当前位置: 仪器信息网 > 行业主题 > >

芯片点样仪

仪器信息网芯片点样仪专题为您提供2024年最新芯片点样仪价格报价、厂家品牌的相关信息, 包括芯片点样仪参数、型号等,不管是国产,还是进口品牌的芯片点样仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芯片点样仪相关的耗材配件、试剂标物,还有芯片点样仪相关的最新资讯、资料,以及芯片点样仪相关的解决方案。

芯片点样仪相关的论坛

  • 【求购】芯片\Bio—Dot生物芯片点样技术及需注意的技术问题

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=96518]芯片Bio—Dot生物芯片点样技术及需注意的技术问题[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=96518]芯片\Bio—Dot生物芯片点样技术及需注意的技术问题[/url]

  • 【讨论】来讨论一下基因芯片中的点样仪吧

    最近在考虑基因芯片配置的问题,听到了两种不同的说法。一说点样仪是历史的产物,由于自己点样在可靠性方面存在疑问,其会被商品化的芯片制作所取代另一说是点样仪可以根据自己的需要进行点样,灵活性强而且节约成本,很多单位都会选择购买点样仪感觉是各有道理,是从两个不同的方面来考虑一个问题。但这两方商家都各代表自身的利益,我也不好随便相信谁。想在这里问问大家,你们怎么看待这个问题?两个角度你们更看重哪一个?你所在单位或学校购买了点样仪么?

  • ZT 生物芯片的构建和阅读

    芯片的构建和阅读 Vivian G. Cheung, Michael Morley, Francisco Aguilar, Aldo Massimi, Raju Kucherlapati & Geoffrey Childs 联合基因科技有限公司 吴凌凌 译  摘要   制作芯片和获得芯片的数据有许多不同的方法。这里我们介绍了在学术领域中两种芯片的构建和使用。除了详细说明了技术细节外,我们还对组成和方法的优缺点进行了评论,同时还介绍了杂交的方法。用我们所建立和使用芯片的方法来回答生物领域问题的事实证明了这种技术在大学的环境下是可行的。   一种获得基因功能信息的高通量的方法是cDNA芯片。在一块显微镜载玻片上包含了几百至几千个固定的DNA样本,以类似于Northern blot 和 Southern blot的方法进行杂交。了解了这个方法后,我们决定在我们各自的实验室Pennsylvania大学(Penn)和Albert Einstein学院医学部(AECOM)制作了高速,高精度的芯片。这个设备是由Stanford医学院Pat Brown制造的,第一次论证了这个方法的可行性。我们的目标是(1)最终以合理的价格,用一块或几块芯片来检测哺乳动物细胞中每个基因的表达,(2)发展以芯片为基础的绘图方法,(3)兼顾硬件和超作方法,尽可能地提高灵敏度。   玻片的优势   一个理想化的支持物允许探针有效地固定在其表面,探针与目标分子能牢固地杂交结合。与另一种用于制作芯片的标准支持物尼龙一样,玻璃有许多的优点。它也有其特长。首先,DNA样品以共价键的形式结合在处理过的玻片上。第二,玻璃是一种耐用的材料,能够耐高温和高离子强度溶液的洗涤。第三,玻璃不是多孔材料,使杂交的容量能保持在最小,因此能提高探针与目标分子的退火效率。第四,由于材料的低荧光性,不会有背景的影响。最后,两种不同的探针能够标上两种不同的荧光标记,在一片芯片上同一个反应中同时孵育;尼龙就受到连续或平行杂交的限制。   芯片需要大量的探针固定(或排列)在玻片上,这里我们描述了AECOM芯片,扫描仪以及进行了关于设计和操作的讨论。如果想得到关于Penn芯片的信息,请到http://w95vcl.neuro.chop.edu/vcheung查找。   自动化装置性质   AECOM点样仪,Albert,产生高密度的分隔的矩阵,矩阵包括cDNA、基因组DNA或其他类似的生物物质。机械的基本组成有计算机控制的三轴向的机械手和独特笔尖装置。   设计特点   机械手被设计成能自动从96或384孔的微量滴定板中选取样本,12支点样笔同时升起,每个点样笔收集了250-500nl溶液,在每块玻片上放置0.25-1nl,产生的点的大小范围直径为100-150μm。机械手是由设置好的程序控制的,能进行连续的点样,每一点避免与相邻的点接触,每点的中心距离大约为200-250μm。检测的精密度大约是10μm。机械手放置在可视工作平台上(Newport公司),允许放置大量的显微镜玻片,微量滴定板,三个洗涤装置和一个干燥装置。   洗涤装置是个固定的容器,装有蒸馏水,两次微量滴定板使用后需要更换。当笔尖浸过液体后,机械手要来回摇动点样笔(大约5Hz)来增加清洁程度。虽然我们认为没必要,但电脑控制的洗涤液可用超声波或流动的水来替代。干燥装置实际上是干/湿真空吸尘器(Sear公司,美国),接头与插入笔尖的限制插口相匹配。干燥器要做到在笔尖有快速流动的空气围绕,保持局部真空。   所设计的机械手的重要目的是要达到在最小的震动范围内的高速和高精确性。我们使用了保湿的可视工作平台,精密螺旋驱动地机械滑动,高分辨率的解码器的随动系统和沿着x轴方向的两侧支杆,避免了在一些系统中所见的悬臂结构。利用第二x轴的滑面来增加系统的固定性,能依次产生更快的定位以及通过工作平台的准确一致性。这些特点允许在精确率下的快速运动,使机械手能在一秒内对两块显微镜载玻片操作。   带有笔尖的点样笔支持物装置是一个重要的部分。我们的设计结合了线形运动,控制点样笔的方向,允许在最小的阻力下精确地纵轴运动,以防止在其他方向上的错位。我们设计的另一个独特之处是可调整的末端丝,允许在10μm的范围内校直每个点样笔的轴,以保证所有12支笔尖能在同一时间内接触显微镜玻片。而另一个没有这特点的设计需要与点样笔的精确长度一致以适应多点样笔的操作。每个点样笔由低强度的弹簧作为支持,保证在未接触表面时能回到伸展的位置。笔尖是由直径大约为1.6mm的不锈钢材料逐渐处理变细直至每点直径为100μm。再沿着中心垂直切割,在尖端分成两部分,每部部分5μm。   这个系统由可视基础程序控制的,在Microsoft Windous NT环境下运行,软件提供:印刷程序具体化;完成系统校正;显示真正地时间位置、速度和产生的错误;与其他功能参数一样重要的随动系统;动态地显示打印过程中的重要参数。随动系统控制的计算机中的插件能够动态地控制高速、复杂的机械手的动力,并设计成以它的运动来控制程序的语言。可视原理和随动插件运动控制程序相互作用,交换了参数、图象和所需的命令。微量滴定板的同一性是由扫描它的阅读器所决定的。由于有笔尖易被灰尘和纤维阻碍的问题,打印机现在被附上了软保护壁允许三个方向的随意进入并且合并了高效率效式空气过滤与吹风机以达到湿气的再流通。

