非球面透镜

仪器信息网非球面透镜专题为您提供2024年最新非球面透镜价格报价、厂家品牌的相关信息, 包括非球面透镜参数、型号等,不管是国产,还是进口品牌的非球面透镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非球面透镜相关的耗材配件、试剂标物,还有非球面透镜相关的最新资讯、资料,以及非球面透镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

非球面透镜相关的厂商

  • 上海璞凌光电科技有限公司,专业从事各类镜头的研发设计以及塑胶非球面镜片的生产加工。公司拥有万级标准的无尘注塑车间,千级标准的无尘装配车间。生产设备都是全电动日本住友注塑机。所有产品都是在无尘室内完成生产,检验,装配和测试。公司拥有专业设计人员,可根据客户要求提供定制服务。提供注塑加工非球面光学透镜,光纤耦合镜,接收发射透镜,复眼阵镜,TIR透镜,TOF镜片,耦合镜阵列,准直镜阵列,透镜阵列,复眼透镜,蜂眼透镜,蝇眼透镜,微透镜。我们的产品应用到激光系统,传感器自动化,机器视觉,无人驾驶,平衡车,航空航天,单点/ 多点阵列控制器,安全,光通信,TOF传感器,医疗等。主营生产各类镜头:监控安防类,医疗内窥类,运动DV类,车载类,FA机器视觉,二维条码扫描类,产品可用于行车记录仪、汽车后视环视、安防监控、360度全景相机、数码相机、运动DV、智能家居可视门禁、无人机航拍、高拍仪、文字扫描、指纹识别等众多的光学领域。
    留言咨询
  • 公司主要产品有光学类配套产品:光学流场显示仪、光学镜片、紫外光学镜头等; 光电公司的光学冷加工采用古典工艺加工技术并与数字化加工技术相结合,冷加工材质范围包括晶体、非晶体及其它材质。对氟化钙、氟化镁、氟化锂、氟化钠、氟化钡、氟化锶、单晶锗、石英晶体、蓝宝石晶体、红宝石晶体、单晶硅等光学元件、光学晶体、光学窗口玻璃、光学球面、非球面透镜,高精度棱镜以及各种普通和有特殊要求的光学球面、平面反射镜进行光学冷加工生产,产品加工精度高、质量可靠。
    留言咨询
  • 江西欧特光学有限公司是一家专业提供光学技术解决方案和生产滤光片的厂家,公司座落于江西上饶县旭日片区兴业大道11号合创汇光电信息科技园3#楼,已建有5700多平方米的厂房和千级无尘净化车间以及整套的精密光学产品后续加工生产线,拥有多台国内外先进的真空光学镀膜设备和精密的分光光度计等检测仪器。江西欧特光学有限公司已成为一家拥有高效管理团队、优秀的光电工程研发人员、良好的售后服务体系为一体的精密光学滤光片制造商。江西欧特光学有限公司生产的主要产品领域涵盖有:光纤通信用滤光片、窄带滤光片、带通滤光片、长短波滤光片、高精度反射镜、生物识别用滤光片、透红外滤光片、医疗仪器滤光片、酶标仪滤光片和光学透镜、光学棱镜、球面镜非球面镜等光学镜片加工镀膜。产品广泛应用于:光纤通信用、工业激光、自动化设备、半导体生产、微测量系统、建筑测绘、生物识别、医疗仪器器械、安防监控、美容仪器、舞台灯光、高能激光设备、军工设备、红外成像、视觉光源、生化分析仪、酶标仪、指纹识别、虹膜识别、微投与成像系统等领域。
    留言咨询

