宏观影像仪

仪器信息网宏观影像仪专题为您提供2024年最新宏观影像仪价格报价、厂家品牌的相关信息, 包括宏观影像仪参数、型号等,不管是国产,还是进口品牌的宏观影像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宏观影像仪相关的耗材配件、试剂标物,还有宏观影像仪相关的最新资讯、资料,以及宏观影像仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

宏观影像仪相关的厂商

  • 重庆莱奥仪器有限公司(Chongqing Leio Instrument Co., Ltd.)系由西南大学校友创办的高新科技公司,是以徕卡(Leica Microsystems)、蔡司(Zeiss)、奥林巴斯(Olympus)、尼康(Nikon)等数码光学显微镜为主的进口科学实验仪器专业提供商。公司秉承“含弘光大、继往开来”的西大校训,以科学严谨的态度为用户提供先进、专业、高性价比的科学仪器应用解决方案。 公司主要产品包括:生物显微镜、金相分析系统、偏光显微镜、宏观体视显微镜、数码显微镜、显微镜数码相机及照相接口、显微镜专用LED光源、数码图像分析系统,超景深数码3D显微镜等。 公司客户涵盖航天、航空、船舶、军工、农林、刑侦、机械、冶金、电力、石化、地质、电子信息、生物医药、新材料、机器人、科技研发服务等高新技术产业等行业,在高等院校、科研院所、医疗卫生、工矿企业、工业材料、农业系统、畜牧系统、军工系统精密仪器制造等领域具有相当的知名度与影响力。响应“中国制造2025”强国战略的号召,整合全球智力资源,引进欧美先进科技,为西南地区的工业制造业的提升和“中国梦”的实现做出自己的贡献。 我们将秉承 “与用户合作,使用户受益”的企业精神与最终用户的通力协作以及不断创新的驱动力,并以五个品牌价值来实现这一传统:开拓进取(Pioneering)、高端品质( High-end Quality)、团队精神(Team Spirit)、科学奉献(Dedication to Science)和持续改进(Continuous Improvement),对我们来说实现这些价值就意味着:Living up to Life。
    留言咨询
  • 吉林省华控试验仪器有限责任公司是集试验设备研发、制造、销售、服务于一体的科技创新型企业,是国内独家微观原位力学和宏观力学动、静态测试整体解决方案供应商。公司核心团队全部为本科以上学历,其中包含多名硕士、博士以及高级工程师,技术实力雄厚,拥有多项专利技术。主打产品:SEM加载台, 射线类加载台(CT 同步辐射 中子衍射),静压作动缸, 扭转疲劳。其中工业CT加载台、静压摆动缸为国内独家产品,具有国际先进水平,已逐步替代进口产品。
    留言咨询
  • 二郎神影像设备(上海)有限公司 二郎神目前有两大主打产品:工业级的X射线异物检测和公共安检系统。异物检测主要应用在鞋帽厂、服装厂、玩具厂、手袋厂、箱包厂、制药厂以及调料、糖果、面食、腌制速冻品、水产蔬菜等食品行业;公共安检系统主要应用在汽车站、火车站、学校、海关、博物馆、档案局、税务局、监狱、法院、国家科研机构、邮政、物流、航空快递、各种会场、旅游景点、大型会展、体育展馆、码头等公共场所。 二郎神影像设备(上海)有限公司已通过IS09001:2009国际质量体系认证、OHSAS18001职业健康认证、IS014001:1400环境体系认证、国际CE认证、最新国家标准《GB15208.1—2005微剂量X射线安全检设备》检测。产品已通过公安部安全与电子产品质量检测中心认证,并取得所有型号的检验报告。 二郎神:以世界和谐为己任,一切只为您放心!
    留言咨询