  • 生物芯片入门:制作和结果分析

    芯片的构建和阅读 Vivian G. Cheung, Michael Morley, Francisco Aguilar, Aldo Massimi, Raju Kucherlapati & Geoffrey Childs 联合基因科技有限公司 吴凌凌 译  摘要   制作芯片和获得芯片的数据有许多不同的方法。这里我们介绍了在学术领域中两种芯片的构建和使用。除了详细说明了技术细节外,我们还对组成和方法的优缺点进行了评论,同时还介绍了杂交的方法。用我们所建立和使用芯片的方法来回答生物领域问题的事实证明了这种技术在大学的环境下是可行的。   一种获得基因功能信息的高通量的方法是cDNA芯片。在一块显微镜载玻片上包含了几百至几千个固定的DNA样本,以类似于Northern blot 和 Southern blot的方法进行杂交。了解了这个方法后,我们决定在我们各自的实验室Pennsylvania大学(Penn)和Albert Einstein学院医学部(AECOM)制作了高速,高精度的芯片。这个设备是由Stanford医学院Pat Brown制造的,第一次论证了这个方法的可行性。我们的目标是(1)最终以合理的价格,用一块或几块芯片来检测哺乳动物细胞中每个基因的表达,(2)发展以芯片为基础的绘图方法,(3)兼顾硬件和超作方法,尽可能地提高灵敏度。   玻片的优势   一个理想化的支持物允许探针有效地固定在其表面,探针与目标分子能牢固地杂交结合。与另一种用于制作芯片的标准支持物尼龙一样,玻璃有许多的优点。它也有其特长。首先,DNA样品以共价键的形式结合在处理过的玻片上。第二,玻璃是一种耐用的材料,能够耐高温和高离子强度溶液的洗涤。第三,玻璃不是多孔材料,使杂交的容量能保持在最小,因此能提高探针与目标分子的退火效率。第四,由于材料的低荧光性,不会有背景的影响。最后,两种不同的探针能够标上两种不同的荧光标记,在一片芯片上同一个反应中同时孵育;尼龙就受到连续或平行杂交的限制。   芯片需要大量的探针固定(或排列)在玻片上,这里我们描述了AECOM芯片,扫描仪以及进行了关于设计和操作的讨论。如果想得到关于Penn芯片的信息,请到http://w95vcl.neuro.chop.edu/vcheung查找。   自动化装置性质   AECOM点样仪,Albert,产生高密度的分隔的矩阵,矩阵包括cDNA、基因组DNA或其他类似的生物物质。机械的基本组成有计算机控制的三轴向的机械手和独特笔尖装置。   设计特点   机械手被设计成能自动从96或384孔的微量滴定板中选取样本,12支点样笔同时升起,每个点样笔收集了250-500nl溶液,在每块玻片上放置0.25-1nl,产生的点的大小范围直径为100-150μm。机械手是由设置好的程序控制的,能进行连续的点样,每一点避免与相邻的点接触,每点的中心距离大约为200-250μm。检测的精密度大约是10μm。机械手放置在可视工作平台上(Newport公司),允许放置大量的显微镜玻片,微量滴定板,三个洗涤装置和一个干燥装置。   洗涤装置是个固定的容器,装有蒸馏水,两次微量滴定板使用后需要更换。当笔尖浸过液体后,机械手要来回摇动点样笔(大约5Hz)来增加清洁程度。虽然我们认为没必要,但电脑控制的洗涤液可用超声波或流动的水来替代。干燥装置实际上是干/湿真空吸尘器(Sear公司,美国),接头与插入笔尖的限制插口相匹配。干燥器要做到在笔尖有快速流动的空气围绕,保持局部真空。   所设计的机械手的重要目的是要达到在最小的震动范围内的高速和高精确性。我们使用了保湿的可视工作平台,精密螺旋驱动地机械滑动,高分辨率的解码器的随动系统和沿着x轴方向的两侧支杆,避免了在一些系统中所见的悬臂结构。利用第二x轴的滑面来增加系统的固定性,能依次产生更快的定位以及通过工作平台的准确一致性。这些特点允许在精确率下的快速运动,使机械手能在一秒内对两块显微镜载玻片操作。   带有笔尖的点样笔支持物装置是一个重要的部分。我们的设计结合了线形运动,控制点样笔的方向,允许在最小的阻力下精确地纵轴运动,以防止在其他方向上的错位。我们设计的另一个独特之处是可调整的末端丝,允许在10μm的范围内校直每个点样笔的轴,以保证所有12支笔尖能在同一时间内接触显微镜玻片。而另一个没有这特点的设计需要与点样笔的精确长度一致以适应多点样笔的操作。每个点样笔由低强度的弹簧作为支持,保证在未接触表面时能回到伸展的位置。笔尖是由直径大约为1.6mm的不锈钢材料逐渐处理变细直至每点直径为100μm。再沿着中心垂直切割,在尖端分成两部分,每部部分5μm。   这个系统由可视基础程序控制的,在Microsoft Windous NT环境下运行,软件提供:印刷程序具体化;完成系统校正;显示真正地时间位置、速度和产生的错误;与其他功能参数一样重要的随动系统;动态地显示打印过程中的重要参数。随动系统控制的计算机中的插件能够动态地控制高速、复杂的机械手的动力,并设计成以它的运动来控制程序的语言。可视原理和随动插件运动控制程序相互作用,交换了参数、图象和所需的命令。微量滴定板的同一性是由扫描它的阅读器所决定的。由于有笔尖易被灰尘和纤维阻碍的问题,打印机现在被附上了软保护壁允许三个方向的随意进入并且合并了高效率效式空气过滤与吹风机以达到湿气的再流通。

  • 【分享】基因芯片的制备

    1 原位光刻合成寡聚核苷酸原位光刻合成技术是由Affymetrix公司开发的,采用的技术原理是在合成碱基单体的5'羟基末端连上一个光敏保护基。合成的第一步是利用光照射使羟基端脱保护,然后一个5'端保护的核苷酸单体连接上去,这个过程反复进行直至合成完毕。使用多种掩盖物能以更少的合成步骤生产出高密度的阵列,在合成循环中探针数目呈指数增长。某一含n个核苷酸的寡聚核苷酸,通过4×n个化学步骤能合成出4n个可能结构。例如:一个完整的十核苷酸通过32个化学步骤,8个小时可能合成65,536个探针。  2 原位喷印合成 芯片原位喷印合成原理与喷墨打印类似,不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基等液体而不是碳粉。喷印头可在整个芯片上移动并根据芯片上不同位点探针的序列需要将特定的碱基喷印在芯片上特定位置。该技术采用的化学原理与传统的DNA固相合成一致,因此不需要特殊制备的化学试剂。  3 点样法 点样法是将合成好的探针、cDNA或基因组DNA通过特定的高速点样机器人直接点在芯片上。采用的机器人有一套计算机控制三维移动装置;多个打印/喷印针的打印/喷印头;一个减震底座,上面可放内盛探针的多孔板和多个芯片。根据需要还可以有温度和湿度控制装置;针洗涤装置。打印/喷印针将探针从多孔板取出直接打印或喷印于芯片上。直接打印时针头与芯片接触,而在喷印时针头与芯片保持一定距离。打印法的优点是探针密度高,通常1平方厘米可打印2,500个探针。缺点是定量准确性及重现性不好, 打印针易堵塞且使用寿命有限。喷印法的优点是定量准确,重现性好,使用寿命长。缺点是喷印的斑点大,因此探针密度低,通常只有1平方厘米400点。国外有多家实验室和公司研究开发打印/喷印设备,目前有一些已经商品化。军事医学科学院目前正在利用打印/喷印技术进行生物芯片的研究和开发,预计2年内将有用于实验室研究或临床诊断的基因芯片产品问世。  4 电子芯片电子芯片是由美国Nanogen公司开发的,目前国内清华大学和复旦大学也在开发这一技术。这种芯片为带有阳电荷的硅芯片、芯片经热氧化,制成1mm(1mm的阵列、每个阵列含多个微电极,在每个电极上通过氮化硅沉积和蚀刻制备出样品池。将链连接亲和素的琼脂糖覆盖在电极上,在电场作用下生物素标记的探针即可结合在特定电极上。电子芯片的最大特点是杂交速度快,可大大缩短分析时间。制备复杂、成本高是其不足。  5 三维芯片三维芯片是由美国的Packard、摩托罗拉、Argonne国家实验室三家机构与俄罗斯Engelhardt分子生物学研究所合作开发的一种芯片技术。三维生物芯片的实质上是一块显微镜载玻片,其上有10,000个微小聚乙烯酰胺凝胶条,每个凝胶条可用于靶DNA,RNA和蛋白质的分析。先把已知化合物加在凝胶条上,用3cm长的微型玻璃毛细管将待测样品加到凝胶条上。每个毛细管能把小到0.2nl的体积打到凝胶上。以上几家机构构合作研究的生物芯片系统具有其它生物芯片系统不具有的几个优点。一是凝胶条的三维化能加进更多的已知物质,增加了敏感性。二是可以在芯片上同时进行扩增与检测。一般情况下,必须在微量多孔板上先进行PCR扩增,再把样品加到芯片上,因此需要进行许多额外操作。本芯片所用凝胶体积很小,使PCR扩增体系的体积减小1,000倍(总体积约纳升级),从而节约了每个反应所用的PCR酶(约减少100倍)。三是以三维构象形式存在的蛋白和基因材料可以其天然状态在凝胶条上分析,可以进行免疫测定,受体-配体研究和蛋白组分析。  6 流过式芯片(flow-thru chip) Gene Logic 正在开发一种在芯片片基上制成格栅状微通道,Gene Logic设计及合成特定的寡核苷酸探针,结合于微通道内芯片的特定区域。从待测样品中分离DNA或RNA并对其进行荧光标记,然后,该样品流过芯片,固定的寡核苷酸探针捕获与之相互补的核酸,采用Gene Logic's信号检测系统分析结果。流通式芯片用于高通量分析已知基因的变化,其特点在于(1)敏感性高:由于寡核苷酸吸咐表面的增大,流过式芯片可监测稀有基因表达的变化;(2)速度快:微通道加速了杂交反应,减少了每次检测所需时间;(3)价格降低:由于采用了特殊的共价化学技术将寡核苷酸吸咐于微通道内,使每一种流过式芯片可反复使用多次,从而使其成本降低。

  • 各个领域的“基因芯片”

    基因芯片及其在病原微生物检测中的应用基因芯片是近年来迅速发展的一门生物高新技术,它以其能够快速、高效、大规模地同步检测生物遗传信息的卓越功能而得到发展。在基因测序、基因表达分析、药物筛选、基因诊断等领域显示出重要的理论和实用价值。基因芯片是指应用大规模集成电路的微阵列技术。在固相支持物表面(常用的固相支持物有玻璃、硅片、尼龙膜等载体)有规律地合成数万个代表不同基因的寡核苷酸“探针”或液相合成探针后由点样器有规律地点样于固相支持物表面;然后将要研究的目的材料中的DNA、RNA或用cDNA同位素或荧光物标记后,与固相支持物表面的探针进行杂交,通过放射自显影或荧光共聚焦显微镜扫描,对这些杂交图谱进行检测;再利用计算机对每一个探针上的杂交信号作分析处理,便可得到目的材料中有关基因表达信息。该技术可将大量的探针同时固定于支持物上,所以一次可对大量核酸分子进行检测分析。基因芯片分类基因芯片按其片基不同可分为无机片基芯片和有机合成片基芯片:如果按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片;如果按其结构不同可分为DNA阵列和寡核苷酸芯片;如果按其制备方法不同可分为原位合成芯片和合成后交联芯片。目前,常用于基因芯片制作的固相支持物主要包括半导体硅片、普通玻璃片、尼龙膜等基质。它们各有优缺点,可根据不同的用途和目的选择使用。用硅片制作的芯片,其DNA探针排列的密度高,在1.28cm芯片上,可达40万点阵。检测灵敏度高但专一性差。用玻璃制作的芯片,可用于双色荧光标记杂交,便于杂交信号的检测,但其灵敏度低,而且对玻璃片的处理要求高。尼龙膜主要用于制作eDNA芯片,即将不同的eDNA片断点阵于尼龙膜上,它可用同位素标记检测,灵敏度高,专一性好,但是DNA阵列的密度低。DNA探针的制备及固化探针的制备及固化有2种方法:①在片基上原位合成寡核苷酸;②在片基以外制备DNA探针,并以显微打印等手段将其固化于片基上。作者介绍了待测DNA样品的制备、标记样品与基因芯片杂交、杂交信息的检测与分析、操作过程中存在的问题及解决办法。基因芯片可以对病原细菌检测、病毒的检测及其他方面如支原体检测等。问题和展望基因芯片在病原微生物检测中具有快速、灵敏、高通量、自动化等特点。但目前仍面临一些问题有待解决,这些问题主要体现在硬件和软件2个方面。在硬件方面,DNA芯片技术需要昂贵的尖端仪器,如生产原位合成芯片需要光刻机器和寡核苷酸合成仪;构建DNA微集阵列的自动仪器约需8万美元以上,而检测芯片则要激光共聚焦显微镜、落射荧光显微镜等设备,费用较高。在软件(即技术)上也存在一些问题。首先,探针制备的环节上,原位合成寡核苷酸技术复杂,且有专利保护,合成过程中有可能插入错误核苷酸或混入杂质,降低了特异性和信噪比;显微打印技术较灵活,易实现,但需收集或合成大量探针,且阵列的集成度不高。其次,在样品和芯片杂交的环节上 ,因为杂交在固相上进行,空间因素会对杂交造成不利影响;还有,在一个芯片上存在多种探针,这对杂交条件是个挑战,因为这种探针的最适条件未必适合另一种探针;而且,复杂的探针如长寡核苷酸容易自身形成二 、三级结构,影响与靶序列的杂交或给出错误的阴性信号,当然在其它技术环节上也存在着一些难题,如样品准备复杂、检测的灵敏度低等。虽然基因芯片技术在多个环节上有待提高,但它在生命科学及相关领域中已呈现出广阔的应用前景,相信随着研究的不断深入和技术的更加完善,基因芯片会成为基础研究和临床应用的强有力工具。

