能化改造提升方案,推动工业企业智能化水平提档进阶。持续开展智能制造试点示范,大力推进“机器人+”,推动企业数字化、网络化、智能化发展,培育一批智能制造系统集成商。在钢铁、建材、石化、装备、食品、纺织服装等传统行业,加快智能制造单元、智能生产线、数字化车间建设,全面提升企业数字化水平。布局建设区域型、行业型、企业型数字化转型促进中心,培育数字化解决方案供应商。推动先进制造业开发区数字化转型,培育区域化、特色化的数字化平台,带动区域集群整体协同转型。到“十四五”末,全省建设1000个智能工厂(智能车间),培育100家“互联网+协同制造”示范企业。  3.服务型制造。深化制造业与互联网融合发展,推广基于互联网故障预警、远程维护、质量诊断等在线增值服务。发展个性化定制新模式,推动服装、家居等消费品行业引入定制解决方案和柔性生产设备,鼓励电子、汽车、工程机械等企业提升高端产品模块化设计、定制化服务能力。支持骨干企业建设协同研发设计平台,在装备制造、汽车、纺织服装等行业推广网络协同设计、虚拟仿真等新技术、新模式,在钢铁、有色、化工、建材等行业开展基于互联网的供应链管理模式创新试点。到2025年,培育150家服务型制造示范企业(平台、项目)。  (三)加快推进服务业数字化转型。鼓励重点行业领域大型制造企业开放“双创”平台资源,面向行业提供研发设计、检验检测认证、知识产权等社会化专业服务,建设生产性服务业公共服务平台,推动信息服务、研发设计、现代物流等生产性服务业向专业化和价值链高端延伸。加快生活性服务业线上线下融合发展,推动生活性服务业向高品质和多样化升级,培育具有示范带动作用的数字生活新服务标杆城市。推广服务新模式,鼓励大型商超、连锁店等生活服务场所云化改造,发展智慧门店、智慧配送、自助终端等无接触服务,规范推动共享出行、餐饮外卖、网络团购、体验经济等领域商业模式创新。重点推进智慧物流、电子商务、智慧金融、智慧文旅、智慧养老等具有河南特色的服务业数字化水平提升。  1.智慧物流。提升物流行业智慧化水平,建设物流信息化公共服务平台,探索发展“互联网+运力优化”“互联网+运输协同”等智慧物流,打造一批国家级智能仓储物流示范基地。实施物流枢纽智能化建设工程,提升郑州空港型、洛阳生产服务型国家物流枢纽和许昌、鹤壁等区域物流枢纽智能化水平。规划建设数字化供应链服务平台,积极培育无车承运企业,促进传统物流企业向数字物流平台转变。支持物流企业利用数字技术构建城乡高效配送体系,探索发展消费需求预测、无人快递配送等模式。  2.电子商务。加快发展跨境电商、直播电商、社交电商,支持电商企业运营模式创新,构建“多城市协同、进出口并重、线上线下融合”的电商发展新格局。聚焦特色产业、县域经济等方向,支持有基础的地方打造电商区域服务中心,推进“线上引流+实体消费”模式。  3.智慧金融。加快推广金融数据服务,深化大数据、人工智能、区块链等技术在金融服务中的应用,探索建立城市中枢平台与金融企业的数据开放共享机制,逐步实现政府数据向银行有序开放。发展供应链金融,支持建设供应链金融共享服务平台,在保证风险可控前提下有序推进大数据云贷等互联网融资产品。推广“信易贷”模式,建立完善全省一体化“信易贷”平台体系,提升河南省金融服务共享平台功能,提高农户、中小微企业首贷率和信用贷款占比。加快完善现有科技金融服务平台,建设跨境电子商务金融结算平台,扩大金融服务跨境合作,推广使用“信豫融”信用大数据平台、“普惠通”平台,开展智慧金融建设试点,鼓励银行等金融机构建设无人银行、智慧网点。争取开展数字人民币试点。  4.智慧文旅。围绕文旅文创融合发展战略,讲好河南故事、弘扬黄河文化,持续推进景区、酒店、旅行社、乡村旅游点以及文博场馆智慧化改造,打造一批高等级智慧景区、文化场馆和博物馆。全面推动非遗传承、文物古迹线上展示,高质量实施文物活化和数字文化工程。推动5G、物联网、人工智能、云计算等在文化和旅游领域创新应用与示范,加快发展新型文化企业、文化业态、文化消费模式,丰富和优化数字旅游产品与服务供给,构建智慧文旅新体系。利用互联网和新媒体加强文化、旅游宣介。  七、强力推进数字化治理,提升社会治理水平  (一)全面建设高效安全的数字政府。实施数字政府建设工程,打造管理、业务、数据、技术“四位一体”的架构,实现全省数字政府基础设施、公共支撑、数据服务、应用系统等集约化、一体化建设和运行,提升政府服务效能,推动政务数据开放共享。  1.提高政务网络设施水平。提升电子政务外网支撑能力,加快电子政务内外网等政务网络、网站的IPv6升级改造,增加电子政务网络带宽资源,优化组网架构,扩大覆盖面,建成省、市、县、乡四级全覆盖并向村(社区)延伸的高可靠、高性能“一张网”。统筹整合各部门分散部署的业务专网至电子政务网络。  2.完善政务云。构建1个省级主节点加17个省辖市及济源示范区分节点的全省“1+18”云平台架构,实现全省政务云资源的集中调度和综合服务,加快推进各级、各部门政务信息系统向政务云平台迁移和应用接入。依托政务云聚合全省政务数据和应用,提供统一的云计算、云存储、云管控、云安全等云服务。建设云安全资源池,完善政务云安全保障体系。  3.探索建设政务数据管理开放机制。整合现有数据资源,完善自然人、法人、自然资源和空间地理信息、信用信息、电子证照等基础数据库,拓展主题数据库资源。建立全省统一的数据资源目录,建设融合开放的数据服务平台,满足跨层级、跨地区、跨部门政务数据共享交换需求。实行管运分离的数据价值化运营模式,支持政府主导整合、汇聚、管理政务数据,引导汇入行业数据。探索政企数据互通共享,在保证安全的基础上有序开放共享数据。支持社会第三方基于政务数据开发数据产品。  4.提升政务服务能力。以应用为引领,加快省一体化政务服务平台迭代升级,持续提升在线服务成效度、在线办理成熟度、服务方式完备度、服务事项覆盖度和办事指南准确度,提高平台整体服务、创新服务、精准服务、协同服务能力。依托一体化政务服务平台,推进“一证通办”“全程网办”“全豫通办”“无感智办”,实现线上线下政务服务深度融合,不断提升政务服务效率和水平。优化“互联网+监管”模式,聚焦政务服务、公共卫生、社会安全、应急管理等重点领域,推进重大公共事件快速响应和联动处置。积极利用第三方平台开展预约查询、证照寄送、在线支付等服务,探索形成线上线下功能互补、相辅相成的政务服务新模式。  (二)加快建设智慧协同的数字城乡。  1.新型智慧城市。推动新型智慧城市建设,开展新型智慧城市试点示范创建,实现城市治理智能化、集约化、人性化。推进以省辖市、济源示范区为主体的新型智慧城市统一中枢平台建设,整合公共领域信息系统和数据资源,开展智能化创新应用,提升城市综合管理服务水平。支持基础较好的地方率先建设时空大数据平台,全面推进城市信息模型(CIM)基础平台建设,打牢数字孪生城市发展根基。依托CIM平台建立城镇住宅房屋“一楼一档”,对接城镇房屋网格化巡查功能。建立房屋安全在线监测体系,构建智慧物业服务模式,提升房屋使用安全管理水平。推进标准化、规范化智慧小区建设,打造综合集成社区服务和管理功能的一体化智慧社区。加快县城智慧化改造,聚焦补短板强弱项,推进县域新型智慧城市建设全面展开。    2.数字乡村。实施新一代农业农村信息基础设施建设工程,加快宽带通信网、移动互联网、数字电视网和下一代互联网向农村延伸覆盖,大幅提升乡村网络设施水平。实施信息进村入户整省推进示范提升工程,推动农业农村信息化服务平台和应用系统整合,创建60个以上省级数字乡村示范县,培育20家以上数字乡村建设领军企业,建设一批省级数字乡村创新中心。完善农村基层党建信息平台,推进乡村治理能力现代化。繁荣发展乡村网络文化,开展全民数字技能教育和培训,推进农村公共文化产品和服务数字化,缩小城乡数字鸿沟。  3.新型城市基础设施建设。推进城市园林绿化数字化信息平台建设,加强对全省园林绿化资源情况的监管。实施智能化市政基础设施建设和改造,促进物联网在城市市政基础设施领域应用,推动实施一批“物联网+市政基础设施”试点项目。推进城市运行管理平台建设,结合城市体检,全方位、多途径、多层级采集城市体检指标数据,构建城市管理“一张图”。推动智能建造与建筑工业化协同发展,推进智能建造产业体系建设,深化建筑信息模型技术应用,大力发展装配式建筑。  (三)努力提高数字化公共服务效能。  1.智慧交通。推动交通基础设施数字转型、智能升级,加快部署交通感知设施,建设智慧公路、智慧民航、智慧地铁,推进智慧交通设施共建共享。建设综合交通运输监管平台,构建省、市、县三级监管体系,完善综合交通服务大数据平台。结合高速公路“13445工程”,建设智慧高速,开展车路协同技术试点应用,加快推进高速公路管理服务平台和交通建设工程智慧管控平台建设,推动公路规划、设计、建造、养护、运行管理等全要素全周期数字化。建设智慧普通公路,通过布设公路运行监测与服务设施,实现对区域干线路网整体运行态势的实时感知和协同管理,提升公路网运行监测水平和路网整体通行效率。开展智慧航道、智慧港口建设,推进航道运行状态在线监测、船闸智能化升级、码头设施自动化改造等。建设智慧机场,创新服务产品和运营模式,统筹各种运输方式运力衔接。建设智慧地铁,搭建地铁一体化生产和管理信息集成平台,预留自动驾驶地铁技术应用条件。发展智慧化出行服务,推广客运“一票制”“一卡通”,到“十四五”末,郑州都市圈实现客运智能化定制服务。加密交通基础设施配套5G基站,构建“5G+智慧公交”、智慧路口等智慧交通应用场景。推动车联网发展,建设智能网联汽车试验示范基地,支持争创河南(郑州)车联网国家级先导区,开展郑州自动驾驶公交1号线等智能网联汽车示范运行。  2.智慧健康。深入推进“数字化”医院建设,提升医疗机构智慧化服务水平。加快区域全民健康信息平台智慧化升级改造,实现省、市、县、乡、村五级卫生健康信息全覆盖。推进各级医疗机构信息系统互联互通,实现居民健康信息、诊疗信息以及检验检查结果在各级各类医院共享。推进互联网医院建设,促进优质医疗资源下沉和“互联网+医疗健康”便民服务应用。实施“5G+”智慧健康共享示范工程,推进5G医疗示范医院、5G家庭监测服务等示范建设,开展覆盖全生命周期的预防、治疗、康复和健康管理一体化智慧健康服务,建设若干国内领先的智慧健康大数据应用示范场景。  3.智慧教育。深入实施教育信息化2.0行动计划,积极发展“互联网+教育”,加快学习环境智能化改造,鼓励社会力量发展在线教育,提供优质教育服务。以“三个课堂”为重点,完善教育资源和管理公共服务平台,全方位推动优质教育资源共建共享。积极探索课堂教学新方法、新模式,加强线上线下相结合的混合式教学模式改革。建设教育大数据支撑服务体系,通过学情数据采集、汇聚和分析,探索个性化、精准化教学路径。实施教育信息化示范引领工程和本科高等学校智慧教学三年行动计划,遴选一批智慧教育示范(区)、智慧校园示范校、智慧教学示范课,争创国家级“智慧教育示范区”。  4.智慧养老。引进培育一批智慧养老龙头企业,支持模式新颖、竞争力强的中小企业发展,加快形成覆盖智慧养老全链条的产业生态,争创国家智慧健康养老应用试点示范。加快建设省级养老服务“管理+服务”平台,推进智慧养老服务平台建设,创新慢性病管理、居家健康养老、个性化健康管理、互联网健康咨询等服务方式,建立“服务、产业协同发展”的智慧养老新生态。  5.智慧人社。着力抓好“金保工程”二期、社会保障“一卡通”、人力资源社会保障综合信息系统管理平台建设,加快推进数据共享、业务协同、业务流程重塑。推动我省社会保障公共服务平台与全国统一的社会保障公共服务平台有序对接,全面推广应用电子社保卡,完善社会保险公共服务平台。  (四)有序提升重点领域数字化治理能力。  1.智慧环保。加快全省生态保护设施智能化升级,推动智慧环保、水利、气象等基础设施建设,依托5G、物联网、地理信息、卫星影像等技术,构建全面协同、智能开放的生态环境数字化监测、监控体系。建设完善环境生态监管平台,实现环境治理与修复、污染源、生态保护、生态质量监测、生态环境风险预测预警等领域监管全覆盖,强化环境治理与灾害应急的设施支撑。以推动黄河流域生态保护和高质量发展为契机,推进全省水资源、水生态、水环境、水灾害统筹治理,加快省内流域一体化治理与协同发展。探索沿黄数字开放共享廊道建设,促进全流域协同治理。  2.智慧国土。全面建成自然资源数据资源池,打造国土空间基础信息平台、地理信息公共服务平台。有序推进建立以地下资源层、地表基质层、地表覆盖层和管理层为基础的立体时空模型。构建“空天地”一体化的动态监测监管和空间数据获取体系,实现自然资源开发利用保护、自然生态修复治理信息化、智能化。  3.智慧水利。推进覆盖全省的水情、雨情、墒情、工情等全要素水利感知网络建设,构建立体观测、实时感知、时空协同的一体化信息采集和数据汇集系统。依托“水利大脑”赋能,建设水利综合监管一体化平台,提供预测预报、工程调度、行业监管、空间分析等服务,实现河湖水域岸线管理、水土保持、水资源高效利用、水生态保护、水旱灾害防治、移民安置管理、农村安全饮水、水工程建设管理等综合监管智慧化应用。  4.智慧城管。进一步完善数字城管快速反应体制机制,优化综合评价考核体系,构建“一个平台调度、一套流程处置”的数字化城市管理体系,推进数字城管向智慧城管升级。建立完善集感知、分析、服务、指挥、监察于一体的城市综合管理服务平台,全面覆盖城市管理综合执法、市政公用设施、园林绿化、市容环卫、便民惠民服务等领域,实现跨部门数据汇集和联通,加强对城市管理工作的统筹协调、指挥监督和综合评价,促进城市运行“一网统管”。  5.智慧监管。依托河南省信用信息共享平台、国家企业信用信息公示系统(河南)和部门协调监管平台,全面梳理监管事项目录,加强重点领域信用监管,推行企业信用风险分类管理。加强市场监管领域各部门数据融合和数据治理,整合市场准入、食品安全监管、特种设备安全监管等监管业务系统,完善线上线下一体融合的产品质量安全监测监管和服务责任追溯体系,加强食品、特种设备、药品、风险预警等重点领域监管系统建设,打造市场监管领域省级数据中心和智慧监管中心,提升监管科学化水平。  6.智慧应急。建设覆盖省、市、县三级应急管理部门的应急指挥专网,建立基于应急管理“一张图”的应急指挥信息系统,完成省应急指挥平台与应急部、省辖市和济源示范区应急指挥平台上下连通,实现应急救援智能化、扁平化、一体化,提升跨行业、跨部门、跨区域的应急指挥调度能力。构建智能风险预警系统,对危险化学品、尾矿库等重点行业领域以及自然灾害风险源、风险状态和趋势进行综合评估,依据风险分级标准绘制风险分布图。  7.智慧安防。建设省级社会治安防控信息化平台,构建省、市、县、乡、村五级联动的数字化社会治安防控体系。深入推进城市公共安全视频终端建设,织密公共安全视频监控网络,构建“全天不眨眼、重点全覆盖”的公共安全视频监控框架。建设完善公安大数据平台,推进数据资源深度融合,畅通大数据精准赋能基层渠道。建设完善新一代警综、移动警务、政务服务等通用平台和覆盖全警全域的智能化应用,建立完善数据资源对外服务技术体系和共享协同机制。  八、健全信息安全保障体系,营造安全可靠的网络环境  (一)推进重要规章制度落地实施。贯彻落实《中华人民共和国网络安全法》《中华人民共和国密码法》《中华人民共和国数据安全法》《中华人民共和国个人信息保护法》和党委(党组)网络安全工作责任制等法律、法规、制度、标准规范,强化防护责任,加强监督检查。完善网络安全工作统筹协调机制,健全网络安全检查、审查和应急指挥工作机制。  (二)加强关键基础设施安全防护。加强能源、交通、水利、金融、公共服务等重要领域信息基础设施,以及骨干网络、云计算平台、大数据中心、灾备中心、工业互联网平台、重要网络平台等关键信息基础设施安全保护,强化防护责任。组织关键基础设施认定和资产核查,开展网络安全保密隐患排查,提升安全可控和网络抗攻击防御水平。开展关键信息基础设施网络安全隐患排查,保障重点新闻网站、融媒体中心、广播电视播控中心等媒体系统安全。  (三)加强数据安全和个人信息保护。建立数据安全保护体系,落实数据资源分级分类管理和报备制度,加强数据安全保密监管手段和机制建设,加强数据全生命周期安全保密管理,提高数据安全和个人隐私保护能力。加强个人信息保护,强化个人信息收集、使用、共享等环节安全管理,严格规范运用个人信息开展大数据分析行为。加强数据安全监管执法,定期开展数据安全合规评估和违法违规专项治理,督促政府各部门、企业等强化网络数据安全管理,及时消除重大数据泄露、滥用等安全隐患。强化网络数据安全管理制度设计,按照《中华人民共和国网络安全法》、《电信和互联网用户个人信息保护规定》(工业和信息化部令第24号)等法律、法规要求,建立网络数据分类分级保护、数据安全风险评估、数据安全事件通报处置、数据对外提供使用报告等制度。规范商用密码应用和管理。  (四)强化新技术新应用安全保障。充分考虑新技术应用场景及安全性要求,制定完善云计算、大数据、物联网、人工智能、5G、区块链、车联网、移动应用程序等新技术应用规则,制定参数标准、使用环境条件标准、安全保障标准,完善技术测评等相关规范,促进新技术安全合理使用。加强新闻资讯、社交网络等重点领域新技术应用安全评估,统筹考虑技术安全、经济安全、社会安全,加强技术成熟度、脆弱性、风险隐患等评估。引导互联网企业加强内部管理和安全保障,建立健全行业自律互律机制,拓展资源提供者和公众参与治理渠道,探索建立政府、互联网企业、行业组织和公众共同参与的协同治理机制。  (五)推动网络应急体系建设。统筹网络安全应急体系建设,充分利用基础电信企业和云服务提供商网络资源优势,加强网络安全资源共享、态势感知、监测预警、信息共享、应急处置等方面协同。统筹协调有关部门加强网络安全信息收集、分析和通报工作,共建全省网络安全应急体系。建立健全网络安全风险评估和应急工作机制,制定网络安全事件应急预案,定期组织演练。  九、保障措施  (一)加强组织领导。发挥省数字经济发展领导小组作用,加强对全省数字经济发展的组织领导和统筹协调,研究数字经济发展重大政策,协调解决重大问题,统筹各级、各部门力量,形成全省上下协同推进数字经济发展的工作格局。聚焦数字经济核心产业重点领域,建立“一位省领导牵头、一套工作专班、一个产业研究院、一支产业引导基金”的“四个一”工作推进机制,加强政策要素支撑保障,加大资金、技术、人才、土地等关键要素投入。省有关部门要进一步细化工作任务和阶段目标,加强规划指导,完善配套政策。各地要建立相应工作推进机制,统筹推动本地数字经济发展政策落实及项目建设。  (二)加强资金支持。统筹省相关资金,加大对数字经济核心产业、重大项目和应用示范的支持力度,积极引导社会资本投向数字经济和信息化领域。加强政银企合作,建立数字经济项目常态化推介机制,鼓励金融机构加大创新支持力度。推动符合条件的数字经济企业在境内外资本市场上市融资,拓展融资渠道。落实高新技术企业和创业投资企业税收优惠、研发费用加计扣除、股权激励税收优惠等创新激励政策。  (三)强化人才支撑。大力推进柔性引才,将数字经济人才需求统筹纳入“中原英才计划”“招才引智”等重大人才工程,重点围绕半导体、软件服务、信息安全、大数据、人工智能、5G、云计算、区块链等信息技术及细分行业数字化领域,引进一批高端人才。支持企业、园区与高校建立人才输送合作机制,鼓励省内高校设置新一代信息技术相关学科,支持鲲鹏学院模式在全省推广。完善人才激励机制,全方位落实人才奖励补贴、薪酬待遇、社会保险、子女入学、住房需求等政策。“十四五”期间,引进、培养、培训不少于20万名符合产业发展需求的人才。  (四)推进协同监管。建立完善政府、平台企业、行业组织和社会公众多元参与的数字经济治理新格局,形成治理合力。强化数字经济领域跨部门协同监管,明确权责边界。加强互联网平台经营者、平台企业信用协同监管,完善针对失信经营者、失信平台企业的惩戒措施。建立数字经济统计监测机制,建设省、市、县三级数字经济监测平台,加强数字经济统计与考核评价。贯彻落实《河南省数字经济促进条例》,全面推进数字经济规范发展。  (五)优化发展环境。推进“放管服”改革,重点破除体制性、机制性、政策性障碍。实行政府权责清单制度,探索以投资项目承诺制为核心的极简审批模式,提升数字经济企业开办、财产登记、纳税、跨境贸易等便利度。加强对数字经济新业态用工服务的指导,制定完善数字经济新业态劳动保障政策。加强数字经济领域知识产权保护,培育和发展相关知识产权交易市场,探索建立快速维权体系。支持举办、鼓励参加数字经济领域的国内国际会展、论坛、赛事等活动,搭建数字经济展示、交易、交流、合作平台。加强数字经济法律、法规、规章以及技术、知识宣传、教育、培训,提升全民数字素养和技能。
  • PALL PM 2.5空气监测膜片满足美国EPA标准
