当前位置: 仪器信息网 > 行业主题 > >

红外温度仪

仪器信息网红外温度仪专题为您提供2024年最新红外温度仪价格报价、厂家品牌的相关信息, 包括红外温度仪参数、型号等,不管是国产,还是进口品牌的红外温度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外温度仪相关的耗材配件、试剂标物,还有红外温度仪相关的最新资讯、资料,以及红外温度仪相关的解决方案。

红外温度仪相关的论坛

  • 红外测温仪里的红外线温度传感器仪器对温度环境有影响吗?

    红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。  我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。  在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为:  ΔT=ΔL/L(α1-α2)  其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。  红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。  由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。  从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。

  • 红外热像仪在刹车片温度检测中的应用

    刹车片的质量直接关系到汽车停车过程或者应急刹车过程的有效性和可靠性,对驾驶和乘坐人员的生命有直接的影响。利用热像仪可以完全知道整个的刹车片的工作后温度变化过程,从而检验刹车片制动性和耐磨性。为什么要对刹车片进行温度监测?高性能的制动能力出自完美的刹车系统。汽车刹车系统一般包括刹车踏板、液压回路、卡钳、刹车片和刹车盘。当驾驶者踩下踏板时,液压回路将力量施加于装有刹车片的卡钳,卡钳合拢抱住车轮中的刹车盘,实现减速。对于刹车片而言,最重要的就是摩擦材料的选择,它基本决定了刹车片的制动性能。温度是影响刹车片性能的一个重要的环境变量。一方面,温度制约着刹车片的制动性、耐磨性等各方面的性能。另一方面,它又体现了刹车的制动性和耐磨性等性能。所以,温度采集在刹车片材料的研究中是至关重要的。红外热像仪在刹车片温度检测中的应用刹车片如果温度过高,它的效率就会降低。急刹车时,强烈的摩擦会使刹车盘和刹车片的温度高达1000℃!如果摩擦材质过硬会导致制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。使用热像仪,工程师可以完全知道整个的刹车片以及制动系统这个温度变化趋势。根据这个温度变化趋势,可以分析出刹车片制动状况,以及耐磨性。如果刹车片摩擦材质过软,在连续刹车后刹车片温度急剧升高,制动力会明显下降。相反,如果摩擦材质过硬,温度变化趋势较缓,则会导致刹车片制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。红外热像仪温度检测独特优势现有温度测量手段分三种:1、接触式热电偶接触式热电偶反应速度较慢,而且无法显示整个刹车片的整体温度分布情况,同时操作过于复杂,工程师的效率难以提高。2、红外点温仪红外点温仪反应速度快,又是非接触测温,但红外点温仪同样不具备整个刹车片温度分布的功能。3、红外热像仪红外热像仪弥补了接触式热电偶和红外点温仪的缺点,操作简捷,反应速度快,非接触测温,同时能够反映刹车片的温度分布,是目前最理想的检测工具总结红外热像仪拍摄时可能会遇到哪些问题?1、刹车片工作后,温度比较高(大于600℃),选用的热像仪时需要注意测温范围2、表面比较光亮时,非常容易将附近高温辐射源反射进红外热像仪,造成严重干扰,在拍摄时要注意避开附近高辐射物体。如何能做好红外热像检测?3、选择合适的测温范围,应该能够检测到1200℃的高温;4、先使用自动模式测量温度范围;然后用手动设置水平跨度,将温度范围设置在最小,并包含有先前测量的温度范围;5、切换各调色板模式,使热像图显示效果达到最佳(建议使用高对比度或铁红模式)。

  • 求购一台手持红外温度计

    目前,用于食品的湿法消解,想了解消解的温度,特向大家求购一台手持红外温度计,请大家推荐一下,哪个品牌好用

  • 【分享】正确使用红外线测温仪AR882的温度准确测量

    、只测量物体的表面温度。红外测温仪不能测量内部温度。 2、不要透过玻璃进行温度测量。玻璃的反射和透射性能不同于其它材料,因而得出的红外温度读数受到影响。 3、建议不要用红外测温仪测量光亮或抛光金属表面(不锈钢、铝等)。 4、注意环境条件。蒸汽、灰尘、烟雾等遮住镜头,妨碍精确测量。 5、注意环境温度。如果测温仪遇到10度以上的突变环境温差,让仪器适应新的环境温度至少二十分钟。 6、不同的物体用调不同的发射率。

  • 红外光谱仪对温度敏感吗?

    赛默飞提供的红外光谱仪现场准备要求是:A:温度要求:保持仪器工作场所的温度在16℃到27℃。温度的变化可能会导致仪器响应值的长期漂移。一旦仪器完成安装,建议让它处于常年开机状态。不要把仪器放在热源,水源及空调排风口附近。----------------------------------------------------------------------------------------是仪器工作的时候需要达到这个温度范围,还是平时也一直保持在这个温度范围内呢?

