当前位置: 仪器信息网 > 行业主题 > >

红外观察仪

仪器信息网红外观察仪专题为您提供2024年最新红外观察仪价格报价、厂家品牌的相关信息, 包括红外观察仪参数、型号等,不管是国产,还是进口品牌的红外观察仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外观察仪相关的耗材配件、试剂标物,还有红外观察仪相关的最新资讯、资料,以及红外观察仪相关的解决方案。

红外观察仪相关的资讯

  • 滨松红外荧光定位观察相机PDE助力乳腺癌术后乳房再造技术
    第十届全国乳腺癌术后乳房重建学习班于2018年5月11日至5月12日在天津肿瘤医院举办,围绕乳腺癌术后乳房再造技术,行业专家们进行了学术交流和演示示教。 因可对皮瓣血运情况判断便捷易行、清晰准确,荧光定位显像技术作为会议的重要话题之一被提出。除了深入的学术探讨以外,还实施了现场手术演示。滨松红外荧光定位观察相机PDE作为本次会议中荧光定位显像技术的提供者,充分展示了该技术对皮瓣血运判断发挥的重要作用。滨松红外荧光定位仪(Photodynamic Eye,PDE)是一套医学荧光显像系统,主要用于医用荧光显像,通过观看示踪剂的流动状态,帮助临床医生实时观察血管、淋巴管的状况,从而判断血运状态。在皮瓣血运、穿支定位、穿支选择时起到直观判断、实时显示的作用,在整形领域有广泛的应用空间。
  • 揭秘茶叶包中的微塑料,全新亚微米红外直观观察形貌和大小等信息!
    微和纳米塑料(MNPs)是一种新兴的污染物分类,由聚合物产品直接释放或分解形成。近期已有报告指出在人体血液中发现了微和纳米塑料,对人类健康和环境构成了很大的风险。目前,对于降解的MNPs特征和量化分析研究又缺乏可靠的方法。 传统的光学和电子显微镜不能提供样品化学成分的详细信息;质谱方法可以表征聚合物类型但这些技术又具有破坏性,无法获得MNP大小或形态的信息;例如傅里叶变换红外(FTIR)等传统红外光谱虽可以提供化学成分、大小和形貌信息,但其空间分辨率受光学衍射极限限制,下限空间分辨率约为5 μm,无法分析各种尺寸复杂的微塑料颗粒。 非接触亚微米分辨红外拉曼同步测量系统-mIRage的出现有效解决了上述受限问题。设备基于光学光热诱导共振(O-PTIR)技术,突破了传统红外光谱衍射极限,空间分辨率可达500 nm,有效解决了基本全尺寸MNPs样品的化学成分信息、大小和形态信息测试问题。 近期,来自美国圣母大学的Kyle Doudrick,Masaru Kuno,Kirill Kniazev等人[1]使用非接触亚微米分辨红外拉曼同步测量系统-mIRage进行了与我们日常生活息息相关的食品-茶包内降解微塑料样品测试实验。 与传统SEM方法对比,mIRage系统可直观的观察到样品内微塑料(颗粒1、2、3)的形貌和大小信息,同时可获得三个微塑料颗粒的红外光谱成分结果。尤其是针对3号微塑料颗粒,在颗粒仅2 μm的粒径下,仍然获得了清晰的红外光谱图(O-PTIR光谱图)。有效解决了SEM无法测试成分信息、传统红外光谱无法分析5μm甚至10μm以下样品的严重弊端。非接触亚微米分辨红外拉曼同步测量系统-mIRage科研级别分析优势:☛ 可达500 nm左右的空间分辨率☛ 基本无需样品前处理,样品即放即测☛ 光源“探针”对样品无损伤☛ 同时、同位置进行红外和拉曼光谱测试,提供相互佐证的分析结果☛ 同时获得样品成分、形貌、大小等信息样机体验: 为满足国内日益增长的新型红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了非接触亚微米分辨红外拉曼同步测量系统——mIRage,为您提供样品测试、样机体验等机会,欢迎各位老师垂询! 参考文献:[1]. Kirill Kniazev, Ilia M. Pavlovetc, Shuang Zhang, Junyeol Kim, Robert L. Stevenson, Kyle Doudrick,and Masaru Kuno.Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in Complex Environmental Matrices: Environ. Sci. Technol. 2021, 55, 15891&minus 15899
  • 冷湖天文观测基地中红外观测系统太阳磁场光谱仪收官在即
    当前我国正在紧锣密鼓地推进冷湖天文观测基地的建设,该基地位于我国柴达木盆地西北边缘的青海省海西州茫崖市冷湖镇赛什腾山区域,平均海拔约4000米。偏僻荒凉的赛什腾山成为火热的建设工地(央广网发 王小龙 摄) 冷湖天文观测基地由多个平台组成,其中D平台用于太阳磁场精确测量的中红外观测系统,为科学家对当今太阳物理前沿如太阳发电机、纤维化磁对流过程、日冕加热的研究提供测量手段。系统的核心部件——太阳磁场测量光谱仪由上海技物所研制。光谱仪光机部分光谱仪调试科研团队经过了多年的艰苦攻关,中红外观测系统的研制工作接近尾声。光谱仪在实验室环境下测试表明,性能达到任务书指标要求,后续将在冷湖太阳观测基地开展实测。该系统主要由望远镜、偏振光路和超高光谱分辨率成像型红外傅里叶变换光谱仪组成,能够测量出太阳谱线通过磁场所产生的微小裂距,从而解算出太阳磁场强度。其中,太阳磁场测量光谱仪部分具有极高的光谱分辨率(指标为0.004cm-1)和极高的空间分辨率(探测元尺寸不到1/4衍射斑),技术难度极大且为国际上首次研制。为满足项目对光谱仪性能的要求,除干涉仪主体外,科研团队还需要完成一系列分系统的研制:如高性能长波红外探测器、冷箱-杜瓦两制冷机系统以及低温光学系统等。 5年来,在所领导和各部门的支持下,研制团队群策群力,克服了种种困难。从技术方案论证,到探测器、制冷系统、杜瓦组件、光学薄膜、整机光机电技术攻关,一路走来的桩桩件件难忘而珍贵:有一年除夕夜,各部门参研人员在地下室完成后继光学集成工作;西藏那曲高原试验期间,大家在海拔4475m的高原上一边吸氧一边对仪器关键部件进行环境模拟测试;曾因一根薄膜电缆的接地造成的测试结果不佳而感到沮丧;也因一根管脚莫名导通而需打开冷箱大费周折。近两年多来,各地的疫情辗转反复,给研制任务造成了不少困扰。研制团队始终发扬坚韧不拔的精神,把疫情的影响降低到尽小。如杜瓦陶瓷基片加工,团队和总体轮番与加工单位协调进度,到货后又立即安排加班加点,第一时间完成装配!西藏那曲对关键部件进行环境模拟测试正如一名攀登者攀到每个峰顶收获的高兴和经历,是为登顶珠穆朗玛累积经验。前路漫漫,相信在大家的通力协作,专家的指导和研究所的全力支持下,团队成员能够一同拾级而上,创出辉煌!“用于太阳磁场精确测量的中红外观测系统”项目是国家重大科研仪器研制项目,由国家天文台、上海技物所和西安光机所联合承担,获国家自然科学基金委员会资助。
  • 客户案例 | MIX观察如何为拉曼分析节省时间
    图1.取决于观察方法的外观差异(样品:金属基底上的锈迹)自1958年起,JASCO公司一直致力于开发和制造光学分析仪器和提供分析服务。他们的多种常用于材料分析的拉曼光谱仪产品中都采用了我们的一些显微镜技术。在这篇文章中,JASCO公司拉曼系统部门的Takeo Soejima探讨了我们的MIX观察技术是如何集成到JASCO的拉曼系统中及其如何协助提高了JASCO光谱仪的性能。以下是Takeo Soejima的讲解:更锐利的样品颜色、表面划痕和缺陷以及表面不平整度“MIX观察装置U-MIXR-2是我们的拉曼光谱仪的关键装置。与传统的明场或暗场观察相比,它能让我们更清晰地观察样品的颜色、表面裂纹和缺陷以及表面不平整度。2018年,我们首次将MIX观察装置(当时的型号是U-MIXR)纳入我们的NRS-4000/5000系列激光拉曼光谱仪(图2)中进行评估。这些系统拥有自动切换光学系统和自动光轴调整功能,软件操作简单,可用于从亚微米级微小异物分析到成像测量的多种应用。在图1显示的示例中,我们可在MIX观察下清楚地看到样品的颜色。红色的是红色锈迹,黑色的是黑色锈迹。在传统明场观察下,我们很难区分颗粒的颜色,而且必须测量所有位置。图2.JASCO激光拉曼光谱仪MIX观察:揭示隐藏的细节MIX观察组合了明场和暗场方法,得到了一个结合两者优势的视野。图3显示了另一个示例测量结果,其中仅对维生素的颜色增强部分进行拉曼测量。在拉曼测量中,样品的荧光有时会干扰测量,因此我们花了大量时间通过改变激光器(激光是拉曼测量的光源)的波长来研究测量条件。然而,MIX观察让我们能够更加轻松地根据样品的可见颜色来估计每个样品的出色激发激光。图3.维生素拉曼成像的示例我们一直专注于扩大拉曼光谱仪的应用范围,而且快速响应每个客户的请求对我们来说都非常重要。之前有一位客户曾向我们提供了一个样品。这个样品难以清晰观察,也很难在分析前定位,所以我们必须要在内部开发一个解决方案。最后,在我尝试用MIX滑块进行MIX观察时,这个问题得到了完美的解决。在传统暗场下,我们必须从明场开始物理切换光学系统,而且不可能进行MIX观察。只要将此装置插入转换器,即可轻松地进行暗场/MIX观察,这种方式具备很大的优势。这让我们能够轻松地在软件中选择明场/暗场/MIX观察。在MIX观察下,我们不仅能更清晰地观察样品,还可以大大缩短拉曼测量时间。图4.U-MIXR-2 MIX观察装置U-MIXR(图4)还有让客户利用支持暗场物镜的Evident转换器来低成本升级拉曼仪器的优势,因此我们立即决定采用这一装置。通过协助开发分析仪器业务Evident为我们提供了举办联合活动的建议,并在开发出更好、更快观察和测量样本的系统方面为我们提供了咨询。我希望我们将继续打造牢固的合作关系。”感谢Takeo Soejima为我们分享JASCO对于拉曼分析中MIX观察装置优点的看法。受访客户Takeo Soejima, JASCO公司拉曼系统部。Takeo Soejima是JASCO公司拉曼光谱仪应用开发部门的一员,现从事拉曼光谱仪系统的开发。
  • 岛津微焦点X射线CT助力动物实验-小鼠股骨CT观察
    现在的研究中经常需要动物实验提供数据支持,这些研究包括对骨病的研究、药物管理评价和代谢中的脂肪测量等。实验对象的动物有大、小鼠和兔子等。 X射线CT系统通常用于观察和分析小动物的骨骼,人类或小动物的牙齿。对小动物的观察包括活体动物的CT成像,猝死动物整体或切除部位的体外CT成像。 本案例介绍了利用inspeXio SMX-100CT Plus采集的小鼠股骨CT图像(体外)数据以及其三维解析结果。 图1. 岛津微焦点X射线CT inspeXio SMX-100CT Plus 对小鼠股骨的观察 使用inspeXio SMX-100CT Plus微焦点X射线CT系统(图1)进行数据采集。该设备采用密封式微焦点X射线发生源,最大输出电压为100 kV,图像亮度高,可对树脂、药物、骨骼等软材料在高放大倍数下进行三维观察。图2为小鼠股骨。红色矩形框部分是股骨,红色矩形框右侧的是胫骨。图3显示了小鼠股骨的原理图。股骨由近端、股骨本身和远端三部分组成。近端肢体与臀部骨共同构成髋关节。远端肢体与胫骨共同构成膝关节。本标本观察是股骨远端离体成像的一例。图2.小鼠股骨照片 图3 小鼠股骨的原理图 图4为骨骺的横断面图像,图5为骺端和干骺端横断面图像,图6为干骺端的横断面图像。在干骺端横断面上,圆形骨区为皮质骨,内部网状区为骨小梁。使用inspeXioSMX-100CT进行锥束扫描,一次即可获得区域内所有的横断面图像,还可以连续进行图像观察。 图4骨骺的CT图像图5骺端和干骺端的CT图像图6 干骺端CT图像 图7为MPR(多平面重构)图像,MPR显示的是在虚拟空间中堆叠的多个CT图像。 图7 小鼠股骨MPR图像 图8 小鼠股骨的三维图像 小鼠股骨分析 使用X射线CT获取图像,不仅可以进行横断面和三维观察,而且可以单独提取感兴趣区域进行观察,并测量骨的厚度。 图9 小鼠股骨三维图像 图10~14显示小鼠股骨皮质骨、骨小梁及皮质骨内血管的扫描结果,图像处理为某软件公司的TRI/3D-Bon骨结构分析软件。 图10 白色:皮质骨和骨小梁红色:皮质骨中的血管绿色:生长板软骨 图11 白色:骨小梁红色:皮质骨中的血管绿色:生长板软骨 图10、11中白色为皮质骨和骨小梁、红色部分为皮质骨中的血管、绿色部分为生长板软骨,图10中皮质骨在外观上是半透明的。 图12 骨小梁和生长板软骨图13 提取的生长板软骨图14 皮质骨和骨小梁厚度的测量 图13是提取的成长板软骨。图14是对提取的皮质骨和骨小梁测量出的厚度结果,从外观上使用不同颜色标示出各不相同的薄、厚部分。 结论 使用inspeXio SMX-100CT Plus不仅可以对小鼠股骨结构进行三维观察,而且可以通过其它分析软件提取感兴趣区域,并测量、评价皮质骨和骨小梁的厚度。 另外,针对专用软件(例如TRI/3 DBON),可利用BMD模型(骨矿定量) 将影像数据的亮度值转换为CT值,分离出皮质骨和骨小梁,获得皮质骨和骨小梁各自的BMD值。因此,在骨成像后,用BMD模型代替骨成像来建立分析曲线是可行的。(此应用只可针对特定第三方软件进行。)
