当前位置: 仪器信息网 > 行业主题 > >

激光导热仪

仪器信息网激光导热仪专题为您提供2024年最新激光导热仪价格报价、厂家品牌的相关信息, 包括激光导热仪参数、型号等,不管是国产,还是进口品牌的激光导热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光导热仪相关的耗材配件、试剂标物,还有激光导热仪相关的最新资讯、资料,以及激光导热仪相关的解决方案。

激光导热仪相关的论坛

  • 激光热扩散/导热系数测试仪-德国linseis

    全球最先进的激光导热系数分析仪模块化设计—随时升级,体积更小大功率能量源—测量更准确6样品自动分析—节约宝贵时间高真空设计—测量更精确应用多晶石墨石墨非常适合评估激光法热导仪的性能优劣。对多晶石墨进行的测试曲线显示材料在室温附近导热系数达到最大,热扩散系数随温度增加递减。材料比热可通过参比法测得,测试显示比热与热扩散系数增减趋势相反。铜、铝分别测量了纯铜和纯铝的热扩散系数,测试结果如下图,热扩散系数的测量值与文献值之间的偏差小于 2%。体现了Linseis仪器性能的卓越。石墨(Isotropic)用LFA1000测量了蛤同性石墨的热扩散系数,与日本AIST机构的数据比较,偏差小于2%。德国林赛斯 (LINSEIS Messgeräte GmbH) 林赛斯总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 样品尺寸对激光导热分析仪器(LFA)测试结果的影响

    [b]样品尺寸对LFA测试结果的影响[/b]德国耐驰热分析 [color=#888888]2018-04-08[/color]作者 高星,曾智强德国耐驰仪器公司提供多种不同尺寸和形状的LFA样品支架,用于固体样品的导热测试。最大样品厚度取决于待测样品的热扩散和导热的高低,通常不超过6mm。但是,对测试结果起决定性作用的不是厚度,而是样品的直径-厚度比,本文通过一些测试说明了此值的大小对LFA结果的影响,供使用者参考。[img]https://mmbiz.qpic.cn/mmbiz_jpg/uF3ibwlhEJbdT61tJEedCajiaEyiaIdMD6xGE4dMCC2ibwGVbgAveqwCNK02sNePEoKKkEZWBFLKmY218uwKsgicRnA/640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy=1[/img]此处测试4种不同尺寸Pyroceram 9606样品:[table][tr][td=1,1,42][align=center]尺寸[/align][/td][td=1,1,79][align=center]8mmx8mm[/align][/td][td=1,1,57][align=center]φ8mm[/align][/td][td=1,1,79][align=center]6mmx6mm[/align][/td][td=1,1,57][align=center]φ6mm[/align][/td][/tr][tr][td=1,1,42][align=center]厚度[/align][/td][td=1,1,79][align=center]2mm[/align][/td][td=1,1,57][align=center]2mm[/align][/td][td=1,1,79][align=center]1mm[/align][/td][td=1,1,57][align=center]1mm[/align][/td][/tr][/table]LFA467 Zoomoptics的值设置为70%。图中显示的是从RT...500oC范围内实测热扩散值与理论值的比较,灰色短划线与理论值偏差为3%。可以看到,所有测试结果都在±3%偏差范围内,说明LFA467具有极高的测试精度。但是,还可以看到,直径/厚度比率大的样品(6mmx1mm)结果(蓝色)更接近理论值曲线(黑色),而直径/厚度比率小的样品(8mmx2mm)结果(绿色)更接近灰色曲线(偏差3%),说明测试精度主要受直径-厚度比的影响,与绝对的样品尺寸关系不大。试验证实,LFA测试建议样品的直径:厚度大于5:1,只要满足这个比值,样品尺寸的影响就非常小了。

  • 关于LFA447

    耐池的激光导热仪LFA447测试中,如何减小信号线的波动性?

  • 室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    目前国内外常用的稳态法导热仪,普遍都是非真空密封形式,也就是被测样品完成处于实验室的温湿度环境条件下。在稳态法导热仪使用过程中,往往会出现导热仪的冷板温度低于室温的情况。 我们曾经遇到过多次这种情况并专门进行过验证试验,即采用真空型稳态法导热仪,仅关闭真空腔而不抽真空,在上海这种常年湿度较大的地区,如果冷板温度低于室温,稳态法的较长测试时间会导致导热仪冷板上冷凝很多水珠,甚至会出现大面积积水,如图1和图2所示,从而对被测样品、测试结果和仪器产生严重影响,如图3所示。[align=center][color=#990000][img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025172089_727_3384_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#cc0000]图1 样品和冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025327354_6419_3384_3.jpg!w690x376.jpg[/img][/color][/align][align=center][color=#cc0000]图2 模拟试验中的冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025446891_7590_3384_3.jpg!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图3 受潮后的被测样品[/color][/align] 对于这类问题,常用以下三种方式解决: (1)设法降低室内湿度,如开空调; (2)将导热仪整体放置在一个密闭罩内,将导热仪与外界湿气尽量隔离,如图4所示。[align=center][color=#cc0000][img=,483,300]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026004471_4897_3384_3.jpg!w483x300.jpg[/img][/color][/align][align=center][color=#cc0000]图4 日本某实验室带气密罩的热流计法导热仪[/color][/align] (3)真空型(或气密型)稳态法导热仪,如图5所示。[align=center][color=#cc0000][img=,500,388]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026530374_1132_3384_3.jpg!w500x388.jpg[/img][/color][/align][align=center][color=#cc0000]图5 上海依阳真空型高温热流计法导热系数测试系统[/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align]

  • 【分享】激光热导仪用途

    激光法导热仪是采用一束激光照射样品,用红外检测器测量样品背面温度的升高,来计算样品的热扩散系数。具有快速、方便的特点。其测量热扩散系数为0.001...10cm2/sec, 并可测量样品的比热,进一步计算导热系数。应用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。

  • 防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    防护热板法导热仪升级改造——计量单元电功率和护热温度的超高精度PID控制

    [color=#990000]摘要:本文针对客户提出改进保护热板法导热仪测量精度和测试规范性的要求,给出了防护热板法导热仪升级改造技术方案。升级改造方案主要包括三方面的内容,一是采用超高精度双通道PID控制器分别用于控制计量单元和护热单元温度,二是计量单元和护热单元温度控制采用无超调PID控制,三是采用多只热电偶构成的高灵敏度温差热电堆。通过此升级改造,可大幅度提高保护热板法导热仪的测量精度和测试规范性。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]在低导热隔热材料的导热系数测试中,最常用的测试方法是稳态保护热板法。目前在市场上依据保护热板法的导热仪非常普遍,但国产导热仪普遍存在测量精度差和导热仪制作不规范的问题。最近有客户提出对已购置的国产防护热板法导热仪进行技术升级,以提高测量精度和规范化操作水平,具体技术要求如下:(1)样品热面温度要求以10的整数倍温度进行精确控制,配合相应的样品冷面温度控制,使得样品厚度方向上的温差可准确恒定控制在10、20和30℃的其中一个数值上。由此保证样品导热系数测试边界条件的一致性。(2)护热单元(侧向护热单元和底部护热单元)对计量单元的温度跟踪,要求采用标准测试方法GB/T 10294中规定的温差热电堆,温差热电堆至少由五对以上的热电偶组成,由此保证将计量单元的漏热降低到最低限度。本文将针对上述客户要求,提出防护热板法导热仪升级改造技术方案。[b][size=18px][color=#990000]二、升级改造方案[/color][/size][/b]升级改造方案主要包括以下三方面的内容。[size=18px][color=#990000]2.1 超高精度双通道PID控制器[/color][/size]为了实现既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了的升级方案是采用超高精度的双通道PID控制器代替目前所用的普通PID控制器(调节器)。这种新型PID控制器具有以下特点:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)独立的超高精度双通道控制功能,可分别用于计量单元和护热单元的温度控制。[size=18px][color=#990000]2.2 无超调PID 控制方法[/color][/size]在防护热板法导热仪中,所测材料一般为低导热系数的隔热材料,在计量单元的温度控制中一旦产生温度振荡或超调,如图1所示,则需要很长时间才能恢复到设定温度点。因此,在升级改造方案中,计量单元和护热单元的温度控制都采用了无超调的PID控制方法,由此可减少不必要的控温时间。[align=center][img=01.无超调PID控制示意图,600,475]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272247501334_6415_3221506_3.png!w690x547.jpg[/img][/align][align=center]图1 无超调PID控制示意图[/align][size=18px][color=#990000]2.3 高灵敏度温差热电堆[/color][/size]按照标准测试方法GB/T 10294中的规定,如图2所示,在计量单元和护热单元之间的狭缝两侧布置直径小于0.1mm的热电偶组成的温差热电堆。[align=center][img=02.温差热电偶布局示意图,690,383]https://ng1.17img.cn/bbsfiles/images/2022/09/202209272248262325_3650_3221506_3.png!w690x383.jpg[/img][/align][align=center]图2 温差热电偶布局示意图[/align]为了提高护热单元温度对计量单元的温度一致性,温差热电堆至少要由五对热电偶组成以高分辨率的检测护热单元与计量单元之间的温差。热电堆的温差输出信号作为超高精度PID控制器第二通道的采集信号。由此,通过高灵敏温差热电堆和PID控制器的超高精度电压信号检测能力和温度控制能力,可大幅度减小计量单元的漏热,从而提高导热系数测量准确性。[size=18px][color=#990000][b]三、总结[/b][/color][/size]通过上述升级改造技术方案,可完全实现用户提出的技术改进要求,在保证计量单元温度和样品冷热面温差为任意设定值的前提下,可大幅减少护热温度不一致所引起的热损失,有效提高导热系数测量精度。同时所采用的无超调PID控制方法可有效缩短测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 单样品和双样品形式防护热板法导热仪的区别及其应用注意事项

