当前位置: 仪器信息网 > 行业主题 > >

辐射探测仪

仪器信息网辐射探测仪专题为您提供2024年最新辐射探测仪价格报价、厂家品牌的相关信息, 包括辐射探测仪参数、型号等,不管是国产,还是进口品牌的辐射探测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辐射探测仪相关的耗材配件、试剂标物,还有辐射探测仪相关的最新资讯、资料,以及辐射探测仪相关的解决方案。

辐射探测仪相关的资讯

  • 日本用塑料瓶研制辐射探测仪
    日本研究人员利用回收饮料瓶的塑料制成能够测知辐射的传感器,可用于辐射探测仪,有望让成本下降90%。  京都大学助理教授中村秀人(音译)与帝人公司合作研究,设计出一种以PET材料制成的传感器,可用于制造小型辐射探测仪和较大型号的辐射值读数测量仪。  PET,即聚对苯二甲酸乙二醇酯,广泛用于塑料饮料瓶。研究人员利用饮料瓶制成一种塑料树脂,发现这种材料遭到辐射时会发出荧光,且强度好、柔韧、成本低,可用作辐射探测仪中的传感器。  当前,日本市场上传感器原材料大多从法国圣戈班公司进口,价格较贵。  帝人公司公关部估计,传感器售价大约1万日元(约合130美元),比市场现有产品便宜九成,最早会在下个月供应一些政府部门和企业。  帝人公司销售主管石井彻(音译)告诉路透社记者,“我们的目标是在9月底制成最终成品”、即辐射探测仪,9月、10月供政府部门和企业试用,随后逐渐供应公众。  日本东北部3月地震和海啸后,福岛第一核电站泄漏,不少民众争相购买辐射探测装置。
  • 设计核辐射探测仪 成都人赢百万大奖
    8月3日,首届天府宝岛工业设计大赛评选出的500多件优秀作品在四川科技馆展出,展出作品涉及电子信息产品类、时尚类、医疗科学类等等。在昨晚的颁奖典礼上,成都参赛者罗挽澜的“MT.S1手持探测仪”从1658项作品中脱颖而出,获得大赛“特别表彰奖”,奖金总额高达100万元。  手持探测仪“笑”到最后  在众多作品中,来自成都某设计公司的罗挽澜,以其“MT.S1手持探测仪”获得大赛“特别表彰奖”。昨晚在香格里拉大酒店举行的颁奖典礼上,罗挽澜获得了20万的直接奖励与80万的创业基金。“MT.S1手持探测仪”是一种专业的探测设备,从外观上看,它像一台小型摄像机,主要由机身、手柄、 LED屏幕组成。罗挽澜介绍,该仪器主要用于探测放射性物质的数量,如核辐射等。罗挽澜透露,所获得的奖金将用于探测仪投入生产的基金:“希望能早日把这项设计提供给需要它的单位。”  此外,99项参赛作品分别获得大赛一等奖、二等奖、三等奖与优秀奖。在9项获一等奖的作品中,1项来自韩国、4项来自中国台湾、2项来自四川,另2项来自国内其他省份。  设计大赛将每年举办一次  除优秀作品展示外,工业设计高峰论坛也是天府宝岛工业设计大赛最后一站的重头戏。除分享自身对工业设计的看法与理念之外,多位专家还对中国工业设计面临的问题提出了建议。  作为大赛的主办方之一,台湾工业总会秘书长蔡练生对大赛作了总结与评价:“这次大赛是两岸交流的新形式,两岸在工业设计方面各有各的优势,一起交流可以取长补短,共同进步。”他认为四川有很多优秀的工业设计者,这次大赛为设计者和生产者提供了交流的平台,取得了很好的效果,“但这不是终点,我们的大赛还将继续办下去。”蔡练生说。  四川工业信息联合会常务副会长刘志平透露,以后天府宝岛工业设计大赛将每年举办一次,明年的比赛将从年初开始启动。
  • 中国赴日救援队带核辐射探测仪 喝水吃饭自给
    中国国际救援队在检查器材  自身安全 探测仪遇辐射就响  据介绍,本次赴日本救援的中国国际救援队共有15名队员,来自中国地震局、某部工兵团和武警总医院。大部分队员都参加过汶川、玉树、海地、巴基斯坦等多次国内外地震救援,具有丰富的救援经验。“他们都是行业里的佼佼者,有搜救装备方面的专家,有专门培训救援队员的教官,有参加过多次救灾行动的医生,他们无论在技术上还是自身素质上都是拔尖的。”徐勇介绍说,救援队携带搜索、营救、医疗和后勤等近4吨装备。搜索装备包括物理的红外线搜索仪、声波搜索仪、电磁波生命探测仪和光学生命探测仪等 救援装备是常规的破拆减震和切割装备 医疗装备主要用于急救 后勤装备则包括睡袋、面包、饼干、矿泉水等。  “在应对核泄漏危险方面,中国国家救援队也做了一定预防方案,并带有核辐射探测仪器。”徐勇告诉记者,“这种仪器一碰到核辐射就会响,并且还会显示有多大的剂量,一旦达到一定程度的剂量,队员们就会采取相关防护手段。”  据了解,中国国际救援队成立10年来,先后成功开展了阿尔及利亚、伊朗、印尼、巴基斯坦、海地、汶川、玉树、舟曲等15次18批国内外救援行动,成功救出60名幸存者,医治4万余名伤病灾民,但“这10年来,只在汶川地震救援时,有一位队员从废墟中救人时遭受到轻微的骨折,此外并无其他伤亡情况。”白玉说,这是因为这些救援队员平时严格进行各种训练。
  • 150万!中国科学院沈阳自动化研究所核辐射探测仪采购项目
    项目编号:OITC-G220311017项目名称:中国科学院沈阳自动化研究所核辐射探测仪采购项目预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:包号项目名称数量简要用途是否允许采购进口产品交货期1核辐射探测仪2套最大工作水深6000m;主要用于海洋核事故中环境辐射情况的调查。否合同签订后4个月内到货合同履行期限:合同签署后4个月内到货本项目( 不接受 )联合体投标。
  • 上海技物所“大气辐射超光谱探测技术”取得关键技术突破
    近日,上海技术物理研究所科技部国家重点研发计划地球观测与导航专项“大气辐射超光谱探测技术”取得关键技术突破,光谱分辨率达到0.014cm-1,为当前国际最高水平。大气辐射超光谱探测仪技术可获得全球各地区从地面到对流层空间三维的气体分布数据图,实现全球三维空间臭氧、二氧化碳以及大气中痕量气体分布浓度、分布状态和混合状态的长期变化探测,这对我国后续开展对流层化学性质、对流层和生物圈相互作用、对流层和平流层相互交换及全球气候变化研究将具有十分重要的意义。基于此,“十三五”期间,科技部国家重点研发计划地球观测与导航专项部署了“大气辐射超光谱探测技术”项目。项目由上海技术物理研究所牵头,联合中科院空天信息研究院和中科院大气物理研究所共同研制,项目负责人为华建文研究员。大气辐射超光谱探测科学意义 国际上,红外傅里叶光谱遥感探测技术是星上探测大气化学成分主要手段,这类光谱仪对光谱分辨率要求极高(0.02cm-1左右),目前在轨应用的主要有美国TES、加拿大ACE、德国MIPAS 和日本TANSO-FTS。 为突破红外超高光谱探测技术,进一步掌握高精度大气探测国际话语权,团队基于傅里叶变换光谱探测技术,经过近5年半的不懈努力,成功实现了宽谱段、大幅宽、超高光谱分辨率红外光谱探测技术瓶颈的突破。尤其是近两个月,在项目进入最后集成和攻坚阶段,李利兵等团队骨干主动驻守园区开展研制攻关,“足不出户”驻扎实验室,克服疫情影响,按计划完成了样机整机集成光校和各项指标测试,研制出大气辐射超光谱探测仪。大气辐射超光谱探测仪样机(低温光学箱封箱前) 经专家测试和评议,大气辐射超光谱探测仪功能和性能指标均满足任务书要求。特别是,实现了0.014cm-1光谱分辨率,达到国际最高水平。该项技术的突破,将对推动我国空间痕量气体干涉式红外超光谱技术的发展具有重要意义。项目将于2022年5月开展综合绩效评价。大气辐射超光谱探测仪光谱分辨率
  • 国际组织研发出石墨烯红外探测器 可测极微小的热辐射
    由23个国家150多个研究团队组成的国际联盟 Graphene Flagship 运用纳米材料石墨烯研发出一款高精度的新型红外探测器。据团队介绍,这种新型探测仪可检测出纳瓦级的热辐射变化——相当于手轻轻摆动时释放出的能量的千分之一。  石墨烯的优点是在高性能红外成像和光谱学中的开放性可能性。来自剑桥大学(英国),恩伯顿有限公司(英国),光子科学学院(ICFO 西班牙),诺基亚和约阿尼纳大学(希腊)工作的Graphene Flagship的研究人员开发了一种基于石墨烯的,通过红外辐射检测,对于温度的微小变化的测量,具有极高精确性的热释电热辐射测量仪。  在《自然通讯》上发表的工作证明了基于石墨烯的非冷却热检测器的最高报告的温度敏感性,能够将温度变化分解为几十μ K。仅需要几纳米的IR辐射功率来在隔离器件中产生这样小的温度变化,比通过紧密靠近的人手递送到检测器的IR功率小大约1000倍。石墨烯红外探测器,可检测出极微小的热辐射变化  检测器的高灵敏度对于超过热成像的光谱应用是非常有用的。使用高性能的基于石墨烯的IR检测器,可以提供较少的入射辐射的强信号,可以隔离IR光谱的不同部分。这在安全应用中是至关重要的,其中不同的材料(例如爆炸物)可以通过它们的特征IR吸收或透射光谱来区分。  恩伯顿首席工程师和研究的联合负责人Alan Colli博士说:“使用更高灵敏度的检测器,可以限制大的热带,并且仍然使用在非常窄的光谱范围内的光子形成图像,并且做多光谱红外成像对于安全检查,有特定的签名,材料在窄带中发射或吸收,因此,需要一个在窄带中训练的检测器,这在寻找爆炸物,有害物质或任何分类。”  