  • 使用微焦点X射线CT系统观察功率电感
    发布时间:2021-12-22 阅读次数:2次前言为了降低对环境的影响,抵抗能源价格的上涨,各个领域都尽量实现节能减排。由此,产品上使用的零部件需要进一步提高性能和强化功能。零部件性能的提升还可以节省空间,降低功耗。本文中,我们使用X射线CT设备观察低功耗电感(线圈)中被称为功率电感的电子部件。 图1 insprXio SMX-225CT FPD HR Plus外观图 功率电感的特点电感是一种由铜线缠绕而成,能够储存电能的电子元件,它的作用是稳定实装基板的电流,是一般电路设计所必需的器件。电感有各种各样的形状和结构,有铜线缠绕的绕线型,也有贴片电感。贴片电感有屏蔽式结构和无屏蔽式结构,屏蔽式结构是在(铁)芯上缠绕铜线,从部件的两侧就可以确认内部状态。 无屏蔽式结构贴片电感是用混合磁性材料的树脂封装铜线的,所以无法肉眼确认内部状态。对于不能从外部观察铜线状态部件,可以使用X射线透视设备和CT设备进行无损检查。 对功率电感的观察过程X射线CT设备inspeXio SMX-225CT FPD HR Plus(图1)的探测器使用大平板接收器,可以拍摄整个实装基板图像, 但是这种基板上的功率电感大多是小型器件,所以采取放大拍摄的方法观察其细节。我们从产品(图2)中取出功率电感部分(图3)进行拍摄,以了解结构细节。图3中①为屏蔽式功率电感,②为无屏蔽式功率电感。 图4是屏蔽式功率电感的透视图像,图5是无屏蔽式功率电感的透视图像。屏蔽式电感在线圈周围有空间,可以看到左右都是开放的。这是为了确保预留调节所需狭缝。无屏蔽式功率电感由于线圈周围的磁性树脂起到狭缝的作用,因此不需要预留狭缝结构。因此,无屏蔽式更易于小型化,而且磁性树脂封装不受振动和湿度的影响。然而,对无屏蔽式结构的电感,当其受到来自外部的压力超过耐受值时,树脂封装可能破裂。 对无屏蔽式功率电感进行CT成像,并进行MPR显示,如图6所示。 Multi Planer Reconstruction(MPR)是从拍摄的CT图像中显示任意截面图像的功能,可以在图像②和图像③中显示与CT图像①垂直相交的截面图像,并在图像④中显示任意角度的截面图像。在CT图像中,密度越高的部分,显示颜色越白,因此,作为铜线的线圈看起来比磁性树脂更白。此外,在②和③的中心附近可以看到磁性树脂的裂缝(裂纹)。④中可以确认连接功率电感和基板的焊料中的孔隙(气泡)。另外,使用三维软件VGSTUDIO MAX,可以实现CT图像的VR(Volume Rendering)显示,以更接近实物的形式进行观察。 这样可以更详细地观察线圈导线的形状,以及贴装时与基板的焊点状态(图7)。此外,如图8所示,通过裂纹的可视化,可以立体地观察裂纹的形状和发展情况,进而分析产品中出现异常的情况,并研究制造过程中出现的不相容性。 此外,如图9和图10所示,可以仅提取线圈部分图像并观察绕线部分的状态。还可以通过与合格产品的CT数据进行比较,来确认线圈导线的变形。 通过使用VGSTUDIO MAX的可选功能,可以可视化磁性树脂中的气泡(空隙),并量化位置和体积(图11)。除了确认气泡产生的情况外,还可以通过各种数字化信息确定缺陷产生的情况,并通过改变磁性树脂的配方和填充条件,提高制造效率,比如提高产量。 总结由于X射线CT设备可以无损地观察物体内部,因此可以在同一产品上进行振动测试和热冲击测试等循环测试,并观察每个测试周期内部件内部状态变化的过程。这样可以减少测的试数量和工时。 因此,X射线CT设备不仅有助于分析破坏的过程,而且还有助于通过减少样品数量来缩短开发时间和降低成本。 此外,还可以使用特定的软件来执行各种分析。 本文内容非商业广告,仅供专业人士参考。
  • 岛津应用:多层薄膜的可视观察的同步测定
    使用岛津红外显微镜AIM-9000及AIMsolution分析软件,可以在对扫描点进行可视观察的同时,测定该扫描点的光谱。通过可视观察的同步测定可以实时确认各扫描点的图像和光谱。另外,因为AIMsolution分析软件以相同颜色显示各扫描点及其光谱,所以不仅可视觉确认扫描信息,还可以简单地进行大气校正等数据处理和检索操作。 本文向您介绍通过可视观察的同步测定对多层薄膜进行分析的示例。使用AIM-9000、AIMsolution Measurement软件和AIMsolutin分析软件,在每一个操作步骤都可以瞬间获得准确的数据,实现了前所未有的轻松分析。 了解详情,敬请点击《可视观察的同步测定-多层薄膜的透射测定-》
  • “用于太阳磁场精确测量的中红外观测系统”出征冷湖观测基地
    2022年4月7日上午,西安光机所参与研制的“用于太阳磁场精确测量的中红外观测系统”(简称AIMS太阳望远镜)项目迎来了重要的里程碑式节点——奔赴海拔4000米的青海省海西蒙古族自治州冷湖镇赛什腾山观测基地进行最终安装调试。这是研究所纪念建所六十周年活动启动后的第一个出所项目。   项目出征仪式在蒲城调试外场举行,在湛蓝的晴空映衬下,印着“瞬见万象 光创未来”出征口号的红条幅与“AIMS太阳望远镜出征仪式”的大幅喷绘海报遥相呼应,仿佛表达着此次出征必定携胜而归的决心。参加仪式的人员有国家天文台研究员郝晋新、林佳本,西安光机所党委书记孙传东、副所长郝伟、先进制造部、空间光子信息新技术研究室负责人、部分中层领导等共34人,特邀中国科学院国家授时中心所长办公室主任赵海成、洛轴智能机械有限公司总经理邓印出席。   首先,项目负责人空间光子信息新技术研究室徐崧博副研究员、先进制造部副部长李华分别介绍了项目研制历程与项目管理情况。接下来进行庄重的授旗仪式,先进制造部部长赵建科宣读西安光机所出征冷湖人员名单,由孙传东书记向工作队代表工艺中心主任付兴授予队旗,寄语顺利凯旋同时希望他们发扬西光所艰苦奋斗、攻坚克难优良科研传统,做好“西光精神”传人,让这面鲜艳的队旗在装调阵地高高飘扬。付兴领读誓词,他表示队伍必定不负嘱托、不负期望、不负祖国。中国科学院国家天文台郝晋新研究员讲话,最后由西安光机所副所长郝伟宣布项目设备运输发车。   AIMS太阳望远镜项目是国家自然科学基金委支持的国家重大科研仪器项目,由中国科学院国家天文台、中国科学院上海技物所和中国科学院西安光机所等三家单位共同承担,旨在研制国际上第一台中红外太阳磁场观测设备,利用中红外的观测优势,突破磁场测量百年历史中的“瓶颈”问题,实现太阳磁场从“间接测量”到“直接测量”的跨越发展,为诸如天体爆发活动的成因、日冕加热等前沿领域研究提供有力支撑。   该项目是大口径、大体积、光学系统极为复杂的地面可见及红外波段光电跟踪设备。研究所高度重视该项目,在多方面给予政策支持。项目团队也是个融合的大家庭,主要来自于空间光子学研究室、先进制造部的装校中心和检测中心,是一支以青年科技力量为主体的战斗团体。三十多人的队伍经验丰富、专业齐备、蓬勃向上、富有朝气和创新意识,他们具备优良的科研作风,始终把产品技术性能先进和质量优良摆在首位,敢打敢拼,不畏艰难,勤奋努力,严慎细实,取得了一系列设计创新、工艺创新、装检技能创新、组织管理创新、党建引领创新等成果。在出所之前的检测装调阶段,适逢西安爆发本土新冠疫情,连续30多天的封闭式管理并没有影响项目的进度,郝伟副所长代表所班子亲自指挥部署,机关积极协调,先进制造部装校中心奋勇当先,持续奋战在岗位,团结协作、众志成城,为项目顺利出所打了一场漂亮的攻坚战。另外,该项目还得到了众多领导和专家的鼎力支持,国家天文台各级领导、专家多次提供帮助与支持,我所老专家熊仁生研究员等也在项目关键性技术方面给予把关审查。这都是项目取得成功不可或缺的部分。   项目团队历经四年多来艰难攻关,顽强拼搏、夜以继日的辛勤付出终于结出了胜利的果实。4000米,不仅是海拔高度,更是对出征队伍身心意志、水平能力严峻考验的高度,不过我们相信、信任也祝福他们,因为西光人是不怕打硬仗的,我们等待为他们接风洗尘,期待项目组向研究所成立60周年献礼的最美时刻。
  • 如何使用3D模拟准确沟通外观标准及外观解决方案
    外观的复杂性不仅仅局限于颜色,它是材料独特属性的集合体,包括纹理、光泽、透明度和特殊效果等。这些属性与环境因素如光照、背景及观察角度相互作用,共同影响我们对物品外观的感知。在设计到生产的过程中,初期外观特性的准确传递常受阻,导致匹配错误、审批延迟和成本增加。解决这一挑战的方法在于采用可以精确测量、编辑和通用地沟通外观特性的虚拟环境,以确保设计意图的精准实现和流程的高效进行。一、涂料、涂层和汽车行业中的外观在涂料、涂层和汽车行业中,外观的理解远超过简单的颜色识别。对于下图中的车辆,尽管许多人可能会直接回答“蓝色”,这样的描述并没有全面捕捉到车辆外观的复杂性和细节。真实的外观特性或属性包括但不限于颜色的深浅、光泽度、金属质感或珠光效果、以及涂层的质感和透明度等。这些细节共同构成了我们对车辆外观的全面感知,而简单归纳为“蓝色”未能充分表达这种多维度的视觉体验。虽然用“蓝色”来描述车辆是一种便于理解和沟通的方式,比如帮助某人在停车场中找到这辆车,但这种描述并没有涵盖汽车外观的全部信息。例如,这辆车在直射光下会呈现出蓝绿色,而在阴影下则转变为接近黑色的深墨蓝。此外,其高光泽漆面能够产生镜面般的反射效果,而使用的特效颜料则赋予了车身独特的光泽度。这些复杂的变化和细节共同构成了车辆独特的视觉特性,超越了简单的颜色描述,反映了光线和观察角度对汽车外观感知的影响。二、时尚、家居与电子产品材料外观随着材料日益复杂,制造商和品牌越发认识到,描述外观不能仅限于颜色。为了吸引供应商同时加速产品上市,紧跟潮流和消费者偏好变化成为了他们的共同目标。然而,沟通外观的过程充满挑战。一方面,靠图像传达复杂的外观特性并非易事,因位置和光线的不同,外观会产生变化,如光泽、纹理等。即便使用数字图片,设备校准仍不能完全解决由外部环境引起的误差问题。另一方面,长久以来,依赖手工原型来沟通和审批外观虽然在颜色准确性上有优势,但其耗时且成本高昂,尤其在全球制造流程中,还会引入额外的运费和时间延误。因此,越来越多的品牌转向虚拟设计作为指定、设计和沟通外观的优选路径。这种方法不仅加快了决策过程,还降低了成本,并提高了效率和准确性。三、通过虚拟设计,时间从数月缩短至数分钟虚拟设计技术已将产品开发周期从数月缩短至数分钟,推动了生产效率和市场响应的加速。通过3D CAD和逼真渲染技术,企业能够节约成本并快速审批。然而,虚拟设计面临的一个关键挑战是如何精确模拟真实世界材料的外观,包括其物理和光学特性。尽管传统方法通过手动模拟这些特性,但这既耗时又难以达到完美精度,且难于在不同工具间共享。因此,行业正在探索更先进的解决方案,以更真实地反映材料的特性,提升虚拟设计的效果和实用性。在2016年,X-Rite推出了一种创新的供应商中立文件格式—Appearance Exchange Format (AxF),性地提供了一种存储和共享颜色及外观数据的精确方法。AxF使品牌所有者、设计师和制造商得以在整个设计到生产流程中,以数字形式准确共享和展现颜色与外观信息,从而保证数字原型、展示、电子商务和销售环境中的视觉一致性。AxF的应用范围远不止颜色,它允许创建包含特效涂层、皮革、塑料、织物、木材和拉丝金属等复杂材料的全面数字模型,真实反映材料的视觉效果。这一格式大幅简化了设计和审批流程,缩短了产品上市的时间,有效提升了工作效率和市场反应速度。AxF的另一突出优势在于其能够跨不同应用程序共享虚拟文件,实现了将庞大数据量的信息从千兆字节压缩到仅仅几兆字节。这种压缩技术产生的3D文件不仅可以轻松集成到产品生命周期管理(PLM)、计算机辅助设计(CAD)系统中,还适用于最先进的美术渲染应用程序。AxF的这一能力极大地促进了工作流程的高效性,确保了从设计到渲染的过程中信息的一致性和准确性,加速了产品从概念到市场的整个过程。四、外观解决方案作为X-Rite Total Appearance Capture (TAC&trade ) 生态系统的核心部分,AxF获得了广泛赞誉。TAC技术使得准确材料外观的整合成为可能,为真实感的数字材料捕捉和3D设计带来了提升。一个具体例子就是下方展示的,这不是一张照片,而是利用TAC生态系统生成的一双鞋的真实外观渲染图。之前提及的皮革、织物和纯色表面样本同样通过TAC技术的外观数据实现了精准渲染。AxF技术已在众多行业得到广泛应用,X-Rite正在与各大硬件和软件供应商以及研究机构合作,探索新的整合可能和功能增强。在涉及品牌所有者、设计师、供应商和制造商的复杂供应链中,沟通外观的复杂性远超颜色。在全球分布的制造过程中,确保颜色和尤其是材料的完整外观信息的准确传递,存在许多挑战。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 首次观察,中科院物理所揭示声子斯塔克效应的新机制!