    [color=#990000]  摘要:针对防护热板法单样品和双样品这两张测量模式的导热仪,从热损防护角度定性的详细介绍了这两种测量模式的区别、工程实现难度和适用范围。同时还介绍了判断防护热板法导热仪在护热方面是否标准规范以及测试能力的几个条件。[/color][color=#990000]  关键词:防护热板法,导热仪,单样品,双样品,温差探测[/color][color=#990000][/color][b][color=#990000]1. 概述[/color][/b]  根据被测样品的数量形式,稳态防护热板法导热仪一般分为单样品和双样品测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811192208526790_9940_3384_3.png!w690x255.jpg[/img][/align][color=#990000][/color][align=center]图1-1防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align]  由上图可知,在双样品模式下,两块完全相同的平板样品位于计量板和护热板的两侧。稳态时,计量板产生的热量分为两部分分别流经两个样品进入不同的冷板。在理想情况下,流经每个样品的热量为总热量的一半Q/2,样品的热面温度Th大于样品冷面温度Tc,两个样品的冷面温度相等Tc1=Tc2=Tc,计量板侧向热损Qg=0。  在单样品模式下,则只需要一块样品,将双样品模式下的另一块样品用隔热材料代替。稳态时,计量板产生的热量全部流经样品进入冷板。在理想情况下,流经样品的热量为总热量Q,样品的热面温度Th大于样品冷面温度Tc,底部护热板温度与样品热面温度相同Th1=Th,计量板侧向热损Qg=0。  从上述双样品和单样品两种测量模式可以看出,两种模式的整体结构和边界保证条件基本相同,主要区别是单样品模式在减少了一块样品的同时,增加了底部护热功能。因此在单样品模式中,由于只使用一块样品,这就对样品的一致性(材质、密度、湿度、尺寸、表面粗糙度和表面平整度等)可以放低要求,导热仪整体结构和实际样品测量操作都变得相对简单,这使得在实际测试中这种单样品模式应用十分广泛。  尽管单样品模式看似比双样品模式简单,但在实际仪器制造和测试应用中,两者有着巨大区别。本文将根据上海依阳实业有限公司在双样品和单样品模式防护热板法导热仪制造及其测试应用中的经验,详细介绍两种模式防护热板法的区别、工程实现的难度和适用范围。[b][color=#990000]2. 区别[/color][/b]  防护热板法普遍应用于低导热隔热材料和制品,但防护热板法的导热系数测试下限并不是可以无限制的低。  单样品与双样品模式防护热板法一样,在测试超低导热系数(或大热阻)样品时会遇到相同的难题,而单样品模式则更严峻。量化的数值分析将在另外一篇文章中进行详细介绍,本文仅从宏观角度进行分析。  单样品导热仪所面临的更严峻问题主要体现在以下几个方面:  (1)防护热板法导热系数测试的基本原理基于一维稳态传热,边界条件是绝热,其技术核心是热防护,即对中心计量板进行全方位的护热,使计量板上产生的热量尽可能全部垂直穿过样品,形成一维稳态热流测试条件。从图1-1所示的样品测试结构图可以看出,对于双样品结构,护热重点在于侧向热防护,而对于单样品结构,则除了侧向护热外,重点则是计量板的底部热防护,这是因为薄板式计量板的底部面积要大于其侧面面积,计量板底部容易产生更大热损。因此,在高精度防护热板法导热仪中,一方面是采用双样品测量模式,最大限度减少热损通道;另一方面是采用圆形计量板形式,除了考虑加热均匀性易实现外,圆形结构也是为了最大限度减少侧面热损面积。  (2)由于单样品模式中增加的底部护热功能使得热防护面积增大,如果采用相同能力的温差探测器进行热防护控制,单样品模式下的热损控制精度就要比双样品模式下的热损精度差好几倍。这也就是说,单样品模式要达到双样品模式同样的热损控制精度,就需要大幅度提升温差探测器的灵敏度。  (3)如果要达到双样品模式中的相同温度梯度,对于单样品模式则仅需要一半的加热功率。同时,由于护热作用,只需很小的热量就可以使计量板达到设定温度下的稳定状态,对于超低导热系数的大热阻样品所需的热量就更小。无论是单样品模式还是双样品模式,防护热板法装置的热损属于固定的系统误差,计量板产生的热量越小则对应热损占总热量的比例就越大,相应的测量误差就越大,这种情形在多层隔热材料、真空绝热板和真空玻璃这些超级隔热材料导热系数测量中表现的非常明显。由此可见,对于超低导热系数或大热阻样品的测试,无论是单样品还是双样品防护热板法,都面临着需要解决超高灵敏度的温差测量难题。对于单样品防护热板法这种技术难度更大,需要将温差探测器灵敏度提升的更高。[b][color=#990000]3. 计量板侧面积与横截面积之比[/color][/b]  为了更直观的认识防护热板法中侧向热损的发生位置和面积大小,本文将进行简单的公式计算以将热损情况和严重程度进行全面展示。  对于防护热板法装置,热损都发生在计量板与样品不接触的表面上,在计量板这些表面处以热量会以导热、辐射和对流的传热形式形成热损。由此,这些热损处的表面积越大,所产生的热损就会越多。  对于双样品防护热板法导热仪,热损发生面为计量板的侧表面。对于单样品防护热板法导热仪,热损除了发生在计量板的侧表面之外,还会发生在计量板的底部表面上。这里具体计算出计量板侧表面积和底部面积的大小区别,以便有一个更直观的认识。  对于圆形计量板,底部面积与侧表面积之比为:[align=center][img=,340,63]https://ng1.17img.cn/bbsfiles/images/2018/11/201811192210042720_7230_3384_3.png!w690x128.jpg[/img]   [/align]  式中:r表示圆形计量板半径;l表示圆形计量板厚度。  对于正方形计量板,底部面积与侧表面积之比为:[align=center][img=,340,63]https://ng1.17img.cn/bbsfiles/images/2018/11/201811192210380363_3665_3384_3.png!w690x128.jpg[/img][/align]  式中:D表示正方形计量板的边长;l表示正方形计量板厚度。  一般而言,计量板无论是半径还是边长,都大于样品厚度,为保证形成一维稳态热流测试条件,通常它们的比例关系至少为8~10倍(实际往往远大于这个比例),那么对应的面积比例范围就是2~5倍。对于圆形计量板,面积比例范围为4~5倍,而对于正方形计量板,面积比例范围则为2~2.5倍,由此可见圆形计量板的面积比例更大。[b][color=#990000][/color][color=#990000]4. 结论[/color][/b]  综上所述,看似单样品模式是对双样品模式的一种简化,但由于单样品模式中增加了底部护热功能,这使得单样品相对于双样品模式,单样品模式要达到双样品模式相同的测量精度则会面临更高的技术要求,工程实现和保证测量精度的难度更大。因此单样品模式并不是高精度测量的首选模式,普通的单样品模式防护热板法导热仪只适用于以下几种情况:  (1)导热系数较大的隔热材料,如大于0.03W/mK,或热阻小于1m^2K/W。  (2)一些双样品制样困难、对称的一维稳态温场建立比较困难的情况,但导热系数和热阻范围要满足上述要求。  在有些实际应用中,因为众多因素的限制,只能应用单样品模式的防护热板法装置进行导热和热阻的测试,这种情形主要表现在隔热复合材料、真空隔热材料的隔热性能测试表征中。在目前的防护热板法应用中,针对这些超级隔热材料和制品,实际上存在着很大的问题,普遍现象就是导热系数测量的重复性和再现性很差,主要原因就是在测试这些超级隔热材料时热损问题会被明显的凸显出来。针对这些问题及其解决方法和关键技术,我们将专文进行量化描述。[b][color=#990000][/color][color=#990000]附录:判断防护热板法导热仪在护热方面是否规范的几个条件[/color][/b]  护热技术是防护热板法导热仪的关键技术之一,而温差探测技术则是护热技术的核心,随着测量精度和测试温度范围的提升,会给温差探测技术提出更高的要求,相应的制造难度更大,故障率愈高。  目前很多防护热板法导热仪,为了降低制造难度和仪器的故障率,普遍都规避了标准测试方法中规定的使用温差探测技术(如热电堆温差探测装置),而改为采用铂电阻等精度较高的温度传感器直接进行温度测量和控制来进行护热。但由于温度传感器的灵敏度远不如由许多只热电偶构成的热电堆温差探测器,从而造成测量误差很大。这种误差在普通隔热材料导热系数(0.03W/mK以上)的测试中并不明显,但在超低导热系数隔热材料的导热系数(0.03W/mK以下)的测试中,误差明显增大的现象则会十分突出。  因此,可以根据以下几个条件来判断防护热板法导热仪在护热方面是否规范,同时这也是判断测量能力的一种简单方法。  (1)是否采用了温差探测器。双样品模式下,计量板的侧向护热是否采用了温差探测器,一般都是采用多只热电偶组成的热电堆温差探测器。热电偶数量越多,温差探测器越灵敏,护热效果越好。  (2)单样品模式中底部护热温差探测器采用了多少只热电偶。单样品模式下,除了要求具有与双样品模式下相同的侧向护热温差探测器之外,还要求底部护热温差探测器装置的灵敏度要更高,所用的热电偶数量更多,往往会是成倍的增加。  (3)温差探测器多数采用的是热电偶组成的热电堆,探测器越灵敏,需要的热电偶数量就越多,越多的热电偶使得流经热电偶丝进行传热的漏热量增大。  (4)热电偶制成的热电堆式温差探测技术不可能无限制提高灵敏度,这主要是因为在工程实现上难度很大,除非采用高灵敏度温差探测的新技术和新手段。

  • 激光热导仪应用及原理介绍

    激光法导热仪是闪光法的实验原理是用激光器向厚度为L的圆形薄试样表面发出一个能量为Q的热脉冲,同时测量并记录试样背面的温度响应T(L,t),根据非稳态导热过程的数学模型,即可确定试样的热扩散率。来计算样品的热扩散系数。具有快速、方便的特点。其测量热扩散系数为0.001-10cm2/sec, 进一步计算导热系数。应用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。热扩散率是表征材料内部非稳态导热过程的重要热物理参数之一,用来表征物体在加热或冷却过程中各部分趋于一致的能力。热扩散率的测量方法主要分为稳态法和非稳态法两大类。由于非稳态法具有装置简单、快速、准确的特点,并且可以同时测量多个热物性参数,方式灵活多样,测量范围覆盖多种材料。主要非稳态法:热线法、闪光法、平面热源法、瞬态热栅法、光热辐射法、激光压电光声法、蜃景效应(Mirage技术)等方法,其中闪光法被公认为精度最高的一种方法。闪光法物理模型是基于加热脉冲照射时间远远小于热流流经试样的传递时间的假设。目前,国际上没有热扩散率测量的统一标准,美国、欧洲、日本、中国等各自有各自的测量标准,而且各国热扩散率的测量相对标准不确定度在10-2左右。