典型的IR光电探测器通过热电效应或作为测量由于加热引起的电阻变化的测辐射热计进行操作。基于石墨烯的热释电测辐射热计将这两种方法与石墨烯的优异电性能相结合,以获得最佳性能。石墨烯作为信号的内置放大器,消除了对外部晶体管的需要,意味着没有寄生电容的损失和显着低的噪声。  石墨烯的高电导率还提供与用于与检测器像素和记录装置接口的外部读出集成电路(ROIC)的方便的阻抗匹配。随着石墨烯质量的持续改进(例如,更高的迁移率),可以制造具有扩展的动态范围(器件将可靠地工作的温度范围)的稳健器件,同时保持相同的优异的温度响应性。  剑桥石墨烯中心主任Andrea Ferrari教授说,“这项工作是石墨烯在应用路线图上稳步前进的另一个例子,恩伯顿是一家新公司,专门生产石墨烯光子学和电子学红外光电探测器和热传感器,这项工作例证了基础科学技术如何可以导致迅速的商业化。”Andrea Ferrari是Graphene Flagship的科学技术官员,也是Graphene Flagship管理小组的主席。  该项目的合作者FrankKoppens教授是 ICFO的量子纳米光电子技术的领导者,并领导Graphene Flagship的光子和光电子工作包。“石墨烯最有前途的应用之一是宽带光电探测和成像,在任何其他现有技术的基础上,在一个材料系统中结合可见光和红外探测是不可能的,Graphene Flagship计划将进一步发展高光谱成像系统,开发石墨烯独特的方向,”他说。  DanielNeumaier博士(德国AMO)是Graphene Flagship电子和光子学集成部门的领导者,并没有直接参与这项工作。他说:“在过去几年里,红外探测器的市场规模急剧增加,这些设备正在越来越多的应用领域,特别是光谱安全检查变得越来越重要,这需要在室温下的高灵敏度。目前的工作是在满足石墨烯红外探测器的这些要求方面迈出的巨大一步。”相关工作全文发表在Nat. Commun.2017.(DOI: 10.1038/ncomms14311 )上。
  • 中国自主研发的超灵敏炸药探测仪产业化
    中科院相关院所与江苏省无锡市13日就超灵敏炸药探测仪技术转让一事签约,意味着由中科院承担的国家863计划项目、我国自主研发的超灵敏炸药探测仪正式开始产业化进程。  超灵敏炸药探测仪是我国完全拥有自主知识产权的一种高新技术产品,使用分子印迹荧光聚合物传感技术识别炸药。技术研发人、中科院上海微系统与信息技术研究所研究员程建功介绍说,重量仅为1.2公斤的超灵敏炸药探测仪采用荧光聚合物传感技术,比国内一般探测仪速度至少快10倍,发现炸药只需5至8秒,且不污染环境,对使用者无辐射无副作用。这一技术的发明,使我国成为除美国外第二个拥有该项技术的国家。  专家表示,该仪器能够模仿警犬,通过识别爆炸物挥发的气味嗅出隐藏的爆炸物或残留在被检测对象表面的炸药痕迹,灵敏度达到0.1ppt,也就是说探测器能检出10万亿个空气分子中存在的1个炸药分子。这甚至比训练有素的警犬还要敏感一个数量级。这一技术对于提高我国公共安全事业中安检防爆的灵敏度和准确率,有着重要意义。  签约仪式上,无锡市政府表示,将在半年内建成生产线,完成探测仪的工程化设计,实现规模化生产。
  • 赛默飞世尔空气站和辐射探测仪世博场馆安装就位
    赛默飞世尔营造美好城市环境,让生活更美好  2010年6月8日,中国上海 –2010年上海世博会已经在黄浦江畔的世博园区盛大开幕,共有来自全球的189个国家和57个国际组织参展。上海世博会的主题是“城市,让生活更美好”,并提出创建“绿色世博”、“低炭世博”。在本届世博会上,全球分析领域的领导者-赛默飞世尔科技配合环境、气象、安保等多个机构,为世博场馆及周边地区配置了多套环境监测和核防辐射监测安保设备,积极支持“绿色、低碳、生态、环保”世博会的召开。   赛默飞世尔空气站世博场馆安装就位 (1)  空气质量监测系统监测世博空气质量,让城市更美好  全力保障世博会环境空气质量是上海世博环保工作四大任务之一。为了顺利完成世博会馆周边及区域空气质量监测和研究任务,赛默飞世尔为上海市环境保护局和上海市气象局提供了数套空气质量监测系统。。这些大气监测仪器有效监测大气环境,服务于世博场馆及周边学校和公园,随时监控世博期间大气质量,保证上海低炭排放,空气清新。  过去20年,赛默飞世尔和上海市环境保护和气象等部门建立了长期的合作。赛默飞世尔提供的监测系统除了具备高灵敏度和精确度,良好的稳定性之外,还针对中国客户和环保部门的要求,专门配置中文版的数据采集处理系统和中心站控制系统。该系统可以与监测中心站软件通讯,即时把气体污染物的实时浓度采集数据传输给监测中心,实现监控人员的远程控制。  赛默飞世尔的空气质量监测仪器是全球同行业公认的先进产品,故障率极低,所有仪器及设计方法均获得美国国家环保局(EPA)认证。目前为世博服务的所有仪器运转正常,同时备用设备和上海的备件仓库能够保证突发状况下的应急措施。   赛默飞世尔空气站世博场馆安装就位 (2)  核辐射和爆炸物检测安保设备支持世博安全,让生活更美好  赛默飞世尔的核辐射检测设备在世博会运转良好,正在执行着保障世博会的任务, 保障着世博会的安全。赛默飞世尔为这些设备的安装运行做了精心的准备,包括使用人员培训﹑工程师应急安排﹑备件保证和设备的定期维护保养等。世博会也从赛默飞世尔采购了爆炸物检测设备。多年以来,赛默飞世尔为核工业﹑环境保护﹑工业厂矿﹑医疗机构﹑边境口岸﹑海关﹑辐射安全和核应急机构﹑国土安全等众多领域和部门提供了高质量的产品和全方位的服务。  科技,让生活更美好  赛默飞世尔中国区副总裁兼总经理迈世福谈及本次世博项目说道:“我们很高兴可以在本次举世瞩目的世博会上贡献一己之力。赛默飞世尔凭借世界领先的技术力量和丰富的经验,曾为很多全球性的活动提供了各种检测设备及服务。在2008年的北京奥运会上,从兴奋剂检测到食品安全检测,从大气质量检测到安保安检,各条奥运战线上均有数百台赛默飞世尔检测仪器在运行,为北京奥运的成功举办保驾护航。2010年上海世博会期间,我们将继续凭借在分析仪器领域的技术优势,履行企业公民责任,遵守我们一直以来的承诺,使世界更健康,更清洁、更安全。”  关于赛默飞世尔科技  赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额超过 100 亿美元,拥有员工约35,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的从复杂的研究项目到常规检测和工业现场应用的各种挑战。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或中文网站www.thermo.com.cn www.fishersci.com.cn 。
  • 7008万 四创电子毫米波云水探测仪重大专项获批
    2013年11月19日,安徽四创电子股份有限公司发布关于国家重大科学仪器设备开发专项项目立项的公告。公告全文如下:  本公司董事会及全体董事保证本公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实性、准确性和完整性承担个别及连带责任。  安徽四创电子股份有限公司(以下简称&ldquo 公司&rdquo )近日收到国家科学技术部批复的国家重大科学仪器设备开发专项项目立项的通知。公司申请的&ldquo 多波段主被动毫米波云水探测仪开发和应用&rdquo 项目已批准立项。  一、项目概述  项目名称:多波段主被动毫米波云水探测仪开发和应用  项目实施主体:本公司  项目总体目标:攻克双频毫米波测云、多通道微波辐射计探测、多参数信息融合处理等关键技术,开发W波段大功率速调管、毫米波双频共面天线等部件。通过系统集成,在项目中期,研制形成具有一定功能Ka/W波段双频毫米波测云仪和多通道毫米波辐射计成套仪器样机。公司获得该国家重大科学仪器设备开发专项将有助于公司形成具有自主知识产权、功能健全、质量稳定可靠的多波段主被动毫米波云水探测仪。  项目经费预算:项目总预算7,008.46万元,其中国家专项拨款3,132.00万元,公司自筹资金3,876.46万元。根据《关于开展国家重大科学仪器设备开发专项2013年度项目组织工作的函》(国科财函20132号)规定,项目前半段主要由承担单位自筹经费实施,国家专项经费资助10% 通过中期评估确认后,再主要由国家专项经费给予支持。截至目前,公司尚未收到该笔专项经费。  项目建设周期:5年(2013年10月&mdash &mdash 2018年10月)  该项目实施不需经董事会、股东大会批准。该项目不构成公司的重大资产重组。该项目牵头单位是本公司,实施过程中将与其他单位实施项目合作。  二、项目风险提示  1. 项目在工程化实现和市场存在一定的不确定性。  2. 项目建设期较长,存在技术先进性水平变化的风险。  3. 若项目未通过国家中期评估确认,后半段的国家专项经费拨款金额将进行调整。  特此公告。  安徽四创电子股份有限公司董事会  二O一三年十一月十九日
  • 解码“风云四号”七玄机 四大探测仪为大气做“CT”