    【科学背景】随着量子技术和纳米技术的迅猛发展,材料科学和凝聚态物理学中的许多新兴现象和应用逐渐引起了人们的关注。斯塔克效应(Stark effect),即外部电场引起的光谱线能量位移或分裂,是现代物理学中一个重要的概念。该效应最早由Johannes Stark在1913年发现,并因其对量子理论的显著贡献于1919年获得诺贝尔物理学奖。在凝聚态物理学中,斯塔克效应已经在各种固态量子系统中的激子(即电子和空穴的束缚对)中得到了广泛研究和应用。这些系统包括量子点、量子阱和范德华异质结构等。然而,尽管在激子斯塔克效应方面取得了显著进展,其他固态集体激发(如声子,即晶格振动的量子化激发)的斯塔克效应仍然未被揭示。声子在材料科学和凝聚态物理中扮演着至关重要的角色。它们不仅是热传导的主要载体,还在超导性、超快载流子动力学、非平衡现象以及磁性的超快控制等方面具有重要作用。尽管已有研究表明可以通过静电掺杂效应调控二维材料(如单层和多层石墨烯、单层过渡金属二硫属化物和黑磷)中的声子能量,但这些调控通常是非线性的且调制范围有限。因此,探索如何通过外部电场来有效调控声子能量,进而实现对材料性能的精确控制,是当前材料科学研究中的一个重要课题。为此,中科院物理所张广宇研究员,杜罗军研究员和Wang Yaxian(共同通讯作者)等一些科学家开始致力于研究声子的斯塔克效应。近年来,作者的研究团队在这方面取得了重要进展。相关研究在“Nature Communications”期刊上发表了题为“Observation of phonon Stark effect”的最新论文,引起了不小的关注!作者在二维量子固体双层2H-MoS2中首次观察到了声子的斯塔克效应。具体而言,当层间激子(IX)能量调节至其发射线附近时,双层2H-MoS2中的纵向声学(LA)声子模式在外部电场作用下发生线性红移,证明了声子的一级(也称为线性)斯塔克效应。显著的是,作者观察到的声子斯塔克效应非常巨大,频率变化可达约1&thinsp THz。这一发现不仅揭示了声子与层间激子之间的强耦合机制,还展示了通过电场调控声子态的有效方法。通过多体第一性原理计算,作者明确了声子斯塔克效应的微观起源,即声子与高度可调节的IX之间的强耦合。此外,作者还发现了由IX介导的电声子调制的发射强度,对于红外活性声子模式A2u,调制幅度高达约1200%。作者的研究不仅揭示了新兴的巨大声子斯塔克效应,还展示了通过IX介导机制实现声子态的有效电控制方法。这些发现为未来在电场可调谐声子激光器、热传输的动态控制和太赫兹声学-电子/光学器件等方面的应用奠定了基础。【科学亮点】1. 实验首次观察声子斯塔克效应:本研究首次在双层2H-MoS2中观察到由高效可调节栅极的层间激子(IXs)介导的线性声子斯塔克效应。具体来说,当IXs被调节至与其发射线共振时,LA(M)声子的能量开始随着施加的电场线性红移,证实了声子的一级斯塔克效应。2. 频率变化显著:实验发现,在实验可达的电场范围内,声子斯塔克效应的频率变化可以达到约1&thinsp THz,这表明了一个极其显著的效应。这种巨大频率变化的观察为进一步研究声子调控提供了新的方向。3. 多体第一性原理计算验证:通过多体第一性原理计算,研究团队揭示了LA(M)声子和IXs之间的强耦合是导致巨大声子斯塔克效应的根本原因。这种理论验证不仅支持了实验结果,还深入解释了声子斯塔克效应的微观机制。4. 发射强度重整化:实验还发现,对于红外活性A2u(Γ)声子模式,通过IXs介导的声子发射强度重整化可达到约1200%。这一结果表明,IXs不仅影响声子的能量,还显著调制了其发射强度,展示了IXs在声子工程中的潜力。5. 广泛应用前景:本研究展示了由IXs介导的新兴声子斯塔克效应和声子工程机制,并提出这种机制可以应用于广泛的固态量子系统,如TMD本征和异质结构。这一发现为未来许多体物理学现象和新颖应用(如声子激光器和太赫兹声学-电子器件)奠定了基础。【科学图文】图1:双层2H-MoS2中IXs的量子限制Stark效应。图2. 声子Stark效应的观察。图3. 声子和IXs之间的强耦合。图 4:声子强度的电调制与Davydov分裂。【研究结论】本研究揭示了声子斯塔克效应的新机制,并展示了由层间激子(IXs)介导的声子斯塔克效应对声子态的有效控制。首先,作者的实验首次在双层2H-MoS2中观察到了声子斯塔克效应,这一发现拓展了作者对固态集体激发的理解。通过实验发现,当IXs与声子的发射线共振时,外部电场导致声子能量的线性红移,从而实现了对声子态的有效调控。其次,作者的多体第一性原理计算进一步揭示了这一现象的微观机制,即LA(M)声子与IXs之间存在强耦合,导致了巨大的声子斯塔克效应。最后,作者还观察到了对红外活性声子模式的强度调制效应,进一步丰富了对声子态的控制手段。这些发现不仅拓展了声子斯塔克效应的研究领域,也为声子调控和声子工程提供了新的思路和方法。基于这一机制,作者可以进一步探索在其他固态量子系统中的应用,如TMD本征和异质结构,从而推动了声子激光器、太赫兹声学-电子器件等新型技术的发展。原文详情:Huang, Z., Bai, Y., Zhao, Y. et al. Observation of phonon Stark effect. Nat Commun 15, 4586 (2024). https://doi.org/10.1038/s41467-024-48992-w
  • 正业新品 上市PCB外观检查机全自动、简单易操作
    AVI,外观检测技术基于视觉传感器的智能检测系统在检测系统的智能化、柔性、效率等方面比接触式检测方法具有更大的优越性广泛应用于PCB检测领域 AVI非常适合生产现场的在线、非接触检测及监控代替人眼在高速、大批量、连续自动化生产流水线上进行在线检测,具有测量过程非接触、迅速、方便、可视化、自动识别、结果量化、定位准确、自动化程度高等特点。 正业科技AVI-1000系列PCB外观检查机,检测能力尤其出众,适用于PCB出厂前的外观检查,对其缺陷、瑕疵进行检测,自动上料,出料自动水平堆叠,自动运输到VRS工位。 PCB外观检测专家 √检测精度:达50μm(2mil)线宽或线距。√ 检测幅面:达到 350mm x 400mm。√ 可选择分辨率:35μm、25μm、18μm、10μm 。 广泛的缺陷检测范围1.阻焊:积墨,污染,刮伤,漏印,曝偏,露铜。2.字符:模糊,漏印,错字,多印,错色,印偏。3. 化金板,OSP板,化银板,化锡板。4. PAD:刮伤,氧化,沾漆,缺口,残铜,污染,表面不平。5. 孔/外形:漏钻/塞孔,漏锣。6. 喷锡板,白油喷锡板。7. 单检功能(可单独检焊盘/阻焊)。8. 指定重点检测区域或单元报废不检区域(手指位渗金检测及BGA重点检测)。9. 其他客制化检测功能。 检测流程 1、上料,机械自动抓取线路板 2、实时检测,并快速完成出料 3、经传送带自动运输下一个工序 产品优势
  • 金义博光谱仪外观新突破
    在不断的摸索和创新中,无锡市金义博仪器科技有限公司在传统的直读光谱仪外观上有了很大的改进和新的突破,并申请了外观专利,此外观专利应用于系列直读光谱仪产品上,人性化柔和的流线型设计打破了原有的硬朗线条,增添了几分和谐感,外观上的人体曲线设计是本仪器的一大特色,另外,与多国语言的软件系统配套使用使得仪器整体操控更加舒适便捷。TY-9610型光电直读光谱仪是直读光谱仪系列产品中的一个型号。TY-9610型光电直读光谱仪是分析黑色金属及有色金属成分的快速定量分析仪器。本仪器广泛应用于冶金、机械及其他工业部门,进行冶炼炉前的在线分析以及中心实验室的产品检验,是控制产品质量的有效手段之一。TY-9610型光电直读光谱仪关键特点描述1、750mm焦距光栅设计,帕型-龙格装置,高真空,高分辨率、高灵敏度。2、电子系统采用国际标准机笼,高集成化电路设计,故障率低。3、激发光源频率在150/600Hz之间可调节,分析不同的样品,选择不同的激发参数,达到**的分析效果。4、激发光源固态辅助电极,解决干拢问题,提高激发光源的稳定性,免调节。5、激发样品过程中,无需对激发台进行水冷却,可连续分析样品也能达到较好的数据。6、多元素自动描迹,可快速分析出每个元素相对于基体元素的偏差。7、通道负高压分8档计算机自动调整,从而大大地提高通道的利用率和分析谱线的**线性范围在分析不同材质中的采用,减少了通道的采用数量,降低了成本。8、光学部分整体恒温措施,保证了仪器的正常运行,从而降低了对环境的要求。9、采用高精度直线电机进行入缝扫描,速度快,精确度高。10、真空室整体铝合金制造,一次成型。11、光谱室防震设计,诸如光栅、狭缝等重要光学元件采用动态安装,获得相当高的光学稳定度。12、光谱室内置疲劳灯提高了光电倍增管的稳定性,消除了光电倍增管的死时间,提高信噪比,延长使用寿命。13、多国语言的光谱软件系统。适应不同国家的要求。14、计算机软件建有数据库系统,方便了测量数据的查询与打印,也可通过网络远程传输数据,方便快捷。 关于金义博 无锡市金义博仪器科技有限公司,是拥有自主知识产权以高速分析仪器研制、开发、制造、市场营销为一体的现代化高科技公司。公司荟萃了众多高科技人才和行业精英,致力于材料检测的发展和应用。专业制造红外碳硫分析仪、光电直读光谱仪、等离子体发射光谱仪、系列高速分析仪器等产品。产品广泛应用于钢铁、冶金、铸造、机械、建筑、大专院校、石油化工、质量监督及进出口商检等领域。 近年来公司奉行&ldquo 仪器精密、满意用户&rdquo 的经营理念,在全国设立十大销售服务中心,四十多个服务网点。产品遍及全国各地,并出口到南美、非洲、西亚、越南、台湾、香港等地。公司在发展材料检测仪器产品的同时,建立产品研发中心、材料检测中心、理化培训中心、产品展示中心及贸易结算中心五大中心。公司力求发展成为全面的检测仪器制造商和国际检测仪器供应商。 2010年,在母公司无锡市金义博仪器科技有限公司的支持下,全面依托上海材料研究所及江苏省机械设计院,成立了无锡市金义博检测技术有限公司。无锡市金义博检测技术有限公司以检测技术服务为特色的、以材料检测为主体,下设检测中心、培训中心、贸易结算中心。中心拥有直读光谱仪、ICP光谱仪、红外碳硫分析仪、分光光度计、金相显微镜、硬度计、冲击试验机、万能材料试验机等设备,能够覆盖钢铁材料中全项检测项目,同时能够对铜铝及其制品进行检测。中心配备化学分析、力学性能、金相检验等多个专业检测室。长期为流程型工业企业及各类中小型企业的生产运行提供最专业、最权威的检测服务。 欲了解更多信息,请浏览公司网站: www.instrument.com.cn/netshow/SH100833/index.asp 或公司网站www.jinyibo.com
  • 光学显微镜的主要观察方法之荧光观察