  • 激光闪光法在聚合物复合材料导热系数测试中的应用研究

    激光闪光法在聚合物复合材料导热系数测试中的应用研究

    [color=#cc0000]  摘要:针对目前国内在激光闪光法测量聚合物热物理性能参数中存在误差大的问题,本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍了激光闪光法在聚合物材料测试中的应用评价过程,介绍了测试聚合物材料过程中的注意事项。同时针对聚合物材料的导热系数测量,给出了最好采用稳态法防护热流计法的建议。[/color][color=#cc0000]  关键词:聚合物,导热系数,热扩散系数,激光闪光法,热流计法[/color][color=#cc0000][/color][align=center][color=#cc0000][img=激光闪光法 上海依阳实业有限公司,690,237]https://ng1.17img.cn/bbsfiles/images/2018/12/201812231046563980_9788_3384_3.png!w690x237.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1. 问题的提出[/color][/b]  导热系数和热扩散系数是聚合物类材料的重要热物理性能参数,相应的也存在多种测试方法。由于激光闪光法具有测试时间快、样品尺寸小、方向性强等特点,使得激光闪光法也常用于聚合物类材料的热扩散系数和导热系数测量。  但在采用激光闪光法测试聚合物材料过程中,由于对闪光法测量原理和测试能力的理解不足,以及对聚合物材料的特性了解不透彻,从而造成使用闪光法测试中经常会出现与其他方法测试结果不一致的现象。  本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍闪光法测试聚合物材料过程中的注意事项。[b][color=#cc0000]2. 聚合物热物性标准测试方法[/color][/b][color=#cc0000]2.1. 聚合物热物性标准测试方法[/color]  聚合物材料的导热系数一般在0.2~1 W/mK范围内。对于这种低导热系数材料的测试,成熟准确的测试方法是稳态法,如稳态防护热板法和稳态防护热流计法,相应的标准测试方法有A-S-T-M C177、C518、E1530、D5470等。随着技术的进步,这些稳态测试方法对样品的最小尺寸要求是直径25 mm,厚度范围1~25 mm,测试温度范围可以达到300℃以上,测试一个温度点下导热系数大约需要30分钟左右。  由于近十几年来瞬态测试技术的飞速发展,许多瞬态技术在聚合物材料的导热系数测试中得到了应用,如A-S-T-M E1461、D5930。为了规范聚合物材料瞬态测试方法,ISO专门针对塑料材料提出了多个瞬态测试标准方法ISO 22007。按照测试参数将ISO标准分为以下几类。[color=#cc0000]2.2. 聚合物热物性ISO瞬态测试方法分类[/color]  (1)导热系数和热扩散系数  瞬态平面热源法(HOT DISK法) - ISO 22007-2  (2)热扩散系数  温度波分析法 - ISO 22007-3  激光闪光法 - ISO 22007-4[color=#cc0000]2.3. 激光闪光标准方法中对聚合物样品制备的规定[/color]  在ISO 22007中对多个瞬态测试方法进行了规定,本文重点介绍对激光闪光法应用中的规定。  对于绝大多数采用激光闪光法进行的聚合物热物性测试,基本都是采用商品化的激光闪光法测试仪器,测试过程中可调节的参数主要是激光加热功率和样品制备,而样品的制备往往是影响测量结果的重要环节。  在ISO 22007-4第6.1条中,对激光闪光法被测样品的形状和尺寸给出了原则性的大致规定,要求样品为薄片状,直径范围为5~20 mm。样品最小厚度需要根据激光脉冲宽度和样品材料热扩散系数进行确定,即激光脉冲宽度与t1/2时间之比小于0.01,给出的聚合物典型样品厚度范围为0.5~3 mm。同时为了保证一维热流,要求样品直径与厚度之比大于3:1,另外还要求薄片样品的厚度均匀性要优于1%。  在ISO 22007-4第6.3条中,要求被测样品对激光波长呈不透明。如果聚合物样品透明或半透明,则需在样品表面制作很薄的高导热涂层以避免激光光束进入样品,认为薄的高导热涂层对测量结果带来的影响忽略不计。  从上所述可以看出,ISO 22007-4激光闪光法对聚合物样品的制备只给出了指导性原则,允许的操作空间很大,由此带来了一系列的测试问题,特别是聚合物样品厚度的选择上,不同厚度样品的测试结果之间存在很大偏差。另外,对于聚合物复合材料激光闪光法是否还适用也是问题,这对聚合物复合材料热物性评价中测试方法的选择提出了要求。为此,在采用激光闪光法时还需要针对聚合物材料做进一步的研究和规定,以保证测量的准确性。[b][color=#cc0000]3. 聚合物热物性多种瞬态测试方法对比[/color][/b]  在采用瞬态方法对聚合物热物性进行测试过程中,由于受多种因素的影响,测试结果往往出现很大的不一致性。如2005年Wilson Nunes等人比较了使用激光闪光法和瞬态热线法获得的一系列聚合物的测量结果。对于PMMA,两种方法的热扩散系数测量值差异高达20%,导热系数值差异高达10%,也获得过导热系数高达两倍的显著差异。对于LDPE样品闪光法结果要低于热线法结果,而对于HIPS样品则闪光法结果较高,这说明了聚合物热性能准确测量的困难性。  为了规范各种瞬态法在聚合物热物性测试中的应用,提高各种瞬态法测量聚合物热物性的准确性和可靠性,在ISO 22007的起草阶段,就对各种瞬态法在聚合物中的应用进行了评价研究,2009年Martin Rides等人报道了两种聚甲基丙烯酸甲酯的导热系数和热扩散系数的测量比对,所使用的各种方法包括温度波分析法、激光闪光法、瞬态平面热源(热盘)法、瞬态热线法和稳态热流计法。在此对比测试基础上,ISO专门在ISO 22007中增加了一个标准方法,ISO/TR 22007-5“塑料 - 导热系数和热扩散系数的测定.第5部分:聚甲基丙烯酸甲酯样品的多个实验室测试结果”。将对比测试过程和结果制订为标准测试方法,这在标准测试方法中是非常罕见的,由此可见对瞬态法在聚合物热物性测试中的应用进行规范的重要性。  在ISO/TR 22007-5对比测试中,对两种聚甲基丙烯酸甲酯(PMMA)材料进行了多个实验室对比测试,一种是浇铸料板材形式,另一种是挤出型板材形式。各种测试方法和样品信息如表31所示。  [align=center][color=#cc0000]表3-1 各种瞬态测试方法和相应样品信息[/color][/align][align=center][img=各种瞬态测试方法和相应样品信息-上海依阳,690,375]https://ng1.17img.cn/bbsfiles/images/2018/12/201812230919358347_4102_3384_3.png!w690x375.jpg[/img][/align]  通过各个实验室之间的比对,尽管测试方法和样品制备之间存在明显差异,但各种方法得到的导热系数结果比较一致,其值约在±7%范围内,热扩散系数测量结果的一致性在±9%范围内,所达到的一致性水平证明了这些不同方法在聚合物热物性测试中的有效性。这些一致性保证需要注意以下几个方面的试验参数控制:  (1)虽然所有参与者都提供了名义上相同的板材样品,但测试中使用的样品实际厚度必须调整到测试方法的规定,以便能够进行测量或确保分析中的假设是有效的。例如,对于激光闪光法,发现挤出型PMMA板的3mm厚度太大而不能进行可靠的测量,因此被测样品必须被加工的得更薄。温度波分析方法适用于厚度约为100um的薄膜或薄片,因此在测试之前必须将样品切割成该厚度。类似地,对于瞬态平面热源法,必须符合测试的厚度要求,这与热瞬态渗透到样品中的深度有关,对于较薄的2 mm厚样品,就需要通过将两个样品堆叠在一起以获得足够厚度以实现可靠测量。  (2)除了样品厚度问题之外,还存在方法上的进一步差异。对于PMMA的激光闪光法测量,由于样品是透明的,其表面必须在测试前用不透明材料处理,否则无法进行测量,而且不透明材料要尽可能薄且均匀,并不受测试过程中温度和激光照射的影响而产生脱落现象。目前一般的样品表面处理工艺是先在样品前后两个表面溅射金涂层以阻挡激光穿透透明样品和增加热接触效果,然后再在样品表面喷涂碳层以增大样品表面的发射率、提高吸收激光能量的能力和减少对激光的反射。  (3)采用激光闪光法测量的是热扩散系数,还需要采用其他方法测量比热容和密度。在ISO标准中,无一例外的都是采用差示扫描量热计(DSC)测量比热容,并未采用激光闪光法测量比热容。在DSC进行比热容测量时,要特别注意取样的代表性,这点在聚合物复合材料中尤为重要。  (4)在参与对比的测试方法中,只有瞬态平面热源法属于体积导热系数测试方法,体积导热系数是厚度方向和面内方向导热系数的函数,这使得瞬态平面热源法测量的导热系数和热扩散系数值通常略高于通过其他方法获得的值,尽管通过一些技术处理使得该差异在离散范围内,因此在对各向异性聚合物热物性测试中要十分小心测试方法的选择和取样的方向性。[b][color=#cc0000]4. 聚合物热物性参考材料[/color][/b]  为了考核和验证激光闪光法测试聚合物热物性的准确性以及试验参数选择的合理性,一般都会选择合适的参考材料进行测试检验。由于聚合物材料的导热系数范围为0.1~1 W/mK,可供选择的参考材料有杜邦公司出品的聚合物材料(纯聚酰亚胺Vespel-SP1)和康宁公司出品的高硼硅玻璃Pyrex 7740。其中,在25~300℃范围内,纯聚酰亚胺Vespel-SP1的导热系数范围为0.37~0.44 W/mK;在-50~300℃范围内,高硼硅玻璃Pyrex 7740的导热系数范围为0.95~1.5 W/mK。  2005年Jacobs和Stroe针对各向同性均质的纯聚酰亚胺Vespel-SP1(常温密度1434kg/m^3)分别采用顶杆法测量了热膨胀系数、采用激光闪光法测量测量了热扩散系数、采用DSC测量了比热容和采用稳态防护热流计法测量了导热系数。在激光闪光法测试中,样品尺寸为直径12.7mm,厚度2.032mm。在热流计法测试中,样品尺寸为直径50.8mm,厚度6.35mm。经过多次不同样品的测试,由激光闪光法、热膨胀系数测量和比热容测量计算获得导热系数值与热流计法直接测量得到的导热系数值,在整个25~300℃范围内相对偏差小于±3%。从这项工作中也可以看出,采用激光闪光法得到导热系数数值,需要进行大量的其他测试,远比热流计法直接测量复杂的多。  另外还可以从另一方面了解激光闪光法在聚合物测试中样品厚度的选择。在美国ANTER公司(现为美国TA公司)激光闪光法测试设备中,随机配备有参考材料纯聚酰亚胺Vespel-SP1,分别有三种规格,一种是直径12.7mm、厚度0.8mm;第二种是直径20mm、厚度1mm;第三种是直径30mm、厚度也是1mm,总之样品厚度都没有超过1mm。  高硼硅玻璃Pyrex 7740是一种透明玻璃,在使用激光闪光法验证测试过程中需要在透明玻璃表面溅射牢固的涂层,操作比较复杂,因此很少作为激光闪光法测试用参考材料,但多用于稳态法导热系数测试参考材料。1992年Yang等人采用稳态AC量热计法对Pyrex 7740在20~310K的低温环境下的热扩散系数和比热容进行了测量,样品直径为12.7mm,厚度1.06mm。采用稳态AC量热计法测量Pyrex 7740并不需要对样品表面溅射涂层,同时这种厚度的选择对激光闪光法有着参考价值。[color=#cc0000][b]5. 闪光法测试聚合物热物性文献报道[/b]5.1. 聚合物薄膜热物性[/color]  聚合物材料的最终产品形式很多时候往往是薄膜形式,这时闪光法样品小的优势得以发挥,可以直接对薄膜聚合物产品进行取样而无需加工,但薄膜样品会带来影响闪光法测量准确性的其他问题,如样品厚度太薄使得激光脉冲宽度引起的误差显得突出,样品透光需要进行表面溅射涂层,而涂层在薄膜上的沉积使得被测样品形成三层结构而需要考虑涂层的影响。  1995年Agari等人报道了采用激光闪光法对四种聚合物薄膜(厚度范围200~500um)的热扩散系数和比热容进行了测试,并研究了样品遮光石墨涂层以及样品厚度等其他因素对测量精度的影响。  2013年Chiguma1等人报道了采用激光闪光法和DSC法对环氧基纳米复合材料薄膜的热扩散系数和比热容进行的测量,样品尺寸为12.7mm×12.7mm×0.134mm,样品表面喷涂石墨层。测试结果显示,对于不同的纳米复合材料,其导热系数变化范围为881~1489W/mK的超高导热系数。对于如此高的导热系数,激光脉冲宽度和样品表面的石墨涂层已经会严重影响测量结果,但文中并未提到测试数据如何处理以及测量结果准确性的评判方法。[color=#cc0000]5.2. 聚合物复合材料热物性[/color]  在聚合物中添加高导热材料可以改进聚合物的导热性能,这类聚合物基复合材料的导热性能是材料性能表征的重要参数,但采用激光闪光法进行测试的文献报道并不多,多数的报道则是采用稳态法。  2006年Xu等人对单壁碳纳米管聚合物基复合材料的热行为进行了研究,采用激光闪光法测量热扩散系数,采用DSC测量比热容,采用TMA测量热膨胀系数,采用TG测量热重,最终计算得到导热系数。闪光法热扩散系数测量的样品尺寸为直径12.5mm,厚度为0.4~0.7mm。样品前后两表面先溅射金涂层,然后再在加热面喷涂碳层,测试温度范围为25~125℃。为了保证闪光法测量的准确性,出于对透光性的考虑,同时还对经过相同表面处理的厚度为0.5mm的Pyrex 7740参考材料进行了测量。最终测试结果表面,随着单壁碳纳米管体积含量0~49%的变化范围,室温下相应的导热系数变化范围为0.233~0.537W/mK。尽管单壁碳纳米管的导热系数标称可以达到2000W/mK,但添加了单壁碳纳米管的聚合物基复合材料的导热系数实际测量值远低于理论计算预测的导热系数范围0.2~335W/mK。  2012年Yamamoto等人在研究纤维增强聚合物复合材料层压板中,分别采用激光闪光法和稳态热流计法对层压板厚度方向上的导热系数进行了测量。采用激光闪光法分别测量了热扩散系数和比热容,计算得到厚度方向上的导热系数,其中样品尺寸为直径12.7mm厚度1mm,密度在1300~1500kg/m^3范围内,样品表面喷涂石墨层,并采用近似密度的参考材料纯聚酰亚胺Vespel-SP1进行测试验证。另外还采用热流计法对层压板两个方向(厚度方向和面内方向)上的导热系数进行了测量。测量结果显示层压板导热系数随着纤维含量的增加而增大,在纤维含量5%时,厚度方向导热系数为0.6~0.8W/mK,面内方向导热系数为0.9W/mK。两种测试方法的对比结果显示,稳态热流计法导热系数测量值始终要比激光闪光法导热系数测量值大0.1~0.2W/mK,这也是我们在聚合物热物性测试中经常遇到的现象,造成这种现象的原因是在激光闪光法测试和分析中假设了样品是各向同性和均质。  2016年Catherine等人采用激光闪光法对高导热聚合物复合材料的各向异性热物性进行了测试,样品尺寸为直径25.4mm厚度1mm左右,样品表面喷涂石墨层,测试温度范围为25~100℃,并分别采用参考材料纯聚酰亚胺Vespel-SP1(0.5W/mK导热系数)和不锈钢(16W/mK导热系数)进行测试验证。尽管文中提到了激光闪光法面内方向热扩散系数测试附件,但只给出了厚度方向上导热系数测量结果(0.5~9W/mK),并未给出面内方向导热系数测试结果,文中只提到聚合物复合材料具有明显的各向异性特征,同时也未提到比热容如何测量。[b][color=#cc0000]6. 稳态热流计法测量聚合物热物性[/color][/b]  采用稳态热流计法(A-S-T-ME1225、E1530、D5470等)可以直接对聚合物导热系数进行测量,如Jacobs和Stroe对纯聚酰亚胺Vespel-SP1在25~300℃范围的导热系数测试,样品尺寸为直径50.8mm,厚度6.35mm。从样品测试可以看出,这种尺寸的样品基本可以满足所有聚合物复合材料的代表性,而激光闪光法则因为样品小而缺少代表性。  在聚合物热物性测量方面,稳态法始终是一种常规测试方法且应用更加广泛。2004年Rudtsch和Hammerschmidt介绍了针对聚合物PMMA热物性进行的五个国家共十八个实验室之间的比对测试。PMMA常温密度为1185kg/m^3,测试温度范围为-70~+80℃,对应的导热系数范围为0.18~0.20W/mK,热扩散系数范围为0.14~0.11mm^2/s。导热系数对比测试方法分为稳态法和瞬态法两类,其中稳态法包括防护热板法和防护热流计法,瞬态法包括瞬态平面热源法、瞬态热带法和探针法,而恰恰没有激光闪光法。比热容测试采用的是差示扫描量热计(DSC),根据导热系数、比热容和密度测试结果计算得到热扩散系数。  上述对聚合物PMMA的对比测试中,PMMA的导热系数较低,在0.2W/mK以下。2011年David和Ronald报道了欧盟九家机构对导热系数为0.5W/mK左右的建筑石材类材料陶土砖(密度为1950kg/m^3)进行的比对测试。其中稳态法采用了防护热板法和热流计法,瞬态法采用了热带、热盘和热桥三种瞬态平面热源法。防护热板法样品尺寸为200mm×200mm×40mm和直径100mm厚度15mm两种,热流计法样品尺寸为直径50mm厚度10mm,此尺寸样品也可用于热带和热盘法测试,而热桥法样品尺寸为100×30×5。在此次对比测试中,测试温度只有10℃和23℃两个点,只对密度和导热系数进行测试对比。在此次比对测试中还是没有选择激光闪光法。  稳态法在聚合物热物性测试中应用的一个典型领域就是树脂基纤维编织类复合材料,这主要是因为稳态法样品尺寸要远比激光闪光法具有代表性,而且稳态法可以直接测量得到导热系数,简化了测量操作过程。2008年Sharp和Bogdanovich针对树脂基三向编织结构复合材料层压板厚度方向导热系数的测试评价,比较了激光闪光法和稳态热流计法,因激光闪光法样品太小无代表性,无法对编织结构的设计和优化提供准确表征,最终确定采用稳态热流计法进行厚度方向导热系数测量。[b][color=#cc0000]7. 参考文献[/color][/b]  (1) Wilson Nunes, Paul Mummery, and Andrew Wallwork. "Thermal diffusivity of polymers by the laser flash technique." Polymer testing 24.5 (2005): 628-634.  (2) MartinRides, et al. "Intercomparison of thermal conductivity and thermal diffusivity methods for plastics." Polymer Testing 28.5 (2009): 480-489..  (3) Jacobs-Fedore, R. A. Stroe, D. E. "Thermophysical properties of Vespel SP1". In Wang, Hsin Porter, Wallace D. Porter, Wally. Thermal Conductivity 27/Thermal Expansion 15. Knoxville, TN: DEStech Publications, Inc. 2005. pp. 231-238. ISBN 1-932078-34-7.  (4) Tye RP, Salmon DR. “Thermal conductivity certified reference materials: Pyrex 7740 and polymethymethacrylate.”In: DinwiddieRB, Mannello R, editors. Thermal conductivity 26—thermalexpansion 14. Lancaster: DEStech Publications 2005. p. 437-51.  (5) Yang, G., A. D. Migone, and K. W. Johnson. "Heat capacity and thermal diffusivity of a glass sample." Physical Review B 45.1 (1992): 157.  (6) Agari, Y., A. Ueda, and S. Nagai. "Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method." Journal of Polymer Science Part B: Polymer Physics 33.1 (1995): 33-42.  (7) Chiguma, Jasper, et al. "Thermal diffusivity and thermal conductivity of epoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques." Open Journal of Composite Materials 3.03 (2013): 51.  (8) Xu, Yunsheng, Gunawidjaja Ray, and Beckry Abdel-Magid. "Thermal behavior of single-walled carbon nanotube polymer-matrix composites." Composites Part A: Applied Science and Manufacturing 37.1 (2006): 114-121.  (9) Yamamoto, Namiko, Roberto Guzman de Villoria, and Brian L. Wardle. "Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes." Composites Science and Technology 72.16 (2012): 2009-2015.  (10) Thibaud-Erkey, Catherine, and Abbas Alahyari. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers. United Technologies reserach Center, East Hartford, CT (United States), 2016. (11) Rudtsch, S., and U. Hammerschmidt. "Intercomparison of measurements of the thermophysical properties of polymethyl methacrylate." International journal of thermophysics 25.5 (2004): 1475-1482.  (12) Salmon, David R., and Ronald P. Tye. "An inter-comparison of a steady-state and transient methods for measuring the thermal conductivity of thin specimens of masonry materials." Journal of Building Physics 34.3 (2011): 247-261.  (13) Sharp, Keith, et al. "High through-thickness thermal conductivity composites based on three-dimensional woven fiber architectures." AIAA journal 46.11 (2008): 2944-2954.[align=center][img=激光闪光法 聚合物 上海依阳实业有限公司,690,236]https://ng1.17img.cn/bbsfiles/images/2018/12/201812231049305161_9631_3384_3.jpg!w690x236.jpg[/img][/align][align=center][/align]

  • 采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    采用ASTM D5470热阻测定仪或导热仪测量热接触材料的热阻和导热系数测量中那些因素对测量精度会产生影响?具体测试中都遇到那些问题?抛砖引玉,欢迎大家参加讨论