宏观影像仪相关的仪器

  • 布莱特(BRIGHT)MAS600宏观影像仪 MAS600宏观影像仪设备设采用LED发光组、全景深观察及拍摄、自动跟踪对焦、具有实时图像处理功能。镜体可正负倾斜90度拍照,特殊样品,镜体可手持拍照。基本功能?汽车行业、船泊行业、轴承行业、机械加工行业、制造行业、特殊设备制造行业、电器及电力行业?主要用于分析用户产品失效后的整体形貌及缺陷 产品特点1,采用白光LED发光组,长寿命冷光源照明,确保样品不会被热破坏2,配备高分辨率彩色SCMOS传感器芯片3,全景深观察及拍摄,立体感强,色彩还原佳4,自动跟踪对焦,可手动变焦,进行局部放大,定格拍照5,具有实时图像处理功能,灵活可见光图像合成功能,可做图象旋转调整,图像局部放大功能6,对待测图像进行加强效果RGB三原色色彩、亮度、对比度、Gamma值等调整7,聚焦手轮,电动调节聚焦状态8,LED环形光照明9,镜体可正负倾斜90度拍照10,特殊样品,镜体可手持拍照 主要技术参数 图像传感器5.0MP彩色SCMOS传感器,最高显示分辨率可达500万像素变焦能力22倍可变范围最小观察范围1.5mmX1mm最大观察范围330mmX240mm 输出接口USB3.0电力输入24VDC立柱高度600mm 软件界面软件主界面 实例图片
    留言咨询
  • [ 产品简介 ]蔡司大视野宏观变倍显微镜Axio Zoom.V16集传统体视显微镜和研究级荧光显微镜特点于一身,可获得10倍于常规体视显微镜的荧光亮度。借助适用于大尺寸样品观察的特点,可在荧光模式下观察完整的模式生物体。[ 产品特点 ]&bull 优秀的人机学设计,提高观察舒适度&bull 变倍比16:1,最大分辨率1700LP/mm&bull 单孔位或2孔位物镜转盘&bull 可接ApoTome.3, 实现光切荧光成像&bull Z轴精度350nm &bull eZoom 技术智能透射光控制[ 应用领域 ]&bull 生物学 &bull 医学和兽医学 &bull 微生物学&bull 植物学&bull 昆虫学&bull 海洋生物学&bull 地质学和古生物学&bull 刑侦痕检和文检&bull 工业QA/QC果蝇胚胎的双色图像鉴定人类细胞,分离并运输到PCR管火花塞大面积拼图,反射明场
    留言咨询
  • 宏观角分辨仪RS 400-860-5168转3407
    RS | 宏观角分辨仪RS 宏观角分辨仪 能“任意角度变换”的光谱系统 0~360° 变角度 / 250~2500nm 宽波谱 /“复杂样品”透射与反射光谱 RS 宏观角分辨分析仪 采用多角度旋转设计,易于控制出射 & 入射方向,快速实现 透反射 / 散射 / 辐射 等 7 种光谱测量模式,可以手动调节任意角度进行检测。内置氘气和卤素光源,将波段拓展至 250~2500nm。而这一切皆浓缩于 RS 内,最终为“复杂样品”的光谱测量带来全新的体验。典型应用领域: 偏振样品 样品在不同偏振态具有不同光谱特性,需要光谱测量系统具有各偏振的分辨能力。 薄膜检测 样品具有能带结构,呈现光谱的各向异性,需要光谱测试系统具有精确的角度区分能力。 表面分析 表面等离子体具有敏感的光谱和角度依赖,需要光谱测试系统具有宽泛的光谱测量波段,和精确的角度分辨能力。 RS 宏观角分辨分析仪 在以上领域的应用得益于如下几个特点: 1 0~360° 完整角度范围 RS 采用两个精密的滑台,实现完整的 0~360° 光谱测试;快速实现包括 透射 / 反射 / 散射 / 辐射 在内的 7 种光谱测量模式;2 最宽 250~2500nm 谱段 RS 内置 氘气和卤素 光源,能实现 250~2500nm 超宽波段光谱测量; 3 精细的 5 维调节 为适应 样品的多样性,RS 采用了 x+y / α+β+θ 的 5 维调节台,精细地对样品进行方向调整; 4 可以配置外接 Laser 光源 用于新增的外部激光接口,RS 可拓展应用于 角分辨荧光光谱 测试领域,充分发挥实验室中更为强大的光源的优势; 5 新增光学元件插槽 由于新增的光学元件插槽,RS 可装载滤光片、偏振片、光阑等光学元件,大大丰富了测量内容。型号选择型号配置说明描述RS-LS波长范围360~2500nm标配10瓦卤素灯光源,RS-DL波长范围250~2500nm配置10瓦卤素灯和一个30瓦氘灯光谱性能项目值适用光谱波段:250~2500nm,系统通过波段内置光源波段:  RS-LS360~2500nm,内置的长寿命卤素灯泡。  RS-DL250~2500nm,内置的 Hamamatsu 氘气-卤素灯泡。落射光斑:Ø1 mm,更适合小样品测试测量模式:上反射 / 下反射 / 透射 / 散射 / 辐射 / 自由 / 编程,全面的 7 种模式,合为一体偏振支架:选配偏器支架 RS-PMF,偏振方向可调偏振片:● 360~790nm,RS-LP-Vis  ● 560~2400nm,RS-LP-Nir滤光片支架:选配滤光片支架 RS-PMC角度性能项目值入射光锥张角:  加载光阑可选择特调节光阑,默认不加载。出射光锥张角:  加载光阑依据光纤芯经,可选200um,400um,600um光纤。外部接口 & 其他项目值电源接口:标准三孔电源接口 AC 85~220V供电。电源开关:氘灯和卤素灯可以单独开启,卤素灯带有光强调节旋钮。外部光源接口:选配加装外接SMA905接口,默认无。光谱输出接口:SMA905,连接光纤光谱仪耗材:  专用铝镜RS-SSH,200~2500nm 适用  专用白板RS-WS,200~2500nm 适用  专用氘灯RS-B-D,200~450nm 适用,寿命 2,000hr  专用卤素灯RS-B-H,360~2500nm 适用,色温 2,915K,寿命 6,000hr
    留言咨询