    应用专家 易海英 荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性精准测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比激发光波长更长。这是由于荧光物质被激发之后、释放光子之前,电子经过弛豫过程会损耗一部分能量。具有较大Stokes位移的荧光物质更易于在荧光显微镜下进行观察。图2:Stokes位移荧光显微镜及荧光滤块荧光显微镜是利用荧光特性进行观察、成像的光学显微镜,广泛应用于细胞生物学、神经生物学、植物学、微生物学、病理学、遗传学等各领域。荧光成像具有高灵敏度和高特异性的优点,非常适合进行特定蛋白、细胞器等在组织及细胞中的分布的观察,共定位和相互作用的研究,离子浓度变化等生命动态过程的追踪等等。细胞中大部分分子不发荧光,想要观察它们,必须进行荧光标记。荧光标记的方法非常多,可以直接标记(比如使用DAPI标记DNA),或利用抗体抗原结合特性进行免疫染色,也可以用荧光蛋白(如GFP,绿色荧光蛋白)标记目标蛋白,还可以用可逆结合的合成染料(如Fura-2)等。图3:Leica DMi8倒置荧光显微镜及滤片转轮目前荧光显微镜已成为各个实验室及成像平台的标配成像设备,是我们日常实验的好帮手。荧光显微镜主要分为三大类:正置荧光显微镜(适合切片)、倒置荧光显微镜(适合活细胞,兼顾切片)、荧光体视镜(适合较大标本,如植物、斑马鱼(成体/胚胎)、青鳉、小鼠/大鼠器官等)。荧光滤块是显微镜荧光成像的核心部件,由激发滤片、发射滤片和二向分光镜三部分组成,安装在滤片转轮里,如Leica DMi8配有6位滤片转轮(图3)。不同的显微镜转轮位数会有区别,也有些显微镜使用滤块滑板。滤块在荧光成像中起着重要作用:激发滤片选择激发光来激发样品,阻挡其他波长的光;通过激发滤片的光经过二向分光镜(其作用是反射激发光和透射荧光),反射后通过物镜聚焦,照射到样品,激发出对应的荧光即发射光,发射光被物镜收集,透过二向分光镜,到达发射滤片。如图4中:激发波长为450-490nm,二向分光镜反射短于510nm的光、透过长于510nm的光,发射光接收范围为520-560nm。图4:荧光显微镜光路图荧光显微镜常用荧光滤块可分为长通(long pass,简称LP)和带通(band pass,简称BP)两种类型。带通通常由中心波长和区间宽度确定,如480/40表示可通过460-500nm的光。长通滤色片如515 LP,表示可以通过波长长于515nm的光(图5)。图5:FITC光谱曲线及滤片荧光物质具有其特征性激发(吸收)曲线和发射曲线,激发峰为最佳激发波长(激发效率最高,从而可以降低激发光能量,保护细胞和染料),发射曲线为发射荧光波长范围。因此,在实验中,我们会尽可能选择与激发峰最接近的波长进行激发,而接收范围需包括发射峰。如Alexa Fluor 488的激发峰为500nm,在荧光显微镜中可以选择480/40的激发滤片。图6:Alexa Fluor 488光谱曲线滤块的详细信息可以在显微镜成像软件里看到。了解染料并找到最匹配样品的滤块对于荧光成像有着至关重要的作用。荧光染料和荧光蛋白的光谱信息一般在说明书中会注明,也可在网上查阅(如https://www.leica-microsystems.com/science-lab/fluorescent-dyes/、https://www.leica-microsystems.com/science-lab/fluorescent-proteins-introduction-and-photo-spectral-characteristics/)。滤块的选择除考虑荧光探针的激发、发射波长,对于多色标记样品还需考虑是否有非特异激发、是否串色。此外还需考虑所使用的荧光光源,目前常用的荧光光源有汞灯、金属卤素灯,以及近年来飞速发展的LED光源。荧光光源的光谱有连续的和非连续的,在不同波段能量也会不同。LED光源因为其相对较窄的光谱带、更稳定的能量输出、超长的寿命、更安全环保等诸多优点,正逐步成为荧光显微镜的主要光源。除了显微镜内置的滤块,还有外置快速转轮(图7),徕卡的外置快速转轮相邻位置滤片转换速度为27ms,可实现高速多色实验,如FRET及Fura2比例钙成像(图8)等。图7:徕卡外置快速转轮EFW图8:钙成像,Fura2, Cultured hippocampal astrocytes from 18-day-old embryos of Sprague-Dawley rats. Courtesy of: Drs. Kazunori Kanemaru and Masamitsu Iino, Department of Pharmacology, Graduate School of Medicine, The University of Tokyo 丰富多样的荧光显微成像技术为了满足不同的荧光成像需求,除荧光显微镜外,还发展出了各种荧光显微成像解决方案:? 宽场高清成像系统,如Leica THUNDER Imager,采用Leica创新的Clearing专利技术,在成像时高效去除非焦平面干扰信号,呈现清晰图像,同时兼有高速成像的优点;? 共聚焦激光扫描显微镜,利用针孔排除非焦平面干扰,实现光学切片,得到高清图像及三维立体图像;? 突破衍射极限的超高分辨率显微镜及纳米显微镜,可对小于200nm的精细结构进行观察;? 利用多光子激发原理进行厚组织及活体深层成像的多光子成像系统;? 具有高时空分辨率的光片成像技术,成像速度快、分辨率高、光毒性低,特别适合进行发育、活体动态观察等研究;? 荧光寿命成像(FLIM),不受荧光物质浓度、光漂白、激发光强度等因素的影响,能更加深入地进行功能性精准测量;? 荧光相关光谱(FCS)及荧光互相关光谱(FCCS),测量荧光分子的分子数、扩散系数,从而分析分子浓度、分子大小、粘性、分子运动、分子结合/解离、分子的光学特性等;? 全内反射荧光显微镜(TIRF),极高的z轴分辨率,非常适合细胞膜表面的分子结构和动力学研究。 荧光显微成像技术应用广泛,种类丰富,而且新技术还在不断涌现,大家可以选择最适合的技术去完成自己的研究。
  • 如何选择一台适合自己的显微镜—观察维度与相机类型的选择
    导读上一期我们聊了下显微镜有哪些类型,又该如何去挑选适合自己的显微镜类型,但是同一类别显微镜也会有不同的配置,如相机、载物台、物镜、光源、聚光镜等等,一台显微镜由众多的硬件组成,而硬件又是显微镜性能的关键,因此我们搞懂应该买哪个类别的显微镜后,下一步我们就需要了解哪些硬件对我们的使用至关重要,让我们开始吧,Let’s go ~首先介绍的第一个关键硬件就是相机,这是我们成像的关键。在我们日常的认知中,我们看到的相机无论是手机还是照相机全是彩色的,给我们的感觉是相机只有彩色的,其实不是这样的,甚至和我们的直观感受相反,严格来说,所有的相机感光芯片都是不能识别颜色的,我们看到的那些彩色图片大多是通过拜耳滤色器来实现颜色的识别。就像上图一样,拜耳滤色器使用50%的绿色,25%的红色和25%的蓝色阵列,从而识别出颜色,但它会造成三分之二的光强损失,这对明场观察影响不大,但其他观察,如荧光观察,就可能产生较大的影响,因为荧光本身相对较弱。当然对荧光观察也有对应的解决方案,那就是在荧光显微镜中使用单色相机,这时候有用过荧光显微镜的小伙伴可能就会问了,可是我看到的都是有颜色的啊,这就要从荧光的原理和荧光显微镜的设计说起了。荧光是由特定波长的激发光激发,从而产生特定波长的发射光,也就是说,我们观察时是明确知道我们希望看到的光是什么,其他的光就只是干扰的杂光,因此荧光显微镜观察时选择将其他光滤掉,用单色相机进行成像,至于小伙伴们看到的彩色,其实是赋予的伪彩。 小伙伴了解了吧,明场观察需要选择彩色相机,而荧光观察需要选择单色相机,这样才能获得最好的观察效果。第二个要介绍的关键硬件就是调焦装置了,对于显微镜来说,调焦装置是决定显微镜档次的一个重要硬件,主要区别在于电动与非电动,非电动调焦,显微镜就只能实现XY轴观察,也就是平面观察,而如果实现了电动调焦,也就是配置了电动Z轴,就可以实现样品的XYZ轴观察,即3D立体的观察,显微镜的观察能力就提升了一个维度。第三个介绍的硬件是载物台,刚才说过无电动Z轴只能进行单平面的观察,单平面观察也是存在差异的,当我们需要对样品进行高精度的观察时,必然会选择更高的放大倍数,而这必然会导致视野的缩小,当我们需要拍摄整个样本时,只能依靠手动平移来实现全部观察和拍摄,后续进行拼接时难度极大,且极易出错,导致采用手动载物台难以实现高精度的大视野成像,而这就需要电动载物台来实现。这期就先介绍这么多,我们后期还会介绍显微镜的其他知识啊,小伙伴们持续关注哦。
  • 爱色丽彩通推出“整体外观捕获”解决方案
    虚拟设计新时代:爱色丽彩通推出“整体外观捕获”解决方案 爱色丽的“整体外观捕获”解决方案可准确扫描复杂的材料并以数字方式交流数据,实现从设计到生产整个过程中各个步骤无与伦比的逼真度和高效能。 密歇根州大急流市 2016 年 8 月 11 日 – 色彩科学和技术的全球领军企业爱色丽彩通于今日宣布,推出整体外观捕获 (tac™ ) 生态体系,这一外观测量解决方案使得在虚拟世界中捕获、交流和数字化呈现实际材料的准确性和有效性上升到一个全新的高度。设计师、3d 艺术家、材料专业人员和营销人员可借助 tac,采用具有与实际材料完全相同视觉特性的数字化材料栩栩如生地展现其产品设计。tac 的尖端技术能准确地捕获实际材料的测量值和外观属性,从而减少对手动调整扫描材料的需要,加快设计和审批周期。 爱色丽公司总裁 ronald voigt 说:“近 60 年来,爱色丽彩通所创造的工具和技术帮助各行各业选择、交流、配制和测量颜色,包括印刷、包装、汽车、塑料、涂料和纺织业。tac 建立于我们的创新传统基础之上,超越色彩科学,应对捕获和管理外观这一更重大的挑战。凭借 tac,爱色丽提供新一代的数字化材料捕捉逼真度及有效性,使虚拟化和 3d 技术上升到新的高度。” 爱色丽 执行副总裁兼首席技术官 francis lamy 博士评论道:“整体外观不仅仅是色彩而已,而是藉此感知物体的视觉感。不仅包含颜色,还有大小、质地、光泽、透明度和不透明度。传统上,捕获和实际呈现材料外观历来是手动过程,极具挑战性又耗费时间。tac 精准地测量实际材料,确保视觉外观可以数字化呈现,无需手动调整,让设计师自由自在地发挥创意。有了 tac,在产品开发过程从营销到生产的每一步,都能获得真正准确无误的数字资料,确保呈现的一致性。” 通过准确扫描材料的外观,tac 最大限度地减少为准确描述实际材料的光学复杂性所需要的手动操作。在汽车行业,预计这将削减高达 50% 的设计时间,加速上市,减少在整个设计到生产过程中的浪费。而且,tac 让设计和营销队伍能够为所用材料创建单一数字色库,确保在用于设计产品和创建营销材料及销售点的所有虚拟化平台上一致地呈现材料。 tac 生态系统包括以下产品套件:tac7 扫描仪可扫描和储存实际材料样品的颜色、质地、光泽和其他表面外观特性。外观交换格式 (axftm) 文件将扫描所得信息传送给 pantoratm material hub。axf 输出格式 (plm) 具有厂商中立性,便于大多数主要的产品生命周期管理 (plm)、计算机辅助设计 (cad) 和最先进的呈现应用程序访问使用;因此,设计部门没有必要改动其目前的信息系统基础设施。桌面应用程序 pantora 是 tac 生态系统的控制中心。让用户存储、管理、查看和编辑以数字方式捕获的材料并通过 axf 与其他工具(如 tac 虚拟光源箱、plm 和 cad 系统交换这些材料。tac 虚拟光源箱使得设计人员能够评估虚拟物体在多种光照条件下所呈现的数字化材料,并与实际样品直接进行比较。这一光源箱甚至为高度复杂的各向异性材料以及外观会基于观察角度而变化的其他材料提供准确的视觉评估。 许多 plm 和 cad 系统供应商正在构建与爱色丽 axf 的集成,以利用 tac 强大的数字材料捕获能力。例如,autodesk 在其 2017 专业版 vred™ 中提供与 axf 的原生集成,为用户提供几乎整个范围的 tac 高水平扫描技术。因此,autodesk 设计师在虚拟世界中使用数字化材料工作时所具有的灵活性和准确性,与他们在管理实际材料时的水平完全等同。利用集成 tac-vred 创建和管理的虚拟材料,在不同的光照、场景和观测条件下的表现非常准确,满足汽车设计师的迫切需求。 “整体外观捕获技术有可能改变汽车行业产品设计和营销资料的制作流程,”autodesk 汽车业务线经理 michael russell 说。“tac 解决了汽车设计师、3d 艺术家和营销人员长期以来的困扰:如何准确捕捉和虚拟化用于汽车内部与外部的当今日趋复杂的材料的挑战,如特效涂料、皮革和其他面料。tac 所达到的高逼真度简化了设计过程,确保设计可视化和营销工具的一致性,如在线配置、视频和产品说明书等。我们很高兴能与爱色丽合作,将这个令人兴奋的新功能提供给 autodesk 的客户。” 现在可以立即购买爱色丽 tac7 扫描仪、pantora material hub 和 axf。虚拟光源箱将于 2017 年第一季度上市。