    PM 2.5标准是为了检测可吸入颗粒物的一个标准,来衡量空气的被污染程度  PM,是颗粒物英文全称Particulate matter的缩写  PM2.5,指大气中空气动力学直径小于或等于2.5微米的颗粒物,亦称可入肺颗粒物.  人为来源:主要来自燃烧过程,比如化石燃料(煤、汽油、柴油)的燃烧、生物质(秸秆、木柴)的燃烧、垃圾焚烧。在空气中转化成PM2.5的气体污染物主要有二氧化硫、氮氧化物、氨气、挥发性有机物。  自然来源:风扬尘土、火山灰、森林火灾、漂浮的海盐、花粉、真菌孢子、细菌其粒径小,富含有毒有害物质,因而对人体健康和大气环境质量影响极大  PM10,则指大气中空气动力学直径等于或小于10微米的颗粒物,也称可吸入颗粒物,粒径2.5微米至10微米的粗颗粒物主要来自道路扬尘等,属于粗颗粒物,与细颗粒物相对。  PM2.5的危害  PM2.5主要对呼吸系统和心血管系统造成伤害,包括呼吸道受刺激、咳嗽、呼吸困难、降低肺功能、加重哮喘、导致慢性支气管炎、心律失常、非致命性的心脏病、心肺病患者的过早死。老人、小孩以及心肺疾病患者是PM2.5污染的敏感人群。世界卫生组织(WHO)和一些国家的PM2.5标准(单位:微克/立方米)  PM 2.5的标准最早是由美国在九七年的时候提出来,目前世界上很多的发达国家都把PM 2.5列入了一个评价空气质量的标准,我们国家采用的是新的环境空气评价办法—环境空气质量指数(AQI).  《环境空气PM10和PM2.5的测定 重量法》(中华人民共和国国家环境保护标准,HJ618-2011)  “根据样品采集目的可以选用玻璃纤维、石英等无机滤膜或聚氯乙烯、聚丙烯、混合纤维素等有机滤膜。滤膜对0.3um标准粒子的截留效率不低于99%。”  美国EPA标准,用做PM2.5 检测的膜厂家应该满足的EPA 40 CFR Part 50 (EPA 1997a)  生产标准:  • 大小—圆盘, 46.2-mm ±0.25 mm (带支撑环)   • 材质—带完整支撑环的(PTFE) Teflon  • 支撑环—PMP或相等的惰性材料,0.38±0.04mm厚度,外部直径46.2±0.25mm,宽3.68 mm。支撑环应保持性能一直,否则会影响操作。  • 孔径—2μm (按ASTM F 316-94标准)   • 厚度—30-50μm  其他信息请访问美国环保局网站,http://www.epa.gov/air/particlepollution/health.html  PALL用于PM 10,PM 2.5检测的膜片符合EPA规定  Teflo PTFE膜片  PTFE膜,拥有EPA规定的PMP支撑层,专用于PM-10, PM-2.5,分道采样和其他空气抽样检测技术。在X射线萤光分析下极低的化学背景,低成分也适用于高精度的重量分析测定法。  滤材:带 PMP支撑层的PTFE膜(符合美国EPA法规)  厚度: 1 µ m: 76 µ m (3 mils), 2 µ m: 46 µ m (1.8 mils), 3 µ m: 30.4 µ m (1.2 mils)  典型气溶胶截留 (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求) :1 和2 µ m: 99.99%, 3 µ m: 99.79%  典型空气流速(0.7 bar (70 kPa, 10 psi)): 1 µ m: 17 L/min/cm2, 2 µ m: 53 L/min/cm2 , 3 µ m: 90 L/min/cm2  A/E玻璃纤维  用于各种空气分析的顶级玻璃纤维过滤膜,符合EPA法规推荐使用的要求为:无粘合剂的硼酸硅玻璃纤维。  滤材: 无粘合剂的硼酸硅玻璃纤维  孔径: 1 µ m (nominal)  厚度: 330 µ m (13 mils)  典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)  典型空气流速(0.7 bar (70 kPa, 10 psi)): 60 L/min/cm2  典型水流速度(0.3 bar (30 kPa, 5 psi) ): 250 mL/min/cm2  最大操作温度-空气: 550 °C (1022 °F)  Zefluor™ PTFE膜  低化学本底,高灵敏度,无干扰. 0.5 µ m孔径,满足 NIOSH标准,适合监测酸雨,芳香烃和为例检测.  滤材: 有PTFE支持层的PTFE 膜  孔径: 0.5, 1, 2, 和3 µ m  厚度: 0.5 µ m: 178 µ m (7 mils), 1 µ m: 165 µ m (6.5 mils), 2 and 3 µ m: 152 µ m (6 mils)  典型气溶胶截留 :0.5, 1, and 2 µ m: 99.99%, 3 µ m: 99.98% ((按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)  典型空气流速(0.7 bar (70 kPa, 10 psi))0.5 µ m: 1, 1 µ m: 14.6, 2 µ m: 25.3, 3 µ m: 53 L/min/cm2  Pallflex Tissuquartz™ (石英膜)  纯石英,没有粘合剂,最高化学纯度, 高流速,高过滤效率. 独特的设计适用用高温和热气体的监测应用。  滤材: 纯石英,没有粘合剂  厚度: 432 µ m (17 mils)  重量t: 5.8 mg/cm2  典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)  典型空气流速(0.7 bar (70 kPa, 10 psi)): 73 L/min/cm2  典型水流速度(0.35 bar (35 kPa, 5 psi) ): 220 mL/min/cm2  最大操作温度-空气: 1093 º C (2000 º F)  PM 10, PM 2.5监测配件  滑动盖  保护样品膜的完整性  具体购买事宜,请联系PALL当地代理商:  http://www.ebiotrade.com/custom/ebiotrade/DLS2009/pall.htm  或Email PALL 实验室市场部:  Jessie_jing_chen@ap.pall.com
  • 海水中辐射检测—3M EMPORE TM RAD系列固相萃取(SPE)膜片
    请下载清晰版本:海水中辐射检测&mdash 3M EMPORE TM RAD系列固相萃取(SPE)膜片.pdf上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 【视频回看】微流控芯片、拉曼SERS、流式细胞术、膜片钳?“花样”单细胞分析前沿技术都给你!
    p style="text-align: justify text-indent: 2em "细胞是生物体和生命活动的基本单位,细胞分析对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义。作为细胞研究的“标配”,创新细胞分析技术在生命科学基础研究、生物制药、新型治疗方法中的应用与进展不可不知!/pp style="text-align: justify text-indent: 2em "仪器信息网举办的“细胞分析技术与应用”专题网络研讨会在6月5日成功召开,本次会议报告干货十足,诚意满满,对广大细胞分析领域用户的研究工作具有一定指导意义。错过了直播的小伙伴不要遗憾,部分专家的精彩报告视频回放即刻奉上!/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《单细胞试剂盒分析》/strong/span/ppspan style="color: rgb(192, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 212px " src="https://img1.17img.cn/17img/images/201906/uepic/c6e217a3-3a1c-404e-ab9a-af4cc9876f3b.jpg" title="001.jpg" alt="001.jpg" width="200" height="212" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "江德臣,南京大学化学化工学院及生命分析化学国家重点实验室教授,博士生导师,单细胞分析课题组组长,教育部青年长江学者,江苏省化学化工学会质谱专业委员会秘书长。研究兴趣为高内涵单细胞分析方法和装置的建立,及其在细胞信号传导机制研究中的应用。以第一/通讯作者在PNAS、JACS、Anal Chem 等期刊发表学术论文50余篇。/span/pp style="text-align: justify text-indent: 2em "单细胞分析可以揭示细胞个体特征,以助于理解细胞自身的复杂性及彼此之间存在巨大差异,具有重要的生物学价值。在过去的六年中,江德臣教授所在实验室发展了基于微/纳试剂盒的单细胞分析策略,将宏观维度生物测量理论与方法引入单细胞分析中,建立了通用性强、通量高且可测量单细胞及单细胞器内生物分子活性的新型分析方法和装置。span style="color: rgb(192, 0, 0) "stronga href="https://www.instrument.com.cn/webinar/video_105263.html" target="_blank"(span style="color: rgb(0, 112, 192) "点击查看视频回放/span)/a/strong/span/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《微流控芯片单细胞分泌分析》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/c6f4bf34-0adc-48e7-aa50-6026304a3bef.jpg" title="陆瑶.jpg" alt="陆瑶.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-align: justify font-family: 楷体, 楷体_GB2312, SimKai "陆瑶,博士, 副研究员,中国科学院大连化学物理研究所单细胞分析研究组组长。研究相关工作发表于PNAS,Science Signaling等国际期刊,主要科研成果在美国两家公司获得应用,作为主要发明人参与开发的单细胞蛋白分析技术获国际发明专利授权,目前已应用于CAR-T肿瘤免疫治疗药品开发及临床测试,被美国著名科普杂志科学家(The Scientist)评选为2017年度十大医疗技术发明首位。现主要从事基于微流控芯片的单细胞分析技术开发及其在人类健康/疾病相关问题中的应用等研究。/spanbr//pp style="text-align: justify text-indent: 2em "细胞是生命存在的基础,探索生命健康与疾病常需要以细胞研究为基础。由于细胞与细胞之间存在差异,群体细胞的研究结果只能得到一群细胞的平均值,这往往会掩盖个体差异信息。为更全面的了解细胞以服务人类健康、疾病研究,单细胞分析就变得尤为必要。在过去的几年中,陆瑶老师团队开发了一系列的基于抗体条形码微流控芯片的高通量、高内涵单细胞细胞分泌分析工具,大大加深了人们对细胞分泌异质性的认识,并尝试将其服务临床实现个体化、精准医疗。span style="color: rgb(0, 112, 192) font-size: 14px "strongspan style="color: rgb(0, 112, 192) "(含未公开发表内容,暂不提供回放视频)/span/strong/span/pp style="text-align: center "strongspan style="color: rgb(192, 0, 0) "报告题目:《拉曼单细胞流式分选技术及应用》/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 240px " src="https://img1.17img.cn/17img/images/201906/uepic/e7fe07cf-f676-4425-985b-a6b1b99d2bc7.jpg" title="马波.jpg" alt="马波.jpg" width="200" height="240" border="0" vspace="0"//pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em text-align: justify "马波,研究员,博士生导师,中科院青岛生物能源与过程研究所微流控系统团队负责人。自2003 年起致力于微流控芯片技术在分析化学和生命科学中的基础和应用研究。目前研究方向聚焦在:基于微流控技术的高通量单细胞分析技术和仪器研究,研制了首套拉曼单细胞流式细胞分选仪;用于临床、环境和食品安全的便携式微生物检测系统;工业酶、菌株和微藻的高通量筛选、选育和定向进化研究等。/span/pp style="text-align: justify text-indent: 2em "“单细胞拉曼图谱” 是特定细胞的“化学指纹”,蕴含着该特定细胞在特定生理状态下的丰富的生化信息,通过体现细胞化学组成及其变化,能够静态和动态地表征和监测该细胞的遗传背景、生理状态及所处微环境。与现有荧光细胞分选技术FACS相比,拉曼激活单细胞分选RACS 具有无损非标记的特点。因此,马波教授团队先后研发了单细胞拉曼光镊液滴分选、高通量流式拉曼单细胞分析与分选及单细胞测序等系列关键技术,并于新近推出了单细胞拉曼分选耦合测序的RACS-SEQ系统,同时提供适用于拉曼抗生素耐药性快检、单细胞测序的芯片和试剂盒。该仪器及试剂盒将为耐药性快速检测、合成生物学细胞工厂表型筛选、工业菌株和高通量酶定向进化和筛选等提供创新的系统解决方案。strongspan style="font-size: 14px color: rgb(0, 112, 192) "(含未公开发表内容,暂不提供回放视频)/span/strong/pp style="text-align: center "strongspan style="color: rgb(192, 0, 0) "报告题目:《肿瘤靶向的拉曼SERS探针和拉曼微球的构建和应用》/span/strong/ppstrongspan style="color: rgb(192, 0, 0) "/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 242px " src="https://img1.17img.cn/17img/images/201906/uepic/7c59cb63-76ee-4bdd-ba86-db17ae600e1e.jpg" title="汤新景.jpg" alt="汤新景.jpg" width="200" height="242" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "汤新景,博士,北京大学药学院教授,长江学者奖励计划青年学者,国家优秀青年科学基金获得者,教育部跨世纪(新世纪)人才。近年来,在反义核酸药物及非编码RNA等功能核酸的定点修饰及其功能的精确光调控、新型荧光核酸探针和新型肿瘤靶向的光学纳米探针等方面开展了一系列的研究工作。/span/pp style="text-align: justify text-indent: 2em "拉曼纳米探针基于其高的光谱分辨率和深的组织穿透性而被广泛应用于生物体系。目前大多数的拉曼纳米探针是利用增敏金属表面负载的染料分子,且拉曼信号位于1400-1700 cm-1 范围内。鉴于此,汤新景教授设计并构建了一系列基于生物体系拉曼信号静默区(1900-2500 cm-1)的拉曼报告基团的金纳米拉曼探针以及无需金属增敏的拉曼纳米微球。通过进一步的拉曼纳米探针表面的靶向修饰和功能化,实现对肿瘤细胞、组织以及活体小鼠的特异性拉曼光谱检测或拉曼成像。a href="https://www.instrument.com.cn/webinar/video_105271.html" target="_blank" style="text-decoration: underline color: rgb(0, 112, 192) "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strongstrong/strong/span/a/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目:《肝细胞移植治疗肝衰竭的问题和策略》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/bd1cd376-e0ab-4ac6-8ad6-43c62228704c.jpg" title="何志颖.jpg" alt="何志颖.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai text-align: justify text-indent: 2em "何志颖,研究员,博士生导师。同济大学附属东方医院再生医学研究所执行所长、课题组长,同济大学东方临床医学院生物技术教研室主任。入选上海市浦江人才计划等。现任中华医学会医学细胞生物学分会委员、中国整形美容协会干细胞研究与应用分会副秘书长等。科研上以干细胞与肝脏再生为研究方向,开展肝细胞移植基础和应用研究,致力肝脏疾病的细胞治疗。在Nature,Cell Stem Cell,Gastroenterology等期刊发表SCI论文37篇。/span/pp style="text-align: justify text-indent: 2em "肝衰竭是多数肝脏疾病重症化的共同结局,肝细胞移植治疗肝衰竭成为新的希望。如何获得非供体来源的肝细胞、提高移植肝细胞在宿主肝脏中的植入和增殖效率及开展活体示踪评价细胞移植的安全性等,成为肝细胞移植应用于临床迫切需要解决的主要问题。何志颖老师在报告中分享了应用多能干细胞肝向诱导分化、肝向谱系重编程等方案,获得充足的非供体来源的肝系细胞;通过局部磁场干预促进移植肝细胞在受体肝脏的植入效率;通过基因修饰或在受体肝脏释放生长因子促进移植肝细胞的增殖能力,寻找特异标志物分选具有肝脏再殖能力的肝系细胞,实现了移植肝细胞在受体肝脏的有效再殖;最后,应用活体生物体内发光成像系统,何志颖教授对肝细胞移植后在体内的分布进行了动态观察,开展了肝细胞移植后在肝脏中归巢与再殖规律的研究。a href="https://www.instrument.com.cn/webinar/video_105264.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strongstrong/strong/span/a/pp style="text-align: center "span style="color: rgb(192, 0, 0) "strong报告题目《质谱对大脑代谢通路的解析——从单细胞分析到组织成像》/strong/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 200px height: 239px " src="https://img1.17img.cn/17img/images/201906/uepic/bf5f8e7b-bab1-45d3-9b30-42440313e939.jpg" title="黄光明.jpg" alt="黄光明.jpg" width="200" height="239" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "黄光明,中国科学技术大学化学系教授,博士生导师。2001及2004年先后在北京师范大学获分析化学学士和硕士学位,2007年在清华大学获得博士学位。2012-今在中国科学技术大学化学系任教。于2013年入选中组部第四批“青年千人计划。美国质谱协会会员,中国质谱分析专业委员会委员。长期从事质谱分析及其化学、生命科学等领域的应用研究。目前主要承担国家自然科学基金青年及面上项目,中组部千人计划以及科技部重大研发计划子课题等课题。在Cell,PNAS,Angew. Chem. Int. Ed.,Anal. Chem.,Chem. Sci., Chem. Comm. 等国际期刊上发表论文50余篇,引用1200余次。于2018年获得中国质谱学会首届“质谱青年奖”。/span/pp style="text-align: justify text-indent: 2em "针对单细胞分析中的一系列技术难题,黄光明教授通过兼容膜片钳技术实现了活体细胞原位取样,并结合毫秒级超快电泳分离技术,搭建了单细胞质谱分析平台。利用该平台实现了对脑切片组织样品上的单个神经元细胞研究,在脑内发现了一条新的谷氨酸合成通路,阐释了其促进学习记忆功能的分子机制,为在单细胞内开展代谢通道研究提供了新的研究平台。a href="https://www.instrument.com.cn/webinar/video_105270.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strong(点击查看视频回放)/strong/span/a/pp style="text-align: justify text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者错过参与会议直播的网友,可以点击报告视频精彩回放进行学习与分享。/spanspan style="font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 0, 0) "更多专家报告请点击查看:/spana href="https://www.instrument.com.cn/news/20190612/486910.shtml" target="_blank" style="text-decoration: underline border: 1px solid rgb(0, 0, 0) "span style="border: 1px solid rgb(0, 0, 0) "istrongspan style="border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai "【视频回看】单细胞原位、定量分析、无损分选,还有?“最夯”重器都在这儿!/span/strong/iistrongspan style="border: 1px solid rgb(0, 0, 0) color: rgb(192, 0, 0) font-family: 楷体, 楷体_GB2312, SimKai "/span/strong/i/span/a/pp style="text-align: center "span style="text-decoration: underline " /spanbr//pp style="text-align: center "strong关注span style="color: rgb(192, 0, 0) "【3i生仪社】/span解锁生命科学新鲜资讯!/strong/ppstrong/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/bb3dca69-d424-4faa-b6d3-f9b9d6eee2d8.jpg" title="小icon.jpg" alt="小icon.jpg"//p