非球面透镜相关的仪器

  • 平凸透镜 400-628-5299
    透镜(Lens): 透镜主要是进行光的汇聚或者发散用的光学元件,主要分为:凸透镜、凹透镜、消色差透镜、非球面透镜等。关于平凸/凹透镜和双凸/凹透镜的选择: 球面平凸/ 凹透镜被用于无限远共轭时,具有较小的球差。所以,当需要把平行光汇聚,或者把点光源变成平行光时,选择球面平凸/ 凹透镜较好。在用于有限远共轭时,双凸/ 凹透镜具有较小的球差,当需要汇聚点光源发出来的光或者光学系统图像传递时,选择双凸/ 凹透镜为佳。凸透镜: 根据形状分为:平凸和双凸,根据材料分为K9 玻璃( 或BK7) 与石英;K9玻璃,平凸透镜相关参数: 材料:K9光学玻璃 直径误差:+0.0/-0.1mm 中心厚度误差:±0.2mm 焦距误差(EFL): ±2% 镀膜:无选型表: OLB系列,K9平凸透镜型号尺寸及参数(mm) 型号尺寸及参数(mm) OLB12.7-25.4 ?2.7,f25.4 OLB25-1000 ?5,f1000 OLB12.7-38.1 ?2.7,f38.1 OLB25.4-050 ?5.4,f50 OLB20-050 ?0,f50 OLB25.4-075 ?5.4,f75 OLB25-050 ?5,f50 OLB25.4-100 ?5.4,f100 OLB25-080 ?5,f80 OLB25.4-150 ?5.4,f150 OLB25-100 ?5,f100 OLB38.1-075 ?8.1,f75 OLB25-125 ?5,f125 OLB50-100 ?0,f100 OLB25-200 ?5,f200 OLB50-160 ?0,f160 OLB25-250 ?5,f250 OLB50-250 ?0,f250 OLB25-300 ?5,f300 OLB50-500 ?0,f500 OLB25-400 ?5,f400 OLB50.8-100 ?0.8,f100 OLB25-500 ?5,f500 OLB50.8-400 ?0.8,f400 注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。石英,平凸透镜相关参数: 材料:紫外熔融石英 直径误差:+0.0/-0.1mm 中心厚度误差:±0.2mm 焦距误差(EFL): ±2% 镀膜:无OLB系列选型表: 注:还有不同尺寸、焦距的同类产品,选购时请咨询我们。
    留言咨询
  • 非球面透镜 新势力光电供应非球面透镜,采用玻璃复制混合成型法,具有很高的性价比。比对抛光、全模压成型的玻璃非球面透镜具有成本优势;比对塑料非球面透镜具有品质优势。该系列非球面透镜用以消除光学像差和色差,是中高端光学仪器及系统的理想配件。非球面透镜应用广泛,包括:半导体激光器,生物医疗、激光投影、条码扫描器、光数据存储、工程仪器。TypeF/mmD/mmNA/mmCA/mmSD/mmRMS/wavesAC40940.00 10.00 0.11 9.0 38.20 0.040 AC40727.00 8.00 0.11 6.0 25.50 0.040 AC40523.00 8.00 0.09 6.0 21.40 0.030 AC40022.00 6.00 0.11 4.8 20.80 0.020 AC40420.60 8.00 0.17 7.0 18.80 0.040 AC40319.00 8.00 0.16 6.0 17.50 0.030 AC04419.00 5.20 0.11 4.4 17.10 0.025 AC06814.90 8.00 0.20 6.2 13.40 0.030 AC07214.80 8.00 0.21 6.4 13.30 0.040 AC41514.80 12.00 0.32 9.5 11.80 0.040 AC21011.00 6.00 0.20 4.4 9.60 0.020 AC21210.90 7.20 0.30 6.6 9.70 0.020 AC30210.00 4.50 0.19 3.8 8.60 0.030 AC41410.00 10.00 0.44 8.7 7.60 0.040 AC0508.90 6.50 0.25 4.6 7.60 0.025 AC0528.90 6.50 0.30 5.4 7.60 0.030 AC3257.90 6.50 0.30 4.8 6.50 0.040 AC3227.50 4.00 0.19 2.8 6.10 0.035 AC3207.48 6.50 0.30 4.5 6.07 0.040 AC3556.25 6.50 0.35 4.4 4.80 0.040 AC3236.00 3.00 0.15 1.8 4.60 0.040 AC2604.60 6.00 0.53 4.9 2.90 0.060 AC2564.34 5.50 0.51 4.4 2.30 0.050 AC3313.30 4.00 0.45 3.0 2.30 0.045 AC3333.30 4.00 0.45 3.0 2.30 0.045 