宏观影像仪相关的资讯

  • 首次!宏观世界的量子纠缠,被直接观测到了
    图片来源:阿尔托大学在量子力学面前,我们在生活中积累的常识往往不再适用。好在由于普朗克常数很小,我们平时并不会被种种奇怪的量子效应困扰,不过这并不意味着量子力学仅能描述微观层面几个原子、分子的行为。宏观物体的量子效应是存在的,只不过它们太微弱,很容易就淹没在种种噪声之中。今天,两组科学家分别在《科学》上发文指出,他们首次直接观测到了宏观物体的量子纠缠,甚至还能以此“规避”不确定性原理。量子力学掌控着从基本粒子到宏观物体的运动规律,但对于后者而言,这种掌控往往显得不太明显。在众多因素的干扰下,量子效应对经典物理造成的偏差变得几乎不可见。因此,确认、测量宏观物体的量子效应,就成为众多物理学家的目标。就在今天,发表于最新一期《科学》杂志的两项研究实现了突破:其中一项研究找到了宏观物体量子纠缠的直接证据,另一项则在一个类似的系统中“规避”了量子力学的基本定律之一——不确定性原理。当然,这里的宏观仅仅是相对于分子、原子的宏观,两项研究中实验对象的大小都在红细胞级别。但是,让这样尺度的“宏观”物体产生量子效应也绝非易事,它们与环境之间多种多样的相互作用随时都会破坏脆弱的量子态。为此,两个实验环境温度都被控制绝对零度附近。宏观量子纠缠在其中一项研究中,美国国家标准技术研究所(NIST)的什洛米科特勒(Shlomi Kotler)团队用微波脉冲让两张小的铝片膜进入量子纠缠状态。每张铝片膜长20微米,宽14微米,厚度为100纳米。其质量为70皮克,相当于大约1万亿个原子的质量。以量子的标准而言,它们已经达到了相当大的尺度。该实验中使用铝鼓膜的扫描电镜照片(伪色图) 图片来源:Science vol. 372 no. 6542 622-625两张铝片膜与一个电路相连,并被放置在低温腔中。当研究人员施加脉冲微波时,电路会与铝片膜相互作用,控制铝片膜的振动模式。在此条件下,铝片膜可以维持大约1毫秒的量子状态。这在量子力学的尺度下,已经是相当长的时间了。微波被处于量子状态的铝片膜反射后,会被信号器接收。通过对比反射前后的微波性质,研究人员可以分析出铝片膜的位置和动量信息。该实验系统示意图 图片来源:Science vol. 372 no. 6542 622-625研究团队仔细分析了反射的微波。在宏观世界中,反射回来的微波应该是随机的。但是当他们将结果绘制成图时,却发现微波具有特定的模式——两张铝片膜中,一个相对平静,而另一个则在轻微地抖动,表明两张铝片膜发生了量子纠缠。“单独分析两张铝片膜振动的位置和动量信息,你只能看出它们在振动而已,”这篇论文的作者之一,NIST的物理学家约翰托伊费尔(John Teufel)表示,“但是当你对比两者的信息时,你就会发现两张铝片膜看似无规律的振动之间,其实存在着高度的关联性。这一点只有量子纠缠才做得到。”研究团队的斯科特格兰西(Scott Glancy)解释称,他们发现两张铝片膜的位置和动量之间都存在关联,如果这种关联比经典物理学所能产生的关联要强,那么就表明铝片膜之间肯定存在量子纠缠。尽管返回的脉冲微波信号能够同时测量铝片膜的位置和动量信息,但是不确定性原理表明,其测量仍然存在一定的误差。为了尽可能地减少误差,研究团队进行了1万次重复实验,并利用统计学方法对铝片膜的位置等实验结果的一致性进行了计算。最终他们可以确定,这两个宏观物体的振动模式被量子纠缠关联了起来。“规避”不确定性原理在同期发布的另一篇论文中,来自芬兰阿尔托大学等研究机构的科学家在8毫开尔文的温度下,让两个铝鼓膜进入长时间、相对稳定的纠缠态。在这种纠缠态下,研究人员可以对同一个纠缠态进行多次测量,从而“规避”量子力学中的不确定性原理。在实验中,鼓膜振动的相位总是相反的。如果对鼓膜1施加一个力,则鼓膜2的运动方向一定和力的方向相反。