当前位置: 仪器信息网 > 行业主题 > >

激光分选机

仪器信息网激光分选机专题为您提供2024年最新激光分选机价格报价、厂家品牌的相关信息, 包括激光分选机参数、型号等,不管是国产,还是进口品牌的激光分选机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光分选机相关的耗材配件、试剂标物,还有激光分选机相关的最新资讯、资料,以及激光分选机相关的解决方案。

激光分选机相关的论坛

  • 【求助】请问色选机的分离原理是什么

    请问大家色选机的分离原理是什么,我公司有台色选机是专门分选废旧塑料的,根据不同颜色需要把不同的塑料分离开来,据了解是通过传感器/摄象头感来识别塑料的颜色,但识别后又怎么把他们分开呢,我们公司的废旧塑料颗粒大约是0.5立方厘米大小的,从料斗下料到分选机是成千上万颗粒子一起下去的,请问各位大侠,这机器是根据什么原理把它们分开的??谢谢大家

  • 流式细胞胞仪的分析及分选原理

    流式细胞胞仪的分析及分选原理流式细胞仪由液流系统、光学与信号转换测试系统和数字信号处理及放大的计算机系统三大基本结构组成。在对细胞悬液中的单个细胞或其超微结构进行多参数快速自动分析过程中,每秒钟能测量数千个至数万个细胞,能在分析过程中按实验设计要求对特定细胞进行分析,带细胞分选系统的流式细胞仪还可按实验设计要求分选出具相同特征的同类型细胞,用于培养或进一步研究。一、工作原理流式细胞仪的工作原理借鉴了荧光显微镜技术,将荧光显微镜的激发光源改为激光,使其具有了更好的单色性与激发[/

  • 激光扫描共聚焦显微镜在细胞生物学中的应用

    激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图像。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na+、Mg2+等影响细胞代谢的各种生理指标,对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。1. 定量荧光测量ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。2. 定量共聚焦图像分析借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。3. 三维重组分析生物结构ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。4. 动态荧光测定Ca2+、pH 及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF 、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。5. 荧光光漂白恢复(FRAP)——活细胞的动力学参数荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。6. 胞间通讯研究动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+、PH和cAMP水平对缝隙连接的调节作用。7. 细胞膜流动性测定ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。8. 笼锁-解笼锁测定许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。9. 粘附细胞分选ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法: ① Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。 ② 激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。10. 细胞激光显微外科及光陷阱技术借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。