  • 东南科仪成功引进红外快速水分测定仪专用玻纤膜片
    使用红外快速水分测定仪测定固体水分是快速而稳定的水分测定方法,在农业生产,经济作物,化学品,食品工业质量监控和中间体质控中应用广泛,塞多利斯MA系列产品是此类仪器的典型代表,在世界范围内得到了广泛的应用,但是,由于半固体和固体物质加热过程中容易结块,挥发不完全,所以,膏状物和液体的水分测定使用红外快速水分测定仪就不太方便,现在,这个问题已经成功解决,东南科仪引进一种玻璃纤维海绵状薄膜,可以将液体比如:牛奶,豆奶,巧克力等均匀吸附,借助表面张力完美分散,有利于水分的挥发,对测定膏状物质:比如:巧克力,酸奶,奶酪等产品的水分也非常方便。这种玻璃纤维片本身含水量在0.1%以下,性质惰性,只产生表面粘附和径向分散作用,不会永久吸附,不会对测定结果造成不利影响,切割直径为~90mm,可满足赛多利斯MA系列和其他品牌的水分测定仪的使用需要。包装:100片/包(销售和价格咨询: 13380008123)相关链接:[赛多利斯产品简介]德国赛多利斯电子称量器具和红外快速水分测定仪,其先进的超级单体传感器, 优质可靠的集成电路和显示器件技术, 精湛的制造工艺,使其能长年稳定可靠地工作而勿须特别维护, 与其它同类产品相比, 可以一当十, 由东南科仪向用户推荐并经销的MA系列红外快速水份测定仪正在烟草行业数十家企业和质监站中应用, 积累了丰富的使用经验, 被使用者誉为 "是对该行业的一大贡献"。德国赛多利斯MA系列红外水分测定仪是先进的红外干燥器(模拟电烘箱)和精密电子天平及数据处理技术相结合的智能型产品, 其测定水分的原理基于干燥失重法, 与国标方法测定水分的过程具有原始的相关性, 因此, 与重现性和准确度均无法保证的电容法, 电阻法相比, 其测定结果准确, 可靠, 快速, 操作简便, 仪器本身勿须标定,测定结果勿须修正。为保证测定精度, MA-45,MA-50, MA-100均采用电子反馈系统自动调整加热功率, 使干燥加热的温度波动能够控制在± 1℃内。 赛多利斯全部中高端产品内置标准的RS-232C数据传输接口和打印驱动程序, 配打印机或电脑可不需要硬件改动实现结果的输出和统计数据,对数据进行集中统一管理, 实现测定与数据管理现代化。
  • 镀膜片基底背面反射的影响——低反射率样品表征
    当光线照射到两种介质的分界面上时,一部分光线改变了传播方向返回原来的媒介中继续传播,这种现象称为光的反射。在自然界中,光的反射存在着镜面反射、漫反射和逆反射三种现象。光的反射示意图镜面反射是在光线入射到一个非常光滑或有光泽的表面上时发生的。光线在物体表面反射的角度和入射的角度,度数相同但方向相反。如果物体的表面和光源成精确的直角,那么反射光线会完整地反射回光源方向。光的漫反射是一种最常见的反射形式。漫反射发生在光线入射到任何粗糙表面上, 由于各点的法线方向不一致,造成反射光线无规则地向不同的方向反射。只有很少一部分光线可以被反射回光源方向,所以漫反射材料只能给人眼提供很少的可视性。逆反射(背面反射)是指反射光线从靠近入射光线的反方向,向光源返回的反射。当入射光线在较大范围内变化时,仍能保持这一特性。当石英片上镀膜后,石英片的逆反射会对镜面反射的结果有明显的影响。本文采用日立的UH4150紫外可见近红外分光光度计、5°绝对反射附件和60mm积分球测试分析逆反射的影响。 下面是2种不同工艺需求的测试数据图:左图为同一批次的2个镀膜样品,变量为基底是否进行了涂黑处理。通过数据可以明显的发现:涂黑处理后的反射率明显降低,在1370nm附近的反射率约为0.3%,这是因为涂黑处理使得基底的背面反射(逆反射)尽可能地消除。 右图为另一种工艺的产品,直接对样品进行测试,不需要额外的处理,可以得到1300 ~ 1600 nm范围内反射率低于0.2%的效果,符合产品的预期。一般遇到测试反射率低于0.5%的指标需求时,建议使用标准片测试。×总结根据测试的目的需求,基底是否处理对实际的测试结果有很大影响。样品的反射率测试,需要考虑背面反射的影响。日立的紫外可见近红外分光光度计UH4150结合镜面反射附件,可以准确的表征低反射率的样品性能。——the end——公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 即插即用可定制 多器官芯片演绎人体原理
    美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。研究人员创造的这种即插即用的多器官芯片,大小与显微镜载玻片相当,可为患者定制。由于疾病进展和对治疗的反应因人而异,因此这种芯片最终将为每位患者提供个性化的治疗。这项研究刊载于4月27日出版的《自然生物医学工程》杂志上。灵感来自人体工程组织已成为疾病建模和在人体环境中测试药物疗效和安全性的关键组成部分。研究人员面临的一个主要挑战,是如何使用多种可进行生理交流的工程组织来模拟身体功能和全身性疾病,就像它们在体内所做的那样。然而,必须为每个工程组织提供自己的环境,以便特定的组织表型可维持数周至数月,符合生物学和生物医学研究的要求。使挑战变得更为复杂的是,必须将组织模块连接在一起以促进它们的生理交流,这是对涉及多个器官系统的建模所必需的。从人体的工作原理中汲取灵感,研究团队构建了一个人体组织芯片系统,在该系统中,他们通过循环血管流动将成熟的心脏、肝脏、骨骼和皮肤组织模块连接起来,让相互依赖的器官能够像在人类的身体里。研究人员之所以选择这些组织,是因为它们具有明显不同的胚胎起源、结构和功能特性,并且受到癌症治疗药物的影响。“在保持其个体表型的同时提供组织之间的交流一直是一项重大挑战,”该研究的主要作者、哥伦比亚大学干细胞和组织工程实验室副研究科学家凯西罗纳德森-博查得说,“因为我们专注于使用源自患者的组织模型,我们必须单独使每个组织成熟,以便它以模仿患者身上的反应方式发挥作用,我们不想在连接多个组织时牺牲这种先进的功能。在体内,每个器官都维持着自己的环境,同时通过携带循环细胞和生物活性因子的血管流动,与其他器官相互作用。因此,我们选择通过血管循环连接组织,同时保留维持其生物保真度所必需的每个单独的组织生态位,模仿我们的器官在体内连接的方式。”组织模块可维持一个月以上研究团队创建了组织模块,每个模块都在优化的环境中,并通过选择性渗透的内皮屏障将它们与常见的血管流分开。个体组织环境能够跨越内皮屏障并通过血管循环进行交流。研究人员还将产生巨噬细胞的单核细胞引入血管循环,因为它们在指导组织对损伤、疾病疗效的反应方面发挥着重要作用。所有组织均来自同一系人类诱导多能干细胞,从少量血液样本中获得,以证明个体化、患者特异性研究的能力。而且,为了证明该模型可用于长期研究,该团队将已经生长和成熟4到6周的组织在通过血管灌注连接后又维持了4周。研究人员还证明了该模型如何用于研究人类环境中的重要疾病,并检查抗癌药物的副作用。他们研究了多柔比星(一种广泛使用的抗癌药物)对心脏、肝脏、骨骼、皮肤和脉管系统的影响。他们表明,测试效果概括了使用相同药物进行癌症治疗的临床研究报告的效果。使用该模型研究抗癌药物该团队同时开发了一种新的多器官芯片计算模型,用于对药物的吸收、分布、代谢和分泌进行数学模拟。该模型正确地预测了阿霉素代谢成阿霉素醇并扩散到芯片中。在未来其他药物的药代动力学和药效学研究中,多器官芯片与计算方法的结合为临床前到临床外推提供了改进的基础,同时改进了药物开发流程。研究人员称,新技术能识别出一些心脏毒性的早期分子标志物,这是限制药物广泛使用的主要因素。最值得注意的是,多器官芯片准确地预测了心脏毒性和心肌病,这通常需要临床医生减少阿霉素的治疗剂量,甚至停止治疗。研究小组目前正在使用这种芯片的变体进行研究,所有这些都在个体化的患者特定环境中进行。如乳腺癌转移、前列腺癌转移、白血病、辐射对人体组织的影响、新冠病毒对多器官的影响、缺血对心脏和大脑的影响,以及药物的安全性和有效性。研究团队还在为学术和临床实验室开发一种用户友好的标准化芯片,以帮助充分利用其推进生物和医学研究的潜力。研究人员说:“我们对这种方法的潜力感到兴奋。它专为研究与损伤或疾病相关的全身性疾病而设计,将使我们能够保持工程人体组织的生物学特性及其交流。一次一个病人,从炎症到癌症。”
  • 国内首条多材料光子芯片生产线明年建成
    计算速度比电子芯片快约1000倍,功耗却更低——光子芯片,成为当下各国争相布局的前沿产业。随着芯片技术升级迭代,光子芯片有望成为新一代信息领域的底层技术支撑,正催生一大批新应用、新产业,拥有巨大的市场前景。记者从中关村前沿科技企业中科鑫通获悉,国内首条“多材料、跨尺寸”的光子芯片生产线预计将于2023年在京建成,填补我国在光子芯片晶圆代工领域的空白。芯片产业向“光”而行通俗地说,在传统的电子芯片中,数据传输的载体是电子,而在光芯片中,数据传输的载体变成了光子。相较于电子芯片,光子芯片具有高速并行、低功耗的优势,其运算速度及传输速率是电子芯片的1000倍,而功耗仅为电子芯片的九万分之一。1965年,英特尔联合创始人戈登摩尔提出摩尔定律,预测每隔18到24个月,芯片的晶体管密度就会增加一倍。摩尔定律此后不仅成为计算机处理器的制造准则,某种程度上也被看作科技行业发展的预言。然而,以硅为基础的电子芯片发展了几十年后,承载能力已经逼近物理理论的极限。光子芯片的出现,被看作突破摩尔定律的重要途径之一。一位芯片行业资深从业者介绍,当电子通过晶体管等传统集成电路元件时,会遇到阻力并产生热量。随着设计者不断将更多元件添加到芯片之中,产生的热量自然会升高。电子这一特性甚至成为了微型芯片性能提升的障碍,同时也是计算机能耗高的主要原因。相较之下,光子芯片不存在电阻问题,因此其产生的热量更少、能耗更低、计算速度也更快。全球权威IT咨询公司Gartner预测,到2025年全球光芯片市场规模有望达561亿美元(折合人民币约4041.16亿元)。中国工程院院士、清华大学教授罗毅此前在接受媒体采访时说,我国光电子芯片研究正和国际先进水平“并跑”。值得注意的是,在制造工艺上,光子芯片对结构的要求不像电子芯片那样严苛。“光子芯片不会像电子芯片那样必须使用极紫外光刻机(EUV)等极高端的光刻机,使用我国已经相对成熟的原材料和设备就能生产。”有二十余年芯片从业经验的中科鑫通微电子技术(北京)有限公司总裁隋军说。多材料生产线有望填补空白正因为光子芯片的诸多优势,芯片由“电”到“光”的转换,被视为国产芯片实现突破的重要技术路线之一。北京市第十三次党代会报告中提到,“围绕光电子、生命科学、低碳技术等领域前瞻布局未来产业”。在中科鑫通展厅,记者见到了不同大小的光子芯片晶圆。“加工后的晶圆经过切割等一系列工序后,就变成一颗颗芯片。”隋军说,与用来制作电子芯片的硅晶圆不同,光子芯片晶圆的衬底虽然也是硅,但是在衬底上还覆盖着一层氮化硅或薄膜铌酸锂等特殊光电材料。在创办中科鑫通前,隋军已深刻体会到国内企业在集成电路方面仍处于补短板的阶段。“在电子芯片领域,即便用同样的设备和材料,不同芯片代工厂生产出的芯片性能指标却大不相同,为什么?壁垒就在于工艺。”他说,目前的光子芯片产业发展中依然没有摆脱在设计和应用领域规模较大,而在设备、制造、封测等基础领域实力弱小的局面。至今,我国尚没有一家专业的光子芯片代工企业,国内光子芯片行业尚未形成成熟的设计、代工、封测产业链。隋军透露,中科鑫通目前正筹备建设国内首条“多材料、跨尺寸”光子芯片生产线,将于2023年建设完成,能满足通信、数据中心、激光雷达、微波光子、医疗检测等领域的市场需求。该生产线建成后,将填补我国在光子芯片晶圆代工领域的空白,有望加速国产光子芯片替代的规模化进程。光子芯片应用未来可期芯片除了应用于通信、供电、温度湿度感应,还能进行病毒检测。一个月前,在中关村前沿大赛集成电路领域决赛的舞台上,隋军在现场展示的生物光子芯片项目打开了不少人对芯片的想象空间。在光子芯片光波导上涂敷对病毒敏感的试剂,就能分析出病毒生物分子的类型以及含量。生物检测只是光子芯片的诸多应用场景之一。近年来,光子芯片的应用场景早已不局限于通信领域,广义上的光子芯片在工业、消费电子、汽车、国防等领域均有非常广泛的应用。例如在人工智能领域,光子芯片可应用于自动驾驶、语音识别、图像识别、医疗诊断、虚拟现实等。此外,现在的云计算和数据中心,已经大量采用了基于光子芯片的光收发模块,随着数据中心对于算力的需求与日俱增,光子芯片也有望发挥更大的作用。“未来两三年,我们将充分利用已有科研成果,在诸如病毒快速检测、激光雷达、量子计算机、大容量数据通信等领域提供切实可靠的国产核心芯片与方案支撑,加速国内量子信息、人工智能以及6G等前沿领域的实用化与规模化发展。”隋军说。
  • 涉及1556台仪器,年产100亿只芯片项目工艺流程曝光
    半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。所谓封装测试其实就是封装后测试,把已制造完成的半导体元件进行结构及电气功能的确认,以保证半导体元件符合系统的需求的过程称为封装后测试。对此,仪器信息网特通过公开文件了解到池州华宇电子科技有限公司年产 100 亿只高可靠性集成电路芯片先进封装测试产业化项目情况。据了解,池州华宇电子科技股份有限公司投资 15800 万元在池州市经济技术开发区凤凰大道与前程大道交叉口新建“年产 100 亿只高可靠性集成电路芯片先进封装测试产业化项目”,项目占地面积 65 亩,中心坐标为东经 117.543982°,北纬 30.705040°。建设主体工程1#厂房,配套建设办公楼、科研楼、宿舍楼等辅助工程以及储运工程、公用工程和环保工程等,购置切割机、研磨机、键合机、焊线机、编带机、成型机、镀锡设备、双轨机、塑封压机等半导体自动化设备,建设高性能高可靠性集成电路芯片封装测试生产线,形成年产 100 亿只集成电路线宽小于等于 0.8微米集成电路芯片封测能力。项目分两期建设,一期建设3条镀锡(自动)生产线,形成年产 50 亿只集成电路线宽小于等于 0.8 微米集成电路芯片封测能力;二期建设 3条镀锡(1 条挂镀)生产线,形成年产 50 亿只集成电路线宽小于等于 0.8 微米集成电路芯片封测能力。该项目配置清单和工艺流程详情如下,主要配套设备一览表主要工艺流程及产污环节:本项目主要是将待封装的芯片进行封装、镀锡、测试。本项目一期工程主体工艺流程如下。①主体工艺:项目主体生产工艺流程及产污环节图工艺流程说明:磨划片:通过研磨机将芯片磨至需要的厚度,磨片过程中用纯水冲洗,磨片完成后进行切割,切割完成后用纯水冲洗,磨划过程会产生少量废水 W1 与固废 S4; 粘片:目的是将单个的芯片固定在基材(引线框架/基板)上。该过程采用导电胶进行粘片,导电胶的成分为树脂和银粉。粘片过程会产生少量废引线基材 S1;键合:接线温度 T=120-200℃,接线时间 t=0.5-1 秒。在压力和超声波键合的共同作用下,利用高纯度的金丝或铜丝把芯片上电路的外接点和引线(框架管脚)通过引线键合的方法连接起来。该过程主要产生少量废金属 S2(废铜线等)。塑封:采用环氧树脂塑封材料将部分框架和焊线后的芯片封装,对组装件进行保护,该过程在自动塑封机内完成,主要产生少量废胶渣 S3。塑封过程中树脂熔融状态会产生有机废气 G1。激光打标:采用激光机,在相应部位打上标记。激光机在打标过程会产生有机废气 G2 和粉尘 G1。表面处理:采用电镀流水线进行无铅镀锡处理。切筋:镀锡后的元件通过引线连在一起,因此需要将引线切断,以将整条元件分割成单片。切筋后形成的单片,即为封装完成的集成电路。该过程主要产生边角料 S6。测试、检验:对封装完成的单片进行测试以及抽检。该过程产生的不合格品将返工。包装:对测试、检验合格品进行包装入库。②镀锡工艺:项目镀锡工艺流程及产污环节图工艺流程明:高温软胶(高温蒸煮槽):电子元器件在塑封时会溢出多余的环氧树脂毛刺、飞边,故需要使用化学去毛刺溶液,在 60-100℃温度下浸泡,使毛刺或飞边溶胀、溶解、软化,以便接下来使用高压水喷射彻底去除。化学去毛刺溶液的主要成分是氢氧化钾、杂环酮类衍生物、聚乙二醇、醚类衍生物,产品浸泡后需要用水清洗,清洗时会有废水 W2-1 产生(碱性废水)。高压水去胶:通过增压系统加压自来水,使自来水压力达到 200-500kgf/cm2,用来去除已软化或松动的毛刺或飞边,产生废水 W2-2 定期处理循环利用。去氧化:去除产品表面的氧化物,使镀层与基材有良好的结合力。使用的化学品是过硫酸钠,浓度 50g/L 左右,常温使用,去氧化后需要用水清洗,清洗时会有废水W2-3 产生(酸性废水)。预浸:主要作用是镀锡前对产品进行活化,并防止污染镀锡液,使用浓度 10%的甲基磺酸,预浸后不需要清洗,没有废水产生。镀锡:通过电化学沉积的方法,在基材上覆盖一层功能性纯锡镀层,使产品具有良好的可焊性。镀锡液主要由 150g/l 的甲基磺酸、60g/L 二价锡和 50mol/L 的表面活性剂组成,温度 30-50℃,电流密度 10-30ASD。镀锡后需要用水清洗,清洗会产生废水 W2-3(酸性废水)。中和:中和镀锡残留的酸性物质,防止镀层变色、腐蚀。中和液使用碳酸钠配置,操作温度常温,中和后需要清洗,清洗会有废水 W2-1 产生(碱性废水)。超声波清洗:采用纯水机制备的纯水,进行最后的超声波清洗,清洗温度为50-70℃。干燥:工序最后对芯片进行干燥处理,干燥主要分为风干和烘干。退镀:镀锡线采用不锈钢钢带和夹子来夹持和传送产品进行镀锡,钢带和夹子上也会镀上一小部分的锡,需要对这部分锡进行剥除和回收。退镀液的主要成分为甲基磺酸(55g/L),使用小于 1.5V 的电压进行电解,使钢带和夹子上的锡剥除并重新沉积在回收钢板上。退镀后用超声波溢流水清洗,不新增清洗废水。项目退镀工艺流程项目需定期对沉锡工序使用的钢带和假片进行退锡。退锡周期约 1 次/月。 ①钢带退锡:采用电化学方法(利用甲基磺酸)在高速退锡线中使钢带上的锡转移到钢板上,与锡化生产线同步进行:钢板退锡是利用电解方法将钢板上的锡电解形成锡渣 S,退锡后利用纯水清洗:此过程将产生一定的酸性气体 G3-2 酸性气体,退锡清洗废水 W2。②夹片退锡:使利用化学方法使用电解液将夹片上的锡溶解到退锡液中,夹片退锡后利用纯水清洗。此过程将产生一定的酸性气体 G3-2 酸性气体,退锡清洗废水 W2。退锡工序产生的锡渣回用于镀锡工序。③其他产污环节本项目其他产污环节主要包括:反渗透法制纯水产生的浓水 W3,废气喷淋塔产生的废水 W4,一般性固态原辅料拆包装过程产生的废包装材料 S11,化学品使用过程产生的沾有化学品的容器 S7,污水处理站产生的污泥 S8,设备及地面定期清洗废水 W5,以及员工日常生活产生的生活污水 W6 和生活垃圾 S9,纯水制备过程会产生废反渗透膜 S10,生产过程中产生的不合格产品 S11。
  • 芯片上的患者—多器官串联芯片应用于精准医疗