论文作者米卡西兰普(Mika Sillanp)表示:“一个鼓膜对力的响应总是和另一个鼓膜相反的,有点类似于负质量。”该实验示意图 图片来源:Science vol. 372 no. 6542 625-629“在这种情况下,如果将两个鼓视为一个量子力学实体,那么鼓运动状态的不确定性就被消除了。”该研究的主要作者劳雷梅西尔德斯特普(Laure Mercier de Lépinay)解释说。不确定性原理是20世纪20年代末由海森堡提出的。根据这个量子力学的基本概念,由于波函数的数学性质,我们不可能同时准确得知一个物体的位置和动量。不过,这并不意味着我们不能准确得知物体的位置和动量,只是在同时测量两者时,不确定性原理的限制才会出现。而反作用规避(Back-action evasion)就是在不违反不确定性原理的情况下,绕过这一限制的一种方式。在这次的实验中,研究团队就利用了反作用规避。本质上,他们没有测量每个鼓的位置和动量,而是通过鼓膜运动对电路电压造成的影响,测量了铝鼓膜的动量之和。瑞士苏黎世联邦理工学院研究员楚一文(Yiwen Chu,音译,未参与这两项研究)表示:“实验中没有任何地方违反了不确定性原理。你只是选择了一组特定的,不会被(不确定性原理)禁止的参数。”宏伟的蓝图这两项实验都以确凿的证据证明了宏观物体也可以实现量子纠缠。在量子纠缠的状态下,物体的行为与经典物理的描述存在显著的区别。不论纠缠物体之间的空间距离有多远,它们也不能被独立描述。而这种和经典物理显著的区别,正是新型量子技术背后的关键理论支撑之一。楚一文表示:“我们并没有发现任何量子力学之外的新理论,”但是要实现这两项实验中的测量,仍然需要“令人印象深刻的技术进步”。这种技术进步带来的高度纠缠的量子系统,或许能够在未来的量子网络中充当长期网络节点。此外,研究中的高效测量方法也可能对量子通信或者量子网络节点间的纠缠交换等应用有所帮助,因为这些应用都需要对量子纠缠进行测量。而在量子力学之外,这种技术进步在需要亚原子精度测量时为科学家提供了新的选择。或许,未来的暗物质和引力波探测也将在这种技术的帮助下实现新的飞跃。
  • 从宏观到微观:汽车要”瘦身”更要安全
    导读随着“2020年第七届中国汽车轻量化国际峰会”的日益临近及《国家第六阶段机动车污染物排放标准》的发布与实施,在环境保护和节能降耗法规要求日趋严格的当下,轻量化已成为中国汽车产业发展的重要方向和必然趋势。 其中对车身的轻量化更是提高汽车动力性、降低油耗、保护环境的关键。车身轻量化与使用材料密切相关,如镁合金、铝合金等金属结构材料、工程塑料及其复合材料在轻量化中起到重要作用。采用工程塑料及其复合材料可减轻汽车零部件约40%的质量,可降低成本40%,因此开发工程塑料和复合新材料是车身轻量化发展的趋势,其中PP(聚丙烯)和PMMA(聚甲基丙烯酸甲酯)应用最为广泛。 塑料及其复合材料的应用场景 为什么在汽车材料轻量化中大量应用PP、PMMA?今天,我们要对PP、PMMA做两个有趣的试验: 1. 宏观视界下的拉伸 PP、PMMA在常规的静态测试外,可能会受到动态变形的影响,例如,在涉及运输设备的碰撞和产品掉落时。因此,为了保证可靠性,还必须进行冲击试验。特别是,由于聚合物塑料具有粘弹性,(既有粘性又有弹性),其力学特性表现出对环境温度、时间和变形速率的依赖性。 采用岛津AGX-V电子万能试验机和HITS-TX高速拉伸试验机可以研究PMMA/PP与试验速度关系。 应力-行程曲线 试验结果 高速拉伸试验中PMMA和PP的拉伸强度均高于静态拉伸试验,证实了这两种塑料材料拉伸强度的试验速度依赖性。 2. 微观视界下的断口 当发生损坏、故障事故或劣化时,我们通常迫切需要调查原因和提出对策。塑料的失效形式多种多样,包括静态断裂、冲击断裂、疲劳断裂、蠕变断裂、环境引起的断裂等。