  • 激光扫描共聚焦显微镜在医学领域中的应用

    一、在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量 共聚焦显微镜的分辨率超过普通光学显微镜,染色过程简便,可以在活细胞上进行无创伤性的染色,最大程度地维持细胞的正常形态。多种自发性的荧光染料,已被广泛地用于诸如RNA、DNA细胞核、线粒体、内质网、肌动蛋白、细胞膜等结构的标记。运用免疫荧光技术,将不同波长的两三种荧光物质标记在内部不同结构的相应抗体上,以这几种荧光物质特定的光谱特性选择激发光和滤光片,则可以观察到细胞内部各结构间的毗邻关系。特别是在荧光着丝点易被遮盖(如荧光原位杂交实验)的情况下,这种三维图像的多角度观察提供了极大的优越性。细胞有丝分裂中细胞核内染色体数目(双倍体、多倍体)、形态和位置的变化,一直是细胞生物学肿瘤研究中的热点。着丝点是细胞核内的重要结构,被认为在有丝分裂中起重要的作用,应用共聚焦显微镜的定量测量技术,可以较精确地测定着丝点在不同分裂期的位置。共聚焦显微镜生成厚度小于0.2微米的依次相连的光学切片,即使较厚的组织的三维数据也可被计算机获取,运用适当的图像分析软件,可以测量并确定所观察结构的表面特征,体积等参数,为相互结合定量测量提供了新手段。2. 活细胞生理信号的动态监测:活细胞的功能监测在细胞生物学、神经生理学、药理学等领域都有重要意义。许多荧光染料可以聚集在细胞的特定结构,而对细胞的活性基本上不产生影响。可以利用这一特性来反映细胞受到刺激后形态或功能的改变。如亲脂性染料DiOC6(3)主要聚集在内质网,且对细胞的毒副作用极小。肌细胞中的肌浆网与ER有相同的属性,是胞内钙库,应用共聚焦显微镜,就可以动态观察肌细胞兴奋时SR的变化。许多参与神经元兴奋传导的离子如K+、Na+、Ca2+及H+、Cl-、Mg2+ 等,都有其自发性的荧光染料。Ca2+ 在细胞的兴奋、分化、死亡等过程中都起重要作用,是许多生理反应的胞内第二信使,是目前研究得最为充分的离子; 通过激光扫描共聚焦显微镜对胞内、核内钙转移的研究、对心肌细胞的钙变化研究、免疫细胞钙信号的研究、对Ca2+信号在凋亡细胞中作用的研究都取得了可喜的结果,而更多的研究则是将激光扫描共聚焦显微镜应用于神经生物学中对神经元Ca2+动态测量的研究。目前激光扫描共聚焦显微镜以其独特的优势成为钙研究中的重要手段之一。3. 粘附细胞的分选(adherent cell sorting) 对特异细胞的分选和克隆,是研究单个细胞或细胞系生物特性的先决条件。 将细胞贴壁培养在特制培养皿上,培养皿底部有一层特殊的膜,用高能量激光在欲选细胞四周切割成八角形几何形状,掀去培养皿底部的膜,非选择细胞则被去除。目前对粘附细胞分选方法多用于对杂交瘤和突变细胞的分选,也有用于对经转化的平滑肌细胞,卵巢癌细胞及人畸胎瘤干细胞等的分选和克隆,还可用于基因调控、基因治疗等研究。4. 细胞激光显微外科和光陷阱功能: 激光扫描共聚焦显微镜可将激光当作一把“光刀子”使用,完成诸如细胞膜瞬间穿孔,染色体切割,神经元突起切除等一系列细胞外科手术。光镊是利用激光的力学效应,将一个微米级大小的细胞或其它结构钳制于激光束的焦平面上,也称为光陷阱。光镊可以用来进行细胞融合(如卵细胞受精)、机械刺激或细胞骨架弹性测量等,特别是在测量植物细胞的细胞骨架时很有意义。5. 光漂白后的荧光恢复(FRAP): 细胞在相互接触后彼此间即有低阻抗的通道形成,以进行细胞间通讯;被经合成肽测试法证明只允许低于1.5KD分子通过的通道被称作缝隙连接。缝隙连接是存在于相邻细胞间的一类蛋白通道,普遍认为缝隙连接通过介导细胞间的信息传递,在诸如增殖、分化、代谢等过程中发挥极其重要作用。FRAP技术借助脉冲式激光照射细胞的某一区域,从而该区域荧光分子的光淬灭,该区域周围的未淬灭的荧光分子将以一定速率向受照区域扩散,而此扩散速率可通过低强度激光扫描探测。在研究细胞骨架构成、跨膜大分子迁移率、细胞膜流动性、胞间通讯等领域中有较大的意义。6. 在细胞凋亡研究中的应用细胞凋亡是由体内外因素触发细胞内预存的死亡程序而导致的细胞死亡过程,细胞凋亡作为生理性、主动性过程,能够确保正常发育、生长、维持内环境稳定,发挥积极的防御功能。