当前位置: 仪器信息网 > 行业主题 > >

氟化钡棱镜

仪器信息网氟化钡棱镜专题为您提供2024年最新氟化钡棱镜价格报价、厂家品牌的相关信息, 包括氟化钡棱镜参数、型号等,不管是国产,还是进口品牌的氟化钡棱镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟化钡棱镜相关的耗材配件、试剂标物,还有氟化钡棱镜相关的最新资讯、资料,以及氟化钡棱镜相关的解决方案。

氟化钡棱镜相关的资讯

  • 用于仪器制造,我国前沿半导体材料碲锌镉制备技术取得新突破
    日前,安徽承禹半导体材料科技有限公司(简称“承禹新材”)获得中国科学院半导体研究所关于第三代前沿半导体材料碲锌镉单晶棒及晶片的检测检验报告。其结论和数据显示,承禹新材制造的碲锌镉单晶棒及晶片,在红外透过率等综合参数性能、产品良率、晶棒及晶片尺寸规格、尤其是3英寸的全单晶圆片等几项关键指标方面,均处于国内同行业中遥遥领先、名列前茅的位阶,部分指标追平甚至领先国际技术水平。中国科学院半导体研究所是中国国务院直属事业单位,是集半导体物理、材料、器件及其应用于一体的半导体科学技术的综合性研究机构,在国内具有很高的权威性,被称为“引领我国半导体科学技术发展的火车头”。“承禹新材此次顺利获得中科院半导体所的产品检测报告,既彰显出该公司在碲锌镉半导体材料制备技术方面具有雄厚的实力,也可以看出该公司未来巨大的发展潜力。”一位资深业内人士表示。碲锌镉,英文名称cadmium zinc telluride,简写为CZT。自然界中并不现存有该物质,它是人工用碲、锌及镉三种单质(包含其它微量添加物质)化合生长而成单晶体,是属于第三代前沿战略性的半导体材料,是当前国际国内制造室温中红外探测、X射线探测、γ射线探测、核辐射及高能射线等探测器最为先进、优异的材料。据悉,碲锌镉半导体材料在军事用途上,主要是大幅提升武备的红外探测性能及其成像清晰度,而当前国际上武备九成以上均是以红外探测方式搜寻和发现目标的。在民用领域,未来主要应用于核医疗、放射源检测、无破损检测、核辐射探测、探温探源检测及夜视等领域、行业的设备、仪器的制造。其核心作用与意义在于更新迭代前述行业的设备、仪器的工艺、功能及性能,提升产业结构,助力国内这些行业同代等差参与国际竞争。更主要的是,碲锌镉半导体材料及器件可以提高核医疗、核辐射剂量、安检等设备仪器(如CT机、X光机、安检仪器等)功能与性能,降低放射源剂量,广泛惠及民众的医疗水平及健康。正因该材料在军事及民用领域具有诸多革新、颠覆性的功能与性能,国际上少数几个能生产制造的先进国家都将其列为战略性、管制性的产品,对我国进行技术与产品的双封锁。“而位于安徽省蚌埠市的承禹新材生产的综合质量参数优良、高良率、大尺寸的碲锌镉单晶棒及其晶片(包括全单晶圆片,这是属于首创性的高难度技术工艺,必将改变未来相关产业工艺),必将有力打破这种掣肘,实现国内供给,助推国内诸多相关行业设备、产品的更新升级,其意义重大、前景广阔,是国人创新与研发能力的一个有力例证。”半导体领域一权威人士说道。业内人士表示,碲锌镉单晶材料及晶片是制造室温X射线、γ射线、核辐射等探测器优异、先进的半导体材料,具有噪声低、暗电流低、热稳定性好、电阻率高、探测射线能量分辨率较高、带隙宽且可调、灵敏度高、计数率高、能量响应率高等诸多突出优点。其中,民用领域主要应用于核医疗、放射性安检、夜视、红外探测、核辐射探测、灾难搜救、探温探源、空间天文研究等设备、仪器上,军用领域可应用于导弹、卫星、战机、雷达、舰船、坦克、步兵战车、单兵作战等各类武器装备红外探测器及成像的材料。比如,在目前使用的CT机、X光机等医学检查中,以闪烁体探测器为核心部件的传统医疗成像设备,相比碲锌镉单晶材料做衬底的核医疗设备,在成像清晰度、扫描层隔精度、放射元素辐射量、成像时间等性能指标上差距甚大。而在应用碲锌镉单晶材料制造的X光机、CT机等各类核医疗探测、成像设备的核心部件中,不仅可实现从间接成像转向直接成像,而且扫描层隔更精微,成像更清晰,放射性元素剂量可以降低到原来闪烁体探测器剂量的三分之一,检测时间可以缩短为原来四、五分之一左右,同时还可以延展医疗检测的群体和适应症范围。据了解,2021年,蚌埠市水利局领导及蚌埠水利建设投资有限公司高层在对该项目经过多轮科学、严谨的求证、考察之后,果断决策、高效执行,最终力促碲锌镉单晶半导体材料项目花落珠城蚌埠。2021年8月,蚌埠水利建设投资有限公司与合肥达识新材料技术开发有限公司共同合作投资成立安徽承禹半导体新材料科技有限公司。该公司现已成为国内首批进行纯企业化、大规模化量产碲锌镉半导体材料的领跑者。“蚌埠水利建设投资有限公司是国有政策性投资公司,具有政策及资金方面的资源优势。合肥达识则拥有国内领先的技术工艺以及先进的经营管理水平和优秀的市场运营能力。双方真诚携手,相得益彰,优势互补,前景可期。”蚌埠水利建设投资有限公司冉凡荣董事长如是说。合肥达识新材料技术开发有限公司目前已拥有以碲锌镉单晶为代表的多项先进、成熟的第二代、第三代半导体和其它化合材料及芯片的生产制造技术与工艺。公司研发的化合材料包括碲锌镉、碳化硅、透明高阻薄膜、锑化镓、氮化镓、氟化钡、氟化钙、砷化镓、宝石级金刚石等。公司掌握的碳化硅和透明高阻薄膜技术工艺等则属于升级类别,不仅在产品性能质量、参数指标等方面显著领先,而且生产成本也成倍降低。
  • 3i流式新品|棱镜泰克CytoFLUX三激光流式细胞仪
    新品快讯!CytoFLUX三激光流式细胞仪棱镜泰克的CytoFLUX流式细胞仪结合了高精度的细胞分析能力与卓越的用户体验,具有稳定、可靠、易用、灵活、高分辨率等特点,能够满足现代科研与临床实验的严苛要求。此前在2023年11月份,棱镜泰克Sperm-Cyto流式精子分析仪作为全国首台套,获得四川省食品药品监督管理局批准的二类医疗器械注册证(注册证编号:川械注准20232220389)成为全国第一台以流式细胞术为原理专用于“男科”实验室精子检测仪器。(点击查看)日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct关于棱镜泰克成都棱镜泰克生物科技有限公司(简称“棱镜泰克”),是一家专注于体外诊断技术研发和临床应用的高新技术企业。公司坐落于成都经开孵化园拥有集研发、生产、销售及服务为一体的综合技术平台。由多名行业专家和中科院博士团队领衔,是一支集高端精密仪器及诊断试剂的多元化研发团队。将打造流式细胞平台上游核心原料、流式细胞仪、配套自动化处理及分析设备的完整产业链条。目前,棱镜泰克已成功转化一系列临床检测产品,涵盖了血液检测、生殖检测、药物筛选等多个专业领域。同时,公司锐意创新,砥砺前行,承接多项国家级重大设备专项科研项目,致力于开发生命科学、精准医疗领域的创新型诊断技术,构建全新细胞分析诊断新生态,成为国内领先的体外诊断产品提供商。
  • 如何测定潜望式镜头中棱镜的反射率?