    2010年3月,我国风云四号科研试验卫星工程正式立项。中国航天科技(000901,股吧)集团公司八院风云四号卫星系统总师董瑶海说,早前也试图与欧洲合作,但一个小小的元器件,欧洲人却开出比整星还贵的天价——“5亿元人民币你要不要?”  航天高技术是买不来的。近七年的钻研,打造出这颗设计寿命七年的风云四号,最令董瑶海自豪的是,“所有的核心技术都是自主研发的”。  “六”面柱体构型运行更稳定  风云四号采用六面柱体构型,具有对地面大、质心低等优点,有利于安装体积更大、数量更多的有效载荷,能让卫星在太空中更稳定地运行。  “五”项任务体重超五吨  风云四号重达5.4吨有五大任务:获取地球表面和云的多光谱、高精度定量观测数据和图像,获得高频次的区域图像 实现大气温度和湿度参数的垂直结构观测 实现闪电成像观测 完成卫星图像、遥感数据及产品分发和灾害性天气警报信息发布 监测太阳活动和空间环境等。  “四”大有效载荷为大气做“CT”  中国航天科技集团公司八院风云四号卫星工程总师李卿介绍,风云四号观天象、测风云靠的是装载多通道扫描成像辐射计、干涉式大气垂直探测仪、闪电成像仪和空间环境监测仪器包等4个探测载荷,直接为大气做“CT”,达世界领先水平。  “三”轴稳定效率提高20倍  与卫星风云二号采用的自旋稳定控制不同,三轴稳定控制能让风云四号在X、Y、Z三个方向上均相对地球保持姿态不动,让卫星的有效载荷始终对准需要观测的目标,从而将观测效率与风云二号相比提高近20倍。  “二”代静止轨道气象卫星升级  我国气象卫星有极轨和静止轨道两个序列。目前,极轨气象卫星方面,新一代的风云三号卫星已全面取代风云一号卫星 静止轨道气象卫星中,风云二号首星发射距今已有19年,作为第二代静止轨道气象卫星的首发星,风云四号为我国静止轨道气象卫星的升级换代吹响号角。  “一”个太阳“翅膀”首次亮相  为了使卫星上的红外探测仪不受太阳帆板上产生红外辐射反射的影响,风云四号首次采用单太阳翼的设计,保证卫星在三万六千公里高空作业的定标精度和稳定。
  • 中性原子探测仪:国际首次在月表探测中性原子
    p style="text-indent: 2em text-align: justify "从中国研制第一颗科学卫星——双星计划开始,中国科学院国家空间科学中心的科学家就和瑞典空间物理研究所的科学家有了首度合作。/pp style="text-indent: 2em text-align: justify "时隔十数年,在嫦娥四号国际载荷工作中,两位老朋友再度联手,研制出国际上首个可以在月表直接探测中性原子的仪器——中性原子探测仪。/pp style="text-indent: 2em text-align: justify "“月球是一个天然的实验室,太阳风和月表的相互作用,可以类比到其他的行星体上,对未来的科学研究提供重要的科学数据。”中方首席专家、中科院空间中心研究员张爱兵说。/pp style="text-indent: 2em text-align: justify "太阳风吹呀吹 中性原子飞呀飞/pp style="text-indent: 2em text-align: justify "太阳风是一种跟空气流动很相似的“风”,只不过它吹的不是气体分子,而是太阳上层大气射出的超声速等离子体带电粒子流。/pp style="text-indent: 2em text-align: justify "由于太阳风中的粒子会干扰通讯系统,它一直让人类倍感恐慌。2006年12月13日,一次太阳风暴曾经对我国短波无线电通信造成严重影响,使得广州、海南、重庆通信中断达3小时之久。好莱坞大片《2012》《末日预言》等也曾展现过人类对于太阳风袭击地球的恐惧。/pp style="text-indent: 2em text-align: justify "这种恐惧同时也演化成了科学家的研究方向,在没有磁场、大气保护层的“月球实验室”里,他们决定近距离且直观地看一看太阳风与月球表面的作用机制。/pp style="text-indent: 2em text-align: justify "“最早,人们以为太阳风里的离子和电子是被月表吸收了,但是,经过一段时间的研究后,科研人员发现,太阳风离子打到月表后,会反射回来,反射回来的粒子里,有一部分仍然是离子状态,还有一部分则获得了电子,从离子状态变成了原子状态,成为中性原子。”张爱兵说。/pp style="text-indent: 2em text-align: justify "与此同时,就好比“一石激起千层浪”,太阳风里的高速粒子打到月球表面后,也会将月球表面物质溅射起来。/pp style="text-indent: 2em text-align: justify "“最终,溅射出的中性原子也会因为拥有一定的速度和能量,出现‘逃逸’,形成月球的外逸层。”张爱兵说。/pp style="text-indent: 2em text-align: justify "除此之外,太阳风和月表作用会对月球环境产生什么样的影响,也是科学家希望探索的内容。/pp style="text-indent: 2em text-align: justify "“有科学家猜测,太阳风里的氢离子和月表的氧相击,可能会产生水,月球上的水可能与太阳风打到月球表面有一些关系,虽然这还不是一个定论,这也是我们想要搞清楚的内容。”张爱兵说。/pp style="text-indent: 2em text-align: justify "创造探月新历史 首次月表直接探测/pp style="text-indent: 2em text-align: justify "这次,嫦娥四号上搭载的中性原子探测仪,主要目标就是在月表上测量太阳风和月表相互作用之后产生的中性原子,包括太阳风本身的离子获得电子后产生的中性原子,和月球表面被溅射出的中性原子。/pp style="text-indent: 2em text-align: justify "印度的首颗绕月人造卫星“月神一号”曾经搭载过中性原子成像仪,但和其他探月卫星一样,都是在环月轨道上对中性原子进行探测。/pp style="text-indent: 2em text-align: justify "“我们这次要做的是在月表巡视区直接测量中性原子,可以说是人类探月史上首次在月表开展中性原子探测。以往的探测就好像是用肉眼看中性原子,这次,我们是拿着放大镜近距离、仔细地看。”张爱兵说。/pp style="text-indent: 2em text-align: justify "过去人类在环月轨道对中性原子的探测,曾发现了一些超出预期的现象,留下了一些未解之谜,例如,人们发现中性原子和太阳风在密度、速度比率上没有直接关系等,而这些谜题也为此次探测指出了方向。/pp style="text-indent: 2em text-align: justify "“这次我们在月表可以进行实地观测,随着月球车在月表移动到不同位置,可以观测到月表不同的地形地貌,进而观测到太阳风与月表相互作用的不同过程,有望解决过去遗留的类似科学问题。”张爱兵说。/pp style="text-indent: 2em text-align: justify "碰撞与交流中 航天文化再度对接/pp style="text-indent: 2em text-align: justify "作为搭载在嫦娥四号巡视器上的国际载荷,中性原子探测仪由瑞典空间物理所负责研制,中国科学家参与设备的性能测试及交付后的相关工作。/pp style="text-indent: 2em text-align: justify "张爱兵介绍,中国与瑞典在科学卫星载荷上,已经有了很长的合作历史。/pp style="text-indent: 2em text-align: justify "最开始的合作是在中欧合作研制的我国第一颗空间科学卫星——双星计划时。双星计划中有一台测量地球轨道环境下中性原子情况的中性原子探测仪,就是由中国科学家和瑞典科学家合作完成。/pp style="text-indent: 2em text-align: justify "2009年,中国发起的“萤火一号”火星探测计划中,中国科学家与瑞典科学家再度合作,双方分别研制其中一个载荷的一部分,然后集中在一起形成了一个载荷包,用于测量火星离子和电子的情况。/pp style="text-indent: 2em text-align: justify "此外,在中科院空间科学先导专项中,中国科学家和瑞典科学家也曾联手完成一些预先研究项目。/pp style="text-indent: 2em text-align: justify "“由于双方合作次数比较多,所以在嫦娥四号的合作上非常顺利。”张爱兵说。/pp style="text-indent: 2em text-align: justify "当然,尽管顺利,但合作中难免会有碰撞和交流,“新的合作加深了两国航天文化的交流。”张爱兵说。/pp style="text-indent: 2em text-align: justify "按照中方的相关规范,中方在国际载荷接管复查过程中要确保接口安全,包括接口设计和元器件等的安全,不能影响其他载荷的工作,更不能影响嫦娥四号整体任务。/pp style="text-indent: 2em text-align: justify "“一开始对方不能理解,但是通过交流,他们还是按照我们的要求做了相关工作,并把相关资料提供给中方。此次合作再一次体现了我国航天精益求精的作风,而这样的工作作风也让瑞典科学家十分认可中国科学家的工作。”张爱兵说。/pp style="text-indent: 2em text-align: justify "未来,中国和瑞典将共同利用科学数据开展科学研究,为此,中方已经组织了专门的科学家团队。“双方将会协同工作,共同利用好这台仪器的科研数据。”张爱兵说。/p