用激光扫描共聚焦显微镜观察凋亡细胞,可见凋亡细胞体积变小,细胞质浓缩,细胞核变小,出现染色质沿核膜内侧排列的核边聚集现象。细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。细胞凋亡(Apoposis)是生物体内广泛存在的,由细胞特定基因控制,以细胞DNA 降解为特征的细胞自发过程,与机体中多种生理及病理过程密切相关。因而,对Apoposis 的研究现已成为研究细胞生物学研究的热点之一。而激光扫描共聚集显微镜结合众多荧光探针的应用,成为细胞Apoposis超微结构及分子水平变化的有力手段。二、在神经科学中的应用1. 定量荧光测定:对活细胞进行定量测定,具有很好的重复性,分析神经细胞和胶质细胞的某些物理及生物化学特性;监测抗原表达,细胞结合和杀伤等特征。在多发性硬化病人大脑活检标本上观察病变组织的微血管内皮细胞特异性地表达。2. 细胞内离子的测定:使用多种荧光探针,对神经细胞的Ca2+、PH及其它各种细胞内离子进行定量和动态分析。3. 神经细胞的形态学观察:激光扫描共聚焦显微镜使用模拟荧光处理,可将系列光学切片的数据合成三维图像,并可从任意角度观察。如Joshi等观察了细胞突触的骨架的三维图像。三维重建图像可使神经细胞及细胞器的形态学结构更加生动逼真。三、在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用:1993年Ikeda等应用激光扫描共聚焦显微镜研究内耳毛细胞的亚细胞结构,用Rhodamine 123染色,见线粒体分布于表皮板下和核下,加入1mmol/L三硝基酚使线粒体膜电位减小,荧光强度明显减弱。用DIOC6(3)染色,观察到内质网分布于表皮板下直至细胞核区域,呈网状、核下及侧膜下也有分布,胞质中则极少,探讨了蛋白激酶(PKC)在三磷酸肌醇/钙信号系统中的作用。2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用钙离子在细胞的生命活动中起着重要作用,它参与调节细胞功能,如肌肉收缩,细胞运动,递质合成与释放,信息传递,细胞换能等。激光扫描共聚焦显微镜的荧光测钙技术可探测到细胞内钙浓度的细微变化,当内耳毛细胞受到各种生理及病理因子刺激时,可用荧光测钙技术观察细胞内钙离子浓度的变化。为研究毛细胞的机能提供了新的手段。3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用Issa等用膜片钳的全细胞记录法将Fluo-3已导入毛细胞,用激光扫描共聚焦显微镜观察,当毛细胞去极化时其底部侧膜上平均有18个亮点(钙内流所至),然后对同一毛细胞进行连续超薄切片电镜观察,证明这些亮点即为突触前活性区。4. 激光扫描共聚焦显微镜在嗅觉研究中的应用:Schild等用激光扫描共聚焦显微镜和钙荧光探针研究嗅觉感受器神经元的钙通道分布,以Fluo-3和Fura-red 染色后行双发射比例测量,测出其胞内游离钙呈不均匀分布,观察显示嗅觉感受器神经元的钙通道位于胞体部,与同一部位的钾通道一起构成适应性调节机制,而对树突尖端纤毛的钙依赖性换能过程无干扰。四、在肿瘤研究中的应用激光扫描共聚焦显微镜的出现,在一定程度上推动了肿瘤的研究进展。它为肿瘤细胞生物学、分子生物学、细胞通讯、细胞形态学研究、细胞的抗药物代谢、细胞膜及其受体等领域的研究,提供了有效手段。1. 定量免疫荧光测定:激光扫描共聚焦显微镜采用免疫荧光对肿瘤细胞的抗原表达、细胞结构特征、抗肿瘤药物的作用及机理等方面进行定量的观察和监测,为较理想的形态学观察方法。先采用荧光标记特异性抗原或抗体,使其与特异性抗体或抗原结合,再采用激光扫描共聚焦显微镜对其进行定性、定量和形态学分析。近年来报道较多的是P53肿瘤相关抗原等的定位、定性和定量分析。采用荧光标记某些蛋白分子,然后测定其平均荧光强度和积分荧光强度,从而对某些细胞结构蛋白分子进行定量分析。2. 细胞内离子分析激光扫描共聚焦显微镜可以准确地测定细胞内Ca2+ 、 K+ 、 Na+ 、 Mg2+ 、 pH等