    下图是ASTM D5470测试方法中的测试模型,采用ASTM D5470热阻测定仪或导热仪使用中测量精度的影响因素主要有以下几个方面:http://ng1.17img.cn/bbsfiles/images/2015/03/201503182256_538771_3384_3.png 1. 针对不同的热阻范围需要采用不同热流测量范围的热流计,这就需要采用不同材质来制作热流计,如分别采用不锈钢和铜等材料制成不同测量范围热流计。一般热流计金属棒上插入了多只温度传感器以及外围的隔热材料组件,在不同热流计测试过程中,这就使得操作人员不可能去更换对应的热流计,如此就必须配置和购买至少两套热阻测定仪或导热仪来覆盖尽可能宽泛的热阻和热导率测量范围。很多测试机构为了节省经费一般只购买一套设备来进行全量程的测试,这就使得在某一区间的热阻和导热系数测量存在巨大误差。 2. ASTM D5470方法中,是通过测量热流计金属棒轴向上的温度分布来计算获得流经试样的热流,而温度分布是通过间隔布置在金属棒上的多只温度传感器进行测量来获得。由于金属材料的导热系数很大,这就使得两两温度传感器之间的温度差很小,为了保证准确测量出热流计棒上相应位置处的温度,必须采用更高测量精度的铂电阻温度传感器,采用测量精度不高的热电偶往往会带来较大误差。 3. 上下两个热流计的尺寸完成一致,并要求压紧试样过程中上下两个热流计要完全对准,而且要求两个热流计的端面平行度和端面光洁度非常高,以免造成被测试样的厚度不均匀和热流计端面粗糙所带来的接触热阻,这就对热流计的上下移动机构和对准机构的精度要求非常高,这部分内容占了整个ASTM D5470热阻测定仪或导热仪的大部分费用。考核ASTM D5470热阻测定仪或导热仪测量精度的一种方法是空载测试,即不加载任何被测试样,只使得上下两个热流计金属棒直接对准接触,由此测量出此时的接触热阻,此接触热阻就是仪器的最小热阻分辨率,这个空载热阻测量值越小,说明导热仪的测量分辨率越高,测量试样时越是容易达到更高的测量准确度。 4. 热阻测量准确度除了与温度测量准确度有关外,还与试样上的加载压力测量准确度有关,因此压力传感器要具有一定的准确度才行。同时,金属棒热流计和被测试样在受热时会受热膨胀,在膨胀过程中势必会引起压力的改变,因此热阻或导热系数测量要在温度和压力都稳定的情况下测量,否则也会带来误差。 5. 引起热阻或导热系数测量误差的另外一个重要因素是热流计和试样的散热影响,尽管很多测试设备都在金属热流计和试样外部都采取了一定的隔热措施,如采用隔热材料进行包裹,但还是会有部分热量会从热流计和试样上流失。最有效的办法是采用等温绝热措施,即在热流计棒和试样外部增加绝热屏,绝热屏上的温度分布与热流计金属棒和试样上的温度分布相同,通过等温绝热来消除热损失的影响。但这势必会大幅度的增加测试设备的造价。 6. 由于试样导热系数等于试样厚度除以试样热阻,因此采用ASTM D5470方法测量导热系数时要求精确测量被测试样的厚度,但恰恰这是最困难的事情。对于刚性材料来说,被测试样可以比较厚并且不宜变形,可以在进行实验前进行测量。但对于柔性材料,如导热酯、导热硅胶、硅胶导热片等,试样的厚度在压力加载后会发生改变,这就需要配置在线厚度测量装置。另外,在柔性试样加载后,试样厚度往往会降低到几十至几百微米,这对在线厚度测量来说几乎不可能实现准确测量,因此,厚度测量的准确度是采用ASTM D5470方法时带来误差的最大因素。我们可以经常看到国外厂家导热材料的性能指标中只提供热阻数据而没有提供导热系数数据,就是因为厚度测量几乎无法实现。就算有厂家能提供出导热系数数据,哪这个数据也会存在巨大的误差。

  • 热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    热板法导热仪中任意设定温度及其加热电功率的超高精度PID控制

    [color=#990000]摘要:本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的基本内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]在稳态法防护热板法导热系数测试过程中,要求在稳定状态下对加载在计量加热器上的电功率进行准确测量。在标准测试方法GB/T 10294中的具体规定是“测量施加于计量部分的平均电功率,准确度不低于0.2%,强烈建议使用直流电。推荐自动稳压的输入功率,输入功率的随机波动、变化引起的热板表面温度波动或变化应小于热板和冷板间温差的0.3%。由此可见,防护热板法导热仪计量单元上直流电功率的加载、控制和测量是保证导热系数测量准确性的关键因素之一。除了平均电功率准确度不低于0.2%之外,对于一般冷热板之间20℃温差的导热系数测试,热板表面温度波动或变化还应小于20℃×0.3%=0.06℃。为了满足稳态法防护热板法上述要求,多年来普遍采用的技术手段是采用直流恒流电源,即在计量加热器上施加高精度恒定的直流电流。尽管加载恒定直流电流可以达到标准方法的规定,但同时存在并带来一系列其他问题:(1)热板温度无法实现10的整数倍温度精确控制。(2)热板温度达到稳定时间长。(3)现有工业用PID控制仪表无法达到电功率准确度要求。(4)采用高精度数字电压表和源表,并结合计算机软件进行电功率的PID控制,虽然完全可以解决上述问题,但整体造价十分昂贵。本文将针对上述防护热板法计量单元电功率精密控制中存在的问题,进行详细分析,并提出相应的解决方案。解决方案的核心内容是升级换代现有的工业用PID控制器,将PID控制器的模数转换(A/D)精度提高到24位,数模转换(D/A)精度提高到16位,增加浮点运算位数并将最小控制输出百分比(OP)提高到0.01%。通过此新一代工业用双通道超高精度PID控制器,可轻松将防护热板法计量单元电功率的准确度控制在0.1%以内,第二通道可以用于护热单元或冷板的温度跟踪和控制。同时,新一代PID控制器还保留了工业用PID控制器的常用规格尺寸,并具有很好的性价比。[size=18px][color=#990000]二、计量单元电加热功率和温度精密控制问题分析[/color][/size]在现有的防护热板法计量单元电加热功率和温度精密控制中,存在着以下几方面的矛盾。下文将对这些矛盾进行分析,并由此便于提出相应的解决方案。[size=16px][color=#990000]2.1 热板加热功率精度与整10℃倍数设定温度控制的矛盾[/color][/size]在许多防护热板法导热仪中,为了满足测试方法对施加在计量单元上的加热电功率准确度要求,往往会按照标准方法推荐而采用高精度直流电源。尽管采用直流电源可保证加热电功率的准确度,但在实际测试过程中则还需凭借测试数据积累和经验总结,才能确定出不同热板温度所对应的一系列不同的加载电流值。这种加热电流直接加载方式尽管能保证电功率的准确度,但最大的问题是无法将热板温度准确控制在任意所需的设定温度上,如无法准确控制整10℃倍数的设定温度,实际热板温度往往偏离设定温度而呈现为非整数形式。另外,在测试不同导热系数样品时,采用相同加热电流往往会表现出不同的热板温度。直接加载直流电流方式,还存在一个严重问题是升温速度较慢,计量单元达到稳定温度需要漫长时间。特别是对于较大样品尺寸的防护热板法导热仪,相应的计量单元体积和热容都较大,往往需要更长的温度稳定时间。相比于低导热样品的较小热容,计量单元温度稳定所需时间占用了更多的整体达到稳态的时间。由于上述问题的存在,这种直接加载直流电的加热方式很少在商业化导热仪上使用,一般用在早期热导仪和实验室自行搭建的导热系数测试设备上。[size=16px][color=#990000]2.2 现有工业用PID控温仪无法满足准确度要求问题[/color][/size]为了解决上述直接加载直流电流加热方式存在的问题,并同时提高导热仪的自动化水平,目前大多数商业化防护热板法导热仪都采用了PID控温仪技术。采用PID控温技术是将温度传感器、调功器、直流恒流源和PID控制器组成闭环控制回路,通过PID算法将计量单元自动控制在任意设定温度点上。采用PID控制技术,尽量在理论上可以完美的解决早期直接加载直流电流方式存在的问题,但带来的问题则是无法达到测试方法规定的加热电功率准确度要求,也就是使用工业PID控温仪势必要在测量精度上做出牺牲。出现不得不牺牲电功率控制精度的主要原因是目前的工业用PID控温仪存在以下几方面的问题:(1)采集精度不够:PID控制器的模数转换(A/D)精度大多都是8位或12位,极个别能达到16位,这明显不能满足高精度测量要求。(2)控制精度不够:PID控制器的数模转换(D/A)精度大多都是8位或12位,同样不能满足高精度控制要求。(3)浮点运算精度不够:PID控制器内微处理器运算一般都采用单精度浮点运算。对于较低位数的数模转换输出控制,单精度浮点运算已经足够,对应的最小输出百分比为0.1%。但对于防护热板法计量单元电加热功率的高精度控制,0.1%的最小输出百分比显然已经无法满足要求。[size=16px][color=#990000]2.3 能满足准确度要求的专用PID控制设备但造价昂贵问题[/color][/size]为解决上述PID控制中存在的问题,目前比较成熟的技术是采用高精度的专用仪器和仪表,并结合计算机组成超高精度的PID控制系统来实现护热板法计量单元电加热功率的控制,并在任意温度设定上实现超高精度的长时间恒定控制。这种超高精度的PID温度控制系统采用了分体式结构搭建而成,分别采用独立的五位半/六位半的数字电压表和数控直流电源来实现高精度的数据采集和控制输出功能,PID运算处理则采用计算机或微处理器实现双精度浮点运算,并将最小输出功率百分比提高到0.01%甚至更低。通过这种分体式结构的PID温度控制系统,同时完美的解决了上述防护热板法导热仪中计量单元电加热功率和温度的高精度控制问题,同时也可以大幅度缩短测试时间。尽管这种分体结构的PID温度控制系统满足了精密测量的各种技术要求,但同时带来的主要问题是造价太高,同时还需进行编程和复杂的调试,因此这种PID温控系统和控制技术在国内外多用于计量机构和对测量精度有较高要求的研究部门,并不适用于对价格比较敏感的商业化防护热板法导热仪,更不适合工业应用中的普通导热仪使用。[size=18px][color=#990000]三、工业用超高精度PID控制器解决方案[/color][/size]上述保护热板法导热仪计量单元的电加热功率和温度精密控制问题的分析以及相应的技术改进,也是多年来保护热板法导热系数测试技术进步的一个典型过程。从上述分析可以看出,这个测试设备的技术迭代过程显然还未真正达到更理想化的水平。为了既要满足计量单元电加热功率和温度高精度控制要求,又要实现PID控制、运行操作简单化和具有较低的制作成本。我们提出了新的解决方案,即在现有的工业用PID控制器(调节器)技术基础上进行升级,充分发挥工业用PID调节器的运行操作简便、集成化程度高、体积尺寸小安装方便和价格上的优势。核心升级技术的具体内容如下:(1)PID调节器的模数转换(A/D)直接升级到24位,大幅提高采集精度。(2)PID调节器的数模转换(D/A)精度升级到16位,大幅提高控制输出精度。(3)采用双精度浮点运算提高计算精度,并将最小输出百分比降低到0.01%,充分发挥数模转换的16位精度。(4)保持传统工业PID调节器的标准尺寸,如96×96、96×48和48×96规格,而屏幕显示采用真彩色IPS TFT全视角液晶显示,数字全5位显示。(5)全新的PID调节器具有单通道VPC 2021-1和VPC 2021-2两种规格系列,可满足不同变量(如真空、压力、温度和电压等)的高精度调节和控制。升级前后的PID调节器如图1和图2所示。[align=center][color=#990000][img=01.升级前的双通道PID调节器,690,321]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611027835_9284_3221506_3.jpg!w690x321.jpg[/img][/color][/align][align=center][color=#990000]图1 升级前的双通道PID调节器[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=升级后的单通道PID调节器,500,388]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161611255867_7954_3221506_3.jpg!w690x536.jpg[/img][/color][/align][align=center][color=#990000]图2 升级后的单通道PID调节器[/color][/align]综上所述,解决方案通过对模数转换、数模转换、浮点运算精度和最小输出百分比的全面升级,可完美的实现防护热板法计量单元的电加热功率和温度的超高精度控制。同时,这种全新的超高精度工业用PID调节器也可能用于其他参数的精密控制,并具有很好的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 防护热板法导热仪间隙温度不平衡传感器的指标设计