  • 红外温度传感器工作原理选型应用

    红外温度传感器工作原理选型应用

    [b]红外温度传感器简介[/b]红外温度传感器[color=#333333],在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。[/color][color=#333333]温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。[/color][color=#333333][img=,236,195]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_01_3332482_3.jpg!w236x195.jpg[/img][/color][color=#333333][b]红外温度传感器工作原理[/b][color=#333333]红外线[/color][color=#333333]红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。[/color][color=#333333]红外辐射[/color][color=#333333]红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。[/color][color=#333333]传感原理[/color][color=#333333]热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。[/color][/color][color=#333333][color=#333333][img=,511,294]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_02_3332482_3.jpg!w511x294.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器选型要点[/b]主要从性能指标和环境和工作条件两方面来加以考虑。性能指标:首先就是量程也就是测温范围,选择红外温度传感器时一定要注意到它的量程,只有选择了适合的量程才能更好的测量。用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。其次是要注意传感器的尺寸,不能选择过大也不能太小,必须选择适合自己的尺寸才能更好的方便测量,量程和尺寸是选择传感器都要注意的,但是选择红外温度传感器还要确定光学分辨率、确定波长范围、确定响应时间、信号处理功能等。工作条件:红外温度传感器所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。[/color][/color][color=#333333][color=#333333][img=,536,285]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_01_3332482_3.jpg!w536x285.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器应用[/b]非接触式温度测量红外辐射探测移动物体温度测量连续温度控制热预警系统气温控制医疗器械长距离测量[b]红外温度传感器在智能空调上的应用[/b]舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。[b]红外温度传感器在智能空调上的应用[/b]传统的空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量,让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。[/color][/color][color=#333333][color=#333333][img=,549,249]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_02_3332482_3.jpg!w549x249.jpg[/img][/color][/color][color=#333333][color=#333333][color=#333333]智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。[/color][/color][/color][color=#333333][color=#333333][color=#333333][img=,388,316]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_03_3332482_3.jpg!w388x316.jpg[/img][/color][/color][/color][color=#333333][color=#333333][color=#333333]以上就是工采网小编今天给大家介绍的关于[/color]红外温度传感器[color=#333333]的相关知识及它的应用范围的介绍,因为红外温度传感器的使用帮助我们生产和科研的过程编的更加的简单,所以我们增加对于它的相关知识的了解是非常的有必要的,毕竟是我们经常会使用的工具。这就是今天讲解的全部内容了,希望对大家在日后的生活中能够有所帮助。[/color][/color][/color]

  • 红外热像仪在检测汽车刹车片温度变化中的应用

    刹车片如果温度过高,它的效率就会降低。急刹车时,强烈的摩擦会使刹车盘和刹车片的温度高达1000℃!如果摩擦材质过硬会导致制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。  使用热像仪,工程师可以完全知道整个的刹车片以及制动系统这个温度变化趋势。根据这个温度变化趋势,可以分析出刹车片制动状况,以及耐磨性。  如果刹车片摩擦材质过软,在连续刹车后刹车片温度急剧升高,制动力会明显下降。相反,如果摩擦材质过硬,温度变化趋势较缓,则会导致刹车片制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。红外热像仪在温度检测中的独特优势。

  • 【原创】环境温度和压力对红外线气体分析仪会产生哪些影响?

    红外线气体分析仪检测过程需要在恒定的温度下进行。环境温度发生变化将直接影响红外光源的稳定,影响红外辐射的强度,影响测量气室连续流动的气样密度,还将直接影响检测器的正常工作。如果温度大大超过正常状态,检测器的输出阻抗下降,导致仪器不能正常工作,甚至损坏检测器。红外分析仪内部一般有问孔装置及超温保护电路,即使如此,有的仪器示值特别是微量分析仪器,亦可观察出环境温度变化对检测的影响,在夏季环境温度较高时尤为明显。在这种情况下,需改变环境温度,设置空调是一种解决办法。大气压力即使在同一个地区、同一天内也是有变化的。若天气骤变时,变化的幅度较大。大气压力的这种变化,对气样放空流速有直接影响。经测量气室后直接放空的气样,会随大气压力的变化使气室中气样的密度发生变化,从而造成附加误差。

  • 【求助】求教红外温度计如何计算样品的辐射率

    我们买的红外温度计,说明书上说只要输入样品表面的某一温度下实际温度,温度计可以自动计算其他温度下的辐射率,发文章的时候被审稿人问到,红外温度计如何自动计算辐射率的,给出原理,请问有知道的吗?谢谢!