AC3323.30 4.00 0.43 3.0 2.47 0.040 AC2962.99 4.00 0.47 2.8 1.60 0.040 AC2972.99 4.00 0.55 3.3 1.60 0.055 AC5501.80 2.40 0.33 1.2 1.13 0.030 AC5310.78 1.63 0.83 1.3 0.146 0.050 Objectives AO534*4.00 2.30 0.20 1.7 3.10 0.050 AO540**3.30 3.70 0.45 3.0 2.10 0.050 AO510*3.00 2.80 0.20 1.4 1.60 0.030 AO533*2.43 2.30 0.30 1.6 1.30 0.050 AO564***1.18 2.10 0.1/0.41.24 Oid7.840.050 *designed for 1350nm **for 405nm ***for 1300nm相关商品准直透镜 高精密准直透镜 半导体激光二极管 半导体激光器
    留言咨询
  • Anteryon非球面透镜 400-860-5168转3896
    非球面透镜Anteryon非球面透镜采用玻璃复制技术,相比模压玻璃和塑料非球面透镜而言,具有更高的光学品质和更低的制造成本。该系列非球面透镜近衍射极限,并具有极低的波前像差,是准直或聚焦半导体激光的理想选择。LensTypeF(mm)SD(mm)NA(mm)CA(mm)D(mm)CT(mm)ET[mm]Weight(g)FR(mm)DesignWavelengthRMS(waves)AC4094038,1680,1191032,40,70,856500,04AC4072725,4880,11682,51,970,350,706350,04AC4382725,4880,116102,51,670,50,706350,04AC4052321,4480,13682,51,870,30,506550,03AC4002220,8090,114,8621,630,160,706500,02AC40420,618,8150,177832,30,40,376500,04AC4031917,490,16682,51,740,30,406550,03AC04418,917,10,114,45,232,680,20,607850,025AC06814,913,410,216,282,51,60,40,306500,03AC06914,813,40,185,46,52,51,90,260,356350,04AC07214,813,3430,226,482,51,60,40,286350,04AC41514,811,790,329,5125,253,31,40,226350,04AC210119,6180,24,462,351,640,210,157800,02AC21210,99,7140,36,67,22,21,360,30,106700,02AC414107,5520,448,7104,22,110,126350,04AC3029,98,550,193,84,52,351,920,130,256500,025AC0508,97,5930,264,66,52,331,390,260,156700,025AC0528,97,590,35,46,52,331,390,260,156700,03AC3257,96,4920,34,86,52,51,430,270,166500,04AC3207,66,1450,34,56,52,51,350,270,176500,04AC3227,56,080,192,83,982,52,10,120,306700,035AC3556,254,830,354,46,52,51,040,250,146700,04AC32364,5850,151,832,52,20,050,286500,04AC2604,62,8790,534,963,081,480,270,066550,06AC2564,342,3340,514,45,53,72,410,240,096500,05AC3313,32,250,4533,9821,120,070,056700,045AC3323,32,4670,4333,9821,1250,070,756500,04AC3333,32,250,453421,110,070,076700,045AC2962,991,6470,472,842,511,480,120,086700,04AC2972,991,6470,553,342,511,480,120,066700,055f:焦距 SD:发光点距 NA:数值孔径 CA:透光孔径 D:直径 CT:中心厚度 ET:边厚 FR:场半径 RMS:轴向波前质量 NA可高达0.95,并在高NA情况下,仍能保持衍射极限的光学质量波前像差40mλ(RMS) 宽光谱波段应用可抗深紫外可直接焊接稳定工作温度范围从-30°C到 +85°C可按客户要求定制产能可达20万片/周
    留言咨询