根据分析不同类型的断裂原因,可以观察到具有不同特征的断裂面,这表明可以通过断口观察来确定损伤的原因,并研究解决损伤的方法。拉伸试验后,我们选择对PP试样的断口进行镀金,并用光学显微镜和EPMA进行观察。 电子探针EMPA8050G 在PP断裂表面镀金,并用光学显微镜和EPMA进行观察。静态拉伸试验和高速拉伸试验后的聚丙烯断裂表面分别如下图所示。(a)为光学显微镜图像,(b)-(d)为电子探针二次电子像。 对比PP静态拉伸微观图(a)与PP动态拉伸微观图(a)可见,与高速拉伸试验的断口面积相比,静态拉伸试验的断口面积明显较小,这应该是由于静态拉伸断裂时,塑性变形伴随着颈缩而导致的。 静态拉伸微观图 在PP静态拉伸微观图(b)中的断裂面中部,可见纤维断裂面以韧性方式伸长。对 PP静态拉伸微观图(b)的中心区域及其左侧区域进一步放大,结果见PP静态拉伸微观图(c)及(d)。由PP静态拉伸微观图(c)可见树脂纤维伸长的情况。PP静态拉伸微观图(d)显示断面上有许多孔,这是由树脂(如低分子量物质)或杂质等微观缺陷等形核长大而导致的。 高速拉伸微观图 在高速拉伸试验中,断裂处没有出现颈缩现象,整个断口呈扁平、粗糙的片状。对断面中心及边部进一步放大,结果见PP动态拉伸微观图(c)及PP动态拉伸微观图(d),可见,中部和边部的断口形貌无明显差异。据此可推断,随着试验速度的提高会导致无塑性变形的脆性断裂。 结 论 岛津具有丰富的产品线,在宏观方面:拥有各种静态试验机与动态试验机,可以提供力学测试,并进行定制化夹具设计;从微观方面:拥有电子探针EMPA等各种微观测试仪器,可以提供表面分析数据,为客户提供一整套服务与方案。岛津为汽车改性塑料的快速发展提供帮助,在汽车安全性的基础之上实现汽车轻量化,为营造和谐绿色的环境做出贡献,创造崭新的明天。
  • 合肥研究院高结晶石墨烯宏观体研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员王振洋团队在高结晶石墨烯宏观体的共价生长及其电学行为调制方面取得系列进展。石墨烯是具有优异力学、电学、热学和光学性能的二维碳材料。石墨烯的高效制备与宏观组装对其规模应用具有重要意义。目前,石墨烯宏观体的常规制备方法如液相自组装、3D打印和催化模板法等,仅能实现石墨烯片层间的非共价弱相互作用连接,导致石墨烯晶体结构的不连续,成为限制石墨烯宏观体电学性质的主要因素。 鉴于此,研究开发了激光辅助的layer-by-layer共价生长方法来制备高结晶石墨烯宏观体。分子动力学模拟从理论上揭示了它的共价生长机制。共价生长法使得材料具有连续的晶体结构,且与非共价组装相比,其跨层电导率实现了100倍的提升。该材料有助于解决石墨烯规模化应用面临的层状堆垛、晶体质量调控、离子输运通道、体积效应等问题,为石墨烯的储能电极应用奠定了基础。相关研究成果发表在《先进功能材料》(Advanced Functional Materials)上。 此外,为了解决石墨烯电极中低自由电子浓度导致的电导率不理想的问题,研究将富含自由电子的铜纳米粒子引入到材料体系,在Cu与石墨烯界面形成了稳定的Cu-C键,从而通过电子注入实现了复合材料超高的导电性能,电导率达到与纯金属接近的0.37×107 S m-1, 是纯石墨烯的3000倍。研究进一步利用X射线吸收精细结构(XAFS)光谱,结合密度函数理论(DFT)模拟揭示了界面结构对电导率的影响,这对石墨烯的电导率调制以满足不同应用具有重要意义。相关研究成果发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家重点研发计划、国家自然科学基金、安徽省科技重大专项和安徽省重点研发计划等的支持。 高结晶石墨烯宏观体的layer-by-layer共价生长及其表征。  (a)不同铜含量的石墨烯电导率;(b)不同铜含量的石墨烯载流子迁移率和载流子密度。