  • 【转帖】电子产品的温度测量机理与方法(热电偶和红外测温)

    电子产品的温度测量机理与方法 在电子产品设计定型时,为防止表面温度过高伤害用户或由于温度超出材料件所能承受的限值而导致着火、绝缘失效和触电危险,需要分别在正常工作状态和模拟故障状态下对设备各个部分的温度进行测试,目前一般采用热电偶测量或外加红外测温监控的方式进行。 热电偶通过把非电学量(温度)转化成电学量(电动势)来测量,这种方法有许多优点,如测温范围宽、灵敏度和准确度较高、结构简单不易损坏、受热点可做得很小等,因其对温度变化响应快,对测量对象的状态影响小,可以用于温度场的实时测量和监控。热电偶的温差电动势虽然主要取决于所选用的材料和两个接头的温度,但材料中所含的杂质和加工工艺过程也会对它产生一定的影响,所以,尽管是由相同材料组成的热电偶,它们的温差电动势与温度的关系却可能不完全相同。对于每一支热电偶的选择要根据使用温度范围、所需精度、使用环境、响应时间和经济效益来综合考虑。温度在1000~1300℃并且精度要求比较高的,可用S型热电偶和N型热电偶;1000℃以下一般用K型热电偶和N型热电偶;低于400℃一般用E型热电偶;250℃以下和负温测量一般用T型 电偶,在低温时稳定而且精度高;S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用;J型和T型热电偶适合于弱氧化和还原气氛,有化学污染的环境要求有保护管;铠装热电偶响应时间快,而且有一定的耐久性。 焊好的热电偶都应先进行分度,即测定出温差电动势与温度间的确定关系,然后才能用它来测量温度。采用补偿导线用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差。合金丝是构成补偿导线的导体,可分为两种:延长型合金丝的名义化学成分及热电势标称值与配用热电偶丝相同,用字母“X”附加在热电偶分度号之后表示;补偿型合金丝的名义化学成分与配用热电偶丝不同,但其热电势值在0~100℃或0~200℃时,与配用热电偶丝标称值相同,用字母“C”附加在热电偶分度号之后表示。在使用之前,应将热电偶的内部绝缘体从顶端向后剥露约1.5mm,外部绝缘体则从顶端向后剥约15mm,顶端用单点焊接来连接后与要测处相连。为了达到与被测点同样的温度,接点要与被测部件的表面紧密接触。现在一般通过胶合、焊接等方法固定,胶合法将高龄粉和硅酸钠溶液以同等比例相混合,再与氰丙烯酸酯胶合。在胶合前应固定热电偶的位置,对于焊接剂易于黏附的金属表面,采用焊接法在热传导性方面优于胶合法。 接下来谈谈红外测温技术。高温区是位于光带最边缘处红光的外面,称为“热线”或者红外线,红外线的波长在0.76_100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外4类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。红外测温仪是通过接收物体发出的红外线(红外辐射),从而准确判断物体表面的温度分布情况。和接触式测温方法相比,红外测温有非接触、响应时间快、使用安全及使用寿命长等优点。红外测温仪器主要有3种类型:红外热像仪、红外热电视和红外测温仪(包括便携式、在线式和扫描式)。红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统,接受被测目标的红外辐射能量,并反映到红外探测器的光敏元件上。 红外热电视是将被测目标的红外辐射线通过透镜聚焦成像到热释电摄像管,热释电摄像管是一种具有中等分辨率的实时宽谱成像器件,主要由透镜、靶面和电子枪三部分组成。通过热释电摄像管接受被测目标物体的表面红外辐射,并把目标内热辐射分布的不可见热图像转变成视频信号。 常用的便携红外测温仪是由光学系统、光电探测器、信号放大器及信号处理显示输出等部分组成,光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号。该信号再经换算转变为被测目标的温度值,其测量精度可达1度或更高。我们要根据被测设备尺寸和环境条件从测温范围、测量精度、工作波长、响应时间、光学分辨率、显示和输出、价格等方面来选用便携红外测温仪。测温范围是最重要的一个性能指标,不同型号的测温仪都有自己特定的测温范围,一般来说,测温范围越窄监控温度的输出信号分辨率越高,测温范围过宽会降低测量精度。如果被测设备尺寸超过视场大小的50%,测温仪就不会受到测量区域外面的背景影响造成误差,可以选择单色测温仪;反之,如目标尺寸小于视场,双色测温仪是最佳选择,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,即使测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,仍能保证测量精度。由于设备组成材料的发射率和表面特性不同,测温仪的光谱相应波长也不同,如测量高温金属材料的最佳波长是近红外,可选用0.8~1.0mm,测温时应尽量选用短波。在测量快速加热的目标时,要选用快速响应红外测温仪,否则缺乏足够的信号响应,会降低测量精度。而对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。需要强调的是红外测温仪必须经过校准才能使它正确地显示出被测目标的温度,特别是要进行定期检定,试验人员在实际运用过程中也要不断积累经验和掌握测试技巧,避免读数偏差而得出错误结果。