    芯片上的患者—多器官串联芯片Multi-Organ-on-Chip应用于精准医疗北京佰司特科技有限责任公司An Individual Patient's "Body" on Chips – How Organismoid Theory Can Translate Into Your Personal Precision Therapy ApproachFrontiers in Medicine, 2021, Vol. 8Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM类有机体的概念在12年前就被提出来,当时被称为“芯片上的人体human-on-a-chip”或“芯片上的身体body-on-a-chip”,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,将多个类器官串联起来培养。微生理系统MPS成为体外在生物学上可接受的最小尺度模拟人体生理和形态的技术平台,因此,微生理系统能够以前所未有的精度为每个患者筛选出个性化治疗方案。与此同时,第一个人类类器官——干细胞衍生的复杂三维器官模型,可以在体外扩增和自我组织——已经证明,只要给人类干细胞提供相应诱导分化及生长环境,就可以在体外自我组装成人体类器官。这些早期的类器官可以精确地反映出人体中对应器官的一系列独特的生理状态和病理特征。我们现在把过去的“芯片上的人体human-on-a-chip”的概念发展成“类有机体Organismoid”的理论。首先,我们提出了“类有机体”的概念,即通过体外的自我组装的过程,模仿个体从卵细胞到性成熟的发生过程,培养出的——微小的、无思维、无情感的体外的人体等效物。随后,我们提出了类有机体的分化和培养方法,使其能在体外长时间维持正常功能,以及通过自然或人工诱发疾病干扰类有机体来模拟个体疾病过程。最后,我们讨论了如何使用这一系列健康和疾病模型的类有机体来代替病人,测试药物疗效或药物剂量,即个体化精准医疗。 图1 |每个人个体命运的类有机体。(A)个体发育(黄色)从卵细胞受精开始,随后出生,并在18 ~ 20年后性成熟,发育出功能完整的大脑和成年骨骼。然后,成人的身体会经历一个持续数十年的功能和结构相对稳定的阶段。随着身体年龄的增长,这个成年期会被不断延长的生病和康复期打断(粉色)。情感和意识——人类的灵魂和思想——从童年开始连续发展,并贯穿一生。(B)根据类有机体理论,个性化的类有机体可以通过持续几个月的体外培养(黄色)来建立。由此产生的成体类有机体可以模拟健康人类成年几周(S-短期)、几个月(M-中期)或几年(L-长期)的阶段。然后,这些可以用来模拟急性、亚慢性和慢性疾病时期(粉色)和个体在相应的时间框架内的治疗后恢复。大量相同的类有机体还可以提供足够数量的生物学重复和对照,确保了数据的准确性,真实性,可重复性。此外,这些健康的类有机体在预防医学的评估方面很有用,比如为各自的个体接种疫苗。 类有机体理论人的个体寿命的特征是人体的生理和形态的发育阶段(发育期)和功能维持阶段(成年期),以及个体与社会在灵魂和思想上的双向交流,如图1A所示。社会起源本质上与人的大脑的大小和结构有关——大脑由大约860亿个神经元以及数量大致相等的非神经元细胞(2)组成,这些细胞高度连接,聚集在一起处理、整合和协调它从感觉器官接收到的信息(3)—以及它与身体其他部分的相互联系。成熟的人体生理遵循一个简单的进化,即选择性结构计划,也就是组成遵循功能。早在2007年,我们就注意到这样一个事实:“……几乎所有的器官和系统都是由多个相同的、功能独立的结构单元组建成的,从几个细胞层到几毫米组织。由于其独特的功能性、高度的自立性和这些结构单元在各自器官中的多样性,它们对药物和生物制剂的反应模式几乎代表了整个器官。大自然创造了这些微小但复杂的结构单元,以实现器官和系统最主要的功能。在一个特定的器官内,这些结构的重复是天然的风险管理工具,以防止器官局部损伤时功能完全丧失。然而,从进化的角度来看,这一概念使得器官的大小和形状可以很容易地调整到特定物种的需要(例如,小鼠和人类的肝脏使用几乎相同的结构单元)(4)。这一理论,结合微生理系统(MPS)的发展,为在生物芯片上以生物学上可接受的最小尺度模拟人体的器官提供了理论基础(5-7)。2012年,我们引入了“芯片上的人体”(man-on-a-chip)的概念,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,即将多个类器官(比体内缩小10万倍)串联起来培养。我们举例说明了人体主要器官的功能单位,并简要描述了减小尺寸的原理(5)。这是发展一种理论的起点,即建立一种微小的、无思维、无情感的体外的人体等效物,我们现在称之为organismoids类有机体。不同的术语,如芯片上的人体,芯片上的身体,或通用的生理模板,在过去已经被用于代表有机体。在MPS领域中已经使用过这个概念,通过培养10个人的主要器官的等效物(类器官)来实现完整的体内平衡:循环,内分泌,胃肠道,免疫,皮肤,肌肉骨骼,神经,生殖,呼吸和泌尿系统。类有机体的理论基于两个按时间顺序相互关联的概念,每个概念有三个实施原则。类有机体的体外发育依赖于(i)(诱导多能)干细胞为基础的体外早期类器官形成;(ii)以生理学为基础,通过血液灌流和神经分布,应用于芯片上的MPS,将此类早期器官的比例/数量整合为早期自我维持的类有机体;以及(iii)通过类器官在芯片上的串联培养加速刺激个体发育,完成体外个体发育成为健康成熟的类有机体(模拟成年期)的转变。因此,利用芯片上的类有机体模拟病人的疾病和治愈过程的概念遵循以下原则:(一)通过自然疾病过程或通过来自病人的病原体或病变组织的传播在生物体中诱发疾病;(ii)通过对同一个患者来源的健康和病变类有机体进行相同数量的试验来模拟对大量患者进行的人体临床试验;以及(iii)为每个患者精确选择正确的药物或疗法和最有效的用药方案。在这篇文章中,我们带你通过类有机体理论的概念和原则,用实际结果阐述它对我们的医疗保健系统的颠覆性创新的潜力,并提供一个可行性方法的展望。 微流控培养系统——早期类器官形成类有机体的关键类器官已被证明是模拟不同器官特异性特的有力工具。然而,如上所述,标记物表达和功能往往在早期就停止了。我们从1912年就知道,体外培养的环境决定了它们的生存能力和功能(100)。驱动类器官自组装和分化的各向微环境因子在传统培养条件下相当均匀地覆盖类器官或广泛的表面积,阻碍了由功能驱动的空间定向和成熟。但这些源自相互作用的组织并导致细胞重排的时空线索,是发育成熟器官功能的关键。但这些源自相互作用的组织并导致细胞重排的时空因子,是成熟器官功能发育的关键。特别是内皮组织相互作用及其对器官发生过程中局部信号传导的影响已被广泛研究(101-103)。 例如,发育中的中枢神经系统的血管化是大脑发育中至关重要的一步,确保快速分裂的神经前体细胞的氧气和营养供应。外周神经系统的神经结构已被证明以明显的与血管同步的方式发展。此外,内皮细胞对于维持产生小脑细胞的中枢神经系统胚层的重要性也得到了证明(104)。在过去的二十年中,通过将器官模型引入MPS来改善器官模型培养条件已经做出了大量的努力。利用原代和细胞系为基础的模型已经建立了MPS中的数十种人体类器官,并已进行了非常详细的综述(105 - 111)。有充分的证据表明,器官功能的成熟可以通过密切模拟有关生化、物理或电刺激的器官型微环境来实现(106)。看来,神经支配、血管化、淋巴管、微生物群和胆汁产物的肠-肝脏循环模拟是满足多器官MPS中类器官的简单物理结合和生物体中真正的组织相互作用和稳态之间的鸿沟不可或缺的先决条件。后者需要至少10个人类系统(如引言中强调的那样)的主要类器官的串联组合,以及它们通过血管系统、神经支配和淋巴管的生物互联。关于建立包含至少10个技术上可相互连接的器官培养区隔的MPS的两项早期尝试已经发表。这些主要的例子包括康奈尔大学舒勒实验室(Shuler Lab)的13个器官培养系统(170个)和麻省理工学院格里菲斯实验室的10个器官培养PhysioMimix系统(171)。这两种系统都已成功地在培养室中使用生物材料运行了7天或更长时间。然而,两者都缺乏生物血管互连、淋巴管和器官神经支配。 生物体可能会传递什么给我们的医疗系统根据有机体模型理论,有机体模型是活体人体在体外的生物复制品,只是尽可能缩小了规模。它们是由系统创造的整合:生理学上把人体主要器官的功能单位整合成一个有机的、自我维持的模板,反映人体的系统组织干细胞衍生器官等价物在芯片上的快速分化,源于它们之间的相互串扰和生理上的相互依赖。规模的极端缩小,是由于产生个体的生物体样体的大量重复的目标。大量这种相同的、微小的、无脑的、无情绪的生理体外有机体的成熟可以在很长一段时间内保持自我维持的功能性健康内稳态。它们容易受到干扰,导致自然或人为地诱发疾病。患病的生物体被假设以精确地模拟各自病人疾病的病理生理学。反过来,这可能使预测性的患者特异性有机体样研究的表现,以确定最有效的个性化治疗患者有关。类似于对患者队列的临床研究,然后可以产生统计验证的预测,其优势是可以在生理和病理生理条件下比较基因相同的患者有机体样体重复。由此可以推导出两种主要的使用场景。一种是与现实世界中个体患者个人治疗的前沿改进有关 另一种则有可能在临床试验层面改变药物开发范式,节省大量时间和资本支出。关于第一种方案,生物体模型可以用于预测地选择、安排和给药,根据患者的疾病进展准确地选择个性化治疗或药物。通过早期发现不成功的治疗方案,这可以显著降低对每个患者的潜在风险。图5更详细地总结了将有机体应用于个性化精准医疗的优势。该图说明了有机体体方法的概念和原理,以选择最适合您的个性化疾病应用的精准医疗。作为一个假设的例子,癌症被选择为疾病。你的生命周期可能最终包括危及生命的疾病时期,例如,癌症生长(上:蓝色边框的箭头)。从你的健康细胞中建立一个多能干细胞库。随后,在几个月内就会产生大量相同的健康生物体(黄色三角形)。目前有各种治疗癌症的选择,因此,相关的试验组被创建,包括安慰剂治疗、其他治疗组和健康恢复对照组(在黑边箭头中)。在这个假设的例子中,在几周内,CAR-T细胞疗法与检查点抑制剂相结合,会被证明是你最快最有效的治愈方法。因此,这种疗法立即得到了成功的应用。根据生物体形态理论,一个人的干细胞库可以在健康时创建,也可以在疾病发生时从健康的器官中创建。预防性干细胞库(例如,从脐带血中提取)已经在使用中,并将成为未来的选择,因为这需要时间。接近人类的理论提供了精确的试验结果,这是动物试验在患者来源的异种移植模型或人类患者来源的类器官无法实现的。异种移植模型在系统发育上是遥远的,因此不能提供足够的肿瘤生长。此外,它们没有病人的免疫背景来对抗癌症。病人来源的类器官也没有嵌入到病人的免疫系统中,缺乏与有机体的系统性互动。对于第二种情况,数十年来,候选药物进入临床试验成为获批药物的平均成功率一直低于20%;这种将任何原型转化为上市产品的低效率,其他任何行业都承受不起。使用实验动物的候选药物的临床前安全性和疗效评估程序的预测性差是造成这种低效率的主要原因。其后果是平均13.5年的漫长临床试验,以及一种新药获得批准所需的累计成本高达25亿美元(106)。与此同时,在过去30年里,一场基于生物学的治疗策略出现了——利用人体自身的工具来对抗疾病。近年来,药物的生物复杂性不断扩大,从人工合成的小分子药物,到人类单克隆抗体蛋白,最后是针对患者的自体细胞疗法,极大地增加了患者治愈的机会。然而,这一趋势同样显著地降低了通过应用临床前的实验室动物试验来预测这类疗法的安全性和有效性的机会,原因是这类先进治疗药物的人类起源越来越多(172)有机体有可能通过改变药物开发的模式来打破这种成本螺旋上升。2016年,MPS相关报告已经预计,一旦基于MPS的类似于生物体的临床试验研究能够准确预测任何新药物或疗法的疗效、安全性、剂量和时间安排,在用于人类试验和替代动物试验以及1、2期临床试验之前,累积药物开发成本将降低5倍,药物开发时间将减少一半。2018年,毒理学研究领导人论坛(10)草拟了一份高级路线图,以确定“临床试验”预测精度(图6),在与临床试验相对应的芯片研究中运行精细的个性化的“人体”等效物(有机体)。为了实现这一点,套健康的和有病的代表患者疾病状态和健康内稳态的有机体样体将允许一个人进行基于临床前系列药物和先进的有机体样体测试。图5 |说明有机体理论如何应用于个性化医疗的假设例子。 图6 |在芯片上潜在的“临床试验”背景下的“人体”等效物(10)。 图7 |一个假设的例子,说明有机体理论如何可以用来模拟临床试验。 健康的内稳态将允许一个人在大型试验特定患者中模拟临床试验的环境中进行基于有机体的药物和先进疗法的临床前系列试验。与患者队列试验相比,以有机体为基础的试验具有许多关键的优势。图7详细说明了这些优势,并举例说明了利用基于有机体的试验模拟一种假想的新型钠-葡萄糖转运体2(SGLT2)抑制剂治疗2型糖尿病的临床试验。最突出的优势是,在药物开发历史上,基于芯片的有机体试验将首次包括患者身体和同一个体健康身体状态的统计相关的人体自体生物重复。由于缺乏对单个患者的任何生物重复,以及对他们在健康内稳态下的个体生物状态的了解,临床试验传统上需要大量的患者队列。因此,试验被分为1、2和3期,不幸的是,只能近似一个患者个体的病理生物学和他们的完全治愈恢复状态。这两个方面使得传统的临床试验过程成为一种漫长的、成本高得令人难以置信的、低效的药物和先进疗法的开发方式。在含有健康和患病生物体的芯片上进行“临床试验”,消除了这两个障碍。一方面,它们允许近亲繁殖的实验室动物试验的一致性由于基因而得到匹配,每个试验“参与者”在个体有机体水平上的身份,但其背景完全是人类。另一方面,各种不同个体的生物样体的使用反映了临床试验中患者队列的异质性,但具有每个个体患者的生物样体在统计上相关的生物重复的优势。有机体体方法的另一个明显优势是,在进行此类试验时,其独立性不受患者招募和医院使用的影响。鉴于大型PSC库的存在反映了基因倾向、性别和与试验相关的其他类别,基于有机体模型的试验可以在世界任何时间、任何地点进行。关于上面的假设例子,根据糖尿病易感性选择供体,比较遗传祖先和平等的性别分布可能是有趣的干细胞瓶选择策略。第三个优点是试验规模的灵活性。理论上可以产生的患病生物体(通常被称为芯片上的“病人”)的数量是无限的。这使得药代动力学方面的整合,在同一个基于有机体的试验中发现新的化学或生物实体的有效剂量和综合安全性和有效性评估成为可能。目前在实验室动物、健康志愿者和患者的单独临床前和临床试验中产生的数据,如毒性特征、未观察到的副作用水平、吸收和排泄率、代谢物形成、发现有效剂量、持续时间和新药物的时间安排,可以从一项基于生物体的试验中得到。例如,我们治疗2型糖尿病的假设案例研究可以很容易地扩展到更大的剂量范围,并将每天两次剂量的单一口服(这在生物样体中指的是根尖肠的任何给药)进行比较。这将包括对疗效进行剂量依赖的评估,同时观察尿路或生殖道感染的发生和严重程度,以及众所周知的SGLT2抑制剂的副作用。在各自的患者队列中,候选药物使用的治疗窗口的定义来源于这样一项一体化试验,该试验仍处于临床前候选药物开发阶段。关于这两种使用场景,我们设想有机体将对从个人数据库收集的医疗现实世界大数据做出重大贡献。这是因为它能够在每个患者第一次疾病发作(例如,肿瘤生长、病毒复制)的确定位置生成关于微环境破坏的独特可复制数据。有机体和硅芯片的结合将进一步提高对大量患者群体进行精确药物治疗的预测能力,并进一步降低成本。在人们的心目中,复杂的体外细胞培养工作通常与高昂的成本联系在一起。有人可能会猜测,在试验中产生和处理数千个生物体需要天文数字的预算,因为目前可用的MPS在一次性芯片和操作上都很昂贵。在这里,有机体的性质反映了一种自我可持续的人体和规模经济效应开始发挥作用。在现实世界中,一个处于休息状态的人体,每天的蛋白质、碳水化合物和脂肪供应约2000千卡就可以维持。在世界上一些较贫穷的地区,人均几美元就可以实现这一目标。因此,每天喂养10万只生物体的成本也可以达到相同的水平。维持这些生物体的可消耗芯片的价格也预计将下降到1美元的范围,这在计算机芯片和人类基因组测序成本方面已经有过先例。生物机体能够为每一位患者确定最合适的药物,并大幅节约成本和改变药物开发,这种能力的社会经济维度被认为是巨大的。这同样适用于伦理层面。基于MPS的类有机体有可能取代大多数实验室动物试验和在人类志愿者身上进行的第一和第二阶段临床试验。它们将减少三期临床试验患者的多种数量。所有这些都将对全球范围内的患者利益和动物福利产生根本性的积极影响。 患者类有机体体和芯片上病人特异性T细胞疗法——一个挑战这一理论的完美方案先进的细胞疗法,如自体嵌合抗原受体(CAR) T细胞疗法KymriahTM 和YescartaTM,最近已经证明了它们治愈以前的耐药肿瘤患者的潜力(176,177)。除了这两种在2017年被批准用于治疗血液肿瘤的CART细胞产品外,其他几种CAR-T细胞产品最近也被批准。许多新的细胞治疗方法正在酝酿中,使用CAR或转基因T细胞受体对抗各种各样的肿瘤、感染和自侵略性免疫细胞,或者使用调节性T细胞在显性的不良免疫反应中恢复免疫平衡(178)。到2020年底,全球注册了超过1000项使用免疫细胞产品的临床试验(179)。在这些医疗需求未得到满足的领域,这种前所未有的疗效以标准安全测试程序(180)为代价,增加了监管机构的接受度,该程序需要在治疗批准后的患者随访研究中进行回顾性研究。这符合这样一个事实,即由于患者与患者的系统发育距离、各自的基因型差异和免疫不匹配,患者对个性化细胞治疗的反应无法在临床前的实验室动物模型中模拟。同样,在传统的患者来源的类器官培养中,患者的反应也无法预测,因为它们没有融入到一个系统的有机体安排中。除其他外,模拟t细胞输注到目标部位的静脉输送及其与其他主要器官部位的相互作用,都缺失了模拟T细胞疗法及其疗效(患者衍生类器官的精确度)的关键因素。 如前所述,这里的有机体理论提供了一种克服任何其他障碍的替代解决方案。 什么是有机体不能也不应该做的根据有机体理论,有机体不能也不应该模仿人类个体社会起源的主要部分——同理心或意识(分别是灵魂或思想)。因此,它不能模拟病人的精神疾病。300g的人类心肌或髋部骨折的功能障碍及其愈合依赖于生物物理特性,由于规模和所涉及的物理不匹配,其中一些无法在生物类体上表征。伦理考量对人类社会至关重要,也是人性的基础。有机体理论,由于其性质,引入了一些必须考虑伦理的观点。将人类胚胎发育到几厘米大小是最关键的问题之一。在人工环境下(如体外培养),人类卵子的受精及其随后的胚胎发育在世界上许多地方都是被禁止的。生物体理论的作者想要强调的是,他们的伦理范式超越了这一点。人们不应该使用有机体形态理论的概念和原则来创造人类或杂交胚胎,并进一步发展和区分人类或杂交组织。应该使用其他方法来规避个体发生的这一部分。个人同意捐献组织来创造生物体可能是一个很好的工具,以防止在早期阶段的滥用。 结论这里提出的生物体样体理论声称,有能力在体外人工重现个体身体的个体发生,从捐赠者的干细胞开始,产生一定数量的相同的健康成熟的小型化身体等量物,因此被称为生物体样体。该理论进一步声称,这种供体特定的相同生物体样体反映了该个体健康成年期的某个阶段,可以用来模拟该供体在其生命周期的某一特定时间内相关的疾病和康复阶段。以个性化的患病生物体样方法对个体的疾病进行建模,将提供一个尚未满足的患者病理生物学的现实水平,因此,提供一个前所未有的工具,以精确选择正确的药物、治疗计划和剂量来治愈(患病)个体。大自然的遗传和微环境原则编码了人体器官最小功能单元的自组织和维护,并将它们整合到一个交流通讯和高效互动的血液系统中,灌注和神经器官是在芯片上创造生物体的蓝图。我们设想它们将成为下一个层次的人类生物学模拟,提供与人类相对应的最佳可能的近似。在体外实验中,类有机体organismoids将有机地遵循人类的多个类器官串联,近年来,这已被证明能够在小型化的规模上模拟单个组织和器官的不同功能。利用已从类器官学习到的东西,类器官将通过一个小型化的基于生理的血管和毛细血管网络在芯片上生成的全血的系统神经支配和供应,以每个器官的功能单元。通过内皮细胞层将每个类器官从共同的血液中局部分离,将使不同人体器官功能单元的精确拷贝在芯片上实现单独的器官特异性、遗传编码和微环境驱动的自我组装。反过来,这将使成熟的类器官在生理上产生交流,从而导致有机芯片上的内稳态。一旦建立,生物体将只需要每天用消化的食物等量进食,就可以模拟芯片上的长期、所谓的自我维持的身体功能。我们已经说明,类器官体外培养技术和过去10年生产的单器官芯片为体外类器官的培养提供了大量数据。此外,人类iPSC衍生的多器官串联芯片提供了芯片上加速人工器官个体发生的第一个成果。最后,越来越多的关于人类疾病建模和人体组织芯片治疗测试的科学文献指出,当MPS上完全功能性地建立多器官串联芯片以及人体芯片时,这种微生理平台就有能力精确模拟疾病的病理生物学和药物或治疗的作用模式。进一步发展器官芯片的主要挑战是神经支配和类器官毛细血管化的实现,这也需要细胞,特别是免疫细胞迁移到组织中。 类器官串联芯片培养系统--- HUMIMIC多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不同的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试:配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性;最终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治疗的效果;人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰腺、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨髓以及各自的多器官串联组合方案。德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域.