  • 红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所红外科学与技术全国重点实验室的科研团队在《红外与毫米波学报》期刊上发表了以“红外近场辐射探测及超分辨温度成像”为主题的文章。该文章第一作者为朱晓艳,主要从事红外被动近场成像方面的研究工作。本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知地是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之为近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步地研究。图1(a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距h,即可获得近场、远场混合信号(h 100 nm,称为近场模式)或单一的远场信号(h 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2(a)红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO₂衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长(~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO₂)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO₂强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14 μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14 μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO₂衬底)的(a)光学显微、(b)远场红外和(c)近场红外的图像及成像原理示意图另外值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO₂;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO₂。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4 (a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。总结与展望综上,利用SNoiM技术,可以实现物体表面的近场辐射探测及红外超分辨温度成像。该技术是目前国际上唯一能够进行局域电子温度成像的科学仪器,不仅突破了红外远场热成像的衍射极限限制,且首次实现了纳米尺度下通电器件中载流子输运行为与能量耗散的直接可视化。该研究内容均基于第一代室温SNoiM系统,目前,第二代低温SNoiM系统已被成功搭建,有望进一步突破后摩尔时代信息和能源器件的功耗降低及能效提升难题,探索物理新机制,并推动纳米测温技术新的发展。这项研究获得国家自然科学基金优秀青年基金的资助和支持。论文链接:DOI: 10.11972/j.issn.1001-9014.2023.05.001
  • 非放射性电离源-爆炸物探测仪研究取得新进展
    基于离子迁移谱技术(IMS)研制的爆炸物探测仪是一种高灵敏的爆炸品的检测仪,可以在几秒内完成对邮件、包裹等物品内隐匿爆炸物品的检测,该技术为各级安全保卫机构提供了良好的检测手段,并被成功用于军队及机场安检的爆炸物检测。  目前,国内外离子迁移谱爆炸物探测仪多用放射性63Ni源作为电离源,但63Ni源的放射性限制了其在公共场所的推广应用。最近,中科院大连化学物理研究所李海洋研究员领导的研究组基于商用的真空紫外光灯(波长为123.6 nm)研制开发了一种新型的双极性电离源(UVRI),该电离源在正、负离子两种模式下均具有较好的电离效率。在负离子模式下,UVRI-IMS对PETN、ANFO、DINA、RDX等爆炸物的电离效率均高于传统63Ni离子迁移谱,对PETN的检测灵敏度可以达到45pg,高出63Ni离子迁移谱5倍左右;此外,该模式下UVRI-IMS对SO2、H2S、CO2等化合物也具有较高的电离效率。通过对电离机理的研究,发现这主要归因于紫外光引发的光化学反应产生了大量臭氧分子,最终形成了高浓度的新型试剂离子O3-(H2O)n。在正离子模式下,该电离源可以实现对挥发性有机污染物的软电离,便于谱图的解析。这些研究结果对于提高爆炸物探测仪的灵敏度以及爆炸物探测仪的推广应用具有重要意义。  该研究成果以研究性论文形式被刊登在近期发表的《美国分析化学》(Anal. Chem., 2010, 82 (10), pp 4151–4157, DOI: 10.1021/ac100342y)杂志上。
  • 一文了解|红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。本文将介绍红外被动近场显微成像技术的基本原理,以及基于此可实现的物体表面近场辐射探测与红外超分辨温度成像研究。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知的是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步的研究。图1 物体表面存在的近场辐射及其探测方式 (a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距,即可获得近场、远场混合信号( 100 nm,称为近场模式)或单一的远场信号( 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集的光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2 红外被动近场显微镜SNoiM的实物图(a) 红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO2衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长( ~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO2)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO2强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO2衬底)的几种显微图像及成像原理示意图:(a)光学显微、(b)远场红外和(c)近场红外另外,值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO2;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO2。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。图4 NiCr金属线在不同测试模式下的红外热成像结果:(a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像
  • 海关总署采购104台辐射探测设备