  • 【求购】生物芯片基本参数

    生物芯片基本参数   制作生物芯片用载玻片尺寸: 25×76×1.03 mm  实际点样区域最大可达: 22×73 mm  样点大小(直径)通常为: 75~500μm  样点体积(探针溶液)通常为:0.1~0.5nl(100~500μl)  样点所含探针DNA的质量: 0.25~1ng(250~1000μg)例如:样点大小(直径)选定为75μm,样点间距选113μm,则在18×72mm的区域内可点104296个样点,即7901个/cm2。样点大小(μm)样点间距(μm)样点密度(个/cm2)样点总数(个)(点样区域18mm×72mm) 7511379011042961001504444 58667 150225197526074 200300111114667 250375711938730045049465194006002783667 5007501782347   生物信息学和生物芯片技术是生命科学研究领域中的两种新方法和新技术,两者密切相 关。从确定生物芯片检测对象到芯片的设计,从芯片检测结果分析到试验数据管理和信息挖掘,都离不开生物信息学。

  • 生物芯片及应用简介

    生物芯片及应用简介一、简介 生物芯片(biochip)是指采用逛到原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(比如玻璃、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与标记的待检测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分心,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有原件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片、如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量的探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将及其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给要个性等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。

  • 荧光芯片扫描仪

    荧光芯片扫描仪   由于杂交时产生序列重叠,会有成百上千的杂交点出现在图谱上,形成极为复杂的杂交图谱。序列重叠虽然可为每个碱基的正确读出提供足够的信息,可提高序列分析的可靠性,但同时信息处理量也大大增加了。一般说来,这些图谱的多态性处理与存储都由专门设计的软件来完成,而不是通过对比进行人工读谱。用计算机处理即可给出目的基因的结构或表达信息。扫描一张10cm2的芯片大概需要2-6分种的时间。目前专用于荧光扫描的扫描仪根据原理不同大致分为两类:一是激光共聚焦显微镜的原理, 是基于PMT(photomultiplier tube,光电倍增管)的检测系统(另文介绍);另一种是CCD(charge-coupled devices,电荷偶合装置)摄像原理检测光子。CCD一次可成像很大面积的区域,而以PMT为基础的荧光扫描仪则是以单束固定波长的激光来扫描,因此或者需要激光头,或者需要目的芯片的机械运动来使激光扫到整个面积,这样就需要耗费较多的时间来扫描;但是CCD有其缺点:目前性能最优越的CCD数字相机的成像面积只有16×12mm(像素为10μm),因此要达到整个芯片的面积20×60mm的话,需要数个数码相机同时工作,或者也可以以降低分辨率为代价来获得扫描精度不是很高的图像。由于灵敏度和分辩率较低,比较适合临床诊断用。   生产商业化扫描仪的公司包括:Genomic Solutions公司、Packard公司、GSI公司、Molecular Dynamics、Genetic Microsystems公司、Axon ?Instruments公司等。其中GSI Lumonics 公司ScanArray 系列一直是生物芯片扫描检测系统中的领头产品。2000GSI并入著名的Parkard公司后ScanArray的软、硬件都得到进一步加强。   ScanArray利用其专利的激光共聚焦光学系统,通过计算机控制,对生物芯片的荧光杂交信号进行全自动的扫描采集,并通过分析软件对数据结果进行定量分析。  最高灵敏度高:0.1荧光分子/μm  扫描精度可从5μm-50μm分级调整  全范围扫描时间仅需5分钟,快速方便  多达十种检测滤光片,涵盖所有生物芯片荧光染料的检测,适用于多种荧光标记探针   不同波长依次扫描避免交叉光污染  扫描后的图像还需要进一步的处理,这要求一定的软件支持。现有的分析软件包括:Biodiscovery的ImaGene系列,Axon Instruments的GenePix系列,GSI的QuantArray等  3. 基因芯片上各克隆荧光信号的分析原理   用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5)(2),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到到有关基因图谱。美国GSI ?Lumonics 公司开发出专专业基因芯片检测系统(ScanArray 系列),采用激光共聚焦扫描原理进行荧光信号采集,由计算机处理荧光信号,并对每个点的荧光强度数字化后进行分析。利用QuantArray软件包对扫描的荧光信号进行分析,比  较每个克隆在不同组织间表达水平的差别。软件具体分析步骤如下:   首先,同时导入同一区域两个channel扫描的图像文件;将两个channel扫描的图像用不同的颜色显示并重叠;选择拟分析的区域,输入矩阵的行数及列数以及矩阵的个数等参数;在计算机给出的该区域信号图片上标定网格,使得网格中所包含的横线和竖线的交点个数同每个区域点样的克隆数相同,调整网格,使每个交点均位于点样克隆信号的中心;信号的中心确定后,计算机将自动以交点为中心,按照设定的半径圈定各克隆,并将其内部区域作为待分析的信号,同时在圈定的各克隆周围再按照预设的值圈定一定范围的区域,将该区域内的信号作为背景噪音;计算机分析每个克隆扣除背景噪音后的信号强度,并按照不同的要求对数据进行分析;利用GenePie方式对两个channel信号的进行定量比较分析,此时计算机根据各克隆两个channel扫描的信号,以饼图的形式给出两个channel信号强度的相对比例,同时可以逐个克隆读取计算机分析出的两个channel信号的值及所占的比例,进而确定各克隆在两种组织间的表达差异。  4. Microarray数据分析   Microarray数据分析简单来说就是对Microarray高密度杂交点阵图象处理并从中提取杂交点的荧光强度信号进行定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。   Microarray数据分析主要包括图象分析(Biodiscovery Imagene 4.0\Quantarray分析软件)、标准化处理(normalization)、Ratio值分析、基因聚类分析(Gene Clustering)。   1. 图象分析:激光扫描仪Scaner得到的Cy3/Cy5图象文件通过划格(Griding),确定杂交点范围,过滤背景噪音,提取得到基因表达的荧光信号强度值,最后以列表形式输出。   2. 标准化处理(Normalization):由于样本差异、荧光标记效率和检出率的不平衡,需对cy3和cy5的原始提取信号进行均衡和修正才能进一步分析实验数据,Normalization正是基于此种目的。Normalization的方法有多种:一组内参照基因(如一组看家基因)校正Microarray所有的基因、阳性基因、阴性基因、单个基因。   3. Ratio分析(Ratio Analysis):cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此域值范围会根据可信区间有所调整。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图、原始图象拼图等。将每个Spot的所有相关信息如位标、基因名称、克隆号、PCR结果、信号强度、Ratio值等自动关联并根据需要筛选数据。每个Spot的原始图象另存文件,可根据需要任意排序,得到原始图象的拼图,对于结果分析十分有利。   4. 聚类分析(Clustering Analysis):实际是一种数据统计分析。通过建立各种不同的数学模型,可以得到各种统计分析结果,确定不同基因在表达上的相关性,从而找到未知基因的功能信息或已知基因的未知功能。Gene Clustering就是根据统计分析原理,对具有相同统计行为的多个基因进行归类的分析方法,归为一个簇的基因在功能上可能相似或关联。目前以直观图形显示GeneCluster结果的程序已有人开发出来,可将抽象的数据结果转化成直观的树形图,便于研究人员理解和分析。  尽管基因芯片技术受到了广泛关注,但在基因表达谱分析中起着关键作用的生物信息学却没能引起大家的足够重视,认为简单人工处理一下原始数据就可以得到有价值的生物学信息,大量有价值的信息就这样被浪费和湮没了。可以肯定地说,没有生物信息学的有效参与,基因芯片技术就不能发挥最大效能。加大基因芯片技术中生物信息学的研究开发力度已成为当务之急。国内外已经进行了有益的尝试,初步开发出供芯片平台管理实验数据的软件包,就目前实际情况来看,生物信息学在基因芯片研究开发中介入的程度已经越来越深,主要涉及基因表达信息分析管理系统及其分析工具和分析方法,简单概括为以下几个方面:

  • 生物芯片入门:生物芯片及应用简介

    一、简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因组计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。二、应用领域1、基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。2、基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3、药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。4、个体化医疗临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3~12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。5、测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。据未经证实的报道,近年有一种不成熟的生物芯片在15分钟内完成了1.6万个碱基对的测定,96个这样的生物芯片的平行工作,就相当于每天1.47亿个碱基对的分析能力!