  • 官宣!朗铎科技全新宣传片正式发布
    材料分析解决方案服务商——朗铎科技全新企业宣传片今天正式发布!朗铎科技始终专注中国手持式光谱仪事业,为用户提供材料分析数字化解决方案,产品服务于资源回收、机械加工、能源电力、石化化工、地质地矿等多个行业。朗铎科技全新企业宣传片:作为材料分析数字化解决方案服务商,朗铎科技致力于为中国客户提供高品质的分析仪器、丰富的应用支持、完善的技术服务等系统的解决方案。朗铎科技目前主要产品包括手持式合金光谱仪、手持式矿石光谱仪、手持式三元催化光谱仪、手持式不锈钢光谱仪、手持式锂电池光谱仪、手持式贵金属光谱仪、手持式文博考古光谱仪、手持激光诱导击穿光谱仪、直读光谱仪等系列产品,是赛默飞世尔尼通(Niton)手持式光谱仪在合金/地矿行业的中国区的总经销商,同时也是赛默飞世尔ARL全谱直读光谱仪中国区的总经销商。朗铎科技成立于2014年,总部位于北京。经过多年的发展,目前朗铎科技已拥有北京、上海、鞍山3大综合服务中心,河北沧州、广东佛山、河北邢台、江苏兴化、河南许昌、湖南郴州等多个全国客户体验中心,以及覆盖广州、上海、南京、泰州、嘉兴、济南、武汉、郑州、许昌、西安、成都、昆明等全国主要城市的营销与技术服务点。朗铎科技拥有30余名原厂授权认证的技术工程师,可提供远程技术支持、职业技能培训、上门调试校准等服务。朗铎科技始终践行“成就客户,以人为本,专业高效,创新共赢”的核心企业价值观,在不断推动行业发展、追逐技术创新的同时,也与各行业头部客户建立了良好的合作伙伴关系,分别在机械制造、金属加工、有色冶金、石油化工、能源电力、资源回收、地质地矿、航空航天、文博考古等众多行业与领域深耕细作。依托技术工程师队伍,朗铎科技将高品质产品、创新的技术和完善的服务相结合,为数以万计的国内外用户提供系统的解决方案,为国家工业发展创造价值。
  • 双十一特惠,Empore膜片式固相萃取柱免费试用了!
    直接点,重点来了!!!借着双十一的机会,Empore盘式固相萃取柱特惠来袭:优惠一EmporeTM盘式固相萃取柱产品免费试用,请与我们联系,免费试用装给您送到家。优惠二双十一活动期间(11月1日-11月30日),Empore固相萃取全线产品买十赠一,是全线产品哦!优惠三双十一活动期间((11月1日-11月30日),购买Empore盘式固相萃取柱产品(仅限萃取柱),除了享受买十赠一优惠外,更享受额外9折优惠!什么?不知道盘式固相萃取是什么?这么好的东西,竟然不知道的。那我必须好好介绍下:固相萃取柱一般来说就是两个筛板夹着中间的填料,这是最经典的结构,但是也存在很多明显的问题如下图所示:问题1:空穴问题2:沟流问题3:松紧不一 那问题来了,如何解决这些问题呢?Empore™ 固相萃取膜是通过将吸附剂颗粒捕获在聚四氟乙烯(PTFE)惰性基质上而制成的,是基于色谱原理的薄膜结构,其外观看起来与过滤膜非常相似,Empore™ 固相萃取膜集提取、分离、净化、富集功能于一体。Empore™ 盘式固相萃取柱通过密封丫环固定在医用聚丙烯树脂材料柱管的底部。同时,在固相萃取盘之上集成了8层过滤系统,此过滤系统由不同孔径的聚丙烯微纤维层组成。此过滤系统采用三种不同孔径的过滤层的组合(1-3),孔径最大的一层在顶部,最细的一层在底部。上面的两层过滤层各是单独一层(1、2),而具有最小过滤孔径的最底层过滤层(3)有五层不同孔径的的材质构成的符合过滤层。最下面的一层为多孔聚丙烯膜片(4),起到整体的支撑作用。Empore™ 盘式固相萃取柱的设计完全消除了沟流和孔洞的问题,也不会有吸附剂粉末脱落的问题。 于是,他就具备了以下优点:🍁上样速度可达700mL/min!吸附剂颗粒均匀地填充在Empore膜中,以高流速提供卓越的萃取,使Empore非常适合高通量应用。🍁洗脱体积为传统柱式SPE的1/10!吸附剂颗粒被挤压在0.5mm厚度的盘片内,这意味着萃取所需的溶剂量会大大减少,从而可以减少或消除蒸发步骤并减少总溶剂用量。🍁重现性比传统柱式SPE提高10-15%!Empore固相萃取膜片采用独特加工工艺,保证吸附颗粒之间的距离最小,从要有效提高了吸附效率,减少沟流问题。🍁填料流失量减少到传统SPE柱和96孔板的1/10!紧密加工的Empore膜可以大大减少了游离的吸附填料颗粒,减少填料流失,从而获得用于分析的干净样品。订货信息关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,是一家专业从事实验分析仪器的研发、生产和销售的科技型公司。公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,持续通过高新技术企业认证,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”,是全球范围内能将多种类和多功能的样品前处理技术与全自动实验分析检测平台组合成全自动实验分析仪器系统的主要实验分析仪器供应商之一。公司拥有LabTech、CDS、Empore等行业知名品牌,在中国和美国设有研发和生产基地,并在中国内地主要城市、中国香港、美国马萨诸塞州和宾夕法尼亚州等地设有产品营销和服务中心。公司产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等,可为全球多种类型用户提供从实验室建设到样品分析的一站式解决方案。目前,公司产品已销往全球90多个国家,累计服务客户近3万家。如需了解莱伯泰科的详细信息,请访问莱伯泰科官方网站
  • 双十一特惠,Empore膜片式固相萃取柱免费试用了!
    直接点,重点来了!!!借着双十一的机会,Empore盘式固相萃取柱特惠来袭:优惠一EmporeTM盘式固相萃取柱产品免费试用,请与我们联系,免费试用装给您送到家。优惠二双十一活动期间(11月1日-11月30日),Empore固相萃取全线产品买十赠一,是全线产品哦!优惠三双十一活动期间((11月1日-11月30日),购买Empore盘式固相萃取柱产品(仅限萃取柱),除了享受买十赠一优惠外,更享受额外9折优惠!什么?不知道盘式固相萃取是什么?这么好的东西,竟然不知道的。那我必须好好介绍下:固相萃取柱一般来说就是两个筛板夹着中间的填料,这是最经典的结构,但是也存在很多明显的问题如下图所示:问题1:空穴问题2:沟流问题3:松紧不一 那问题来了,如何解决这些问题呢?Empore™ 固相萃取膜是通过将吸附剂颗粒捕获在聚四氟乙烯(PTFE)惰性基质上而制成的,是基于色谱原理的薄膜结构,其外观看起来与过滤膜非常相似,Empore™ 固相萃取膜集提取、分离、净化、富集功能于一体。Empore™ 盘式固相萃取柱通过密封丫环固定在医用聚丙烯树脂材料柱管的底部。同时,在固相萃取盘之上集成了8层过滤系统,此过滤系统由不同孔径的聚丙烯微纤维层组成。此过滤系统采用三种不同孔径的过滤层的组合(1-3),孔径大的一层在顶部,最细的一层在底部。上面的两层过滤层各是单独一层(1、2),而具有最小过滤孔径的最底层过滤层(3)有五层不同孔径的的材质构成的符合过滤层。最下面的一层为多孔聚丙烯膜片(4),起到整体的支撑作用。Empore™ 盘式固相萃取柱的设计完全消除了沟流和孔洞的问题,也不会有吸附剂粉末脱落的问题。 于是,他就具备了以下优点:🍁上样速度可达700mL/min!吸附剂颗粒均匀地填充在Empore膜中,以高流速提供卓越的萃取,使Empore非常适合高通量应用。🍁洗脱体积为传统柱式SPE的1/10!吸附剂颗粒被挤压在0.5mm厚度的盘片内,这意味着萃取所需的溶剂量会大大减少,从而可以减少或消除蒸发步骤并减少总溶剂用量。🍁重现性比传统柱式SPE提高10-15%!Empore固相萃取膜片采用独特加工工艺,保证吸附颗粒之间的距离最小,从要有效提高了吸附效率,减少沟流问题。🍁填料流失量减少到传统SPE柱和96孔板的1/10!紧密加工的Empore膜可以大大减少了游离的吸附填料颗粒,减少填料流失,从而获得用于分析的干净样品。订货信息关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,是一家专业从事实验分析仪器的研发、生产和销售的科技型公司。公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,持续通过高新技术企业认证,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”,是全球范围内能将多种类和多功能的样品前处理技术与全自动实验分析检测平台组合成全自动实验分析仪器系统的主要实验分析仪器供应商之一。公司拥有LabTech、CDS、Empore等行业知名品牌,在中国和美国设有研发和生产基地,并在中国内地主要城市、中国香港、美国马萨诸塞州和宾夕法尼亚州等地设有产品营销和服务中心。公司产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等,可为全球多种类型用户提供从实验室建设到样品分析的一站式解决方案。目前,公司产品已销往全球90多个国家,累计服务客户近3万家。如需了解莱伯泰科的详细信息,请访问http://www.labtechgroup.com/。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 发改委:鼓励四川、陕西等多地开展集成电路、半导体芯片等研制和生产
    p style="text-indent: 2em "近日,国家发展改革委就《西部地区鼓励类产业目录(2020年本,征求意见稿)》公开征求意见,重庆、四川、贵州、陕西等多个地区新增鼓励类产业涉及集成电路、新基建等领域。br/  其中,重庆市新增鼓励类产业包括移动互联网、物联网、工业互联网、卫星互联网、大数据、人工智能、区块链等“新基建”建设及运营,网络安全。br/  四川省新增鼓励类产业包括石墨烯和纳米碳材料、细结构石墨、生物炭、锂电池负极等新型碳材料的开发及生产;硅光集成电路芯片、光分路器、光纤活动连接器、光电收发模块、光网络设备的研发和生产。br/  贵州省新增鼓励类产业包括新型基础设施建设。br/  陕西省新增鼓励类产业包括以5G、人工智能、物联网、工业互联网为主要内容的新型基础设施建设;第三代化合物半导体、高功率半导体激光器芯片研发及生产、化合物半导体外延生长及芯片生产;半导体材料、新型光伏材料等电子材料的研制和生产,大功率MOSFEF和IGBT器件的设计制造,LTCC滤波器、MCM多芯片组件、厚膜通信电源、压电驱动器等产品的研发制造;半导体、集成电路、连接器、传感器、人工智能处理器、新型电子元器件、高端芯片研制生产。br/  甘肃省新增鼓励类产业包括石墨烯和纳米碳材料、细结构石墨、生物炭、锂电池负极等新型碳材料的开发及生产。br/  内蒙古自治区新增鼓励类产业包括石墨烯和纳米碳材料、细结构石墨、生物炭、锂电池负极等新型碳材料开发及生产;5G网络建设及运营;人工智能技术开发及应用;5G技术开发及应用;电子信息制造产业(新型显示除外)。/p
  • 网购色谱柱疑遭诈骗 受骗者遍及全国多地
    网购进口电子仪器,付款后,对方竟然杳无音讯。近日,吴女士通过网络推广寻找到北京万信易达科技有限公司,欲购一个色谱柱,付了3000多元却没收到货物,对方也联系不上。今天上午,赶回合肥收集材料的吴女士报了警,记者了解到受骗者并非仅有吴女士,而是遍布上海、苏州、西安、长春等地。  网购仪器疑遭诈骗  吴女士的公司主要经营实验室仪器和耗材,&ldquo 因添置一个色谱柱,我通过网络推广找到了北京万信易达科技有限公司,10月11日我向他们订购了一个色谱柱,支付了924元的预付款。&rdquo 吴女士出示了一张购销合同,上面写着安捷伦柱子单价3080元,货期5天,对方公司位于北京昌平。  10月14日,对方打电话,要求吴女士把余款打过去,随后安排发货,吴女士将余款2156元全部打过去,但在随后的几天里,吴女士催促发货,对方总以各种理由推脱。  直到10月18日下午,吴女士再次致电过去,对方手机无法接通,只显示传真信号,固话也打不通。10月21日周一上午吴女士又多次联系,均无人接听,对方公司网站公布出来的联系方式也全部停机,吴女士这才彻底意识到自己碰到了经济诈骗公司。  涉案商户波及全国多地  记者登录了北京万信易达科技有限公司的网站,在网站上看到,该公司位于北京昌平,上面写着&ldquo 以诚立信、以人为本、以价取胜&rdquo ,从事国际知名的高质量工业自动化仪器仪表销售,公司的经营区域从东北、西北到华南,遍布全国。此刻,网站上公司的电话已经无法打通,记者试图添加网站上提供的QQ,对方也没有丝毫回应。  而在北京万信维权的QQ群中,100多名会员都声称被该公司诈骗。这些公司来自上海、苏州、武汉、西安、长春、烟台、广东等地。&ldquo 我是在9月29日和北京万信易达科技有限公司采购了一批电子配件,支付了15000元的预付款被骗,损失不单是金钱上的,还有自己的信誉与客户,采购物品无法按时移交给客户,造成客户和公司直接解约的事情,有的更牵扯到了违约赔偿的问题。&rdquo 来自西安的邓先生就是其中一位受害者,&ldquo 群里面所有人的损失加在一起估计数十万元,但由于受害商家分散,难以集中维权,希望有关部门为我们追回。&rdquo   受害者今天报警求助  记者咨询了安徽虹途律师事务所的潘思强律师,潘律师称,对于此类案件,受害商户应向公司注册地的公安经济侦查部门报案,单个案件涉案数额可能太小不能立案,建议所有受害者都去反映,累积的数额更多,便于立案。昨天下午,吴女士从外地赶回了合肥,将合同等材料收集齐了。今天上午,吴女士来到庐阳警方报了案。
  • 2020药典│岛津推出《药材及饮片(植物类)中33种禁用农药多残留分析
    导读2020年6月,《中国药典》2020年版纸质版面世。四部通则《0212药材和饮片检定通则》最终确认了药材及饮片(植物类)33种禁用农药品种的定量限,规定了禁用农药不得检出(不得过定量限)。《2341 农药残留量测定法》第五法“药材及饮片(植物类)中禁用农药多残留测定法”要求采用气相色谱-串联质谱法和液相色谱-串联质谱法,对药材及饮片(植物类)33种禁用农药进行测定。 岛津三重四极杆气质联用仪岛津三重四极杆液质联用仪 针对中药行业即将到来的分析挑战,岛津推出了《药材及饮片(植物类)中33种禁用农药多残留分析方法包》,方便用户迅速掌握检测方法。 本方法包包含以下内容:1.药材及饮片(植物类)中33种禁用农药多残留测定GCMSMS方法包【包含方法及数据库文件、报告模板、操作指南】2.药材及饮片(植物类)中33种禁用农药多残留测定LCMSMS方法包【包含方法及数据库文件、报告模板、操作指南】3.药材及饮片(植物类)中33种禁用农药多残留测定作业指导书4.药材及饮片(植物类)中33种禁用农药多残留测定演示视频5.药材及饮片(植物类)中33种禁用农药多残留测定耗材配置包6.GCMSMS操作指南及维护指南7.LCMSMS操作指南及维护指南 解读《药材及饮片(植物类)中33种禁用农药多残留分析方法包》:“零”经验检测演练:本方法包包含前处理(以QuEChERS为例)、GCMSMS/LCMSMS上机、数据处理的全过程演示视频及作业指导书(SOP),通过视频中的画面、配音、字幕及作业指导书的详细操作说明,帮助“零”经验用户快速开展检测,迈出法规应对第一步。 “一”键式方法建立:本方法包包含GCMSMS/LCMSMS数据库,内置33种禁用农药的MRM参数、色谱条件及报告模板,使用者无需编辑,直接调用,即可“一键”完成超高灵敏分析检测。GCMSMS数据库还包含不同色谱柱上的保留指数,结合保留时间自动调整功能(AART),无需标准品,自动校准检测组分的保留时间。 “两”操作指南护航:本方法包包含软件操作与硬件维护操作指南,内容简洁,过程明确,直观图片演示,可操作性强,帮助用户解决后顾之忧。 “三”方案精准对接新药典:本方法包所含前处理、GCMSMS、LCMSMS三部份应对方案精准对接《中国药典》2020年版,完全符合《2341 农药残留量测定法》第五法“药材及饮片(植物类)中禁用农药多残留测定法”。以与公示稿区别最大的GCMSMS相关内容为例,本方法包实现:• 升温程序为53min;• 内吸磷分为O型异构体和S型异构体,面积加和后计算内吸磷浓度;• 三氯杀螨醇分为o,p′-异构体和p,p′-异构体,面积加和后计算三氯杀螨醇浓度 岛津Smart Pesticides Database界面 方法包中GCMSMS升温程序 三七基质中33个农药残留物(35个单体)及内标磷酸三苯酯MRM总离子流图 (10~25 μg/L) 总结岛津作为全球知名的分析仪器供应商,秉承“为了人类和地球的健康”的经营理念,紧密结合《中国药典》2020年版对中药材安全的控制方法,依托岛津成熟的GCMSMS三重四极杆气质联用仪、LCMSMS三重四极杆液质联用仪平台,开发出禁用农药多残留测定、多种真菌毒素测定等检测项目,提供给用户使用,以助力相关机构及企业从容应对,为保障中药材质量提供技术支撑。诚邀岛津用户联系当地销售人员索取本方法包光盘。技术垂询请发邮件至:fxlyq@shimadzu.com.cn
  • TissUse多器官串联芯片用于结核病疫苗开发和候选药物的测试
    TissUse多器官串联芯片用于结核病疫苗开发和候选药物的测试翻译整理:北京佰司特贸易有限责任公司 New Multi-Organ-Chip project towards vaccine & drug candidate testing for Tuberculosis TissUse获得比尔和梅琳达盖茨基金会的资助,在HUMIMIC芯片上开发人类临床前肺-肝-淋巴结串联共培养物,用于研究感染结核分枝杆菌的结核病疫苗开发和候选药物的测试。这一合作将有助于开发结核病候选疫苗和治疗模式。TissUse今天宣布,它已经从比尔和梅琳达盖茨基金会获得了一个为期3年的项目的资金。联合研究活动的目标是开发一种血管化的微生理系统,将人肺、肝和淋巴结类器官串联起来,用于筛选结核疫苗候选药物和治疗模式。“我们很高兴在这一项目中与结核疫苗行动(TBVI)作为协调员和国家科学研究中心(CNRS)作为科学伙伴进行合作。- Uwe Marx教授,TissUse CSO。微生理模型将支持组织稳态,并将在数周内对治疗效果进行监测。空气传播感染结核分枝杆菌后,新模型系统旨在展示结核分枝杆菌"吞噬受阻"、气血屏障破坏、淋巴结组织活化及肉芽肿形成和维持等疾病特异性表型。然后,该疾病模型将用于测试结核病候选疫苗的筛查。 “我们很高兴能够借助这一项目为开发结核病新疫苗和未来治疗方法作出贡献,并感谢比尔和梅琳达盖茨基金会支持我们的愿景并资助这一项目。- Reyk Horland博士,TissUse的首席执行官。 原文:Berlin, Germany, November 7th, 2022TissUse will receive funding from the Bill & Melinda Gates Foundation to develop a human preclinical lung-liver-lymph node co-culture on a HUMIMIC Chip infectable with Mycobacterium tuberculosis. This collaboration will contribute to the development of Tuberculosis vaccine candidates and treatment modalities.TissUse announced today that it has received funding from the Bill & Melinda Gates Foundation for a 3-year project. The joint research activities have the goal to develop a vascularized microphysiological system interconnecting human lung, liver and lymph node organoids capable of screening Tuberculosis vaccine candidates and treatment modalities.“We are pleased to collaborate in this project with the TuBerculosis Vaccine Initiative (TBVI) as a coordinator and the Centre National de Recherche Scientifique (CNRS) as a scientific partner.” – Prof. Dr. Uwe Marx, CSO of TissUse.The microphysiological model will support tissue homeostasis and will be monitorable for treatment efficacy over weeks. After airborne infection with Mycobacterium Tuberculosis, the new model system aims to show the disease-specific phenotype of “frustrated” phagocytosis, air-blood barrier damage, activated lymph node tissue and granuloma formation and maintenance. The disease model will then be used to test screening of TB vaccine candidates.“We are excited to be able to contribute with this project to the development of new vaccines and future treatments for Tuberculosis and would like to thank the Bill & Melinda Gates Foundation for supporting our vision and funding this project.” – Dr. Reyk Horland, CEO of TissUse. 北京佰司特贸易有限责任公司:类器官串联芯片培养仪-HUMIMIC;单分子质量光度计-TwoMP;灌流式细胞组织类器官代谢分析仪-IMOLA;光片显微镜-LSM-200;超高速视频级原子力显微镜-HS-AFM;蛋白质稳定性分析仪-PSA-16;全自动半导体式细胞计数仪-SOL COUNT;农药残留定量检测仪(台式)—BST-100;农药残留定量检测仪(手持式)—BST-10A;蓝光/绿光LED凝胶成像;台式原子力显微镜-ACST-AFM;微纳加工点印仪-NLP2000/DPN5000;