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 【分享】国内最新垃圾分选装置诞生——谈谈你的看法

    垃圾无害化处理是世界性的难题。目前多数城市选择填埋式处理,但其很可能造成二次污染,而且填埋时间有限,约30-50年之后,垃圾很可能无处可埋。据统计,目前我国约有三分之二的城市陷入垃圾围城的困境。记者昨天获悉,最近于西安诞生的垃圾分选成套装置,将向生活垃圾无害化处理迈出第一步。西安专家研发出国内最新垃圾分选装置记者在采访西安市固体废弃物管理处总工程师郭随宝时,他的一句话让人记忆深刻:对城市垃圾进行分选、分类,使其资源化逐渐成为替代填埋的必由之路。如郭随宝所言,西安的垃圾分选、分类、无害化处理正在起步。目前,户县城市生活垃圾无害化处理的可研性报告已经出炉,拟在户县大王镇建生活垃圾无害化处理厂,这将成为全国首个真正的无害化、零排放的垃圾场,也是西安生活垃圾无害化处理迈出的第一步。昨天,记者见到了被称为陕西研究垃圾无害化处理第一人的陕西秦工垃圾资源化处理有限公司负责人杨克俭,他研究垃圾无害化处理长达10年之久。他自行研制开发的垃圾分选成套装置是国内最新一代拥有自主知识产权的科研成果,拥有国家11项专利。这套垃圾分选装置将被用于户县垃圾无害化处理。垃圾分选真正实现“零排放”昨天,记者在垃圾分选成套装置的研发基地旬邑,见识了这套“吃干、炼净、零排放”垃圾分选设备的巨大威力。这套看上去略显庞大的机器,运转起来却十分灵巧。巨大的抓斗从垃圾储料坑内将垃圾抓至钣链输送机,然后运至破袋机进行挤压破袋后进入筛选机,最先分离出废旧金属、玻璃和建筑垃圾,然后再分离出有机质,最后进入风选设备筛选出废塑料。经过多级分选后,各样垃圾将分别处理。筛选出的黑色金属将回收利用;好的塑料将作为塑料制粒的原料,废差塑料将成为热解炼油的原料,其炼出的油可用作工业用油或除锈剂、润滑油等;筛选出的废玻璃、废铁等分别出售;筛选出的灰土可用作园林用土;建筑垃圾废弃物可作为免烧砖原料;厌氧发酵产生的沼气一部分替代燃煤供采暖和发酵液加热,剩余的沼气用来发电。有机物养蚯蚓产生优质有机肥在分好类的垃圾中,最难处理的当属有机物,这也是垃圾无害化处理的一大难题。杨克俭却给有机物想了个最好的去处,他将筛选出的有机物用于厌氧发酵,沼液返回做有机质的配料水,沼渣用来养殖蚯蚓,蚯蚓的粪便可做有机肥。在杨克俭眼里,蚯蚓是个了不起的小东西。它可以通过吞食土壤在消化道内形成类似生物反应器的微域环境,能促进土壤有机团聚体和铁锰氧化物的分解重构。哪怕再难分解的重金属,只要进了蚯蚓的肚子,都能被分解,最终成为优质的有机肥。而蚯蚓粪便作为一种高效有机肥料,它的最大特点是将有机物——微生物——生长因子合理结合起来,改善土壤环境最终达到增肥、抗病、养土的目的。这种蚯蚓粪有机肥可促进土壤团粒结构的形成,提高土壤通透性、保水性、保肥力,利于微生物的繁殖和增加,使土壤吸收养分和储存养分的能力增强,经蚯蚓消化后的有机质颗粒细小,表面面积比消化前扩大100倍以上,能提供更多的机会让土壤与空气接触,从根本上解决土壤板结问题。同时,蚯蚓粪便有大量的有益微生物,在施入土壤后,可迅速抑制有害菌的繁殖,有益菌得以繁殖扩大,减少土传病害的发生,使农作物不易生病。有机肥让农民尝到甜头蚯蚓粪便形成的有机肥,农民乐于接受。在张洪镇高平村种植了9亩苹果园的张建鹏说,在使用蚯蚓粪有机肥之前,他的苹果园曾用过普通化肥,但由于毒性残留重,苹果很容易起黑点,造成病害,卖不上价钱。之后,他开始用蚯蚓粪有机肥,现在不光每年节约肥料费用千余元,而且苹果果质好,果面光亮度高,一斤能卖到2.5元,价钱比原先翻了一番。西安垃圾分拣后每年有望“捡回”9亿元这是农民朋友算的丰收账。杨克俭还给记者算了一笔被“捡回来”的可再生资源账。按西安每日产生约5000吨生活垃圾来计算,每年被丢弃的“可再生资源”价值高达9亿元。如果西安现在的垃圾不是被填埋,而是被分拣利用,那么,每年将从垃圾堆里“捡回”9亿元的再生资源。这还只是对现有垃圾进行分拣利用后的数字,如果算上无公害饲料厂,以及无公害绿色生态农业链,其形成的循环经济体系将不可限量。看了以上的新闻你有什么感想呢?