    2012年海关总署辐射探测设备招标项目招标公告  海关总署物资装备采购中心委托中技国际招标公司就“2012年海关总署辐射探测设备招标项目”进行国内公开招标采购,现邀请符合资格条件的投标人前来投标。  一、招标编号:0701-124010090088  二、项目名称:2012年海关总署辐射探测设备招标项目  三、招标内容  本次招标设备名称、数量及技术规格:包号货物名称数量(台)主要技术规格交货期交货地点01门式行人辐射探测设备14详见第四部分合同签订之日起60日内海关指定项目安装现场(详见第四部分)02门式车辆辐射探测设备1403手持式巡检设备3804手持式核素设备38  注:投标人可以针对上述中一个包或多个包进行投标,但必须对包中的所有设备进行投标,不允许拆包投标,否则其投标将被拒绝。  四、投标人资格条件  1、在中华人民共和国境内依法注册的、具有独立法人资格的、有能力提供招标货物和相关服务的制造商或其授权代理商(对于同一品牌同一型号产品,制造商可以自行参加或授权一家代理商参加本项目)。  2、符合《中华人民共和国政府采购法》第二十二条规定,即:  (1)具有独立承担民事责任的能力   (2)具有良好的商业信誉和健全的财务会计制度   (3)具有履行合同所需的设备和专业技术能力   (4)有依法缴纳税收和社会保障资金的良好记录   (5)参加政府活动前三年内,在经营活动中没有重大违法记录   (6)法律、行政法规规定的其他条件。  3、投标人不得直接或间接地与招标人为采购本次招标的货物编制规范和其他文件所委托的单位或其附属机构有任何关联。  4、购买了招标文件且在法律上和财务上独立、合法运作并独立于招标人和招标机构。  5、本次招标不接受联合体投标。  6、本项目不接受进口产品投标(进口产品是指通过中国海关报关,验放进入中国境内,且产自关境外的产品)。  7、针对每一包,一个投标人不得提交两个或两个以上不同的投标文件或投标报价。如果投标人之间存在下列互为关联关系的情形之一的,不得同时参加本项目同一包的投标,否则予以拒绝:  (1)法定代表人为同一人的两个或两个以上法人   (2)母公司或实际控制人及其直接或间接持股50%及以上的被投资公司   (3)均为同一家母公司或实际控制人直接或间接持股50%及以上的被投资公司。  8、投标人其他条件:  (1)具有ISO9001质量管理体系认证证书   (2)所投的门式行人辐射探测设备/门式车辆辐射探测系统应符合国家标准《放射性物质与特殊核材料监测系统》GB T 24246-2009 需提供中国计量科学研究院的第三方测试证书   (3)投标货物制造商须具备辐射安全许可证(仅针对01包和02包投标人)。  五、购买招标文件及开标相关信息  1、招标文件售价:每包售价人民币300元(售后不退,EMS邮购须另加100元人民币)。  2、购买招标文件时间和地点:  时间:2012年6月11日至2012年7月1日,每天上午9:30至11:30,下午13:30至16:30(北京时间、节假日除外)。  地点:中技国际招标公司(北京市丰台区西三环中路90号通用技术大厦一层标书室)。  3、投标截止时间和开标时间:  2012年7月2日下午13:30(北京时间),逾期送达或送达的投标文件不符合本招标文件规定的恕不接受。届时请参加投标的单位派代表出席开标仪式。  4、开标地点:中技国际招标公司(北京市丰台区西三环中路90号通用技术大厦会议室)。  5、投标文件的递交:投标文件请于开标当日、投标截止时间之前由专人送达开标地点,以电报、电话、传真、电子邮件形式递交的投标文件将不予接受,逾期送达或不符合本招标文件规定的投标文件恕不接受。  六、招标机构:中技国际招标公司  地址:北京市丰台区西三环中路90号通用技术大厦904室  邮政编码:100055  联 系 人:罗红、丁吟  电  话:0086-10-63348554/8547  传  真:0086-10-63373573  户 名:中技国际招标公司  开户银行:中国银行总行营业部  帐 号:778350010653  如使用电汇方式购买招标文件、递交投标保证金、支付中标服务费须在电汇凭据附言栏中写明用途、项目名称及招标编号。  七、本招标公告在中国政府采购网(www.ccgp.gov.cn)和中国海关政府采购网站(http://hgcg.customs.gov.cn)上进行发布。  中技国际招标公司  2012年6月11日
  • 因探测仪器再现漏洞 NASA暂停火星探测计划
    p  据英国路透社12月22日报道,美国国家航空航天局(NASA)当天表示,由于主要探测仪器出现漏洞,原定于明年3月发射的“洞察”号火星探测卫星计划将暂停。这给这项备受期待的火星内部研究计划带来了不确定性。/pp  据报道,“洞察”号探测卫星旨在帮助科学家们了解包括地球在内的岩质行星的构成。该计划的取消引发了关于未来研究工作的质疑,因为距离下一次地球和火星连线还剩26个月的时间。/pp  NASA将在未来两个月评估维修故障仪器的办法。该仪器是由法国国家太空研究中心(CNES)提供的一种敏感地震探测仪。它可以检测到微小的震动,其传感器位于真空球体内。自8月份起,该仪器就一直受到一系列漏洞的干扰。工程师们认为他们已经解决了之前出现的故障,但在21日的测试中又发现了出现另一处漏洞。/pp  NASA科学任务理事会副会长约翰· 格伦斯菲尔德在接受采访时说: “我们还没有足够的时间去寻找并解决漏洞,但仍希望能在明年3月份发射。”/pp  报道称,预算限制可能是决定NASA是否要继续该计划的一大原因。NASA行星科学部主任吉姆· 格林告诉记者,“洞察”号任务的花费,包括发射和数据分析,已从最初的4.25亿美元已上升至目前的6.75亿美元。迄今为止,NASA在该项目上共投资5.25亿美元,其中包括从联合发射联盟公司购买的一枚“阿特拉斯5号”运载火箭。/p
  • 生命探测仪——废墟中的希望
    说到生命探测仪,就不得不说地震,这个沉重的话题虽然好像离我们十分遥远,但是每年都有来自世界各地的新闻,几乎任何一个时间,都有地方发生地震。过去13年的汶川地震,在大家的印象中已经慢慢淡去,但对于经历过灾难的人来说,是一辈子难以磨灭的印记。而面对这种巨大的自然灾难,生命探测仪就发挥了强大的作用,可以救人于危难中。生命探测仪是一种安全救生装备,它是美国的物理学家大卫席思研发的,对于灾难中的搜救做出了卓越的贡献。其实生命探测仪是一个统称,具体根据探测范围和手法的不同,还可以分为红外探测、雷达探测、光学探测、声波振动探测和其他先进类探测。很不幸的是几乎每一种我们都听说过,尤其是雷达探测和红外探测。红外生命探测,需要被探测的物体体温在绝对零度以上,那么什么是绝对零度呢?和我们知道的0℃不同,绝对零度象征着极度的寒冷,换算下来大概相当于-273.15℃。也就是红外探测在我们日常的温度下都可以探测到生命。并且能够不畏条件的恶劣,不受干扰。雷达探测仪就又先进很多,相比于红外探测仪只能感受体温,雷达探测仪可以通过监测人体生命活动所引起的各种微动,从微动中得到心跳、呼吸等信息,再利用电磁波反射原理进行探测。不仅不受温湿度控制,噪音和地形也同样奈何不了它,稳定性好、准确率高。如果可以,没有人愿意认识这些探测仪,可灾难是无法避免的,我们现代的先进科学仪器,就是为了在自然灾难面前可以做到先知先觉和挽救更多生命。是我们的自救工具,相信在不久的将来,我们对于这类重大灾难,一定可以做到准确的预测和躲避。
  • 黑洞追踪者:伽马暴偏振探测仪
    在宇宙深处,像黑洞这样的神秘天体一直吸引着大量的天文学家和天文爱好者的目光,但是目前能够很好观测这种星体的手段并不多。  而天宫二号空间实验室携带的一台天文观测设备,就有可能在这一领域获得突破,它就是伽马暴偏振探测仪。  这台设备叫做伽马射线暴偏振探测仪,它的任务是对宇宙当中的伽马射线暴进行探测。在宇宙中,只有温度极高、密度极高、磁场极强的星体里,才可能产生这种射线,因此它的存在可能就是黑洞留下的痕迹。  伽马暴偏振探测仪首席科学家 张双南研究员:因为伽马射线暴,伽马射线的产生,是从极端相对论性的喷流里面产生的,这种极端相对论性的喷流,它的速度接近光速,这是在黑洞附近,或者是在中子星附近,极端的引力场里面所产生出来的。  在过去,对伽马射线的测量只能测到它的能量,方向,和时间等信息,但是这一次,天宫二号要从全新的领域来探寻这种宇宙中的神秘射线,这就是伽马射线的偏振信息。那么什么是偏振呢?这其实是电磁波,也就是光的一种特性。  伽马暴偏振探测仪首席科学家 张双南研究员:如果我们到海边,我们看到海面,白茫茫的一片,因为从海面来的这种光的偏振的,如果戴上偏振的镜子之后,我们就能够看到海面上的波浪,看得比较清楚。  同样伽马射线的偏振特性里,也记录了产生它的星体的结构甚至磁场的形态信息。解读这些信息,很可能让我们对黑洞有新的认识。所以天宫二号携带的这台伽马射线偏振探测仪就是要以独特的设计,对伽马暴的偏振性质进行系统性地高精度测量,填补这个国际天文研究的空白。  伽马暴偏振探测仪首席科学家 张双南研究员:它是一种特殊的天文望远镜,它实际上是由1600个,对伽马射线光子敏感的器件组成的,通过分析伽马射线在这1600个敏感器件上的信号分布,我们最终来推算伽马射线的偏振性质。  为了打造这个探索宇宙秘密的特殊望远镜,来自瑞士和波兰的科学家也参与到了它的研制当中,这也成了天宫二号上所携带的唯一一台国际合作的科学设备,因此,全世界的科学家都在对这次任务充满期待。  伽马暴偏振探测仪首席科学家 张双南研究员:我们希望这台仪器设计的灵敏度比国际上已有的,专门用于伽马射线暴偏振的仪器的灵敏度提高至少十倍,所以无论是从它的灵敏度和它的精度两方面来讲我们这个仪器都是最好的。
  • 我国研发出新型生命探测仪