非球面透镜相关的资讯

  • Nanoscribes3D微纳加工技术 - 光谱学3D非球面微透镜研发
    近日,一个由华沙大学物理系,日本筑波物质材料研究所以及法国格勒诺布尔国家科学研究中心所组成的国际科研团队的科学家们通过运用Nanoscribe的3D微纳加工技术设计出了如头发丝般细小的纳米级3D非球面微透镜组。此款具有3D形状的微透镜组可以更大程度从半导体样品导入光源,并将射出部分光源重整为超窄光束。这一突破性的研究成果可替代用于光学测量的实验装置中笨重的显微镜物镜。该微透镜增加了两个数量级的可用工作距离(即透镜前端到样品表面之间的距离),为各种光学实验开辟了全新视角。此外,该3D微透镜也可以在不同材料(包括易碎的石墨烯类材料)上进行3D打印制作。图片来自华沙大学Aleksander Bogucki教授:使用Nanoscribe双光子微纳3D打印设备Photonic Professional系列在短时间内制作的3D非球面微透镜阵列。微透镜的优点透镜是一种人们非常熟悉的光学元件,它属于被动光学元件,在光学系统中用来会聚、发散光辐射。随着科学技术的进步,传统方法制造出来的光学元件已经不能满足当今科技发展的需要了。而利用微光学技术所制造出的微透镜和微透镜阵列以其体积小、重量轻、便于集成化、降低制造和包装成本等优点,已然成为新的科研发展方向。微透镜用处广泛,可用于例如照明,显示器,传感器和医疗设备等领域。有效地进行光的传输和收集,对于微光学系统的性能和潜能有着至关重要的作用。通常,我们会运用不同的方式来增加全内反射临界角或减少界面处的菲涅尔反射,例如在光源发射器下方放置镜子,在防放射层上覆盖基材表面以减少内部反射等。在对于半导体纳米结构,通常会使用半球形的固体浸没透镜(SIL)来解决问题。通过三维减材制造制造的SIL可以增加23%甚至40%的光子提取。但是,这些方法都不能达到令人满意的效果,仍然需要借助使用具有高数值孔径的聚光光学器件。而科学家们此次通过使用Nanoscribe3D激光直写技术(DWL)制造的椭圆微透镜(μ透镜)适用于光谱测量中的点光源发射器。基于菲涅耳反射的减少和全内反射的临界角的增加的原理,该非球面透镜成倍提高了光的提取效率。此外,还将收集的光源重整为超低发散光束(测得的光束发散半角小于1°)。因此,发出的光可以直接以约600-700 mm的有效WD引入聚光光学器件,这是标准的高NA长WD显微镜物镜的70倍。在传统实验中,科学家们通常会将重达半公斤,几乎手掌大小的重型显微镜物镜放置在距离分析样品几毫米的位置上。显而易见,这会限制很多现代实验的操作和可行性,例如在脉冲高磁场,低温或微波腔中的测量实验。而这款基于Nanoscribe3D微纳加工技术具有微型化和轻便特性的非球面微透镜则可以轻松解决这类问题。科学家们对该非球面微透镜阵列在两种类型的半导体发射器上的性能已得到验证:自组装量子点(QDs)和新型准二维材料制成的范德华异质结构(van der Waals heterostructures)。3D微纳加工技术应用于微透镜阵列Nanoscribe的双光子微纳3D打印设备具有极大设计自由度的特点,因此可以轻松制作出具有光学质量表面的各种光学元件,例如球形,非球形甚至自由曲面的微透镜。此外,Nanoscribe的3D微纳打印设备速度很快,在短时间内即可以实现在样品上打印数百个微透镜,并按规则或随机排列阵列,用来实现微透镜阵列的不同新功能及应用。相关文献:"Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses" - Nature :Light:Science & Applicationshttps://www.nature.com/articles/s41377-020-0284-1更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印设备 Quantum X 双光子灰度光刻微纳打印设备
  • 南京天光所完成Φ2.5米非球面镜加工
    近日,中国科学院国家天文台南京天文光学技术研究所天文与空间镜面技术研究室加工完成一块2.5米口径非球面镜面。该镜是南京天光所目前研制完成的最大单口径镜面,也是近年来继云南天文台太阳望远镜2米环形主镜、云南大学多通道望远镜1.6米主镜之后的又一件大型非球面镜面。   在该镜加工过程中,科研人员以垂直检验塔和原4米龙门机床作为结构基础构建了加工/检测一体化平台,可实现在位检测,并解决了大镜面、长光程光学检测中的多项技术难点。   该镜全程采用自主研发的双机器人数控研抛站进行加工。该室的镜面数控研抛课题组多年来独立开展相关技术研究,在南京天光所承担的各类横纵向课题的大量镜面加工任务中发挥关键作用。本次为应对2.5米口径的特大镜面,课题组在已有的技术基础上,进一步发展了双机器人协作研抛技术和小尺度误差局部修抛技术,分别使特大口径镜面在研抛加工前中期和后期的效率大幅提升。该2.5米非球面镜最终面形精度RMS值达到1/45波长即14nm,优于设计指标1/40波长。相关技术已申报多项发明专利,其中一项已获得授权。   该镜与较早时间的2米主镜、1.6米主镜的完成,标志着南京天光所已建成成熟的大口径非球面镜面研制平台,具备2.5米及以上镜面的高效研制能力,相关的加工、检测技术达到国内先进水平。2.5米镜面加工/检测平台(左)及最终加工面形条纹图(右)
  • 西安光机所离轴非球面光学系统取得突破
    近日由我所空间室承担的某离轴三反相机桌面样机顺利通过模拟实验,其中采用的光学非球面为我所先进光学加工与检测中心研制,该项工作从非球面光学系统的设计、光学冷加工到光学系统的计算机辅助装调技术都由我所独立完成。实现了我所离轴非球面光学系统制造的完整链条。  该相机的主镜、三镜反射面均为二次曲面且离轴量大,面形误差要求高,加工技术难度较大,尤其是第三镜为一个相对孔径较大的扁球面。光学加工过程中项目组每一位同志充分发挥勇于挑战,不畏艰难的精神,展开非球面加工的技术攻关。项目组以传统的经典加工工艺为基础,在探索中前进,一步步由传统方法迈向先进的技术方法。经多次方案论证,确定了加工工艺,并严格按照工艺要求进行加工,同时针对加工过程中出现的问题及时完善工艺。项目组历经数月加班加点的艰苦奋斗,最终圆满完成了该系统的加工任务。产品面形精度达到了1/50λ,超出了设计要求,同时也填补了我所扁球面光学加工技术的空白。另外在装调中应用了计算机辅助装调技术,相机在模拟成像实验中,鉴别率板经相机成像,在可见光波段实现了高分辨率成像,同时利用光电子室提供的紫外MCP器件在紫外波段也获得了优异的成像结果。  该项目的圆满完成,标志着我所在离轴三反光学系统先进制造技术上取得了突破,集空间室与光电子室的研制成果为一体,提升了我所在紫外探测方面的整体实力。