  • 【原创大赛】近红外光谱与温度的完美邂逅

    【原创大赛】近红外光谱与温度的完美邂逅

    在几年前的研究工作中,我们偶然发现[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]强度会随温度改变。随着更深入的研究,我们发现[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度之间存在定量关系。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度的邂逅,使我们课题组成功发展了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术。当然,这个技术的开发不是一蹴而就的,我们也做了大量的调研与实践。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]不仅体现了结构、官能团等分子本身的特征,还体现了诸如氢键等分子内和分子间作用力。这些作用力会影响分子键及其振动模式,而这些作用力本身容易受到温度、压力等外界条件的影响。因此,温度变化会导致分子间作用力的变化,进而带来振动光谱的变化。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]作为一种振动光谱,必然会受到温度变化的影响。温度的变化会带来[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的变化,进而影响多元校正模型的预测能力及[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析的准确性。此外,温度的变化也会带来物质结构的改变,如氢键强度的变化、高聚物的分解等。从而,在连续改变温度的条件下测得的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]就包含了丰富的物理和化学信息,体现了物质的结构变化和分解过程。这就为物质结构分析和化学反应过程的研究提供了一种新手段。因此,有关温度对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]影响的研究越来越广泛,同时,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度变化的相关性研究已应用于过程分析和结构分析,从而扩大了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的应用范围。[align=left]然而,在定量分析方面,科学工作者们一直致力于消除温度效应的影响,其中,对温度变化进行校正是消除[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]温度效应最直接的办法。分段直接校正等化学计量学方法已用于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析中温度不敏感模型的建立,并成功地应用于水溶液中葡萄糖、蛋白质等物质的分析。然而,温度变化对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的影响并非完全是负面的。Peinado等提出应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应来产生三维数据,并应用平行因子分析(PARAFAC)对三维数据进行分析。结果表明,通过这种方法可以对样品温度进行建模和预测,而且,可以将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应转化为可利用的参数,应用于样品浓度的定量分析。我们课题组考察了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度之间的定量关系,并在此基础上建立一种新的定量分析方法。在研究中考察了水、乙醇等常用溶剂及其混合溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度之间的关系。分别基于偏最小二乘(PLS)和多级同时成分分析(MSCA)建立了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度的定量关系模型(QSTR),并利用模型对溶液中各组分浓度进行了定量分析。[/align][align=center][img=温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]用于定量分析,690,193]https://ng1.17img.cn/bbsfiles/images/2018/10/201810081704067733_6411_2695586_3.png!w690x193.jpg[/img][/align][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与温度的完美邂逅,让我们拥有了一个可以探寻科学真谛的工具。我们将投入更多的力量,利用温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术进行物质的定量和结构分析。

  • 【原创大赛】温度效应与近红外光谱的完美产物—温控近红外光谱技术

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的温度效应被认为是科学实验的干扰因素,之前科学家们一直在努力消除温度效应带来的影响或研究校正温度的方法。但是我们可以换一个角度看待温度效应,充分利用温度这个扰动因素,结合[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,利用温度扰动引起的光谱变化实现了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的定量分析和结构分析新方法—温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,并在混合物体系、生物体系及实际复杂体系分析中得到应用[sup][/sup]。 温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中包含了温度和浓度变动引起的光谱变化,利用这些扰动,我们可以溶液体系进行定量和结构分析。我们课题组利用多级同时成分分析(MSCA),建立了两级模型,分别描述了光谱与温度之间的定量关系(QSTR)和光谱与浓度之间的定量关系(QSCR),实现了对水溶液和血清样品中葡萄糖的定量分析。进一步,根据样品中包含相同成分的特点,提出了互因子分析(MFA)的新方法[sup][/sup]。通过提取不同温度或不同浓度光谱中相互包含的光谱特征,并通过光谱特征的相对含量对温度或浓度进行了定量分析。通过分析葡萄糖水溶液温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]得到了光谱变化与温度和浓度之间良好的线性关系,验证了该方法的可行性。并将MFA应用于血清样品中葡萄糖的定量检测中,也得到了满意的定量模型,为水溶液体系和生物体系的定量分析提供了一种新的途径和方法。 除了定量分析,我们还将温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于结构分析。我们发展了一种基于主成分分析(PCA)载荷旋转的光谱解析方法。对简单二元水-乙醇混合体系的温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行了分析,计算得到了在混合溶液中水和乙醇的光谱信息,通过分析计算光谱和纯物质光谱的差异,可以得到水和乙醇在溶液中的结构信息以及二者之间的相互作用信息。继而通过温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术研究了生物大分子,如蛋白,与水的相互作用。通过二维相关光谱和高斯拟合分析了不同温度下卵清蛋白水溶液的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],提取出了五种不同结构水团簇的特征光谱,得到了其强度随温度的变化趋势和随温度变化的先后顺序。结果表明,含有两个氢键的水结构变化能够很好的反映蛋白质的结构转变,并且在蛋白形成凝胶的过程中促进了凝胶结构的形成。进一步,通过温控及红外光谱技术结合化学计量学算法对更复杂的人血清样品进行了分析。将水作为探针,采用PCA和二维相关光谱分析的方法分析了血清样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],获得了与血清样品差异相关的水结构特征光谱,并实现了疾病诊断目的。除此之外,我们还建立了温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]中温度相关变量识别的方法。通过连续小波变换结合蒙特卡洛无信息变量消除的方法,筛选出了与温度相关的变量信息,通过所选变量实现了不同溶液的识别。 因此,温控[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术结合化学计量学方法可以成为一种对水溶液和生物体系中溶质含量、结构变化以及与溶剂相互作用进行分析的有效手段。