宏观影像仪相关的方案

宏观影像仪相关的资料

宏观影像仪相关的试剂

宏观影像仪相关的论坛

  • 荧光宏观成像系统简介

    [url=http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html][b]荧光宏观成像系统[/b][/url]macroscopic imaging专业为心脏成像 cardiac imaging而设计,[b]荧光宏观成像系统[/b]macroscopic imaging和光学映射,光学图谱技术厂用于整体荧光显微镜和荧光成像系统中。[b]荧光宏观成像系统[/b]macroscopic imaging集成了高科技高强度光源照明样品或反射照明样品,结合高数值孔径镜头,CCD相机和光电二极管探测器。宏观成像系统实验通常采用双波长,这样可测量细胞内钙离子和膜电位。宏观成像系统提供固定或可变的镜头系统,捕捉视场从4x4mm到50x50mm,并且可根据用户实验而增加放大成像器。[img=宏观成像系统]http://www.f-lab.cn/Upload/macroscopic-imaging.jpg[/img]荧光宏观成像系统:[url]http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html[/url][b][/b]

  • 从小处做起!如何用微观手段研究环境宏观问题?

    当前,使用微观研究手段来研究揭示宏观科学问题似乎是一个潮流。原因是在知道了宏观如何变化之后,要想改变宏观效应,还是要从微观处入手。比如,有科学家想通过筛选高二氧化碳固定效率的藻类来消除温室效应。下面就习惯了宏观研究思路的老师们,在使用非损伤微测技术NMT初期遇到的一些常见问题进行分析和解答。 1. NMT在环境领域的应用,目前文献很少,能否直接告诉我,NMT可以帮我做什么? 非损伤微测技术NMT是一个通过离子分子流速检测,揭示活体生物与外界环境进行信息交换的工具。 那么NMT可以帮助环境科学工作者做如下工作:1)研究环境中有毒有害物质对生物活体状态下的各方面生理功能的影响;2)基于研究1)探索形成基于活体生物生理功能的‘环境污染生物评价方法’;3)研究环境中营养物质对生物活体状态下的各方面生理功能的影响;4)各种生物膜过滤性能的优化;5)重金属高积累植物筛选;6)藻类与微生物共生体的目标生理功能优化;7)水体富营养化的修复植物的筛选;8)环境固体污染物(比如淤泥)的物理特征(比如O2分布)研究;9)基于活体生物信号的水质监测方法研究;10) 纳米等环境修复或复合植物抗污染能力的评价和研究;11) 基于生物生理活性的生物燃料电池等性能的优化和评价研究;目前文献少,正是科学家在各自领域抢占世界科研高地的良机! 2.水安全检测项目,是基于NMT的新型检测方法,如何确定基准水源是合格的?如果无法确定基准水源是否合格,测到的“待测水源”的数据,同基准水源相比得出的结论,也就没有意义了。 旭月的水安全检测项目,是利用NMT技术进行活体生物环境污染检测的一次尝试,尚在不断的探索过程中。 旭月的基准水来自于两个方面,一个是满足国家饮用水标准的自来水,一个是自行配置的‘旭月生物水’,通过我们的实验证明两者对最后结果没有显著差别影响。 3.将细胞器分离出来,将植物根切下来的研究,还能称得上是“非损伤”吗? 非损伤微测技术根据科研人员对被测材料的不同处理,分绝对非损伤和相对非损伤。 比如,当把一个3,4天的拟南芥幼苗或几个毫米长的线虫放到NMT系统里,并为它们提供最适的外部环境,这就是一个绝对的非损伤。如果把拟南芥的根切下来,或把线虫的肌肉组织分离出来,再进行NMT检测,就是相对非损伤。 4. 放到土里培养的植物可以检测吗?重复性能保障吗? 要想利用好一种新技术,首先要对它的特点进行了解,才能充分利用好它。不会犯在医院带着戒指项链进行核磁检查的错误。 NMT的特点是,不接触被测材料,但必须在液体环境里才能够工作。因此,要想方便快速用好NMT,并获得重复性较好的数据,显然科研人员需要将他们的材料从土培方法过渡到水培,才能更好地利用NMT的优势。否则数据的重复性很难保证。 中国NMT科学家第一批先行者之一的,北京林业大学陈少良教授,就花费了半年的时间将过去的土培杨树根变成沙培和水培,为后续的NMT数据快速产出打下了基础。 5. 不行,我的植物材料必须土培,NMT能做吗?重复性能保障吗? 能做! 这里的关键是如何既保持植物的土培环境,同时又提供一个NMT可以工作的液体环境。比如,研究人员可以在欲检测的土培材料部位设计一个装置,既能够将被测部位暴露出来,又可以放入测试液进行NMT检测。 NMT的不接触被测材料的非损伤特点,给科研人员提供了非常大的,个性化的实验设计空间,自然也为科研创新提供了难得的契机。 6. 听说想获得重复性好的活体生理数据,特别不容易,NMT也是这样吗? 同任何其它技术一样,要想获得好的数据,实验设计和材料的准备是关键。简言之,无论NMT有多么简便和快速,想靠NMT来弥补基因方面工作的不足是不切实际的。 我们的经验是,先利用NMT快速定性的特点(药物处理等实验),把自己实验材料的‘脾气秉性’先摸清楚,然后再进行批量的数据定量工作。其它详细解读,请查阅笔者另一博文《飘忽不定的诺贝尔奖机遇:如何理解和用好NMT数据?》 7. 我是研究环境生态的,比较宏观,能用得上NMT吗? 应用微观数据解释和研究宏观生态现象和问题,已经成为近年的一个潮流。 袁隆平院士的杂交水稻在带来粮食高产的同时,也带来了化肥过度使用的环境污染和水质富营养化等生态问题。旭月的NMT曾帮助袁隆平院士他们回答一个问题,就是他们的杂交水稻实施多少化肥就刚好够了,从而减少环境问题。 对已有的环境问题,如何从微观了解其成因,并从微观入手寻找解决问题的办法,NMT将会大有用武之地!