  • 基因芯片技术知识概要

    生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP(human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学),涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术。一、什么是基因芯片生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交的芯片。基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization,SBH)。即任何线状的单链DNA或RNA序列均可被分解为一个序列固定、错落而重叠的寡核苷酸,又称亚序列(subsequence)。例如可把寡核苷酸序列TTAGCTCATATG分解成5个8nt亚序列:  (1) CTCATATG  (2) GCTCATAT  (3) AGCTCATA  (4) TAGCTCAT  (5) TTAGCTCA这5个亚序列依次错开一个碱基而重叠7个碱基。亚序列中A、T、C、G4个碱基自由组合而形成的所有可能的序列共有65536种。假如只考虑完全互补的杂交,那么48个8nt亚序列探针中,仅有上述5个能同靶DNA杂交。可以用人工合成的已知序列的所有可能的n体寡核苷酸探针与一个未知的荧光标记DNA/RNA序列杂交,通过对杂交荧光信号检测,检出所有能与靶DNA杂交的寡核苷酸,从而推出靶DNA中的所有8nt亚序列,最后由计算机对大量荧光信号的谱型(pattern)数据进行分析,重构靶DNA 的互补寡核苷酸序列。二、芯片类型一般基因芯片按其材质和功能,基本可分为以下几类:(一)元件型微阵列芯片1 .生物电子芯片2 .凝胶元件微阵列芯片3 .药物控释芯片(二) 通道型微阵列芯片1.毛细管电泳芯片2 .PCR扩增芯片3 .集成DNA分析芯片4 .毛细管电层析芯片(三)生物传感芯片1 .光学纤维阵列芯片2 .白光干涉谱传感芯片小鼠基因表达谱芯片(MGEC)附:目前国内基因芯片常见品种(上海博星公司)http://www.biomart.cn/upload/asset/2008/08/01/1217591301.gifhttp://www.biomart.cn/upload/asset/2008/08/01/1217591302.gifhttp://www.biomart.cn/upload/asset/2008/08/01/1217591303.gif

  • 【转帖】残留知识普及一百篇之十四【生物芯片的技术核心】

    所有的生物芯片技术都包含四个基本要点:芯片的制作、杂交或反应、测定或扫描、数据处理。生物芯片的技术核心是芯片的制备及反应信号的检测。 1、芯片制备技术 目前制备芯片的方法基本上可分为两大类:一类是原位合成(in situ Synthesis);一类是合成后交联(post-synthesis attachment)。原位合成是目前制造高密度寡核苷酸芯片最为成功的方法。在制备基因芯片时要考虑阵列的密度、再生性、操作的简便性、成本的高低等几方面的因素。 具体而言,比较典型的DNA芯片制备方法有4种:第一种方法是Affymetrix公司开发的光引导原位合成法,该方法是微加工技术中光刻工艺与光化学合成法相结合的产物。第二种方法是Incyte Pharmaceutical公司采用的化学喷射法,该方法是将合成好的核昔酸探针定点喷射到芯片上并加以固定化来制作DNA芯片。第三种方法是斯坦福大学研制的接触式点涂法。在DNA芯片制备中通过高速精密机械手的精确移动让移液头与玻璃芯片接触,而将DNA探针涂敷在芯片上。第四种方法是通过使用4支分别装有A,T,G,C核昔的压电喷头在芯片上并行地合成出DNA探针。 光引导合成法与喷墨打印法、合成点样法相比,最大的优点是,它可以合成密度极高的阵列;但它的最大缺点是耗时、操作复杂,而且为保证在不同位点加上不同的单体,从而在不同的位点合成不同的探针,需要不断更换不同的蔽光膜,对一个含25个碱基的探针的微阵列,一般需更换100个蔽光膜,需一天多的时间才能完成。合成点样法虽然芯片上探针的密度相对较低,每个样品都要预合成、纯化,在芯片制备前还需妥善保存合成的探针,但是它的最大优点是操作简便。目前很多公司采用这种方法来制备芯片。 2、样品制备技术 生物样品往往是各种组分的混合体,成分非常复杂,由于目前的检测体系还不能检测出未扩增的标记样品,所以待测样品DNA在杂交前一般都要进行聚合酶链反应(PCR),在扩增的过程中,对靶DNA进行标记。目前DNA样品的扩增一般是通过液相反应来完成,但由于低浓度核酸很难检测到,在溶液中通过PCR反应获得线性扩增也很困难;另外,不同靶DNA对引物的竞争,意味着某一序列的扩增优于其他序列。为了解决上述问题,一些公司正在研究新的方法。如固相PCR系统,该系统是将2种引物排列在丙烯酰胺膜上,与DNA样品、PCR试剂混合,如样品含有靶序列,则开始扩增反应;通过这种固相PCR体系,可避免对引物的竞争,同时也降低了遗留污染。不过也有不少人试图绕过样品扩增这一问题,如 Mosaic Technologies 公司引入的固相 PCR 方法,引物特异性强,无交叉污染并且省去了液相处理的烦琐; Lynx Therapeutics 公司引入的大规模并行固相克隆法 (Massively parallel solid-phase cloning) ,可在一个样品中同时对数以万计的 DNA 片段进行克隆,且无需单独处理和分离每个克隆。 在芯片飞速发展的今天,样品制备已经成为芯片发展的瓶颈所在。对于较大规模制作芯片的用户,由于点样样品数目太多,即使采用高通量试剂盒还是不够方便。世界上声誉卓著的核酸纯化供应商德国QIAGEN公司推出了全自动核酸和蛋白纯化工作站,该工作站有4个不同的自动纯化系统型号:BioRobot 8000,BioRobot 3000,BioRobot 9604,BioRobot 9600,加上QIAGEN优质的多种配套纯化试剂盒--从质粒、粘粒、RNA、血液基因组DNA、病毒DNA到蛋白,品种丰富,在欧美的生物医学市场上掀起了一场革命,各大分子生物学中心、芯片中心、医学中心争相抢购。 样品获得后要进行标记,目前样品的标记主要是荧光标记。荧光标记基本分为2种,一种是使用荧光标记的引物,一种是使用荧光标记的三磷酸脱氧核糖核苷酸。目前常使用的荧光物质有:荧光素、罗丹明、HEX、TMR、FAM、Cy3、Cy5等。根据扩增产物分离的方法不同,标记的方法也不同:进行单引物标记的,其扩增产物通常由聚丙烯酰胺凝胶电泳分离;对一个引物用生物素标记,另一个引物用荧光素标记的,一般用亲合素偶联的磁珠捕捉其扩增产物,通过变性处理使荧光标记的产物解链。此外,也有用生物素残基标记引物,将生物素标记的扩增产物与芯片杂交,洗涤后加入亲合素连接的荧光物,通过生物素与亲合素的结合及靶序列与探针的结合产生荧光信号,然后利用荧光检测系统对荧光信号进行检测。

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

  • 生物芯片入门:应用

    基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。本文主要讨论基因芯片技术,它为“后基因组计划”时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物筛选、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。1、基本概念基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采用原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了计算机芯片的制备技术,所以称之为基因芯片技术。2、技术基本过程2.1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。2.2 样品DNA或mRNA的准备从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。2.3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。2.4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏、快速,有取代荧光法的趋势。3、应用3.1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。3.2 基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。3.3 基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3.4 药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再用mRNA 构建cDNA表达文库,然后用得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。或者,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。[/