  • 从激光发展前景看激光划片机现状

    众所周知,激光的应用领域在人们生活中可谓是无处不在,你知或不知,激光应用就在那里,用它那精湛的激光加工技术丰富着您的生活。 今天我们就来探讨一下这样一个具有历史代表性的产业链,是怎样逆袭曾经的风貌。 目前随着激光技术的发展,已广泛用于单晶硅、多 晶硅、非晶硅太阳能电池的划片以及硅、锗、砷化镓和其他半导体衬底材料的划片与切割。那么说到这里肯定很多人会问,激光加工技术是利用什么原理来完成划片和切割的这样一个步骤的呢? 从科学的角度上来讲,激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为两大类: 一、激光加工系统; 二、激光加工工艺。 激光加工系统主要包括激光器、导光系统、加工机床、控制系统及检测系统这些配件。而激光加工工艺的范围就略广泛一些,主要应用在切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。 从功能上来讲,激光加工工艺在激光焊接、激光切割、激光笔、激光治疗、激光打孔、激光快速成型、激光涂敷、激光成像上都有很成熟的一个应用。 另外激光在医学上的应用主要分为三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。激光美容、激光去除面部黑痣、激光治疗近视、激光除皱、都是激光领域是医学行业内伟大的成就。 在军事方面,激光成就了战术激光武器、战略激光武器、激光动力推动器等,此外激光武器的关键技术已取得突破,2013年低能激光武器已经投入使用。 在通信方面,激光通过大气空间传输达到通信目的,激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 发展前景 由此可见激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光划片机现状 激光划片机又称为陶瓷激光切割机或激光划线机,采用连续泵浦声光调Q的 Nd: YAG 激光器或绿激光作为工作光源,由计算机控制二维工作台,能按输入的图形做各种运动。输出功率大,划片精度高,速度快,可进行曲线及直线图形切割;无污染,噪音低,性能稳定可靠等优点。 目前,常见的硅晶体划片工艺分接触划片和非接角划片(激光划片工艺)两种: 接触划片工艺: 接触划片工艺主要有锯片切割等多种方法,是过去硅晶体、太阳能电池的切割方法,缺点是精度差,废品率高,速度慢。 非接触划片工艺: 非接触划片工艺主要是激光划片,由于是非接触方式,划线细,精度高,速度快,目前是太阳能电池等划片的主要方法。 江苏启澜激光科技有限公司开发研制的晶圆激光划片机具有国际先进水平,主要适用于表面玻璃钝化硅晶圆的划片机切割加工。激光加工技术已广泛应用于制造、表面处理和材料加工领域。晶圆紫外激光划片机,其无接触式加工对晶圆片不产生应力、具有较高的加工效率、极高的加工成品率,可有效的解决困扰晶圆切割划片的难题。同时,图像识别、高精度控制、自动化技术的发展,使得能实现图像自动识别、高精度自动对位、自动切割融为一体的晶圆切割划片机成为可能。国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 调查显示,瑞士、美国和日本主要的激光晶圆切割机生产商每年在中国市场约销售近100台,国外设备售价在40~42万美元左右,为了提高我国激光精密加工装备的国产化水平,降低设备的采购及使用成本,提高行业的生产效率。晶圆紫外激光划片技术代表了当今世界晶圆切割加工技术前沿的发展方向,对国家未来新兴的晶圆制造产业的形成和发展具有引领作用,有利于晶圆制造技术的更新换代,实现跨越发展。

  • 【转帖】He-Ne激光器与半导体激光器

    半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的最新成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代。它的应用领域包括光存储、激光打印、激光照排、激光测距、条码扫描、工业探测、测试测量仪器、激光显示、医疗仪器、军事、安防、野外探测、建筑类扫平及标线类仪器、激光水平尺及各种标线定位等。以前半导体激光器的缺点是激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展,发挥更大的作用。 在气体激光器中,最常见的是氦氖激光器。1960年在美国贝尔实验室里由伊朗物理学家贾万制成的。由于氦氖激光器发出的光束方向性和单色性好,光束发散角小,可以连续工作,所以这种激光器的应用领域也很广泛,是应用领域最多的激光器之一,主要用在全息照相的精密测量、准直定位上。He-Ne激光器的缺点是体积大,启动和运行电压高,电源复杂,维修成本高。

  • 氦氖激光器与半导体激光器的性能有何差异?

    [font=宋体]同样作为激光器,氦氖激光器稳定性比普通半导体激光器的稳定性更高,主要原因在于激光器受温度影响,激光波长会发生偏移,氦氖激光器的温度稳定度相比半导体激光器更稳定,受环境影响更小。[/font]

  • 激光打标机

    最近想买台激光打标机,不知哪家的激光打 标机好些?

  • 【原创】激光的知识

    实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。   (一)固体激光器  实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。  在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。  固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。  (二)气体激光器  工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。  气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子与粒子(气体的原子或分子)碰撞时将自身的能量转移给对方,使分子或原子被激发到某一高能级上而形成粒子数反转,产生激光。气体激光器与固体激光器相比较,两者中以气体激光器的结构相对简单得多,造价较低,操作简便,但是输出功率常较小。因气体激光器中的工作物质不同。因此分中性(惰性)原子、离子气体、分子气体三种激光器。  中性原子气体激光器这类激光器中主要充有以惰性气体(氦、氖、氩、氪等)的物质。  氦-氖(He-Ne)激光器 首台氦-氖激光器诞生于1960年,它可以在可见光区及红外区中产生多种波长和激光谱线,主要产生的有632.8nm红光、和1.15μm及3.39μm红外光。632.8nm氦-氖激光器最大连续输出功率可达到一W,寿命也达到一万小时以上。借助调节放大电流大小,使功率稳定性达到30秒内的误差为0.005%,十分钟内的误差为0.015%的功率稳定度;发散角仅为0.5毫弧度。氦氖激光器除了具有一般的气体激光器所固有的方向性好,单色性好,相干性强诸优点外,还具有结构简单、寿命长、价廉、频率稳定等特点。氦氖激光在精确指示,激光测量,医疗卫生方面有很广泛的用途。  氦氖激光器的工作原理:氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。  He-Ne激光器结构:此类激光器的结构大体可分为三部分,既放电管、谐振腔和激发的电源。现在临床上最常应用的为内腔式。  He-Ne激光的放电管,最外层是用硬质玻璃制成。放电的内管直径约2~3mm,管长几厘米到十几厘米,放电管越长功率越大,相应的放电电压就高。管内主要按5:1~10:1的比例充入氦氖混合气体达到总气压约2.66~3.99Pa。管的一端装有铝圆筒作阴极(其圆管状结构主要是为了减少放电测射),另一端装有钨针作阳极,放电管两端装有反射镜(即一头为全反射镜,出光一端为半反射镜)。这就构成了激光放电管。  在氦氖激光器中,采用的谐振腔有球面腔或平凹腔。一般腔镜内侧镀有高反射率的介质。在其中一端反射率为100%,另一端反射率由激光器的增益而定。放电毛细管长度约15~20cm,He-Ne激光器的半反射镜的半反射镜的反射率98.5%~99.5%。谐振腔的轴线和放电毛细管轴偏离不超过0.1mm。  He-Ne激光器的外界激励能源与固体激光器不相同,不能使用光泵激励,而采用电激励的方法。把工作物质封入放电管中,供以直流、交流及射频等方式激励气体放电。通过放电过程把能量传给工作物质,促使气体中的离子、原子被激发。医疗中使用的激励方法主要是以直流电激发出光。大体结构主要有高压变压器、整流与滤波回路、限流与稳流回路组成。