    防护热板法导热仪间隙温度不平衡传感器的指标设计

    [color=#cc0000]  摘要:本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,同时考虑单样品和双样品两种测量模式,设计计算了防护热板法装置对温度不平衡传感器的灵敏度要求,并最终给出设计指标和相应的技术改进。[/color][color=#cc0000]  关键词:防护热板法,温度不平衡,传感器,灵敏度[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000] 1. 概述[/color][/b]  针对不同被测材料类型,防护热板法导热仪一般分为单样品和双样品两种测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232126417209_8902_3384_3.png!w690x255.jpg[/img][/align][color=#cc0000][/color][align=center]图1-1 防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align][align=center][/align]  防护热板法的测量原理就是采用护热手段保证计量板发出的热量全部通过被测样品而达到一维稳定状态,因此护热手段是保证防护热板法导热系数测量准确的核心。防护热板法中的护热基本上采用的都是等温绝热原理,即各种护热板的温度要与计量板温度一致,从而减少计量板上的热量以各种传热方式进行散失。  温度不平衡传感器是检测计量板与各个护热板之间温度差的探测装置,传感器探测到的温差传递给控制器,控制器控制护热板温度变化使得温度不平衡传感器的输出值最小,从而构成闭环控制回路形成有效的护热控制。温度不平衡传感器的输出值越小,说明护热板与计量板之间的温差越小,护热效果就越好。  由此可见,温度不平衡传感器的灵敏度是防护热板法装置护热效果好坏的重要评判依据。由于诸如安装和可靠性等诸多因素的影响,植入在计量板和护热板之间的温度不平衡传感器不可能无限制提升灵敏度,灵敏度需要根据防护热板法导热系数测量范围和测量精度要求、所用控制器和数据采集器的分辨率以及测试温度范围等因素进行优化和设计,以选择合适的温度不平衡传感器灵敏度。  本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,来设计计算防护热板法测试中温度不平衡传感器的灵敏度要求,并同时考虑单样品和双样品测量模式下防护热板法装置对温度不平衡传感器的要求,最终给出设计指标和相应的技术改进。[b][color=#cc0000]2. 建模[/color][/b]  针对图1-1所示的防护热板法导热系数测试结构,首先进行了建模。无论是单样品还是双样品模式,防护热板法装置都是圆形或正方形的轴对称结构,所以建模只考虑了正方形结构。另外为了便于更直观的进行分析和说明问题,本文只描述了上海依阳实业有限公司的部分建模分析内容,即仅介绍了基于导热传热的建模分析,在实际建模分析中还需要针对对流和辐射传热进行建模,分析模型如图2-1所示。  在图2-1所示的护热分析模型中,同时兼顾了单样品和双样品测量模式。当隔热材料更换成样品,底部护热板温度控制在冷板温度时,则是双样品测量模式。  在图2-1所示的护热分析模型中,只考虑了侧向护热和底部护热所引起的漏热问题,而温差探测器的指标设计也只要依据这两方面的考虑,并未考虑狭缝处样品内的传热漏热影响。在双样品测量模式中,只考虑侧向护热时狭缝中温度不平衡传感器技术指标。而在单样品测量模式中,还需另外考虑底部护热板与计量板之间的温度不平衡传感器技术指标。[align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132159957_5150_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132165728_1784_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132168894_1769_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132173004_918_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132177185_3520_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132182949_3584_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132187076_4077_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132191686_5352_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132196851_8619_3384_3.png!w690x975.jpg[/img][/align]  (5)在无法提高仪表测量和控制分辨率时,可以设法增大热电堆中的热电偶数量,如将8对热电偶增多到16对热电偶构成8对的温差热电堆,温度不平衡精度可以提高到0.5℃,但这种改进效果十分有限,同时也带来其他严重问题。目前上海依阳实业有限公司已经开发出新型的温度不平衡传感器,可以将现有传感器的灵敏度提升到40~50的水平,比现有热电偶式热电堆的灵敏度搞出2个量级,由此可以用五位半控制器很轻易的实现0.01℃和更高水平的温度不平衡精确控制。  (6)另外一个提高和保证测量精度的途径,就是降低侧向护热的热交换面积,采用薄加热器形式。这种思路经美国橡树岭国家实验室针对多层辐射隔热材料和真空绝热板进行的测试验证了可行性,由此相继建立了A-S-T-M C1044和A-S-T-M C1114标准等。但由于薄加热器很难制作应用到高温,薄加热器形式的防护热板法设备主要应用于温度不高的导热系数测试。  (7)需要特别指出的是,目前国内绝大多数大热阻和超低导热系数的测试,很多都是采用稳态热流计法这种相对法,而热流计法导热仪中的热流计在超低导热系数测试中的低热流测量时误差巨大,而且还无法对热流计进行校准以及采用超低导热系数的标准材料进行校准,而真正的热流计校准则是采用防护热板法设备,由防护热板法提供精确的可控热量。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zarr R R, Flynn D R, Hettenhouser J W, et al. Fabrication of a guarded-hot-plate apparatus for use over an extended temperature range and in a controlled gas atmosphere. Thermal Conductivity, 2006, 28: 235.  (2) Zarr R R. Assessment of uncertainties for the NIST 1016 mm guarded-hot-plate apparatus: extended analysis for low-density fibrous-glass thermal insulation. Journal of research of the national institute of standards and technology, 2010, 115(1): 23.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求购】有谁对导热系数仪了解的?

    有谁对导热系数仪了解的? 单位有意购买一台快速导热仪和一台平板导热仪?市场体格大约多少?有谁了解国内外都有那些品牌?用的住,准确度好?指导一下,谢谢。[em09511]

  • 水流量平板法高温导热系数测定仪升级改造解决方案

    水流量平板法高温导热系数测定仪升级改造解决方案

    [img=水量热计法高温平板导热仪升级改造解决方案,690,446]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021605330949_5078_3221506_3.png!w690x446.jpg[/img][color=#990000]摘要:水流量平板法是目前常用的耐火材料导热系数测试方法,相应的导热仪具有测试温度高、大温差测量、结构合理简单、造价便宜和操作方便等突出优点,国内外用户众多,但存在的致命问题是测量低导热系数的隔热材料时误差巨大。针对水流量平板法导热仪,本文提出了一种改造升级方案,即采用一种高精度量热计技术代替现有的水量热计,彻底解决测量误差大的难题,在保留原有水流量平板法导热仪众多优势的前提下,实现导热系数测量精度大幅提高和测试时间大幅缩短,以满足各种高温隔热材料的低导热系数快速准确测量需求。[/color][color=#990000][/color][b]一、问题的提出[/b]对于导热系数小于0.03W/mK的隔热材料,其高温范围(1000℃以上)的导热系数准确测量一致都是没有很好解决的技术难题。但为了获得隔热材料的高温导热系数,并且出于测试设备的经济性考虑,很多国内外机构都选择了商业化的水流量平板法导热仪进行测试。水流量平板法导热仪是一种依据标准测试方法的导热系数测试设备,相关标准如下:(1)美国ASTM C201“耐火材料导热性的标准测试方法”。(2)英国BS 1902-505“耐火材料导热系数标准测试方法(平板/水量热计法)”。(3)冶金行业标准YB/T 4130-2005“耐火材料导热系数试验方法(水流量平板法)”。上述三个标准测试方法的基本原理完全一样,所采用的技术都是通过水量热计来测量流经样品厚度方向上的热流量。由于水量热计比较适用于较大的热流量测量,对于较小的热流量测量则存在巨大误差,因此这种测试方法比较适用于导热系数较高(大于0.1W/mK)的耐火材料。由于水流量平板法导热仪可以进行温度达1500℃以上的高温导热系数测试,因此很多客户采用这种导热仪进行高温隔热材料的测试评价,由于测量误差巨大使得导热系数测试结果往往非常小,严重误导了材料的研发、生产和性能评价。目前国内主流的商品化水量热计法导热系数测定仪有如图1所示的几种规格,测试温度可以从1200℃到1600℃。[align=center][img=01.国内常见的水流量平板法高温导热仪,690,274]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021606396191_613_3221506_3.png!w690x274.jpg[/img][/align][align=center]图1 国内常见的几种水流量平板法高温导热仪[/align]尽管水流量平板法在高温导热系数测试中存在巨大误差,但随着量热分析技术的进步,可以对水流量平板法进行升级改造,可以通过提高量热计测量精度实现高精度的高温导热系数测量。选择水流量平板法导热仪进行技术改造,主要是因为水流量平板法导热仪具有以下便利特征:(1)水流量平板法导热仪的整体测试结构非常合理,高温加热加载在样品的顶面,水量热计位于被测样品的底面,从而在样品厚度方向上形成大温差,这非常符合隔热材料的实际使用工况,可以获得被测样品材料的等效导热系数。(2)样品顶面加热装置是一个独立的机构,可通过改变发热体材料实现不同的加热温度,由此可实现从1000℃至1500℃,甚至最高可达2000℃以上的高温,非常便于隔热材料高温导热系数的测量。(3)被测样品的装卸非常方便,并且可对不同尺寸的样品导热系数进行测试。(4)最重要的是水量热计位于测量装置的底部,更换水量热计比较方便,可以很容易的更换高精度量热计而不影响测量装置的整体结构。(5)水流量平板法导热仪的价格普遍很低,且国内用户众多。基于上述特点,针对水流量平板法导热仪,本文将提出一种改造升级方案,即采用一种高精度量热计技术代替现有的水量热计,彻底解决测量误差大的难题,在保留原有水流量平板法导热仪众多优势的前提下,实现导热系数测量精度大幅提高和测试时间大幅缩短,以满足各种高温隔热材料的低导热系数快速准确测量需求。[b]二、现有量热计热流测试技术分析[/b]在稳态法导热系数测试方法中,关键技术之一就是对流经样品的热流进行准确测量。热流测量的典型技术是量热计法,即基于量热计的比热容特性,通过测量量热计吸收或放出热量后的温度变化来确定所吸收或放出的热量多少。量热计在导热系数测试中有如下典型应用:(1)防护热板法:如图2(a)所示,防护热板法实际上是一种典型的绝热量热计法,热板作为样品热面温度的实施热源,其最终稳定温度就是完全吸收电加热功率后热板所升高的温度。因此,通过测量热板完全吸收的加热功率(即加载的电功率)就可以获得流经样品的热流。[align=center][img=02.量热计用于导热系数测试的两种测试方法示意图,690,243]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021607339875_6761_3221506_3.png!w690x243.jpg[/img][/align][align=center]图2 量热计用于导热系数测试的两种测试方法示意图:(a)防护热板法;(b)水流量平板法[/align](2)水流量平板法:如图2(b)所示,与防护热板法类似,也用的是量热计法,只是量热计位于被测平板样品的冷面来测量流经样品的热流。量热介质则是流动的液体,通过测量量热介质的温升,可根据量热介质的比热容计算得到量热介质吸收的热量大小。从上述量热计在导热系数测量中的两个典型应用,可以做出以下分析:(1)防护热板法中采用的量热计技术,可以获得很高的导热系数测量精度。但由于需要使用护热技术使得量热计输出的热量只流经样品,即量热计周边处于一个高温动态等温绝热环境,而量热计自身还需处于高温状态,这使得量热计在高温下很难实现绝热防护和保证量热计尺寸的稳定性,因此防护热板法只能实现1000℃以下的导热系数准确测量。(2)水流量平板法是将量热计布置在被测样品的冷面,这样做的好处是样品冷面温度较低(特别是测试低导热系数隔热材料样品时),这样可以很容易实现较高样品热面温度。但带来的问题是如果样品冷面温度超过100℃,会使得水量热计中的流体产生沸腾蒸发而影响测量精度,如果通过增加水流速度避免流体沸腾蒸发,则会使得进出口之间的温差减小,也同样会带来另外的测量误差。同时水量热计四周较差的绝热防护措施而产生较大热损,会带来严重的测量误差。这些就是致使水流量平板法测量误差较大的主要原因,这些因素在高导热系数测量时还不明显,但在测量低导热系数时,测量误差所占比重则会很大,导热系数测量结果会明显偏低,甚至会有数量级水平的误差。(3)从上述两种量热计在导热系数测试的典型应用可以看出,两种量热计法测试都是在稳态状态下进行,每次导热系数测试都需要在样品冷热面温度和热流达到稳定状态。特别是对于高温范围的隔热材料测试,需要漫长时间进行多个温度点下的测量才能获得一条导热系数随温度变化曲线。从上述分析可以看出,尽管水流量平板法存在测量误差巨大的严重缺陷,但在高温导热系数测量中则有巨大的潜力。只要克服水量热计存在的问题,就可解决低导热系数高温测量难题,因此问题的关键就是如何采用新型的量热计技术来代替目前的水量热计。[b][color=#990000]三、高精度金属块量热计解决方案[/color][/b]我们从最基本的物体吸收热量与温升的关系出发,即材料的比热容定义:单位质量物体升高一度所吸收的热量,可以设计出以下导热系数动态测试方法:(1)如图3所示,将图2(b)所示的水流量平板法导热仪中的水流量计更换为一平板金属块作为量热计,量热计上方的其他结构保持不变。[align=center][img=03.金属块量热法高温导热系数动态测试设备结构示意图,500,313]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021609596535_7755_3221506_3.png!w690x433.jpg[/img][/align][align=center]图3 金属块量热法高温导热仪结构示意图[/align](2)此金属块量热计采用高导热金属材料制成,用于吸收透过被测样品的热流量。采用高导热金属材料作为量热计是为了保证量热计温度能快速均匀,以满足测试模型中要求量热计始终处于等温的边界条件,同时具有耐高温能力,以能够进行高温下的导热系数测试。(3)由于金属块量热计的快速均温能力,那么通过量热计的温度变化就可以计算得到样品冷面的热流变化。(4)为了使金属块量热计所吸收的完全是透过被测样品的热量,最大限度减小量热计的热损失,借鉴了保护热板法的技术方案,即在金属块量热计四周增加了主动护热装置来实现绝热。(5)还继续采用原有水流量平板法导热仪的加热装置和温度测量装置,但加热装置的温度以线性方式进行变化,由此使得被测样品的冷热面以相同的升降温速率进行变化。通过上述测量得到的冷面热流变化,以及结合测量得到的冷热面温度和温度变化速率,可以得到整个温度变化过程中的导热系数变化曲线。综上所述,只需对水流量平板法导热仪中的水量热计进行更换,即可实现绝热材料高温导热系数的准确测量,同时采用了线性升温加热方式,大幅缩短了测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    [size=14px][color=#ff0000]摘要:针对气凝胶和超级绝热材料(VIP)等超低导热系数材料的测试,常用的稳态法热导仪往往会在测量精度和灵敏度方面表现出不足。为考核稳态法导热仪的超低导热系数测试能力,本文提出了一种简便可行的考核方法,通过对一系列不同厚度的样品进行导热系数测试,最终根据导热系数随厚度的变化来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]在隔热材料的研发和生产过程中,隔热材料的导热系数测试结果经常会受到质疑,特别是隔热材料导热系数小于空气(0.026W/mK)的气凝胶和超级绝热材料(VIP),这些超低导热系数的测试结果往往存在较大误差。隔热材料低导热系数的测试普遍采用稳态法(防护热板法和热流计法),对应于低导热系数测试不准确现象,相应的稳态法导热仪往往会存在以下问题:(1)稳态法导热仪的测量精度和灵敏度不够,无法准确测量低导热和超低导热系数,无法准确测量超低导热系数以及导热系数的微小变化,无法满足材料研发和生产中工艺和配方调整和评价需要。(2)由于缺乏导热系数在0.02W/mK左右(或更低)的标准参考材料,对于已有的稳态法导热仪,如何判断仪器的低导热系数测试能力,由此来大致判断测量结果的准确性。为解决上述问题,本文将提出一种简便可行的考核方法,通过对一系列不同厚度的隔热材料样品进行导热系数测试,根据导热系数随厚度的变化情况来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/size][size=18px][color=#ff0000]二、评估方法和考核试验[/color][/size][size=16px]考核试验的依据是稳态法的导热系数测试结果不应随样品的厚度发生而改变,如果发生改变,则说明导热系数测试产生误差。由此可用来判断导热仪的误差范围和测试极限。气凝胶软毡考作为考核试验样品,单层软毡厚度略大于10mm,通过多层叠加来实现不同厚度。测试采用了热流计法导热仪,样品为300mm边长的正方形,样品厚度分别为10、20、30、40和50mm,样品的平均温度为30℃,冷热面温差为20℃,结果如图1所示。[/size][align=center][size=14px][img=气凝胶超低热导率测试,600,380]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251654466502_5355_3384_3.png!w690x437.jpg[/img][/size][/align][size=14px][/size][align=center]图1 不同厚度气凝胶软毡导热系数测试结果[/align][size=16px]从图1测试结果可以看出,在厚度20~40mm范围内,测试结果不会随厚度变化而改变,导热系数平均值为0.02045W/mK。随着厚度降低到10mm,导热系数测试结果有变小的趋势,此时说明样品太薄使得厚度测量和厚度均匀性给样品内部热流场均匀性所带来的误差影响变大。从图1测试结果还可以看出,当厚度增大到50mm时,导热系数测试结果有变大的趋势,这种现象说明随着样品厚度的增大,样品热阻也随之增大,稳态时流经样品厚度方向上的热流量变小,热流传感器对小热流的测量出现误差变大的现象。同时样品厚度增大使得样品内部热流场均匀性所带来的误差影响变大。在图1所示的测试结果中,尽管对薄样品和厚样品的测试结果偏离了平均值,但偏差还是没有超出导热仪的±5%的误差范围,这证明了此热流计法导热仪完全具备准确测试0.02W/mK导热系数的能力。[/size][size=18px][color=#ff0000]三、导热系数测试下限分析[/color][/size][size=16px]根据上述考核试验测试得到相同材料不同厚度下的导热系数,可以依据傅里叶稳态传热定律推算出流经样品的热流密度,如表1所示。如果假设热流计法导热仪中热流计的灵敏度为10uV/(W/m2),那么就可以得到相应的热流计电压输出值。这里选择10uV/(W/m2)作为热流计的灵敏度,是因为目前普遍的热流计灵敏度都在这个数值以下。另外,选择此灵敏度主要仅是为了更方便的描述如何进行导热系数测试下限判定,其他灵敏度也能说明问题。[/size][align=center]表1 根据不同厚度样品的热导率测试结果推算出的热流密度和热流计电压输出值[/align][align=center][size=14px][img=气凝胶超低热导率测试,690,202]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251655508891_6096_3384_3.png!w690x202.jpg[/img][/size][/align][size=16px]按照傅里叶传热定律,如果假设样品的导热系数保持不变并与样品厚度无关,那么随着样品厚度增加,样品热阻会线性增大,流经样品的热流密度会线性减小,对应的热流计输出信号(电压值)也会线性减小。从表1的推算结果也显示了这种变化过程,但不同的是由于热流计电压输出测试仪表的测量精度有限,在大厚度、高热组和小热流密度时,电压信号测量会带有明显误差。由此可见,在低导热系数测试中,主要测量误差来源是热流计的灵敏度。根据表1,如果假设103uV是电压测量仪表的准确测量下限,对应10uV/(W/m2)灵敏度的热流计,热流计准确测量热流密度的下限为10W/m2,可准确测量的最大热阻为1.95m2K/W。由此,可以根据这个可测热阻值1.95m2K/W,推算出20mm最佳厚度样品的可准确测量的最低导热系数为0.02/1.95=0.0102W/mK。如果设定可接受的误差范围为±5%,那么10uV/(W/m2)灵敏度的热流计法导热仪,其测试下限为0.0102×0.95=0.0097W/mK,约为。由此可见,上述的热流计法导热仪的导热系数测试下限基本为0.01W/mK,且误差在5%的误差范围内。那么对于真空绝热材料(VIP),这类材料的导热系数一般在3~8W/mK之间,那么用此灵敏度的导热仪测试将会带来巨大误差。由此可见,为了保证测量超低导热系数的绝热材料,必须进一步提高热流计的灵敏度。由此也可以得出同样的结论,采用稳态保护热板法导热仪测量超低导热系数,关键之一是必须进一步降低护热板的漏热。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=16px]对于稳态法热导率测试,通过对一些列不同厚度但材质相同的样品进行测试,可以大致判断出稳态法热导率测试仪器的测试能力,特别是判断导热仪是否具备超低导热系数测试的能力,并用此方法对稳态法导热仪进行考核。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 【原创大赛】导热系数测定仪选购经验