  • 【原创】诊断芯片制备过程的SOP一

    诊断芯片制备过程的SOP1. 靶基因DNA的制备 在分别装有HBV、HCV及植物基因片段的质粒的0.5 ml eppendorf 管中加入100 µ l双蒸水,将质粒稀释至4~6 ng/µ l,作为PCR扩增模板。在50 µ l PCR扩增体系中掺入上述模板1~2 µ l,每种模板做10管,共9种模板,分别包括HBV、HCV及植物基因的片段各3个,每管为50µ l体系。 在0.5 ml eppendorf 管中依次加入下列试剂,组成50µ l PCR扩增体系:ddH2O 41 µ l10  buffer 5 µ l10mmol/L dNTP 1 µ l10mmol/L primer 1 µ ltemplate(HBV、HCV及植物基因) 1 µ lTaq 酶 0.5 µ l 混合后,将eppendorf管置于MJ Research PTC-225 PCR仪中按下列程序进行PCR反应: ①95℃ 90 sec ②95℃ 30 sec ③58℃ 30 sec ④72℃ 30 sec ⑤goto② for 35 cycles ⑥72℃ 300 sec ⑦4℃ forever(待机) ⑧END 将PCR产物(10管)合并,经电泳确定条带的专一性,达到专一条带方可用于点样,同时测OD值,OD260/OD280≥1.8。 PCR产物中加入1/10体积的醋酸钠溶液(浓度为3 mol/L,pH 5.2)及等体积的异丙醇,于-20℃沉淀2 hr后室温干燥。2. 点样 用双蒸水将上述各靶基因的终浓度调至500 ng/µ l,使每个点的点样量达到500 ng,并将384孔板放入Cartesian点样仪内,按设计要求编写点样程序(如下图),再放入表面特殊处理的玻片,启动点样程序(nxl-1),将靶基因的PCR产物点于玻片上,经过0.5 hr水合,再自然干燥,放在4℃保存。 。。。。。。。。。。 。。。。。。。。。。 。。。。。。。。。。 。。。。。。。。。。821阳HBV1HBV5HBV61 SPOTHCV1HCV4HCV5821阴413阳3. 芯片的质量标准 随机抽检上述诊断芯片,必须满足下例条件才是合格产品。3.1 对检测监控系统(由4个对照元素构成):1)821阳为阳性对照1,该植物基因的 RNA在抽提血清RNA时按一定的比例加入到待检的血清样品中,并随着实验流程进行逆转录。若杂交后该样品有杂交信号为正常。 2)1 SPOT阴性对照1,若杂交后检测无信号,表明点样液无污染。3)821阴为阴性对照2,若杂交后检测无信号,表明正常。4)413为阳性对照2,该植物基因DNA在PCR扩增掺入荧光底物时按一定的比例加入到逆转录的产物中,以检测荧光底物的掺入效率。若杂交后该样品有杂交信号为正常。3.2 对疾病诊断系统:1)正常血清不产生任何杂交信号。2)HBV阳性血清在HBV区应为阳性(即有杂交信号) ,在HCV区应为阴性(即无杂交信号)。3)HCV阳性血清在HCV区应为阳性(即有杂交信号) ,在HBV区应为阴性(即无杂交信号)。4)HCV和HBV阳性血清在HCV和HBV区均为阳性(即有杂交信号)。 诊断芯片检测过程的SOP1.血清DNA和RNA模板的抽提1)取血清50 µ l,加入抽提液100 µ l,与100 µ l的氯仿-异戊醇振荡混匀2)2000 rpm离心10分钟3)小心吸取上清( 切不可将酚吸上)4)加入等体积的异丙醇及2 µ l的tRNA,混匀5)-20℃沉淀1小时6)13000 rpm,离心15分钟7)弃上清,加400 µ l的75%的乙醇,13000 rpm 离心5分钟后晾干其中抽提液成分如下:异硫氰酸胍 92.6 g 柠檬酸钠(B46) 13 ml 超纯水 26 ml 十二烷基肌氨酸钠(B17) 13 ml β-巯基乙醇(B10) 1.3 ml 饱和酚 130 ml tRNA (库存半成品) 8.5 ml2.RT-PCR:1)向含RNA沉淀的eppendorf管内,依次加入反转录试剂,成分如下: 超纯水 6µ l 821引物 0.5ul 10 µ mol/L HCV反转录引物 0.5 µ l 0.1 mol/L DTT 1µ l 5 first strand buffer 2 µ l 10 mmol/L dATP-dGTP-dCTP-dTTP mixture 0.25 µ l用手指弹eppendorf管底部充分溶解沉淀,混匀样品,5000 rpm离心5 sec,置于70℃水浴锅内保温5min。2)取出该eppendorf管,置于冰上1 min,5000 rpm离心5 sec。3)向该eppendorf管内加入0.2 µ l SuperScriptⅡ反转录酶,用手指弹eppendorf管底部10次,混匀样品,5000 rpm离心5 sec,置于42℃水浴锅内保温20 min。4)从水浴锅内取出eppendorf管,备用。吸取10ul的RT产物入0.2ul的薄壁管再加入PCR-mixtureⅠ如下: ddH2O 31.5 µ l10×Buffer 5 ul10mmol/L dNTP 1ul 10mmol/L HCV primer 1ul10mmol/L 821引物 1ul Taq酶 0.5ul将薄壁管置于MJ Research PTC-225 PCR仪中按下列程序进行PCR反应: ①95℃ 1.5 min ②95℃ 30 sec ③55℃ 30 sec ④72℃ 1min ⑤Goto② for 35 cycles ⑥72℃ 5 min 4. PCR标记探针吸取5 µ l步骤3中制备的PCR产物于0.2 ml 薄壁管管中,并加入PCR-mixtureⅡ试剂,成分如下: ddH2O 30µ l10 Buffer 5 µ l10 mmol/L dATP-dGTP-dCTP mixture 1 µ l1 mmol/L dUTP 1 µ l10 µ mol/L HCV primer mixtureHBV primer mixture812 primer mixture413 primer mixture 各 1 µ l413PCR产物 1 ul 尿嘧啶糖基化酶 0.5U再加入标记试剂:0.1 mmol/L Cy5-dUTP 1µ l Taq酶 0.5 µ l用手指弹eppendorf管底部10下,混匀样品。1) 将薄壁管置于MJ Research PTC-225 PCR仪中按下列程序进行PCR反应:①95℃ 1.5 min②95℃ 30 sec ③58℃ 30 sec ④72℃ 30sec ⑤Goto② for 35 cycles ⑥72℃ 5 min ⑦4℃ forever(待机) ⑧END2) 取出薄壁管,-20℃蔽光保存。4. 杂交1) 将3中制备的探针于真空抽干机中抽干,加入6.6µ l预热的杂交试剂Ⅰ溶液,在避光条件下充分振荡溶解探针,再加入6.6ul杂交试剂Ⅱ,混匀后于5000 rpm离心10 sec。2) 将溶解的探针和待杂交的玻片置于95℃的水浴锅内变性2min。 3) 将变性好的探针避光冰浴, 将变性好的玻片插入到盛有无水乙醇的染色缸内室温放置30 sec,取出, 置于95℃水浴锅外罩上烤干。4) 取13 µ l的上述探针,滴于玻片上,用镊子上端将18 18mm 盖玻片盖于其上,玻片置于专用玻片盒中,封上PARAFILM。5) 将玻片盒置于6层纱布的湿润的饭盒内,将饭盒置于Robbins Model 1000杂交炉内,42℃杂交,3 hr。6) 立即放入盛有2 SSC+0.2% SDS溶液的烧杯中,使盖玻片自然脱落。7) 准备两个染色缸和一个500ml烧杯(内置玻片架),分别装有1 SSC+0.2%SDS,1 SSC+0.2%Tween-20,0.1 SSC,两个染色缸放入60℃水浴锅中。烧杯置于磁力搅拌器上.8) 将玻片依次浸入以上三个染色缸中洗涤10 min,在烧杯中搅拌洗涤10分钟.9) 避光晾干后扫描。注:Cy5对光敏感,因此操作时尽量避光。 5. 结果分析将诊断芯片插入ScanArray 3000扫描仪中进行扫描,并使用Imagene软件分析杂交结果。扫描结果显示检测监控系统中阳性对照有荧光信号 阴性对照没有荧光信号,再在疾病诊断系统中根据信号的有无来判断待测样品是阴性还是阳性。诊断芯片试剂配制的SOP一、主要试剂的配置1. 诊断芯片核酸抽提液配方异硫氰酸胍 92.6 g柠檬酸钠(B46) 13 ml超纯水 26 ml十二烷基肌氨酸钠(B17) 13 mlβ-巯基乙醇(B10) 1.3 ml饱和酚 130 ml tRNA (库存半成品) 8.5 ml注:4℃保存;单管分装 500 µ l RNA提取液+500 µ l氯仿:异戊醇(49:1);DNA病毒抽提液中饱和酚换为平衡酚。1) tRNA配制:tRNA 1 mg +超纯水 2 ml

  • 深入了解组织芯片:制作与应用指南

    [font=宋体][font=宋体]组织芯片[/font][font=Calibri](tissue chip)[/font][font=宋体],也称组织微阵列[/font][font=Calibri](tissue microarrays)[/font][font=宋体],是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载体(使用载玻片最多)上,进行同一指标的原位组织学研究。该技术自[/font][font=Calibri]1998[/font][font=宋体]年问世以来,以其大规模、高通量、标准化等优点得到大范围的推广应用。其最大优势在于,芯片上的组织样本实验条件完全一致。节省时间、节省试剂更是显而易见的。[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri]TMA[/font][font=宋体]构建原理可以概括为以下四个步骤:[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]选取待研究的组织。人们利用组织芯片技术对人体各组织均有研究,包括肝脏,前列腺,心脏,乳房等等,据相关数据显示,在大脑组织中的应用最多。医学上常选取一些病变器官进行研究。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]经检测后标记出待研究的区域。组织微阵列的检测仪主要是高性能显微镜、荧光显微镜或共聚焦荧光显微镜。适用的检测技术有苏木精—[/font][font=Calibri]HE[/font][font=宋体]染色,免疫组织化学[/font][font=Calibri](IHC)[/font][font=宋体]染色,原位杂交[/font][font=Calibri](ISH)[/font][font=宋体],荧光原位杂交([/font][font=Calibri]FISH[/font][font=宋体]),原位[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体],寡核苷酸启动的原位[/font][font=Calibri]DNA[/font][font=宋体]合成([/font][font=Calibri]PRINS[/font][font=宋体])等。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]使用组织芯片点样仪将标记好的组织按设计排列在空白蜡块模上。首先要利用打孔机在已经标记好的靶位点上进行打孔,将组织芯转入蜡块模孔中,重复操作可转入上千个样品组织芯。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]使用切片机对阵列蜡块进行连续切片即获得组织芯片。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。后者可以克服上述前者的多种缺陷(含醛基的化合物)可能损伤[/font][font=Calibri]RNA[/font][font=宋体]或使目标抗原结构断裂或破坏抗原——抗体结合位点,另外,石蜡包埋乙醇固定过的组织也无法避免[/font][font=Calibri]RNA[/font][font=宋体]降解。[/font][/font][font=宋体] [/font][font=宋体]组织芯片的出现,与基因芯片配合使用在寻找疾病基因中有很好的互补作用。在肿瘤研究中发挥着重要作用。将基因芯片筛选出的基因作成探针,再将探针与组织芯片中众多的肿瘤组织进行荧光原位杂交,寻找肿瘤发生发展的相关因素。[/font][font=宋体] [/font][font=宋体][b]组织芯片应用:[/b][/font][font=宋体] [/font][font=宋体][font=宋体]组织芯片的应用范围十分广泛,涉及到生命科学的基础研究、临床研究、应用研究以及新药开发等多个领域。它可以应用于多种染色技术,如[/font][font=Calibri]HE[/font][font=宋体]染色、免疫组织化学染色、原位杂交、荧光原位杂交、原位[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]、原位[/font][font=Calibri]RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]以及寡核苷酸启动的原位[/font][font=Calibri]DNA[/font][font=宋体]合成等。此外,组织芯片还可以与核酸、蛋白质、细胞、组织、微生物等相关技术相结合,分别在基因、转录和表达产物的生物学功能这三个水平上进行深入研究。随着组织芯片的广泛应用,现代医药学、基因组学和蛋白组学的研究将得到极大的推动和发展。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]目前义翘神州提供[url=https://cn.sinobiological.com/services/tissue-tma-array-service][b]石蜡组织芯片定制服务[/b][/url],更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/tissue-tma-array-service[/font][/font][font=Calibri] [/font]

  • 芯片上的实验室------微流控芯片

    芯片上的实验室------微流控芯片

    微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。 我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。现如今在网站中搜寻“微流控芯片”,便可以找到研发生产微流控芯片的企业和相关资料,

  • 谈谈芯片设计公司为什么要做芯片测试?