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 【讨论】激光粒度仪谁家的激光器最好?

    我觉得是法国Cilas的,他们用的是半导体激光器。这个公司主要的业务还是激光器这块嘛,在全世界范围来说生产的激光器都是数一数二的。马尔文,贝克曼这些公司都是买了人家的。

  • 【资料】激光原理及其应用

    激光是二十世纪六十年代出现的一种新型光源——激光器发出的光。激光一词的本意是受激辐射放大的光。1960年美国休斯研究实验室的梅曼制成了第一台红宝石激光器,1961年9月中国科学院长春光学精密机械研究所制成了我国第一台激光器。此后,在激光器的研制、激光技术的应用以及激光理论方面都取得了巨大进展,并带动了一些新型学科的发展,如全息光学、傅立叶光学、非线性光学、光化学等,激光还与当今的重点产业——信息产业密切相关。与激光有关的诺贝尔物理学奖获得者有:1964年,美国汤斯、原苏联巴索夫和普洛霍罗夫因在激光理论上的贡献而获奖。1981年美国肖洛因发展激光光谱学及对激光应用作出的贡献、美国布隆伯根因开拓与激光密切相关的非线性光学共同获奖。1997年美国朱棣文、科恩和飞利浦因首创用激光束将原子冷却到极低温度的方法共同获奖。 激光原理一.物质与光相互作用的规律光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202115_32995_1634962_3.gif[/img]微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。1. 受激吸收(简称吸收)处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。2. 自发辐射粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202116_32996_1634962_3.gif[/img]3. 受激辐射、激光1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。二.粒子数反转爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。

  • 拉曼激光选择

    拉曼一般都有几种激光,不同波长的激光对样品该如何选择。每次换激光都需要预热比较耗时间

  • 【求助】纳米激光粒度仪的激光问题

    我看到动态光散射纳米粒度测量的原理图,其中在激光发生器后加了起偏器,是否说明要求激光是线偏振的?什么类型的偏振对纳米颗粒的测量有什么影响吗?还有在光电倍增管前会有一组小孔光阑,这里小孔光阑的作用是什么?哪位高人知道的还请不吝指教。

  • 激光功率对样品的影响

    测试光谱时,随着激光功率的提高发现样品的拉曼光谱有了一定的变化,显微镜下看起来样品并没有发生变化。将激光功率降低,样品的拉曼光谱又回到了原来的状态,这种情况如何解释?这种情况下测量时选择哪种激光功率呢?

  • 激光测氧仪

    哪位大神用过激光测氧仪?谁知道里面的激光器一般选用哪种激光器啊?是不是DFB半导体?功率一般是什么级别的?