非球面透镜相关的方案

非球面透镜相关的资料

非球面透镜相关的试剂

非球面透镜相关的论坛

  • 【讨论】静电透镜和磁透镜的简单分析

    [b]问题:[/b]读那本Egerton的PPEM,书中提到了静电透镜和磁透镜的特点,其中静电透镜是这样的:1. 无像转角2. 比较轻,consumes no power3. 对电压的稳定性要求不高4. 容易聚焦离子束磁透镜是:1. 低透镜像差2. 不需要高压激励3. 可以做浸入式透镜我有几个疑问:1. consumes no power指的是什么?静电透镜不需要专门的动力?2. 磁透镜的那个浸入式透镜,是不是说的是样品处于透镜内部中心轴,这样磁场比较均匀吧,而静电式透镜如果这么操作,如果放入导电样品,会引起电场的扭曲?3. (我自己加的)高加速电压时,容易击穿静电透镜。那么是不是扫描电镜比较适合采用静电透镜,而FIB更是因为聚焦离子束的原因,一般采用静电式透镜呢?[b]回答:[/b]我的理解是静电透镜是个耐受高压电容器,只要加电压就成了。除非有空间电荷,也就是用于成像的时候会消耗能量,平时加着高压透镜是不消耗能量的。而磁透镜保持工作需要一直通电流,所以透镜要消耗能量。浸入式我觉得可能是考虑到介电材料会在静电透镜作用下产生极化的问题。静电透镜和磁透镜有适用范围,对于低压电子束用静电透镜比较好,可能考虑的是你前面所说的那些优点。而对高压电子束,静电透镜的会聚能力将大打折扣,相反磁透镜则受影响比较小,因此现在多是低压静电透镜,高压磁透镜的设计。记得Rose,Riemer,Egerton他们有专门的论述。因为离子荷质比大,磁透镜效果不好,所以FIB用静电透镜。我觉得主要是荷质比,离子比电子大多了,如用磁透镜聚焦需狂大的磁场,目前技术水平不能实现,改用静电透镜则可用几组负载电压为几~十几KV的电极来实现。

  • ICP-OES观测窗里面的透镜清洗

    今天上午又与同事一起将ICP-OES观测窗里面的透镜拆下来清洗下,使用了稀硝酸溶液,又用酒精擦擦,大家对观测窗里面的透镜清洗都是怎么做的,使用哪些溶剂去清洗?