    1. 前言智能设备的功能日益多元化,如人脸识别、测距、AR功能等。其中,相机在追求高分辨的同时,还要求外形小巧、高倍率变焦。传统相机镜头通过与智能设备垂直放置,实现高倍变焦,但变焦倍率越高,所需焦距越长,需要占用一定的纵深空间安装镜头,造成镜头部分较厚。图1 传统镜头示意图现在大多数手机制造商通过搭载潜望镜式镜头,实现了相机的小巧与高倍率变焦。潜望镜式镜头平行于智能设备安装,并通过棱镜改变光路方向,将焦距所需要的厚度转化为与智能设备平行的长度,同时实现了超薄化与高倍率变焦。图2 潜望式镜头的示例因此,测定潜望式镜头中棱镜的反射率至关重要,但棱镜元件尺寸很小,准确测定其反射率需要专业的附件。日立紫外可见近红外分光光度计UH4150可以选配微小棱镜测定附件,并通过专业定制支架测定潜望镜式镜头中的棱镜。2. 应用数据附件:微小棱镜附件,标配两种样品支架,适用于5~6mm立方体和7~20mm立方体;偏振附件图3 微小棱镜附件本次实验使用定制支架测定两种尺寸为5mm的直角棱镜。直角棱镜巧用临界角,可以使光路偏转90度。测定时,采用偏振附件求出S偏振和P偏振的反射率,分别计算出S、P偏振光的平均值。图4 两种棱镜的反射光谱测定结果表明即使是微小棱镜,也可得到低噪音的光谱,从而有效评价样品的光学特性。3. 总结棱镜是常用的光学元件,日立UH4150凭借优异的平行光束性能,通过安装精密的微小棱镜附件,可为小尺寸棱镜的光学评价提供准确的解决方案。
  • 大面阵窄带F-P干涉仪实现长波红外光谱传感
    西澳大利亚大学研究人员利用基于MEMS的固定腔法布里-珀罗(F-P)干涉仪实现了在长波红外(LWIR)波段的光学遥控成像和传感,并完成了该光谱系统的轻型化和便携式。F-P干涉仪基于锗 (Ge) 氟化钡 (BaF2) 薄膜分布式布拉格反射器。研究人员之所以选择BaF2,是因为它在LWIR波长范围内表现出低折射率并可提供高折射率对比度,有利于提高器件的性能。该干涉仪具有与薄膜、表面微加工 MEMS兼容的架构。当与单点红外探测器或焦平面成像阵列结合使用时,可用于开发轻便的便携式光谱仪。据研究人员称,这是首次实现将低指数的BaF 2薄膜与的高指数Ge薄膜相结合来构建干涉仪。该团队使用三层Ge/BaF2/Ge光学薄膜结构构建了扁平、独立的分布式布拉格反射器。在10到20nm范围内,跨越数百微米的空间尺寸,独立结构实现了峰间平坦度。实验表明,所制备的F-P干涉仪线宽约为110nm,峰值透过率约为50%,满足可调谐、基于MEMS的LWIR光谱传感和成像这些需要窄线宽的光谱分辨应用的要求。研究人员对固定气腔滤光片进行了表征,并将测量的光学性能与建模结果和先前研究的结果进行了比较。在考虑到制造缺陷对分布式布拉格反射器的影响后,他们发现F-P干涉仪的测量光学特性与模拟的光学响应非常吻合。Mariusz Martyniuk教授表示:“这些微型化的片上、轻型和小尺寸设备被视为未来用于简单和低成本的微型光谱远程系统的解决方案,而面向热红外发射波段,轻量化、小尺寸和低功率等需求均至关重要。”该研究以“Large-area narrowband Fabry–Pérot interferometers for long-wavelength infrared spectral sensing”为题发表于 Journal of Optical Microsystems 。
  • RISE显微镜获得2015年棱镜奖(Prism Award)
    棱镜奖(Prism Award)是光子学领域中最著名的奖项,由国际光学工程学会(SPIE)和美国Photonics Media共同举办。RISE显微镜从130多个申请者中脱颖而出,获得棱镜奖计量类冠军。这是RISE显微镜在获得“2014年度分析科学家创新奖”后,获得的又一个重量级的奖项。 RISE显微镜是一款新型的联用技术,结合了拉曼共聚焦和扫描电子显微镜在同一系统中。这种独特的组合方式可以最全面的进行样品表征。扫描电子显微镜可以在毫米到纳米范围对样品表面进行观察;共聚焦拉曼成像是建立在光谱方法上,对样品的化学成分进行检测。在这个系统中,可以生成二维和三维的图像,深度剖析样品分子化合物的分布。RISE显微镜首次通过拉曼光谱和扫描电子显微镜的联用,将采集自同一区域的超微结构和化学信息联系起来。RISE显微镜拥有独立的扫描电子显微镜的所有功能,并具备拉曼光谱分析的分析特点。 “RISE显微镜是又一个突出的案例,WITec 公司具有巨大的创新实力。我们很荣幸在2011 年TrueSurface 显微镜技术获奖之后,再次得到一个棱镜奖。” WITec 研发总监,Dr. Olaf Hollricher 在会上感言。 “RISE显微镜的成功,是对我们研发团队的明确证明,同时也体现了与著名研究机构及有创新型公司合作的能力。创新,是TESCAN ORSAY控股公司成为优秀企业的重要的驱动力。” TESCAN ORSAY控股公司的 CEO,Jaroslav Klíma 先生在会上感言。
  • ‘上海仪迈’国内首创光电瞄准的数字显示V棱镜
    受“仪器信息网”的邀请,上海仪迈于《仪器快讯》杂志的2011年第4期 “技术与市场”专栏成功发表一篇题为《国内折光仪的研制现状及发展趋势》的技术前瞻性文章,同时推出了高性价比的台式折光仪系列和手持式折光仪系列,奠定了上海仪迈在国产折光仪领域的领导地位。为了“将折光进行到底”,上海仪迈又进入到折光仪领域最高精度的V棱镜的研发中,可喜的是,上海仪迈终于在国内首创光电瞄准的数字显示V棱镜。在此期间,公司的研发专家进行了V棱镜多项核心技术的大胆革新,取得了技术的全面突破,真正做到了“精益求精”的科学精神和科研态度。我们衷心期待新一代的光电瞄准的,数字显示的V棱镜早日面市。
  • 中科院光电所在旋转双棱镜光束控制技术研究中取得进展
    p  旋转双棱镜(Risley棱镜)可实现光束的大角度、精确偏转控制,具有结构紧凑、响应快、环境适应性好的特点,其难点在于同时达到高精度和大的动态范围。国际上很多研究机构对其进行研究。NASA在下一代卫星激光测距系统(Next Generation Satellite Laser Ranging,NGSLR)中,利用旋转双棱镜作为超前瞄准装置,实现了高精度的超前瞄准角,在几十角秒的偏转范围内实现1.5″的指向精度 鲍尔航天技术公司在无人机等小型航空器上的红外侦查与瞄准设备中采用旋转双棱镜,实现了偏转角度70° 、精度优于200″、偏转角度动态范围34dB。/pp  中国科学院光电技术研究所光束控制重点实验室任戈、陈科研究团队采用强泛化能力物理模型辨识技术和矢量光学迭代优化技术,从理论上解决了旋转双棱镜光束偏转的强耦合、非线性和多解问题,并解决了工程应用中加工、安装和测量误差的影响,在旋转双棱镜的偏转精度和动态范围等方面得到突破,实现了大角度、高精度的光束偏转技术指标:3° 偏转角范围内光束偏转精度优于1″,动态范围大于43dB,优于目前公开文献中的最高水平。/pp  相关研究成果发表在Applied Optics上,并已申请/授权国家发明专利多项,该技术在空间激光通信、目标跟踪等方面具有广泛的应用前景。研究工作获得了中科院重点实验室基金、西部之光等的支持。/pp style="text-align: center "img width="300" height="167" title="001.png" style="width: 300px height: 167px " src="http://img1.17img.cn/17img/images/201712/insimg/60cf6bda-c2a2-41ac-98ad-cbe811ef1cd6.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong示意图/strong/pp /p
  • 2020棱镜奖揭晓 两款拉曼光谱仪上榜
    p  美国旧金山当地时间2月5日(北京时间2月6日),美国西部光电展期间,由国际光学工程协会(SPIE)与Photonics媒体联合颁发的2020年棱镜光子学创新奖(Prism Award,棱镜奖)获奖名单盛大揭晓。/pp  “棱镜奖”设立于2008年,被誉为“光电行业的奥斯卡”,旨在表彰光学、光子学与成像科学领域中具有创新突破,并通过光学技术解决现实问题、改善生活的新发明与新产品。/pp  本次获奖产品涉及通讯、能源、医疗、生命科学、制造、质量控制、安全与保卫、运输、视觉技术等9个类别,其中,质量控制、安全与保卫两大类别分别都是a href="https://www.instrument.com.cn/zc/34.html" target="_blank"strong拉曼光谱仪/strong/a上榜。/ppspan style="color: rgb(255, 0, 0) "strong  质量控制类/strong/span/pp style="text-align: center "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/56b7f694-1ba5-4a99-96b6-f0c8f48f2738.jpg" title="Smart MEMs Handheld Raman XI² .jpeg" alt="Smart MEMs Handheld Raman XI² .jpeg"//pp style="text-align: center "strongCloudMinds/strong/pp style="text-align: center "strong智能MEMs手持式拉曼XI² /strong/pp  特别值得一提的是,a href="https://www.instrument.com.cn/news/20190219/480292.shtml" target="_blank"CloudMinds的云端AI手持拉曼光谱仪曾获得2019棱镜奖(探测器与传感器类)/a,今年CloudMinds智能MEMs手持式拉曼XI² 再次获得棱镜奖(质量控制类)。/ppspan style="color: rgb(255, 0, 0) "strong  安全与保卫类/strong/span/ppspan style="color: rgb(255, 0, 0) "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/946fb6c5-ee0b-4a53-ba68-10b0da4fc1f8.jpg" title="Pendar X10.jpg" alt="Pendar X10.jpg"//pp style="text-align: center "strongPendar Technologies/strong/pp style="text-align: center "strongPendar X10/strong/pp  Pendar X10是一款便携式手持式拉曼光谱仪,在最远距离为3英尺的情况下,可以快速识别包括高荧光、深色和敏感材料在内的有害化学物质。