    谈谈芯片设计公司为什么要做芯片测试?

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311221551418573_4784_6253876_3.jpg!w690x690.jpg[/img]对于芯片设计公司来说,测试至关重要,不亚于电路设计本身。设计公司主要目标是根据市场需求来进行芯片研发,在整个设计过程中,需要-直考虑测试相关的问题,主要有下面几个原因:1)随着芯片的复杂度原来越高, 芯片内部的模块越来越多,制造工艺也是越来越先进,对应的失效模式越来越多,而如何能完整有效地测试整个芯片,在设计过程中需要被考虑的比重越来越多。2)设计、 制造、甚至测试本身,都会带来-定的失效, 如何保证设计处理的芯片达到设计目标,如何保证制造出来的芯片达到要求的良率,如何确保测试本身的质量和有效,从而提供给客户符合产品规范的、质量合格的产品,这些都要求必须在设计开始的第一时间就要考虑测试方案。3)成本的考量。 越早发现失效,越能减少无谓的浪费 设计和制造的冗余度越高,越能提供最终产品的良率 同时,如果能得到更多的有意义的测试数据,也能反过来提供给设计和制造端有用的信息,从而使得后者有效地分析失效模式,改善设计和制造良率。芯片的测试离不开可靠的测试工具-1C测试座,凯力迪公司致力服务于各大芯片设计、封测公司,为其提供性能可靠,极具性价比的IC测试座产品,封装种类齐全,产品线覆盖范围广,对于非标的新型芯片,更可提供测试座的一件起定制服务。

  • 【分享】生物芯片行业分析(新!!)一(整理别人的材料)

    生物芯片的市场分析全球市场总额很小企业收入增长缓慢 全球的市场有多大?国内的市场又有多大?前景如何?现在国内没有公开的文章回答这些问题。国内的市场小,人们对生物芯片的技术和应用还没有普遍的认识。介绍生物芯片技术的论文、报告和新闻唾手可得,前几年投资炒作的文章也能找到几篇大作,但关于生物芯片的市场,现在国内还看不到一篇专题文章,也没有一家芯片公司或咨询公司做过有意义的市场调查;曾有公司在网上做过消费者调查,响应者却寥寥无几。我从网上找到了3家国际知名市场研究公司的公开数据,翻译过来,列举如下:2003年7月24日,国际知名的市场研究和数据分析公司Research and Markets公司发布了定价998美元的159页的报告《美国生物芯片和设备的市场和业务》,这份报告认为,2002年的全球生物芯片市场规模是11亿美元,将以19.5%的年平均增长率增长,2007年将达到27亿美元。2003年底,雷曼兄弟(Lehman Brother)公司发布的分析报告指出,全球芯片市场约有8亿美元的规模。2004年3月30日,英国伦敦的大型国际咨询公司Frost & Sullivan公司出版了价值4,950美元的关于全球芯片市场的分析报告:《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片市场每年平均增长6.7%,2003年的市场总值是5.96亿美元,2010年将达到9.37亿美元。 比较这3家公司估计的2003年生物芯片市场的市场规模:Frost & Sullivan公司仅考虑了生物芯片市场中的DNA芯片市场,为6亿美元;雷曼兄弟估计为8亿美,Research and Markets公司估计为13亿美元,我们发现,这3家单位估计的全球生物芯片市场总额的数据相差不远,在8-13亿美元,他们估计的数据体现了这个产业的客观市场规模应该在这个范围内。台湾生物芯片协会估计的市场是2003年为2.2亿美元,其中医疗芯片销售额6,500万美元,研究芯片销售额1.55亿美元,数额偏低,估计没有包括生物芯片仪器市场。 全球生物芯片霸主是以医药个体化为目标的Affymetrix公司,今年继续在全球市场上领先,很多专家估计其市场份额占全球1/3至1/2。如果我们清楚了Affymetrix公司的市场情况,也就知道了全球一半的市场。根据Affymetrix公司《2003年年度报告》披露的信息,我们能看到这个霸主的一些市场业绩。假设市场份额正如专家们所估计的那样,Affymetrix公司占了全球1/2至1/3的市场,按Affymetrix公司的营业额估算,2003年全球市场也就6-9亿美元左右。如果最近5年的市场增长速度保持下去,今后5年的全球市场增长2倍,至2008年,全球市场达到20亿美元左右,2010年可能增至30亿美元左右。最近5年来,Affymetrix公司的总收入只升不降,增长了2倍,但是净收入和每股收益起落幅度较大,2002年差点亏损。2003年是Affymetrix公司的转折点,第一次实现全年盈利,全年总收入3亿美元,净收入1,400万美元,每股获利0.24美元。这么好的业绩,主要是因为日本市场表现出色。日本是Affymetrix公司的第三大市场,位居北美和欧洲之后。这三块市场都是由Affymetrix公司自己销售,其它地区的市场是代理经销,如中国市场就是由总部设在香港的基因有限公司代理。2003年,Affymetrix公司把20多种新产品推向了市场。在市场上,生物芯片和试剂的销售额与2002年持平,占了总销售额的一半,生物芯片仪器的销售增长幅度很大。 总部位于美国加州的安捷伦是全球第二大生物芯片经营企业,一个季度的芯片产量是2万片。安捷伦是一家跨110个国家和地区的大型通信、电子和生命科学公司,前年收入60亿美元,去年收入61亿美元。由于安捷伦的主营业务不是生物芯片,所以这部分业务被淹没在众多产品和服务之中,甚至在其年报中都没有提到生物芯片业务。虽然这个巨头进入生物芯片领域的时间不长,知名度也不高,不是专门的生物技术企业,也不是专门的生物芯片公司,但其提供的小小一块业务也占居了行业第二的位置。可以看出,这个产业跟其他产业比起来,总规模还非常小。虽然安捷伦科技公司在1977年就进入了中国市场,但其生命科学部门近两年才进入国内市场,在国内生物芯片市场上的份额不多,与其在全球市场上的份额相比,还有天壤之别。但是,安捷伦总公司的生命科学与化学分析仪器部总裁将于今年秋天来中国访问,将对国内市场进行布局,安捷伦的生物芯片整体解决方案和客户定制服务将在国内市场占有应有的份额。

  • 液体芯片飞行时间质谱仪

    http://bimg.instrument.com.cn/show/pic/C133645.jpg新品详情上市时间:2011年3月创新点:Clin-TOF临床质谱仪:(1)采用最新的60Hz激光,轰击速度为同类型产品中最快的使数据生成速度为同类产品之最。(2)采用zoom optics 技术,激光斑点在50µm至200µm可调,可调范围为同类产品之最,使激光斑点大小充分满足不同样品的需求(3)采用big gap 的独特离子源远离设计,使离子源不易污染,维护需求大大降低。(4)激光系统附加了能量平整功能,使激光光强更稳定,数据结果更准确。(5)采用友好的中文操作界面,更符合中国人的操作习惯。(6)配备了独特的触摸屏和条码阅读器等配件。独特的触摸屏设计,整合了MALDI-TOF和PC系统,操作更加简单方便,条形码阅读器可以使病患信息的采集和确认速度加快,极大地提高了仪器的工作效率。(7)配套的SPE-C专利磁珠和专利软件Bioexplorer。详细信息毅新兴业(北京)科技有限公司与 301 医院,北京科技大学,北京蛋白组中心合作,历时 4 年,总投入超过 3000 万,成功研发了飞行时间质谱液体蛋白芯片系统(CLIN-TOF),使中国质谱仪的研发水平跻身于世界前列。CLIN-TOF 系统包括飞行时间质谱仪器,液体蛋白芯片检测试剂盒,Bioexplore 软件等。该系统除了 MALDI-TOF 固有的优点外,还在临床应用中提高了稳定性和重现性,现已进行临床样本检测数量达 10000 例以上,建立了结直肠癌,肺癌,肝癌,脑胶质瘤等疾病的检测模型,对于各种肿瘤的早期检测准确率达到 85%以上,特异性,敏感性超过 80%。在 CLIN-TOF 系统为基础建立的多种肿瘤疾病质谱模型,已有多项发明专利获得授权。一种用于微孔板样品靶点样过程中吸弃微量残液的梳子装置及其用途 专利号:200610159468.0 用于吸附、分离、检测超微量靶蛋白的系统及其用途 专利号:200810089486.5 用于检测脑胶质瘤特征蛋白的质谱模型及制备方法 专利号:200810147419.4一种用于检测肝癌特征蛋白的质谱模型及制备方法 专利号:200810172142.0一种适于分离血清中蛋白多肽的系统及其试剂盒 专利号:200810187968.4

  • 2013年全球生物芯片市场达38亿美元

    BCC研究公司发表的生物芯片市场调查报告称,微阵列(芯片)和Lab-on-a-Chip是生物芯片产品家族的主要成员;2007年,全球生物芯片市场大约为19.379亿美元,2008年将达到21.156美元,2013年这一市场是38亿美元,年增长率高达12.7%。生物芯片有多种,包括DNA芯片(微阵列)、蛋白质微阵列、新型微阵列产品和芯片化验室(Lab-on-a-Chip,LOACs)等。其中,DNA芯片占据的市场份额最大,2007年9.473亿,2008将达9.99亿,2013年升至16.44亿,年增长率10.8%。由于基因表达产品(也属于DNA 芯片)市场的不断成熟,DNA芯片市场的增长率正在放缓,但是,受到DNA芯片的应用不断有新的领域冒出,包括SNP基因分型等,则对该市场产生了推动作用。LOACs是生物芯片市场第二大产品,2008年全球市场有望达6.913亿美元,2013年升至12.454亿美元,年增长率12.5%。今后5年里,DNA芯片和LOACs仍然是生物芯片市场的龙头产品。随着蛋白质组学对基因功能的理解和疾病认识上所具有的促进性影响,蛋白质芯片将成为生物芯片市场上的新生力量。组织芯片也是需要注意的一类新兴产品。

  • 【热分析仪】【金鉴出品】为什么有的芯片是正电极更热,有的芯片是负电极更热?