  • 日立应用|燃料电池的电镜观察
    燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。燃料电池的能量利用效率高,环境污染小,是最有发展前途的发电技术之一。燃料电池按照电解质的种类不同,可分为碱性燃料电池(AFC),磷酸燃料电池(PAFC),熔融碳酸盐燃料电池(MCFC),质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。按照燃料的类型可分为氢燃料电池,甲烷燃料电池,甲醇燃料电池,乙醇燃料电池。目前各类燃料电池电动车主要使用的是质子交换膜燃料电池(PEMFC)。质子交换膜燃料电池的结构和化学反应上图是PEMFC的结构和化学反应。PEMFC由膜电极(membrane-electrode assembly,MEA)和带气体流动通道的双极板组成。其核心部件膜电极是采用一片聚合物电解质膜和位于其两侧的两片电极热压而成,中间的固体电解质膜起到了离子传递和分割燃料和氧化剂的双重作用,而两侧的电极是燃料和氧化剂进行电化学反应的场所。PEMFC通常以全氟磺酸型质子交换膜为电解质,Pt/C或PtRu/C为电催化剂,氢或净化重整气为燃料,空气和纯氧为氧化剂,带有气体流动通道的石墨或表面改性金属板为双极板。膜电极(MEA)的截面SEM图片Sample: Courtesy of Prof. Takeo Yamaguchi, Tokyo Institute of Technology膜电极(Membrane Electrode Assembly ,MEA)是燃料电池的主要部分,它每层的结合情况以及颗粒的聚集状态会影响发电性能。MEA截面的结构观测非常重要。上图显示了一个聚合物膜样品在冷却时的横截面离子研磨后的结果,为减少离子束的热损伤使用了-100 ℃的条件进行加工。MEA横截面的整个图像显示各层接触时没有分层。在高倍放大时的阳极图像可以观察到纳米尺寸的铂粒子,碳粒子和其中的空隙。阴极层是纳米胶囊催化剂与铂铁纳米颗粒结合,从它的横截面可以看到,催化剂胶囊被紧密地包装在中空空间中。因此,离子研磨法可以在没有应力的情况下进行加工,能够通过冷却功能加工截面样品来减少热损伤,产生具有减少热损伤的横截面样品,进而可以有效的理解MEA的整体结构和分析催化剂颗粒的纳米结构。燃料电池催化电极材料高倍图像和三维重构结构from Prof. Chihiro Kaito, Ritsumeikan University上图左图是使用日立HT7830得到的燃料电池催化电极材料高倍图像,加速电压使用120kV,高分辨模式(HR mode),放大倍数为×50,000。C基底上的Pt颗粒的分散状态可以很清晰的看到。上图右图是同样的样品从+60°~-60°每2°拍照一次得到一系列图片后做三维重构后的结果,可以清楚的看到三维结构的Pt颗粒的分散情况。CNT和PTFE复合膜的SEM图像Sample:courtesy of Prof. Yoshinori SHOW Department of Electrical and Electronic Engineering,School of Engineering, Tokai University由于导电性和耐腐蚀性好,碳纳米管(CNT)和聚四氟乙烯(PTFE)复合膜有时会作为 MEA 的保护膜使用。CNT 在PTFE 中分散的均匀性非常重要,因为膜的导电性会受此影响。上图中,左图为0.2eV时观察CNT和PTFE的表面形貌,由于电压非常低,所以样品没有被电子束损伤。 右图为0.2eV时观察CNT和PTFE的电位衬度,CNT的亮度比PTFE明显要高,这是因为CNT的导电性更好。利用电位衬度就可以非常清晰的区分成分衬度相差不大的CNT和PTFE。燃料电池气体扩散层的电镜观察气体扩散层(Gas diffusion Layer,GDL)作为连接催化层和流动区域的桥梁,一般具有多孔性,导电性,疏水性,化学稳定性和可靠性。常用的支撑材料有碳纤维和聚四氟乙烯/碳膜组成的微孔层(MPL),目前碳纤维布附着MPL可以达到气体扩散层的要求。上图就是碳纤维布及附着MPL的SEM图片,可以观察到二者之间的紧密接触,各自空隙及厚度。高分辨观察自组装Fe3O4纳米颗粒Sample:courtesy of Electrical Computer Engineering department, National University of Singapore过渡金属基材料比如自组装Fe3O4纳米颗粒现在被作为储氢材料,这对氢能的利用来说是非常关键的。上图是高分辨观察自组装Fe3O4纳米颗粒,所用的着陆电压为1.5 kV,使用了电子束减速功能。纳米颗粒非常有规则的组装在一起,每个颗粒的直径约为12nm。利用电镜观察燃料电池各部分的形貌和结构,有助于高性能燃料电池的研发。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 新闻 | AR荧光技术让您实时观察脑血管血流情况 -徕卡显微系统副总裁接受神外前沿专访
    徕卡显微系统副总裁Maxim Mamin于2017年11与17日来华,并于当日接受了“神外前沿”公众号的专访,对徕卡即将在国内上市的MFL800研发初衷与技术问题进行了独家的解读。神外前沿讯,在洛杉矶举行的2017 AANS美国神经外科年会上,徕卡基于手术显微镜的增强现实荧光成像技术AR荧光(MFL800)正式上市,这个血管荧光突破性的新技术,可以将近红外荧光成像与白光图像相结合,让神经外科医生在双目镜筒中实时观察解剖结构及荧光效果,为手术决策提供实时有效的信息。(点击上图播放手术效果视频)据悉,采用AR(增强现实)荧光技术的徕卡MFL800已经通过CFDA认证,将于明年一季度在中国上市。近日,徕卡显微系统副总裁Maxim Mamin先生就AR荧光新技术的研发情况接受了《神外前沿》的访谈。对话内容如下神外前沿:AR荧光(MFL800)研究开发的初衷是什么,能够帮助神外医生解决什么问题?Maxim Mamin:血管荧光造影剂广泛应用于脑血管手术,包括动脉瘤夹闭,脑血管畸形和微血管减压术等手术。在使用过程中就会发现ICG通过红外成像,是肉眼看不到的,只能在显微镜上看到,而且是黑白的,还有很多解剖结构的细节看不清,并且还有一点延时,这对医生来说是比较被动的事情。ICG只能看到荧光显影,周边的组织是无法看清楚的;MFL800也属于ICG技术,但在镜下高清的,可以把细节和血管等都显示出来。有了深度的感觉了,周边的血管可以看得很清楚,可以在这上面做一些操作。神外前沿:AR荧光(MFL800)和以往的显微镜下的荧光有什么不同,比如肿瘤手术使用的5?ALA肿瘤荧光?Maxim Mamin:ICG荧光方式现在主要用于血管病的手术治疗,因为ICG要用注射的方式注射到到血管里,可以通过血液的流动经过全身,然后可以观察到血流的情况。5-ALA是一种荧光显影剂,使用方式是在患者手术前,通过饮用的方式喝下去,不会在血管显现,只会在肿瘤上显现,而且只会在高级别胶质瘤上显现。可以说ICG是血管显影的介质,5ALA是胶质瘤显影的介质。另外,ICG和5ALA在激发后产生的光波的波谱和波长是不一样的,借助于发射波长为400nm蓝光手术显微镜,5-ALA是可以看见的,ICG的波长是780nm-800nm,是红外光,肉眼看不到的。神外前沿:AR荧光(MFL800)在神经外科中更适合血管还是肿瘤的显影?Maxim Mamin:这个新技术主要应用于血管病,包括动脉瘤、血管畸形、MVD(微血管减压)等,当然还可以用在心血管病的搭桥手术,看血管的流畅情况,还有可以用在整形手术中。(图注:Leica M530 OH6手术显微镜与MFL800的结合,有德国科隆医疗中心神经外科的Cleopatra Charalampaki教授提供的手术照片)神外前沿:这个技术如果应用于脑血管外科,是否会扩大适应症范围,相对于介入技术的不断发展?Maxim Mamin:这是个很好的问题,现在确实有趋势看到很多医生开始采用介入技术,MFL800肯定能帮助神经外科医生看得更清楚,以治疗更复杂的脑血管病。MFL800是基于(增强现实技术的)GLOW平台,现在开发的是用于脑血管病的技术,将来还可以开发应用于肿瘤的技术。这个平台的硬件包括摄像头等设备,另外还有相关软件,以实现定量化、多波长的荧光成像技术,最终就像地图一样,能够显示出比如血流的强度、随时间变化的情况等,因而能够区分动脉和静脉,带来更多的信息。我们采用的是开放性的设计平台,将来有了新技术都可以将其升级到手术显微镜上。新的技术把不可见的光通过数据化显示出来,最重要的一点是MFL800是一个实时的技术,术者可以在目镜下实时观察到手术中的情况,没有延时。神外前沿:MFL800预计在中国何时上市?Maxim Mamin:我们产品的正式上市是在10月份刚刚结束的AANS美国神经外科年会上,正式的装机在11月份,12月份还会在欧洲和美国有新的装机。在中国我们已经通过了CFDA的认证,应该在明年一季度上市。神外前沿:目前内镜技术在神经外科应用越来越多,显微镜如何面对内镜的竞争?Maxim Mamin:显微镜和神经内镜是互补的技术,手术显微镜最明显的优势就是术中可以有很好的深度感受,可以很直观的看到并操作,相对来说也容易操作。另外,显微镜现在可以搭载各种荧光成像技术,但目前的神经内镜还没有。再有,神经内镜很难判断方向,并且并非所有手术器械都适用于脑室镜,比如双极电凝。神经内镜可能更适合于不能直视的一些病变,比如在角落或者被重要器官遮挡的。目前最新的技术可以把神经内镜的成像集成到显微镜上,也就是可以在目镜下直接显示。受访者简介Maxim Mamin, Vice President Medical Division (Surgical Microscopes Imaging) at Leica Microsystems (Danaher company), Leica Microsystems, UCLA Anderson School of Management.International Executive with 15+ years of leadership experience in Siemens Healthcare across various functions (Marketing, Product Development, Sales, Regional Business Development, Country Operations), across diverse products portfolio (Imaging and Lab Diagnostics), and cultures (Russia, Germany, Singapore, Korea, Malaysia).来源:神外前沿关于徕卡显微系统Leica Microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(Wetzlar, Germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 【岛津设计】红外显微镜AIM-9000篇