/pp  其他获奖名单如下:/pp strong 通讯类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d05e7339-07f3-460c-81fc-f19e66d05a58.jpg" title="250x250_Innolume_Prism.jpg" alt="250x250_Innolume_Prism.jpg"//pp style="text-align: center "strongInnolume/strong/pp style="text-align: center "strongCW Datacom激光/strong/pp  strong能源类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/6ed2ec37-c6f5-40c1-8ecf-02dd79ddcd84.jpg" title="250x250_Prisma_Prism.jpg" alt="250x250_Prisma_Prism.jpg"//pp style="text-align: center "strongPrisma Photonics/strong/pp style="text-align: center "strongPrismaSense/strong/pp  strong医疗类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ec7e544e-6460-4c41-a761-daf4f93e8802.jpg" title="image-asset.jpeg" alt="image-asset.jpeg"//pp style="text-align: center "strongPhotoniCare/strong/pp style="text-align: center "strongTOMi Scope/strong/pp  strong生命科学类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/e1ca253f-3dd0-449d-a517-195cd8e1dfce.jpg" title="TERA-Fab E Series.jpeg" alt="TERA-Fab E Series.jpeg"//pp style="text-align: center "strongTERA-print/strong/pp style="text-align: center "strongTERA-Fab E 系列/strong/pp  strong制造类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/ab07e4a3-c001-4eea-9c20-96e56cd20f08.jpg" title="Inspekto S70.jpg" alt="Inspekto S70.jpg"//pp style="text-align: center "strongInspekto/strong/pp style="text-align: center "strongInspekto S70/strong/pp strong 运输类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/01239d09-0bc6-4c23-b4a8-749af957b4f0.jpg" title="3D Semantic Camera.jpg" alt="3D Semantic Camera.jpg"//pp style="text-align: center "strongOutsight/strong/pp style="text-align: center "strong3D Semantic Camera/strong/pp  strong视觉技术类/strong/ppstrong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/f379524f-1510-4f0a-a151-7f4122b36439.jpg" title="Waveguides.jpg" alt="Waveguides.jpg"//pp style="text-align: center "strongWaveOptics/strong/pp style="text-align: center "strongWaveguides/strong/pp  strong相关新闻:/strong/pp  a href="https://www.instrument.com.cn/news/20190219/480292.shtml" target="_blank"strong2019棱镜奖名单公布 这台拉曼光谱仪上榜/strong/a/p
  • 2012棱镜光子学创新奖揭晓
    日前在美国旧金山举行的西部光电展上揭晓了2012年度棱镜光子学创新奖。该奖项由国际光学工程学会(SPIE)和Photonics Online网站共同赞助,评审委员会专家主要来自于产业界和学术界。  获奖成果包括以下九项:  ①用于转换激发拉曼差分光谱的体布拉格光栅(VBG)稳定双波长激光;  ②超高速飞秒光纤激光器;  ③T-Sight 5000(一种置于高速机车前方,用于探测和分析隧道、铁轨、桥梁电线杆等可能影响安全的障碍物的系统);  ④Laser Speckle Reducer(一种结构紧凑成本低廉的仪器,可降低激光照明中的散斑对比度);  ⑤Heliophor(一种荧光成像的新光源,可替代弧光灯和LED光源);  ⑥Mobile ELISA-based Pathogen Detection(一种手持的、低成本、即插即用、USB供电的生化危险检测系统);  ⑦3 μm DFB激光器;  ⑧True Surface Microscopy(一种可对粗糙或倾斜样品进行测量,同时保持聚焦成像优势的显微镜);  ⑨超窄线宽激光器;
  • 中国制造业企业首次丨摩方精密获全球光电行业最高奖荣誉Prism Awards(棱镜奖)
    北京时间3月3日,2021年全球光电科技领域最高奖“棱镜奖(Prism Award)”最终获奖名单颁布,重庆摩方精密科技有限公司的超高精密3D打印系统microArch S240荣获2021年度该世界级大奖。今年由于疫情原因,改为线上颁奖,本次评选有来自18个国家的149家企业进行角逐,所颁奖项分为生命科学、制造业、医疗器械、软件等十大类别,每个类别有且仅有一位获奖者。其中,摩方精密的超高精密3D打印系统“microArch S240”凭借过硬的技术,最终赢得“制造业”类别大奖。决赛中与重庆摩方精密竞争的,是两家著名美国工业上市企业nLight和IPG,这是中国企业第一次凭借本土原创精密制造技术的领先性,获得此奖项。棱镜奖是国际光学工程学会(SPIE)联合Photonics Media于2008年创立,是目前全球光电行业的最高奖项。该奖项由SPIE和Photonics Media共同赞助,杜绝商业运作,具有极高的科技权威性。棱镜奖是年度国际竞赛,旨在鼓励市场上最好的新型光学和光子学产品,以及在光学,光子学与成像科学领域中具有创新突破,并通过光学技术解决现存问题,改善现有技术,并提升生活质量的新发明与新产品,素有光学界的奥斯卡之称。决赛入围者和获胜者由国际专业评审团选出,评审团包括来自全球的技术专业人士,企业高管及金融专家。本次获奖的microArch S240,是摩方第二代系统,S240具备更大的打印体积(100mm×100mm×75mm),打印速度提升最高10倍以上,能够生产更大尺寸的零部件,或实现更大规模的小部件产量。同时,在打印材料方面,S240支持高粘度陶瓷(≤20000cps)和耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料,极大满足了工业领域制造对产品耐用的需求,也为科研领域开发新型功能性复合材料提供支持。部分打印样件图:(一)微流控芯片(二)火柴对比视角下的北京鸟巢体育馆(三)仿生微针结构重庆摩方精密科技有限公司成立于2016年,是目前全球唯一能够生产制造打印精度达2微米超高精密3D打印系统的企业,并实现全球产业化。在此领域,摩方在全球没有仿制对标他人,而是走在全球最前沿,是被追赶的对象。2018年6月至今,已为全球超过25个国家、500家以上的企业/院所提供了超高精密的3D打印设备、材料和打印服务。在工业领域,全球最大的眼科医疗器械厂商Alcon,全球最大的连接器厂商泰科TE,全球最大规模的医疗卫生企业Johnson & Johnson,以及Facebook,HRL,Apple,Merck, Intuitive Surgical,Stryker等世界尖端企业均已采购摩方的系统或服务。(美国强生公司Johnson & Johnson采用摩方设备现场照片)摩方超高精密3D打印系统及服务也出口至日本SDK等著名知名企业及院校,中国企业出口超高精密基础制造系统至日本客户,尚非常罕见,充分说明摩方在这一领域全球范围内的优势。在科研领域,我国众多知名大学,包括清华大学,北京大学,南京大学,北京航空航天大学,北京理工大学,上海交通大学,浙江大学,香港城市大学等均已采购摩方设备。国际范围内,包括日本东京大学,早稻田大学,德国德累斯顿工业大学,英国诺丁汉大学,新加坡南洋理工,阿联酋Khalifa等众多知名院校均也采购了摩方的系统。(英国诺丁汉大学采用摩方设备现场照片)
  • 2019棱镜奖名单公布 这台拉曼光谱仪上榜
    p  2019年2月6日,2019棱镜奖(Prism Award)获奖名单公布。棱镜奖颁奖典礼在每年的SPIE Photonics West期间举行。/pp  “棱镜奖”设立于2008年,被誉为“光电行业的奥斯卡”,旨在表彰光学、光子学与成像科学领域中具有创新突破,并通过光学技术解决现实问题、改善生活的新发明与新产品。/pp  本次获奖产品涉及10个类别,值得一提的是,CloudMinds的云端AI手持拉曼光谱仪榜上有名。/pp  1、探测器与传感器类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/ae62c9b8-bea1-4f87-9355-f4c122b3c97e.jpg" title="拉曼.png" alt="拉曼.png" width="300" height="302" border="0" vspace="0" style="width: 300px height: 302px "//pp style="text-align: center "  XI™ AI 拉曼光谱仪(CloudMinds)/pp style="text-align: center "据悉,这是世界上第一台云端AI手持拉曼光谱仪,785 nm激光。/pp  2、诊断与治疗类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/eaf06d1d-ae24-4a9a-8326-bff7f2f6f1ce.jpg" title="double-helix-spindle-photo.png" alt="double-helix-spindle-photo.png"//pp style="text-align: center "Double Helix (SPINDLE)/pp style="text-align: center "无与伦比的精确深度成像和跟踪,可以达单分子水平。/pp  3、成像与相机类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/363a4c61-04e7-490f-b43e-bd5795a79ed9.jpg" title="莱卡.png" alt="莱卡.png" width="300" height="302" border="0" vspace="0" style="width: 300px height: 302px "//pp style="text-align: center "BLK3D(Leica)/pp style="text-align: center "精确的立体摄影测量装置,适合放在手掌心里操作。