    我国新型生命探测仪 最大生命探测范围达20米  在地震、泥石流等灾害面前快速准确搜寻到被掩埋的生命信号,第一时间挽救生命是世界各国抗灾救援工作的技术难题之一。7月21日,湖南省公安消防总队和湖南华诺星空电子技术有限公司联合研发的“警用超宽带雷达式生命探测仪”在长沙市通过科技成果鉴定。主持鉴定的中国工程院院士何继善等专家认为,该成果性能良好,最大生命探测范围可达20米,技术处于国内领先水平。  近年来,我国地震、泥石流等地质灾害频发,许多被深埋在瓦砾、混凝土中的群众,由于无法被救援人员及时准确发现而丧失了宝贵的求生机会。为有效突破这一技术难关,2009年初,公安部消防局正式下达了“警用超宽带雷达式生命探测仪”重点攻关科研项目,在湖南省公安消防总队的主持下,由湖南华诺星空电子技术有限公司组织技术力量进行研发。  据了解,该成果采用新体制的超宽带雷达技术,先后攻克了高稳定度纳秒脉冲源、波形保真超宽带脉冲时域收发天线、超宽带脉冲时域波束扫描、合成成像算法、射频抑制与抗强噪声算法等一系列关键技术。充分利用超宽带脉冲电磁波所具有的强穿透性、高分辨率等特性,提出了在复杂环境下人体心肺运动等微弱信号检测算法,来实现对火场、建筑物废墟、地震救灾等高危场所强噪声背景下生命体的快速有效探测与定位。经测试,“警用超宽带雷达式生命探测仪”可有效检测 20米范围内人体的肢体运动、心跳、呼吸等活动,为快速搜寻被困群众生命提供可靠数据。  今年4月,该设备顺利通过国家地震局地震模拟环境测试试验。随后,在玉树地震救援任务中,救援人员使用该设备成功探测、救援出多名群众。
  • 高精度温室气体综合探测卫星紫外高光谱大气成分探测仪正样交付
    紫外高光谱大气成分探测仪11月4日,高精度温室气体综合探测卫星(DQ-2)紫外高光谱大气成分探测仪(EMI-NL)通过了航天八院环境卫星项目办组织的正样交付验收评审。紫外高光谱大气成分探测仪(EMI-NL)是国产第三代超光谱大气痕量气体监测载荷,拥有独立的天底与临边观测模块,能获取大气痕量气体高空间分辨率水平分布与垂直廓线,主要用于定量监测全球和区域二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)和甲醛(HCHO)等痕量污染气体成分的分布和变化,用以分析人类活动排放和自然排放过程对大气组成成分和全球气候变化的影响。EMI-NL载荷性能指标大幅提升,天底对地空间分辨率达到7*7平方公里,达到国际先进水平;并增加了临边同步观测模式,临边切高分辨率为2公里。该载荷具备公里级别的空间分辨率、天底临边同步双模式同步观测,对辨识污染源位置、量化点/面源排放通量、研判区域间相互影响等具有重要作用。经讨论,评审专家组认为紫外高光谱大气成分探测仪(EMI-NL)正样产品按照正样研制技术流程完成了所有研制工作,经测试、试验,功能、性能满足任务书要求;研制过程质量受控,未发生质量问题;文档资料齐全,符合《八院卫星型号产品交付验收实施要求》,同意通过评审。DQ-2卫星是《国家民用空间基础设施中长期发展规划(2015-2025)》中规划的业务星,具有主被动方式结合获取高光谱分辨率、高时间分辨率温室气体、污染气体及气溶胶等大气环境要素的遥感检测能力。DQ-2卫星共配置五台有效载荷,其中紫外高光谱大气成分探测仪(EMI-NL)、云和气溶胶成像仪(CAPC)分别由安光所环境光学中心和光学遥感中心承担研制任务。正样验收评审会
  • 辐射探测器热销美国 售价在150-4000美元
    日本陷入核危机以来,盖格计数器(一种辐射探测器)销售商Tim Flanegin的电话铃声就几乎没停过,订单像雪片一样飞来。他在自己的网站上留言,提醒新顾客库存不足的情况,并让已下订单的客户耐心等待。图为一部盖格计数器   上周四,Flanegin收到了上百份订单。他表示,自己以前几乎要关张了,而现在订单多的根本无法满足。  尽管只有微量日本受损反应堆的辐射飘散过太平洋(11.69,0.04,0.34%),商务人士、接班机组人员甚至普通消费者都想得到一台这种仪器,但只有很少的商家有货。许多人买家表示担心食物收到污染。Flanegin表示,他的一个客户在日本经营一家主题公园,想用它来检测食品供应。  辐射探测器有手持式、腕表式和呼机式等不同模式,售价从150美元到4000美元不等。
  • 2.3亿3339台!海关总署辐射探测设备采购大单“诱人”
    p  8月4日,中国政府采购网发布公告,海关总署将针对2017年辐射探测设备采购项目进行公开招标。项目名称:海关总署2017年辐射探测设备采购项目,项目编号:HG17GK-A0101-D053,开标时间:2017年08月24日 09:00。/pp  公告内容显示,此次招标的内容包括,门式车辆辐射探测设备、门式行人辐射探测检查设备、手持式核素识别设备、个人辐射剂量报警仪四大类别,共计3339台,预算金额:23352.9 万元人民币。/pp  详细内容如下:/pp style="TEXT-ALIGN: center"img title="QQ截图20170807083925.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ee9388ac-478a-432b-91d3-b7a79cfc89b6.jpg"//p
  • 研究生利用激光遥感制作实时监测雾霾探测仪
    历经连续多天的雾霾天气,北京终于拨霾见日,大快人心。然而,民众对空气质量的担忧恐慌情绪,却不会像雾霾一样散去。面对日益紧迫的雾霾问题,除了戴上防霾口罩,我们又能做些什么?......雾霾之下,没有看客,我们每个人都应该积极行动起来,你知道吗?西安的一群大学生为我们做了一个良好的表率。  前不久,西安理工大研究生代晨昱和同学们发明了一款便携式雾霾空间分布激光探测仪,可以实时监测大气污染物的仪器,打破了传统环保部门测量大气污染物的方法,将激光遥感技术应用到了雾霾监测领域。据悉,该仪器还荣获了陕西省大学生课外学术科技作品大赛一等奖。  打破陈规 用激光遥感监测领域  目前,相关部门监测大气污染物主要采用的是直接称重、多点监测、人工取样等方法,上述方法都仅是单点测量。例如直接称重法,是抽取等量空气将污染物停留在过滤膜上,直接称其重量,计算单位体积中的污染物浓度。而多点监测需要架设许多仪器,不仅耗时耗力,还不具有实时性。因为大气是流动的,往往当工作人员把仪器上的数据整理出来时,污染源的位置、雾霾污染的空间分布等已经发生了变化。  实际上,城市每个区域的PM2.5数值都不一样,而且数据也是不断变化的,这就让代晨昱萌生了用专业知识发明一种可以实时监测大气污染物的仪器的想法。经过近两年努力,他和同学们完成了设计发明工作。探测仪弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  探测仪整体系统主要由激光发射系统、光学接收系统、光电探测系统、数据采集处理系统及三维扫描控制系统五部分组成。代晨昱解释,这套系统主要运用了光散射和光测距两大原理。由激光发射系统发出脉冲激光进入大气,激光与大气中的雾霾颗粒发生散射后,由光学接收系统接收后向散射回波信号,再由光电探测系统将光信号转换为电信号,最后由数据采集处理系统利用模拟探测方式完成数据采集与处理。  实时监测,雾霾无处逃遁  这款便携式雾霾空间分布激光探测仪,相较于单点测量,扩大了探测范围,还可对污染源的位置、污染程度、污染物的扩散方式及传播途径进行实时监测,继而对雾霾污染的出现提前预警,使有关部门前移工作关口,采取应对措施缓解污染问题。弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  以城区面积约为860余平方公里的西安市为例,实验表明,4-6台探测仪就可以实现整个西安市区的覆盖探测,工作效率着实提升了不少。  代晨昱表示,这款仪器可以与现有的颗粒物监测仪器设备配合工作,不仅可以弥补现有仪器的缺陷,配合工作后测试出来的结果精度更高。他们也期待可以和有关单位部门、企业合作,为治污减霾贡献出自己的一份力量。  年轻的大学生也懂得要以己之力,为社会贡献一份力量。身为地理信息行业的从业者,手握各种地理空间技术,在这场休戚与共的雾霾反击战中,也应多思考,多行动,多出力,守护苍穹之下的那片蓝天。
  • 美国“信使”携多种探测仪器观测水星
    美国“信使”号水星探测器按计划将于3月29日从水星轨道传回首张图片。从4月4日起,它将正式展开对水星的观测,以确定水星表面成分,探测水星的神秘磁场以及水星极地区域永久阴影部分是否存在冰。  2011年3月17日,经过15分钟的近水星制动,减速后的“信使”号被水星捕获,进入近水星距离200千米、远水星距离15193千米、周期12小时的水星椭圆轨道,对水星进行为期一年的探测工作。  有人说,水星名不副实,因为它是太阳系中距离太阳最近的行星,表面温度很高,所以上面根本没有水。但也有人认为,在水星极地阳光永远照不到的阴暗陨石坑深处,很可能存在水冰沉积物。  由于水星离太阳很近,因此在地面观测它和用飞行器探测它都十分困难,至今只有美国的“水手10号”和“信使”号探测器探测过水星,其中1973年11月 3日发射的“水手10号”探测器也仅以掠过的方式探测过水星,故无法对水星进行长期、全面和详细的了解。经过多年研制,第一颗水星探测卫星“信使”号终于在2004年8月3日升空。它耗资4.46亿美元,发射质量1100千克,其中600千克为燃料,体积与大型办公桌相近。  水星上太阳的亮度比在地球上高出11倍,表面温度可达450摄氏度,所以设计“信使”号的关键是如何应对这样的高温环境。为此,“信使”号装有先进的大型遮阳罩,能使探测器的温度保持在20摄氏度左右。此外,它还有许多特点,如两翼由数千个小“镜子”组成,其中2/3的“镜子”用于反射水星附近的强烈阳光,剩下的“镜子”用于将阳光转化成电能 各重要系统都有备份 使用现成的部件和标准的数据界面 采用“近地小行星交会”小行星探测器子系统设计等。  “信使”号此行有六大任务:水星具有何种磁场特征?为什么水星的密度那样高?水星具有何种地质形成过程?水星核具有怎样的构成和形态?水星两极的异常物质是什么?水星表面有哪些不稳定物质对其外大气层的形成起了重要作用?为了完成这些任务,“信使”号携带了磁力计、伽马射线与中子光谱仪、X射线光谱仪、水星大气与表面成分光谱仪、高能粒子与等离子体光谱仪、水星双重成像系统和水星激光高度计等共7台科学探测仪器。  “信使”号当初升空后没有直奔水星,而是借助地球、金星和水星的引力飞行6年半后才进入水星轨道。其间,它一次飞越地球(2005年7月)、两次飞越金星(2006年10月和 2007年6月)、三次飞越水星(2008年1月、2008年10月和2009年9月),最终于今年3月17日进入环水星轨道。每次借力飞行都可以改变 “信使”号轨道的形状、尺寸、倾角和速度,最终巧妙地把“信使”号从绕太阳的轨道送入环水星的轨道。“信使”号在三次飞越水星的过程中收获了大量成果。例如,绘制了水星表面的详细状况,勘测了这颗行星的构成成分、地磁环境以及稀薄的大气层等多种特征。  目前,美国航天局计划将“信使”号探测器的服役期延长一年,但未来能延长多久还需要时间来证明。