    【热分析仪】【金鉴出品】为什么有的芯片是正电极更热,有的芯片是负电极更热?

    [align=left]案例分析(一):有的芯片是正电极更热,有的芯片是负电极更热。[/align]以下为两个厂家22mil*35mil尺寸大小芯片光热分布的对比。对于该尺寸大功率正装芯片,电流在芯片中横向扩展的路径较长,导致电流聚集效应更加明显,因此必须具备合理的电极图形设计以及较好的欧姆接触特性,才能使注入电流在LED芯片的有源层中均匀分布。目前许多与大功率 LED 芯片制造相关的关键技术问题还有待解决,各芯片厂家对于问题的解决能力有高有低,使得不同家芯片的性能存在巨大差异![b]从以下两家同尺寸芯片的光热分布对比中可以看出:[/b][align=left][b][/b]1. 对比11*30mil芯片,该大尺寸大功率芯片电流密度均匀性相对较差,这也是目前大功率水平结构LED芯片发展的技术瓶颈之一。[/align][align=left]2. 金鉴通过大量测试发现,不同款的芯片,正负电极热度不同,有的芯片是正电极更热,有的芯片是负电极更热,如下图该两款芯片。电极过热会导致电极金属出现熔融,欧姆接触特性变差,降低芯片性能和可靠性。关于电极热度,大家关注的并不多,也许芯片厂也没做过那么细的研究。[/align][align=left]3. 本案例芯片A出现比较奇怪的现象:负电极更热,但发光不强,而正极区域更亮,但温度又不高。这表明此款芯片负电极附近量子效率低,电能在该处过多的转化为了热能,负电极欧姆接触可靠性弱。[/align][align=left]目前大家大多关注的是LED芯片的整体性能,如亮度、结温、电压,对于芯片光热分布、电流密度分布等方面关注过少,而失效往往是从局部薄弱处开始的,强烈建议LED芯片规格书里添加不同使用温度下的光热分布数据![b]做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。[/b][/align][align=center][img=,143,112]https://ng1.17img.cn/bbsfiles/images/2019/06/201906161539559916_956_3158333_3.jpg!w143x112.jpg[/img] [/align][b] 案例分析(二):不同家小尺寸芯片电流密度均匀性差异大[/b][align=left][b][/b]以下为不同厂家11mil*30mil尺寸大小芯片光热分布的对比。对于该小尺寸芯片,电流在芯片中横向扩展的路径较短,理论上电流聚集效应较轻微。但是,不同厂家的工艺技术存在差别,芯片电流密度均匀性仍存在较大差异,甚至出现不同厂家芯片高低温度相差数十度![b]从以下三家同尺寸芯片的光热分布对比中可以看出:[/b][/align][align=left][b][/b]1. 芯片A发光最强,发热量最小,光热分布最均匀,说明该芯片电流密度均匀性好,量子效率高,应用在高端LED中,该款芯片是首选。[/align][align=left]2. 芯片B和芯片C均为正极区域发光发热弱,负极区域发光发热强,推断该两款芯片为电流扩展不良导致的光热分布不均。该两款芯片量子效率低,存在局部高温现象,性能和可靠性都不如芯片A。[/align][align=left]3. 不同厂家芯片微观区域高低温度可以相差数十度![/align][align=left]通过对来料芯片进行光热分布检验,可以清楚判断芯片电流密度是否均匀,是否存在局部过热,亮度和温度孰高孰低,产品性能和可靠性孰优孰劣,从而对芯片进行全面的评估,帮助客户选择最合适的芯片提供有力的数据支撑。[/align][align=left][/align][align=center][img=,690,301]https://ng1.17img.cn/bbsfiles/images/2019/06/201906161540136121_4915_3158333_3.jpg!w690x301.jpg[/img][/align][align=left]LED灯具无非解决两个问题,一个是光,另外一个是热,你看那庞大的研发部门无非就是研究怎样提高LED的亮度和均匀度,并降低散热成本。因此了解LED芯片的光热分布情况对提高LED灯具质量性能至关重要![/align][align=left]然而由于缺乏相应的检测经验和设备,无论是芯片厂还是封装灯具厂,都未对芯片光热分布性能做相关的检测,导致市场上出现大量光热分布不均的芯片,而这些产品有相当大的亮度提高和发热量降低等性能提高的潜力。[b]那如何采购亮度又高,热量又低的LED芯片呢?金鉴给出以下几个建议:[/b][/align][align=left][b][/b]1. LED芯片光热分布一定要均匀,不存在微观区域过暗过热的现象。[/align][align=left]用金鉴显微光热分布系统观察到芯片微观区域过暗过热,很有可能此处电流拥挤,电能过多转化为热能而不是光能,量子效率低,表明此芯片的设计还存在改进的空间。[/align][align=left]2. 用金鉴显微光热分布系统比较在灯具使用温度下芯片的亮度值和热度值。LED光源的光热性能受温度的影响较大,温度升高,芯片亮度降低发热量增加,因此脱离实际工作温度所测试的结果准确性较差,甚至毫无意义。[/align][align=left]3. 建议芯片厂LED规格书里添加不同使用温度下的光热分布数据!从源头上管控质量,做好光热分布来料检验,可以使LED最亮,温度最低,而成本最低,质量更可靠。[/align][align=left][b]为什么来料LED芯片一定要做金鉴光热分布测试?[/b][/align][align=left][b][/b]1. 目前市场上使用最多的水平结构芯片,欧姆接触电极在芯片的同一侧,电流不可避免的要横向传输,电流密度会随着电极距离的远近而发生变化,即正负电极靠近的地方,电流密度会较大,使得电流密度不均匀已成为水平结构LED固有的技术瓶颈。[/align][align=left]2. 许多与LED芯片制造相关的关键技术问题尚未完全解决,特别是大功率LED芯片的设计、制造工艺中材料的选择以及工艺参数等问题,使得电流密度均匀性存在较大的可优化空间,各家芯片(无论是水平结构还是垂直结构)在电流密度均匀性方面会存在较大的差异。[/align][align=left]3. 芯片内部产生电流聚集效应,会导致LED芯片电注入效率下降、发光不均匀、局部热量集中等不良现象,从而影响 LED芯片的性能及可靠性。[/align][align=left][b]通过金鉴光热分布测试,能清晰观察到芯片电流密度均匀性问题,更加全面的评估芯片质量,有效辨别各家芯片质量好坏。[/b][/align]