/pp  4、工业激光器类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/56d226f4-6a64-4be9-ace3-d87a00fa95e7.jpg" title="Corona Lasers.png" alt="Corona Lasers.png" width="300" height="294" border="0" vspace="0" style="width: 300px height: 294px "//pp style="text-align: center "Corona光纤激光器 (nLIGHT)/pp style="text-align: center "具有可编程光束质量的光纤激光器,用于高性能的材料加工。/pp  5、光源类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/7cf23a1b-1f3a-4980-8ee6-d2ba0c4e58d7.jpg" title="2019-Prism-Award-for-Smart-Vision-Lights.jpg" alt="2019-Prism-Award-for-Smart-Vision-Lights.jpg" width="300" height="400" border="0" vspace="0" style="width: 300px height: 400px "//pp style="text-align: center "NanoDrive/pp style="text-align: center "(Smart Vision Lights)/pp  6、光学与光机械类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/80cd6062-a7e8-47ad-a40d-458d00930c7b.jpg" title="OMPlex_V2_Awards.jpg" alt="OMPlex_V2_Awards.jpg" width="300" height="150" border="0" vspace="0" style="width: 300px height: 150px "//pp style="text-align: center "OMPlex(Modular Photonics)/pp  7、科研激光器类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/9baad039-623e-4532-b87b-d0bacfcbd5f5.jpg" title="TOPTICA_TOPO_01.jpg" alt="TOPTICA_TOPO_01.jpg" width="300" height="210" border="0" vspace="0" style="width: 300px height: 210px "//pp style="text-align: center "DLC TOPO(TOPTICA Photonics)/pp  8、测试与测量类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/ea092d52-9129-49d4-9442-951bd4e7c674.jpg" title="4D-inspec-xl-DSC00847_web-1.jpg" alt="4D-inspec-xl-DSC00847_web-1.jpg" width="300" height="450" border="0" vspace="0" style="width: 300px height: 450px "//pp style="text-align: center "4D InSpec XL 表面缺陷测量仪/pp style="text-align: center "(4D Technology Nanometrics) /pp style="text-align: center "用于三维非接触表面缺陷测量的手持精密仪器。/pp  9、运输系统/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/7e507b7c-c619-4a96-a7b4-cb9e70e9275a.jpg" title="Blackmore Automotive Lidar.jpg" alt="Blackmore Automotive Lidar.jpg" width="300" height="232" border="0" vspace="0" style="width: 300px height: 232px "//pp style="text-align: center "汽车多普勒激光雷达系统(Blackmore)/pp  10、视觉技术类/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/83545e4b-8bb3-47a1-aa65-1b710fa5a194.jpg" title="RETISSA Display.jpeg" alt="RETISSA Display.jpeg" width="300" height="198" border="0" vspace="0" style="width: 300px height: 198px "//pp style="text-align: center "RETISSA Display(QD Laser)/p
  • JAI推出"Flex-Eye" 定义自己独有的Fusion系列多光谱棱镜相机
    p style="text-indent: 2em text-align: justify "JAI向广大机器视觉用户隆重推出Flex-Eye:一种创新的相机概念,使视觉系统工程师能够自定义基于JAI的Fusion系列2-CMOS或3-CMOS棱镜的多光谱相机中波长的起始范围。/pp style="text-indent: 2em text-align: justify "通过对Flex-Eye进行定制,可以和JAI现有的Fusion系列棱镜相机相结合,便客户能够参与设计多光谱相机。该相机可以查看特定的可见光和近红外光波段,切实地满足用户视觉应用要求。br/ img style="max-width:100% max-height:100% " src="https://www.jai.com/uploads/images/Partner-Section/Hi-Res-Images-and-Thumbnails/Flex-Eye-Launch-Image.jpg"//pp style="text-indent: 2em text-align: justify "这种新方法可以使视觉检测任务或其他多光谱成像应用程序更加高效,因为通过针对目标波段(面向特定应用程序设计)进行微调后的2-CMOS或3-CMOS棱镜相机,可以更精确地显示所需的成像信息,完美屏蔽不需要的波段。/pp style="text-indent: 2em text-align: justify "如果JAI的Fusion系列中现有标准型号的默认波段组合无法完全满足相机用户的特定需求,通过Flex-Eye的定制服务,便可以解决这一问题。/pp style="text-indent: 2em text-align: justify "由于Flex-Eye概念最初是应用于JAI的Fusion系列多光谱模型的,因此,客户可以配置具有2或3传感器棱镜配置的模型,目前其配置为Sony Pregius™ CMOS传感器中160万像素(IMX273)或320万像素(IMX252)两种。在确定传感器之后,再为相机中的每个传感器定义特定的波段位置和区间。/pp style="text-indent: 2em text-align: justify "根据用户的要求,用户所指定的波段可以都位于可见光谱(405-680nm)内,或者也可以放置在整个可见光和近红外光谱的多个位置上,最高可达1000nm。波段的宽度最短可以是25nm,以5nm的增量进行递增。br//pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/e5c016d8-84d5-4431-aee5-56abc4c1bf9e.jpg" title="1.png" alt="1.png"//pp style="text-align: center "span style="font-size: 14px "上图为定制一个3传感器相机的波长示例,其中指定了一个可见光波段(波段1)和两个NIR波段(波段2和波段3)。 每个波段最短可达25nm宽,以5nm的增量递增。/span/ph3 style="text-align: justify "Flex-Eye目标用户/h3p style="text-indent: 2em text-align: justify "Fusion系列Flex-Eye相机适用于几种不同应用场景下的用户,多光谱成像技术在这些市场目前已经得到了应用,但是新的波段组合可以带来新的功能效果。这些最常见的应用场景可细分为:/pul class=" list-paddingleft-2" style="list-style-type: square "lip style="text-align: justify "荧光引导手术,病理学或其他生命科学应用/p/lilip style="text-align: justify "水果,蔬菜,果仁等食品的分选/检查/p/lilip style="text-align: justify " 农业和植被分析或除草系统/p/lilip style="text-align: justify " 包装检查,尤其是塑料包装物的印刷/p/lilip style="text-align: justify "多层电子线路板检查/p/li/ulp style="text-indent: 2em text-align: justify "img style="max-width: 100% max-height: 100% float: right " src="https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/surgical.png"/例如,越来越多的外科手术系统正在利用注入到血管或周围组织中并由激光激发的荧光化合物来辅助进行。荧光显示通过覆盖在外科医生的可见彩色图像上的区域来对病变处进行突出显示,从而起到指导手术的作用。系统是设计成突出显示周围的恶性组织还是血管内血液流动,可能需要使用具有不同波长的不同荧光团进行激发和反射。设计者通过对特定的波段的选择,使其系统在性能上区别于常见的多光谱配置。/pp style="text-indent: 2em text-align: justify "img style="max-width: 100% max-height: 100% float: right " src="https://www.jai.com/uploads/images/Products/Flex-Eye-Concept/farming.png"/同样,现代科技农业中,通过对NDVI(归一化植被指数)或NDRE(归一化差异红边)公式建立起来的算法,来进行杂草驱除或作物健康分析的系统,需要农业机械提供可见光波段和NIR波段的数据组合。这需要农业机械能从幼苗中识别杂草,或者从作物中标记需要额外灌溉水或肥料的作物。目前在基于标准波段的标准算法,仍需要不断开发定制新的算法以提高特定作物和环境条件的性能,来适应多种多样的作物生产方面的需求。此时,这些现代农业科技公司,就向JAI寻求特定多光谱波段方面的支持,可以通过定制,以使这些系统更准确,有效地获得所需的结果。/pp style="text-align: justify text-indent: 2em "类似的概念也可以应用于当前许多其他使用多光谱成像的应用程序,包括食品检查,药品,包装,电子产品等。