  • 3i类器官成果|芯片上的患者—多器官串联芯片Multi-Organ-on-Chip应用于精准医疗
    (北京佰司特科技译)类有机体的概念在12年前就被提出来,当时被称为“芯片上的人体human-on-a-chip”或“芯片上的身体body-on-a-chip”,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,将多个类器官串联起来培养。微生理系统MPS成为体外在生物学上可接受的最小尺度模拟人体生理和形态的技术平台,因此,微生理系统能够以前所未有的精度为每个患者筛选出个性化治疗方案。与此同时,第一个人类类器官——干细胞衍生的复杂三维器官模型,可以在体外扩增和自我组织——已经证明,只要给人类干细胞提供相应诱导分化及生长环境,就可以在体外自我组装成人体类器官。这些早期的类器官可以精确地反映出人体中对应器官的一系列独特的生理状态和病理特征。我们现在把过去的“芯片上的人体human-on-a-chip”的概念发展成“类有机体Organismoid”的理论。首先,我们提出了“类有机体”的概念,即通过体外的自我组装的过程,模仿个体从卵细胞到性成熟的发生过程,培养出的——微小的、无思维、无情感的体外的人体等效物。随后,我们提出了类有机体的分化和培养方法,使其能在体外长时间维持正常功能,以及通过自然或人工诱发疾病干扰类有机体来模拟个体疾病过程。最后,我们讨论了如何使用这一系列健康和疾病模型的类有机体来代替病人,测试药物疗效或药物剂量,即个体化精准医疗。 图1 |每个人个体命运的类有机体。(A)个体发育(黄色)从卵细胞受精开始,随后出生,并在18 ~ 20年后性成熟,发育出功能完整的大脑和成年骨骼。然后,成人的身体会经历一个持续数十年的功能和结构相对稳定的阶段。随着身体年龄的增长,这个成年期会被不断延长的生病和康复期打断(粉色)。情感和意识——人类的灵魂和思想——从童年开始连续发展,并贯穿一生。(B)根据类有机体理论,个性化的类有机体可以通过持续几个月的体外培养(黄色)来建立。由此产生的成体类有机体可以模拟健康人类成年几周(S-短期)、几个月(M-中期)或几年(L-长期)的阶段。然后,这些可以用来模拟急性、亚慢性和慢性疾病时期(粉色)和个体在相应的时间框架内的治疗后恢复。大量相同的类有机体还可以提供足够数量的生物学重复和对照,确保了数据的准确性,真实性,可重复性。此外,这些健康的类有机体在预防医学的评估方面很有用,比如为各自的个体接种疫苗。 类有机体理论人的个体寿命的特征是人体的生理和形态的发育阶段(发育期)和功能维持阶段(成年期),以及个体与社会在灵魂和思想上的双向交流,如图1A所示。社会起源本质上与人的大脑的大小和结构有关——大脑由大约860亿个神经元以及数量大致相等的非神经元细胞(2)组成,这些细胞高度连接,聚集在一起处理、整合和协调它从感觉器官接收到的信息(3)—以及它与身体其他部分的相互联系。成熟的人体生理遵循一个简单的进化,即选择性结构计划,也就是组成遵循功能。早在2007年,我们就注意到这样一个事实:“……几乎所有的器官和系统都是由多个相同的、功能独立的结构单元组建成的,从几个细胞层到几毫米组织。由于其独特的功能性、高度的自立性和这些结构单元在各自器官中的多样性,它们对药物和生物制剂的反应模式几乎代表了整个器官。大自然创造了这些微小但复杂的结构单元,以实现器官和系统最主要的功能。在一个特定的器官内,这些结构的重复是天然的风险管理工具,以防止器官局部损伤时功能完全丧失。然而,从进化的角度来看,这一概念使得器官的大小和形状可以很容易地调整到特定物种的需要(例如,小鼠和人类的肝脏使用几乎相同的结构单元)(4)。这一理论,结合微生理系统(MPS)的发展,为在生物芯片上以生物学上可接受的最小尺度模拟人体的器官提供了理论基础(5-7)。2012年,我们引入了“芯片上的人体”(man-on-a-chip)的概念,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,即将多个类器官(比体内缩小10万倍)串联起来培养。我们举例说明了人体主要器官的功能单位,并简要描述了减小尺寸的原理(5)。这是发展一种理论的起点,即建立一种微小的、无思维、无情感的体外的人体等效物,我们现在称之为organismoids类有机体。不同的术语,如芯片上的人体,芯片上的身体,或通用的生理模板,在过去已经被用于代表有机体。在MPS领域中已经使用过这个概念,通过培养10个人的主要器官的等效物(类器官)来实现完整的体内平衡:循环,内分泌,胃肠道,免疫,皮肤,肌肉骨骼,神经,生殖,呼吸和泌尿系统。类有机体的理论基于两个按时间顺序相互关联的概念,每个概念有三个实施原则。类有机体的体外发育依赖于(i)(诱导多能)干细胞为基础的体外早期类器官形成;(ii)以生理学为基础,通过血液灌流和神经分布,应用于芯片上的MPS,将此类早期器官的比例/数量整合为早期自我维持的类有机体;以及(iii)通过类器官在芯片上的串联培养加速刺激个体发育,完成体外个体发育成为健康成熟的类有机体(模拟成年期)的转变。因此,利用芯片上的类有机体模拟病人的疾病和治愈过程的概念遵循以下原则:(一)通过自然疾病过程或通过来自病人的病原体或病变组织的传播在生物体中诱发疾病;(ii)通过对同一个患者来源的健康和病变类有机体进行相同数量的试验来模拟对大量患者进行的人体临床试验;以及(iii)为每个患者精确选择正确的药物或疗法和最有效的用药方案。在这篇文章中,我们带你通过类有机体理论的概念和原则,用实际结果阐述它对我们的医疗保健系统的颠覆性创新的潜力,并提供一个可行性方法的展望。 微流控培养系统——早期类器官形成类有机体的关键类器官已被证明是模拟不同器官特异性特的有力工具。然而,如上所述,标记物表达和功能往往在早期就停止了。我们从1912年就知道,体外培养的环境决定了它们的生存能力和功能(100)。驱动类器官自组装和分化的各向微环境因子在传统培养条件下相当均匀地覆盖类器官或广泛的表面积,阻碍了由功能驱动的空间定向和成熟。但这些源自相互作用的组织并导致细胞重排的时空线索,是发育成熟器官功能的关键。但这些源自相互作用的组织并导致细胞重排的时空因子,是成熟器官功能发育的关键。特别是内皮组织相互作用及其对器官发生过程中局部信号传导的影响已被广泛研究(101-103)。 例如,发育中的中枢神经系统的血管化是大脑发育中至关重要的一步,确保快速分裂的神经前体细胞的氧气和营养供应。外周神经系统的神经结构已被证明以明显的与血管同步的方式发展。此外,内皮细胞对于维持产生小脑细胞的中枢神经系统胚层的重要性也得到了证明(104)。在过去的二十年中,通过将器官模型引入MPS来改善器官模型培养条件已经做出了大量的努力。利用原代和细胞系为基础的模型已经建立了MPS中的数十种人体类器官,并已进行了非常详细的综述(105 - 111)。有充分的证据表明,器官功能的成熟可以通过密切模拟有关生化、物理或电刺激的器官型微环境来实现(106)。看来,神经支配、血管化、淋巴管、微生物群和胆汁产物的肠-肝脏循环模拟是满足多器官MPS中类器官的简单物理结合和生物体中真正的组织相互作用和稳态之间的鸿沟不可或缺的先决条件。后者需要至少10个人类系统(如引言中强调的那样)的主要类器官的串联组合,以及它们通过血管系统、神经支配和淋巴管的生物互联。关于建立包含至少10个技术上可相互连接的器官培养区隔的MPS的两项早期尝试已经发表。这些主要的例子包括康奈尔大学舒勒实验室(Shuler Lab)的13个器官培养系统(170个)和麻省理工学院格里菲斯实验室的10个器官培养PhysioMimix系统(171)。这两种系统都已成功地在培养室中使用生物材料运行了7天或更长时间。然而,两者都缺乏生物血管互连、淋巴管和器官神经支配。 生物体可能会传递什么给我们的医疗系统根据有机体模型理论,有机体模型是活体人体在体外的生物复制品,只是尽可能缩小了规模。它们是由系统创造的整合:生理学上把人体主要器官的功能单位整合成一个有机的、自我维持的模板,反映人体的系统组织干细胞衍生器官等价物在芯片上的快速分化,源于它们之间的相互串扰和生理上的相互依赖。规模的极端缩小,是由于产生个体的生物体样体的大量重复的目标。大量这种相同的、微小的、无脑的、无情绪的生理体外有机体的成熟可以在很长一段时间内保持自我维持的功能性健康内稳态。它们容易受到干扰,导致自然或人为地诱发疾病。患病的生物体被假设以精确地模拟各自病人疾病的病理生理学。反过来,这可能使预测性的患者特异性有机体样研究的表现,以确定最有效的个性化治疗患者有关。类似于对患者队列的临床研究,然后可以产生统计验证的预测,其优势是可以在生理和病理生理条件下比较基因相同的患者有机体样体重复。由此可以推导出两种主要的使用场景。一种是与现实世界中个体患者个人治疗的前沿改进有关 另一种则有可能在临床试验层面改变药物开发范式,节省大量时间和资本支出。关于第一种方案,生物体模型可以用于预测地选择、安排和给药,根据患者的疾病进展准确地选择个性化治疗或药物。通过早期发现不成功的治疗方案,这可以显著降低对每个患者的潜在风险。图5更详细地总结了将有机体应用于个性化精准医疗的优势。该图说明了有机体体方法的概念和原理,以选择最适合您的个性化疾病应用的精准医疗。作为一个假设的例子,癌症被选择为疾病。你的生命周期可能最终包括危及生命的疾病时期,例如,癌症生长(上:蓝色边框的箭头)。从你的健康细胞中建立一个多能干细胞库。随后,在几个月内就会产生大量相同的健康生物体(黄色三角形)。目前有各种治疗癌症的选择,因此,相关的试验组被创建,包括安慰剂治疗、其他治疗组和健康恢复对照组(在黑边箭头中)。在这个假设的例子中,在几周内,CAR-T细胞疗法与检查点抑制剂相结合,会被证明是你最快最有效的治愈方法。因此,这种疗法立即得到了成功的应用。根据生物体形态理论,一个人的干细胞库可以在健康时创建,也可以在疾病发生时从健康的器官中创建。预防性干细胞库(例如,从脐带血中提取)已经在使用中,并将成为未来的选择,因为这需要时间。接近人类的理论提供了精确的试验结果,这是动物试验在患者来源的异种移植模型或人类患者来源的类器官无法实现的。异种移植模型在系统发育上是遥远的,因此不能提供足够的肿瘤生长。此外,它们没有病人的免疫背景来对抗癌症。病人来源的类器官也没有嵌入到病人的免疫系统中,缺乏与有机体的系统性互动。对于第二种情况,数十年来,候选药物进入临床试验成为获批药物的平均成功率一直低于20%;这种将任何原型转化为上市产品的低效率,其他任何行业都承受不起。使用实验动物的候选药物的临床前安全性和疗效评估程序的预测性差是造成这种低效率的主要原因。其后果是平均13.5年的漫长临床试验,以及一种新药获得批准所需的累计成本高达25亿美元(106)。与此同时,在过去30年里,一场基于生物学的治疗策略出现了——利用人体自身的工具来对抗疾病。近年来,药物的生物复杂性不断扩大,从人工合成的小分子药物,到人类单克隆抗体蛋白,最后是针对患者的自体细胞疗法,极大地增加了患者治愈的机会。然而,这一趋势同样显著地降低了通过应用临床前的实验室动物试验来预测这类疗法的安全性和有效性的机会,原因是这类先进治疗药物的人类起源越来越多(172)有机体有可能通过改变药物开发的模式来打破这种成本螺旋上升。2016年,MPS相关报告已经预计,一旦基于MPS的类似于生物体的临床试验研究能够准确预测任何新药物或疗法的疗效、安全性、剂量和时间安排,在用于人类试验和替代动物试验以及1、2期临床试验之前,累积药物开发成本将降低5倍,药物开发时间将减少一半。2018年,毒理学研究领导人论坛(10)草拟了一份高级路线图,以确定“临床试验”预测精度(图6),在与临床试验相对应的芯片研究中运行精细的个性化的“人体”等效物(有机体)。为了实现这一点,套健康的和有病的代表患者疾病状态和健康内稳态的有机体样体将允许一个人进行基于临床前系列药物和先进的有机体样体测试。图5 |说明有机体理论如何应用于个性化医疗的假设例子。图6 |在芯片上潜在的“临床试验”背景下的“人体”等效物(10)。 图7 |一个假设的例子,说明有机体理论如何可以用来模拟临床试验。健康的内稳态将允许一个人在大型试验特定患者中模拟临床试验的环境中进行基于有机体的药物和先进疗法的临床前系列试验。与患者队列试验相比,以有机体为基础的试验具有许多关键的优势。图7详细说明了这些优势,并举例说明了利用基于有机体的试验模拟一种假想的新型钠-葡萄糖转运体2(SGLT2)抑制剂治疗2型糖尿病的临床试验。最突出的优势是,在药物开发历史上,基于芯片的有机体试验将首次包括患者身体和同一个体健康身体状态的统计相关的人体自体生物重复。由于缺乏对单个患者的任何生物重复,以及对他们在健康内稳态下的个体生物状态的了解,临床试验传统上需要大量的患者队列。因此,试验被分为1、2和3期,不幸的是,只能近似一个患者个体的病理生物学和他们的完全治愈恢复状态。这两个方面使得传统的临床试验过程成为一种漫长的、成本高得令人难以置信的、低效的药物和先进疗法的开发方式。在含有健康和患病生物体的芯片上进行“临床试验”,消除了这两个障碍。一方面,它们允许近亲繁殖的实验室动物试验的一致性由于基因而得到匹配,每个试验“参与者”在个体有机体水平上的身份,但其背景完全是人类。另一方面,各种不同个体的生物样体的使用反映了临床试验中患者队列的异质性,但具有每个个体患者的生物样体在统计上相关的生物重复的优势。有机体体方法的另一个明显优势是,在进行此类试验时,其独立性不受患者招募和医院使用的影响。鉴于大型PSC库的存在反映了基因倾向、性别和与试验相关的其他类别,基于有机体模型的试验可以在世界任何时间、任何地点进行。关于上面的假设例子,根据糖尿病易感性选择供体,比较遗传祖先和平等的性别分布可能是有趣的干细胞瓶选择策略。第三个优点是试验规模的灵活性。理论上可以产生的患病生物体(通常被称为芯片上的“病人”)的数量是无限的。这使得药代动力学方面的整合,在同一个基于有机体的试验中发现新的化学或生物实体的有效剂量和综合安全性和有效性评估成为可能。目前在实验室动物、健康志愿者和患者的单独临床前和临床试验中产生的数据,如毒性特征、未观察到的副作用水平、吸收和排泄率、代谢物形成、发现有效剂量、持续时间和新药物的时间安排,可以从一项基于生物体的试验中得到。例如,我们治疗2型糖尿病的假设案例研究可以很容易地扩展到更大的剂量范围,并将每天两次剂量的单一口服(这在生物样体中指的是根尖肠的任何给药)进行比较。这将包括对疗效进行剂量依赖的评估,同时观察尿路或生殖道感染的发生和严重程度,以及众所周知的SGLT2抑制剂的副作用。在各自的患者队列中,候选药物使用的治疗窗口的定义来源于这样一项一体化试验,该试验仍处于临床前候选药物开发阶段。关于这两种使用场景,我们设想有机体将对从个人数据库收集的医疗现实世界大数据做出重大贡献。这是因为它能够在每个患者第一次疾病发作(例如,肿瘤生长、病毒复制)的确定位置生成关于微环境破坏的独特可复制数据。有机体和硅芯片的结合将进一步提高对大量患者群体进行精确药物治疗的预测能力,并进一步降低成本。在人们的心目中,复杂的体外细胞培养工作通常与高昂的成本联系在一起。有人可能会猜测,在试验中产生和处理数千个生物体需要天文数字的预算,因为目前可用的MPS在一次性芯片和操作上都很昂贵。在这里,有机体的性质反映了一种自我可持续的人体和规模经济效应开始发挥作用。在现实世界中,一个处于休息状态的人体,每天的蛋白质、碳水化合物和脂肪供应约2000千卡就可以维持。在世界上一些较贫穷的地区,人均几美元就可以实现这一目标。因此,每天喂养10万只生物体的成本也可以达到相同的水平。维持这些生物体的可消耗芯片的价格也预计将下降到1美元的范围,这在计算机芯片和人类基因组测序成本方面已经有过先例。生物机体能够为每一位患者确定最合适的药物,并大幅节约成本和改变药物开发,这种能力的社会经济维度被认为是巨大的。这同样适用于伦理层面。基于MPS的类有机体有可能取代大多数实验室动物试验和在人类志愿者身上进行的第一和第二阶段临床试验。它们将减少三期临床试验患者的多种数量。所有这些都将对全球范围内的患者利益和动物福利产生根本性的积极影响。 患者类有机体体和芯片上病人特异性T细胞疗法——一个挑战这一理论的完美方案先进的细胞疗法,如自体嵌合抗原受体(CAR) T细胞疗法KymriahTM 和YescartaTM,最近已经证明了它们治愈以前的耐药肿瘤患者的潜力(176,177)。除了这两种在2017年被批准用于治疗血液肿瘤的CART细胞产品外,其他几种CAR-T细胞产品最近也被批准。许多新的细胞治疗方法正在酝酿中,使用CAR或转基因T细胞受体对抗各种各样的肿瘤、感染和自侵略性免疫细胞,或者使用调节性T细胞在显性的不良免疫反应中恢复免疫平衡(178)。到2020年底,全球注册了超过1000项使用免疫细胞产品的临床试验(179)。在这些医疗需求未得到满足的领域,这种前所未有的疗效以标准安全测试程序(180)为代价,增加了监管机构的接受度,该程序需要在治疗批准后的患者随访研究中进行回顾性研究。这符合这样一个事实,即由于患者与患者的系统发育距离、各自的基因型差异和免疫不匹配,患者对个性化细胞治疗的反应无法在临床前的实验室动物模型中模拟。同样,在传统的患者来源的类器官培养中,患者的反应也无法预测,因为它们没有融入到一个系统的有机体安排中。除其他外,模拟t细胞输注到目标部位的静脉输送及其与其他主要器官部位的相互作用,都缺失了模拟T细胞疗法及其疗效(患者衍生类器官的精确度)的关键因素。 如前所述,这里的有机体理论提供了一种克服任何其他障碍的替代解决方案。 什么是有机体不能也不应该做的根据有机体理论,有机体不能也不应该模仿人类个体社会起源的主要部分——同理心或意识(分别是灵魂或思想)。因此,它不能模拟病人的精神疾病。300g的人类心肌或髋部骨折的功能障碍及其愈合依赖于生物物理特性,由于规模和所涉及的物理不匹配,其中一些无法在生物类体上表征。伦理考量对人类社会至关重要,也是人性的基础。有机体理论,由于其性质,引入了一些必须考虑伦理的观点。将人类胚胎发育到几厘米大小是最关键的问题之一。在人工环境下(如体外培养),人类卵子的受精及其随后的胚胎发育在世界上许多地方都是被禁止的。生物体理论的作者想要强调的是,他们的伦理范式超越了这一点。人们不应该使用有机体形态理论的概念和原则来创造人类或杂交胚胎,并进一步发展和区分人类或杂交组织。应该使用其他方法来规避个体发生的这一部分。个人同意捐献组织来创造生物体可能是一个很好的工具,以防止在早期阶段的滥用。 结论这里提出的生物体样体理论声称,有能力在体外人工重现个体身体的个体发生,从捐赠者的干细胞开始,产生一定数量的相同的健康成熟的小型化身体等量物,因此被称为生物体样体。该理论进一步声称,这种供体特定的相同生物体样体反映了该个体健康成年期的某个阶段,可以用来模拟该供体在其生命周期的某一特定时间内相关的疾病和康复阶段。