    【原创大赛】导热系数测定仪选购经验

    我们是典型的生产型企业,生产并销售建筑保温材料,选购了南京大展机电技术研究所的DZDR- P平板法导热仪。 http://ng1.17img.cn/bbsfiles/images/2013/12/201312012120_480213_2835146_3.jpg 南京大展机电技术研究所的DZDR- P平板法导热仪,主要构成如下:气动总成:气缸(控制测试板使之上下运动,完成测试样品的装夹过程)。以气缸为动力的运动装置不会因为产生额外热量而影响仪器的测量精度。控制主机:32位ARM架构的微处理器为核心,24位A/D模数转换芯片。彩色液晶显示器,参数设定比较简便,一目了然,人机界面清新友善。 测试主机:采用单试件方式,测试时只需要一块试样。使用特别定制的新型耐高温绝热材料和多层复合结构。分段多点独立控制加热器和微型铂电阻传感器,以小区域精密温度控制来保证整个测试面的温度均衡。集成数据采集、线性补偿、智能算法的后台软件。用创新思维处理产品设计中的每一个细节,使导热仪成为新设计理念的集大成。 很多同行在选购仪器时都很迷茫,下面简单介绍一下我们在选购导热仪时注意的几点:1)主要技术指标: 改变试样厚度,测量条件不变,其导热系数测量值应基本一致。 在相同的平均温度(冷板和热板温度的平均值),如25℃,改变冷热板温差,如从冷板10℃、热板40℃变为冷板20℃、热板30℃,测出的导热系数值应基本一致。 环境温度在允许范围内波动,测试结果的重复性如何。 仪器的自动化程度及设计理念的先进性。[a