/ph3 style="text-align: justify "Fusion Flex-Eye的在线配置器/h3p style="text-indent: 2em text-align: justify "span style="text-indent: 2em "作为可定制的产品,产品的制作和销售过程与JAI的标准Fusion系列型号或其他相机是不同的。首先客户需要定义自己需要Fusion系列Flex-Eye相机的技术要求,并将其提交给JAI,以从技术角度来确认是否可以完成制作。/span /pp style="text-indent: 2em text-align: justify "于是JAI开发了一款strongFlex-Eye在线配置器/strong,可以让客户轻松定义自己的技术要求,它把自定义选择所需波段过程可视化了。通过鼠标逐步点选完成对传感器分辨率,个数,黑白彩色等参数进行选择。直观的GUI界面可以帮助用户在简单的频谱图上进行拉伸或收缩,来完成对波段范围的选择。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/f577a45e-37c1-467f-b8a6-0ddf9da4f98d.jpg" title="1.png" alt="1.png"//ph3 style="text-align: justify "有关Fusion Flex-Eye相机性能的更多信息/h3p style="text-indent: 2em text-align: justify "Fusion系列的Flex-Eye系统订制出的棱镜相机具有与JAI的Fusion系列的标准型号相同的高性能。配备三个320万像素传感器的相机在全分辨率下能高达107fps运行,而两个320万像素传感器的双通道棱镜相机能以123fps的速度运行。对于具有三个160万像素传感器的棱镜相机,全分辨率下的最大速率为212fps,而对于两个160万像素传感器,更是达到了226fps的速度。/pp style="text-align: justify text-indent: 2em "配备集成的自适应技术的10GBASE-T(10GigE)接口支持相机数据的大数据量要求,提供对NBASE-T(5Gbps和2.5Gbps)和传统1000BASE-T(1Gbps)的自动向下兼容低速以太网标准。除了8位输出之外,相机还可以提供10位和12位输出,并在多个传感器上既支持同步又支持非同步的操作模式。/p
  • 京仪科技孵化器成功举办2023“京仪杯”高端仪器装备行业赛
    2023“京仪杯”高端仪器装备行业赛11月3日,由中关村街道党工委、办事处、京仪集团主办,京仪科技孵化器承办的第六届中关村智聚创新创业大赛——2023“京仪杯”高端仪器装备行业赛成功举办,来自全国仪器仪表、节能环保、智慧城市、人工智能高端装备等细分领域的40个优质项目同台竞技,冲刺行业赛道12强。本次活动正式拉开了2023中关村智聚创新创业大赛五大领域赛道全面开赛的序幕。北京市科委中关村管委会二级调研员张若松,中关村街道办事处副主任白永浩,京仪集团党委副书记、总经理沈洪亮,招商银行北京分行普惠金融部总经理桑蔚应邀参会。大赛致辞白永浩指出本次大赛着力“聚才引智”、聚焦拓宽项目来源渠道,以优质创新创业项目的选拔效率和质量,全力推动了中关村重点产业链优化升级和集群发展,同时也对进一步做大做强大赛品牌提出了希冀。沈洪亮强调本次大赛面向中关村重点核心产业方向和京仪集团高端仪器装备领域,为京仪集团和各创业项目提供了一个价值发现、产业对接的重要平台,实现了双方产业方向、技术需求与研发成果的精准对接,发挥了行业专家和京仪科技孵化器的整合链路作用,为进一步完善集团产业技术创新链做出的有益探索与尝试。京仪科技孵化器总经理齐子杨对京仪科技孵化器仪器仪表和高端装备孵化平台建设情况进行汇报。赛事纷呈京仪科技孵化器作为中关村地区创业服务协会会长单位,勇担“高端仪器装备”行业赛事任务,以“众聚仪器仪表英才、培育创新引领未来”为主题,承办2023“京仪杯”高端仪器装备行业赛。在项目征集、初赛评选、复赛晋级等赛事组织中率先垂范,联合仪器信息网,在全国范围发现筛选、挖掘一批具备自主创新能力的仪器领域优质创新项目,率先定向征集了100个优质项目。经过初赛项目评审,40个项目脱颖而出晋级复赛。清华大学精密仪器系副主任谈宜东,机械工业仪器仪表综合技术经济研究所首席专家宋彦彦,京仪集团副总经理马亮,战略投资部部长王莉、科技创新部副部长齐晓庆,怀柔硬科技总经理佘凌霄,京仪智能科技公司副总经理李源,京仪研究总院院长李绍,京仪科技孵化器党总支书记、董事长杨晓霞等多名仪器行业资深人士和专注于仪器仪表创业孵化的服务机构代表齐聚路演现场,关注仪器仪表“国产替代”及“卡脖子”技术应用等领域项目。根据项目细分领域,活动分为科学仪器组和仪表装备组两个会场,分别邀请所属领域知名行业专家组成评审小组现场打分。评分规则按照成长/初创分型进行了权重设计,保证了项目评审的公平公正。参赛代表们以线上、线下相结合的方式,围绕项目背景、技术创新、产品转化、项目支撑等多个维度展开讲解。科学仪器组项目创新突破,一个个解决“卡脖子”的新技术与仪表装备组一个个高度贴近北控、京仪产业的项目,得到现场评委与嘉宾的热烈讨论和高度关注。在互动环节,与会嘉宾纷纷提问,现场气氛高涨,高质量的创新项目与精彩解说引来阵阵掌声!京仪科技孵化器致力于成为全国仪器仪表和传感器专业型孵化器的领跑者,多年来努力发挥链路作用,突出产业协同,打造全国仪器仪表和传感器领域专业孵化平台,坚持整合业内资源、谋求协同发展,未来将持续优化创新创业生态环境,进一步提升“中关村智聚”、“京仪杯”品牌影响力,聚焦专业领域、激发创业活力,以创新培育赋能企业发展。众聚仪器仪表英才培育创新引领未来大赛介绍第六届中关村智聚创新创业大赛面向全球招募高层次人才,聚焦优质科创项目,助推关键核心技术攻关与创新资源要素融通互联。此次大赛设立“新一代信息技术、智能制造、高端仪器装备、人工智能和大数据、生命科学”五大领域赛道,总奖金达160.5万元。此外,大赛组委会还将联合创投机构,组合形成5000万元人民币的创投资金池,对大赛优秀项目进行组合投资,并提供专业的管理、咨询、商业企划等配套服务。“京仪杯”创业大赛是京仪科技孵化器自2018年启动的“聚力京仪 创想未来”的行业赛事,2023年“京仪杯”创业大赛融合第六届“中关村智聚”高端仪器装备赛道,旨在聚焦“卡脖子”技术瓶颈、推动仪器仪表的国产化替代、创新智慧城市领域的应用技术与北控集团、京仪集团产业应用的方向进行深度融合与发展。
  • Science:这款颠覆牛顿棱镜的光谱仪仅几十微米
    p  作为一种常规的分析仪器,光谱仪的应用涵盖了大多数科学和许多工业学科。随着应用需求的提升,仪器的小型化或者微型化一直吸引大家的眼球。但是,目前大部分光谱仪的工作原理仍和牛顿的实验相似,需要用到棱镜或光栅之类的分光元件。这种光谱仪体积庞大已无法满足日益发展的光谱应用技术的需求。而减小分光和探测元件的尺寸将导致光谱仪的光谱分辨率、灵敏度及动态检测范围显著下降,因此光谱仪的微型化是目前科技界面临的重大技术挑战。br//pp  日前,英国剑桥大学的科研团队与来自中国、英国以及芬兰的研究机构合作,成功克服了这个技术难题,开发出了尺寸仅几十微米的光谱仪,其大小仅为市面上最小光谱仪的千分之一,主要由一根比人类头发千分之一还细的半导体纳米线组成。该研究工作于9月6日发表在世界顶级杂志《Science》上。/pp  该工作由来自中国、英国和芬兰的多个研究组合作完成:上海理工大学的谷付星副教授,浙江大学的童利民教授、杨青教授和王攀教授,南京大学的王肖沐教授,上海交通大学的蔡伟伟教授,北京大学的戴伦教授,以及芬兰Aalto大学的孙志培教授。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 485px " src="https://img1.17img.cn/17img/images/201909/uepic/2fce7c98-2bff-4ad2-821b-4acc161b0ef2.jpg" title="微信图片_20190906102844.png" alt="微信图片_20190906102844.png" width="500" height="485" border="0" vspace="0"//pp  科研人员用一种带隙渐变的特殊纳米线替代了传统光谱仪中的分光和探测元件,采用和制作电脑芯片类似的工艺在这种纳米线上加工出了光探测器阵列,巧妙地利用各个探测器对不同颜色光具有不同响应的特性,通过逆问题的求解,从响应函数方程组中重构出所需要测量的光谱信息。/pp  据介绍,该微型光谱仪与广泛使用的手机摄像系统具有良好的兼容性,可设计成紧凑式光谱仪模块使手机具备光谱探测能力,把强大的光谱分析技术从实验室搬到手掌上,方便在生活中测量食物、皮肤的光谱信息,从而判断食品安全以及身体健康程度,使得光谱检测技术有望走进大众日常生活中。/pp  由于尺寸极,该微型光谱仪还可以对单个细胞进行扫描光谱成像。不同与以往的细胞成像技术,该光谱成像可以让图像中的每个像素包含丰富的光谱信息,从而可以分析细胞每个部分的化学变化。通过后续的开发这种微型光谱仪将有望可以通过注射植入到人体,用于实时监测人体健康状况,为癌症等疾病检测提供一种新的方法。/pp  据悉,剑桥的研究团队已经在申请这个微型光谱仪的专利。他们希望在这种光谱仪的基础上开发出一系列覆盖紫外到红外的微型光谱仪,用大概五年左右的时间使微光谱仪广泛应用到科研、生产以及生活中。/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  第一作者:杨宗银博士,Tom Albrow-Owen;通讯作者:Tawfique Hasan/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  文章链接:https://science.sciencemag.org/content/365/6457/1017/span/p
  • 飞纳电镜落户华北科技学院
    华北科技学院金相实验室近期采购的飞纳电镜能谱一体机 Phenom ProX 顺利通过安装验收。华北科技学院金相实验室面向机械类和近机械类专业学生开放,开放性实验项目主要有金相试样的制备、金相显微组织的识别等。主要研究、分析金属材料内部组织结构、检验原始材料组织和大致含碳量、测量表面镀络层和渗碳层及其它表面渗层的厚度,目的是加强学生的动手能力和鉴别能力,实现理论和实践相结合,使学生走上工作岗位后具有初步金相分析研究能力。飞纳电镜用户——华北科技学院金相实验室观察各种合金材料中夹杂物相及其拉伸断裂断口形态,飞纳电镜能谱一体机 Phenom ProX 配备的背散射电子和二次电子探头可满足该用户所有待观测样品的测试需求。适用于科研领域、制造领域,可进行非金属夹杂物、低倍组织、晶粒度、断口检验、镀层厚度、硬化层深度、脱碳层、灰口铸铁金相、球墨铸铁金相、PCB 金相切片分析、焊接件宏观腐蚀观察等工作。飞纳电镜操作简易,非常适合没有扫描电镜操作经验的用户。自动马达样品台配合光学导航,仅需 15s 的抽真空时间,可以方便快速地检测样品。能谱 EDS 特有的反卷积拟合功能使得定性和定量更加准确可信。飞纳电镜 Phenom ProX 一定能够充分发挥公共研发平台的作用,促进和提高相关技术创新,更好地为周边高校及科研院所提供服务。
  • 3i流式动态|全国首台流式精子分析仪棱镜生物Sperm-Cyto上市