  • 【分享】宏观量子隧道效应

    【分享】宏观量子隧道效应

    隧道效应目录 定义 概述 原理 发现者 用途 隧道二极管 隧道巨磁电阻效应 宏观量子隧道效应     隧道效应   tunnel effect编辑本段定义  由微观粒子波动性所确定的量子效应。又称势垒贯穿 。考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。理论计算表明,对于能量为几电子伏的电子,方势垒的能量也是几电子伏 ,当势垒宽度为1埃时 , 粒子的透射概率达零点几 ;而当势垒宽度为10时,粒子透射概率减小到10-10 ,已微乎其微。可见隧道效应是一种微观世界的量子效应,对于宏观现象,实际上不可能发生。  在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒,实际也正是如此,这种现象称为隧道效应。对于谐振子,按经典力学,由核间距所决定的位能决不可能超过总能量。量子力学却证明这种核间距仍有一定的概率存在,此现象也是一种隧道效应。   隧道效应是理解许多自然现象的基础。编辑本段概述  在两层金属导体之间夹一薄绝缘层,就构成一个电子的隧道结。实验发现电子可以通过隧道结,即电子可以穿过绝缘层,这便是隧道效应。使电子从金属中逸出需要逸出功,这说明金属中电子势能比空气或绝缘层中低.于是电子隧道结对电子的作用可用一个势垒来表示,为了简化运算,把势垒简化成一个一维方势垒。   所谓隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为1nm(10-6mm),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E<V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。   产生隧道效应的原因是电子的波动性。按照量子力学原理,有能量(动能)E的电子波长=(其中,——普朗克常数;——电子质量;E——电子的动能),在势垒V前:若E>V,它进入势垒V区时,将波长改变为λ′=;若E<V时,虽不能形成有一定波长的波动,但电子仍能进入V区的一定深度。当该势垒区很窄时,即使是动能E小于势垒V,也会有一部分电子穿透V区而自身动能E不变。换言之,在E<V时,电子入射势垒就一定有反射电子波存在,但也有透射波存在。编辑本段原理  经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。例如骑自行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。如果坡很高,不蹬自行车,车到一半就停住,然后退回去。  量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantum tunneling)。可见,宏观上的确定性在微观上往往就具有不确定性。虽然在通常的情况下,隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在某些特丁的条件下宏观的隧道效应也会出现。编辑本段发现者  1957年,受雇于索尼公司的江崎玲於奈(Leo Esaki,1940~)在改良高频晶体管2T7的过程中发现,当增加PN结两端的电压时电流反而减少,江崎玲於奈将这种反常的负电阻现象解释为隧道效应。此后,江崎利用这一效应制成了隧道二极管(也称江崎二极管)。 1960年,美裔挪威籍科学家加埃沃(Ivan Giaever,1929~)通过实验证明了在超导体隧道结中存在单电子隧道效应。在此之前的1956年出现的“库珀对”及BCS理论被公认为是对超导现象的完美解释,单电子隧道效应无疑是对超导理论的一个重要补充。 1962年,年仅20岁的英国剑桥大学实验物理学研究生约瑟夫森(Brian David Josephson,1940~)预言,当两个超导体之间设置一个绝缘薄层构成SIS(Superconductor-Insulator- Superconductor)时,电子可以穿过绝缘体从一个超导体到达另一个超导体。约瑟夫森的这一预言不久就为P.W.安德森和J.M.罗厄耳的实验观测所证实——电子对通过两块超导金属间的薄绝缘层(厚度约为10埃)时发生了隧道效应,于是称之为“约瑟夫森效应”。 宏观量子隧道效应确立了微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而穿透绝缘层,使器件无法正常工作。因此,宏观量子隧道效应已成为微电子学、光电子学中的重要理论。编辑本段用途  隧道效应本质上是量子跃迁,电子迅速穿越势垒。隧道效应有很多用途。如制成分辨力为0.1nm(1A)量级的扫描隧道显微镜,可以观察到Si的(111)面上的大元胞。但它适用于半导体样品的观察,不适于绝缘体样品的观测。在扫描隧道显微镜(STM)的启发下,1986年开发了原子力显微镜(AFM),其工作原理如图5所示。利用金刚石针尖制成以SiO2膜或Si3N4膜悬臂梁(其横向截面尺寸为100μm×1μm,弹性系数为0.1~1N/m),梁上有激光镜面反射镜。当针尖金刚石的原子与样品的表面原子间距离足够小时,原子间的相互作用力使悬臂梁在垂直表面方向上产生位移偏转,使入射激光的反射光束发生偏转,被光电位移传感器灵敏地探测出来。原子力显微镜对导体和绝缘体样品都适用,且其分辨力达到0.01mm(0.1A),可以测出原子间的微作用力,实现原子级表面观测。  [img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624047_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200811517289_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172816_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172825_01_1602049_3.jpg[/img]