  • afm调激光

    innova调激光时,能把激光调到针尖处,但sum值总是负的,总感觉激光在探针的底下~求大神指教~

  • 激光烧蚀技术简介

    [align=center][b]激光烧蚀技术简介[/b][/align]激光烧蚀技术(LA),也称激光剥蚀,是一种固体进样方式。主要是利用功率很高的激光脉冲,激光打到样品表面,可以实现原位,无损检测。不需要样品消解,无需酸的消耗,绿色环保,避免污染。从脉宽分类:纳秒级别,飞秒级别。从波长分类:213nm,193nm等。1.主要联用技术,联用ICP-OES, [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url].2.作用范围为微米级别,所以应用领域基本在微区分析。3.样品适用范围及LA特点:Ø 难消解的样品(Pt, Ph等),挥发元素(Hg)。Ø 可进行样品的原位分析,提供更多元素空间分布的特点。Ø 进样不需要稀释,提高测试灵敏度。Ø 可减少水中氧的干扰。Ø 激光对于样品会产生破坏。Ø 测定灵敏度低。Ø 有质量歧视和分馏效应。Ø 目前的标样只是玻璃,需要基体匹配才能更好地进行分析。4.可检测的样品为:金属,合金,矿产,粉末状态,熔融状态,陶瓷,生物组织,土壤沉积物,塑料,电子材料,玻璃。其中目前玻璃标样是最为常见的。5.仪器使用条件:22 ℃左右,湿度为60%以下。6.常用单位介绍:Ø mJ 能量,每个脉冲的能量。Ø J/cm2 能量密度,每个脉冲作用单位面积的能量。Ø nm 波长,激光输出波长。Ø ns 脉宽,激光输出每个脉冲的时间。7.可优化的条件:激光参数:激光能量,激光频率(剥蚀深度),激光光斑尺寸,He,Ar流速。分析需求:分析区域,分析时间,分析元素。8.联用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]的时候,雾化器流量,炬管位置,三位监控。9. 选取仪器波长和能量成反比。选取需要适合的波长和脉宽。