    棱镜泰克生物Sperm-Cyto流式精子分析仪作为全国首台套,2023年11月获得四川省食品药品监督管理局批准的二类医疗器械注册证(注册证编号:川械注准20232220389),并成为全国第一台以流式细胞术为原理专用于“男科”实验室精子检测仪器,实现对精子功能的全面检测,弥补传统精液常规无法检测的男性不育指标,解决传统精液检测方法偏形态、无法评估精子功能的痛点。更多的精子检测产品即将同步上市,让我们的目标客户有更多期待。流式精子分析仪区别于传统检验科流式平台:1.使用独有的CLS液流控制技术,有效避免了精子样本液流堵管以及检测试剂染料残留的传统流式检测顽疾; 2. 全面支持精子功能检测,提供满足临床及科研对于精子DNA完整性、诱发顶体反应、顶体完整性、精子活性氧、精子线粒体、精子凋亡等的各项功能的检测,不断提升对精子评价的广度和深度;3. 采用深度学习算法,软件整合了精子DNA完整性、诱发顶体反应、顶体完整性、精子活性氧等自动分析功能,实时计算检测结果并且显示,实时预览报告,支持一键式分析、审核及报告打印或LIS系统双向通讯。流式精子分析仪检测方法学优势流式精子分析仪(SCSA法)检测快速,检测速度每分钟高达50000个精子以上,更具有临床统计学意义。软件自动分析,结果无主观偏倚,可重复性强;显微镜(SCD法)人工镜检计数,每次检测200个精子,检测人员工作量大,且存在主观偏倚、重复性差;流式精子功能检测项目临床意义
  • 基因检测持续升温 业界传出“冷静相对”声音
    目前国内精准医学行业良莠不齐,确实有公司刻意炒作概念来进行融资,“当新兴事物出现时,出现质疑是正常的 一窝蜂地上,没有任何的思考与怀疑反而是危险的。”  12月4日晚间,天兴仪表披露贝瑞和康借壳上市重组草案,作价43亿元购买基因检测公司贝瑞和康100%股权。虽有上市前估值过高、借壳后大幅打折的情况,这一消息还是将近年来热得发烫的基因测序又一次被推上风口。  基因测序市场潜力巨大在今天已不是新鲜事。得益于如人类基因组测序等大规模生物数据库的建立、高通量组学的发展以及各种检测手段的兴起,近年来精准医疗技术不断得到提升。  据BBC Research数据显示,全球基因市场总量从2007年的794.1万美元增长至2013年的45亿美元,并预计2018年全球市场将达到117亿美元,复合年增长率为21.2%。另据Markets and markets预测,中国的基因测序产业2012~2017年间复合年均增长率将达到20%~25%。  精准医学因为出现在2015年奥巴马国情咨文中被世人所熟知,行业中近二三十年以来一直关注或使用的一些产品都符合精准医学的概念。从 80 年代的荧光定量,到一代测序、数字化 PCR,再到到二代测序,这些用于分子诊断或者基因分析的产品其实都属于精准医学的应用。  今年3月,国家卫生计生委发布《关于临床检验项目管理有关问题的通知》,为临床实验室自建项目(LDT)开启绿色通道。此后,《国民经济和社会发展第十三个五年规划纲要》全文,在第二十三章支持战略性新兴产业发展规划中,生物技术、精准医学赫然名列其中。到如今,精准医学重大专项成功立项,60多个科研项目相继落地。中国版的精准医学计划正在紧锣密鼓进行中。  不断升温的同时,精准医疗行业发展参差不齐的态势也让业界不断传出“冷静相待”的声音。  测序巨头赛默飞世尔科技中国区总裁江志成表示,在未来精准医学的国家竞争中以及其发展初期,建立精准医学的“生态系统”至关重要。在未来的工作部署中,精准医学的发展需要联合医院、政府、学界以及包括药厂和基因检测机构的相关方共同推进。  另一方面,由于目前患者数据的收集没有标准,样本库与样本库之间都是孤岛发展。各地涌现的生物样本库如何从孤岛联结为更有价值的公共样本数据库是接下来的挑战。  贝达药业副总裁万江认为,在国家的大形势下讨论精准医学产业,中国最大的优势是政府的组织力量比较强,而精准医学更需大的组织。“靠碎片化信息肯定解决不了,美国也有类似计划,未来要把一百万个人的基因测序和疾病状况、精神状况、生理状况、寿命等联系起来,将数据库开放给社会、科研机构,精准医学才有意义。”  泛生子基因首席科学家阎海则强调公众需要对精准医学给予耐心,受到广泛关注的精准医学正处于一个最好的时期。目前国内精准医学行业良莠不齐,确实有公司刻意炒作概念来进行融资,“当新兴事物出现时,出现质疑是正常的 一窝蜂地上,没有任何的思考与怀疑反而是危险的。”
  • 岛津积极参与2018华北五省电镜会
    2018年“第十次华北五省市电子显微学研讨会及2018年全国实验室协作服务交流会” 日前在烟台举办。本次会议由华北五省(北京、天津、河北、山西、内蒙古)电子显微镜学会主办,北京理化分析测试技术学会协办。此次会议旨在推动华北五省市显微分析技术的发展,促进显微分析工作者的学术交流,加强实验室资源共享与协作,提高实验室管理和应用水平。共有150余人出席本次会议。大会现场 山西电镜学会的梁伟介绍了利用电镜对镁合金的研究,内蒙电镜学会的白朴存介绍了对稀土镁合金金相结构的观察。中科院物理所李建奇和浙江大学洪建重点介绍了冷冻电镜的4D超高分辨率以及今后的发展规划。北京市理化分析测试中心的张经华以食品安全检测为例分享了事业单位实验室的科学管理经验。河北电镜学会的马洪骏重点关注了利用显微镜对周围神经疾病的病理研究。天津电镜学会陶金介绍了扫描电镜及EBL技术在二维材料研究中的应用。本次会议同时吸引了诸多厂商的赞助参与。岛津公司分析测试仪器市场部的陈强先生在会议上介绍了独特的调频模式原子力显微镜对分辨率的提高。岛津公司陈强先生在会议上介绍独特的调频模式原子力显微镜 本次会议既让与会者深入了解了各学术领域的热点研究,也让与会者了解到各种先进技术和应用特点,并加深了与会者间的沟通联系。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 赛默飞全氟化合物解决方案助力2021环境科学技术年会
    赛默飞全氟化合物解决方案助力2021环境科学技术年会张丽娜 郭藤10月20-21日10月20-21日,以 “开局 ‘十四五’,深入打好污染防治攻坚战” 为主题的中国环境科学学会2021年科学技术年会于天津盛大召开。此次大会共设置130多个学术主题,旨在推动科技资源整合和协同创新,促进产学研用深度合作,共同推动我国生态环境科技创新和环保产业发展,为深入打好污染防治攻坚战、促进经济社会绿色低碳转型发展贡献新的更大的力量。 中国环境科学学会 2021年科学技术年会此次大会荣幸邀请到生态环境部副部长赵英民、天津市副市长孙文魁出席致辞,汇聚了来自生态环境领域的1000多名院士、专家、学者、企业代表参会。 赛默飞 携全氟化合物全面解决方案亮相在土壤与地下水污染防治分会场,赛默飞应用主管郭藤分享报告“赛默飞液质联用应对水中全氟化合物痕量分析的挑战”,并与参会老师就相关问题展开深入探讨。深入探讨 全氟化合物(Perfluorinated Compounds, PFCs)是指直链或者支链中全部或部分氢原子被氟取代的有机化合物。全氟化合物中C-F键所具有的高键能使其拥有独特的化学、生物、热稳定性和优良的疏水/疏油表面活性等,因而被广泛应用于化工、金属电镀、皮革纺织品、纸张和包装、涂料、建筑产品和医疗保健产品等工业和消费品生产领域。 随着分析技术的进步,全氟化合物被发现广泛存在环境中,已有毒理研究表明全氟化合物会对实验动物造成肝脏毒性、发育与生殖毒性、遗传和免疫毒性以及致癌性,而一些流行病学调查也发现人体暴露于全氟化合物与部分疾病或癌症发生有着关联性。各国的研究表明膳食摄入是人体全氟化合物暴露的最主要途径,其中由食品接触材料所引入的全氟化合物污染是一个重要影响因素。因此,由食品接触材料所带来的全氟化合物暴露和安全危害问题正日益受到关注。 赛默飞方案赛默飞作为全球科学服务的领导者,对环境领域的研究和分析一直保持着持续关注和投入,并提供丰富的产品和解决方案。针对环境样品中有机污染物,尤其是以全氟化合物为代表的持久性污染物推出了一系列分析方案,并参与制定和验证了美国EPA多项分析方法。(点击查看大图)全氟化合物广泛存在于衣物、容器、护理品、防水材料等常见物品,手套、SPE装置、液相管路等实验室设备中也常有全氟的踪影,因此在全氟分析过程中容易导致样品污染、系统背景高等问题,针对此问题赛默飞可以提供无氟前处理装置设备以及专门用于全氟分析的液相色谱PFAS Kit和方案;Thermo Scientific™ Dionex™ AutoTrace™ 280自动固相萃取装置和EQuan MAX Plus全自动在线净化、大体积进样装置,相比传统SPE可以解放人力提高通量和效率,大体积直接进样显著提升方法灵敏度,并确保实验结果的可靠性和重复性。 不同环境样品中全氟化合物含量差异较大,赛默飞TSQ系列三重四极杆可以满足微量、痕量和亚ppt级别的分析需求,借助于TSQ Altis(Plus)极高的灵敏度,可以实现水样中全氟化合物的直接进样分析,灵敏度优于EPA 8327 五倍以上。全氟化合物的种类和数量多达几千种,但已知以及有标准物质的只占极少部分,新型和未知全氟化合物的分析具有更大的挑战和需求,赛默飞基于Orbitrap技术的高分辨质谱结合专业的小分子定性软件Compound Discoverer和mzCloud PFAS Library,可以帮助客户快速筛查、发现样品中已知和未知全氟污染物,并进行二级谱图的比对和鉴定,最大程度的解析未知成分。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 康宁连续流技术在氟化反应及含氟化学品合成中的应用线上分享会邀请函
    康宁连续流技术在氟化反应及含氟化学品合成中的应用线上分享会邀请函尊敬的客户您好:我们诚挚邀请您参加8月24日晚19:00-19:40举行的康宁连续流技术在氟化反应及含氟化学品合成中的应用线上分享会。含氟化学品的合成一般有直接氟化法和间接氟化(如氟交换)。使用氟气直接氟化属于强放热反应,放出大量的热可使反应物分子结构遭到破坏,在传统间歇釜中容易发生失控。连续流技术,由于微反应器具有超强换热效率,可以从源头提高本质安全水平,实现稳定连续化生产。 现阶段连续氟化反应、含氟化学品连续合成研究与工业化应用,已成为业内普遍关注的热点。 为了帮助行业客户及朋友能够深入了解连续流技术在含氟化学品研发和生产的整个流程的应用,特别推出此次分享会。8月24日晚7点伍博士与您相约线上!我们用心准备内容,本次分享会伍博士将和您讲解以下内容:连续流氟化工工艺研究进展使用连续流技术进行绿色氟化工艺开发的难点和解决方案光催化连续流氟化工艺应用含氟化学品工业化生产案例分享会议时间:8月24日晚上19:00-19:40报名方式:1.关注微信公众号“康宁反应器技术” 2.打开8月14日发布的文章《叮咚,请查收康AFR在七夕发给您的“氟”利邀约或通过本商铺联系方式咨询
  • 台式扫描电镜飞纳 Phenom Pro 落户华北理工大学
    飞纳台式扫描电镜 Phenom Pro 于 2015 年 12 月 25 日在华北理工大学成功验收。2015 年,飞纳电镜的制造商荷兰 Phenom World 推出第 4 代产品,分辨率达到 14 纳米,放大倍数 13 万倍。飞纳台式扫描电镜应科研需要诞生,其 15 秒抽真空的特点不同于传统扫描电镜需要 3 分钟时间抽真空,很大程度上提高了扫描电镜的使用效率。和其他台式扫描电镜相比较,飞纳电镜具有分辨率上的优势,成像效果好,因为其独特的 CeB6 灯丝,亮度是钨灯丝的 10 倍。和传统落地式钨灯丝扫描电镜相比较,飞纳电镜具有操作简单上的优势,操作界面简单易学,光学导航结合全自动马达样品台,点到哪里看到哪里;另外维护方便,无需频繁更换灯丝。CeB6 灯丝的寿命为 1500 小时,钨灯丝的寿命平均为 100 小时。华北理工大学用户的课题组主要研究陶瓷材料、耐火材料、水泥材料及高分子材料。这些材料的观察需要高分辨率的扫描电镜,但是课题组实验室空间有限,所以用户希望采购一台高分辨率的台式扫描电镜。用户认为飞纳台式扫描电镜可以满足他们对分辨率的要求,同时操作简便,课题组每位学生都能自己操作。下图为该课题组样品使用飞纳台式扫描电镜高分辨率专业版 Phenom Pro 拍摄的图片:图1:枝状材料 图2 :测量枝状材料枝型直径该课题组的老师们认真学习飞纳电镜的操作,可以熟练地操作飞纳台式扫描电镜。操作方面,他们认为比他们以前使用过的任何扫描电镜都更简单。同时 15 秒抽真空, 30 秒成像,效率非常高。找样也很方便,通过光学导航和低倍电子导航,能很快找到需要观察的位置。点击目标位置,通过全自动马达样品台移动,可以瞬间定位到需要观察的位置。最后,飞纳台式扫描电镜的售后工程师为用户颁发了培训合格证书。认真学习飞纳电镜操作顺利拿到培训合格证书注明:此新闻素材华北理工大学仅授权复纳科学仪器(上海)有限公司使用,如需转载,请注明出处。