以个性化的患病生物体样方法对个体的疾病进行建模,将提供一个尚未满足的患者病理生物学的现实水平,因此,提供一个前所未有的工具,以精确选择正确的药物、治疗计划和剂量来治愈(患病)个体。大自然的遗传和微环境原则编码了人体器官最小功能单元的自组织和维护,并将它们整合到一个交流通讯和高效互动的血液系统中,灌注和神经器官是在芯片上创造生物体的蓝图。我们设想它们将成为下一个层次的人类生物学模拟,提供与人类相对应的最佳可能的近似。在体外实验中,类有机体organismoids将有机地遵循人类的多个类器官串联,近年来,这已被证明能够在小型化的规模上模拟单个组织和器官的不同功能。利用已从类器官学习到的东西,类器官将通过一个小型化的基于生理的血管和毛细血管网络在芯片上生成的全血的系统神经支配和供应,以每个器官的功能单元。通过内皮细胞层将每个类器官从共同的血液中局部分离,将使不同人体器官功能单元的精确拷贝在芯片上实现单独的器官特异性、遗传编码和微环境驱动的自我组装。反过来,这将使成熟的类器官在生理上产生交流,从而导致有机芯片上的内稳态。一旦建立,生物体将只需要每天用消化的食物等量进食,就可以模拟芯片上的长期、所谓的自我维持的身体功能。我们已经说明,类器官体外培养技术和过去10年生产的单器官芯片为体外类器官的培养提供了大量数据。此外,人类iPSC衍生的多器官串联芯片提供了芯片上加速人工器官个体发生的第一个成果。最后,越来越多的关于人类疾病建模和人体组织芯片治疗测试的科学文献指出,当MPS上完全功能性地建立多器官串联芯片以及人体芯片时,这种微生理平台就有能力精确模拟疾病的病理生物学和药物或治疗的作用模式。进一步发展器官芯片的主要挑战是神经支配和类器官毛细血管化的实现,这也需要细胞,特别是免疫细胞迁移到组织中。类器官串联芯片培养系统--- HUMIMIC多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不同的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试:配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性;最终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治疗的效果;人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰腺、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨髓以及各自的多器官串联组合方案。德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域。参考文献:Marx U, Accastelli E, David R, Erfurth H, Koenig L,et al. An Individual Patient's "Body" on Chips – How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach;Frontiers in Medicine, 2021, Vol. 8;DOI: 10.3389/fmed.2021.728866
  • 上海微系统所等制备出石墨烯基量子电阻标准芯片
    电阻标准是电学计量的基石之一。为了适应国际单位制量子化变革和量值传递扁平化趋势,推动我国构建电子信息产业先进测量体系,补充国家量子化标准,开展电学计量体系中电阻的轻量级量子化复现与溯源关键技术研究至关重要。与传统砷化镓基二维电子气(2DEG)相比,石墨烯中的2DEG在相同磁场下量子霍尔效应低指数朗道能级间隔更宽,以其制作的量子霍尔电阻可以在更小磁场、更高温度和更大电流下工作,易于计量装备小型化。此外,量子电阻标准的性能通常与石墨烯的材料质量、衬底种类和掺杂工艺相关。如何通过克服绝缘衬底表面石墨烯成核密度与生长调控的瓶颈,获得高质量石墨烯单晶,并以此为基础,优化器件结构和工艺,开发出工作稳定且具有高比对精度的量子电阻标准芯片至关重要。近日,中国科学院上海微系统与信息技术研究所报道了采用在绝缘衬底表面气相催化辅助生长石墨烯,成功制备高计量准确度的量子霍尔电阻标准芯片的研究工作。相关研究成果以“Gaseous Catalyst Assisted Growth of Graphene on Silicon Carbide for Quantum Hall Resistance Standard Device)”为题,发表于期刊《Advanced Materials Technologies》上。研究人员首先采用氢气退火处理得到具有表面台阶高度约为0.5nm的碳化硅衬底,然后以硅烷为气体催化剂,乙炔作为碳源,在1300°C条件下,生长出高质量单层石墨烯。该温度条件下衬底表面台阶依然可以保持在0.5nm以下。采用这种方法制备的石墨烯可以制成量子电阻标准器件,研究团队直接将该量子电阻标准器件集成于桌面式量子电阻标准器,在温度为4.5K、磁场大于4.5T时,量子电阻标准比对准确度达到 1.15×10-8,长期复现性达到3.6×10-9。该工作提出了适用于电学计量的石墨烯基工程化、实用化的轻量级量子电阻标准实现方案,通过基于其量值的传递方法,可以满足不同应用场景下的电阻量值准确溯源的需求,补充国家计量基准向各个行业计量系统的量传链路。中科院上海微系统与信息技术研究所是该研究工作第一完成单位,陈令修、王慧山和孔自强为共同第一作者,通讯作者为上海微系统所的王浩敏研究员和中国计量科学研究院的鲁云峰研究员。该研究工作得到了国家重点研发计划、国家自然科学基金项目、中科院先导B类计划和上海市科委基金的资助。论文链接:https://doi.org/10.1002/admt.202201127
  • 在芯片上造器官,打造千亿级“蓝海”市场
    把人体器官“微缩”进几厘米的透明的芯片中,看着薄膜、导管在其中纵横捭阖……在“芯片”上造“器官”,这一此前在科幻片中才有的情节如今已在生物学领域变成现实。  近日从东南大学传来消息,国内医药企业恒瑞医药研发的一款新药“HRS-1893片”获批开展临床试验。该新药拟用于治疗肥厚型心肌病以及心肌肥厚导致的心力衰竭。这是国内首款使用心脏器官芯片数据获批临床试验的新药。  什么是“器官芯片”?这款新药的研发又与东南大学有何联系?  千亿级的“蓝海”  “简单说,人体器官芯片就是通过干细胞、生物材料、纳米加工等前沿技术的交叉集成,在人体外构建一套器官的微生理系统,用以模拟人体不同组织器官的主要结构功能特征和复杂的器官间联系,从而预测人体对药物或外界不同刺激产生的反应。”接受《中国科学报》采访时,东南大学生物科学与医学工程学院院长顾忠泽介绍说。  作为一项变革性生物医学技术,器官芯片的概念自2010年被提出后,便受到世界各国的广泛关注。美国哈佛大学、强生等诸多研究机构和企业竞相参与研发。  彼时,顾忠泽却正处于职业生涯的一个“瓶颈期”。  “当时,我正在和医疗机构合作,从事生物人工肝的研发。”顾忠泽说,一个偶然机会,他读到一篇关于器官芯片的文章。  顾忠泽眼前一亮。  “从原理上看,生物人工肝和器官芯片的技术有很多相通性。”他解释说,前者要做一个很大的装置,而肝脏芯片只需要做一个小小的“生物人工肝”。器官芯片可用于评价相关药物是否有效以及是否对人体产生毒性,应用场景和产业价值巨大。  “以前生物人工肝只做短期的生命支持,而器官芯片不仅可以针对不同器官进行模型构建并用于药物研发,还可以针对环境中的有毒、有害物质进行评价。这是一个很大的产业。”  事实证明了顾忠泽的预测。  近年来,器官芯片的应用领域变得越来越广,甚至涉及整个生命领域。生命领域中几乎所有研究都避不开动物实验环节,这一环节会花费大量的人力和财力。如果使用器官芯片,便可以大大减少相关成本。  顾忠泽说,在医药研发领域,目前备受关注的人工智能+医药,更多是用于加快药物候选化合物的生成。但后续的实验流程依旧没有改变,仍需动物实验和临床试验,而后两者才是消耗时间和金钱最多的环节。  “如果可以应用器官芯片替代后两个环节,那么成本将大幅降低、效率将大幅提升。”顾忠泽意识到,器官芯片背后有广阔的应用前景,于是开始全力攻关相关技术难题。  2017年初,苏州市高新区、东南大学和江苏省产业技术研究院三方共建的东南大学苏州医疗器械研究院正式成立。在成立之初,该研究院便瞄准了器官芯片这个千亿级的“蓝海”市场,并引入顾忠泽带领的器官芯片项目团队。  经过4年的前沿技术验证和产业化开发后,器官芯片项目顺利完成各项预期研发目标,在高精度跨尺度三维打印、功能性细胞外支架材料、人工智能算法等关键核心技术环节实现了自主可控,研发进展与美国、欧洲相关团队齐头并进,且部分领域居于国际领先水平。  新模式打造新企业  2021年,东南大学苏州医疗器械研究院跨出关键一步。在东南大学、江苏省产业技术研究院及苏州高新区的支持下,器官芯片项目采用“团队+技术”整体转移的模式开展成果转化,成立了江苏艾玮得生物科技有限公司(以下简称艾玮得生物)。  顾忠泽告诉《中国科学报》,研发进入一定阶段后,学校已很难提供合适的产业化环境,成立公司是顺理成章的事。  在他看来,人才培养、科学研究和社会服务是高校的三大职能。校内科研人员完成了原始创新并确立了核心技术,但核心技术如何转化成稳定、持续供给的优质产品,这一问题在高校内很难解决。  正如艾玮得生物总经理沙利烽所说:“产业化最根本的是要解决实际问题。器官芯片不仅要有好的技术,还需要和医院、药企等深入合作。闭门造车很难做出真正让市场接受或满意的产品”。  值得一提的是,艾玮得生物是江苏省产业技术研究院和苏州高新区采用“拨投结合”模式成立的一家典型企业。  江苏省产业技术研究院院长刘庆在接受媒体采访时介绍,所谓“拨投结合”,就是依托财政资金支持,先以科技项目立项拨发资金,帮助团队承担早期研发风险,在项目进展到可以进行市场融资时,再将前期的项目资金按市场价格调整为投资。  顾忠泽认为,该模式可以在高校科研成果转化的前期提供巨大支持,“推进引领性科技成果跨越‘死亡之谷’”。  正是在各方政策的支持下,尽管成立仅两年,艾玮得生物已经拥有了器官芯片设计/加工、细胞外支架材料制备、类器官自动化培养、多模态成像及人工智能数据分析等一系列关键核心技术,并成为目前国内唯一一家能够提供全套解决方案的类器官与器官芯片公司。而此次新药“HRS-1893片”获批,正是其研发能力的具体体现。  专业的人做专业的事  从预见应用前景到投入研发,再到成功产业化,顾忠泽的成果转化之路似乎走得十分顺利。然而,当《中国科学报》记者请他介绍经验时,顾忠泽却说,他不太鼓励高校教师直接做产业化这件事。  “术有专攻,业有所长。”他说,绝大部分高校教师并不擅长和市场打交道,遑论进行商业运作。在这方面,更好的方式是让专业化的商业团队来做成果的产业化。  也正因此,作为艾玮得生物首席科学家,顾忠泽并不负责企业的运营。  “2014年,东南大学和江苏省产业技术研究院联合成立了生物材料与医疗器械研究所。这个研究所的主要任务就是将大学的科技成果进行转化应用。”他说。  2017年,研究所落户苏州高新区。从那时起,这支队伍先后孵化了70多家企业,艾玮得生物也是由这支专业队伍孵化成功的。  该公司是长三角国家技术创新中心体系中,首个由体系内研究所从头培育并达到国内领先的创新科技公司。  “江苏省产业技术研究院针对科技成果产业化所建立的模式非常好。”顾忠泽告诉记者,正是因为有这类专门进行科研成果转化的团队和机构,高校科研成果才能更好地进行孵化。“这比高校教师‘单打独斗’强得多。”  “人体器官芯片崛起的动力是生命科学领域快速发展产生的强烈需求,从前期的积累到形成越来越多的应用,这是一个不断发展的过程。相信在不久的将来,越来越多的研究人员会借助器官芯片技术,在药物研发、精准医疗、环境评估、航天航空甚至美容等领域迎来新突破。”顾忠泽说。
  • 面向红外芯片的光谱与界面功能关系研究的多尺度表征系统项目启动
    2023年4月14日,国家重大科研仪器研制项目“面向红外芯片的光谱与界面功能关系研究的多尺度表征系统”启动会在上海技物所召开。咨询专家代表匡定波院士、祝世宁院士、龚新高院士、贾金锋院士,国家自然科学基金委员会数学物理学部常务副主任董国轩、中国科学院条件保障与财务局副局长曹凝、监理专家和上海市科委相关处室领导等出席启动会。上海技物所党委书记龚海梅、副所长陈建新、项目负责人陆卫等50余人参加 会议。   该项目由上海技物所牵头,联合中国科技大学和上海科技大学承担,旨在通过发展对界面态敏感的红外光谱与应用技术,为研究和理清复杂界面中具有光电作用功效的电子态如何决定高端红外芯片极限性能的核心问题提供先进方法和表征手段,具有显著的科学价值和应用前景。项目基于对红外芯片界面关系的深厚理解和实际应用需求,提出了“谱效”关系新思路,展示了技术方案的创新性。拟研制的装置包括4个核心子系统和2个辅助子系统。项目中的关键技术如红外调制光谱、红外成像光谱、纳米探针光电谱、界面电子态预测和数据驱动算法等已有研究积累,具有很好的实施基础。   会上成立了项目咨询专家组,并向受聘专家颁发了聘书。专家组和监理组认真听取了项目实施方案报告,并认为该项目研制目标明确,预期技术指标先进,整体设计路线清晰。针对核心科学问题以及研制过程中可能遇到的技术难点和其他困难,项目团队提出了合理的预案,有望为我国红外探测芯片技术基础研究领域发展做出贡献。   董国轩在讲话中要求项目牵头单位和项目组加强组织管理,确保项目按期高质量实现目标。项目推荐部门和地方科技主管部门分别表示将积极支持项目承担单位和项目团队开展相关科技攻关工作。
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12 MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0 MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 集百家众长——第五届微流控芯片高端论坛暨产业峰会(大会报告篇)
    p  strong仪器信息网网讯/strong微流控芯片技术是个学科交叉大融合的技术,物理、材料、化学、生物、医学等各个领域的专家均为微流控芯片技术做出各自贡献,可谓百花齐放,一起创造了微流控芯片领域的勃勃生机。微流控芯片技术也在该过程中“吃百家饭”逐渐成长壮大,并作为快速发展的颠覆性技术之一被写入“十三五”规划。会议中来自不同领域的专家慷慨地分享自己的最新研究成果,交流技术难题,为推动我国微流控芯片技术发展献计献策。(依报告顺序展示) 相关报道链接:a title="肩负突破“十三五”规划颠覆性技术责任——第五届微流控芯片高端论坛暨产业峰会" style="COLOR: #c00000 TEXT-DECORATION: underline BACKGROUND-COLOR: #d8d8d8" href="http://www.instrument.com.cn/news/20171218/235992.shtml" target="_self"span style="COLOR: #c00000 BACKGROUND-COLOR: #d8d8d8"《肩负突破“十三五”规划颠覆性技术责任——第五届微流控芯片高端论坛暨产业峰会》/span/a/pp style="TEXT-ALIGN: center"img title="IMG_0071.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/f1c951af-4251-4bb7-b9d0-06cd894ba37c.jpg"//pp style="TEXT-ALIGN: center"strong 大连化学物理研究所教授 林炳承/strong/pp style="TEXT-ALIGN: center"strong作《微流控芯片的崛起和我们的责任》/strong/pp  报告指出微流控芯片作为当代极为重要的新型科学技术平台和国家层面产业转型的潜在战略领域已经处于一个重要发展阶段,微流控芯片研究的主流已从平台构建和方法发展转为不同领域的广泛应用,并从应用的需求中寻求科学问题,进而带动产业化的迅速发展。在报告中林炳承以其大连研究团队的近期工作结合微流控芯片研究和产业化的新进展深刻并且扼要的阐述了其对微流控芯片这一“颠覆性”技术的看法。/ppimg title="IMG_6457.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/990b54d9-0627-453c-9cb5-c9a88a5a59e3.jpg"//pp style="TEXT-ALIGN: center"strong北京科技大学教授 张学记/strong/pp style="TEXT-ALIGN: center"strong作《微流控芯片在肿瘤精准基础生物学研究中的应用》/strong/pp  张学记在报告中为我们带来了其课题组研究的IP-DO(Channel-Printing Device-Opening)assay方法分享,该方法不仅可以对多种细胞在同一块芯片上进行高通量成像分析,而且可以将10个左右目标细胞提取出来进行多基因转录水平分析,从而将细胞的图像信息与基因基因表达水平信息对应起来。张学记还分享了其课题组发明的一种利用3D打印技术制作类似“乐高构件”的3D打印器件从而方便实现肿瘤细胞-体细胞的共培养方法。该方法能够准确地获取肿瘤细胞迁移和转移过程中的动态数据,并且操作简单灵活易于在普通实验室中推广使用。 img title="IMG_0310.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/c4d346c0-5a1f-45fb-bd2a-c812b6ae752d.jpg"//pp style="TEXT-ALIGN: center"  strong国家纳米科学中心研究员蒋兴宇/strong/pp style="TEXT-ALIGN: center"strong  作《Flexible Microchips》/strong/pp  蒋兴宇报告展示的他们团队发的微流控芯片非常具有灵活性,一方面芯片应用具有灵活性,除了应用于检测还可以用于药物分析、药物筛选、组织工程等领域。另一方面芯片材质的灵活性,即芯片可以拉伸、弯曲、折叠,并可与穿戴性电子产品结合。蒋兴宇在报告中展示了新颖的纸张条码检测与多元层析结合研究成果,同时也分享了人造血管研究成果。/pp style="TEXT-ALIGN: center"img title="IMG_0331.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/6c060430-7a0d-4a8c-b23d-b24ea0a50138.jpg"//pp style="TEXT-ALIGN: center"  strong清华大学教授 林金明/strong/pp style="TEXT-ALIGN: center"strong  作《基于微流控平台的细胞共培养及生物微环境模拟的研究》/strong/pp  林金明在报告中介绍了基于微流控芯片上的细胞共培养及生物微环境模拟部分研究成果。其中,林金明课题组在微流控芯片上培养了肝癌细胞,建立了一种微流控芯片上的肝肿瘤模型,成功观测到前体药物卡培他滨的代谢和作用,并与质谱联用对原药及中间代谢产物进行检测。此外他们成功构建的集成化微流控芯片,可用于细胞的共培养、缺氧诱导以及代谢物在线分析。林金明还在报告中大家展示了其设计的微流控芯片质谱联用仪。/pp style="TEXT-ALIGN: center"img title="IMG_0384.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/78ef98d5-f4cb-4aac-8b25-db050435266b.jpg"//pp style="TEXT-ALIGN: center"  strong中国科学院过程工程研究所 研究员/strong/pp style="TEXT-ALIGN: center"strong  作《新材料、新技术与生物检测监测技术》/strong/pp  周蕾指出临床检验、疾控应急、违禁筛查、食品安全等虽然分属于完全不同的行业,但其在具体的工作环节中都面临着“在现场条件下,最短时间内,筛查确定可疑靶标存在与否以及含量”的需求,即生物检测监测。周蕾老师研究的方向主要以上述需求为导向,兼顾学科交叉的科技创新,并以科技创新成果为基础进一步推进学研用及成果转化。周蕾团队在具体研究过程中,通过纳米材料、生物试剂、生物传感器的生产工艺研究,实现了产业化。并确立了“基于纳米材料、器件、生物应用探索的生物检测监测技术研究”科研方向,进而探索并挖掘了碳量子点、聚集发光材料等多种材料与器件的生物应用价值。