  • 终于找到了一种去除温度对近红外光谱的影响的方法

    经过努力终于找到了一种去除温度对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的影响的方法,下面是处理前后的对比图,以供大家参考。[img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603151636_15018_1635780_3.gif[/img]没有去除温度干扰的光谱[img]http://ng1.17img.cn/bbsfiles/images/2006/03/200603151636_15019_1635780_3.gif[/img]已经去除温度干扰的光谱[em62]

  • 热重红外联用的气体池最高温度

    为什么各红外厂家的气体池控温最高温度,包括传输线,都只有200多度呢?很多热重出来的样品,沸点都很高。这样既不利于有效检测,又容易造成沉积,堵塞管路等。

  • TEC半导体高精度可编程温度控制技术在红外目标模拟器中的应用

    TEC半导体高精度可编程温度控制技术在红外目标模拟器中的应用

    [b][color=#339999][font='微软雅黑',sans-serif]摘要:针对红外目标模拟器的高精度可编程温度控制功能,本文介绍了实现高精度温控的温控装置,给出了温控方案。温控装置主要包括[/font]TEC[font='微软雅黑',sans-serif]半导体制冷加热模组、电源自动换向器、传感器和超高精度[/font]PID[font='微软雅黑',sans-serif]控制器。从超高精度温度控制,关键是[/font]PID[font='微软雅黑',sans-serif]控制器具有[/font]24[font='微软雅黑',sans-serif]位[/font]AD[font='微软雅黑',sans-serif]、[/font]16[font='微软雅黑',sans-serif]位[/font]DA[font='微软雅黑',sans-serif]和[/font]0.01%[font='微软雅黑',sans-serif]最小输出百分比的高性能指标,同时还具有可手动和通讯软件编程功能。[/font][/color][/b][align=center][img=常温黑体中TEC半导体可编程高精度温度控制解决方案,600,337]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220435170646_2129_3221506_3.jpg!w690x388.jpg[/img][/align][align=center][color=#339999]~~~~~~~~~~~~~~~[/color][/align][b][size=18px][color=#339999]1. [font='微软雅黑',sans-serif]红外目标模拟器工作原理[/font][/color][/size][/b][font='微软雅黑',sans-serif] 红外目标模拟器([/font]Infrared Target Simulator[font='微软雅黑',sans-serif])广泛应用于红外探测器和红外热像仪整机的工艺测试和评价测试,它为被测装置提供标准的红外测试图像,用于测试关键指标,如[/font]NETD[font='微软雅黑',sans-serif](噪声等效温差)、[/font]MRTD[font='微软雅黑',sans-serif](最小可分辨温差)、[/font]MDRD[font='微软雅黑',sans-serif](最小可探测温差)、[/font]SiTF[font='微软雅黑',sans-serif](信号传递函数)等,以及整个系统的性能评估。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]红外目标模拟器的重要指标包括发射率、辐射均匀性、温度控制精度、温度稳定性和响应速度等,其中前两个指标取决于所用黑体的结构、辐射面材质和黑漆喷涂技术,其余指标则取决于温控系统的性能。红外目标模拟器一般通过单黑体或双黑体实现,但无论采用哪一种黑体结构,高精度的温控技术都是其中的技术关键,它直接关系到红外目标模拟器的性能,是实现红外系统指标测试的关键因素。红外目标模拟器的工作原理如图[/font]1[font='微软雅黑',sans-serif]所示。[/font][align=center][size=14px][b][color=#339999][img=红外目标模拟器原理示意图,500,365]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220437236876_9226_3221506_3.jpg!w690x505.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][color=#339999][/color][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]红外目标模拟器工作原理示意图[/font][/b][/align][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]如图[/font]1[font='微软雅黑',sans-serif]所示,目标位于准直器反射器焦平面上。热辐射图样将由热辐射表面和目标之间的温差产生,并由准直器转换成平行光以模拟无限远的红外目标,供被测红外系统的成像探测器使用。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]温控系统由温度传感器、[/font]TEC[font='微软雅黑',sans-serif]半导体模组、散热器、风扇、[/font]PID [font='微软雅黑',sans-serif]控制器、自动电源换向器等组成。温度传感器[/font]A[font='微软雅黑',sans-serif]检测的是目标温度,温度传感器[/font]B[font='微软雅黑',sans-serif]检测的是辐射表面温度。根据目标的设定温度,控制器通过[/font]PID[font='微软雅黑',sans-serif]控制算法计算加热或制冷的控制量并驱动电源换向器工作电流的方向和大小,使得[/font]TEC[font='微软雅黑',sans-serif]半导体模组进行加热或制冷输出。