  • 华北国家计量测试中心组织召开2022年华北大区计量工作会议
    12月28日,华北国家计量测试中心组织召开2022年华北大区计量工作视频会议。国家市场监督管理总局计量司一级巡视员张益群,华北国家计量测试中心主任、北京市市场监督管理局党组书记、局长高念东出席会议并讲话,北京市市场监督管理局党组成员、总工程师宋同飞主持会议,天津市市场监管委副主任赵金恒、河北省市场监管局副局长葛瑞江、内蒙古自治区市场监管局副局长吕金华,华北五省(区、市)市场监管局(委)计量处、计量院有关负责同志出席会议。会上,华北国家计量测试中心办公室负责同志汇报了2022年华北大区计量工作情况,并对下一步重点工作进行说明。华北五省(区、市)市场监管部门有关负责同志分别就贯彻落实《计量发展规划(2021—2035年)》、加强计量科研创新、提升产业计量测试能力、建设碳达峰碳中和计量体系、完善量值传递溯源体系、强化计量监管等方面的经验做法进行了交流。高念东回顾了华北国家计量测试中心成立30年来践行职责使命的光辉历程,他强调,华北国家计量测试中心要深刻认识把握大区计量工作面临的新形势、新任务、新要求,深入实施区域协调发展战略,紧紧围绕华北地区产业布局,突出发挥计量在加强创新链产业链协同中的支撑作用,突出发挥计量在碳达峰碳中和目标实施中的保障作用,突出发挥计量在推进公共服务共建共享中的基础作用。要更好发挥大区平台作用,加强区域产业计量测试体系建设,区域间联合开展计量科技攻关,加强计量人才互动交流,共同推动计量发展规划部署的各项工作落实,为计量事业发展和区域协调发展做出新的贡献。张益群充分肯定华北大区计量工作取得的成绩。他指出,华北国家计量测试中心协同华北五省(区、市)市场监管部门服务区域协调发展重大国家战略,提升计量科研能力,完善量值传递溯源体系建设,圆满完成了市场监管总局交办的各项任务,为华北地区的经济社会发展提供了强有力的计量支撑服务。针对如何进一步发挥好大区国家计量测试中心作用,张益群强调,要提高政治站位,全面学习贯彻党的二十大精神;要进一步明确大区工作方向,加强统筹协调,深入贯彻落实国务院《计量发展规划(2021—2035年)》;要强化协同,创造性地开展工作,促进区域协同发展,为建设社会主义现代化强国提供好计量支撑。华北国家计量测试中心于1992年由原国家技术监督局批复在京成立,负责建立华北地区最高计量标准,组织开展区域内量值传递、计量比对、计量管理、计量技术课题研究和有关测试活动,并负责牵头组织华北大区计量相关工作交流和培训。今年是华北国家计量测试中心成立30周年,三十年来,华北国家计量测试中心紧密结合华北地区经济社会发展需要,建立了国家计量基准1项,国家计量工作基准5项,华北大区计量标准169项,每年进行省级最高计量标准量传千余台件,为科技创新、产业发展、民生保障、市场秩序维护等提供了强有力的计量技术支撑。三十年来,华北国家计量测试中心紧密联系华北五省(区、市)相关部门和技术机构,搭建交流合作平台,特别是党的十八大以来,落实京津冀协同发展战略,联合制定了22项京津冀共建计量技术规范。华北五省(区、市)计量技术机构联合开展了《国产计量设备验证评价》《京津冀区域新能源与智能电网装备产业检测认证服务平台建设与服务模式研究》《京津冀区域VOCs减排责任分配与网络模拟优化研究》等计量科研攻关任务,为企业开展计量测试服务,为保障社会公平贸易、安全防护、医疗卫生、环境监测等提供了计量保障。
  • 日本突发!多地有机氟化物超标,大量居民血检异常
    据CCTV-4中文国际频道官方微博13日报道,日本媒体12日援引一项最新调查报道称,大阪府摄津市部分居民血液中有机氟化合物含量偏高,健康受到威胁,目前相关话题登上了微博热搜第一位。据报道,近期,日本关西地区多座城市的河流和地下水检测出全氟和多氟烷基物质超标,大阪府摄津市是其中之一。 今年9月以来,当地一个由医生和研究人员组成的市民团体组织居民参加血液检测。结果显示,87名受检居民中,31人血液中含有高浓度的全氟和多氟烷基物质。这一市民团体决定扩大检测范围,将对当地1000名居民做血检,并根据调查结果要求日本中央政府采取对策。据了解,全氟和多氟烷基物质难以降解,会在环境和人体中累积,因此被称为“永久性化学物”。专家指出,长期大量饮用受这类物质污染的水可能影响生殖健康和儿童生长发育,甚至引发乳腺癌、前列腺癌等疾病。日本多地居民血液中全氟和多氟烷基物质超标今年以来,日本多地曝出居民血液中全氟和多氟烷基物质超标,他们大多居住在驻日美军基地和日本自卫队基地附近区域。此前,一个名为“曝光多摩地区有机氟化合物污染之会”的市民团体组织当地居民参加血液检测。根据他们6月8日公布的检测结果,参加血液检测的650人中,有335人血液有机氟化合物超标,达到日本全国平均值的大约2.4倍。据日媒报道,嫌疑最大的污染源是位于东京西郊的美军横田基地。日本相关标准是每升水中不超过50纳克有机氟化合物。而据东京都自来水公司网站发布的消息,多摩地区的水质抽查结果显示,有至少两家净水设施净化过的自来水中有机氟化合物浓度都是相关标准值的2到3倍。参加血液检测的不少当地居民对自来水污染可能引发的健康问题感到担忧。多个美军基地周边测出高浓度有机氟化合物此前有英国记者报道称,位于多摩地区西部的驻日美军横田基地使用含有高浓度有机氟化物的泡沫灭火剂,多年来持续污染土壤。此外,神奈川县和冲绳县的驻日美军基地及周边地区也相继检测出高浓度有机氟化物。去年10月,冲绳驻日美军基地附近的387名居民进行了血液检查,结果也显示有机氟化物超标。不过,由于日方称没有权限进入驻日美军基地调查,受污染地区周边居民只能忍气吞声。中国新闻社综合自:@CCTV4、CCTV-7《正午国防军事》、CCTV-13《新闻直播间》
  • EZ氟化物分析仪在饮用水行业中的应用
    EZ氟化物分析仪在饮用水行业中的应用哈希公司01背景介绍EZ3507氟化物分析仪克尔湖区域水系统(KLRWS)位于北卡罗来纳州亨德森市,为大约5万名居民提供饮用水。克尔湖区域水处理厂设计水量 15 MGD(百万加仑/天),日平均产水量约 7 MGD。为促进公众健康,该饮用水厂需要在成品水中添加残余浓度为 0.7mg/L 的氟化物。利用在线和实验室测量氟化物,以确保两者结果一致。两种方法的测量结果误差要求在 0.1mg/L 以内。现场操作人员使用手动调节的蠕动泵来加入氟化物(氟硅酸)。该设施的未来计划是采用一种新的剂量机制,可以根据测量的氟化物浓度进行调整加料。该机构的监测方法是健全的,但目前测量技术的局限性给工作人员带来了挑战。主要有:01实验室的抓样检测不可靠,误差较大;02现有氟化物分析仪需要校准,维护频繁;03现有的在线分析仪不能多通道监测,需要经常更换取样点,容易造成操作中断。此外,处理厂的工作人员希望通过安装可靠的在线分析仪来提高他们自身的安全健康,避 免过量使用氟化物。02应用情况目前现场安装了一台标准加入法的EZ3507氟化物分析仪。客户选择这台分析仪的原因是EZ 氟化物分析仪能够提供准确的测量结果,稳定可靠的运行表现和电极电解液的自动补充等功能。这台分析仪的配置情况如下:01单通道分析仪,用于监测饮用水厂出厂水02氟化物测量范围是0.25-5mg/L,这是北美常见的氟化物范围034-20mA 模拟输出,方便与SCADA集成04安装点在控制室外的透明井上方,透明井是被测样品取水点客户按照Hach的要求和建议进行安装,成功的启动并运行这台氟化物分析仪。清晰可见的玻璃测量容易和氟化物电极可以让操作人员快速看到分析仪和电极是否正常工作,或者是否需要进行日常维护,补充电解液等。自安装以来,客户反映明显减少了对手工测试的依赖。手工监测可能产生不一致的结果,操作者之间的差异容易产生误差,这些都增添了对手工监测结果测量准确性的担忧。事实上,EZ3507氟化物分析仪与实验室比对结果十分准确,以致于工作人员认为EZ3507没有正常工作。然而,在对每种方法进行调查和验证之后,他们确定,由于采用了自动验证等测量步骤,EZ 分析仪更加准确、可靠和稳定。实际上,通过EZ氟化物分析仪,还帮助客户发现了实验室氟化物测量方法和电极的性能问题。03总结EZ3507 氟化物分析仪具有测量准确、稳定等特点,帮助克尔湖水处理厂实现实时监测成品饮用水添加氟化物浓度的目标。可以 24 小时接受氟化物浓度数据,同时维护量非常低。EZ3507 氟化物分析仪操作简单,通过准确的氟化物浓度监测,可以帮助企业节省氟硅酸等药剂的运行费用。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 【辉瑞案例】如何解决药物研发中的氟化?
    含有氟原子的有机体系被用于生命科学的应用范围不断扩大。许多具有商业意义的医药和农药产品的生物活性归功于其结构中的氟化基团。因为碳-氟在天然有机分子中很少见。开发高效、选择性高和经济可行的方法就显得非常重要。一般来说,合成含氟有机物的方法有两种,它们涉及碳-氟键形成,需要官能团利用适当的亲核或亲电氟化剂进行相互转化,或与适当的含氟化合物进行反应合成。当然,无论哪种方法用于合成特定的氟化有机分子,碳-氟键必须在合成过程的某个阶段形成,多年来,人们已开发了各种氟化剂来满足合成要求。即使这样,上氟往往比较麻烦,一般是先氯代,然后在使用KF进行取代,步骤长,废料多,尤其是固体废料难处理。在传统的间隙反应釜中直接通氟极容易产生安全事故,而且反应存在选择性问题。其次,直接氟化反应一般是气液反应,氟气的活性非常高,往往导致选择性非常差。辉瑞全球研究院的科学家报道了微通道反应器在直接氟代的连续流应用,而且进行了多步串联反应。使用微通道反应器可以解决釜式反应的安全问题,选择性和转化率都得到了令人满意的结果。辉瑞科学家旨在开发一种有效的、选择性高的连续流动方法来高效合成氟哌唑系统。在本文中,作者使用二酮与相应的氟哌唑酮的氟化反应,在与肼衍生物反应后,依次环合到适当的氟哌唑。该过程可在一个单一的、两步的气/液-液/液连续流动过程中完成,收率良好,安全性高。反应方程式: 该反应为两步反应,为分离状态下可以全部在微通道上实现。反应示意图如下:首先,作者考察了溶剂效应。在所考察的反应中,乙腈被用作氟化阶段的溶剂,因为该溶剂对二羰基体系的直接氟化反应非常有效。其次,作者选择了不同的联氨进行反应。根据联氨衍生物在乙腈、水或乙醇中的溶解度,将联氨溶于乙腈、水或乙醇中实现连续化流动反应。水和乙醇可与乙腈混溶,因此通过在反应器通道内有效地混合两个流体来实现环化过程。类似地,氟吡唑衍生物4b和4c分别由1a与氟和甲基肼3b和苯肼3c反应制备,这些结果见表1。作者研究了不同的底物,考察了溶剂效应,两步的最高收率达到83%。在戊烷-2,4-二酮(1a)反应建立气/液-液/液过程的条件下,由一系列相关的二酮起始原料1b-f在联氨3a的连续流动过程中,合成了其他几种氟哌唑体系4d-h,这些结果汇总在表2中。两步最好收率可达80%。结论:• 使用微通道反应器可以多步串联,严格控制氟气当量,直接得到最终产品;• 使用微通道反应器可以完全解决过程中存在的安全隐患,使得在传统釜式需要规避的路线,在微通道反应器中成为可能,显著降低了生产成本;• 康宁反应器的材质是碳化硅,耐氟性能非常好,不仅能耐受HF,更能直接耐受氟气。我们也尝试了多种氟气参与的氟代反应,选择性相对于釜式而言,都得到了很大的提升。