非球面透镜相关的耗材

  • λ/40 非球面透镜
    λ/40 非球面透镜?λ/40 RMS 非球面面形误差?提供宽带增透膜?每个透镜提供 3D 表面轮廓通用规格焦距指定波长 (nm):587.6涂层:Uncoated非球面图形误差 (μm RMS):0.016Aspheric Surface Tolerance (RMS):λ/40表面质量:40-20中心偏(弧分):产品介绍TECHSPEC® λ/40 的光波非球面面形误差。这些非球面透镜通过精密的磁流变抛光 (MRF) 而实现,能提供直径介于 15 至 50mm 的高数值孔径,非常适用于各种成像和微光应用。提供适用于可见光和近红外 (NIR) 波长的宽带增透 (BBAR) 膜选项。 每个 TECHSPEC λ/40 非球面透镜都经过单独测量,并提供 3D 表面轮廓。产品信息Dia.(mm)EFL (mm)NACT (mm)产品编码15.0015.000.508.62#12-42815.0018.750.408.00#12-42915.0022.500.338.79#12-43025.0037.500.339.72#12-43825.0050.000.257.24#12-43940.0040.000.5014.70#12-44550.0050.000.5013.06#12-448
  • 塑料混合非球面透镜
    塑料混合非球面透镜1)可校正色差的塑料非球面透镜2)衍射表面能zui大程度地减少色差3)低成本模造设计TECHSPEC® 塑料混合非球面透镜是具有衍射极限设计的模造非球面透镜,能消除由宽带光源所造成的色差。这些混合非球面透镜非常适用于成像及眼部设备的应用,或与可调谐激光、或带宽/多光谱照明光源结合使用。非球面透镜能消除球面像差,而衍射表面能同时提供负光学色散以实现卓越的颜色校正。TECHSPEC® 塑料混合非球面透镜能提供相似于TECHSPEC® 非球面消色差透镜的性能,但它比后者多了几项额外的优势。混合非球面透镜的设计为全塑料单片透镜,因此其重量比类似的非球面消色差透镜轻得多。这些光学透镜也备有较高数值孔径的选项供您选择。不过,塑料混合非球面透镜将受非球面面形固有的衍射效率所限制,因此它的整体透射率会比类似的非球面消色差透镜低。Common Specifications基底:Zeonex E48R直径容差 (mm):+0.00/-0.10中心厚度容差 (mm):±0.10技术数据订购信息:直径 (mm)有效焦距EFL (mm)数字孔径 NA中心厚度CT (mm)涂层产品号1290.675.6Uncoated#65-98612120.54.3Uncoated#65-98712150.43.7Uncoated#65-98825200.6310Uncoated#65-99125300.427.3Uncoated#65-9931290.675.6BBAR (425-675nm)#65-99612120.54.3BBAR (425-675nm)#65-99712150.43.7BBAR (425-675nm)#65-99825200.6310BBAR (425-675nm)#66-00125300.427.3BBAR (425-675nm)#66-003
  • zui佳形态的非球面透镜
    zui佳形态的非球面透镜1)修改后的TECHSPEC PCX透镜2)在特定波长提供经优化的性能3)达到衍射极限的光斑尺寸4)请与我们联系以了解定制设计波长TECHSPEC® 最佳形态的非球面透镜为经修改过的TECHSPEC® PCX透镜,以便在特定波长提供卓越性能。与原有PCX透镜有所不同的是,TECHSPECzui佳形态的非球面透镜能够在设计波长生成达到衍射极限的光斑尺寸,而且此光斑尺寸适用于聚焦或准直应用。任何直径和焦距的TECHSPEC® 平凸(PCX)透镜都可以被改进为一个TECHSPEC® 最佳形态的非球面透镜,以提供zui佳解决方案给各种应用。注意:与传统聚焦透镜有所不同的是,在使用这些透镜时应将其平凸侧面向光源。Common Specifications涂层:Laser V-Coat基底:N-BK7直径容差 (mm):+0.0/-0.1中心厚度容差 (mm):±0.1表面质量:40-20中心偏(弧分):3 - 5技术数据订购信息:直径 (mm)有效焦距 EFL (mm)数字孔径 NA涂层规格产品号25250.5Rabs#89-43125250.5Rabs#89-43525250.5Ravg#89-43925500.25Rabs#89-43225500.25Rabs#89-43625500.25Ravg#89-44025750.17Rabs#89-43325750.17Rabs#89-43725750.17Ravg#89-441251000.13Rabs#89-434251000.13Rabs#89-438251000.13Ravg#89-442
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制