[/font][b][size=18px][color=#339999]2. TEC[font='微软雅黑',sans-serif]半导体高精度温度控制标准装置[/font][/color][/size][/b][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]根据红外测试设备的检测指标,要求红外目标模拟器的工作温度范围为[/font]0~50[font='微软雅黑',sans-serif]℃,温度分辨率为[/font]0.001[font='微软雅黑',sans-serif]℃,控温精度为[/font]0.03[font='微软雅黑',sans-serif]℃。要实现此技术指标,温度控制系统需包括加热装置、温度传感器、执行器和[/font]PID[font='微软雅黑',sans-serif]控制器这几部分内容,而且需要满足相应的技术指标。为此,专门针对温控系统本文设计了相应的解决方案,具体结构如图[/font]2[font='微软雅黑',sans-serif]所示。以下为图[/font]2[font='微软雅黑',sans-serif]所示温控方案的详细描述:[/font][align=center][size=14px][b][color=#339999][img=温度控制系统方案示意图,550,559]https://ng1.17img.cn/bbsfiles/images/2023/02/202302220437516841_6377_3221506_3.jpg!w690x702.jpg[/img][/color][/b][/size][/align][font='微软雅黑',sans-serif][color=#339999][/color][/font][align=center][b][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]红外目标模拟器温度控制系统方案示意图[/font][/b][/align][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]1[font='微软雅黑',sans-serif])加热方式:有很多种加热方式可供选择,如电加热、循环水加热和[/font]TEC[font='微软雅黑',sans-serif]半导体制冷加热等,但考虑到红外目标模拟器对工作温度范围和超高精度温度控制的要求,目前也只有[/font]TEC[font='微软雅黑',sans-serif]热电半导体制冷加热方式比较适用。[/font]TEC[font='微软雅黑',sans-serif]用于红外目标模拟器的温度控制除能满足温度范围之外,与其他加热方式相比具有更高的控温精度、更快的冷热变化控制速度、结构简单以及造价低的突出特点。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]2[font='微软雅黑',sans-serif])执行机构:为了实现[/font]TEC[font='微软雅黑',sans-serif]的加热制冷功能,除了需要对[/font]TEC[font='微软雅黑',sans-serif]模组的加载电流进行自动调节之外,还需在调节过程中能自动改变电流方向,为此,[/font]TEC[font='微软雅黑',sans-serif]执行机构配备了电源自动换向器。换向器接收加热和制冷控制信号,并根据控制信号大小和方向输出相应的工作电流。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]3[font='微软雅黑',sans-serif])温度传感器:温度传感器是决定温度控制精度的关键因素之一,因此本方案中配置了高等级的铂电阻温度计(如标准铂电阻温度计)或高等级热敏电阻温度传感器,使得温度传感器的温度分辨率能达到[/font]0.001[font='微软雅黑',sans-serif]℃以及测温精度能达到[/font]0.01~0.02[font='微软雅黑',sans-serif]℃。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font]4[font='微软雅黑',sans-serif])超高精度[/font]PID[font='微软雅黑',sans-serif]控制器:决定温度控制精度的另一个关键因素是温度控制器的数据采集精度、控制算法和控制输出精度。为此,在本解决方案中采用了目前控制精度最高的[/font]VPC2021-1[font='微软雅黑',sans-serif]系列的工业用[/font]PID[font='微软雅黑',sans-serif]程序调节器,除具有不超过[/font]96mm[font='微软雅黑',sans-serif]×[/font]96mm[font='微软雅黑',sans-serif]×[/font]87mm[font='微软雅黑',sans-serif]的小巧尺寸外,关键是此[/font]PID[font='微软雅黑',sans-serif]调节器的模数转换[/font]AD[font='微软雅黑',sans-serif]为[/font]24[font='微软雅黑',sans-serif]位、数模转换[/font]DA[font='微软雅黑',sans-serif]为[/font]16[font='微软雅黑',sans-serif]位、双精度浮点运行运算以及[/font]0.01%[font='微软雅黑',sans-serif]的最小输出百分比,并可对控制程序进行编辑设计,适合红外目标模拟器在全温度量程内多个设定点的自动温度恒定控制。同时,此调节器采用了高级无超调[/font]PID[font='微软雅黑',sans-serif]控制模式,并具有[/font]PID[font='微软雅黑',sans-serif]参数自整定功能,结合超高精度的数据采集和控制输出,可实现十分精细的温度变化调节和控制。另外,此调节器附带功能强大的计算机软件,通过计算机运行此软件可快速进行[/font]PID[font='微软雅黑',sans-serif]控制器的远程设置和运行操作,同时能图形化的显示和记录所有设置参数、控制程序曲线和温度控制变化曲线。[/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]总之,本文所述的采用[/font]TEC[font='微软雅黑',sans-serif]模组进行的温度控制系统,已经成为超高精度可编程温度控制的一种标准和通用性方案,完全适用于红外目标模拟器的高精度温度控制。[/font][align=center][color=#339999]~~~~~~~~~~~~~~~[/color][/align]

  • 为什么环境温湿度、样品温度和含水率对近红外光谱重现性有明显的影响?