  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。水溶液中硼酸的氟化路径示意图该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 警惕!无形杀手PFAS,纳鸥科技率先推出17种全氟化合物检测整体解决方案
    PFAS危害人体健康全氟及多氟烷基物质(Perfluorinated alkyl substances, 简称PFAS),也被简称为全氟化合物(PFC),是含有至少一个完全氟化碳原子的全氟烷基和多氟烷基物质,包括全氟辛酸(PFOA)和全氟辛烷磺酸盐(PFOS)。作为一种新型的持久性污染物,PFAS对于人体的危害越来越令人担忧。 近些年来,越来越多的调查研究发现,在空气、沉积物、饮用水、海水和食品中检测出全氟类化合物。全氟化合物可通过饮食、饮水和呼吸等途径进入机体,当它们被生物体摄入后不会在脂肪组织中产生富集,而是与蛋白发生键合后存在于血液中,并在肝脏、肾脏、肌肉等组织中发生蓄积,同时呈现出明显的生物富集性。PFOA和PFOS还可造成新生儿的体重下降和体型变小,男性精子数量下降,PFOA还能导致内分泌功能紊乱,并存在致癌性,同时和甲状腺疾病也有一定关联。全氟类化合物具有生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物。PFAS检测难点和关键点:目前,全氟化合物的检测已成为全球关注的问题。各国每年需要花费巨额资金来治理全氟化合物所带来的污染。欧盟、美国、加拿大等国家也相继出台了环境中全氟化合物的检测标准。但全氟化合物的检测依旧面临非常大的挑战—— 各种途径带来的本底污染使得准确检测难上加难,可采取以下策略提高检测的准确度:采用低溶出样品瓶和低吸附滤膜采用全氟专用前处理小柱;采用高品质LC-MS级高纯溶剂;鬼峰捕集柱最大限度消除有机相中污染物带来的影响。纳鸥科技致力于让您的实验更简单、更高效。纳鸥科技集研发、生产、销售于一体,不断研发更好、更先进的产品,解决客户在检测中遇到的困难,竭力帮助检测工作者优化检测效果、提高检测效率,并积极倡导绿色化学:(1)呼吁减少塑料污染,降低由于包装物等带来的PFAS对生态环境的污染。(2)呼吁有关部门尽快将PFAS对地下水、食品、包装等污染开展长期监测,并制定相关标准;为助力PFAS的检测,纳鸥科技积极开展相应的检测方案,采用高效液相色谱-串联质谱技术结合Anavo PFC SPE小柱(食品中全氟化合物检测专用,AN60F020),方法对猪肉、鱼肉中17种全氟有机化合物的定量测定进行了开发,供各位老师参考!食品中17种全氟化合物的测定1、适用范围本方法适用于猪肉、鱼肉中17种全氟有机化合物的定量测定。 当试样量为2 g(精确至0.001 g)、定容体积为10.0 mL时,猪肉、鱼肉、全氟丁烷羧酸(PFBA)和全氟戊烷羧酸(PFPeA)的检出限为0.6 μg/kg、定量限为1.8 μg/kg;剩余15种全氟化合物的检出限为0.3μg/kg、定量限为1.0 μg/kg。 2、标准品配置17种全氟化合物:全氟丁烷羧酸、全氟戊烷羧酸、全氟己烷羧酸、全氟庚烷羧酸、全氟辛烷羧酸、全氟壬烷羧酸、全氟癸烷羧酸、全氟十一烷羧酸、全氟十二烷羧酸、全氟十三烷羧酸、全氟十四烷羧酸、全氟十六烷羧酸、全氟十八烷羧酸、全氟丁烷磺酸钾、全氟己烷磺酸钠、全氟辛烷磺酸钾、全氟癸烷磺酸钠。 2.1 混合标准中间液:用甲醇将17种混合标准溶液配制成浓度为200 ng/mL全氟化合物的混合标准中间液,4℃保存。(17种全氟化合物混合标准品:5000 ng/mL,货号:DRE-Q60009680) 2.2 同位素内标工作液:用甲醇将9种同位素混合内标溶液配制成浓度为200 ng/mL全氟化合物的内标工作液,4℃保存。(9种全氟化合物同位素混合内标:13C2-PFHxA、13C4-PFBA、13C4-PFOA、13C5-PFNA、13C2-PFDA、13C2-PFUdA、13C4-PFDoA、18O2-PFHxS 、13C4-PFOS (2000 ng/mL,货号:MPFAC-MXA) 2.3 混合标准工作溶液:用甲醇-水溶液(40:60)将混合标准中间液逐级稀释为浓度0.2 ng/mL、0.4 ng/mL、0.8 ng/mL、1.0 ng/mL、1.5 ng/mL、2.0 ng/mL混合标准系列溶液,标准曲线中全氟化合物的定量内标浓度为1.0 ng/mL。 3、试样制备与保存猪肉、鱼肉:取适量有代表性的可食部分试样,切成小块,组织捣碎机捣碎,均分成两份,作为试样和留样,分别装入洁净容器中,密封并标记,于-18℃避光保存。 3、提取准确称取样品2 g(精确至0.001 g)试样置于15 mL具塞离心管中,加入100 μL同位素内标使用液,准确加入2.0 mL超纯水,涡旋震荡3 min,8.0 mL乙腈,超声30min,10000 r/min常温离心10min,取上清液待净化。 4、净化吸取约3.0 mL上述上清液,过固相萃取柱Anavo PFC SPE(食品中全氟化合物检测专用,货号:AN60F020),弃去约1 mL流出液,过0.22 µm再生纤维素滤膜(低吸附,货号:AN40A025),供液相色谱-串联质谱仪测定。 5、液相色谱-串联质谱检测色谱柱:ES Industries色谱柱,Epic C18 100 x 2.1mm,1.8um(货号:522A91-EC18)流动相:A为甲醇,B为2 mmol/L甲酸铵溶液。。流速:0.3 mL/min。柱温:35 ℃。进样量:10 μL。梯度洗脱程序 时间(min)流动相A(%)流动相B(%)Initial40600.540608.0100010.0100010.14060 质谱条件a)离子源:电喷雾离子源(ESI源);b)检测方式:多反应监测(MRM);c)扫描方式:负离子模式扫描;d)毛细管电压:2000 V;e)脱溶剂气温度:500 ℃;f)脱溶剂流量:1000 L/Hr;g)锥孔反吹气流量:150 L/Hr。17种全氟化合物及内标总离子流图(1ppb)详细解决方案请咨询:400-860-5168转4892关于纳鸥科技北京纳鸥科技有限公司(简称:纳鸥科技),致力于为客户提供高品质实验室消耗品和常用实验室仪器,并可提供贴合客户需求的行业解决方案,让您的实验更简单、更高效。纳鸥科技集研发、生产、销售于一体,不断研发和引进更好、更先进的产品,解决客户在检测中遇到的困难,竭力帮助检测工作者优化检测效果、提高检测效率。
  • 北京生物医药创新孵化基地建设项目获专家组认可
    12月14日,国家“重大新药创制”科技重大专项实施管理办公室专家对课题进行结题前检查。“北京生物医药创新孵化基地建设”项目进展得到专家好评。 目前“孵化基地”中3家机构通过美国FDA的GLP审查 5家单位动物实验室通过国际AAALAC(国际实验动物评估和认可委员会)认证 “阿德福韦酯片”、“甲型H1N1流感疫苗”等一批品种获得或正在申报新药证书。专家组对“孵化基地”取得的成绩给予了肯定,将于1月中旬到京开展现场督导。  背景:  “北京生物医药创新孵化基地建设”项目于2009年5月正式立项,是北京对接国家重大专项首先启动的两个重大项目之一,获中央经费支持2884万。该项目由市科委主管,北京经济技术开发区管理委员会主体承担,大兴生物医药产业基地和中关村生命科学园共同参加,旨在攻克一批共性、核心技术,开发一批具有国际竞争力的创新药物,孵化一批科技型高成长企业,培育一批骨干企业,打造一批龙头企业,汇聚一批高素质人才,使园区医药产业保持稳定的发展态势,打造中国最具创新实力和产业规模的药谷。
  • “2017制备色谱及冻干技术华北区域研讨会”召开 各方人士齐聚博医康
    2017年7月18日,由北京博医康举办的“2017制备色谱及冻干技术华北区域研讨会”在北京博医康总部成功召开。来自华北地区制药、医疗,科研等领域的专家、学者及冻干技术应用客户齐聚一堂,就制备色谱及冻干技术等问题进行了深入交流和探讨。博医康总经理游方园先生在研讨会开始前致辞每年,博医康都会围绕冻干技术相关问题,在国内举办多场技术研讨会。将博医康在冻干技术领域新的研究成果,与来自各地的专家、学者和客户进行分享与交流,拉近与冻干应用客户之间距离的同时,也为冻干技术在国内的进一步普及与发展尽一份自己的微薄之力。博医康副总经理叶明徽先生现场讲解本次研讨会吸引了包括青龙高科、康宝利华、清源伟业、中科院生物物理研究所、创立科创、和龙野生动物开发中心、百普赛斯、康龙化成、恒瑞康达、健乃喜、北京卓越祥科等20多家企业及研究机构的专业人士前来参与。李笃信博士进行讲解围绕制备色谱及冻干技术等问题,博医康的李笃信博士与叶明徽先生,在研讨会现场为与会人士进行了详细讲解。李笃信博士是博医康制备液相色谱技术带头人,拥有丰富的制备色谱工艺研究经验,而叶明徽先生是博医康冻干工艺研发实验中心的负责人,拥有10年冻干工艺研究经验,曾经为多家研究院、药厂产品成功开发和和设计过冻干配方。与会人员参观博医康工厂研讨会期间,游方园和叶明徽先生还带领与会人士参观了北京博医康的生产工厂,并通过现场冻干机设备的操作应用等方面讲解,就冻干生产及研发过程中经常遇到的技术问题与大家进行了探讨,为大家解惑答疑的同时,也使得人们更进一步了解了博医康冻干设备的优秀品质。与会人员在博医康办公楼前合影留念
  • 2012年度拟支持北京市市级孵化器和大学科技园公布
    12月3日,北京市科委高新处公布了2012年度拟支持的北京市市级孵化器和大学科技园名单,一下是通知全文:  为贯彻落实《北京市关于进一步加强科技孵化体系建设的若干意见》(京科发〔2010〕721号),按照《关于组织申报2012年度北京市大学科技园及科技企业孵化器支持资金的通知》要求,经专家评审,现拟对北京中关村国际孵化器有限公司等40家北京市市级孵化器和大学科技园予以支持。  单位或个人对拟支持单位有异议的,请自本通知发布之日起10天内以书面形式提出。提出异议应以事实为依据,内容具体翔实,并提供相关证据材料。异议材料请签署联系人真实姓名及联系方式。  特此通知。  附件:2012年度拟支持北京市市级孵化器和大学科技园名单序号单位名称1北京中关村国际孵化器有限公司2北京高创天成国际企业孵化器有限公司3北京牡丹科技孵化器有限公司4北京均大高科科技孵化器有限公司5北京师大科技园科技发展有限责任公司 6北京化大科技园科技发展中心7北京望京科技孵化服务有限公司8北京赛欧科园科技孵化中心有限公司9北京奥宇科技企业孵化器有限责任公司 10中关村科技园区海淀园创业服务中心11北京交大科技孵化器有限公司12北京矿大能源安全科技有限公司13北京汉潮大成科技孵化器有限公司14北京人大文化科技园建设发展有限公司15北京中农大科技企业孵化器有限公司16北京毕升新技术开发中心(印刷学院)17北京中关村生命科学园生物医药科技孵化有限公司18北京启迪创业孵化器有限公司19北京瀚海博智科技孵化器有限公司20北京中传英才教育科技有限公司21北京康华伟业孵化器有限责任公司22北京华商置业有限公司23北京林业大学科技园24北京利玛自动化技术公司25北京信创宇轩科技孵化器有限公司26北京中关村京蒙高科企业孵化器有限责任公司27北京瀚海润泽科技孵化器有限公司28北京信息科技大学科技园29北京北农企业管理有限公司30北京北达燕园科技孵化器有限公司31北京华电天德科技园有限公司32北京首医大科技发展有限公司33北京北邮科技园有限公司34北京中海创意动漫游戏科技孵化器有限公司35北京首特科技孵化器有限责任公司 36北京扶星达科技发展中心37北京中石大科技园发展有限公司38北京博大经开置业有限公司39北京工大智源科技发展有限公司40北京北联科兴科技孵化器中心  二〇一二年十二月三日  (联 系 人:元文芳,联系电话:66153439)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制