    设计是联系客户与岛津的纽带。设计着眼于获得使用者的认同并带给他们更多的满足感。设计能够传递开发者的思想和企业理念,是加深客户与企业联系的重要一环。我们将继续不断地设计、创新。 AIM-9000红外显微镜能够将红外光投射到肉眼难以观察到的显微区域,这样利用傅里叶变换红外(FTIR)分光光度计便可以进行现场测量。每一类有机物都有其独有的特征,就像指纹。通过在数据库中交叉核对与该指纹唯一对应的谱图信息,可以对有机物进行定性分析和结构确认。其具体应用包括分析药品表面上污渍的成分、电路板上金属部件腐蚀的原因,以及因附着异物而导致断路的位置等。 支持各种水平用户的分析系统 能够轻松简便地识别污染物 该系统可在以下三个阶段从不同角度为分析人员提供支持:(1)观察、(2)测量、(3)分析。在(1)观察阶段,仪器右侧有较大的工作空间,这样操作人员可以在计算机前完成所有必要的操作。在(2)测量阶段,只需将样品放置在样品台上,便可以利用计算机软件进行操作,而不必交替操作仪器上的按钮和计算机软件。在(3)分析阶段中,只需执行几个简单步骤即可完成复杂的分析过程。例如,自动显示相关功能。 外观设计给人一种高端、精密之感 外观设计给人一种高端、精密之感,与当前系统使用的仪器搭配更加和谐。此外,其操作区内可安全放置样品并且需要维护的部分大多位于可操作区,因此其可用性较高。 直观、高效、无缝操作 使用计算机软件进行测量和分析涉及许多步骤,因而复杂性倾向于不断增加。此设备中的按钮依照工作流程中的步骤按顺序布置并且可以自动显示与当前执行的功能相关的操作按钮类以及向导信息,因此其整体布局和操作过程更加直观。此外,其图形内容简单易懂,因而分析人员可以将注意力集中在他们最关注的显微图像和分析结果上。 用户参与开发设计 基于“自动识别污染物的时代终将到来”的理念,我们反复观察并与用户深入交流。由此,我们了解到了分析人员在工作流程中的潜在需求,随后将需求转化为理想的工作流程,并将其应用于各类设计之中。虽然我们并不是分析仪器的使用者,但我们通过不断观察并与用户深入交流充分了解其实际需求,由此制定出更为实用的设计方案。 荣获奖项 2018年德国红点设计大奖2017年日本优良设计大奖
  • 超显微镜观察到锂离子在双层石墨烯中迁移
    p  德国斯图加特马普固态研究所和乌尔姆大学的科学家使用超显微镜(SALVE),观察到以原子分辨率显示的锂离子在电化学充放电过程中的表现,证明了在单个纳米电池中双层石墨烯发生的可逆锂离子吸收。研究成果发表在最新一期的《自然》杂志上。/pp  斯图加特马普固态研究所物理学家于尔根· 斯迈特介绍说,研究显示“纯碳化合物最适合用于锂基电化学存储系统,在此系统中,锂暂时储存在碳主体中”。/pp  这一项目由巴符州基金会资助,目的是研究锂在二维碳化合物(如原子水平的石墨烯)中的储存和扩散。为此,斯迈特和他的博士生开发了一种由双层石墨烯组成的“微型电池”。石墨烯属于二维材料,由单个碳原子层组成。在只有0.3纳米薄的细长电化学微电池的一端,研究人员在顶部施加了溶解有锂盐的电解质液滴。为使电解质不干扰电子显微照片,实验必须精确定位和机械稳定,他们采用了一种技巧,即添加了在紫外线下固化的聚合物,使液滴成为凝胶状固体留在原处。/pp  实验显示,当电压施加到纳米电池时,锂离子从电解质液滴迁移到石墨烯双层的间隙中,并在那里积聚 去除电位差时,累积储存的锂又溶解并迁移回到电解质液滴中。/pp  在原子水平上,这种过程很难被“原位”观察。乌尔姆大学乌特· 凯瑟教授领导的团队利用超显微镜首次证明了石墨烯在原子水平上的嵌入。/pp  实验结果让研究人员感到吃惊,传统的石墨基电池只有少数紧密堆积的锂在两层碳层之间,而在石墨烯纳米电池里发现非常密集的锂层。凯瑟教授称,超显微镜为理解纳米电池提供了独特的途径,能在石墨烯夹层中观察锂等轻元素的扩散是一项巨大的科学挑战,传统的透射电子显微镜(TEM)做不到。/p
  • 有了Rebel,细胞观察 so easy
    你在细胞房的显微镜真的只要能看到就够了吗?平常只是用显微镜观察细胞状态,如果真的需要图片资料还需要用细胞房外的显微镜拍摄,这样的工作方式真的合理吗?每次拍摄照片都要把细胞带出细胞房,拍摄完,还需要走很长的距离,再带回细胞房,这对细胞状态和生长不会有影响吗?每次想进行细胞计数还需要先用显微镜观察下细胞,然后再在细胞计数仪上进行计数,不能直接观察然后计数细胞吗?这一切现在都可以改变,Echo Rebel正倒置一体显微镜独特的设计使其足够小巧、轻便,且无需配置电脑,使用IPAD PRO显示成像画面,只需要一本书的大小就可以放下整台机器,帮助您完成从观察到成像的全过程。使用基于IOS系统的软件简化拍照流程、加快拍照速度,帮助您最少的时间获得最好的图像质量,减少拍照过程对细胞的影响。Echo Rebel正倒置一体显微镜足够小巧,也可以将其放入培养箱中进行观察,其与IPAD采用无线连接,可以在培养箱外进行相关观察和操作,进一步减少影响。Echo Rebel正倒置一体显微镜软件不仅可以进行细胞观察,还可以添加细胞计数功能,解决了细胞计数与观察分开的难题,进一步帮助用户节省时间和精力。同时又获得精确的计数结果。★ 在几秒内快速分析图像,让您告别以往费时费力的人工细胞计数。只需轻轻一点,自动实现细胞存活率计算,无需培训轻松上手。★ 还可以实现多张图片采集,多次计算,消除人为误差,精准度高。★ 轻松实现自动捏合缩放,查看单个细胞的特写图,还可以快速计算不同直径大小细胞数量。Echo Rebel 正倒置一体显微镜Echo Rebel正倒置一体显微镜配置了800W像素的高速摄像头,可以进行视频录制,远程观察等功能,帮助您实时的监测您的细胞状态,获取长时间的细胞动态变化和运动情况,也可实现多屏共享等功能。Echo Rebel正倒置一体显微镜采用独特的视网膜屏全视野技术,将目镜内置,重新定义观察方式,且显微镜创新性的将正倒置显微镜合二为一,突破传统限制,只需一转,就可满足不同的样品观察需求。▲ Echo Rebel正倒置一体显微镜★
  • 观察者---显微镜下的空间与时间
    从古至今,人类一直在追寻更高更远的真相,从远洋航行到太空探索,人们不断征服一个个宏伟的目标,但是人们肉眼所见的宏观世界不是世界的全部,还有人眼无法看清的微观世界,它同样也吸引着无数人去探索和追寻。无论宏观还是微观事物,我们的观测都是基于三维空间的属性,即XYZ三维,而对事物形态变化的观察则需要再引入一个衡量因素--时间T,因此对事物观察的最完备方式一定是XYZT的同时记录,即形态+时间的长时间摄影,这也是显微镜的终极功能。经过三百多年的发展,现代显微镜提出分辨率、景深、视野等概念,并不断提出解决方案,显微镜已经初步满足我们对微观世界观察的需求,帮助我们记录下微观世界的空间和时间。微观世界观察最重要的是细节的分辨,分辨率的概念便由此诞生,分辨率是指人眼可以区分的两个点之间的最小距离,只在XY维度有效,根据瑞利判据,Rayleigh Criterion,正常人能分辨的极限是明视距离25cm处0.2mm的两个点,当我们使用显微镜后,我们可以看清更小距离的两个点,这便提升了我们观察的分辨率。随着现代研究的不断深入,人们对分辨率的要求也在不断提高,而科学家们也在不断的提升显微镜的分辨率,如电子显微镜将分辨率提升至纳米级别,实现了对病毒的观察,超高显微成像技术,将显微镜的分辨率从200纳米提升到几十纳米,实现了对活细胞细胞器的观察。分辨率的提升也带来了新的问题,即视野和景深的减小,当用普通中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/NA,可见光波长范围为400—700nm,取其平均波长550nm,波长是固定常量,因此,增大NA数值,即可得到更小的D值,也就是可以分辨的两点之间的距离更小,可以让人眼看清楚更小的物体。NA值即数值孔径,描述了透镜收光锥角的大小,NA = n * sinα,即透镜与被检物体之间介质的折射率(n)和孔径角(2α)半数的正弦之乘积。n为物镜与样本之间介质的光折射率,当显微镜物方介质为空气时,折射率n = 1 , 采用折射率高于空气的介质,可以显著提高NA值,水浸介质是蒸馏水,折射率为1.33;油浸物镜介质是香柏油或其它透明油,其折射率一般在1.52左右,接近透镜和载玻片的折射率,因此,油镜的NA值高于空气镜。孔径角又称“镜口角”,是透镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,增大镜口角,可以提高正弦值,其实际上限约为72度(正弦值为0.95),乘以香柏油折射率1.52,可以得出最大NA值为1.45左右,代入分辨率计算公式,可以得出常规显微镜极限XY平面分辨率为0.2um左右。NA值还会直接影响显微镜的视野亮度(B)。由公式B∝N.A.2/ M2 我们可以推出,亮度随数值孔径(N.A.)的增大或者物镜倍率(M)的降低而增加。从理论上来说,我们应该追求尽可能高的NA值,以获得更好的XY平面分辨率和视野亮度。然而凡事都有两面性,XY平面分辨率的提升,会带来Z轴景深和观察视野的减小。显微镜一般都是垂直向下取景的,通过视场直径内观察到的物体表面凸起的位置与凹下的位置都能够看的很清楚时,那么凸点与凹点之间的高度差就是景深了,对于显微镜来说景深越大越好,景深越大在观察高低不平整的物体表面时,能够得到更好更立体的清晰度画面,大景深有助于我们对微观世界进行垂直方向形态的观察,也就是XYZ三维形态中的Z轴信息。景深就是象平面上清晰的象所对应物平面的前后空间的深度:dtot=(λ*n)/NA + n/(M∗NA) * e,dtot:景深,NA :数值孔径,M :总放大率,λ:光波波长, (通常λ=0.55um),n: 试样与物镜之间介质的折射率(空气: n=1、油: n=1.52)根据这个公式,我们可以知道,Z轴景深与XY平面NA值成反比。除了景深外,视野也受到NA值的影响,通过仪器固定注视一点时所能看见的空间范围即视野,它的计算与物镜的放大倍数直接相关,观察所看到的实际视野直径等于视场直径除以物镜的放大倍数,目镜会表明对应视场数,如10/18,即放大倍数10倍,视场直径18mm,因此当目镜确定后,放大倍数越大则观察的视野越小。XY平面分辨率是对局部细节的解析,而视野则决定了我们对样本的观察范围,视野必然是越大越好,但受限于当前的技术,我们必须采用高倍物镜,才可以得到良好的NA值,因此,视野和NA值有间接的负相关系。当我们需要观察的样本大于我们的视野时,每次观察只能看到一个局部,为了解决这个问题,拼图技术便应运而生。通过在XY方向移动样本,连续拍下不同位置的图像,最后拼接在一起,就可以得到一张全视野的图像。▲镜下局部视野▲拼接后全视野▲手动拼接▲自动拼接(图源:Echo显微镜)拼接分为手动和自动两种,手动拼图成本低廉,但是对人员的操作水平,经验要求很高,如上图,操作人员稍有不慎,就会出现图片接缝问题,同时手动拼图速度慢,不适合大批量,高通量样本处理,比如医院病理科日均上百病理切片观察,手动拼图方式无法满足要求。自动拼图的核心部件是全自动载物台,结合软件,可自动实现全自动,大范围全视野拍摄,结合自动Z轴对焦补偿,即可得到全视野的清晰图像。Echo Revolution 全自动荧光显微镜Echo Revolution全自动荧光显微镜,将XYZ三轴全部实现电动化,从而实现自动完成多图拼接的大视野高分辨率成像,而电动化的Z轴可以帮助用户实现自动聚焦、自动定焦和Z-Stacking 多层扫描大景深成像。Echo Revolution全自动荧光显微镜还添加了延时摄影功能,可以帮助用户实现长时间观察和时间回溯,使用户可以进行更全面的观察实验。
  • 飞纳电镜观察文物只需三步走
    恭喜飞纳电镜于 2017 年 5 月 27 日顺利通过海南省博物馆的验收。海南省博物馆已动工建设的二期工程将依托“华光礁i号”沉船的保护修复及沉船中出水的近万件瓷器,重点展示与南海历史、海上丝路、地缘政治和海洋生物矿产资源等方面有关的文物和标本。那么,飞纳电镜是如何观察海底沉船文物的呢?只需三步走:第一步,制样将出水的瓷器用碳导电胶粘在样品台上,再将样品台置于飞纳台式扫描电镜大样品室卓越版 phenom xl 的样品杯上,该样品杯尺寸为 100mm*100mm,一次性可以容纳至多 36 个 1/2 英寸样品台。以下是制备好的出水瓷器样品。飞纳电镜低真空技术可以保证不用喷金直接观察陶瓷等不导电样品,大大简化了制样步骤。对海南省博物馆的工作人员来说,更重要的是大大保护了出水文物,不用对文物表面进行喷金处理,足够大的样品腔室,也不用对样品进行切割处理。飞纳台式扫描电镜内置彩色光学显微镜下的样品台全貌飞纳电镜内置彩色光学显微镜导航,可以对样品台进行全景展示,方便用户定位需要观察的样品,通过鼠标点击需要观察的样品,该样品通过自动马达样品台的移动,将会瞬间移动到扫描电镜视野中央,观察目标位置十分方便。第二步,观察以下是观察出水瓷器的结果。选取了三个特征位置进一步放大观察,只需逐个点击这三个位置,在全自动马达的运动下,特征位置会瞬间移动到视野中央。通过电镜主操作界面的功能按钮,可以轻松完成图像缩放、聚焦、亮度对比度调节、旋转等操作。红色方框为主操作界面的功能按钮,从上往下依次是图像缩放、亮度对比度调节、聚焦、旋转以下是三个特征位置的观察结果:第三步,分析使用飞纳电镜的能谱进行元素的种类和含量的分析。以上右侧显示器显示的是飞纳电镜能谱的面扫分析使用飞纳台式扫描电镜进行样品的检验与分析,将会大大提供分析人员的工作效率,期待飞纳台式扫描电镜为海南省博物馆的作出重要贡献。