    [font=宋体]样品温度的变化一方面会改变分子激发态的数目,影响分子在不同能级间的跃迁概率,从而改变分子吸收的强度;另一方面会影响分子氢键缔合程度,使分子的吸收谱峰产生偏移。样品含水率的变化会影响分子氢键缔合程度,会使分子的吸收谱峰产生偏移。环境温湿度的改变也会对样品分子的吸收峰强度和位置产生类似的影响。因此,在测量样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的过程中,应控制环境温湿度、样品温度和含水率,以免影响[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测量的重现性。[/font]

  • 锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    锁相红外热成像无损检测中的正弦波温度闭环控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前锁相红外热成像无损检测中存在被检物温度偏离标准正弦波形式的检测模型,以及被检物温度无法准确控制和快速达到稳定的问题,本文提出了改进解决方案。解决方案的核心是将现有的激励光源开环控制模式改进为闭环控制,具体采用了具有远程设定点功能的PID温度控制器,将现有光源的正弦波功率调制改进为直接的被检物表面温度正弦波调制,由此更符合理论模型,且可使被检物平均温度快速达到稳定而大幅缩短检测时间。[/b][/color][/size][align=center][size=18px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 如图1所示,锁相红外热成像无损检测技术使用周期性调制热源,对待测物体进行周期加热。若待测物体内部有缺陷,该缺陷对其上方表面温度分布会产生周期性的影响,因此有缺陷和无缺陷地方会产生幅值差和相位差的热特征,这些特征通过红外热像仪成像捕获。采集到的热图序列中存在着各种干扰信号,通过锁相技术可以将微弱的有用信号从众多干扰信号中分离出来,可大幅提高检测的灵敏度。但这种红外锁相或其他光激励热成像法存在以下严重问题:[/size] [align=center][size=18px][color=#339999][b] [img=红外锁相热成像检测原理及其系统,500,611]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442140543_4031_3221506_3.jpg!w622x761.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 红外锁相热成像检测原理及其系统[/b][/color][/size][/align][size=16px] (1)因为现有技术只能对激励热源的加载功率进行正弦波调制,但并不能真正保证被测物体内部的温度变化也是真正的正弦波形式,这使得热像仪获得的热波波形与检测理论模型存在较大偏差,这是目前造成此方法误差的最大原因。[/size][size=16px] (2)目前锁相法调制光源加热被测物体时的温度时间变化曲线如图2所示,要经过较长时间温度才能达到稳定状态,对于较大或较厚物体用时将会更长,其中最大的问题是温度升高多少无法准确控制,只能靠经验或多次试验来确定调制光源的加热功率以实现所希望的温度变化。[/size][align=center][size=18px][color=#339999][b][img=红外锁相法加热过程中的时间-温度变化曲线图,500,379]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031442434774_7846_3221506_3.jpg!w472x358.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 红外锁相法加热过程中的时间-温度变化曲线图[/b][/color][/size][/align][size=16px] 由此可见,目前的红外锁相法还较粗狂,整个控制还是一个开环控制过程,这使得在实际无损检测中边界条件无法准确匹配测试模型,温度变化波形和大小也无法做到准确控制。为了解决这些问题,本文提出了如下一种闭环控制解决方案。[/size][b][size=18px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 为使被检物体内部的温度变化符合测试模型中正弦波形式的要求,本文提出的解决方案是采用闭环控制加热模式,即在被检物体的表面或内部安装温度传感器,与PID控制器和激励光源组成闭环控制回路,通过正弦波形式的设定点输入,最终将被检物体表面或内部温度准确控制并与正弦波温度设定曲线吻合。整个闭环控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=正弦波温度加热光源控制系统结构示意图,650,387]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443195882_6318_3221506_3.jpg!w690x411.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 正弦波温度加热光源控制系统结构示意图[/b][/color][/size][/align][size=16px] 从图3可以看出,由增加的温度传感器、卤素灯加热光源和控制器组成的闭环控制回路,可以对被检物表面温度进行任意设定点下的精确控制。但为了使表面温度能够严格按照所希望幅值和周期的正弦波形式进行变化,解决方案中采用一种多功能的高级PID控制器VPC2021。此控制器具有外部设定点功能,即通过外接周期信号发生器,可以使VPC2021控制器的温控设定值严格按照信号发生器的输出进行改变,即温控设定值可以设计为一个随时间变化的周期性正弦波。由此可以实现以下两个功能:[/size][size=16px] (1)可任意设定加热正弦波的频率和幅值,以满足不同无损检测对象的需要。[/size][size=16px] (2)可任意设定加热正弦波的平均值大小,由此可实现任意温度下的正弦波热波控制,并能很快达到稳定状态而开始进行无损检测,有效缩短检测时间。[/size][size=16px] VPC2021系列超高精度PID调节器是具有远程设定点功能的控制器,具有两个输入通道,第一主输入通道作为过程传感器输入,第二辅助输入通道用来作为远程设定点输入。与主输入信号一样,辅助输入的远程设定点也能接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何探测信号只要能转换为上述47种类型型号,都可以直接接入第二辅助输入通道作为远程设定点源。在红外锁相法无损检测中使用远程设定值功能时的具体接线如图4所示。[/size][align=center][size=16px][color=#339999][b][img=远程设定点功能使用接线图,690,247]https://ng1.17img.cn/bbsfiles/images/2023/07/202307031443467549_5148_3221506_3.jpg!w690x247.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 远程设定点功能使用接线图[/b][/color][/size][/align][size=16px] 在使用远程设定值功能前,需要对控制器辅助输入通道参数进行设置,以满足以下要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的远程设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成辅助输入通道参数的设置后,开始使用远程设定点功能时,还需要激活远程设定值功能。远程设定值功能的激活有以下两种方式:[/size][size=16px] (1)仅使用远程设定点,不使用本地设定点:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)可进行远程和本地设定点之间切换:在PID控制器中,设置辅助输入通道2的功能为“禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图4中所示的纽子开关实现远程设定点和本地设定点之间的切换,开关闭合是为远程设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种远程设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案所使用的具有远程设定点功能的PID控制器,结合外置周期信号发生器,可很好实现锁相红外热成像无损检测中的正弦波温度闭环控制,使得被检物体内部的稳态正弦温度波更符合无损检测模型,并使得被检物温度快速达到所希望的测试温度而缩小检测时间,最终可使得锁相红外成为更精密化的无损检测技术。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align][size=16px][/size]