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 金属探测仪首用于高考安检
    30日上午,广州市副市长贡儿珍带队视察高考考点,包括市公安局、市监察局、市环保局、市交委、市水务局、市卫生局、市城管局、市保密局、市气象局、市应急办、市招考办、广州供电局等十六部门联合对广州市部分高考考场进行考前准备工作检查。今年广州58个考点首次启用“金属探测仪”,这仪器到底长啥样?30日记者一探究竟。记者获悉,由于该仪器的使用,今年高考,各科均提前30分钟进场。  入场检查:金属探测仪防带手机入考场  “嘟嘟嘟……随着仪器在身上轻轻一扫,考生身上的所有金属物件,手机、钥匙包、衣扣、甚至女姓的纹胸扣均一一现形”这是昨日记者在广雅中学考场看到的一幕。  今年广东省各大高考试室首次启用金属探测仪检查广州市58个考点将全面实施,此举是防止考生作弊,并对误带手机入场的“大头虾”考生起到提醒警示作用。但这个仪器究竟长啥样?探测中会出现什么问题?需要多长时间?考生和家长疑虑重重。昨日记者一探究竟。  在广雅中学考场,记者看到,所谓“金属探测仪”是类似于机场地铁的安检仪器的“长棒子”。金属探测仪究竟怎样发挥“威力”?市招办负责人现场演示一番。  只见被检查者需双手张开伸直,让金属探测仪在身上游走,一旦发现金属物品,它就会发出“嘟嘟嘟……”的信号声,即便手机等金属物均无所遁形。  市招办负责人表示,由于女生的内衣上的金属扣也会有所反映,高考考场检则将尽显人性化,所有考点安排女监考员检查,避免考生因身体接触而发生不必要的尴尬和误会。“有机场安检经验的人就会知道,这其实跟机场的金属探测仪检测差不多。”  广雅中学负责人向记者证实,该考点已经培训了44名考务人员专门负责金属深测仪检查工作,出于人性化考虑,工作人员都是女士。  每位考生检查耗时6秒  记者获悉,金属探测仪检查,每位考生只需花6秒钟就可以搞定,一试室30名考生约需2分钟,绝不会耽误考生的考试。尽管如此,考试部门依然作出规定,今年高考各科,所有科目均提前30分钟进场,这意味着,除语文外,其它各科进场时间均提前了5分钟。  这种探测行为会不会给原本心情就紧张的考生带来更大压力?市招办负责人就强调,“营造一个公平公正的考试环境是每个考生和家长的愿望,如果考生都能诚信考试,就不会有压力的感觉。所以不但不会给考生增添压力,反而会让他们吃下定心丸,保证公平考试。”
  • 基于拉曼光谱学的新激光探测仪能“听”出脑内癌细胞
    在脑外科手术中,医生的眼睛在显示屏和病人间来回穿梭会影响他们的专注力。据《新科学家》杂志网站11月7日报道,英国几个大学和医院的科学家合作开发出一种激光探测仪,能把脑细胞光谱信号转换成音频,让医生通过“听”来辨别癌细胞与健康细胞。新技术能帮助医生更快速、更安全地完成脑外科手术。  新激光探测仪在去年研发基础上改进而成。之前的探测仪也能帮助医生辨别脑内癌细胞所在区域,但只能通过显示屏可视化呈现。而新探测仪能将图谱信号转换成音频信号,使医生能“听”出脑内癌细胞,从而将眼睛集中于手术切除部位。参与研究的斯特拉斯克莱德大学的马修贝克表示,新技术能精准地发出信号指导,让医生“目不转睛”地专注于手术。  激光探测仪的工作原理基于拉曼光谱学,可向脑细胞发出激光,并对反射回来的光谱进行分析,形成一个类似细胞指纹的光谱图。光谱图的形状能告诉医生所照射细胞是否癌变。研究团队这次为探测仪安装了一套全新的音频信号软件,该软件能够捕获图谱信号的重要特征,并将这些信号特征转换成声音。  初步检测结果表明,只用耳听,医生依靠激光检测仪辨别出健康细胞和癌变细胞的准确率高达70%。贝克表示,虽然比看光谱信号90%的准确率要低,但他们有信心通过改进继续提高。  对脑癌患者来说,癌变细胞未清除干净会留下复发和转移隐患,而切除健康细胞,神经功能又会受到损害,造成严重的副作用。下一步,他们将争取早日对激光检测仪进行临床试验,以帮助医生尽量将癌变脑细胞清除干净,又不会切除健康细胞。
  • 西班牙同步辐射光源的新 MYTHEN2 探测器
    在2021年的夏天,我们客户支持团队访问了西班牙同步辐射光源(ALBA)的材料科学和粉末衍射(MSPD) 实验线站,并对其新购入的MYTHEN2 X 8K探测器进行了验收检测。这样该线站的旧探测器就可以正式退役,新的探测器将踏上新的征程。新的MYTHEN2 X 8K 能够在2θ内覆盖了60°的角度范围,可提供高达1000赫兹的速度,并维持动态范围在24比特。我们采访了MSPD线站的负责科学家Francois Fauth博士,来听听看他对新探测器的想法,尤其是应用在粉末X射线衍射(PXRD)和对分布函数(PDF)中。 在MSPD线站上的MYTHEN2 X 8K 配置:八个模块和两个DCS4,用于高角度覆盖和速度。图片由ALBA同步辐射光源提供DECTRIS:与旧的 MYTHEN 探测器说告别,会不会很不舍? MSPD 线站负责科学家 Francois Fauth 博士:通常来说,评价一个线站是否成功有很多方法:比如说借助该线站发表的论文数量或者再次前来实验室做实验的用户数量。MSPD线站同时在这两方面取得了成功,这让我们感到自豪与高兴。 当然,退役的MYTHEN探测器是成功的关键一环:该探测器与我们一起工作了近十年,在这十年里,我们线站85%的标准粉末衍射实验都是使用这个探测器进行的。这台探测器让我们可以进行原位、操作中, 标准PXRD探测以及PDF研究。我们现在把退役的探测器系统安装在另一个新的实验线站里,并用于补充其X射线吸收数据的收集。 DECTRIS:旧的MYTHEN检测器仍在良好运行。是什么让你想到购买新的探测器? Francois Fauth 博士:有两个原因。实际的原因是,退役的MYTHEN依赖于一个探测器控制系统(DCS)。该系统是由Paul Scherrer研究所研发的,但是这个DCS已不再支持售后。另一个原因是科学上的:我们的线站在5-40KeV的范围内运行,我们希望有一个新的探测器来将我们推向更高X射线能量下的实验。当然,对于PDF来说,我们在采集速度上无法与使用二维探测器的高能线站竞争,比如ESRF的ID22。 与旧的MYTHEN相比,新的MYTHEN有更多的模块,传感器的厚度为1毫米,这意味着更高的角度覆盖和更高的量子效率。对于PDF,旧的设置通常需要四次45分钟的采集。新系统更大,效率更高,所以也可以探索一些现场的PDF测量。 DECTRIS:改用新的探测器,对操作层面的用户会有什么影响? Francois Fauth 博士:我们的大多数用户来自学术界,他们通常不需要DECTRIS探测器系统所提供的非常快的时间分辨率能力。他们中的大多数人对电池和能源相关的材料感兴趣,他们经常进行操作性研究,或研究晶体结构随温度变化的情况。 对于高级用户来说,更换探测器应该不成问题,因为许多程序将保持不变。事实上,我们已经开始和我们的用户一起收集PXRD和PDF数据了! 我们也有工业用户,线站科学家通常协助他们进行检测。 DECTRIS:你可以用MYTHEN2来根据自己的需求设计多模块系统. 这是如何做到的? Francois Fauth 博士:是的,使用单个模块,我们可以自由选择曲率半径和模块在支架上的排列。但是,还有另一个灵活性的问题。通常情况下,当你购买一个探测器时,没有改变或升级的可能,但对于MYTHEN2,几乎在任何时候都有可能增加或重新安排模块。 关于 Francois Fauth 博士Francois Fauth是瑞士人,在苏黎世联邦理工学院研读物理学,然后在保罗-舍勒研究所凭借中子散射技术完成博士学位。他的科学生涯完全是在大型实验设施中度过的:特别是ILL、PSI、ESRF和ALBA,在那里他承担了衍射或散射仪器的线站科学家职责务。 他于1999年加入了瑞士光源,迈出了进入同步辐射光源的第一步,在那里他参与了MS粉末衍射站的设计,该站集成了第一个MYTHEN探测器。自2011年以来,Francois Fauth一直负责MSPD光束线;他还负责ALBA的化学和材料科学部分,其中包括衍射、散射和硬X射线吸收光束线和技术。 About ALBAALBA是位于西班牙的第三代同步辐射源。它由Consortium for the Construction, Equipping, and Exploitation of the Synchrotron Light Source (CELLS) 管理,并由西班牙政府和加泰罗尼亚自治区政府资助。 ALBA目前有10条最先进的实验线站正在运营,包括软X射线和硬X射线,主要用于生物科学、凝聚态物质(磁性和电子特性、纳米科学)和材料科学。此外,还有三条光束线站正在建设中(用于大分子晶体学的微焦点、快速X射线断层扫描和放射学以及光学特性分析)。ALBA现在正在升级,以转变为第四代同步辐射光源,即ALBA II。