  • 日立应用|固态电池电极的原位观察
    液态锂电池是目前新能源领域最主要的能源解决方案,但是不论是磷酸铁锂还是三元材料都很难突破350Wh/kg的能量密度,在提高能量密度的同时还伴随着很多安全隐患。而固态电池与传统锂电池最大的区别在于电解质,它使用固体电解质代替了电解液和隔膜。 传统锂电池(左)和固态电池(右)结构固态电池的优点1、固态电解质大大降低热失控风险;2、固态电池电化学窗口更高,可以匹配高能的电极,大幅提高理论能量密度;3、固态电池可以简化封装,缩减电池重量,提高体积能量密度。固态电池现阶段的发展障碍1、大部分固态电解质电导率较低,快充性能不佳;2、循环过程中物理接触变差,影响使用寿命;3、制备工艺复杂。而固态电池电极之间、电极与电解质之间的形貌和结构对于电池整体的性能和安全性有重要的影响,也是研究固态电池性能的关键。目前,日本在固态电池领域的研究相对领先,其中以氧化物、硫化物路线为主。本文中我们利用日立扫描电镜、离子研磨仪、真空转移系统和原位样品台等设备,对固态电池在充放电过程中电极之间的形貌和结构变化进行了观察。固态电池正极中含有金属锂,在空气状态下容易发生反应,因此我们需要对整个制样和观察过程隔绝空气。日立独特的真空转移系统可以将样品在手套箱、电子显微镜、离子研磨仪以及原子力显微镜之间隔绝空气转移,从而避免了样品在转移过程中的氧化。 日立真空转移系统由于固态电池的电极界面需要通过切割才可以观察到,本文采用日立的离子研磨仪(IM4000Plus)对整个电池进行无损切割,从而获得电池电极的界面。离子研磨仪采用Ar离子加工,可以大大减少加工损伤,同时加工过程是在真空下完成的,配合真空转移系统可以将样品转移到扫描电镜中观察。离子研磨截面加工过程和日立离子研磨仪IM4000Plus为了实现通电状态下的原位观察,我们采用了可以原位通电的样品台,且此样品台可以配合真空转移系统工作,可以保证样品从离子研磨仪切割完后隔绝空气转移到原位样品台上,再通过扫描电镜的交换仓转移至样品仓观察。 原位真空样品台本次观察的固态电池由NCA(Ni-Co-Al)正极、硫化物固态电解质和铟对极组成,分别对电极施加不同的电压和时间,观察电极界面的变化。从下图(a)可见,在施加3.1V电压时,固态电极和铟对极之间有一层In-Li合金层;从(b)图可见在施加3.5V电压60min后合金层向In层扩散(箭头所示);从(c)图可见在施加3.7V电压110min后,Li的扩散更加明显。由此可见,在高电压或者长时间通电下In-Li合金层会逐渐变宽,Li向In层逐渐扩散。整个过程都是通过日立高端冷场电镜Regulus8230在低电压下观察实现的。Regulus8230可以在低电压下获得背散射电子图像,看到In-Li合金层与电极之间的成分衬度,从而判断Li是否扩散。 固态电池截面原位观察(a)电压3.1V(b)电压3.5V,60min(c)电压3.7V,110minSEM型号:Regulus8230,加速电压:1.5kV,放大倍率:1,000x,信号:HABSE日立为固态电池的原位观察提供了离子研磨仪、真空转移系统、原位样品台和扫描电镜一整套方案,可以满足新能源客户对锂电池形貌和结构的研究。参考文献:Long, Lizhen. et al. Polymer Electrolytes for Lithium Polymer Batteries. Journal of Materials Chemistry A. 26 (2016): 138-169.Zhu, Gaolong, et al. Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small 2019, 1805389-1805402.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 《自然通讯》:核磁共振成像新技术 可观察基因表达
    基因就如同开关一样,知道哪些基因开启,对于疾病的治疗和监控至关重要。美国加州理工学院研究人员23日在《自然通讯》杂志线上版发表论文称,他们开发出一种新方法,使用常见的核磁共振成像(MRI)技术,即可观察到体内细胞的基因表达情况。  在MRI过程中,体内氢原子(大多包含在水分子和脂肪中)被电磁波照射后会形成共振,随后释放信号,据此可创建大脑、肌肉和其他组织的图像。医生会利用该技术来观察人体组织的结构或生理功能,诊断病情,但目前还很少有人用它来观察特定细胞的活动情况。  此次,为创建观察特定细胞基因表达的新手段,研究人员将目标瞄向了水通道蛋白。这种蛋白在细胞膜上组成“孔道”,像守门员一样控制着水分子进出细胞。他们发现,增加细胞中水通道蛋白的数量,通过弥散加权MRI,可使这一细胞在图像中显得更加突出。随后,研究人员将水通道蛋白与他们感兴趣的特定基因联系起来,得到报告基因——一种编码可被检测的蛋白质基因。这意味着当这一特定基因被打开时,细胞会过度表达水通道蛋白,弥散加权成像后,细胞在图像中便会更暗一些。他们利用这一手段成功监测了小鼠大脑肿瘤的基因表达情况。  研究人员指出,开发有效的MRI报告基因是生物医学成像领域的“圣杯”,它会让非侵入性观察细胞功能成为现实。以前开发的MRI报告基因有着诸多限制,并不适用于所有人体组织。而此次研究表明,水通道蛋白是开发MRI报告基因的有效工具。水通道蛋白是人体自然产生的,不会引起免疫反应,其过度表达不会对细胞造成负面影响。在正常生理条件下,水通道蛋白增多后,进出细胞的水分子的数量也是一样的,细胞的含水量不会改变。  研究人员表示,目前这一方法虽仅在小鼠实验中取得成功,但其未来临床应用的潜力巨大。
  • 日本开发出一种用扫描电子显微镜观察活体器官的结构和“运动”的方法
    日本中部大学7月4日宣布,已开发出一种用扫描电子显微镜观察湿器官等水下样品的结构和“运动”的技术。克服“只测量固定样本静止图像”的困难日本中部大学7月4日宣布,已开发出一种用扫描电子显微镜观察湿器官等水下样品的结构和“运动”的技术。这项研究是由同一大学生命与健康科学学院生物医学科学系的新谷正敏教授、山口诚司副教授和高玉广雄副教授的研究小组进行的。研究成果刊登在《Microscopy》上。由于电子显微镜具有最大约0.5nm的高分辨率,因此适用于小规模的观察。然而,由于观察是在真空下进行的,因此需要固定要观察的样品以使水不蒸发。因此,存在传统的电子显微镜观察基本上只能测量固定样本的静止图像的缺点。作为能够对液体中的试样进行电子显微镜观察的方法,已经存在使用氮化硅等平面膜的观察方法。但是,对于观察来说,它是一个薄的观察样品,它适合非常靠近膜的可观察区域,样品与膜之间的位置关系可以设置为不损坏膜,样品不会移动,因此至于破坏平面膜,费了很多功夫,也有很多限制。另外,作为可以测定试样的运动的方法,可以举出用含有甘油或糖等非挥发性成分的溶液覆盖试样,在电子束照射下成为保护膜的方法,观察样品穿过保护膜。但这种方法中,保护膜的外面是真空,观察时保护膜也是不含水的固体膜,所以无法观察到样品在液体中的结构和运动,只能观察到样品在液体中的结构和运动。样品即使在真空中也能进行的运动是可能的。这是一种可以观察到的方法。打造具有优异电子束透过性和变形能力的“DET薄膜”此次,课题组开发了一种新的“DET膜法”。首先,我们创造了一种薄膜(DET film:Deformable and Electron Transmissive Film),它可以承受真空和大气压之间的压力差而不会破裂,并且具有优异的电子束渗透性和变形性。利用DET薄膜的电子束透过性和可变形性,DET薄膜模仿观察样品的形状,使得通过DET薄膜既可以观察宏观样品形状,也可以观察细微样品形状。...DET膜抑制和保护直接击中观察样品的电子束的量,这也是测量观察样品运动的有用特性。另外,由于DET膜可以大幅度变形,因此在同等倍率下,可以在比光学显微镜深数十倍的焦深处观察三维样品,并进行测量。成功测量小鼠提取心脏的精细结构和“运动/变形”此外,使用DET膜法,我们成功地测量了作为观察样品的小鼠切除心脏的精细结构和“运动/变形”。此外,我们还成功地测量了沉淀晶体和在液体中漂浮和移动的晶体的纳米级结构和运动。有望实现光学显微镜无法观察到的纳米级动力学的观察和测量光学显微镜的空间分辨率约为200 nm,高分辨率测量的焦深约为300 nm,因此只能观察平面。另一方面,开发的DET膜法具有很大的优势,即可以以纳米级分辨率测量观察到的样品的三维结构及其运动。此外,当将 DET膜法与固定样品的电子显微镜观察进行比较时,存在由于DET膜的存在而降低空间分辨率的缺点,但有一个很大的优点是动力学可以测量。研究小组说,用DET膜法测量的运动,不仅是观察样品自己产生的运动,也可以是对我方施加的拉扯等动作的变形。正如只看动物标本对加深对动物的理解是有限的,我们期待DET膜法的动态测量能够实现各种各样的纳米尺度动态测量。
  • 红外光谱仪FTIR-850对微小异物的分析
    显微红外技术是基于傅里叶变换红外光谱技术与显微镜技术的结合发展起来的,与常规红外光谱技术相比,显微红外技术具有检测灵敏度高、微区分析和无损检测等优点,测试时几乎不引入外部干扰,可以满足对微小样品成分的快速鉴定与分析。 在法庭科学领域中, 由于案件现场提取到的物证通常是极微量的,常规红外光谱分析技术常常无法达到检测要求,显微红外技术可以卓有成效地解决微量物证鉴定上的难题,可以满足微量物证必须保留以用于法庭作证的特殊需要。 在电子显示屏生产领域中,电子显示屏通长是由多层材料组装起来的,如果不慎引入异物夹杂在层与层之间,在屏幕点亮的时候很容易出现黑点、黑线或者是阴影,造成质量不合格。要解决这种情况或者是找到责任方,都需要先分析异物具体是什么物质,找到异物的来源,才能针对性的采取措施防止类似事件发生,从而改进产品的质量。针对此类微小异物(人体皮屑、衣物纤维、粉尘颗粒等)的分析,最常用的分析方法就是显微红外。 在微塑料分析研究领域,微塑料作为一种新兴污染物,泛指直径小于5 mm的塑料颗粒,充斥于从海洋到陆地的所有环境里。微塑料被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害,目前微塑料的检测主要是通过显微红外光谱技术手段来进行。1、适用范围 适用于微量物证鉴定、显示屏异物来源分析、微塑料成分及氧化情况研究。2、基本原理 红外光谱技术与显微技术相结合而产生的一种微量分析技术,即通过显微镜观察被测样品的外观形态或物理微观结构的基础上直接测试,选定样品某特定部位测试,得到该微区物质高质量的红外谱图。3、实验条件(1)主机及附件FTIR-850傅里叶变换红外光谱仪 红外显微镜附件(PIKE) 红外显微镜附件(Specac)(2)扫描参数: 分辨率8cm-1 ;扫描次数64次;扫描范围4000~500cm-1。4、实验结果(1)车辆碰撞物证(车漆)(2)显示屏异物(60微米黑色异物)(3)微塑料5、实验结论 与常规红外光谱技术相比,显微红外技术具有检测灵敏度高、制样方法简便、无损检测等优点,非常适合于微小样品或者大样品的微区分析,对于物证鉴定机构、电子显示屏生产企业、海洋环境微塑料污染及防控研究机构来说显微红外光谱技术是一种非常重要的手段 。 港东科技——专注、专业、专心为您提供更好的红外光谱解决方案!