  • 【资料】红外热像仪的最佳选择

    红外热像仪的最佳选择   1、选择红外热像仪首先要考虑温度分辨率:温度分辨率体现了一台红外热像仪的温度敏感性,温度分辨率越小红外热像仪对温度的变化感知越明显,选择时尽量选择此参数值小的产品。红外热像仪测试被测物的主要目的是通过温度差异找出温度故障点,测量单个点的温度值并没有太大意义,主要是通过温度差异来找相对的热点,起到预维护的作用。   2、选择红外热像仪其次空间分辨率:简单来说空间分辨率越小测温越准确,空间分辨率较小时,被测最小目标覆盖了红外热像仪的像素,测试的温度即被测目标的温度。如果空间分辨率较高,被测的最小目标不能完全覆盖红外热像仪的像素,测试目标就会受到其环境辐射的影响,测试温度是被测目标及其周围温度的平均温度,数值不够准确。见下图比较:   3、温度稳定性:红外热像仪的核心部件为红外探测器,目前主要有两种探测器氧化钒晶体和多晶硅探测器,氧化钒探测器主要的优势是测温视域MFOV(MeasurementFieldofView)为1,温度测量是精确到1个像素点。AmorphousSilicon(多晶体硅)传感器,MFOV为9,即每点的温度是基于3×3=9个像素点平均而获得。氧化钒探测器的温度稳定性好、寿命长,温度漂移小。NEC红外热像仪均使用氧化钒探测器,欧美大地回收了曾销售给香港客户的10多台NEC红外热像仪(主要为9100/5102/7700系列),发现5年来客户购买的NEC红外热像仪温度准确度依然维持在±2%或2℃,没有温度漂移,很稳定,唯一一台不过关的是5年前售出的热像仪,客户每星期都使用,标定结果差了3度,为其做了调整,已经恢复正常使用。   4、测温范围和被测物:根据被测物体的温度范围确定测温范围,来选择合适温度段的红外热像仪。目前市场上的红外热像仪大多会分成几个温度档,比如-40-120℃0-500℃,并不是温度档跨度越大越好,温度档的跨度小测温相对会更准确些。另外一般红外热像仪需要测量500℃以上的物体时,则需要配备相应的高温镜头。   5、选择红外热像仪最后要考虑像素:首先要确定购买红外热像仪的像素级别,大多红外热像仪的级别和像素有关。民用红外热像仪中相对高端的产品像素为640*480=307,200,此高端红外热像仪拍摄的红外图片清晰细腻,在12米处测量的最小尺寸是0.5*0.5cm。中端红外热像仪的像素为320*240=76,800,在12米处测量的最小尺寸是1*1cm;低端红外热像仪的像素为160*120=19,200,在12米处测量的最小尺寸是2*2cm。可见像素越高所能拍摄目标的最小尺寸越小。

  • 含硝氮与酰胺态氮的复混肥总氮用远红外消煮时最佳温度是多少

    最近来了一批复混肥样品,按国标GB/T 8572-2010执行,由于批量较大用电炉消煮不方便,所以用大口径的消煮管和15孔消煮炉来进行消煮,经过铬粒、盐配还原硝氮后,加入25ml浓硫酸,用15孔远红外消煮炉控制在375℃进行消煮,消煮过程中液体一直处于剧烈沸腾状态,结果煮了一天还没冒白烟,想问一下这是什么原因?如果是温度太低的话,你们都用多少度进行消煮? 另外有没有别的改进方法。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制