  • 【分享】------激光相关国标

    激光相关国标序号Sequence No. 标准号Standard No. 中文标准名称Standard Title in Chinese 英文标准名称Standard Title in English 状态State 备注Remark1 GB/T 20485.11-2006振动与冲击传感器校准方法 第11部分:激光干涉法振动绝对校准 Methods for the calibration of vibration and shock transducers - Part 11: Primary vibration calibration by laser interferometry 现行 2007-02-01实施,代替GB/T 13823.2-19922 GB 10320-1995激光设备和设施的电气安全 Electrical safety of laser equipment and installations 现行 1996-01-01实施,代替GB 10320-19883 GB 10435-1989作业场所激光辐射卫生标准 Hygienic standard for laser radiation in the work environment 现行 1989-10-01实施4 GB/T 11153-1989激光小功率计性能检测方法 Parameters testing method of laser power meter in low range 现行 1990-04-01实施5 GB/T 11293-1989固体激光材料名词术语 Terms and definitions of solid-state laser materials 现行 1990-01-01实施6 GB/T 11295-1989激光晶体棒型号命名方法 Designation for laser crystal rods 现行 1990-01-01实施7 GB/T 11297.1-2002激光棒波前畸变的测量方法 Test method for wavefront distortion of laserrods 现行 2003-05-01实施,代替GB/T 11297.1-19898 GB/T 11297.2-1989激光棒侧向散射系数的测量方法 Test method for side direction scatteringcoefficient of laser rods 现行 1990-01-01实施9 GB/T 11297.3-2002掺钕钇铝石榴石激光棒消光比的测量方法 Test method for extinction ratio of Nd∶YAG laser rods 现行 2003-05-01实施,代替GB/T 11297.3-198910 GB/T 11297.4-1989掺钕钇铝石榴石激光棒长脉冲激光阈值及斜率效率的测量方法 Test method fornormal pulse lasing threshold and slope efficiency of Nd:YAG laser rods 现行 1990-01-01实施11 GB/T 11297.5-1989掺钕钇铝石榴石激光棒连续激光阈值、斜率效率和输出功率的测量方法 Test method for continuous lasing threshold, slope efficiency and output power of Nd∶YAG laser rods 现行 1990-01-01实施12 GB 11748-2005二氧化碳激光治疗机 Carbon dioxde Laser Treating Intrument 现行 2005-07-01实施,代替GB 11748-199913 GB/T 12082-1989气体激光器文字符号 Letter symbols for gas lasers 现行 1990-07-01实施14 GB/T 12083-1989气体激光器电源系列 Power supply series for gas lasers 现行 1990-07-01实施15 GB 12257-2000氦氖激光治疗机通用技术条件 General specification of He-Ne laser medical equipment 现行 2000-12-01实施,代替GB 12257-199016 GB/T 12377-1990空气中微量铀的分析方法 激光荧光法 Analytical method of microquantity uranium in air by laser-fluoremetry 现行 1990-12-01实施17 GB/T 13739-1992激光辐射横模鉴别方法 Testing method of transverse mode of laser radiation 现行 1993-08-01实施18 GB/T 13740-1992激光辐射发散角测试方法 Testing method of divergence angle of laser radiation 现行 1993-08-01实施19 GB/T 13741-1992激光辐射光束直径测试方法 Testing method of beam diameter of laser radiation 现行 1993-08-01实施20 GB/T 13823.2-1992振动与冲击传感器的校准方法 激光干涉法振动绝对校准 (一次校准) Methods for the calibration of vibration and shock pick-ups--Primary vibration calibration by laser interferometry 现行 1993-10-01实施21 GB/T 13842-1992掺钕钇铝石榴石激光棒 Neodymium-doped yttrium aluminium garnet laser rods 现行 1993-08-01实施22 GB/T 13863-1992激光辐射功率测试方法 Testing method for laser radiant power 现行 1993-05-01实施23 GB/T 13864-1992激光辐射功率稳定度测试方法 Testing method for laser radiant power stability 现行 1993-05-01实施24 GB/T 14078-1993氦氖激光器技术条件 He-Ne laser specification 现行 1993-08-01实施25 GB/T 14128-1993掺铷钇铝石榴石激光棒尺寸系列 Dimension series for neodymium-doped yttrium aluminium garnet laser rods 现行 1993-08-01实施26 GB/T 15175-1994固体激光器主要参数测试方法 Measurement methods for main parameter of solid-state lasers 现行 1995-04-01实施27 GB/T 15301-1994气体激光器总规范 General specification for gas lasers 现行 1995-07-01实施28 GB/T 15313-1994激光术语 Terminology for laser 现行 1995-10-01实施29 GB/T 15490-1995固体激光器总规范 General specification for solid state lasers 现行 1995-09-01实施30 GB/T 15649-1995半导体激光二极管空白详细规范 Blank detail specification for semiconductor laser diodes 现行 1996-04-01实施31 GB/T 15860-1995激光唱机通用技术条件 General specification for compact disc players 现行 1996-08-01实施32 GB/T 16601-1996光学表面激光损伤阈值测试方法 第1部分:1对1测试 Test methods for laser induced damage threshold of optical surfaces--Part 1: 1 on 1 test 现行 1997-04-01实施33 GB/T 17540-1998台式激光打印机通用规范 General specification for desktop laser printer 现行 1999-06-01实施34 GB/T 17736-1999激光防护镜主要参数测试方法 Testing method of main parameters for laserprotective eyewear 现行 1999-12-01实施35 GB 18151-2000激光防护屏 Laser guards 现行 2000-12-01实施36 GB 18217-2000激光安全标志 Laser safety signs 现行 2001-06-01实施37 GB/Z 18461-2001激光产品的安全 生产者关于激光辐射安全的检查清单 Safety of laser products--Manufacturer’s checklist for radiation safety of laser products 现行 2002-05-01实施38 GB/Z 18462-2001激光加工机械 金属切割的性能规范与标准检查程序 Laser processing machines--Performance specifications and benchmarks for cutting of metals 现行 2002-05-01实施39 GB 18490-2001激光加工机械 安全要求 Laser processing machines--Safety requirements 现行 2002-06-01实施40 GB/T 18683-2002钢铁件激光表面淬火 Laser surface hardening of iron and steel parts 现行 2002-08-01实施41 GB/T 18904.2-2002半导体器件 第12-2部分:光电子器件 纤维光学系统或子系统用带尾纤的激光二极管模块空白详细规范 Semiconductor devices--Part 12-2:Optoelectronic devices--Blank detail specification for laser diodes modules with pigtail for fiber optic systems or sub-systems 现行 2003-05-01实施42 GB/T 19077.1-2003粒度分析 激光衍射法 Particle size analysis--Laser diffraction method 现行 2003-09-01实施43 GB/T 4799-2001激光器型号命名方法 The type designation for laseres 现行 2002-05-01实施,代替GB/T 4799-198444 GB/T 6360-1995激光功率能量测试仪器规范 Specification for laser radiation power and energy measuring equipment 现行 1996-01-01实施,代替GB 6360-198645 GB/T 6598-1986小角激光光散射法测定聚苯乙烯标准样品的重均分子量 Determination of weight-average molecular weight of polystyrene standards by low angle laser light scattering method 现行 1987-07-01实施46 GB 7247.1-2001激光产品的安全 第1部分:设备分类、要求和用户指南 Safety of laser products--Part 1:Equipment classification,requirements and user’s guide 现行 2002-05-01实施,代替GB 7247-199547 GB/T 7257-1987氦氖激光器参数测试方法 Measurement methods of parameter for helium neon laser 现行 1987-12-01实施48 GB 9706.20-2000医用电气设备 第2部分:诊断和治疗激光设备安全专用要求 Medical electrical equipment--Part 2articular requirements for the safety of diagnostic andtherapeutic laser equipment 现行 2001-05-01实施

  • 激光测距仪应用介绍

    激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。 对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。 激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制