/pp style="TEXT-ALIGN: center"img title="IMG_0399.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/66a5c0d5-48eb-4d9f-b588-8d9c28ab2c1d.jpg"//pp style="TEXT-ALIGN: center"strong  大连医科大学教授 刘婷姣/strong/pp style="TEXT-ALIGN: center"strong  作《CAF外泌体促进肺转移前微环境的形成研究》/strong/pp  刘婷姣在报告中分享了其研究成果,即为了揭示CAFs及其外泌体是否能够在SACC细胞到达肺之前改造肺组织微环境,形成一个易于肿瘤细胞定植的转移微环境,其设计了一系列实验进行验证。最后证明CAFs外泌体通过构建转移前微环境促进SACC肺转移。/pp style="TEXT-ALIGN: center"img title="IMG_0403.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/48aeda00-87ce-42d0-abf7-0a80d4695f76.jpg"//pp style="TEXT-ALIGN: center"  strong北京大学教授 黄岩谊/strong/pp style="TEXT-ALIGN: center"strong  作《微流控芯片单细胞测序》/strong/pp  黄岩谊报告中指出在单细胞和少数细胞水平上了解异质性、随机性和协同性在生命过程中的关键作用,可以从根本上更好地把握关键生物事件如疾病的发生与发展,也为健康与医疗提供基础科学数据。黄岩谊团队通过微流控芯片,稳定进行单细胞俘获和定量观测,并进行单细胞测序的样品前处理,实现了高质量的哺乳动物单细胞全基因组和全转录组的测序,以及极其微量细胞的表观遗传组测序;同时还可以进行单细胞尺度上的微观定量图像获取。通过微流控技术实现针对同一个单细胞的多维度分析,由此建立两种或者多种定量测量方法间的相关性,使得很多分析可以进一步深入,意义重大。/pp style="TEXT-ALIGN: center"img title="IMG_0409.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/7449b8f3-455c-4a73-b552-e264a324ff14.jpg"//pp style="TEXT-ALIGN: center"strong    海军军医大学教授 马雅军/strong/pp style="TEXT-ALIGN: center"strong  作《虫媒传染病媒介及其携带病原体快速侦检研究现状及其需求分析》/strong/pp  马雅军报告中指出虫媒传染病是人类健康的重要威胁,是重大公共卫生事件的重要原因,历史上曾对军队战斗力造成重大影响。随着我军执行任务的形式和环境更加多样化,虫媒传染病对部队战斗力的威胁日益增加。适于现场的快速、灵敏和准确的媒介种类及其携带病原体的一站式检测技术方法可为虫媒传染病的有效防控、以及流行风险评估提供科学依据。马雅军在报告中也表示出她对微流控芯片技术解决该类问题的期待。/pp style="TEXT-ALIGN: center"img title="IMG_0429.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/c8bbb5e1-b054-42ab-868c-9a2a0710286b.jpg"//pp style="TEXT-ALIGN: center"strong  广州市第一人民医院研究员 刘大渔/strong/pp style="TEXT-ALIGN: center"strong  作《微流控体外诊断技术应对临床检验医学的挑战》/strong/pp  刘大渔以一个在检验医学一线从事微流控体外诊断研究课题组的视角,扼要阐述微流控技术的优势以及临床检验领域的应用前景。针对目前临床检验工作中的痛点问题,结合已有微流控体外诊断技术和本课题组研究工作介绍了微流控体外诊断技术在分子诊断、免疫检测以及病原微生物等三个领域的应用。刘大渔探讨了新形势下微流控体外诊断技术的机遇与挑战,认为微流控技术是应对临床检验医学挑战的有力工具,该技术将会对临床检验能力的提升起到巨大的推动作用。/pp style="TEXT-ALIGN: center"img title="IMG_0437.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/8eaa6e02-91d9-46d6-9890-d6fc0b02a4b5.jpg"//pp style="TEXT-ALIGN: center"strong  大连医科大学附属第二医院副院长 王琪/strong/pp style="TEXT-ALIGN: center"strong  作《基于微流控芯片仿生肺模型的肺癌转移机制研究》/strong/pp  王琪报告中分享了研究成果既采用PDMS材料,依据体内细胞与细胞、细胞与培养介质、组织与组织间、器官与微环境间相互作用的特性以及流体力学原理,设计和制作了一个能够接近肺解剖结构、模拟肺生理功能的微流控芯片仿生肺模型。通过重建肺的解剖结构,包括支气管和肺间质以及血流、气流等模拟肺的生理功能 同时以此为平台,进一步重现肺癌发生及转移过程并进行相关机制等深入研究。该模型还可为其他肺部疾病的研究提供一种重要技术支持。/pp style="TEXT-ALIGN: center"img title="IMG_6742.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/78a5543f-2260-400b-bf20-d923d42b9403.jpg"//pp style="TEXT-ALIGN: center" strong 中国科学院力学研究所研究员 胡国庆/strong/pp style="TEXT-ALIGN: center"strong  作《微纳生物颗粒的微流动操控:从惯性到弹性》/strong/pp  胡国庆指出微纳尺度颗粒(细胞、细菌、合成颗粒、囊泡、生物大分子等)的精确操控在生物、医学、材料和环境等领域有着至关重要的应用。以循环肿瘤细胞和外泌体为代表的稀有生物颗粒的高效富集与分离,一直是制约临床与基础医学研究的技术瓶颈。这些生物颗粒在血液样品中的含量极小,因此要求分离方法必须满足高的处理通量要求。胡国庆团队以微纳生物颗粒的高通量操控为目标,系统研究了惯性效应和黏弹性效应作用下微通道中微纳颗粒在迁移规律与操控机理,并将相关微流控机理成功应用于众多生化研究。/pp style="TEXT-ALIGN: center"img title="IMG_6749.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/e818deed-da09-4373-96e2-809497f5f392.jpg"//pp style="TEXT-ALIGN: center"strong厦门大学教授杨朝勇/strong/pp style="TEXT-ALIGN: center"strong  作《循环肿瘤细胞的识别、捕获与单细胞分析》/strong/pp  循环肿瘤细胞(CTC)的检测在肿瘤分期诊断、动态监测、疗效评估、药物开发和预后监测等方面具有重大意义。杨朝勇团队基于微流控技术,发展了高效核酸适体筛选方法,获得多条可识别不同CTC的高亲和力、高特异性核酸适体序列 利用流体调控与表界面调控技术,构筑了基于细胞尺寸与生物识别特性协同捕获的微流控微柱阵列芯片,实现了CTC的高效捕获与无损释放 借助微流体器件的精准操控优势,并开发了一系列高通量单细胞分析方法,用于揭示CTC的分子病理信息。其所发展的肿瘤细胞的识别探针、捕获芯片与高通量单细胞分析方法在癌症的精准诊断、用药指导、疗效评估方面具有重要的应用前景。/pp style="TEXT-ALIGN: center"img title="IMG_0507.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/70576640-cbe1-49ca-a43c-af1a0ca71207.jpg"//pp style="TEXT-ALIGN: center"strong  大连理工大学教授 罗勇/strong/pp style="TEXT-ALIGN: center"strong  作《基于肾和肝芯片的药物毒性鉴定新方法》/strong/pp  器官芯片技术可以模拟器官的功能,具有较高的仿生性,利用器官芯片进行中药毒性鉴定,结果既与体内结果比较接近,而且速度快,通量高,成本低,在动物实验前进行一轮器官芯片毒性筛查实验,可以大幅减少东阿不的用量,节约成本,提高效率。报告中展示了罗勇团队构建的两种仿生肾和肝的微流控芯片,并进行李茹药物毒性鉴定实验。结果发现顺铂的主要毒性部位为肾小管,肝微环境对毒性结果影响较大。/pp style="TEXT-ALIGN: center"img title="IMG_0622.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/cc40c809-5aac-459c-aceb-242635c2e862.jpg"//pp style="TEXT-ALIGN: center"strong  江苏师范大学教授 盖宏伟/strong/pp style="TEXT-ALIGN: center"strong  作《Digital biosensor and digital immunoassay 》/strong/pp  盖宏伟在报告中分享了研究成果,其团队的建立了一系列基于量子点光谱成像的数字生物传感和数字免疫技术。该类技术具有灵敏度高,检测限低,均相分析,可用于血液样品等特点。同时以微球为探针的超高灵敏免疫分析技术,可以实现10sup-22/sup摩尔水平的生物标记物的绝对定量。/pp style="TEXT-ALIGN: center"img title="IMG_0646.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/6db307d0-74a1-4d69-8462-d87e09927ffe.jpg"//pp style="TEXT-ALIGN: center"strong  中国科学院大连化学物理研究所副研究员 刘显明/strong/pp style="TEXT-ALIGN: center"strong  作《数字微流控芯片微反应器相关衍生技术的研究》/strong/pp  在生化反应与检测如免疫样品反应与检测、珍贵样品合成、单细胞研究等具体应用中,存在对微小、微量样品捕捉、富集、纯化等特殊功能性需求。刘显明报告中展示基于数字微流控液滴平台的磁珠分离与清洗、液滴导入体积反馈控制、passive dispensing等功能性单元的研究工作,以上液滴的操作控制过程均在空气相中进行,不依赖于油相环境,生成物更加单纯,易于与检测仪器接驳且便于开展细胞研究等工作。与通道式微流控芯片相比,如果解决通量问题,数字微流控芯片作为微反应器在生化应用方面可能更具吸引力。/pp style="TEXT-ALIGN: center"strongimg title="IMG_0697.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/558f8192-4389-4bd5-a687-5142d65bf74d.jpg"//strong/pp style="TEXT-ALIGN: center"strong  复旦大学教授 俞燕蕾/strong/pp style="TEXT-ALIGN: center"strong  作《光致形变液晶高分子及其微流控芯片构筑》/strong/pp  俞燕蕾报告中展示了其团队对光致形变液晶高分子材料的研究,并且将这新一代的光致形变高分子材料与传统微流控芯片结合,构筑出微流控芯片的核心部件,实现微管执行器到微流控芯片的制造升级以及芯片通道中生物样品输运的精确光控制,并且该方法驱动流体时无需特殊的光学装置和微组装过程可以最大程度简化微流体控制系统。为推动光控微流体技术在生物领域应用奠定了构筑材料和调控机制的重要基础。/pp style="TEXT-ALIGN: center"img title="IMG_6458.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/3335957a-82ca-4caa-8261-3217d0dab0ec.jpg"//pp style="TEXT-ALIGN: center" strong 中国科学院过程工程研究所研究员 杜昱光/strong/pp style="TEXT-ALIGN: center"strong  作《营养代谢器官芯片的研发及其应用》/strong/pp  器官芯片可以在细胞水平模拟组织微环境并且具有观察方便可实现实时监测,易于连接分析装置,成本低、周期短等优点。使用器官芯片代替部分动物实验进行营养代谢研究成为一种趋势。杜昱光在报告中分享了其团队在器官芯片方面的研究进展,展示了其建立的血管糖萼芯片的生理和高糖损伤模型;研发了一种新型的层叠式大肠器官芯片 搭建了肠-肝-肾的多器官组合芯片模型。并且,其团队分别在模型上进行了实验,取得了非常理想的结果。/pp style="TEXT-ALIGN: center"img title="IMG_0788.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/69f8a922-29bf-4c4e-b1a2-bc16d29ce9aa.jpg"//pp style="TEXT-ALIGN: center"strong  南方医科大学第五附属医院检验科主任 尹小毛/strong/pp style="TEXT-ALIGN: center"strong  作《临床微生物检验:不足与需求》/strong/pp  尹小毛报告指出二十一世纪以来,尽管临床微生物检验领域有了较大发展,但是面对日益增长的临床诊断需求,临床微生物检验尚存在较多不足之处。表示基于当前临床微生物检验存在的不足,医生和患者未得到满足的需求主要体现在:快速、简便和准确的临床微生物检验标本采集、运送和保存方法 样本检验方法以及相应操作简单、成本低廉和通量较高的全自动仪器 可以及时提供正确有效信息的临床微生物检验报告和实验室对于临床微生物检验方法选择的可靠建议。/pp style="TEXT-ALIGN: center"img title="IMG_6902.JPG" src="http://img1.17img.cn/17img/images/201712/insimg/09854b56-72ca-4150-9be2-9a8d62fc966a.jpg"//pp style="TEXT-ALIGN: center" strong 四川大学华西第二医院研究员 许文明/strong/pp style="TEXT-ALIGN: center"strong  作《微流控技术在生殖与围生医学的科研与临床中的应用》/strong/pp  许文明报告围绕微流控技术的发展如,微流控技术在单个细胞分离、干细胞分离、3D细胞培养、组织芯片模型、精子优选应用等技术上的发展。并重点从生殖领域内的科研与临床需求的角度出发,对微流控技术的发展在上述领域的方向作了详细的梳理。他表示对于微流控芯片技术在生殖与围生医学,药物筛选与毒理测试等多领域的应用需要病人、医生、多学科科研人员的通力合作与交流。/pp  第五届微流控芯片高端论坛暨产业峰会大会报告,包罗微流控芯片领域研究新进展,新应用,全景展示了我国微流控芯片技术研究水平以及未来发展和产业化方向。希望像林炳承老师期待的那样,越来越多的科研人员可以加入到微流控芯片技术的研究应用的队伍中,这样微流控芯片技术才能更加成熟,最终真正全面造福人类!/pp /p
  • 芯片上“长”出原子级薄晶体管
    美国麻省理工学院一个跨学科团队开发出一种低温生长工艺,可直接在硅芯片上有效且高效地“生长”二维(2D)过渡金属二硫化物(TMD)材料层,以实现更密集的集成。这项技术可能会让芯片密度更高、功能更强大。相关论文发表在最新一期《自然纳米技术》杂志上。这项技术绕过了之前与高温和材料传输缺陷相关的问题,缩短了生长时间,并允许在较大的8英寸晶圆上形成均匀的层,这使其成为商业应用的理想选择。新兴的人工智能应用,如产生人类语言的聊天机器人,需要更密集、更强大的计算机芯片。但半导体芯片传统上是用块状材料制造的,这种材料是方形的三维(3D)结构,因此堆叠多层晶体管以实现更密集的集成非常困难。然而,由超薄2D材料制成的晶体管,每个只有大约三个原子的厚度,堆叠起来可制造更强大的芯片。让2D材料直接在硅片上生长是一个重大挑战,因为这一过程通常需要大约600℃的高温,而硅晶体管和电路在加热到400℃以上时可能会损坏。新开发的低温生长过程则不会损坏芯片。过去,研究人员在其他地方培育2D材料后,再将它们转移到芯片或晶片上。这往往会导致缺陷,影响最终器件和电路的性能。此外,在晶片规模上顺利转移材料也极其困难。相比之下,这种新工艺可在8英寸晶片上生长出一层光滑、高度均匀的层。这项新技术还能显著减少“种植”这些材料所需的时间。以前的方法需要一天多的时间才能生长出一层2D材料,而新方法可在不到一小时内在8英寸晶片上生长出均匀的TMD材料层。研究人员表示,他们所做的就像建造一座多层建筑。传统情况下,只有一层楼无法容纳很多人。但有了更多楼层,这座建筑将容纳更多的人。得益于他们正在研究的异质集成,有了硅作为第一层,他们就可在顶部直接集成许多层的2D材料。
  • 顶刊速递,北航研究团队制备并表征高性能MXene纳米片薄膜!
    【科学背景】随着纳米科技的迅猛发展,二维纳米材料作为一类重要的新兴材料,因其独特的电子、光学和机械性能,引起了广泛的关注。其中,钛碳化物(Ti3C2Tx)MXene纳米片由于其优异的机械性能和电导率,显示出在航空航天和电子器件等领域的巨大应用潜力。然而,将MXene纳米片从单层的优异性能扩展到宏观尺度的应用中却面临着诸多挑战。目前报道的组装方法如真空过滤、刮刀涂布和空间限制蒸发等,虽然在一定程度上可以制备MXene薄膜,但仍然存在诸如取向度不高、孔隙率较大以及界面相互作用弱等问题。例如,通过真空过滤制备的MXene薄膜取向度仅为0.64,其机械性能显著低于单层MXene的理论值。有鉴于此,北京航空航天大学的程群峰教授团队在“Science”期刊上发表了题为“Ultrastrong MXene film induced by sequential bridging with liquid metal”的研究论文。一种新的制备策略——利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,被提出并成功实施。这种方法不仅通过LM纳米粒子有效减少了MXene薄膜的孔隙,还通过BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。研究结果表明,这种LBM薄膜不仅具有极高的拉伸强度,还表现出优异的电磁屏蔽效率,为MXene纳米片在宏观尺度应用中的进一步开发提供了新的思路和方法。【科学图文】 图1:LBM薄膜的制备原理及表征。图2. LBM薄膜的界面相互作用表征。图3. LBM薄膜的力学性能和断裂机理。图4. 电磁干扰屏蔽效能的表现。【科学结论】本文克服钛碳化物(Ti3C2Tx)MXene纳米片组装过程中的关键挑战,提出了一种创新的策略,即利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,成功制备了超强的宏观LBM薄膜。通过LM纳米粒子的引入,有效减少了薄膜的空隙,同时利用BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。这些改进不仅显著提高了MXene纳米片在薄膜中的应力传递效率,还赋予了LBM薄膜优异的电磁屏蔽性能。这一研究不仅为MXene纳米片及其他二维纳米材料在高性能材料领域的应用提供了新的设计思路和解决方案,还展示了多层次、多材料协同作用的重要性和潜力。未来的研究可以进一步探索和优化这种组装策略,以扩展其在能源存储、传感器技术和柔性电子设备等领域的应用,从而推动纳米材料设计和制备技术的发展,实现更广泛的实际应用和产业化转化。文献信息:https://www.science.org/doi/10.1126/science.ado4257
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制