宏观影像仪相关的耗材

  • 赛诺普Xenocs X射线成像模块
    InXight X射线成像模块InXight是Xeuss 3.0的X射线成像可选模块,它可以在X射线散射测量和X射线成像之间进行快速自动切换。这大大提高了Xeuss 3.0仪器的测试能力,测量尺寸范围从埃米级到毫米级。全面认识您的样品对聚合物,泡沫,复合材料,生物材料等新应用的开发,不仅需要了解他们的材料结构,还需要评估生产过程和使用条件的影响。通过测量加工材料或异质材料的宏观结构,结合Xeuss 3.0散射测量,其中InXight模块有助于理解宏观结构的非均质性和纳米或原子结构之间的关系。大面积X射线探测视野以及低至几十微米的分辨率,是进行局部区域测量的理想选择。通过快速切换测量配置,InXight可以在进行原位动态研究时同时采集X射线图像和X射线散射图谱。分析的典型材料包括聚合物、复合材料、玻璃或薄的无机样品。X射线源在散射和成像之间的自动快速切换InXight正在申请专利的测量配置包括一个X射线成像源,该X射线成像源产生一个锥形光束,大范围照射位于Xeuss 3.0样品台上的样品,并将X射线透射图像投射到Q-Xoom探测器上。 X射线源快速自动切换,可确保在同一样品上连续自动进行X射线散射和X射线成像。InXight X射线成像模块 具有InXight X射线成像模块的Xeuss 3.0 获取从埃米级到毫米级的样品结构信息 通过成像选取目标,研究散射信息 在原位SAXS/WAXS实验过程中,结合X射线成像可监测样品变化。
  • 影像测量仪视频卡 其他配件
    影像测量仪视频卡SDK2000监控卡视频采集卡 AV S端子采集卡10MOONS SDK2000是一款专门针对系统开发商及电脑DIY发烧友的高品质PCI 视频卡。SDK2000具有高品质的视频采集性能,具备高速PCI总线,兼容即插即用(PNP),支持一机多卡。如果您是系统开发商,我们给您提供功能全面的二次开发包(以下简称SDK)。您可以选择VisualBasic、VisualC++等多种编程语言通过SDK进行开发,SDK中包含DLL动态库(VC使用),OCX控件(VB,Delphi使用)及其详细说明。您可通过SDK控制图像的输入端口,图像亮度,对比度,色度,灰度等输入信号,动态截取图像,以AVI格式进行录像侦测图像是否有移动目标等等。我们向您提供完善的二次开发技术支持,并可根据您的要求度身定做SDK。如果您是电脑DIY发烧友,我们SDK-2000为您准备了各种格式的静态图像捕捉存盘、快照、VCD制作、电子相册、网上可视电话、视讯会议等等各种应有尽有的功能。并且,您可以利用我们给您提供的二次开发包亲自编制视频应用软件。产品亮点◆视讯电话(NetMeeting)◆可视电话(VDOPhone,I-Phone)◆电脑监控,录像◆影音电子邮件(讯连PowerVCR)◆VCD制作◆网页制作◆远程教学,视讯会议(CU-Seeme)◆企业简报,广告短片(PowerPoint)◆制作贺卡,贴纸(Power Point)◆配合二次开发包,用于保安监控,医疗分析等方面的系统开发产品特性◆PCI总线,兼容Windows即插即用(PNP),安装简易◆显示画面流畅不间断,每秒可达30帧◆显示分辨率可达640x480、24位真彩◆影像窗口大小随意调整,可全屏显示◆动态捕捉影像以静态图像方式存盘,提供BMP,JPG,PCX,GIF,TIF,TGA等多种存盘格式◆提供动态AVI影像捕获,捕获存盘影像大小随意选择◆可连续动态捕捉影像以静态图像方式自动存盘,提供照片浏览和电子相册等功能
  • 螺口管 2ml 栀子黄管盖 透明可站立 管盖一体 MUCU 5612038
    螺帽管可用于储存样品、样品分装、自动化设备操作等,适用于医学研究、环境工程、制药、食品工业以及细胞生物学和分子生物学等领域的高端需求等。 ◆医疗级聚丙烯(PP)材质,符合SGS质量体系认证;◆盖子含O型圈,密封紧密,满足IATA运输标准;◆容量包含0.5mL、1.5mL、2.0mL,裙底锥形,透明可立;◆离心力20000RCF,壁厚均匀,免清洗,符合跌落测试验证标准;◆无热源、无内毒素、无DNA酶、无RNA酶,γ射线灭菌; ◆耐受温度范围:-86℃~121℃;◆红、橙、黄、绿、蓝、紫、棕、透明色等多种颜色螺旋盖,便于区分管理;◆可提供开盖及封盖扭矩,满足自动化需求 类别品牌货号产品名称包装规格 螺口管盖一体MUCU56105080.5mL,透明色可站立管身,透明色管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56105180.5mL,透明色可站立管身,珊瑚红管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56105380.5mL,透明色可站立管身,栀子黄管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56105480.5mL,透明色可站立管身,春辰绿管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56105580.5mL,透明色可站立管身,松石蓝管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56115081.5mL,透明色可站立管身,透明色管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56115181.5mL,透明色可站立管身,珊瑚红管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56115381.5mL,透明色可站立管身,栀子黄管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56115481.5mL,透明色可站立管身,春辰绿管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56115581.5mL,透明色可站立管身,松石蓝管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56120082.0mL,透明色可站立管身,透明色管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56120182.0mL,透明色可站立管身,珊瑚红管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56120382.0mL,透明色可站立管身,栀子黄管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56120482.0mL,透明色可站立管身,春辰绿管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱螺口管盖一体MUCU56120582.0mL,透明色可站立管身,松石蓝管盖,管盖一体,盒装灭菌50个/袋, 10袋/盒, 4盒/箱
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制