  • LED芯片大数据库,一秒鉴定LED灯具芯片品牌

    [color=#333333]金鉴实验室全国独家提供[/color][color=#333333]LED[/color][color=#333333]灯具[/color][color=#333333]芯片[/color][color=#333333]品牌鉴定,国 家级资质服务平台,提供LED灯具招标项目的技术[/color][color=#333333]参数[/color][color=#333333]测试和验收服务。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333]24小时服务热线:(微信同号)18814096302 周工[/color][color=#333333] [/color][color=#333333] [/color][color=#333333]LED灯具最核心的是芯片,直接决定了灯具的性能!然而某些不良商家利用客户的不专业,从成本上面考虑,使用工艺不够稳定的厂家的芯片,然后号称Cree、欧司朗、日亚或晶元的芯片,使客户用高单价买到低品质的产品造成直接经济损失,并对LED灯具造成严重的品质隐患。在这里,我们要提到Cree是一个被冒充最多的知名品牌。这是因为CREE的芯片质量好但其[/color][color=#333333]结构[/color][color=#333333]和生产工艺复杂,在价格上很高,所以冒充起来利润空间很大。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333]针对这一市场现象,金鉴实验室LED品质实验室推出"led芯片来源鉴定"的业务,针对市场上冒充大厂芯片,换品牌等现象,见招拆招,帮助LED采购者购买到真正的原厂芯片。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333]业务内容:[/color][color=#333333] [/color][color=#333333](1)金鉴实验室的LED芯片数据库收纳了众多国内外厂家芯片的[/color][color=#333333]资料[/color][color=#333333],数据全面、准确、更新快。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333](2)每款LED芯片的规格、外观都是厂家的[/color][color=#333333]专利[/color][color=#333333]。越来越多的厂家芯片外观和整体尺寸类似,但在细节处存在独有的特点和专利。金鉴通过检索和匹配,可以确认芯片型号、生产厂家,有助于灯具厂家提高品控质量和效率。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333](3)快速鉴定,从收到样品到出具鉴定报告,只需要2天时间。[/color][color=#333333] [/color][color=#333333] [/color][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154709g3siujss3hv6ni6c.png.thumb.jpg[/img][/align][color=#333333]案例:深圳某采购商送测灯珠样品,希望金鉴实验室可以查找出灯珠芯片的生产厂家和型号,确定是否与供应商的宣传信息一致。金鉴实验室对样品开封,用扫描电镜测量芯片的尺寸。[/color][color=#333333] [/color][color=#333333] [/color][color=#333333]芯片微小区域的尺寸会影响芯片的鉴定;因为越来越多的厂家芯片外观和整体尺寸类似,只有在细节处才存在独有的特点和专利,所以尺寸数据必须包含芯片的每个细节。相比[/color][color=#333333]光学[/color][color=#333333]显微镜[/color][color=#333333],SEM可以提供更高的分辨率和更大的景深,能够更清晰地观察样品的细节,尺寸测量更精确。[/color][color=#333333] [/color][color=#333333] [/color][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154710kazt87az8n87a5xi.png.thumb.jpg[/img][/align][align=center]扫描电镜(SEM) X600倍率测量电极尺寸[/align][color=#333333] [/color][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154710icfbtc7ase7qccbf.png.thumb.jpg[/img][/align][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154711a1m55uz57u7un6um.png.thumb.jpg[/img][/align][align=center]SEM X700和X1000倍率测量芯片[/align][color=#333333] [/color][color=#333333]在获得样品芯片的详细尺寸后,金鉴实验室通过检索与匹配,在众多芯片厂家提供的产品数据中找到了Cree公司的CxxxEZ900系列;样品芯片的尺寸符合符该系列的规格要求。[/color][color=#333333] [/color][color=#333333] [/color][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154712vdglihv50yddl5dh.png.thumb.jpg[/img][/align][align=center] [img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154712ev3z9v664fuuoj4t.png.thumb.jpg[/img][/align][color=#333333] [/color][color=#333333]如果客户有进一步要求,金鉴还可以通过比较分析芯片截面结构来鉴定厂商来源。[/color][color=#333333] [/color][color=#333333] [/color][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154713e6ise63f2mhioamd.png.thumb.jpg[/img][/align][align=center]Cree某款芯片截面结构图[/align][align=center][/align][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154713f00q58shom48hs4m.png.thumb.jpg[/img][/align][color=#333333][/color][align=center][img]http://bbs.eeworld.com.cn/data/attachment/forum/201908/20/154714pnonj19fpulcf648.png.thumb.jpg[/img][/align][color=#333333] [/color][color=#333333]led芯片内部结构图,大功率LED芯片的辨别方法,辨别晶元芯片,灯珠真伪辨别方法,辨别芯片真假的方法,晶元芯片知多少,三安芯片和晶元的区别,三安光电PK晶元[/color][color=#333333]光电[/color][color=#333333],咋样辨别LED芯片的好坏,辨别大功率LED芯片,芯片LED性能的鉴定方法,鉴定真假芯片,晶元芯片,晶元芯片结构,三安芯片,led芯片结构[/color]

  • 什么是芯片解密?

    [url=https://www.szcxwdz.com]芯片[/url]解密是从已加密的芯片之上复制代码。嵌入程序代码的芯片有很多种,单片机只是其中的一种。微控制器(。MCU&#41。通常有一个外部的EEPROM/FLASH供用户存储程序和工作数据。为了防止未经授权访问或复制的单片机计算机程序,大多数单片机都有加密锁定位或加密字节来保护片之上程序。如果在编程过程之中启用了加密锁定位(。Lock)。不能用一般程序员间接读取单片机之中的程序,这叫单片机加密或芯片加密。单片机攻击者用专用设备或自制设备,利用单片机设计之上的漏洞或软件之上的缺陷,通过各种技术手段,可以从芯片之中提取关键信息,获取单片机程序这就是所谓的芯片解密。目前,芯片破解的方法主要有:利用软件进行攻击、利用电子检测攻击、采用故障产生技术、利用探针技术进行解密。[url=https://www.szcxwdz.com]创芯为电?[/url]要从事各类电?元器件的销售。提供 [url=https://www.szcxwdz.com]BOM配单[/url]服务,减少采购物料的时间成本,在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,免费供样!

  • 【分享】生物芯片原理

    生物芯片原理生物芯片技术是应人类基因组计划而发展起来的一项高新技术。从1992年美国人Stephen Foder 研制出第一块基因芯片起,生物芯片技术飞速发展:从基因芯片到蛋白质芯片、组织芯片、细胞芯片、芯片实验室,从表达谱芯片到诊断芯片、药物筛选芯片、生物传感器,从寡核苷酸芯片到cDNA 芯片、基因组芯片,新兴的生物芯片技术层出不穷,生物芯片的应用领域也在不断扩展,生物芯片发挥的作用也越来越大,特别是在 2003年人类与SARS病毒的决战中发挥了至关重要的作用:科学家借助基因芯片技术迅速而及时地发现了病原体,并查明病原体的本质,为最终战胜SARS 奠定了基础。生物芯片技术的实质是进行生物信号的平行分析。它利用微点阵技术,将成千上万的生物组分(细胞、蛋白质和DNA等)集中到一小片固相基质上,从而使一些传统的生物学分析手段能够在尽量小的空间范围内,以尽量快的速度完成。与传统的仪器检测方法相比,生物芯片技术具有高通量、微型化、自动化和成本低等特点。生物芯片按照其上所进行的生物化学反应有无外加场力的干预,分为主动式和被动式两大类。被动式芯片是指芯片上进行的生物化学反应在无外加场力的情况下,通过分子的扩散运动完成,如已在研究和临床应用的微阵列芯片,包括DNA芯片,蛋白质芯片等。这也是目前最普遍的生物芯片,但这类芯片存在如下缺点:生产和检测过程人为干扰因素多、难以标准化,生化反应条件和过程不可控、反应效率较低,检测结果重复性较差等。主动式芯片是在芯片的构建和生化反应中直接引入外力或场的作用,它具有快速、高效、自动化和重复性好的特点,是构建芯片实验室、实现过程集成化的基本部件。主动式芯片技术已成为生物芯片技术研究的重点。随着新兴技术和新设计思想的不断产生,各种新型的主动式芯片必将陆续推出,他们的发展与完善将对生命科学与医学的研究与应用产生深远的影响。本项目旨在开发一种新型的主动式生物芯片(主动式蛋白芯片),减少蛋白芯片生产和检测过程中的人为干扰因素,标化芯片的生产和检测过程,并使芯片上的生化反应可控、高效、快速地进行,最终改善芯片检测结果的重复性和准确性。同时,这一技术也可应用于其他种类芯片(如基因芯片、组织芯片、细胞芯片)的升级换代。

  • 何谓微流控芯片技术

    微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。报告介绍微流控芯片技术领域国际最新发展,结合报告人多年微流控芯片研发成果,介绍一套完整而独特的芯片制造工艺技术,以及多种不同应用的微芯片。

  • 微阵列芯片扫描仪优势特点

    [b]孚光精仪:[url]http://www.f-lab.cn/[/url]微阵列芯片扫描仪:[url]http://www.f-lab.cn/microarray-manufacturing/innoscan.html[/url]微阵列芯片扫描仪[/b],[b]innoscan[/b]专业为[b]扫描基因芯片[/b],[b]扫描蛋白质芯片[/b]等[b]微阵列芯片扫描[/b]而设计,是功能强大的高分辨率[b]荧光扫描仪[/b],适合所有[b]微阵列芯片扫描,[/b]如DNA芯片,蛋白质芯片和细胞和组织。[b]微阵列芯片扫描仪[/b]是完全开放的系统,兼容任何标准的显微镜载玻片25x75mm(玻璃基板,塑料,透明和不透明),适用于各类型的应用研究,如基因表达,基因分型,aCGH,芯片分析片内,微RNA检测的SNP,蛋白质组学和微阵列的方式。[img=微阵列芯片扫描仪]http://www.f-lab.cn/Upload/innoscan-scanner.jpg[/img][b]微阵列芯片扫描仪[/b]可以扫描生物芯片,有3 1.mu.m/像素的分辨率,同时保持高图像质量。能够同时扫描两个检测通道3.5分钟(10.mu.m/像素,最大扫描区域),InnoScan900是市场上最快的扫描器,扫描速率可调节,达10到35行每秒。

  • 万通877 芯片

    万通水分滴定仪因漏液将交换单元的芯片腐蚀坏了,买一个价格特别高,能在系统中设置交换单元的体积吗?原来老的电位滴定仪是不需要芯片的。

  • 【原创】生物传感器/生物芯片/微流控芯片-不断增加中

    现在做生物传感器的,生物芯片的,微流控芯片的人非常多,有的时候觉得大家对于这些东西的界限似乎不是分得很开,希望自己对于这个领域的小小体会能够给大家帮助!生物传感器:利用生物元件(酶、核酸、细胞、组织等)对特定物质的生物识别功能,通过将这种识别转化成声光电磁信号,对该物质进行分析的器件。个人感觉现在做生物传感器大部分局限在电化学上面,可能是因为电化学的仪器比较容易集成。生物芯片/微流控芯片:似乎现在有的人对于生物芯片与微流控芯片的区别不是很明白,特此将比较一下两者的区别:生物芯片和微阵列芯片的意思应该是一样的,但是生物芯片并不是一个被广大学者认同的名词,主要是一些媒体在报道的时候为了简单和通俗使用了这个词,所以专业上来讲,生物芯片应该叫做微阵列芯片。其发展历史比较悠久,而且现在已经有商品化的产品。微流控芯片是通过微加工的方法制作出微米级别的通道,通过通道的设计将分析的各种基本过程如样品前处理,分离,分析检出集成在一个小小的基片上,她也叫做芯片实验室。这个的发展要晚于微阵列芯片,现在有很多的研究不仅仅局限在分析化学领域。对于微尺度上的流体行为,流体的操作也是物理学研究的热点,是一个交叉了物理、化学、生物、计算机、微加工等领域的学科。国内做的比较好的是浙江大学的方肇伦院士,国外有很多组,以后我会不断增加!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制