  • 最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!
    运用了由cern开发的、nasa在太空中使用过的x射线探测器技术,minipix edu是一款为以教育为用途而设计定价的掌上usb、光子计数型x射线探测器。众星现有该款 minipix edu 光子计数x射线探测器 限量款 现货供应!欢迎新老客户来电垂询:010-86467571;或联系我们的销售工程师,我们也同时提供试用与演示服务。minipix edu 最新到货minipix 验证口罩的放射性粒子防护演示实验图1minipix eduNASA在太空中使用的是标准版minipix。此前标准版minipix就已经出现在欧洲的学校课堂上了,但通常教师和学生的需求对设备的要求没有那么高,所以advacam开发了教育版的minipix,即minipix edu。 教育版初始为实验教学而设计,此外也能用于某些工业应用。它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生将探索不同类型辐射的起源,并了解放射性同位素如何在自然环境和像人类房屋、城市、工业的人造环境中迁移,他们可以了解人们如何从电离辐射和放射性中受益:医学成像方法,工业中的非破坏性测试,用于治疗癌症的核医学方法,安全应用,核电… … minipix edu可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩上、花岗岩、灰烬或纸袋上的放射性强度。图2minipix在高中实验课堂上测验矿物质发出的的辐射类型及强度参数规格如下:感光材料si有效输入面积14 mm x 14 mm像素数量256 x 256像素尺寸55 μm分辨率9 lp/mm读出速度55 frames/s阈值分辨率0.1 kev能量分辨率0.8 kev (thl) and 2 kev (tot)最低能量检测限5 kev for x-rays光子计数率up to 3 x 106 photons/s/pixel读出芯片timepix操作模式counting,time-over-threshold, time-of-arrival接口usb 2.0尺寸89 mm x 21 mm x 10 mm (l x w x h)重量30 g软件pixet pro or ask for radview radiation visualization softwareminipix edu使用非常简单,只需要将其插入pc的usb端口并启动软件,就能观测到神奇的电离粒子图像。 典型图像:图3粒子造成的圆形大斑点,宇宙介子引起的长轨迹,电子造成的弯曲、蠕虫形状,伽玛射线或x射线产生的小点图4有时会观察到更罕见的现象:δ电子,反冲核,两个或多个核跃迁的级联,质子轨道 相关阅读https://www.instrument.com.cn/netshow/SH102943/news_554493.htmhttps://www.instrument.com.cn/netshow/SH102943/news_553389.htmhttps://www.instrument.com.cn/netshow/SH102943/news_540282.htmhttps://www.instrument.com.cn/netshow/SH102943/news_538177.htmhttps://www.instrument.com.cn/netshow/SH102943/news_515926.htmadvacam s.r.o.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和x射线成像解决方案。advacam最核心的技术特点是其x射线探制器(应用timepix芯片)、没有拼接缝隙(no gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。advacam同nasa(美国航空航天局)及esa(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克advacam公司在中国区的总代理,也在积极探索和推广光子计数x射线探测技术在中国市场的应用,目前已有众多客户将minipix、advapix和widepix成功应用于空间辐射探测、x射线小角散射、x射线光谱学、x射线应力分析和x射线能谱成像等领域。
  • 免费试用/国内现货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!
    运用了由CERN开发的、NASA在太空中使用过的X射线探测器技术,MiniPIX EDU是一款为以教育为用途而设计和定价的微型USB、光子计数X射线探测器。MiniPIX EDUNASA在太空中使用的是标准版MiniPIX。此前标准版MiniPIX就已经出现在欧洲的学校课堂上了,但通常教师和学生的需求对设备的要求没有那么高,所以ADVACAM开发了教育版的MinIPIX,即MiniPIX EDU。 教育版初始为实验教学而设计,此外也能用于某些工业应用。它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生将探索不同类型辐射的起源,并了解放射性同位素如何在自然环境和像人类房屋、城市、工业的人造环境中迁移,他们可以了解人们如何从电离辐射和放射性中受益:医学成像方法,工业中的非破坏性测试,用于治疗癌症的核医学方法,安全应用,核电̷̷MiniPIX EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩上、花岗岩、灰烬或纸袋上的放射性强度。 MiniPIX在高中实验课堂上测验矿物质发出的的辐射类型及强度参数规格如下:感光材料Si有效输入面积14 mm x 14 mm像素数量256 x 256像素尺寸55 μm分辨率9 lp/mm读出速度55 frames/s阈值分辨率0.1 keV能量分辨率0.8 keV (THL) and 2 keV (ToT)最低能量检测限5 keV for X-rays光子计数率up to 3 x 106 photons/s/pixel读出芯片Timepix操作模式Counting,Time-over-Threshold, Time-of-Arrival接口USB 2.0尺寸89 mm x 21 mm x 10 mm (L x W x H)重量30 g软件Pixet PRO or ask for RadView radiation visualization softwareMiniPIX EDU使用非常简单,只需要将其插入PC的USB端口并启动软件,就能观测到神奇的电离粒子图像。 典型图像:粒子造成的圆形大斑点,宇宙介子引起的长轨迹,电子造成的弯曲、蠕虫形状,伽玛射线或X射线产生的小点有时会观察到更罕见的现象:δ电子,反冲核,两个或多个核跃迁的级联,质子轨道现货供应:MinIPIX EDU光子计数X射线探测器有大量现货供应,如需询购,欢迎新老客户致电众星联恒:010-86467571,或联系我们的销售工程师,我们也可提供试用与演示服务。MiniPIX EDU 相关阅读https://www.instrument.com.cn/netshow/SH102943/news_554493.htmhttps://www.instrument.com.cn/netshow/SH102943/news_553389.htmhttps://www.instrument.com.cn/netshow/SH102943/news_540282.htmhttps://www.instrument.com.cn/netshow/SH102943/news_538177.htmhttps://www.instrument.com.cn/netshow/SH102943/news_515926.htmAdvacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探制器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制