  • 激光闪光法测试蓄热相变材料热扩散系数——第1部分:试验技术

    激光闪光法测试蓄热相变材料热扩散系数——第1部分:试验技术

    [color=#cc0000]摘要:本文针对液体和粉体形式的蓄热型相变材料,介绍了激光闪光法在蓄热相变材料热扩散系数测试中应用研究以及各种典型液体材料和相变材料的验证试验结果。根据研究文献和验证试验结果证明激光闪光法并不是一种测量液体和相变材料热物理性能比较合适的方法,影响因素众多,测试过程繁杂,并存在很多问题及不足,对于未知液体和相变材料的热性能测试很难保证相应的测量精度。[/color][color=#cc0000]关键词:闪光法、相变材料,液体、粉体、热扩散系数,导热系数,储能,蓄热[/color][color=#cc0000][/color][hr/][color=#ff0000][b]1. 引言[/b][/color] 相变材料在相变过程中吸收或者释放热量,利用相变材料的相变潜热来实现能量的储存,可以解决能量供需在时间和空间上不匹配的矛盾,有效提高能源利用效率,达到节能减排目的。利用相变材料的这一特点将其应用到建筑材料中,吸收和储存白天进入室内的太阳辐射热避免室内温度过高,夜间释放这些热量,把室内温度控制在人体舒适温度范围内,可降低建筑采暖和致冷的能源消耗,实现建筑节能的同时提高居住环境舒适度。 建筑用相变材料多为潜热型蓄热方式,这种方式的主要优势是在较小温度区间内具有较高的蓄热密度,它可以用于建筑的加热和冷却,并可以与其它被动系统或主动系统配合使用。 如图1-1所示,在建筑中所使用的各种相变材料通常被描述为多种相变复合材料的基材,其主要目的是保持相变材料的形状稳定或对其进行包封,特别是相变材料是液态形式时。目前国内外常用的相变复合材料基材的样品尺寸一般从几个毫米到几个厘米直到所谓的大尺寸块状尺度,如已经被用于建筑结构中的微胶囊封装相变材料,各种非工艺陶瓷材料,水泥或石膏板等,所用的相变材料不仅微胶囊封装了石蜡,而且还包含了浸注石蜡等形式,从而形成各种形式的建筑用相变材料。[align=center] [img=1-01.液体和粉末颗粒状相变材料,690,338]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251521_01_3384_3.png!w690x338.jpg[/img][/align][align=center][color=#990000][b]图1-1 液体状和粉末颗粒状相变材料[/b][/color][/align] 这些相变材料的热物理性能给出了这些材料和复合材料的蓄热能力,但测试评价热物理性能则并不容易,特别是对于这些液体形状和粉末颗粒形状的相变材料而言,在采用目前传统实验室仪器进行测量时要十分小心,否则很难获得准确的测量结果。 本文针对液体和粉体形式的蓄热型相变材料,主要介绍了激光闪光法在蓄热相变材料热扩散系数测量中的应用,以及各种典型液体材料和相变材料的测量结果,并介绍了闪光法测试相变材料中的注意事项和存在的问题及不足。[b][color=#ff0000]2. 问题的提出[/color][/b] 在激光闪光法中被测样品位于闪光灯和红外探测器之间,激光脉冲照射到样品的前表面,红外探测器测量样品背面的温升变化。通过数学模型来处理这个温升曲线从而测得被测样品的热扩散系数,将热扩散系数与样品材料的密度和比热容相乘得到相应的导热系数。 如图1-1所示液体状和粉末颗粒状蓄热相变材料,在微观尺度上由大量几十至几百微米尺度颗粒或胶囊构成,对于十几毫米的激光闪光法测样品品宏观热性能而言则是均匀的。由此,液体状和粉末颗粒状蓄热相变材料的导热系数测试就可以归结为液体和粉体材料的热性能测试。但由于液体和粉体蓄热相变材料的特殊性,在采用激光闪光法测试导热系数过程中会面临以下几个重要难题: (1)在激光闪光法测量液体和粉末颗粒状样品时,如液液和固液相变材料,被测样品在液液和固液相变过程中会发生明显的膨胀或收缩,如果不采取特殊措施,被测样品厚度将在测试过程中发生变化,会给测试结果带来巨大误差。 (2)液体和颗粒状蓄热相变材料一般的导热系数较低,大多小于1W/mK,这就要求激光闪光法测试时一是尽可能减小样品厚度,二是加大激光脉冲功率,但对于低熔点相变材料而言则是一个相互矛盾的难题。 (3)蓄热相变材料的相变温度一般较低,当激光脉冲照射在相变材料样品前表面时,很容易使得样品前表面温度升高1~5℃,从而使得样品的激光照射区域产生软化或相变,进而改变样品整体性能的均匀性给测试带来严重误差。 (4)许多蓄热相变材料都为透明或半透明材料,激光闪光法的测试过程很容易产生热传导之外的对流和辐射传热形式,就需要采用特殊手段进行规避和修正。 (5)激光闪光法测试热扩散系数的前提条件是认为被测样品在测试过程中保持材料形态不变,即在测试过程中不能产生相变,因此对于蓄热相变材料相变过程中的热扩散系数测试则是激光闪光法无法解决的难题。 以上难题就是为什么对于液体材料大多使用特殊方法来测量热扩散系数,这些特殊方法包括同轴圆柱法和平行板法等稳态方法,瞬态法则主要有热线法。然而,为了避免液体测量中由于辐射和对流带来的影响,必须在这些方法中实施一些特殊技术手段条件,文献给出了测量液体导热系数主要方法的综述。[b][color=#ff0000]3. 激光闪光法测试蓄热相变材料的改进[/color][/b][color=#ff0000]3.1. 激光闪光法测量液体热物理性能技术研究综述[/color] 尽管采用闪光法测试液体热物性存在上述困难,一些研究人员还是尝试了将闪光法应用于液体测量。理论上闪光法可以作为一种有效的测量液体热扩散系数方法,这是因为通过使用热脉冲加热水平安装样品的上表面可以大大降低对流换热的影响。 Schriempf是第一个开发特殊闪光法仪器致力于测量液体热扩散系数并成功应用到了液体水银,他用绝缘材料制成样品容器,液体表面覆盖透明石英板,就像闪光法基本方法一样测量液体样品背面的温度上升。然而他的方法不适应测量低导热液体,因为热量流经容器不可忽略,从而造成热流不再是一维热流。 Farooq等人提出了一个类似方法,基于一个外层钎焊到一环形中心间隔器的样品容器所构成的三层结构测试单元,采用这种样品容器测试水的热扩散系数。 Maeda等人还提出了一个特殊的测样品品单元,其中的液体夹持在顶部和底部铂坩埚内形成一个三层的三明治结构,并使用三层分析计算模型来进行曲线拟合,同时基于透明体假设来进行修正。 Nishi等人研究了高温下激光闪光法测量熔融金属热扩散系数的可能性,为了做到这一点他们开发了一个简单的样品单元,并在理论上估计了在熔融金属界面上的辐射和传导热损失影响,这使得可以分析测量不确定度。他们的结论是所开发的激光闪光法测量装置可以测量熔融镍的热扩散系数以及测量不确定度为±3%。 Coquard等人开发了一种有机玻璃空心圆筒构成的样品容器,在圆筒的顶部和底部由圆形铝板进行封闭,由此组成一种三明治结构样品进行闪光法测试,通过对背温测试曲线进行参数估计得到液体样品的热扩散系数。采用此方法对两种液体(水和乙醇)和一个糊状物质(聚丙烯酰胺凝胶)进行了测试,总的不确定度分析结果为小于5%。但从文献中看这种方法液体样品很厚将近有7mm,对于低导热液体样品测试会造成背温温升时间过长而带来一系列的误差因素。 总之,上述这些研究都是基于经典的闪光法,并假设通过特制样品单元或样品容器的热量传递仍然是一维热流,虽然这可能与实际情况不符。事实上,以上开发的测试设备是由几个具有可变热性能的部件组成,都会产生相应的边缘效应。这就是为什么使用他们的仪器测量液体样品时得不到准确液体热扩散系数的主要原因,就是因为热流不再是一维热流。 为了避免非一维热流情况,Tada等人提出了一种基于适当样品几何形状的方法,他们将液体夹在金属板和样品容器之间并测量前表面温度变化,从中获得液体的导热系数。他们的方法既不要求使用参考材料,也不需要测量样品厚度,因为液体样品层被视为半无限大厚,他们的方法成功测量了水和甲苯。Ohta等人使用一种几乎相同的方法来测量高温下高粘性液体的蓄热系数。然而,这些前表面闪光法都需要测量样品前表面温升并涉及到开发特殊测量设备,而这些恰恰很难实现。 根据上述文献报道和闪光法测试原理,要解决样品厚度变化和前表面物态变化对测量的影响无外乎以下几种途径: (1)在被测样品的测量区域内(脉冲激光照射区域和样品背面温度探测区域),设法保持被测样品厚度在温度变化过程中始终不变,而在被测样品的非测量区域(边缘位置处)留出样品膨胀空间。 (2)采用夹层结构形式讲被测样品夹持在中心位置,使得激光脉冲不直接作用在样品上,一方面避免激光直接穿过透明和半透明样品直达背温探测器形成干扰,二是固定样品厚度始终不变。 (3)根据相变材料导热系数和厚度来优化激光脉冲功率,尽可能在得到满意背面温升曲线的同时,使得样品前表面不产生融化现象。 (4)采用前表面测试技术,即激光照射被测样品前表面进行样品加热,同时在样品的前表面测量样品温度变化,而不是测量样品背面温度变化。 激光闪光法前表面测试技术是一种新出现的高速测试技术,特别适合高导热材料相变前后(熔融前后)的热扩散系数测量,因此这种方法目前主要用于金属熔融前后的高温热扩散系数测量,在较低导热系数的蓄热相变材料中还应用较少,所以本文将不对激光闪光法前表面测试技术进行介绍。[color=#ff0000]3.2. 特制样品容器用于激光闪光法液体测试[/color] 目前绝大多数激光闪光法测试都是采用前表面激光闪光加热和后表面测温方式,可以采用上述前两种途径制作特殊样品容器来进行液体和相变材料测试,文献报道了为激光闪光法液体测试配备的一种特制样品容器。 这种为液体、浆料和微细颗粒材料的热扩散系数测量开发的特制容器,如图3-1所示。该特制样品容器由一个坩埚、不锈钢环和封装盖组成,将被测样品(约50ul)装入坩埚并装上封装盖,被测样品就会充满封装盖与坩埚之间约0.5mm厚的间隙,这个间隙就是被测样品厚度。装填完毕样品后,需要在坩埚底部和封装盖顶部中心区域涂覆石墨以确保表面具有较高发射率,从而形成对脉冲加热光具有良好的热量吸收以及对非接触红外探测器具有较强的热辐射。 针对不同的测试温度范围,特制容器的材质分别为铝合金(适用于500℃以下)和铂铑合金(适用于1600℃以下)。这种结构的样品容器只适合样品水平放置的直立式激光闪光法测试设备,即样品容器和样品为水平放置,激光器和背温探测器位于样品的上部或下部,这种结构的样品容器并不适合样品直立形式的激光闪光法测试设备。[align=center] [img=3-01.激光闪光法液体和颗粒物试样容器,690,450]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251523_02_3384_3.png!w690x450.jpg[/img][/align][align=center][b][color=#990000]图3-1 激光闪光法液体和粉体样品测试专用容器[/color][/b][/align] 需要注意的是,在采用图3-1所示特制容器进行样品热扩散系数测试时必须采用三层分析程序对背温检测信号进行处理,即坩埚底层、被测样品和封装盖中心层形成一个三层夹心结构的被测样品,需要已知坩埚和封装盖材料的热性能后再通过三层分析程序对背温测量信号进行计算处理才能得到被测样品的热扩散系数。如果要获得被测样品的导热系数,还需要采用其它方法测量被测样品的比热容和密度随温度的变化。[b][color=#ff0000]4. 特制样品容器的考核[/color][/b] 文献报道了采用图3-1所示特制容器对一系列液体、膏状物和相变材料进行了测试,以验证和考核特制样品容器和相关测试方法的有效性。以下内容仅为文献报道的测试内容和结果,其中有些内容并不完全代表相关材料测试过程中的真实情况,这里的介绍仅是作为激光闪光法液体热扩散系数测试考核内容的借鉴和参考,文献中很多关键技术细节和遇到的问题没有报道,本文后续篇幅将会展开进行说明。[color=#ff0000]4.1. 纯水的激光闪光法测量[/color] 在材料热分析和热性能测试技术中纯水常作为一种参考物质来检验测试方法的准确性,为了验证针对液体和粉体样品所做的特制样品容器和相应的测试程序,采用了三种不同尺寸的特制样品容器对纯水在25~50℃温度范围内进行了激光闪光法测试,在每个温度点下分别进行了5次重复性测量,测试结果如图4-1所示,测试中纯水的密度和比热容数据采用了文献值,测试结果与纯水热扩散系数和导热系数文献值进行了比较以观察测试结果的准确性和重复性。[align=center] [img=,690,461]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251532_01_3384_3.png!w690x461.jpg[/img][/align][align=center][b][color=#990000]图4-1 采用三种不同尺寸液体样品容器测量纯水热扩散系数和导热系数的结果[/color][/b][/align] 图4-1中灰色区域为纯水导热系数文献值范围,采用特制样品容器所进行的测试结果显示纯水的导热系数测试结果落在灰色区域内,热扩散系数和导热系数随温度升高略有增加,导热系数测试结果与文献值相差一般小于±2%。[color=#ff0000]4.2. 乙二醇的激光闪光法测量[/color] 乙二醇也是常用考核热分析测试方法的参考材料之一,采用特制样品容器对乙二醇进行了测试,测试结果如图4-2所示。测试结果与文献值进行了比较,假设文献值的测量不确定度为3%,并以此测量不确定度在图中绘制误差线。为了计算方便,导热系数计算中采用了文献所提供的密度和比热容数据,从所测量的热扩散系数和计算得到的导热系数可以看出测量值与文献值之间的偏差既远小于激光闪光法测量不确定度(约5%),也小于文献值的测量不确定度。从乙二醇导热系数测试结果还可以看出随着温度的增加,乙二醇导热系数几乎呈线性缓慢增大,而热扩散系数则呈线性缓慢减小,这都表示了乙二醇热扩散系数和导热系数对温度的依赖性较弱。[align=center][img=,690,481]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251533_01_3384_3.png!w690x481.jpg[/img] [/align][align=center][b][color=#990000]图4-2 乙二醇热扩散系数和导热系数测试结果[/color][/b][/align][color=#ff0000]4.3. 硅脂的激光闪光法测量[/color] 硅脂是一种常用的膏状物,其导热性能是硅脂的一个重要指标。采用特制样品容器对硅脂进行了测量,测试温度范围为-40~100℃,硅脂的热扩散系数、比热容和导热系数测试结果如图4-3所示。[align=center] [img=,690,470]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_01_3384_3.png!w690x470.jpg[/img][/align][align=center][b][color=#990000]图4-3 硅脂的热扩散系数、比热容和导热系数测试结果[/color][/b][/align] 硅脂通常用于真空应用和导热脂的制备,在后续的应用中一般将大量的无机粉添加到硅脂中。而在实际情况下,只有少量的无机材料添加到油脂中,这种添加剂的原因是其密度略高于硅脂的典型密度范围(0.8~1g/cm3),在24℃室温下的硅脂糊状物密度测量值为 1.136 g/cm3。测量结果显示随着温度的增加热扩散系数缓慢下降,而比热容则缓慢增大,由此使得硅脂的导热系数在整个温度范围内几乎呈线性增长。[color=#ff0000]4.4. 聚碳酸酯相变材料的激光闪光法测量[/color] 为了进一步验证特制样品容器的实用性,还对聚碳酸酯固液相变材料进行了激光闪光法测试,测试温度范围为室温~300℃。在室温下聚碳酸酯为非晶固体,在第一次加热超过玻璃化转变温度(200℃以上)后聚碳酸酯会变软并最终成为液体。根据这种特性,在采用特制样品容器制作测试样品时,要先将固体聚碳酸酯样品放入坩埚内并进行加热,当加热到200℃时将封装盖压在坩埚上,然后冷却特制样品容器至室温再开始激光闪光法测试,这样制作被测样品的目的是为了确保坩埚和封装盖与聚碳酸酯样品之间有良好的热接触和样品端面平行度。最终所制的聚碳酸酯样品厚度为0.55mm,直径为11mm。 采用特制样品容器制成聚碳酸酯样品后,激光闪光法的测试结果如图4-4所示。[align=center][img=,690,448]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_02_3384_3.png!w690x448.jpg[/img][/align][align=center][b][color=#990000]图4-4 采用液体样品容器测量聚碳酸酯热扩散系数和导热系数的结果[/color][/b][/align] 从图中可以看出,热扩散系数在室温~130℃范围内呈近似线性的下降,在130~150℃范围内热扩散系数发生明显的大幅度降低,这是由于聚碳酸酯玻璃化转变过程所引起的反应,在玻璃化转变过程中激光闪光法只检测到热扩散系数随温度变化只发生了轻微的改变,对温度变化并未有多少依赖性。 采用差示扫描量热仪对聚碳酸酯样品进行了比热容测试,从图4-4所示的测试结果可以看出比热容随温度几乎呈线性增大,在玻璃化转变时比热值产生较高的典型跃迁,然后继续随温度变化呈线性增大。 在文献中并没有提到聚碳酸酯密度随温度变化的测量,只是将聚碳酸酯导热系数测试结果呈现在图4-4中,测试结果显示随着温度升高导热系数持续增大,并没有受到玻璃化转变过程的太大影响。[color=#ff0000]4.5. 聚丙烯的激光闪光法测试[/color] 图4-5显示了40~300℃范围内采用差示扫描量热仪测量聚丙烯样品的表观比热容(比热容与相变焓重叠)随温度变化曲线,在温度变化初期比热容随温度升高而持续增大,在120~210℃范围内熔化热与比热容重叠,在此温度范围内结晶材料发生融化,融化过程中所引起的焓值变化在77.5J/g处进行了评估。为了进行热扩散系数和导热系数分析,需要对测试曲线进行线性内插以去掉额外的焓值变化,图中用直线表示。[align=center] [img=,690,351]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_03_3384_3.png!w690x351.jpg[/img][/align][align=center][b][color=#990000]图4-5 部分结晶聚丙烯表观比热容测试结果[/color][/b][/align] 图4-6显示了在室温~300℃范围内聚丙烯样品的热扩散系数、比热容(插值后)和导热系数测量结果,从图中可以看到,热扩散系数逐渐下降到120℃后随着温度的进一步升高而略微的增大。比热容则在整个温度区间内都呈现出增加趋势,但在固态过程中比热容随温度增加速度较高。随温度变化的导热系数近乎为直线,这是这类半晶质热塑性材料的典型特征,在融化过程中导热系数会呈现轻微的下降。[align=center] [img=,690,458]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_01_3384_3.png!w690x458.jpg[/img][/align][align=center][b][color=#990000]图4-6 聚丙烯的热扩散系数、比热容和导热系数,样品厚度0.55mm,宽度11.00mm[/color][/b][/align][color=#ff0000]4.6. 石蜡混合物的激光闪光法测试[/color] 图4-7显示了-30~50℃温度范围内石蜡混合物的热扩散系数和比热容测试结果,这些测试是在铂铑合金坩埚制成的样品容器上进行。测试结果显示出在0~40℃为宽泛的融化区间,在表观比热容测试结果中可以看到熔融过程为重叠的吸热效应(实心直线),在该温度范围内进行插值所得到的熔融热不会对比热容产生影响。[align=center] [img=,690,462]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_02_3384_3.png!w690x462.jpg[/img][/align][align=center][b][color=#990000]图4-7 石蜡混合物表观热扩散系数和表观比热容测试结果,样品厚度0.506mm,在35℃时的密度为0.757gcm-3[/color][/b][/align] 从图中可以看出,表观热扩散系数测试结果显示在-30~20℃范围内呈现出一个衰减过程,然后随温度逐渐增加,在温度达到35℃后表观热扩散系数趋于恒定。 然而,在实际测试中要考虑相变区域的测量,即考虑熔融过程中的测量,这点至关重要,这主要是用于分析激光闪光法测试结果的瞬态传热方程在相变区域不再有效。在熔化/凝固过程中,考虑到焓变化的影响, 它必须通过一个附加技术来进行扩展,这种熔化/凝固通常发生在闪光源的加热时刻和样品达到最高温度后的降温时刻。利用所开发的瞬态传热方程数值解法可以考虑这种效应,考虑到测试中的三层样品结构,这样的解决方案可能非常复杂。在这项工作中使用的另一种解决方案是在不同的闪光脉冲能量下进行测试,从而在样品内形成不同的温升,然后将结果外推到零脉冲能量,从而使热扩散系数的计算不受熔化/凝固的影响。 分别在0℃和25℃下采用不同闪光脉冲加热能量对石蜡混合物进行了测试,测试结果如图4-8所示。从图中可以明显看出表观热扩散系数与脉冲加热能量几乎呈线性关系,在热焓变化较大的熔化温度范围内(25℃),表观热扩散系数与脉冲能量的依赖性较大,而在热焓变化较小的熔化温度范围内(0℃),这种依赖性较弱。[align=center] [img=,690,455]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_03_3384_3.png!w690x455.jpg[/img][/align][align=center][b][color=#990000]图4-8 在0~25℃范围内石蜡混合物表观热扩散系数随闪光加热能量的变化,同时显示了测试结果的线性逼近趋势[/color][/b][/align] 图4-8中还显示了使用一阶多项式对测试结果进行非线性回归的外推结果,从外推结果可以看出, 实测数据与这个线性逼近吻合在实测数据散度中,在所有的相变区域内都可以相似的逼近计算。 通过外推到零脉冲能量所得到的热扩散系数结果在图4-7中显示为修正的热扩散系数,由此可以看出,在对脉冲能量影响进行修正后,热扩散系数在熔化范围内随温度变化几乎呈线性下降。 利用修正后的热扩散系数和比热容(在熔化过程中不发生重叠焓变化)计算石蜡混合物导热系数中,同时考虑了熔化过程中的密度变化,由此得到图4-9所示的导热系数结果。可以看出导热系数在-30~35℃温度范围内逐渐降低,而在在相变过程中导热系数下降速率变缓,在全熔融区中导热系数得到接近恒定值。[align=center] [img=,690,480]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_04_3384_3.png!w690x480.jpg[/img][/align][align=center][b][color=#990000]图4-9 在温度-30~50℃范围内的石蜡混合物导热系数计算结果[/color][/b][/align][b][color=#ff0000]5. 试验分析和验证[/color][/b] 采用文献报道的特制样品容器进行激光闪光法液体测试过程中,还存在很多影响因素并未有报道,以下对图3-1所示的用于液体的特制样品容器在激光闪光法测试过程中的影响因素进行分析。[color=#ff0000]5.1. 样品中空气隙的影响[/color] 为了评估测量不确定度,Coquard等人对可能导致测量误差的参数进行了分析,分析结论是样品厚度的正确测定和特制样品容器的严格灌装是关键参数,如果空气在样品所占比例为1.25%就意味的测量结果误差为15.4%, 因为这个空气层将成为热传导通道上的一个热障。[color=#ff0000]5.2. 金属样品容器的影响[/color] 图3-1所示的用于液体样品的特制样品容器材质是纯铝或铂铑合金(Pt90Rh10),其导热系数为237 W/mK 和38W/mK,与被测液体样品导热系数范围(0.15~0.6W/mK)相比这是一个非常高的导热系数值。然而特制样品容器在坩埚与封装盖之间提供了一个侧面空气间隙,这个侧面空气间隙的热阻足够大于比被测液体样品的热阻,由此使得特制样品容器上的热传递最小化。同样情形也发生在封装盖接触面上,虽然接触面并未压力加载,但接触热阻还是会远大于液体样品热阻,也就是说特制样品容器对测试结果的影响已经最小化了。但是毕竟样品容器是由高导热金属制成,瞬态激光热脉冲加热液体样品前首先加热的是三层结构样品的顶部金属表面,热量一方面会继续前行加热液体样品,同时热量还会沿着样品容器壁产生散热线性,由此造成加热液体样品上表面的热流分布并不均匀,这是一个重要测量误差源。 Delgado等人分别对空载的特制样品容器和装有水的特制样品容器进行了测试,两个测试结果的比较如图5-1所示,当样品容器空载时的背温信号响应会更长。在选择测试软件中时间范围进行计算时,重要的是数据采集时间应该很短以避免样品容器的贡献。由此可以得到一个重要的信息就是采用高导热金属材质样品容器时,数据采集时间尽可能越小越好,但对于导热系数普遍较低的液体和相变材料而言,背温变化十分缓慢,数据采集实际势必较长,这显然会造成样品容器散热的严重影响。[align=center][img=,690,514]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_01_3384_3.png!w690x514.jpg[/img][/align][b][/b][align=center][b][color=#990000]图5-1 激光闪光法测量空载和有水样品容器时的探测器信号[/color][/b][/align] 由此可以看出,样品容器的设计需要接触液体样品的两个上下表面导热系数越大越好,以保证激光脉冲热量能快速加热液体样品并使得液体样品背面温度变化有效的传递出去。另一方面需要样品容器侧壁材质的导热系数越小越好,这样可以避免热量向容器四周散热。总之,这是一个相互矛盾的命题,至于样品容器侧壁热损到底对测量结果有多大影响,可以采用有限元模拟分析进行准确评价。从这方面可以看出,就像激光闪光法不太适合刚性固体低导热材料测试一样,采用图3-1所示特制样品容器进行激光闪光法热扩散系数测试,并不一定适用于低导热特性的液体和相变材料。[color=#ff0000]5.3. 样品的准备[/color] 为了采用激光闪光法设备测量固体样品,一般首先要先建立真空,然后充入惰性气体氮气。然而,当这一程序应用到液体测试时,一旦达到蒸汽压,测试设备腔体内的真空和减压会导致样品中的水分蒸发,这可以通过真空前后的样品称重进行检查。因此,在对液体样品进行最终测试时,需要省略掉真空过程,而通过较长时间气体置换来建立氮气气氛环境。 样品制备时要在特制样品容器的外表面上均匀涂覆石墨以增加激光能量的吸收,并保证样品的所有部分都具有相同吸收量。由于激光照射是的样品前表面温度可以达到很高值,所以知道这个温度的上限非常重要,以避免被测样品出于相变阶段,样品为水的情况下必须避免蒸发。 另外,被测液体样品厚度的准确测量非常关键,为了保证样品完整填充入样品容器,需要从几何尺寸中计算出容器体积,并通过微量[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url]来控制样品量。由此可见在激光闪光法液体热扩散系数测试中,对样品的制作和测试要十分的小心,试样过程十分精密。[color=#ff0000]5.4. 液体样品特制容器的进一步试验验证[/color] Delgado等人采用图3-1所示的液体样品特制样品容器,在激光闪光法设备上对三种液体(蒸馏水、正十六烷和甘油)进行了热扩散系数测试,测量结果如图5-2所示,图中所显示的测量值为五次激光脉冲测试热扩散系数和温度结果的平均值,图中还显示了与参考值相比的标准偏差。对于蒸馏水样品,最大测试误差为7.87%,测试正十六烷的最大误差为4.31%,测试甘油时的测试误差最大达到了15.38%,蒸馏水、正十六烷和甘油的参考值分别来自文献。由此可见,采用特制样品容器进行激光闪光法热扩散系数测试并没有达到文献所描述的准确度和重复性精度。[align=center] [img=,542,453]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_02_3384_3.png!w542x453.jpg[/img][/align][align=center][b][color=#990000]图5-2 三种液体导热系数测试结果及与参考值的比较[/color][/b][/align] 根据测试设备软件所提供的三层测试模型计算得到样品的热扩散系数,图5-3显示了PCM微胶囊质量分数分别为14%、20%和30%时的相变材料浆料的导热系数数值。在20℃时所得到的测量结果被认为并不可靠,这是因为即使激光脉冲造成样品温度一个非常小的增加也会导致比热容的突然改变(相变区在20~24℃之间),这种方法规定比热容是恒定的,否则计算得到的测试结果可能是无效。因此,如果留意25~30℃范围的数据,就可以观察到,在温度升高时PCM浆料的导热系数应该稍有增加。[align=center] [img=,690,538]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_03_3384_3.png!w690x538.jpg[/img][/align][align=center][b][color=#990000]图5-3 不同微胶囊质量分数14、20和30%时的导热系数测试结果[/color][/b][/align] 必须指出的是,PCM微胶囊质量分数的增加会导致导热系数降低,这种行为是预期的,这是因为石蜡的导热系数比水低。另外与温度为30℃的水相比,质量分数为14、20和30%的PCM微胶囊浆料分别都经历了24、32和39% 的还原。[color=#ff0000][b]6. 结论[/b][/color] 通过以上激光闪光法测试液体和相变材料热扩散系数和导热系数的研究文献报道,可以得出以下结论: (1)由于受到闪光法测量原理的限制,闪光法只能测量相变材料相变前后的热扩散系数,对相变过程中的热扩散系数根本无法测量,或测量结果完全不正确。 (2)尽管为闪光法液体热扩散系数测量开发了各种形式和材质的特制样品容器,但都有各自的局限性,有些适合低导热材料,有些适合于高导热材料,这对实际应用有很大限制并影响测量精度。 (3)对于液体和相变材料而言,闪光法测试过程中的样品制备要求十分精细、准确定量灌装和严格控制样品厚度,同时要避免样品中形成气泡等空气隙,否则会对测量结果带来严重影响。 (4)样品容器侧壁材质侧面热损的影响并未进行深入的研究,对于低导热液体和相变材料测试侧壁热损很可能是影响测量精度的重要因素之一。 (5)激光能量需要优化,或进行一系列不同激光能量下测试来进行外推,避免前表面温升引起样品前表面发生相变,使得闪光法测试相变材料十分的繁琐。 (6)在样品厚度固定不变的前提下,要结合激光脉冲能量来对脉冲时间进行优化,避免加热时间过长所带来的对流和辐射传热的影响。 (7)为了获得液体和相变材料的导热系数,除了用闪光法测试热扩散系数之外,还需要对比热容和密度随温度变化进行单独测量,整个测试过程复杂繁琐。 由此可见闪光法并不是一种测量液体和相变材料热物理性能比较合适的方法,影响因素众多,测试过程繁杂,并存在很多问题及不足,对于未知液体和相变材料的热性能测试很难保证相应的测量精度。[color=#ff0000][b]7. 参考文献[/b][/color](1)B. Le Neindre, Mesure de la conductivité thermique des liquides et desgaz, in : Techniques de l’Ingénieur, Mesures et contrô le (Tech. ing., Mes. contrô le), vol. RC3, noR2920, 1996, pp. R2920.1-R2920.21(2)J.T. Schriempf, A laser flash technique for determining thermal diffusivity of liquid metals at elevated temperatures, Rev. Sci. Inst. 43 (1972) 781-786.(3)M.M. Farooq, W.H. Giedt, N. Araki, Thermal diffusivity of liquids determined by flash heating of a three-layered cell, J. Thermophys. 1 (1981) 39-54.(4)Y. Maeda, H. Sagara, R.P. Tye, M. Masuda, H. Ohta, Y. Waseda, A hightemperature system based on the laser flash method to measure the thermal diffusivity of melts, Int. J. Thermophys. 17 (1996) 253.(5)T. Nishi, H. Ohta, H. Shibata, Y. Waseda, Evaluation of the heat leakage in the thermal diffusivity measurement of molten metals by a laser flash method, Int. J. Thermophys. 24 (2003) 1735-1751.(6)Coquard, R., and B. Panel. "Adaptation of the FLASH method to the measurement of the thermal conductivity of liquids or pasty materials." International Journal of Thermal Sciences 48.4 (2009): 747-760.(7)Y. Tada, M. Harada, M. Tanigaki, E.Y. Eguchi, Laser flash method for measuring thermal conductivity of liquids—application to low thermal conductivity liquids, Rev. Sci. Inst. 49 (1978) 1305-1314.(8)H. Ohta, H. Shibata, A. Suzuki, Y. Waseda, Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature, Rev. Sci. Inst. 72 (2001) 1899-1903.(9)Blumm, Jürgen, and André Lindemann. "Characterization of the thermophysical properties of molten polymers and liquids using the flash technique." High Temp. High Press 35.36 (2003): 627.(10)Blumm, J., A. Lindemann, and S. Min. "Thermal characterization of liquids and pastes using the flash technique." Thermochimica acta 455.1 (2007): 26-29.(11)Delgado, Mónica, et al. "Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry." Applied Thermal Engineering 63.1 (2014): 11-22.