  • 新型高清显微镜可观察活脑细胞
    科学家们一直希望能够更清楚地看到大脑是如何工作的。以前研究人员只能在电子显微镜下摆弄死亡的脑细胞,而从来没有用高分辨率显微镜清晰地看到活的脑细胞在有生命的动物体内的活动图景。据美国物理学家组织网近日报道,现在,德国马克斯普朗克研究所的物理学家斯蒂芬和其同事将这一梦想付诸实现。相关论文刊登在最新一期美国《科学》杂志上。  斯蒂芬与该研究所的其他研究者多年来一直在研发一种被叫做“受激发射损耗” (STED)的超高分辨率显微镜。现在,他们将这项工作提高到一个新的水准。为了让实验结果更清晰,他们首先对一只老鼠的特定脑细胞进行基因修改,使其能够发出荧光,然后切掉老鼠头盖骨的一小部分,放进玻璃器皿里,通过STED观察那些发亮的脑细胞。同时,研究人员启动STED中所装置的软件以遮盖鼠脑里那些没有变亮的部分,这样即可在有生命的老鼠外部实时地再现出神经细胞的高清活动影像。  这个新型显微镜提供的清晰度可以达到70纳米级以下,四倍于以前的显微镜,足以帮助科学家观察到脑部树突棘的活动,树突棘是存在于哺乳动物大脑神经元树突上的小突起,构成中枢神经系统兴奋性突触传递的原始位点。  研究人员未来将有可能进一步发现这种新型显微镜的许多种用途,而其中最重要的领域是用于观察治疗精神病药物在脑部神经元突触里是如何工作的,也许还会引发制药学针对特殊疾病开发新药的突破性进展。
  • 新品发布|优利德UTx318M便携型红外热成像望远镜
    仪器信息网讯 近日,优利德发布新品UTx318M便携型红外热成像望远镜,该产品是一款集红外热成像及远距离探测功能于一体的热成像望远镜,具有成像高清、细节清晰、轻巧便携、耐用性强、操作简单等特点。同时,它还具有概率测距、激光指示、热点追踪及电子罗盘等多项实用功能,能帮助用户快速确认目标所在位置,是户外探险、野外观瞄和搜索救援等户外体验活动时不可或缺的利器。【产品主要特点】成像清晰,400×300红外分辨率及手动调焦功能,细节提升成像清晰图像。热敏感度(NETD)<25mK,目标更清晰,可识别多种细节。50Hz高帧频灵敏流畅,舒适高质量的移动目标检测体验、动态画面捕捉不延迟。8倍电子变倍调节,可实现1×、2×、4×、8×变倍模式选择,利于远距离观测,放大目标细节查看。IP67三防设计,利于在有粉尘环境及雨天导致机身潮湿使用时保护产品不受侵害,及两米高度跌落无影响。三种场景模式选择,观测更“专业”,包括观鸟模式(针对较小热源发现目标,能更清晰的识别被观察目标的特征)、森林模式(针对山野丛林场景凸显目标,在有树叶、灌木和草的田野环境中进行搜索和观察的最佳模式)及岩石模式(针对目标丰富场景细节更多,在晴天或城市环境中观察目标的最佳模式)。【产品优势】户外探险,突破视界的极限UTx318M不受光线条件限制,能在黑暗或昏暗的环境中准确地探测、显示并分析周围环境中的热量分布。无论是在蔓延的丛林、险峻的山脉,还是在野外露营时,它都能帮助用户发现隐藏在黑暗中的动植物、隐蔽的道路或是其他潜在危险,为户外探险开启探索未知世界的新大门。野外观瞄,捕捉瞬间的精彩UTx318M拥有400×300红外分辨率、低于25mK热灵敏度,配合50Hz高帧频,能够实现敏捷的成像反应,产生清晰、细节出色的图像,且画面无延迟、无重影。无论是观察野生动物、观赏鸟类、观看比赛还是观测自然景观,UTx318M都能准确捕捉每一个精彩细节,让用户在观瞄过程中不错过任何一个精彩瞬间。搜索救援,保障安全的得力助手当遇到人员走失的情况时,UTx318M可第一时间用于人员搜救。其2米防摔、IP65防护性能,使其能够在各种严苛、恶劣的环境中使用。即使在全黑或视线不佳的情况下,UTx318M也能够快速进行搜索并定位目标,为救援行动提供重要支援。此外,UTx318M还具有8倍电子变倍调节功能,利于远距离观测时放大目标、细节查看。它还支持超高清拍照、录像和存储,可通过外接屏幕进行视频输出,以及通过手机APP连接WiFi进行观测。无论是追求卓越成像质量的户外发烧友,还是需要应对严苛恶劣环境的搜救专业人员,或是注重坚固耐用品质的安全巡视员,UTx318M都可以全方位满足用户的需求。【产品技术指标】型号UTx318M探测器模式非制冷氧化钒语言简体中文、英文红外分辨率400×300拍照√红外响应波段8-14μm视频录像√像元尺寸12μm屏幕亮度调节√帧频50Hz电子罗盘√热灵敏度/NETD<25mK概率测距√镜头18mm热点追踪√光圈F1.0画中画√FOV14.6°(H)×11°(V)WIFI照片下载√调焦模式手动调焦WIFI视频直播√最小对焦距离0.3M手机APPIos、Android目镜出瞳距离≥18mm视频输出Type-C接口。可将模拟信号外接到显示器屈光度调节-4D~+5D自动关机关闭、5min、15min、50min显示屏0.39“0LED电池类型8650可充电电池显示分辨率1024×768电池工作时间>4HR色板铁红、彩虹、红热、黑热、白热工作温度-10℃~50℃数字变倍1×、2×、4×、8×存储温度-20℃~60℃图像模式PNG防护等级IP67视频格式MP4跌落2m激光指示√(Class 2激光,红色)认证RoHS,CE,UKCA,FCC存储内部储存,16GB尺寸160×71.5×38.5mm数据接口Type-C USB重量357g【产品应用】户外露营:红外夜视设备可以帮助露营者在夜间更好地观察周围环境。航海:观察地形变化,提前规划路线,判断附近岛屿是否存在潜在风险。紧急搜救:不受恶劣环境限制,远距离搜索。夜间巡逻:可辅助夜间治安巡逻判断治安环境的安全性。侦察和突袭:可记录和跟踪逃犯的热迹和动向,协助执法人员准确、快速地抓捕逃犯。
  • 如何让活细胞观察变得简单,有ECHO Revolution就够了
    细胞是生物体基本的结构和功能单位,是生物学研究的基础。传统的细胞观察是通过倒置相差(荧光)显微镜来观察细胞生长或给药前后的形态变化。但是,传统的活细胞观察方式,仅能观察到细胞瞬间的生理信息,无法反映其长时间、连续、全面、动态过程的全部信息。▲ 图源:网络,侵删随着科学的进步,人们对活细胞观察的需求和要求越来越高。如细胞三维培养观察(类器官培养观察),药物筛选等。且在药物筛选实验过程中,需要观察给药后,细胞的形态变化、生长、分化、迁移、凋亡、蛋白的表达分布和细胞器观察等。这需要显微镜长时间观察和聚焦不同焦平面的细胞,并且光毒性要小,因为用荧光观察细胞内的蛋白分布时,荧光会对细胞产生一定的损伤;对一些细胞聚集成团的厚样品来说,需要显微镜具有Z-Stcaking和三维重塑功能且分辨率要求高;同时药筛具有高通量需求,在多孔板内药筛实验中,活细胞观察需要显微镜快速在多样品孔之间进行切换、自动聚焦和荧光通道切换等,这些活细胞观察需求对显微镜功能模块要求极高。▲ 图源:网络,侵删请注意!Revolution正倒置一体电动化智能显微成像系统所设计的功能模块完美契合活细胞观察,近为之而生,搭载的实时DHR技术,使分辨率得到进一步突破,简单多功能的联用让您感受不一样的操作体验。HyperScan高速拼接大视野成像功能,即可以快速扫描整个样品孔又能解决高倍镜下视野小的问题。孔板导航成像功能(Multi-well Point)结合延时摄影成像功能(TimeLapse)、自动对焦与长时间锁焦,再搭配活细胞工作站和全自动载物台,可以实现孔板中活细胞长时间观察又可以一次性研究筛选多种不同浓度的药物对细胞的影响。Z-Stacking+DHR功能再结合自动LED荧光系统,可以更加清晰的观察细胞内不同蛋白的分布,进行三维重塑,同时降低荧光光毒性和光漂白。高速高灵敏相机捕捉微弱荧光信号,使图片结果更准确更清晰。Revolution正倒置一体电动化智能显微成像系统是一台专业的智能活细胞观察显微成像系统,对从事研究活细胞观察研究的您,必须拥有一台高颜值、高性能、易操作的研究级显微系统,Revolution您值得拥有!
  • 实验室用生物显微镜观察藻类水产养殖
    实验室用生物显微镜观察藻类水产养殖藻类水产养殖不仅能够提高水产养殖的效率和产量,还能够改善水质环境,达到可持续发展的目的。养鱼先养水,观察水体藻相已经是鱼病防治工作中必不可缺少的一部分,而生物显微镜则成为了实验室必备的重要设备之一。生物显微镜具有高清晰度、高放大倍数、高对比度等核心优势,可以让实验人员清晰地观察藻类的细胞结构、生长状态等信息,以此来判断藻类的健康状况和生长状态,从而进行相应的调整和管理。如何使用生物显微镜观察藻类?1.准备好显微镜、载玻片、盖玻片、滴管等工具。2.将藻类样品放在载玻片上,加上一两滴水,再用盖玻片覆盖住样品。3.将载玻片固定在显微镜的样品台上,调节显微镜的目镜和物镜,使样品清晰可见。4.通过调节光源强度、聚焦等方式来获得更好的观察效果。5.通过安装显微镜相机,直接在计算机屏幕观察细胞结构和状态等,完成图像采集、记录和共享。生物显微镜优势:MHL2800系列生物显微镜配置优良的无限远平场消色差物镜和大视野目镜,成像清晰,视野广阔。符合人机工程学要求的理想设计,采用低位调焦手轮,内向式物镜转换器与内置式提手设计,使操作更方便舒适,空间更广阔,仪器搬运更安全。从低倍到高倍都可以得到高分辨率,高对比度的显微图像。符合人体工程学设计,使用更加简单舒适。多种观察方式:明场观察、相衬观察、暗场观察和偏光观察。产品可广泛应用于生物、医学、工业、农业等领域,是医疗、教学、科研等单位的理想仪器。MHL2800生物显微镜参数内容:技术规格目镜大视野WF10X(视场数Φ22mm) 无限远平场消色差物镜PL 4X/0.10 PL 10X/0.25 PL 40X/0.65(弹簧) PL 100X/1.25(弹簧,油 Spring, oil)目镜筒MHL2800双目镜(倾斜30&ring ),眼点高度可调三目镜(倾斜30&ring ) ,眼点高度可调调焦机构粗微动同轴调焦,带锁紧和限位装置,微动格值:2μm.转换器四孔(内向式滚珠内定位)载物台双层机械移动式:180mmX150mm, 移动范围: 75mmX50mm阿贝聚光镜N.A.1.25可上下升降集光器集光镜中内置视场光阑。光源3WLED, 亮度可调 选配件 目镜分划目镜10X(Φ22mm) 物镜无限远平场消色差物镜20X、60X CCD接头CCD0.5X、1X、0.5X带分划尺 显微镜摄像头USB2.0MHD500 USB3.0MHC600、MHD600、MHD800、MHD1600、MHD2000、MHS500、MHS900 相衬装置对中望远镜 无限远相衬平场消色差10X、20X、40X、100X 转盘式(Ⅲ)相衬聚光镜 暗场装置干式或湿式暗场聚光镜. 数码相机接头CANON(EF) NIKON( F) 光源6V 30W 卤素灯通过显微镜观察藻类,可以更好地了解藻类的生长、繁殖等过程,从而更好地掌握藻类水产养殖技巧和管理方法,提高水产养殖的效率和产量,还能够改善水质环境,达到可持续发展的目的。如果您需要观察藻类水产养殖,广州明慧期待您来了解与沟通,为您提供完整的显微镜系统解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制