  • 【讨论】有做导热检测的吗

    课题准备进行材料导热性方面的检测,现寻找 有导热仪而且对外服务的单位,有知道的请回复一下,大概说一下设备情况谢谢

  • 热电偶在高温下变小,然后消失了

    我们公司有一台激光导热仪,在实验的时候用s型热电偶,实验每次温度达到1300℃,一段时间以后,热电偶的头(2根丝粘连的地方)变小了,最后就直接消失了,热电偶就坏了。不知道怎么回事?实验是真空条件,真空度达到7pa,样品需要喷涂石墨。

  • 【原创大赛】保温材料的导热系数测定

    【原创大赛】保温材料的导热系数测定

    保温材料的导热系数测定1. 实验原理 平板式导热仪的工作原理:在一定厚度的具有平行表面的均匀板状试件中,建立理想状态下,以两个平行的均温平板为界的无限大平板的一维恒定热流,通过测量中心计量板达到稳态后的热量Q,按照热阻的计算公式,求得试件的导热系数λ。 任何物体的热量传递都有三种形式:热传导、热辐射、热对流。不同温度流体的各部分流体之间,由于发生相对运动产生热传递称为热对流。物质的微观粒子的运动以光的形式辐射能量,称成为辐射。 在温度不平衡条件下,物体内存在温差,热能分布不均匀,在物体内部没有宏观位移的情下,热量从高温向低温部分传递,不同温度物体的互相接触时,同样存在没有物质转移而存在热量传递现象,这种借助于物质微观粒子的无序运动的热传递现象称为热传导,又称为热扩散。 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251322_479096_2784284_3.jpg 根据传热学理论,垂直于无限大平板方向的热流量,沿厚度d方向与平板面侧的温度差、平板面积成正比,与平板厚度成反比(上图)。 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251334_479107_2784284_3.jpg 式中,Q—垂直于平板方向传递的热量,称为热流量;t1-t2 平板两面的温度差;d—平板厚度;S为平板面积。λ—为比例系数,称为导热系数。所以导热系数的方程如下所示: http://ng1.17img.cn/bbsfiles/images/2013/11/201311251336_479108_2784284_3.jpg 上式就是导热系数的运算方程。如果用用功率P表示,P=kQ,k是系数,如果P单位为W(瓦),长度单位用m,温度单位用K(℃),则导热系数单位为W/(mK)。导热系数方程变为: http://ng1.17img.cn/bbsfiles/images/2013/11/201311251336_479109_2784284_3.jpg式(3)就是绝对测量的导热系数方程。2. 实验仪器:DZDR-P 平板法导热仪 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251324_479098_2784284_3.jpg3. 试样准备试样长×宽应为300×300mm,试样厚度在1mm-50mm。试样应覆盖中心量热器和内保护装置的整个表面。4. 实验步骤打开便携式空气压缩泵开关,将压力调节至0.4MPa,抽取1分钟后关闭。打开回流装置,提升测试槽上方的冷板,将样品放入其中,降下冷板,开始测试实验,冷板温度为30℃,热板温度为50℃。5. 实验结果 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251325_479099_2784284_3.jpg该保温材料的导热系数为0.02676。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制